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Abstract 
Anthropogenic marine debris, mainly of plastic origin, is accumulating in estuarine and coastal 

environments around the world, causing damage to multiple species of fauna and flora, as well as 

habitats. Plastics have the potential to accumulate in food webs, and cause economic losses to 

tourism and sea-going industries, like commercial fishing. The production and use of plastic 

products is growing, from 230 million tonnes produced globally in 2005 to 320 million tonnes in 

2015, a 40% increase in production over 10 years. If we are to manage the increasing input and 

threat, we must understand where plastic pollution is accumulating in the environment and what 

the impacts to organisms in these areas are. 

The goal of this thesis was to explore the dispersal and risks of plastic pollution in the coastal 

environment, at a scale that is useful to local management authorities. I used four research aims 

to achieve this goal. The aim of the first data chapter (Chapter 2) was to prioritise research that 

would improve modelling outputs in the future. In the second data chapter (Chapter 3), the aim 

was to locate the areas of highest exposure to plastic pollution for three vulnerable habitats. In 

the third data chapter (Chapter 4), I aimed to explore the dominant sources and processes of 

plastic accumulation. Lastly, in the final data chapter (Chapter 5), I aimed to understand the sub-

lethal consequence of plastic exposure on a tropic reef fish.  

The first data chapter of my thesis presents an advection-diffusion model that includes beaching, 

settling, resuspension/re-floating, degradation and topographic effects on the wind in nearshore 

waters to quantify the relative importance of these physical processes in governing plastic debris 

accumulation. I found that the source location has by far the largest effect on the accumulation 

location of the debris. The diffusivity, used to parameterise the sub-grid scale movements, and 

the relationship between debris resuspension/re-floating from beaches and the presence of a 

wind shadow created by high islands also has a dramatic impact on the modelled accumulation 

areas. The rate of degradation of macroplastics into microplastics also had a large influence in the 

prediction of debris dispersal and accumulation. These findings may help prioritise research on 

the physical processes that affect plastic accumulation, leading to more accurate modelling, and 

subsequently an improved empirical basis for management in the future.  

In the second data chapter, I used the model described in Chapter 2 to predict the potential 

exposure of vulnerable habitats and species to plastic pollution using a spatial risk assessment 

approach. The effect of plastics on the marine environment is well documented, however the 

physical location of these interactions are largely unknown. I assessed the potential exposure of 
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mangroves, coral reefs and marine turtles to plastics during the two main wind conditions of the 

region; the trade winds and monsoon wind seasons. By creating relative exposure categories 

based on the density of particles in modelling outputs of nil, low, medium and high exposure. I 

found that in the trade wind season (April to September, dominated by strong south-easterly 

winds) marine turtles, mangroves and reef habitats had lower exposure than during the monsoon 

wind season (October to March, dominated by lighter and more variable winds). A small 

proportion of coral reef habitat was in the high exposure categories, whereas the turtle home-

range had a large area in high exposure categories (16% and 26% exposed to high microplastics 

during monsoon season, respectively). Unlike the other two case studies, the mangrove habitat 

had consistent hotspots of high exposure across both wind seasons. The outputs of this chapter 

can inform local scale management action, for example turtle management and recovery plans. 

The method presented here can also be transferred to other species and habitats and scaled up 

for larger jurisdictions. 

In the third data chapter, I built on Chapter 2 (a sensitivity analysis of physical/modelled processes) 

by using field data for macro- and microplastics to interrogate the model. The aim was to find the 

likely sources of plastics to the Whitsunday region and understand the limitations for the model 

in a complex coastline and at a management-relevant scale. I found that, for microplastics, 

offshore sources are likely to be more important than onshore, and for macroplastics, local 

(onshore) sources are more important than they are for microplastics. Of the physical 

characteristics I examined, I found none that make a site more or less predictable in the modelling. 

Field data on sources at local scales is necessary, although, this is recognised as a difficult task.  

In the last data chapter, I assessed the consequence of plastic exposure by quantifying the effect 

of microplastic exposure on juveniles of a widespread and abundant planktivorous fish 

(Acanthochromis polyacanthus). Under five different plastic concentrations, with plastics the 

same size as the natural food particles (mean 2 mm diameter), consumption of microplastic was 

low and there was no significant effect of plastic exposure on fish growth, body condition or 

behaviour. However, the number of plastics found in the gut of the fish vastly increased when 

plastic particle size was reduced to approximately one quarter the size of the normal food 

particles, with a maximum of 2102 small (< 300 µm diameter) particles present in the gut of 

individual fish after a 1-week plastic exposure period. Under conditions where food was replaced 

by plastic, there was a negative effect on the growth and body condition of the fish. These results 

suggest plastics could become more of a problem as they breakup into smaller size classes, and 

that environmental changes that lead to a decrease in plankton concentrations likely have a 

greater influence on fish populations than microplastic presence alone. 
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The risks of plastic pollution to environmental features remain largely unquantified. However, my 

thesis demonstrates significant gains in understanding of mechanisms that can be used to 

determine where plastics are likely to accumulate, and identifies priorities for future research to 

improve the statistical power of the models. For example, by understanding the resuspension of 

plastic in areas without wind driven waves. This thesis also highlights the need to understand 

different types of plastics separately, microplastics have different consequences to macroplastics, 

different areas of accumulation and different sources, therefore the risks and appropriate 

management actions are very different.  
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Over recent decades, the increase in population, technological developments and 

urbanisation have increased pollution in the environment. Some of the earliest pollutants were 

coal ash, industrial waste and sewage in the mid-19th century, coinciding with the industrial 

revolution. It was not until the 1950s that the environmental movement began taking action 

towards reducing pollution inputs with legislation for clean air the America and the UK (Air 

Pollution Control Act, 1955; Clean Air Act, 1956, respectively), among others. The use of many 

substances deemed to contribute to pollution is controlled by legislation or other policy 

instruments aiming to prevent or minimise environmental harm. The management of point source 

and diffuse source pollutants differ. For point source pollutants, the source is known and 

identifiable, therefore legislating to set maximum emission limits is relatively common. For 

example, limits are set to manage emissions of heavy metals or persistent organic pollutants 

(POPs) by various industrial sectors. Diffuse source pollutants are more difficult to legislate for, 

essentially because it is not possible to locate the source, or the use is wide-spread and thus there 

is no single source contributing to the pollution. Dichlorodiphenyltrichloroethane (DDT), for 

example, is a chemical which has been used extensively as an agricultural insecticide for many 

decades, and although it is still used in some parts of the world as a malaria control method, its 

use is illegal in most developed nations due to its impact on the environment (UNEP, 2002; van 

den Berg, 2009). Despite these regulations across the globe, our air, soil and water systems are all 

experiencing an increased presence of pollutants.  

Plastic is a pollutant of emerging concern and notoriety in the environment. Plastic-based 

products occur in many forms and are widely used around the world. One of the key reasons is 

that plastic forms the base material for a growing number of products used in society, and it has 

a large, and growing, number of applications. Some of these uses for plastic have revolutionised 

industries, for instance, modern medicine has benefited from plastic materials such as those used 

to make flexible, durable equipment or the sterile single-use equipment to minimise infection 

(Naik, 2017). In agriculture, plastic ground sheeting used for some crops has led to reduced use of 

herbicides and the amount of water necessary to produce the crop (Steinmetz et al., 2016), and 

this has improved runoff from agricultural land into coastal systems and profit margins of the 

industry. The use of plastics in automobile and airline industries has led to lighter vehicles or loads 

thus increasing the cost-efficiency of travel and transport. However, it is the low cost and ease of 

availability of plastics that has led to their use in society as convenient items, or packaging, 

designed to be disposable. Such is the global demand for plastics that in 2015 alone, 322 million 

tonnes were produced, a 40% increase in a decade from 230 million tonnes in 2005 (Plastics 
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Europe, 2016). Of this, it is estimated that a third of the plastic production goes to single-use 

packaging products.  

With the increase in production and dependency of plastic-based materials, it is inevitable 

that plastic will end up in the natural environment. Plastic products can end up in the environment 

through irresponsible disposal, such as littering, accidental leakage from land-fill, and inadvertent 

loss through municipal waste-water treatment. Streets and storm drains often flow directly into 

freshwater systems where the plastics they carry accumulate (Eerkes-Medrano et al., 2015; 

Anderson et al., 2016; Cable et al., 2017). From the freshwater systems, the plastics are often 

washed into coastal and oceanic environments and these have become some of the most 

infamous accumulation zones of plastics in the environment. Plastics can also be deposited 

directly into the ocean though dumping at sea from vessels or from lost or otherwise discarded 

fishing gear. It is impossible to know with certainty how much plastic is in the ocean, however, 

estimates range from 5.2 trillion pieces (Eriksen et al., 2014) to 15 to 51 trillion pieces (van Sebille 

et al., 2015). Wherever the true value lies, the plastic load is large and increasing. Indeed, Jambeck 

et al., (2015) estimate between 4-12 million tonnes of plastics enter the ocean from land-based 

sources every year. Australia contributes a relatively small amount to the global problem due to 

the small population (Jambeck et al., 2015), however, there are significant accumulation areas on 

beaches all around the coast (Hardesty et al., 2017).  

Plastics in the environment break-up into smaller and smaller pieces primarily because 

the polymer bonds undergo photo-degradation in the presence of Ultra-Violet (UV) light. In the 

ocean, decreased temperatures, and UV light attenuation, increase the time for plastics to 

degrade when compared to on land. Degradation on intertidal/exposed areas can be quite rapid. 

Weinstein et al., (2016) found that fragmentation of high-density polyethylene, polypropylene, 

and extruded polystyrene started at eight weeks in field experiments at Charleston, SC, USA (320 

North). As plastics break-up into smaller pieces we classify them into size classes. Microplastics 

are generally regarded to be those smaller than 5 mm but larger than 100 µm, and macroplastics 

that are those larger than 5 mm. These size definitions are most common, however, they are not 

the only definitions that have been used in the scientific literature (Andrady, 2011). Plastics can 

enter the marine environment as macro- or microplastics, but the most commonly recognised 

source of microplastics comes from degraded macroplastic (Andrady, 2011).  

The scale of the marine plastic pollution issue is global. Most of the present load is derived 

from urban areas (Schmidt et al., 2017) and, once plastics are in the marine environment, the 

combination of currents and wind move particles across seas and oceans for years (Ebbesmeyer 
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et al., 2007; Maximenko et al., 2015). Indeed, some of the most publicised accumulation zones 

are the ocean gyres, generally located close to the centre of each ocean basin and driven by large-

scale currents (Lebreton et al., 2012). The high degree of dispersal also makes the quantification 

and removal of plastics particularly difficult, because the plastics can disperse great distances 

away from their source, and accumulation zones are often a considerable distance from land. 

Furthermore, plastic products take a long time to break-up completely, but through time the 

object loses identifying marks and features, and as it remains in the environment for long periods 

of time, completing many circulations of the ocean, the sources are difficult to determine.  

The occurrence of negative interactions between plastics and the environment has been 

well documented (Derraik, 2002; Andrady, 2011; Wright et al., 2013b). There have been many 

studies describing the observations of negative interactions to species with plastic pollution (see 

reviews by Thompson et al., 2009, Andrady 2011, and Chae and An 2017). The interactions with 

organisms, especially marine megafauna, are especially well documented (Baulch and Perry, 2014; 

Nelms et al., 2016). Ingestion and entanglement are the most widely recognised threats to aquatic 

animals. Entanglement in lost or otherwise discarded fishing gear, rope and plastic sheeting can 

reduce the ability of the animal to feed, move and behave normally (Gregory, 2009; Vegter et al., 

2014; Duncan et al., 2017). It is also widely recognised that entanglement can damage the animal’s 

flesh or amputate/decapitate through blood restriction (Gregory, 2009). Entanglement can also, 

in the case of air-breathing aquatic animals, cause the animal to drown by weighing it down, 

reducing the animal’s ability to swim to the surface (Vegter et al., 2014; Nelms et al., 2016; Duncan 

et al., 2017). Ingestion of plastic material can cause damage to the digestive tract (Parga, 2012; 

Baulch and Perry, 2014) through lesions, abrasions and digestive blockages. If plastic particles are 

ingested and not passed through, they can cause physical blockage of the tract, as the particles fill 

the stomach causing starvation by reducing the feeding stimulus and reducing stomach capacity 

(Ryan, 1988). Ingested plastics can also transfer toxic substances to the animal causing disruption 

of the endocrine system (Rochman et al., 2013; 2014). Plastic pollution can also cause damage to 

habitats through smothering, scouring (e.g. Uneputty and Evans, 1997; Donohue et al., 2001) and 

changed physical properties (e.g. sand permeability and thermal properties associated with 

microplastic accumulation (Carson et al., 2011). Buoyant plastic objects also act as a vector for 

invasive species as they can remain a float for far longer than natural objects, allowing infauna 

and epifauna to travel greater distances (Chae and An, 2017). These impacts to the environment 

clearly need addressing though management action. 

Managers of the aquatic environments (rivers, estuaries, and seas) must balance the 

allocation of resources to various projects and issues. If management authorities are to use 
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scientific data to underpin initiatives to minimise environmental harm, the science needs to be 

undertaken at a scale relevant to their management jurisdiction. Essentially, managers require 

robust data to be relevant to the jurisdictional area and of adequate spatial and temporal 

resolution to enable action (Fleishman et al., 2011). For example, Sherman and van Sebille (2016) 

used modelling to find optimal equipment placement locations for microplastic removal at sea. 

Large-scale projects are useful, however, management intervention is most feasible at the local 

jurisdictional scale and thus there is a need to conduct data collection and analysis at these 

smaller, jurisdictionally relevant, spatial scales. In Australia, local councils (municipal) and state 

government agencies are responsible for waste management, litter prevention and clean-up 

activities. The benefit of local management (council) intervention is that plastics can be prevented 

from entering the marine ecosystems at the source (Willis et al., 2017). Prevention of input at the 

source is cheaper, more effective, and ultimately reduces the subsequent problems, which can’t 

be easily resolved (Eagle et al., 2016; Willis et al., 2017). Knowing which individual sources to 

target is difficult without some estimation of which sources contribute the most to the system and 

where the plastics go after being dispersed from those sources. On a larger, global scale this has 

been quantified, and Schmidt et al., (2017) estimate that 88-95% of global plastic pollution is 

entering the ocean from just 10 urban river systems. However, there have been no attempts to 

quantify this at a scale relevant to local management.  

There are many knowledge gaps in the information needed to conduct robust spatially 

explicit assessments of plastic distribution at spatial scales relevant to management activities. The 

scale of management changes with each level of government, with the state having a much larger 

jurisdiction than local councils. On average, local government in coastal regions (local councils) in 

Queensland, Australia, are responsible for 366 km of coastline. Models of plastic distribution 

available in the literature (e.g. Yoon et al., 2010; Maximenko et al., 2012) provide approximately 

seven cells of data across the Queensland coastline, which is therefore inadequate for decision 

making at scales of local councils. Therefore, this thesis aims to provide data at a scale relevant to 

local council management area. To achieve this, the spatial scale of the model I use must represent 

local geographic features in a meaningful way and provide an accurate representation of the 

hydrodynamics of the area.  

1.1 Risk assessment to inform management of plastic pollution 

Risk or threat assessment is a widely-used tool that facilitates development of 

management actions that target complex problems. Risk assessments inform management 
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decisions, weighing up the likelihood and consequence of activities, events and actions (Bottrill et 

al., 2008). Risk assessments incorporate two quantifiable aspects: likelihood of exposure and 

consequence of exposure. Risk assessments can be general, where the risk is assessed broadly and 

the approach results in one value for the risk of the threat. This can be relevant for threats that 

do not have a spatial component, for example the probabilistic environmental risk assessment of 

nanomaterials presented by Coll et al., (2016), or those associated with risks to human safety in 

industrial settings. However, for threats that change concentration or abundance in space and 

time, for example changing concentration of a pollutant via dilution or the changing density of 

receptor organisms, this approach is less valid. In these cases, a spatial-based risk assessment is 

one mechanism that can be used, which provide a map of continuous risk values across a spatially 

explicit area allowing managers to make spatial-based decisions or designate priority areas for 

management action (Lahr and Kooistra, 2010). On a global scale, Halpern et al., (2008) assessed 

the cumulative impacts of anthropogenic activities (stressors) on the marine environment, 

showing that every area of ocean is impacted by at least one stressor, but despite this global 

exposure there are areas of relatively low impact. These data allow managers in particular areas 

to prioritise activities accordingly. However, the data could only be used at the jurisdictional scale 

of the assessment. To act at a state or local level this resolution would be inadequate.  

The exposure of the threat is broken down into the distribution of the threat and the 

interaction rate with the chosen receptor, such as a habitat or species of animal. The distribution 

of the threat is often measured using field data and the values between observations are 

interpolated, or the distribution is modelled based on predictor variables. For example, Srivastava 

et al., (2012) used water quality field measures in a broader assessment of water quality in India. 

For pollutants that have fairly homogeneous distributions, or have transport mechanisms that are 

understood, this method works well. However, for a patchy, variable, and long-lived pollutant in 

the coastal environment, such as plastics (Barrows et al., 2016; Underwood et al., 2017), this 

method may be relevant for only the time stamp of field data collection. Collecting samples for 

marine plastics (especially microplastics) is time consuming and the processing of the samples can 

take considerable time. Therefore, field data for mapping the distribution of plastic-based 

pollution is often not feasible at the spatial resolution required for management, especially in 

areas removed from urban, coastal environments.  

The interaction rate is the second component of the exposure parameter of the risk 

assessment. This is where, and how often, the vulnerable habitat or species (receptor) will 

encounter the threat. For most threats, including plastic pollution, the rate of interaction with 

threatened species and habitats is often unknown. The interaction rate is a combination of plastic 
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abundance data along with data on the habitats and the species abundance in the area. Indeed, 

Nelms et al., (2016) list the need to develop risk maps for sea turtles to be a key future research 

direction, citing interaction rates as a knowledge gap and suggesting use of oceanographic and 

niche models to improve knowledge. As an alternative method, Darmon et al., (2017) calculate 

the interaction rate between turtles and macroplastics in the Mediterranean using aerial survey 

techniques. They counted the amount of plastics found within a 2 km radius of a turtle to calculate 

the frequency of interactions. However, this technique would almost certainly be biased towards 

larger plastic items. 

Understanding the consequences of pollutant-organism interactions is the final 

component of risk assessment. Consequence can be assessed in a few different ways (Lahr and 

Kooistra, 2010). For example, if concentration effects are known, the probability of an effect can 

be calculated. Lan et al., (2015) describe a framework for assessing the risk of oil spills that 

incorporates the impact of the oil and resilience. More simply, if a threshold value is known (e.g. 

LD50) this can be used to incorporate consequence into spatial risk assessments (Lahr and Kooistra, 

2010). Many environmental risk assessments use implied consequence, in that the presence of 

the pollutant is used to indicate an impact. For example, Fox et al., (2016) use seabird density and 

oil spill prevalence to assess the risk of oil spills to sea birds on the Pacific Coast of Canada. 

However, without the consequence component it is likely that the risk is over-stated (Valdor et 

al., 2017).  

There are many factors limiting our understanding of where plastic-species interactions 

take place that hinder implementation of spatial risk assessments. Firstly, we do not fully 

understand where the plastics are, at local scales. Field-collected data on plastic concentration is 

sparse and there is a lack of rigorous spatially-explicit datasets. The available data are often 

sporadically collected and there is often a lack of unified methods, making comparisons of 

datasets complicated. These issues occur because the quantification of plastics in the environment 

is relatively new, and many of the projects around the world are set up to remove plastic waste 

and are thus not based on robust experimental or field-based sampling designs. We can use sparse 

field data to inform modelling of concentration predictions, however, the current published 

predictions are at a coarse spatial scale and not suitable for local management action. In contrast, 

for many marine receptor organisms we have a relatively good understanding of the spatial 

distributions, key habitats and population trends. Therefore, for plastic pollution, our estimates 

of the likelihood of exposure are limited because of our lack of knowledge of plastic pollution 

sources, dispersal and distribution, although consequence data of also lacking.  
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The knowledge and understanding of the consequence of plastic interactions with 

ecological features is increasing. Indeed, a search in the Web of Science for publications with the 

topics “plastic” and “impact” shows that publication volume has increased from 356 in the year 

2000 to 1587 in 2017 (also see Vegter et al., 2014; Nelms et al., 2016). Plastic particles of various 

sizes in the ocean or waterway expose animals to the threat of entanglement or ingestion. 

However, there is a lack of data on consequence that takes into account concentration effects of 

plastics on vulnerable species and habitats, especially in tropical regions. The number of species 

known to be impacted by plastic is large (Derraik, 2002; Andrady, 2011; Chae and An, 2017), and 

well documented in comparison to what is known about specific habitats, such as mangroves, 

seagrass, and coral reefs which have very limited data on the effect of the exposure to plastics. 

These knowledge gaps mean we don’t really understand risk of plastic pollution in the 

environment, especially with respect to its spatial accumulation. 

There are only a few examples of spatially explicit risk assessments for plastics in the 

literature. Wilcox et al., (2013), present a study of the risk of entanglement to sea turtles by ghost 

nets in the Gulf of Carpentaria. They use a model of ghost net distribution derived from drifter 

buoys to estimate most likely areas of marine turtle entanglement. These data are supplemented 

with recorded stranding locations of marine turtles and observed ghost net abundance. This study 

considered both likelihood and consequence of entanglement at the scale of the Northern 

Territory Government jurisdiction. Another study by Schuyler et al., (2016) presents the global risk 

of plastic ingestion to sea turtles, using one value for each “Regional Management Unit” (RMU; 

Wallace et al., (2010)). An RMU is a conservation unit of a species of sea turtle, which takes into 

account, genetics, mark-recapture studies, and nesting beaches, as a method of comparing threats 

among and between species of sea turtles. Assessing the risk of ingestion to turtles across a whole 

RMU is one of the intentions of the management unit framework, however, plastic distribution is 

so patchy and variable (Law et al., 2014) that it may be inappropriate in this case – because 

management of inputs of plastic, or removal must happen at smaller geographic or jurisdictional 

scales. While RMU-scale data is useful for understanding the global state of risk for turtles, RMU-

scale data do not provide adequate spatial resolution for local management because the 

abundance of turtles and threats will not be uniform across the spatial extent of the RMU. Schuyler 

et al., (2016) present consequence of ingestion data from a literature review but they did not align 

the data with RMU, and did not consider it in the risk assessment, hence the true risk is not 

mapped at RMU scale. Both of the above examples look at only one aspect of the plastic/turtle 

interaction. Foraging turtles are exposed to the potential of both entanglement and ingestion 

interactions with plastics, and both must be taken into account to fully understand the risk plastics 
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pose to sea turtles. Even where the plastic/animal interaction takes place at a local jurisdictional 

scale, it is still poorly understood (Vegter et al., 2014; Nelms et al., 2015). 

Managers need information in a reasonable timeframe to take timely, proactive 

management action. The time necessary to complete field sampling and sample processing over 

a jurisdictional area to capture the variability would mean the outcome would not be readily 

available for decision makers at the time the data are needed. A method that will provide robust 

data on distributions of plastics at an appropriate spatial and temporal scale, in a timeframe 

appropriate for management action, is therefore necessary for practical management application. 

1.2 Dispersal of pollutants in the marine environment 

As explained above, accurate quantification of the distribution of pollutants is a key 

component of the likelihood of an interaction that causes harm. In a spatial approach this would 

involve understanding where the threat is located in time and space. Gaining observation data of 

distributions is difficult especially in the marine environment because our oceans are large, 

homogenous and relatively inaccessible (Ban, 2009; Browne et al., 2011) in comparison to 

terrestrial systems. Consequently, marine field data are more expensive and time consuming to 

collect relative to the amount of data obtained.  

There are many methods for tracking objects or water masses at sea, for example satellite 

imagery or hydrodynamic modelling. Satellite imagery is useful for remote applications and for 

collecting data over large geographic areas, and is often used in water quality monitoring and the 

study of ocean productivity (e.g. Harvey et al., 2015). However, if the object/substance does not 

have an irradiance signature, or is not in high enough concentration to produce a detectable 

irradiance signature, it has limited utility. To fill this gap, hydrodynamic modelling is an alternative 

approach to understand pollutant distributions and is inexpensive compared with field sampling 

but can still be used in remote environments (e.g. Andutta et al., 2012). There has been a rapid 

expansion in the use of modelling in scientific and industrial fields due to the ready accessibility of 

high-performance computing and the improved performance of personal computing, along with 

the accessibility of physical input data such as winds and tides (Peng, et al., 2013).  

Modelling of water movement is a useful tool in the marine environment as it allows 

scientists and managers to get an understanding of what is happening without the very costly (in 

time and resources) activities of extensive field surveys. Modelling is used to address many 

questions about dispersal in the ocean, for example, oil spill predictions (Guo and Wang, 2009; 

Cucco and Daniel, 2016; Spaulding, 2017), finding items lost at sea (Griffin et al., 2016), and flood-



10 
 

plume modelling (Delandmeter et al., 2015). Modelling is also used for many ecological questions, 

for example turtle hatchling (Hamann et al., 2011; Wildermann et al., 2017) and larval dispersal 

(Andutta et al., 2012), and, of particular interest to my thesis, it is increasingly being used to 

understand the dispersal of plastic pollution (Yoon et al., 2010; Lebreton et al., 2012; Zhang, 2017).  

Hydrodynamic models are inherently spatially explicit, and can be used to assess dispersal 

accumulation areas (or “hotspots”) of plastic pollution. However, most of the existing models used 

for plastic pollution examine patterns at large geographic scales, for example oceanic basins 

(Lebreton et al., 2012; Maximenko and Hafner, 2012; Reisser et al., 2013; Ebbesmeyer et al., 2007; 

also see review by Kubota et al., 2005), or at coarse resolution within regional seas (Kako et al., 

2011 Pichel et al., 2012). To accurately predict areas of accumulation at a management-relevant 

scale, fine-scale spatial resolution is required (100s of meters to kilometres). However, the scales 

and resolution of existing models range from: whole ocean modelling with a coarse resolution of 

0.5 degree (~56 km at the equator) (Yoon et al., 2010; Maximenko et al., 2012) to a single basin 

with a finer resolution of 1/12 degree (~9 km at the equator), for example, the East China Sea as in 

Isobe et al., (2009) and the Coral Sea as in Maes and Blake (2015). The smallest scale of a single 

coastline, with variable resolution, was the Queensland Coast (Australia) in Critchell et al., (2015) 

and the Gulf of Mexico in Nixon and Barnea (2010).  

It is now clear that, while studies at large scales are useful, modelling of plastics in the 

coastal zone at small scales needs to take into account not only the physical processes (wind and 

tide), but also the biochemical processes (e.g., biofouling and degradation) specific to plastics 

(Zhang, 2017). These processes are not included in many of the models described above, and the 

inclusion of plastic-specific processes into the modelling could vastly improve our ability to 

understand movements and accumulation. Many of the processes are not relevant at larger 

oceanic scales (e.g. island wind shadow), however, to model dispersal and accumulation at small 

scales, they must be taken into account. At smaller scales it becomes important to know the fine-

scale water movements driving the movement of plastics and thus fine-scale knowledge of 

processes are important. To model physical processes at this scale, a very fine resolution model is 

necessary. One such model is The Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM; 

www.climate.be/slim).  

The SLIM is a depth-averaged, two-dimensional, finite element model with variable 

resolution developed by Lambrechts et al., (2008). It has been used for a variety of physical and 

ecological modelling tasks including: fine sediment, fish larvae, floating debris, and turtle hatchling 

dispersal (e.g. Lambrechts et al., 2008 and 2010; Hamann et al., 2011; Andutta et al., 2013; 
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Critchell et al., 2015). The variable resolution (down to 100 m resolution) makes the model 

particularly useful in shallow coastal zones with complex bathymetry and topography. This model 

allows for fine-scale horizontal resolution and reduces the computational effort necessary to 

represent the whole model domain (Figure 1.1). Importantly, the flexibility of the SLIM means that 

the model domain can vary from the scale of the whole GBR, to one bay, enabling highly specific 

analysis to be completed in areas of complex topography such as the Whitsunday region of the 

GBR (see Box 1.1). 
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Figure 1.1: Map showing the SLIM mesh across the model domain and at two scales of zoom (insets). 



 
 

Box 1.1: Study Site Description: The Whitsundays  

The Whitsunday region 

of the Great Barrier Reef 

(20° S, 149° E) is in 

central Queensland, in 

the dry tropics region of 

the East Coast of 

Australia. Although the 

resident population is 

around 13,000 (Census, 

2016), the region is one 

of the key tourism areas 

of the Great Barrier Reef 

and it receives around 500,000 tourists a year (National Visitor Statistics 2016). The Whitsunday 

area is important, economically and environmentally, therefore understanding the risk of plastics 

to this region will help managers prepare for future plastic abundance scenarios, e.g. calculating 

losses to tourism, and the necessity of intervention strategies.  

The land associated with the Whitsunday region includes three main regional centres, 

Mackay, Proserpine and Airlie Beach. These regional centres are across two local council 

municipalities. The councils are responsible for waste management, and each council has 

independent waste management infrastructure making a combined management strategy for 

plastic pollution reduction in the Whitsunday region particularly challenging.  

The region has two main seasons: Wet season (Monsoon Season, October to March), and 

the dry season (Trade Wind Season, April to September). The vast majority of the rain received in 

the region falls in the monsoon season, falling on three mainland river catchments; the Don (3690 

km2), the Proserpine (2530 km2), and the O’Connell (2390 km2).  

The coastline consists of rocky shores, fringing reefs, mangrove, and lagoon 

environments. The subtidal areas consist of reefs, sandy bottom, and offshore trenches. The tidal 

range of three to five metres (Short and Woodroffe, 2009), creates strong tidal currents in the 

passages between islands and reefs and there are many small-scale jets and eddies in the region 

created by the complex hydrography. The complex and varied environment provides many 

potentially vulnerable habitats to use as case studies in my risk assessment approach. 
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1.5 Thesis objectives  

The goal of this thesis is to understand the dispersal and risks of plastic pollution at a local 

management relevant scale. Therefore, in this thesis, I use a multidisciplinary approach to gain 

new insight into all aspects involved in the risk of plastics. Specifically, I aim to: 1) understand the 

dominant processes involved in plastic movement and accumulation in the coastal zone; and 2) 

explore the risk of plastic exposure to vulnerable habitats and species in the tropical coastal zone. 

This thesis contains six chapters, with four data chapters, each of which address a specific 

objective towards the two aims described above. Chapters 2 and 5 have been published. The data 

chapters were written to serve as stand-alone papers but I have standardised the formatting to 

make a coherent body of work.  

Chapter 1 - Provides background information and identifies specific knowledge gaps that 

the thesis aims to resolve. 

Chapter 2 - Aims to understand the dominant physical processes involved in plastic 

movement and accumulation in the coastal zone. As noted above, existing hydrodynamic models 

of plastic dispersal exclude pertinent properties of plastics (e.g. degradation, resuspension from 

the coastline, and wind-drift), which may affect their dispersal and accumulation. In this chapter I 

introduce a plastic-specific hydrodynamic model and conduct a sensitivity analysis to explore the 

new processes included in the model. The sensitivity analysis I undertook aims to understand 

which of the processes have the most influence on plastic dispersal and accumulation. 

Citation: Critchell, K. & Lambrechts, J., 2016. Modelling Accumulation of Marine Plastics in the 
Coastal Zone; What Are the Dominant Physical Processes? Estuarine, Coastal and Shelf Science 
171, 111-122. 

Chapter 3 - Aims to understand the risk of plastics to various vulnerable habitats and 

species in a spatially explicit approach to exposure. As noted above, the risks of plastics in the 

coastal environment are little understood, especially to determine where in the environment the 

risk is concentrated. In this chapter I use the new plastics model from Chapter 2 to create 

concentration distributions for plastics in the Whitsunday region and use these to inform spatial 

risk assessment for both habitats and species in the region, specifically coral reef, mangrove 

habitat, and flatback turtles.  

Citation: Critchell, K. Hamann, M., Wildermann, N., & Grech, A. in prep. A spatially explicit exposure 
analysis of plastic pollution 
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Chapter 4 - Aims to use field data to interrogate the model in an attempt to further 

understand which hydrodynamic processes have the most influence on plastic dispersal and 

accumulation, at the small scale relevant to management, and to explore the sources of plastics 

in the Whitsunday region. This chapter builds on the knowledge gained in Chapter 2, which 

identifies the source of the plastics as the dominant key driver of accumulation hotspots. In this 

chapter I use field data for macro- and microplastics to compare with the model outputs of various 

modelled scenarios to understand the processes behind the observed accumulation. 

Citation: Critchell, K., Hoogenboom, M., Grech, A., & Wolanski, E. & Hamann, M. in prep. Using 
field data to interrogate a plastics dispersal model. 

Chapter 5 - Aims to understand the consequence of plastics exposure to marine life, using 

a planktivorous reef fish as a study species. I present the results of an experiment of microplastic 

exposure to the planktivorous reef fish Acanthochromis polyacanthus. The experiment: 1) 

explored the effect on body condition in the scenario of plastics replacing a natural food source; 

2) assessed the scenario of microplastics in addition to food source; and 3) tested the amount of 

consumption at three plastic particle sizes for two size classes of fish. 

Citation: Critchell, K. & Hoogenboom, M. under review. Effects of microplastic exposure on the 
body condition and behaviour of planktivorous reef fish (Acanthochromis polyacanthus)). PLOS 
One 

Chapter 6 - Provides a synthesis of the thesis results, and discusses the limitations and 

implications of the work. 

 

All citations used in the thesis are included in a collective reference list at the end of the thesis, 

beginning on page 139. 



 

 
 



 

 
 

Chapter 2 
Modelling accumulation of marine 

plastics in the coastal zone; what are 
the dominant physical processes? 

 

 

 

Anthropogenic marine debris, mainly of plastic origin, is accumulating in estuarine and coastal 

environments around the world causing damage to fauna, flora and habitats (Chapter 1). Plastics 

also have the potential to accumulate in the food web, as well as causing economic losses to 

tourism and sea-going industries. If we are to manage this increasing threat, we must first 

understand where debris is accumulating and why these locations are different to others that do 

not accumulate large amounts of marine debris. This chapter demonstrates an advection-diffusion 

model that includes beaching, settling, resuspension/re-floating, degradation and topographic 

effects on the wind in nearshore waters to quantify the relative importance of these physical 

processes governing plastic debris accumulation. The aim of this chapter is to prioritise research 

that will improve modelling outputs in the future. I have found that the physical characteristic of 

the source location has by far the largest effect on the fate of the debris. The diffusivity, used to 

parameterise the sub-grid scale movements, and the relationship between debris 

resuspension/re-floating from beaches and the wind shadow created by high islands also has a 

dramatic impact on the modelling results. The rate of degradation of macroplastics into 

microplastics also has a large influence on the results of the modelling. The other processes 

presented (settling, wind-drift velocity) also help determine the fate of debris, but to a lesser 

degree. These findings may help prioritise research on physical processes that affect plastic 

accumulation, leading to more accurate modelling, and subsequently management in the future.  

 

Citation: Critchell, K. & Lambrechts, J., 2016. Modelling Accumulation of Marine Plastics in the 
Coastal Zone; What Are the Dominant Physical Processes? Estuarine, Coastal and Shelf Science 
171, 111-122.  
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2.1 Introduction 

The input and accumulation of anthropogenic marine debris such as plastics, is regarded in the 

public domain as an environmental and economic hazard. Macroplastic pollution (items larger 

than 5mm) accumulating on the coastline can affect tourism revenue (Jang et al., 2014) and the 

coastal habitat (Carson et al., 2011). The consumption of plastics, can cause damage to individual 

animals (Laist, 1997; Gregory, 2009; González Carman et al., 2014; Setälä et al., 2014) and have 

effects on the food chain (Boerger et al., 2010; Farrell and Nelson, 2013). There is evidence that 

microplastics (<5mm diameter) consumed by low trophic level species are transferred up the food 

chain as they are consumed by other trophic levels (Farrell and Nelson, 2013; Setälä et al., 2014). 

For these reasons it is important to create management action to prevent plastic waste from 

entering the environment, and there is a need to devise efficient debris removal schemes. While 

considering the importance of these factors, there are few data about the way different types of 

debris move in the ocean, why it accumulates in some locations more than others, and which 

parameters influence this most. 

To maximise effectiveness of plastics debris removal for management and government agencies, 

geographic prioritisation of removal efforts must be considered. Oceanographic modelling is 

appropriate as part of a larger strategy to implement prioritisation and management (McElwee et 

al., 2012). The resolution required to accurately predict areas of accumulation at a beach scale is 

quite fine, ranging from a few 100 meters to 1 km. However, the recent models of plastic 

movement in the marine environment focus on models examining much larger scales, for example 

oceanic scales (Lebreton et al., 2012; Maximenko and Hafner, 2012; Reisser et al., 2013; 

Ebbesmeyer et al., 2007; also see review by Kubota et al., 2005), or within seas (Kako et al., 2011 

Pichel et al., 2012) at coarse resolution. The scales and resolution of plastic movement models 

range from whole-ocean modelling with a coarse resolution of 0.5 degree (Yoon et al., 2010; 

Maximenko et al., 2012) to a single basin with a finer resolution of 1/12 degree i.e. the East China 

Sea as in Isobe et al., (2009) and the Coral Sea as in Maes and Blake (2015). The smallest scale of 

a single coastline, with variable resolution was the Queensland Coast (Australia) in Critchell et al., 

(2015), and the Gulf of Mexico in Nixon and Barnea (2010). One reason for the large spatial scales 

is the time over which the simulations are run. The time scales varied from 30 years of simulations 

as in Lebreton et al., (2012) to a few weeks as in Carson et al., (2013) and Critchell et al., (2015). 

Modelling plastics in the ocean can be challenging since plastics range in size, shape, buoyancy, 

density, etc. To avoid this issue, some studies model a specific type of plastic: Ebbesmeyer et al., 

(2007) modelled a cargo spill (tub toys); Kako et al., (2011) modelled bottle caps; Ebbesmeyer et 



Chapter 2: Dominant Processes 
 

19 
 

al., (2011) modelled crab pots; and Isobe et al., (2014) studied different sizes of plastic and how 

they move in on-shore and off-shore directions. Many studies, however, continue to model 

plastics as a general category (Isobe et al., 2009; Martinez et al., 2009; Yoon et al., 2010; Hardesty 

and Wilcox, 2011; Kako et al., 2011; Lebreton et al., 2012; Maximenko and Hafner, 2012; 

Maximenko et al., 2012; Reisser et al., 2013; Maes and Blanke, 2015; Critchell et al., 2015). 

Specialist, large-event debris models have also been developed. For example, the National 

Oceanic and Atmospheric Administration (NOAA) marine debris probability model developed for 

hurricane debris in the Gulf of Mexico, uses 100 m grid cells to compute probability of debris being 

found after a hurricane. Parameters such as wind speed, storm surge and infrastructure were used 

to assess the probability (Nixon and Barnea, 2010). A model for the debris from the 2011 Japanese 

Tsunami has also been developed by Maximenko et al., (2015), who used four different modelling 

systems with resolution from 1/4 to 1/12 of degree grid. The methodology used for oil spills has 

been found to be effective for modelling floating plastic debris (Le Hénaff et al., 2012), where the 

floating plastic is assumed to have a velocity equal to the vectoral sum of the water currents and 

the wind-drift velocities. The direct movement of plastics due to the wind (wind-drift) is neglected 

in many studies that model the movements of plastic in the ocean (Isobe et al., 2009; Martinez et 

al., 2009; Kako et al., 2011; Reisser et al., 2013; Isobe et al., 2014; Maes and Blanke, 2015). In 

studies that include wind-drift, the value of the wind-drift coefficient varies from 1% (Ebbesmeyer 

et al., 2011) to 6% (Maximenko et al., 2015), and in some studies a range of values are used or the 

value used is not given but instead the empirical formula for calculating the wind-drift is given 

(Kako et al., 2010). Submerged plastic debris is spread through the water column, with no 

exposure to the wind and hence no wind-drift is assumed (Reisser et al., 2013).   

For a model to become realistic and useful, it not only needs to apply the oil-spill model 

methodology, like that of the GNOME (Beegle-Krause, 2001), OSCAR (Reed et al., 1995), and other 

model types reviewed by Potemra (2012), but also needs to include a number of additional 

processes specific for plastics, which so far appear to have been neglected in marine debris 

models. These processes are sketched in Figure 2.1, and include: (1) degradation of macroplastics 

into secondary microplastics; (2) the different wind-drift coefficient for macroplastics (that tend 

to float) and microplastics (that experience no wind-drift as they tend to be in suspension in the 

water column; Reisser et al., 2013); (3) rates of settling; (4) burial in beaches; (5) resuspension or 

re-floating from beaches; and (6) the non-uniformity of the wind near the coast, especially the 

dramatically reduced wind velocities behind hills on the land (wind shadow). The incorporation of 

these parameters into a model should improve the ability to predict the movement and the fate 

of plastics at coastal scales. This improved and more robust model could be used for plastics in a 
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similar manner to oil-spill models for oil slicks. The oil-spill model methodology is basically 

advection-diffusion models coupled with chemical sub-models of the weathering of the oil, and 

are now routinely used by industry management (Chao et al., 2001; Tkalich et al., 2003; Guo and 

Wang, 2009). Such a model methodology is needed to improve predictions of debris accumulation 

and thereby improve management strategies for debris removal and mitigation. In addition, the 

improved model may also be used to backtrack and ultimately help to locate the sources of plastic 

pollution arriving at a given location, which would also support management goals (Reisser et al., 

2013; Thiel et al., 2013). In order to work towards this, true values for the parameters described 

above must be experimentally determined or found through field observations. 

In this study, I develop and explain a plastic oceanographic model to study the fate of plastics in 

estuarine and coastal waters (within 100 km of the coast). I demonstrate the application of this 

model in the complex case of a rugged coastal region with shallow waters and numerous islands 

and headlands. The basis of this plastics oceanographic model is a high resolution oceanographic, 

advection-diffusion model that also includes all the processes identified in Figure 2. 1. I propose a 

simple method to assess and rank the relative influence of these various physical processes on the 

movement of plastics in the coastal zone, using this method to prioritise research of the physical 

processes influencing plastic movements at sea.  

 

 

 

Figure 2.1: Schematic of the physical process pathways plastic items undergo when dumped at sea. 
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2.2 Methods 

2.2.1 The oceanographic model 

To evaluate the relative importance of coastal processes on the movement of marine debris, I 

conducted a sensitivity analysis using the Second-generation Louvain-la-Neuve Ice-ocean Model 

(SLIM; www.climate.be/slim). SLIM is a depth-averaged, two-dimensional, finite element model 

with variable resolution developed by Lambrechts et al., (2008), which has been used for a variety 

of physical and ecological modelling tasks including: fine sediment, fish larvae, floating debris, and 

turtle hatchling dispersal (e.g. Lambrechts et al., 2008 and 2010; Hamann et al., 2011; Andutta et 

al., 2013; Critchell et al., 2015). The variable resolution (down to 100 m resolution) makes the 

model particularly useful in shallow coastal zones with complex bathymetry and topography. This 

model allows for fine-scale horizontal resolution and reduces the computational effort necessary 

to represent the whole model domain. The appropriate use of a depth-average model in shallow, 

vertically well-mixed waters was previously explored by Critchell et al., (2015). In that study, it was 

shown that, in well-mixed shallow water environments, the diffusion patterns of particles are very 

similar at the surface, middle and bottom of the water column, and the use of a three-dimensional 

modelling approach, (which is computationally very expensive) may be an unnecessary use of 

computational effort. 

The study region used to conduct the sensitivity analyses was the Whitsunday region of the 

Queensland coast, and is part of the Great Barrier Reef Marine Park (20.20S, 149.00E; Figure 2.2). 

This region is made up of approximately 74 coastal islands, coral reefs and other marine and 

coastal habitats. The coastal waters are primarily shallow with a mean depth <20 m (Figure 2.2). 

This region is also a tourism centre, making it economically important not only for Queensland but 

also for Australia as a whole. The area has had a marine debris removal program run by Eco-Barge 

Clean Seas Inc. since 2009. The islands and reefs create high levels of topographic and 

hydrodynamic complexity and create a large variety of unique locations with a rugged coastline, 

providing an ideal situation to quantify the relative importance of the various processes 

controlling the fate of plastics in complex topography and bathymetry.  

In the model, all simulated plastics are seeded as macroplastics on the water surface, directly 

affected by the wind. From this state, an individual plastic can go through a series of pathways: 

beach, settle to the sea floor, degrade into microplastic, or continue as a wind driven macroplastic 

on the surface of the water. A macroplastic that has beached can then be re-floated, degrade into 

microplastic or remain beached. A microplastic in suspension can either beach, settle or continue 
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in suspension, while not being directly be affected by the wind. A microplastic on the beach is 

assumed to be able to be resuspended. Simulation is discontinued for macro- or microplastics that 

have settled onto the sea floor and are assumed not to be resuspended (Figure 2.1). Simulation is 

also discontinued for macro- and microplastics that leave the model area through the open sea 

boundaries and are assumed not to be transported back into the study area. When the wind 

pushes either macro- or microplastic particles on a coastline, those particles are considered as 

beached. Beached particles do not move but have a chance to be resuspended/re-floated at each 

time step (5 minutes). Resuspended particles are placed at a random position in the neighbouring 

cell. In some scenarios, the resuspension rate is constant, in others beached particles in sheltered 

area (i.e. downwind coastlines) are assumed not to be resuspended. 

Primary microplastics (plastics that are made and designed to be very small) are not included in 

this sensitivity study, as this added a complicating factor, but they should be considered in any 

predictive modelling undertaken in the future. At each time-step, macroplastics are assumed to 

be able to degrade to secondary microplastic at a given degradation rate. The degradation rate is 

a constant fixed for each scenario. Unlike macroplastics, microplastics are assumed to be spread 

homogenously throughout the water column. Microplastics are assumed not to be directly 

affected by the wind and the dispersion process incorporates the influence of the gradient of the 

bathymetry (see Heemink, 1990; Spagnol et al., 2002; Deleersnijder, 2015). The model allows for 

the chance for all plastics to settle to the sea floor. When this happens, those particles are 

assumed not to be resuspended from the sea floor (Figure 2.1).  
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Figure 2.2: Case study area of the Whitsunday region of the Great Barrier Reef shown by the star in the inset map (a). 
Inset (b) shows an image of the simulation mesh around Hook Island in the Whitsunday group. The main map indicates 
the analysis area used to calculate the comparative indices and the seeding locations used for the simulations, Site 1 is 
the standard location. 
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2.2.2 The physical processes of drifting, beached and buried plastic 

To quantify the relative importance of the source locations and the processes shown in Figure 2.1, 

a number of sensitivity scenarios were run. The specific parameters used for the sensitivity 

analyses along with key references are listed in Table 2.1 and the source locations are shown in 

Figure 2.2. The ‘standard run’ was set so that 10,000 macroplastic particles were released at each 

seeding site, with a wind-drift coefficient of 2%, a settling rate of both “macro-” and “micro-” 

plastic debris onto the sea bed of 0.2 day-1, resuspension from the coast for both macro- and 

microplastic debris set to a rate of 0.2 day-1, with the resuspension of beached particles being 

affected by the wind shadow (i.e. the resuspension is reduced in areas that experience wind 

shadow behind hills) and the wind shadow length was 2500 m. The degradation rate for both 

beached and suspended plastic particles was set to 0.2 day-1 for all sensitivity simulations, this is 

likely far higher than would occur in the natural environment, however, by using this value I can 

ensure that the scenarios are comparable and that microplastics were within the area of interest. 

Scenarios of best-estimate degradation rates are presented but not considered in the sensitivity 

analysis of physical parameters, they are analysed separately. Mixing at horizontal scales smaller 

than the mesh size was parameterized by a turbulent diffusion coefficient (Okubo, 1971). The true 

value of this coefficient is unknown and probably site-specific. In a shallow, rugged bathymetry its 

value is believed to be in the range 5 - 20 m2 s-1 (Andutta et al., 2011; Hrycik et al., 2013): a value 

of 10 m2 s-1 was adopted as the standard value. As there is little published work determining the 

value of the majority of these parameters, the values used for the sensitivity analysis (Table 2.1) 

are best estimates of likely values. I chose these values so they are appropriate to use to compare 

between scenarios in order to make an assessment of the relative importance of the parameters 

in the model and in the fate of marine debris in the coastal zone. To test the sensitivity of the 

parameters, they were changed one by one, being halved and then doubled from their original 

values in the ‘standard run’, and the predicted fate of plastics was then compared to the fate of 

plastics for the ‘standard run’. The same parameter values of a ‘standard run’ were also used at 

the various source locations to test the effect of varying the source within a relatively small area.  
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Table 2.1: Parameters and values used in the sensitivity analyses 

Parameter Values  Explanation and key references 

Resuspension rate (day-1) of 
buried plastic particles 

0.1, 0.2, 0.4  Beached the particles may be resuspended 
on the next incoming tide (Johnson, 1989; 
Johnson and Eiler, 1999). Applied to both 
“macro” and “micro” particles 
independently. Unit is proportion per day. 
No data avaliable 

Degradation rate (day-1) 
from macroplastics to 
microplastics 

0.2 

(1x10-6 and 2x10-6 
used in 
degradation 
specific scenarios) 

Whole plastic items as well as fragments 
undergo physical and chemical degradation 
causing them to break up into many smaller 
pieces (decribed in Cooper and Corcoran, 
2010; O'Brine and Thompson, 2010). Applied 
to both suspended and beached particles 
independently (Isobe et al., 2014). Unit is 
proportion per day. 
Limited data avaliable 

Wind shadow (or lee effect) 
of hills affecting 
resuspension of particles 

presence/absence Lee effect is created when high islands block 
the wind, in the lee area waves are 
suppressed and resuspension is thus reduced 
(Myksvoll et al., 2012). 
No data avaliable 

Length of wind shadow (m) 1000, 2500, 5000 The wind shadow affects the hydrodynamics 
because the extent to which wind pushes the 
water will be influenced by topography 
(Wolanski and Delesalle, 1995). 

Wind-drift coefficient (only 
applied to macro-debris) 

1%, 2%, 4%,  The degree to which the wind directly 
influences the individual particles (Daniel et 
al., 2002). This is only applied to the 
macroplastics, assumed to be floating on the 
surface. 
Limited data avaliable 

Settling rate (day-1) 0.1, 0.2, 0.4 As items degrade or become water logged 
they will sink to the sea floor (Lee et al., 
2006; Le Hénaff et al., 2012). This rate is 
applied to both “macro” and “micro” 
particles independently. Unit is proportion 
per day. 
No data avaliable 

Source location 5 different 
locations (shown in 
Figure 2.2) 

The sites are near the coast in open and 
closed waters upwind, and downwind. This is 
similar to testing the importance of the 
source with an oil spill model (Maximenko et 
al., 2012). 
Limited data avaliable  

Diffusivity 5, 10, 20 m2s-1 The parameter in the model to account of 
mixing at scales smaller than the mesh size 
(Okubo, 1971, Hrycik et al., 2013). 
Limited data avaliable 
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To assess the effect of the seeding location on the results of the simulation, I used the standard 

parameter values from 4 more seeding locations. Site 1 (the standard location) and Site 4 were 

close to the coast on the lee side of the land, Sites 2 and 3 were on the exposed side of the land 

and close to the coast, and Site 5 was off shore, not affected by wind shadow (Figure 2.3). 

2.2.3 Data analysis 

For the scenarios examining the physical processes, the calculated latitude and longitude locations 

of the simulated plastics were extracted for each day of simulation using an analysis area around 

the source location (see Figure 2.2). The analysis area was set around the seeding location so that 

the edge of the analysis area was close to the coast, this was to reduce the area that would be 

impossible for simulated plastics to be in. The plastic particles (macro: beached, floating on the 

surface, settled, and micro: beached, suspended in the water column, settled) that remained in 

the analysis area (Figure 2.2) were used to create indices to compare the different scenarios 

through time. All the scenarios examining the physical processes were seeded from the standard 

location, within the analysis box. The scenarios assessing the effect of seeding location were 

compared using different indices, which did not use the analysis box, described later.  

The following indices were calculated for each of the physical process scenarios: (1) residence time 

(days) of suspended macroplastics, to be able to compare the rate at which they leave the system; 

(2) residence time of beached macroplastics, to compare the time spent on the coastline in 

macroplastic state; (3) time for doubling (days) of microplastics on the beaches, using the number 

of microplastic particles on the beach by the end of day 1 as the starting value to evaluate the rate 

of increase of microplastic particles; (4) maximum number of suspended microplastics in the study 

area after initial release, to understand the change from the standard in settlement, resuspension, 

and drifting from the analysis area; (5) total accumulated macroplastics on the sea floor; and (6) 

total accumulated microplastics on the sea floor. These parameters were used to understand the 

rate of accumulation over the 8 day simulations.  

For the scenarios testing the effect of source location, a set of indices were created to compare 

the scenarios to the standard run. The indices were: (1) the distance from the seeding location of 

the furthest and closest macroplastic particles; (2) the latitudinal spread of the microplastic 

particles; and (3) the concentration of particles on the coastline. The concentration of particles 

was calculated by counting the number of plastics per 100 m of coastline. The average 

concentration of the seven highest accumulating sections of coastline was used as the comparison 

index. This was to assess the degree of spread of accumulated plastics between scenarios. 
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The degradation process was analysed separately as it acts over a different temporal scale to the 

other processes. Four scenarios of degradation rates were assessed, where all parameters were 

as the standard run except for the degradation rate which was set to: (a) 1x10-6 day-1 for 

macroplastics at sea and 1x10-5 day-1 for macroplastics on the beach, run in the model for 1 month; 

and (b) 2x10-6 day-1 for macroplastics at sea and 2x10-5 day-1 for macroplastics on the beach, run 

for 1 month. Scenarios (c) and (d) are to assess the difference between degradation of 

macroplastics that are beached and at sea. In these cases, the degradation rate is set to 1x10-6 

day-1 for one condition (beached or at sea) and set to zero for the other condition. To show the 

comparison of the temporal scales after 8 days (as in the standard run), the mean centre location 

of the microplastic particles was calculated in ArcGIS. 

2.2.4 Ranking process 

To understand the relative importance of each parameter in the model, a relatively simple method 

of comparison was adopted. Due to limited data and true parameter values, the modelling at this 

point cannot justify a more sophisticated or complex analysis. For each scenario, the absolute 

value of the 6 indices described above were made relative to their values in the standard run. The 

scenarios were ranked by the dimensionless difference to the standard. For example, if “scenario 

4” has a negative difference from the standard, larger than all scenarios with positive differences, 

then “scenario 4” is ranked higher. The largest dimensionless difference was considered the most 

important scenario and the smallest difference was considered the least important. All the 

scenarios were ranked first by the six indices individually, then an overall rank for each scenario 

was taken as the median rank it received for the indices. The process rank was taken to be the 

median rank of the scenarios associated with the process (see Table 2. 1 for list of processes, Table 

2. 2 for the scenarios). The median was chosen to lessen the effect of extreme ranks.  
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Table 2.2: Summary table of the indices for each scenario relative to the standard run (** the level of beached microplastics in this scenario is decreasing due to the rate of 
resuspension). The scenario numbers refer to the labels of Figure 2. 4 

Scenario Scenario 
Number 

Residence 
time 
Macro- 
suspended 

Residence 
time 
Macro- 
beached 

Beached 
micro 
plastics time 
for doubling 

Max number 
of micro 
suspended 

Accumulated 
microplastics 

Accumulated 
macroplastics 

Standard 1 1 1 1 1 1 1 
Macro- Settling 0.1  2 1.06 0.97 1.01 1.05 1.12 0.47 
Macro- Settling 0.4 3 0.86 1.01 1.02 0.82 0.77 1.87 
Macro- Resuspension 0.1 4 0.99 1.03 1.01 0.98 1.03 0.96 
Macro- Resuspension 0.4 5 1.05 1.03 1.04 0.96 0.96 0.98 
Micro Settling 0.1 6 1.01 1.02 1.01 1.07 0.57 0.96 
Micro Settling 0.4 7 1.03 1.04 1.02 0.87 1.49 0.94 
Micro Resuspension 0.1 8 0.99 0.99 1.02 0.94 0.94 0.95 
Micro Resuspension 0.4 9 1.01 1.03 1.02 0.90 0.94 0.95 
No Shadow Effecting 
resuspension 

10 2.28 0.33 **-0.80 4.32 5.02 2.57 

Wind Shadow 1000 m 11 1.11 0.99 1.00 0.86 0.79 0.88 
Wind Shadow 5000 m 12 1.09 0.99 1.02 0.80 0.72 0.82 
Wind Drift 1% 13 1.61 1.01 1.04 0.89 1.06 1.05 
Wind Drift 4% 14 0.66 0.95 1.02 0.95 0.85 0.90 
Diffusivity 5 m2s-1  15 1.25 1.18 0.96 1.52 1.59 1.34 
Diffusivity 20 m2s-1 16 0.78 0.97 1.07 0.57 0.53 0.60 
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2.3 Results 

Changing the seeding location from the standard to one of the alternate locations had by far the 

biggest influence on the model results. Seeding locations that face the dominant wind direction 

(Sites 2 and 3) had a smaller spatial distribution of suspended simulated plastics compared to the 

standard location. At Site 2 (Figure 2.3) all macroplastics were beached after 8 days of simulation 

and at Site 3 the macroplastics were distributed downwind 57km (mean distance). Sites in the lee 

of the islands (Figure 2.3; Site 1 and Site 4) had a larger spread of microplastics (almost 0.2 degrees 

larger) than the exposed sites (Table 2.3). The seeding location away from the coast (Figure 2.3; 

Site 5) had by far the largest latitudinal distribution of microplastics and the most variation with 

the distance the macroplastics moved (Table 2.3).  
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Figure 2.3: Effect of seeding location on distribution of suspended and beached plastics after 8 days of simulation. The 
blue dots represent the macroplastics in suspension, the orange dots represent the microplastics in suspension and the 
purple represent the pooled macro- and microplastics that have landed on the beaches. The lower right panel shows 
the location of known hot spots for debris accumulation as described by Eco Barge Clean Seas Inc. (personal 
communications 2013).  
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Table 2.3: Summary table of the comparative indices for each location scenario 

location Latitudinal spread 
of suspended 
microplastics (DD) 

Distance range 
downwind from 
seeding location 
of suspended 
macroplastics 
(km) 

Mean 
concentration of 
beached particles 
(count) 

1 (standard 
location) 

0.71 54.5 – 73.2 213 

2 0.49 All beached 4417 

3 0.46 53.7 – 60.4 2160 

4 0.64 58.9 – 89.0 1309 

5 1.18 33.0 – 100.6 None 

 

From the standard location, both simulated macro- and microplastics accumulate in large 

numbers on the coastline close to the seeding location (Figure 2. 4; beached macroplastics and 

beached microplastics). Macroplastics are driven far from the seeding location in the same 

direction as the dominant wind, whereas microplastics in suspension spread against the wind 

direction as long as currents are favourable (Figure 2.4; suspended plastics). Plastics on the sea 

floor have a high concentration close to the seeding location (Figure 2.4; settled plastics). 
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Figure 2.4: Concentration of beached (a) m
acroplastics and (b) m

icroplastics, and location of (c) suspended and (d) 
settled m

acro- and m
icroplastics, after 8 days for the ‘standard run’. 
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The locations of simulated plastics in the degradation rate scenarios are shown in Figure 2.5. 

Under scenarios (a), (b) and (d) the vast majority of microplastics are distributed far away from 

the source location. After 8 days, the mean centre of the microplastic locations was 42.25 km 

downwind from seeding location compared with 26.3 km in the standard run. There would have 

been insignificant microplastics in the analysis area. In scenario (c), the degradation rate of 

macroplastics at sea was zero, therefore no microplastics were created. 
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Figure 2.5: The effect of degradation rate on particle locations after one month days at (a) 1x10-6 day-1 for plastics on 
the beach and 1x10-5 day-1 for plastics at sea. (b) 2x10-6 day-1 for plastics on the beach and 2x10-5 day-1 for plastics 
at sea. (c) 1x10-6 day-1 for beached particles, (d) 1x10-6 day-1 for plastics at sea. The star points represent 
microplastics, the dark circular points represent macroplastics and the seeding location is shown by the thick black 
cross.  
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Scenario 10 (wind shadow does not affect resuspension of simulated plastics) is an outlier in this 

sensitivity analysis. In this scenario, the resuspension rate was set to 0.2 day-1 regardless of the 

presence of wind shadow, and caused a large difference in the result when compared to the 

standard run. There are suspended macroplastics in the analysis area throughout the 8 day 

simulation whereas the standard only had 2 macroplastics remaining in suspension at the end of 

day 4 (Figure 2.6). The maximum number of suspended microplastics in the analysis area in 

Scenario 10 is over 4 times that of the standard run. The number of simulated plastics beached on 

the coastline, either macro- or micro-, in Scenario 10  is orders of magnitude smaller than any 

other scenario (e.g. beached macroplastics in Scenario 10  after day 4 is 11 simulated items, the 

mean for the other scenarios is 1809 simulated items). The number of settled plastics inside the 

simulation area for Scenario 10 is over double that of the standard run (macro- 2.57x and micro 

5.02x larger). When Scenario 10 is not considered, all other simulations have similar patterns. The 

number of suspended macroplastics in the analysis area approaches zero in all scenarios by the 

end of day 3, except when the wind-drift coefficient is reduced to 1% this scenario loses its last 

macroplastic particle on day 7.  
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Figure 2.6: The number of each particle type in the analysis area after days 1, 4 and 8 of simulation, for each scenario 
(the reader is referred to Table 2. 2 for scenario descriptions) each scenario was seeded with 10,000 macroplastics in 
suspension. 
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The highest ranked process was the effect that the wind shadow has on the resuspension of 

particles, however, the resuspension rate itself was the lowest ranked process (Table 2.4). The 

diffusivity is the next most highly ranked process. If the seeding location does not have high islands 

(i.e. the wind shadow process is not relevant), the degradation process is the next most influential 

process. The settling process was 4th in the ranking, and therefore had a moderate influence on 

the result of the modelling. The wind-drift process, though not as influential as the wind shadow 

process, still had an effect on the model result and it therefore ranked as the 5th most influential 

process (Table 2.4).  

For most processes, there was high variance in the ranks (Table 2.4), with the exception of the 

resuspension being affected by the wind shadow parameter which had a rank range of only 2.  

Table 2.4: Average rank of 
each scenario and the rank 
of the process. The highest 
ranked scenario (rank 1) is 
the scenario that is most 
different from the 
standard run. 

   

Scenario 
Median 

rank 
range 

Median 
process 

rank 

No wind shadow affecting 
resuspension 

1 0 1 

Diffusivity 5 m2s-1 3.5 4 
4.25 

Diffusivity 20 m2s-1 5 3 

Wind shadow 1000 9 9 
8.75 

Wind shadow 5000 8.5 11 

Macro- Settling 0.1  11.25 12.5 

10 
Macro- Settling 0.4  8 13 

Micro Settling 0.1  13 7.5 

Micro Settling 0.4  8.75 11.5 

Wind-drift 1% 10.75 11 
10.38 

Wind-drift 4% 10 11.5 

Macro- Resuspension 0.1  15.75 8 

13.88 
Macro- Resuspension 0.4  14 12 

Micro Resuspension 0.1  13.75 7.5 

Micro Resuspension 0.4  12 11.5 
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2.4 Discussion 

A number of processes determined the fate of modelled plastics. The most important parameter 

was the location of the source; a difference of just a few kilometres in a rugged topography made 

a very large difference to the fate of the plastics and, in particular, had a major influence on which 

beaches the plastics accumulated on and on the location and size of the plumes of suspended 

plastics. When the source was located near the coast and downwind, some of the plastics rapidly 

beached and the rest were rapidly advected away and spread vast distances. When the source 

was located in open waters the plastic plumes were more uniform and resembled the pattern 

expected from passive plumes emanating from a point source in uniform flows (Okubo, 1971). 

When the source was close to the coast and windward, the vast majority of the plastics beached 

quickly and the rest largely remained in coastal waters near the source. When comparing the 

known hotspot locations in the Whitsunday region to beaches that accumulate simulated plastics, 

there is a tentative relationship (Figure 2. 3), especially for simulations seeded from Site 4 and Site 

1. It is important to note that these accumulation areas are very sensitive to seeding location 

(source of plastics) and not all source locations are known or have been modelled here. This study 

thus suggests that the seeding location had the largest influence on where debris accumulates on 

the coastline. In practice, the source location and the quantity of plastic debris is associated with 

a large amount of uncertainty in the literature (Reisser et al., 2013; Thiel et al., 2013), and thus 

clearly this should become a priority research area. Indeed, knowing the source location and the 

quantity of plastic debris is the prerequisite to using the model to quantify where plastics debris 

will accumulate for given wind and oceanographic conditions. In turn, this would lead to 

prioritisation of beach clean-up actions to minimise the cost and maximise the efficiency of 

combating plastic pollution. This would be the case especially for beached plastic pollution from 

urban rivers, or other land-based sources.  

If a plastic pollution model was implemented in practice to guide management and government 

agencies, the next issue to solve would be parameterising accurately the resuspension of beached 

plastics by wind and waves in the presence of a complex topography on the mainland and the 

islands. This is the wind shadow effect proposed by Myksvoll et al., (2012) to explain the currents 

nearshore of a rugged coastline being different to those just offshore. This wind shadow effect 

also influences the resuspension of beached plastics. For plastics, this process is well known and 

was readily observed visually by the author (KC; unpublished data) but has not yet been 

quantified, and this should be the next priority research topic.  
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In terms of microplastics, the rate of degradation in ocean and beached environments will be 

essential in predicting the areas that will accumulate microplastics. As degradation is such a slow 

process it is likely that the sources of secondary microplastics are far away from where they are 

being found (Figure 2.5). 

The turbulent diffusivity is a numerical process that is used in modelling to parameterise the 

movements within a single cell of the simulation grid that the model cannot capture (Okubo, 1971; 

Hrycik et al., 2013). As illustrated here, this parameterization has a determinant impact on the 

modelling result. A consensus on the best estimate of this coefficient in a rugged, shallow, 

coastal bathymetry remains lacking. Specific studies are required to obtain a reliable 

parameterization adequate to model debris transport in this region.  

The other processes sketched in Figure 2.1 and described in Table 2.1 also contribute to 

determining the fate of plastics, and again most of them can be observed visually but have not 

been quantified. These should then be the next priority research topics. For instance, the rate of 

degradation of particles has more of an effect on the model results than the settling of particles. 

Also, the rate of degradation of macroplastics to microplastics on the beach has much smaller 

effect than the rate of degradation at sea. Again, the rate at which this occurs is not well 

understood (O’Brine and Thompson, 2010) and each polymer type has different physical 

properties making the rate slower or faster. The sensitivity analysis carried out in this study 

showed that the rate of plastic break-up in the sea and on beaches also helps determine the fate 

of plastics in estuaries and coastal waters. Another suggested priority research topic is thus the 

degradation rate of the most common polymers on beaches and in estuarine and coastal waters. 

The relative importance of these parameters may vary in areas with dramatically different 

topography, for example in areas with a very steep coast leading to a very deep continental shelf 

where the rate of settling may be more important. 

Debris movements rely on the wind, however, the wind is variable in time. In this study, the effect 

of seeding time of the plastics (the date and time, relative to the weather that they enter the 

ocean) has not been explored, however, there is discussion of this process in Critchell et al., (2015). 

The seeding date, and therefore different weather conditions, does not seem to affect the location 

of the areas of accumulation of the coastline. This suggests that it is not as important to the 

modelling result as the parameters of wind shadow and the degradation of the plastics. Real wind 

and tide data are of course preferable when modelling the coastal system, however, it is well 

understood in the field of hydrodynamic modelling and incorporated into most models and is 

therefore not a priority for research. 
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Large amounts of the debris that accumulates on beaches are buoyant and are therefore directly 

influenced by the wind via the wind-drift coefficient (Daniel et al., 2002; Hardesty and Wilcox, 

2011). This study suggests that the wind-drift coefficient is indeed an important process in the 

movement of buoyant marine debris. Most research that includes this parameter uses a figure 

between 1% and 6% (Yoon et al., 2010; Ebbesmeyer et al., 2011; Hardesty and Wilcox, 2011; 

Carson et al., 2013; Critchell et al., 2015; Maximenko et al., 2015), however, an accurate value is 

currently unknown. Determining the wind-drift coefficient of macroplastics should thus also be a 

research priority topic. In the same manner that determining the wind-drift coefficient of oil slicks 

was a priority research topic when oil spill models were first proposed and used operationally in 

the 1980s (Spaulding, 1988), there is much similarity between the original developments in 

research of oil slick modelling thirty years ago and plastic pollution research that is just starting to 

emerge.  

The method of modelling used here to predict the short-term fate of plastics can readily be applied 

to any shallow estuarine and coastal waters. All that is needed is a reliable, high-resolution 

oceanographic model, the knowledge of the local wind field and the influence of the local 

topography on that wind. An advection diffusion model for plastics can then be added to the 

oceanographic model that includes all the processes shown in Figure 2.1. The incorporation of the 

wind shadow effect is simple in this method; in some cases one may need accurate small-scale 

atmospheric models to better solve the wind field around islands and a rugged coastline. In the 

shallow, vertically well-mixed coastal waters of the study area, the currents produced by the two 

methods vary very little with depth and a 2-D model is appropriate, as justified by Critchell et al., 

(2015); however, in stratified waters, a 3-D model would be needed. 

Although many plastic items we use are made of buoyant polymers, biofouling and inundation of 

whole items can cause them to sink to the benthic environment (Chubarenko et al., 2018). The 

rate at which this occurs is little known. Clearly research is needed on the physical properties of 

plastics in the environment, and is important for modelling their fate in estuarine and coastal 

waters. The modelling of the resuspension of beached plastics is also simple in the method used 

here; it is parameterised by a rate, itself a function of the wind shadow. Again, there are no data 

on this process; presumably this resuspension may be better parameterised in the future by 

including a model of the wave field along a rugged coastline and the effect of the waves on the 

resuspension. This is another suggested priority research area. The implementation of the settling 

parameter in the model presented is simplistic at this time and there is no movement once the 

particles settle to the seabed. This should be improved once the other processes are better 

understood. 
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In summary, the study suggests that the processes that most influence the accumulation of 

plastics on beaches are, in decreasing order, the source locations and quantities of debris, the 

degradation of macroplastics into microplastics at sea and on beaches, the resuspension of 

beached plastics in relation to the wind shadow effect, the diffusivity, the wind-drift coefficient of 

floating plastics, and the rate at which plastics sink. I suggest a focus on laboratory and field studies 

in these areas to increase knowledge and to rapidly improve the reliability of marine debris 

models. In practice, different plastics (e.g. plastic bags, plastic bottles, bottle caps, fishing nets, 

buoys and lines, microbeads used in cosmetic and personal care products such as facial exfoliators, 

body scrubs and toothpastes, etc.) are made from different polymers that have different physical 

properties and, in turn, these may vary the relative importance of the various physical processes 

controlling the fate of plastic debris in estuaries and coastal waters. Thus, ultimately the plastic 

oceanography model may need to evolve from using unique values of the different parameters 

characterising these processes (see Table 2.1) and instead simultaneously use a range of values of 

all these parameters in order to represent the wide range of plastic debris.   

 



 

 
 

 

 



 

 
 

 

Chapter 3 
Predicting the exposure of coastal 

habitats to plastic pollution 
 

 

 

 

In Chapter 2, I presented a new plastic-specific hydrodynamic model. In this chapter, I use the 

model to predict the potential exposure of vulnerable habitats and species, namely mangroves, 

coral reefs and marine turtles to plastic pollution. The effect of plastics on the marine environment 

is well documented, however, the physical locations of these interactions remain unknown. I 

assessed the potential exposure of mangroves, coral reefs and marine turtles to plastics during 

the two main wind conditions of the region; the trade winds and Monsoon wind seasons. I found 

that, in the trade wind season (April to September), reefs, mangroves and turtles all had lower 

exposure than during the Monsoon wind season (October to March). A small proportion of coral 

reef habitat was in the high exposure categories, whereas a large area of turtle habitat was in high 

exposure categories. Unlike reefs and turtles, the mangrove habitat had consistent hotspots of 

high exposure across wind seasons. The outputs of this chapter inform local-scale management 

action, for example turtle management and recovery plans. The method presented here can also 

be transferred to other species and habitats and scaled up for larger jurisdictions. 

 

 

 

Citation: Critchell, K. Hamann, M., Wildermann, N., and Grech, A. in prep “Predicting the exposure 
of coastal habitats to plastic pollution” target journal: Biological Conservation   
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3.1 Introduction 

The allocation of limited conservation resources is a difficult task for environmental 

managers (e.g., Fuentes et al., 2015). To be effective at solving environmental challenges, 

priorities and resources need to be allocated between all types of environmental management 

activities or intervention: remediation, rehabilitation, restoration, and active management 

(Gilbert, 2011; Game et al., 2013). These activities would ideally be prioritised and implemented 

in areas where they are expected to have the greatest benefit and are most likely to succeed at 

stabilising or improving the state of the environment. For each environmental issue, setting 

priorities and determining the areas for resource input is challenging because economic 

conditions, uncertainties in the state or condition of the environmental asset, ecosystem services 

or ecosystem value are often not well quantified or understood, and all need to be considered 

when choosing areas to allocate resources (Margules and Pressey, 2000). Prioritisation tools, such 

as risk assessments, and structured decision making are used to objectively assess, and compare 

expected success, of allocating resources towards conservation activities (Wilson et al., 2006; Klein 

et al., 2017).  

In conservation or environmental management contexts, risk assessments are used to 

inform decision making about resource allocation or mitigation of pressures. In particular, risk 

assessments can be used to assist prioritization by identifying areas on a scale from low to high 

risk from threatening activities. Knowing this enables strategic decisions for management action 

to deliver cost-effective benefits. In some cases, managing the low risks are likely to succeed, 

whereas areas at high risk may be discounted as lost causes (e.g. Bottrill et al., 2008). In other 

situations it may be prudent to address only the higher risks in order to remove stressors and to 

mitigate against further harm (Margules and Pressey, 2000; Halpern et al., 2006). Risk assessments 

have two measurable components: the likelihood of a hazard event occurring and the 

consequence to a value should the hazard event occur. In the context of environmental risk 

assessments, a hazard event or threat is any process or action that can affect the health or 

condition of an environmental value (Norton et al., 1996; Grech and Marsh, 2008). Consequence 

is the impact or damage that occurs, directly, or indirectly, due to the threat. A risk assessment 

can be visualised using a spatial risk assessment, which is a spatial depiction of the risk analysis 

(reviewed by Lahr and Kooistra, 2010). For example, Grech et al., (2011) assessed the cumulative 

impacts of anthropogenic threats to coastal seagrass meadows, finding urban and port 

developments to be major contributors to the risk to seagrass meadows.  
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Information on the spatial distributions of threatening processes is integral to informing 

the development of spatial risk assessments. Modelling is often used to predict the spatial 

distributions of species and threats (e.g. Grech and Marsh, 2008; Halpern et al., 2008; McPherson 

et al., 2008; Grech et al., 2011; Halpern et al., 2015), and is especially useful in the marine 

environment where data are sparse, and expensive to obtain, relative to many datasets collected 

in the terrestrial or freshwater environments (Ban, 2009; Brown et al., 2011). In particular, 

ecological niche-based models and species dispersal models are widely used to determine 

distribution of wide-ranging marine species such as marine turtles and sharks (McKinney et al., 

2012; Wildermann et al., 2017), and hydrodynamic modelling is commonly used to understand 

the way the threats, such as water pollution, are distributed and diluted away from the source (Li 

et al., 2000; Cucco and Daniel, 2016). In a more applied setting, modelling has been used in a 

variety of risk analysis studies of marine systems, such as to determine the spatial extent, or 

likelihood of threat exposure (e.g. industry and marine turtles Whittock et al., 2016). Modelling 

has been used to assess the risk of plastic pollution (e.g. Wilcox et al., 2013; Wilcox et al., 2015), 

however, these studies are conducted in large areas and at relatively coarse spatial resolution. To 

inform management at a fine scale (e.g. the Whitsundays Special Management Area (GBRMPA): 

1688 km2; Figure 3.1) these studies would not be suitable, as the resolution is inadequate.  

As discussed in Chapter 1, plastic pollution is emerging as a threat to the marine 

environment. The negative consequence of exposure to plastic for a variety of marine species is 

only beginning to be understood, especially regarding the population-scale effects of ingestion 

(Worm et al., 2017). For example, marine turtles ingest small plastic particles, causing disruption 

to their gastrointestinal tract (Di Bello et al., 2013; Colferai et al., 2017), but most data are 

presented at an individual scale and not at management-related scales such as foraging areas. 

Sensitive habitats, such as mangroves and coral reefs, can be damaged by scouring or smothering 

by larger plastic items (e.g. Uneputty and Evans, 1997; Donohue et al., 2001). However, the spatial 

location of where these interactions occur, and the frequency of interactions, especially at a 

management-relevant scale, are not well known (Titmus and Hyrenbach, 2011; Nelms et al., 

2016).  

The goal of this chapter is to present a method of predicting the spatial distribution of 

exposure of coral reef systems, mangrove habitats, and foraging flatback sea turtles to plastic 

pollution in a complex coastal environment, namely the Whitsunday region, Queensland, Australia 

(Figure 3.1). I used hydrodynamic modelling to estimate distributions of plastics and to create 

exposure categories. The exposure categories were then compared with known distributions of 
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threatened species or habitats. The outputs of this chapter improve the understanding of the risks 

of plastic pollution as well as providing a tool to improve the management of plastic pollution in 

the coastal zone.  

Table 3.1: Proven and speculated consequences of exposure to plastic pollution for each of the study habitats and 
species. 

Habitat or species Consequence Macro- or 

microplastics 

Speculated or evidence of 

consequence 

Exposure 

layers used 

in analysis 

Coral Reefs Scouring/smothering 

corals 

Macro Speculated (Goldberg, 1997; 

Donohue et al., 2001) 

Settled 

macro 

Ingestion by animals in 

the habitat 

Micro Evidence (Gall and Thompson, 

2015; Hall et al., 2015)  

Settled 

micro 

Invasive species Macro- and 

micro 

Evidence (Barnes, 2002; 

Gregory, 2009) 

Settled 

macro- and 

micro 

Turtles Gastrointestinal 

disruption after 

consumption 

Macro- and 

micro 

Evidence (Parga, 2012; Di Bello 

et al., 2013; Schuyler et al., 2014; 

Nelms et al., 2016) 

Suspended 

macro- and 

micro 

Entanglement Macro Evidence (Wilcox et al., 2013; 

Nelms et al., 2016; Blasi and 

Mattei, 2017; Duncan et al., 

2017)  

Suspended 

macro 

Mangroves 

 

Scouring/smothering Macro Speculated (Goldberg, 1997; 

Uneputty and Evans, 1997; 

Smith, 2012) 
Beached 

macro 
Changed community 

structure 

Macro Evidence (Katsanevakis et al., 

2007) 

Ingestion by animals in 

the habitat 

Micro Evidence (Besseling et al., 2013; 

Gall and Thompson, 2015; van 

Cauwenberghe et al., 2015)  

Beached 

micro 

Degradation of habitat Micro Speculated (do Sul et al., 2014) 

Invasive species Macro- and 

micro 

Evidence (Barnes, 2002; 

Gregory, 2009) 

Beached 

macro- and 

micro 
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3.2 Methods 

3.2.1 Study area and species  

This study was conducted in the Whitsunday region of the Great Barrier Reef World 

Heritage Area (GBRWHA), on the central coast of Queensland, Australia (Figure 3.1). The largest 

township is Airlie Beach which has a large transient tourist population and is the centre for local 

government activities. The average water depth in the region is approximately 30 metres, and the 

region is dotted with 77 islands and reefs. The Whitsunday region is towards the southerly 

extreme of the tropics, dominated by the monsoonal and south-easterly trade wind circulations. 

During the monsoonal summer months, the Whitsundays receives run-off from three mainland 

catchments; The Don, Proserpine and O’Connell catchments (Figure 3.1). These catchments are 

predominantly of agricultural land-use. 

There is growing evidence that sea turtles are at risk from plastic exposure (e.g. Schuyler 

et al., 2012; Schuyler et al., 2014). Flatback turtles (Natator depressus), endemic to Australia, are 

listed as “Vulnerable” under the Environmental Protection and Biodiversity Conservation Act 1999 

(EPBC Act), and are an important value of the GBRWHA. In addition, plastic debris is recognised as 

a threat to flatback turtles residing in the GBRWHA and elsewhere in Australia (summarised in 

Table 3.1). Understanding the threat posed by plastics to this species is important and can also be 

extrapolated to other pelagic and sea turtle species. Indeed, Nelms et al., (2016) and Darmon et 

al., (2017) call for research on the risk of plastic pollution for marine turtles, especially flatback 

turtles, and research on foraging and threats to flatback turtles is a priority under the GBRMPA’s 

Reef 2050 Plan (Reef 2050 Long-Term Sustainability Plan , Commonwealth of Australia 2015). 

Approximately 19 turtles (species information not available) per year were stranded in the 

Whitsundays region between 2005 and 2010 and most of the turtles had no visible signs of boat 

strike or entanglement (Biddle and Limpus, 2011). This trend continued until 2016 (unpublished 

data, StrandNet). Four out of the five Flatback turtles that could be necropsied between 2013 and 

2017 had microplastic blockage in their gastrointestinal tract (unpublished data, StrandNet). The 

Whitsundays region is one of the most important foraging areas for the flatback turtle population 

breeding in the Great Barrier Reef (Wildermann, 2017) 

Coral reefs are one of the key environmental values of the GBRWHA and they are a 

hotspot for biodiversity, not only making them biologically important to the health of the ocean 

but also important to the Whitsunday region specifically due to their notoriety for tourism. 

Mangrove habitats are important nursery grounds for many commercially important species, as 

well as providing many ecosystem services. Understanding the impact of plastics on these habitats 
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can lead to benefits for all species living within, or reliant on, mangroves and coral reefs – 

especially in the GBRWHA. 

 

 
Figure 3.1: The Whitsunday region. The lower panel shows the placement of the hydrodynamic simulation seeding 
locations, shown as black circles. The river catchments are shown in green hues, with streams and rivers shown in grey. 
The top panel shows the placement of the region on the Queensland coast. 
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3.2.2 Hydrodynamic modelling and dispersal simulations 

I used the SLIM hydrodynamic model (described in Chapter 2) to model the dispersal of 

plastic pollution in the study area. Data inputs included recorded wind data collected at Shute 

Harbour (Bureau of Meteorology station number 33106) from June 2013 to May 2014. This 

enabled the comparison of plastic pollution distribution during the south-east trade wind season 

(April - September) and during the more wind-variable northerly season (hereafter, referred to as 

“Monsoon wind season”; October - March). It is important to compare these seasons as the effect 

of wind determines the movements of marine plastics (See Chapter 2: Sensitivity Analysis), and 

the two wind seasons capture the maximum variability during the year. The years 2013 and 2014 

provide good examples of the conditions during the two wind seasons, showing average wind 

distribution patterns for the seasons (Figure 3.2).  

I imposed a constant wind shadow in the lee of islands of 2500 m. In reality, the size of 

the wind shadow would change with the size and shape of the land mass causing it. However, to 

implement a variable wind shadow in the model would require coupling a wind-field model to the 

SLIM model. This was outside the scope of my thesis as it would require substantial modification 

to the course code of the SLIM model. The model was forced with a standard M2 tide inflow and 

forcing from the Coral Sea; both are idealised but have been successfully used in previous studies 

to provide an acceptable representation of water movements (Hamann et al., 2011; Andutta et 

al., 2013; Critchell et al., 2015). 

 

Figure 3.2: Wind rose of the wind data used in the modelling that created the exposure layers for each season, A) trade 
wind season and B) Monsoon wind season. Wind data from 10 min wind records at Shute Harbour weather station.  

A B 
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I used the most likely sources of plastic pollution for the study area, as per Chapter 2, as 

the starting locations for the particles to ‘seed’ the model (Figure 3.1 and Table 3.2). I released 

250,000 particles at each source point, therefore, locations with more source points were 

considered of higher importance (Table 3.2). Land/catchment based sources included the major 

river systems flowing into the study region. These catchments have a multitude of land uses, 

including urban and agriculture, and the likelihood of them contributing plastics is high (Moore et 

al., 2011; Critchell et al., 2015). I also chose the waterbodies that drained any local water 

treatment facilities as they are a likely source of microplastics (Browne et al., 2007; Fendall and 

Sewell, 2009). Hamilton Island resort has their own water-treatment facility, and a large tourist 

turn over. I included Hamilton Island as a source of both macro- (tourist and resort-based litter) 

and microplastics from the water treatment plant (e.g. fibres fabric washing daily). Offshore 

sources were evenly spaced along the offshore commercial shipping lane (Chapter 2). I did this to 

include the shipping lane itself as a source, but also as a surrogate for other external sources, as 

many offshore sources are diffuse and therefore the appropriate seeding location is not obvious.  
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Table 3.2: The justification and importance of each source location in the plastic dispersal simulations. 

Location Rank of 
importance 

Number 
seeding 
points  

Source justification 

Airlie Beach High 5 Regionally large (population 12928; 
Census, 2016) local township  

Mouth of the 
Proserpine 
River 

High 5 Large catchment draining many land 
uses  

West 
Hamilton 
Island 

Low 2 Popular resort with on-site water 
treatment 

Cid Harbour - 
West 
Whitsunday 
Island 

Low 2 Large tourist anchorage 

North Hook 
Island 

low 2 Large tourist anchorage  

Bowen High 5 Regionally large (population 9105; 
Census, 2016) local township  

Outer 
Shipping lane 

High 20 evenly 
spread 

Objects discarded by ships, also ship 
sewage  
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The dispersion model uses the velocities derived from the hydrodynamic model to move 

particles according to the Lagrangian dispersion scheme. Within this I also added plastic-specific 

parameters (described in Chapter 2; Critchell and Lambrechts, 2016). To understand the 

distribution of plastics in the Whitsundays region, I used the best estimation of these parameters, 

informed by available literature. I set the wind-drift to 2% of the wind velocity for simulated 

macroplastic particles and zero for microplastics. The resuspension (or re-floating) probability was 

set to 0.2 for both macro- and micro- particles. I assume the resuspension is mainly wave driven, 

therefore, the resuspension is turned off in the areas designated as being in a wind shadow. The 

wind shadow was set to the same value as for the hydrodynamics model. The rate of settling is 

set as a probability, 0.002 for macroplastics and 0.02 for microplastics, as microplastics are more 

likely to become bio-fouled causing sinking, or to be flocculated into marine snow. The rate at 

which macroplastics “degrade” into microplastics is 0.000001 for particles in suspension and 

0.00001 for particles on the land. Plastics on land are thought to have a higher rate of degradation, 

especially in tropical regions, because they are exposed to higher UV intensity and temperatures 

that degrade polymer bonds (Weinstein et al., 2016). However, the process of full decay is thought 

to be at the scale of months to years and this rate may be still too fast. The simulations were run 

for a maximum of 45 days and three outputs (days 15, 30 and 45) were exported to capture 

variability in dispersal throughout the simulation length. I ran one simulation for each wind 

season, the trade wind season simulation began on 01/06/14 and ran for 60 days, and the 

Monsoon wind season simulation started 01/02/14 and ran for 45 days. 

3.2.3 Exposure layers 

The outputs of the two simulations were imported to ArcGIS 10.2. The outputs were used 

to create macroplastic and microplastic exposure layers for each wind season (trade and 

Monsoon) and each particle state (suspended particles, beached particles and settled particles; n 

= 12). The methods to create the exposure layers are shown graphically in Figure 3.3.  

3.2.3.1 Beached particles 

I used the spatial join function to join particles to their closest coastline section on days 

15, 30 and 45 of the simulation. I merged the outputs of days 15, 30 and 45 to create an exposure 

layer of the mean particle density. Mangrove habitat tends to be coastal, therefore, I compared 

mangrove presence to the beached plastic exposure layers. I first joined the polyline of mangrove 

presence to the SLIM coastline in a binary format (0, 1). I then multiplied the mean particle density 

by the habitat presence to assess the relative exposure of each 100 m section of mangrove habitat. 
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3.2.3.2 Suspended particles 

I created a density distribution, with the Kernel Density function of ArcGIS for each macro- 

and microplastic output at 15, 30 and 45 days. The kernel density function creates a raster grid by 

counting the number of points in each of the cells and smoothing through the values of the 

surrounding cells in a defined search radius. I used the default search radius, calculated by the 

programme using Silverman's Rule of Thumb for each of the input datasets. The result is a surface 

where each cell value is the sum of the values created by each search. I then used the mean 

concentration of these outputs (n = 3) to create the exposure layer for suspended macro- and 

microplastics.  

3.2.3.3 Settled particles 

Settled particles in the model represent the accumulation of settled particles throughout 

the simulation. Therefore, the output on day 45 provides the locations of all particles that have 

settled on the ocean floor. I used the last output (day 45) to create the exposure layers for settled 

plastics, using the same Kernel Density method as for the suspended particles.  

3.2.4 Relative exposure categories 

The layers of beached, suspended and settled macro- and microplastics during the trade 

and Monsoon wind seasons were divided into four “Relative Exposure Categories” (RE categories). 

The RE categories were: Nil (where plastics are not present), low, medium, and high. The layers of 

each particle type (macro- and micro) and state (beached, suspended and settled) had different 

frequency distributions of particle density. It was therefore necessary to develop these categories 

individually, but retaining the ability to compare the trade vs. Monsoon wind layers (e.g. 

suspended macro- plastics in the trade vs. Monsoon wind season). The breaks used for the 

categories were based on the quantile distribution, which is an inbuilt classification method to 

break the data into classes with an even number of values within each class.  
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3.2.5 Habitat and organism distribution data 

Wildermann (2017) found that the Whitsundays region is one of the important habitats 

for flatback turtles breeding in the Great Barrier Reef. To assess the exposure of flatback turtles 

to plastics, I used the location data derived from 13 adult female turtles tracked in the Whitsunday 

region by satellite-linked Fastloc GPS transmitters (Wildlife Computers) between December 2009 

and December 2015. The data were used to model the spatial distribution of turtle foraging areas. 

Each of the turtles was fitted with the transmitters after they laid their last clutch in a breeding 

season and they were then tracked to their foraging areas (e.g. Wildermann, 2017). Following 

arrival at the foraging site, the tags transmitted location data for a mean of 171.2 days. The x,y 

coordinate data were extracted and screened with a data-driven filter (Shimada et al., 2012) to 

remove temporal and spatial duplicates, and locations marked by biologically unlikely swimming 

behaviour (> 7.6 km/h) and turning speeds (> 1.8 km/h). Home ranges were then estimated from 

utilisation distributions (i.e. all the area used by the animal) using the method of Calenge (2011). 

The 95% core home ranges were used to develop a binary turtle presence/absence raster layer (1 

km x 1 km resolution; Figure 3.4) (e.g. Whittock et al., 2016). The geographic area used by these 

13 turtles was assumed to overlap with suitable foraging habitat (Wildermann et al., 2017), and 

therefore the presence of these turtles can be used as a proxy for turtle foraging habitat in the 

Whitsunday region.  

Reef and mangrove habitat location data were obtained from the Australian Institute of 

Marine Science eAtlas data depository (http://eatlas.org.au/). The reef data layer was converted 

into raster format (330 m x 330 m resolution) to enable its comparison with the RE layers. (Figure 

3.4) The mangrove data is a polyline feature and was joined to the SLIM coastline with a spatial 

join, in order to label the SLIM (simplified) coastline layer with sections classed as mangrove 

habitat (Figure 3.4). 

The interaction of turtles, reefs and mangroves with plastics in the three states (i.e. 

beached, suspended and settled) differs (see Study area and species; Table 3.1). Coral reef species 

are most affected by plastics that settle onto the reef matrix (settled). Turtles are most likely 

impacted by plastics suspended throughout the water column, and mangroves are a coastal 

habitat type likely to be affected by plastics that are pushed onto the coastline (beached). I 

matched turtles, reefs and mangroves to their relevant exposure layer when conducting the risk 

analysis.  
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Figure 3.4: Study area, the Whitsunday region. Top panel shows the locations of reef habitat in the study region, centre 
panel shows the home ranges of flatback turtles, and the bottom panel shows the coastline designated as Mangrove 
habitat. 



Chapter 3: Exposure analysis 
 

57 
 

3.2.6 Data analysis 

The exposure layers and the presence/absence habitat and species data were overlayed 

in GIS to calculate the area of mangrove, coral reef and turtle habitat in each RE category. I used 

a raster calculator to multiply the binary (0 or 1) habitat layers with the exposure layers, resulting 

in a new raster layer with only the area of the habitat retaining the risk category of the exposure 

layer. To calculate area of exposure in each category, I multiplied the number of cells in the 

category by the cell dimensions (330x330 m for the coral reef habitat and 1000x1000 m for the 

turtle home ranges). To ensure the exposure layers and the habitat layers covered the same 

spatial extent, I used a mask to extract only the data within the study area for analysis. For the 

interaction of plastics with mangroves, I calculated the length (total of 1307 km) of mangrove 

coastline in each threat category. I summed the lengths of the coast sections in each threat 

category that were also labelled as mangrove habitat. 
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3.3 Results 

 The trade wind and Monsoon wind seasons resulted in different spatial patterns of 

accumulation for, settled (Figure 3.5), suspended (Figure 3.7) and beached (Figure 3.9) macro- and 

microplastics. The trade wind season moved simulated macro- and microplastics into the large 

south-east facing bay at the southern end of the Whitsunday region (Repulse Bay). In comparison, 

the Monsoon wind season moved plastics into the smaller, more complex bays in the north of the 

study region (Double Bay etc.). The macroplastics accumulate close to the north-east facing 

coastlines during the Monsoon wind season, while microplastics had a more homogenous 

distribution. In the trade wind season, both plastic types had pockets of high accumulation (Figure 

3.5). Microplastics accumulated on the beaches of the Lindeman group (south of the study region 

Figure 3.2) in the trade wind season; however, there is no such accumulation for the macroplastics 

(Figure 3.9). 

The distances that particles moved also differed between seasons. During the trade wind 

season, the simulated microplastics moved a maximum of 619 km to the north, whereas 

macroplastics moved a maximum of 650 km north after 45 days of simulation. Few particles 

moved south of their original source location, 20.52% and <1% of simulated particles of 

microplastic and macroplastic, respectively. By contrast, during the Monsoon wind season the 

simulated microplastics moved only a maximum of 107 km to the north, and macroplastics 62 km. 

A relatively large proportion of particles moved south of their source location, 59.51% of 

microplastics, and 46.10% of macroplastic. 

In the trade wind season, when winds are stronger, particles are pushed from the study 

area by wind-driven currents, resulting in the lower accumulation of plastics in the study area. It 

is possible that the plastics are accumulating in locations outside the study area. In the Monsoon 

wind season, particles remain in the study area trapped in bays moved by tidal currents, but also 

pushed by the wind against the coast, which leads to higher exposure in the Monsoon wind 

season. 

The level of exposure of coral reefs, mangroves and marine turtles to macro- and micro 

plastics differed between wind seasons. A consistently higher proportion of each habitat was in 

higher RE categories in the Monsoon wind season compared with the trade wind season because 

simulated plastics were swept away from the islands as in the trade wind season (summarised in 

Figure 3.11).  
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Coral reefs had the largest proportion of area in the nil RE category, with a mean 58% of 

habitat across season and plastics type (Figure 3.6, 3.11). Coral reefs had low exposure during the 

trade wind season; for macroplastic 94.6% of the habitat, and for microplastics 99.8% of the 

habitat is in low or nil RE categories. Conversely, during the Monsoon winds season 31.7% of the 

habitat was in the medium or high RE category for macroplastics and 28.1% for microplastics 

(Figure 3.11). Only one cell (330 x 330 m) was consistently in the high RE category across wind 

season for microplastics and none for macroplastics (Figure 3.12).  

Similarly, a large area of flatback turtle home ranges was in the medium and high RE 

category in the Monsoon wind season, compared with a small percentage during the trade wind 

season (for microplastics 51% and 1.7% respectively). The exposure was spread throughout the 

flatback turtle home range (Figure 3.8). Unlike the coral reef habitat however, there is a clear 

difference in exposure between macro- and microplastic. Specifically, in the Monsoon wind 

season 14.5% of the home range area was in medium or high RE categories for macroplastics, but 

51.0% for microplastics (Figure 3.8, 3.12). A very small portion of flatback turtle home range (20 

km2, 0.59% of the total area) was consistently in the medium or high microplastic RE category 

between seasons, while only 2 km2 of the area was consistently in medium and none in the high 

RE category for macroplastics (Figure 3.12). 

The mangrove habitat had complex exposure patterns. Mangroves had the smallest 

proportion of its range in the nil RE category (mean 19.8%; Figure 3.10, 3.11) relative to marine 

turtle habitats and coral reefs. Unlike the coral reef habitat and the turtle home range exposures, 

the proportions of mangrove habitat in each RE category is reasonably consistent across wind 

season and plastic type. Also, unlike the other two case studies, for mangroves there are 

geographic areas that remain in the high RE category, suggesting there are consistent hotspots of 

exposure in time and space. For example, much of the mangrove habitat in Pioneer Bay, 

surrounding Airlie Beach, is consistently in the high RE category (Figure 3.12). 
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Figure 3.5: The spatial distribution of relative exposure for settled macro- and micro plastics during the Monsoon 
(October - March) and trade wind (April - September) seasons.  
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Figure 3.6: The relative exposure to macro- and micro plastics for reef habitats in the Whitsunday region  
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Figure 3.7: The spatial distribution of relative exposure for suspended macro- and micro plastics during the Monsoon 
(October - March) and trade wind (April - September) seasons. 
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Figure 3.8: The relative exposure to macro- and micro plastics for flatback turtle home ranges in the Whitsunday 
region 
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Figure 3.9: The spatial distribution of relative exposure for beached macro- and micro plastics during the Monsoon 
(October - March) and trade wind (April - September) seasons.   
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Figure 3.10: The relative exposure to macro- and micro plastics for mangrove habitats in the Whitsunday region 



66 
 

 

Figure 3.11: The proportion of habitat area in each threat category by season and plastic type. The threat categories 
colours correspond to the exposure maps (Figure 3.6, 3.8, 3.10). The top panels show microplastics, and the bottom 
panels show macroplastics. The left column shows the Monsoon wind season and the right column shows the trade wind 
season. 
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3.4 Discussion 

In this chapter I present a method of predicting the potential exposure of coral reef 

systems, mangrove habitats, and foraging flatback sea turtles to plastic pollution in a complex, 

coastal environment. I found that accumulation and exposure levels differed during each wind 

season (trade and Monsoon) and plastic type (macro- and micro-). The Monsoon wind season 

(October - March) resulted in the largest area of coral reefs, mangroves and turtles in the highest 

exposure category. In the trade wind season (April - September), plastics are pushed by the south-

easterly wind out of the study area, reducing the relative exposure compared to the Monsoon 

wind season where the plastics are not pushed from the study area. 

During the trade wind season, the plastics are moved out of the study area by local water 

circulation patterns, reducing the potential interaction between plastics and coral reefs, 

mangroves and turtles in the region. However, it is possible that plastics from external sources are 

imported into the study area during the trade wind season, which the current model did not 

capture. During the trade winds a more southerly wind direction would move any buoyant objects 

from the south or south-east into the study area (Critchell et al., 2015). In the Monsoon wind 

season, the wind-driven currents move plastics into areas that are protected from the typically 

strong trade winds. Fringing reef habitats are often found on the lee side of islands (Hopley, 1982; 

Kennedy and Woodroffe, 2002), and pervasive exposure to wind-generated waves can damage 

the coral structure and restrict growth. I found that, during the Monsoon wind season, sheltered 

reef habitats were more exposed to plastics, being moved by the, often calmer, Monsoon winds.  

A large proportion of mangrove habitat had a relatively high exposure to plastic pollution 

in both wind seasons and for both plastic types. However, the risk posed by macro- and 

microplastics is likely to be different. For example, a single large object can damage a 

comparatively large area of mangrove habitat, for example, plastic sheeting or fishing gear 

(Goldberg, 1997; Uneputty and Evans, 1997). Microplastics significantly affect the sediment 

permeability in beach sediments at a concentration of approximately 16% plastic by weight 

(Carson et al., 2011), the concentration of microplastics (i.e. the number of plastics per area of 

coastline) required to make an impact on mangroves could be larger than it is for macroplastics. 

Even though a similar area of mangrove habitat is in the high exposure category for both macro- 

and microplastics, the threat posed by those categories (i.e. the consequence) may be vastly 

different.  

In each wind season, a larger area of coral reefs were exposed to the highest exposure 

category of microplastic rather than macroplastic pollution. Microplastics affect reef habitats as 
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they can be ingested by reef animals, including reef-building corals, for example Dipsastrea pallida 

(Hall et al., 2015). However, it may be that macroplastics have a larger and more immediate 

consequence to reef habitats. For example, scouring and smothering by large plastic net items 

impact the reef structure by damaging corals on a larger scale than individual coral polyps or 

colonies. Chiappone et al., (2005) found up to 11 individual reef organisms damaged by a single 

piece of derelict fishing gear in the Florida Keys. Lamb et al., (2018) found that macroplastics also 

increase the prevalence of disease in reef-building corals in several reefs across the Indo-Pacific 

region. It is important to note, that the types of debris described in these studies are often fishing 

gear that has been deposited in situ and therefore unlikely to be transported in the same way as 

the simulated debris in my modelling. Therefore, it is important for future studies to consider the 

types of plastics impacting sensitive habitats, and model debris with appropriate parameters to 

capture the true exposure. 

Coral reef habitats in the Whitsunday region already face several pressures, and were 

recently exposed to moderate levels of bleaching coupled with cyclone damage from severe 

tropical cyclone Debbie in 2017 (Hughes et al., 2015 and unpublished monitoring data - 

http://www.abc.net.au/news/2017-07-13/comparison-photos-striking-damage-great-barrier-

reef-cyclone-qld/8702192). Hence, it is clear from my results that macroplastic pollution adds an 

additional threat to reef habitats in the region and pervasive exposure to plastics could affect 

natural recovery after environmental disturbance. 

Like coral reefs, flatback turtle habitat had a larger area exposed to the highest exposure 

category of microplastic than macroplastic pollution in both wind seasons. The degree to which 

plastic particles are ingested by fauna, such as flatback turtles, depends on the relationship 

between plastic size, abundance and gape size of the turtles. However, because microplastic 

particles in the environment vary greatly in size, shape and colour they pose a potential issue for 

all size classes of marine turtles (Schuyler et al., 2012; 2014). In general, the smaller the plastic 

particle in relation to the size of the digestive tract, the greater the potential that the particle will 

be passed through the gastrointestinal tract and cause less physical damage. In comparison, larger 

particles are more likely to cause issues during digestion, leading to physical injuries and 

sometimes death (Parga, 2012; Di Bello et al., 2013). While hard macroplastic items are not often 

found in the digestive tracts of turtles, turtles have been recorded biting pieces off softer 

macroplastic items such as polystyrene buoys/foam and plastic bags (Schuyler et al., 2012), the 

results of which can be similar to microplastic ingestion. This is important because both plastic 

bags and polystyrene buoys are commonly removed from beaches and storm water drains during 

clean-ups. Entanglement in derelict fishing net is commonly associated with turtle mortality in 



70 
 

some areas of Australia (Wilcox et al., 2013). However, in the GBR rates of entanglement are low 

(Biddle and Limpus, 2011), and ingestion is a far larger, and largely unquantified issue. 

It is clear from my analysis that, large areas of one of the most important foraging areas 

for flatback turtles in the Great Barrier Reef is exposed to high levels of plastic pollution during 

the monsoon season. Because flatback turtles are non-specific carnivores, foraging across the 

water level, and have differences in diet between age classes, exposure to microplastics is 

generally believed to increased rates of ingestion (Vegter et al. 2014; Wildermann, 2017). Plus, 

the inability of turtles to regurgitate mean that exploratory bites tend to be swallowed and thus 

plastics get ingested regularly (Schuyler et al., 2012). Hence, given the high exposure to 

microplastic in the monsoon season, the chances of encountering and ingesting plastic particles is 

likely to be high. Flatback turtles are one of six turtle species that live in the GBR region. Green 

turtles (Chelonia mydas), common throughout the GBRWHA, have very high inter-annual foraging 

site fidelity, especially around reef and mangrove habitat (Shimada et al., 2016). Conversely, 

flatback turtles are more mobile often moving between habitat types to forage (Wildermann 

2017). Thus, assessments of risk at the scale conducted in this chapter are realistic. Also, while 

green turtles are largely herbivorous, flatback turtles are more opportunistic carnivores foraging 

across the water column – hence, looking at their exposure to suspended plastics is realistic. The 

exposure approach presented here is important because, while it does not indicate which 

individuals are most at risk, it enables a region-wide understanding of the degree to which an 

important flatback turtle foraging habitat may be exposed to plastic pollution, and in which times 

of the year. Ingestion of plastics is listed as one of the key threats to marine turtles in Australia, 

yet little is known about the degree to which different species and important habitats are exposed 

(Commonwealth of Australia 2017). This chapter represents the first time the degree to which an 

important foraging habitat for an Australia sea turtle species is exposed to microplastic pollution 

has been quantified. 

Despite turtles often being used as flagship species to highlight the problems of plastic 

pollution, there is limited information about their exposure to plastic pollution. A global risk 

assessment by Schuyler et al., (2016) assessed the hotspots of plastic ingestion by marine turtles, 

however, the broad spatial scale used (10 x 10) is unsatisfactory for local governance. Wilcox et al., 

(2013) used known ghost net sink locations to predict distributions of ghost nets in the Gulf of 

Carpentaria, Australia, combined with estimated turtle abundance and known turtle 

entanglement rates, to model the risk of turtles to ghost fishing. The spatial scale used for the risk 

analysis was at a resolution of 50 latitude by 50 longitude, which, while useful for their study, was 

much broader than the resolution I used. A coarse spatial resolution is useful across a large 
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geographic range, such as to understand the issue of ghost net entanglement in the Gulf of 

Carpentaria. However, it would be insufficient for addressing local, small-scale management 

questions relative to the Whitsunday region. In this chapter I use a resolution of 1 km2 and 330 

km2 to undertake the analysis meaning that the results could be used to aid decisions made by 

agencies managing the Whitsunday area. One such management action could be targeting debris 

removal activities on specific beaches. One of the main contributors of microplastics in the 

environment is the physical breakdown of macroplastic items on beaches. The microplastic 

particles can either remain mixed with the sand or resuspended back into the aquatic habitats. 

Removing macroplastic items from the Whitsunday and other GBR beaches, while not likely to be 

a cost-effective long-term solution, could reduce local inputs of microplastics, and reduce the 

existing load in local waters. Furthermore, given the locations of most of the turtle nesting 

beaches in Australia are well known, the modelling approach I used could be developed to conduct 

a risk assessment related to the exposure of nesting turtles on beaches with high macro- or 

microplastic loads, as has been done for examining exposure to light pollution (Kamrowski et al., 

2012). The method presented in this chapter could be easily modified for this purpose.  

I acknowledge that the approach presented in this Chapter has limitations that will 

prevent it being useful to management immediately. For example, the modelling underlying the 

exposure analysis has not at this stage been ground-truthed to field data, and sources have not 

been quantified. As a result, the predictions could be inaccurate in magnitude and in the spatial 

patterns, however, the SLIM system was used to predict accumulation areas along the whole 

Queensland coast (Critchell, et al., 2015) and approximately represented the available field data. 

Even with these limitations, this chapter presents a novel approach to exposure analysis for plastic 

pollution on a small, management-relevant scale. This approach is readily scalable to larger 

jurisdictions and other habitats or taxa. In this study I have not presented consequence 

information for each habitat, and how consequence is likely to change at increasing exposure 

levels. Without these data, actual risk cannot be presented, only potential risk. 

There is a strong need to quantify the consequence of each level of exposure to 

understand the true risk that plastic pollution poses to habitats and species because the 

interactions between animals and a single microplastic or the animal and a single macroplastic are 

not equal. Plus, in relation to coral, some species may be more susceptible to impacts than others, 

e.g. branching species and fishing line entanglement, and for turtles, smaller age classes may be 

more susceptible than adults. Another consideration for the assessment of exposure to habitats 

compared to species (i.e. marine turtles) is that mangroves and reefs remain in the same 

geographic location and thus plastic impacts can accumulate. However, turtles are mobile and will 
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use different habitats daily. Turtle recovery plans and the regional management units (RMU) need 

to be informed at smaller scales and higher resolution (Wallace et al., 2011). Relating the exposure 

categories presented here to the consequence of that exposure to the habitat or population, is a 

vital next step in understanding the risk of plastic pollution. 

In this chapter I presented an exposure analysis approach that could be used for a variety 

of habitats and species known to be impacted by plastic pollution. I found that, in the Monsoon 

wind season the habitats and species were highly exposed to plastic pollution, with few 

consistencies with the trade wind season. The exception was for mangrove habitats which had 

areas of consistently high exposure across wind seasons. The implications are important, 

especially for flatback turtles for which marine plastic ingestion is a recognised threat, and for 

coral reefs in the region which are already stressed from coral bleaching and cyclone impacts. 

Once validated with field data, the exposure maps presented can be used in the prioritisation of 

conservation resources, from debris removal programs to locating offset initiatives. The 

framework I used could also be refined to map the exposure of a particular plastic class, or types 

of objects that are known to impact a particular species or habitat e.g. drifting net on reef 

structures. 

 

 



 

 
 

  

 

 

Chapter 4 
Using field data to interrogate a 

plastics dispersal model 
 

 

 

Plastic pollution is suffocating the ocean and coastal environments. Understanding the 

accumulation of plastic pollution in the coastal zone will improve targeted management action. 

Quantifying inputs of plastics from various sources at local scales is imperative to successful 

modelling of plastic dispersal. In Chapter 2, I presented a novel hydrodynamic model for plastic 

movement in the ocean. In Chapter 3, I used that model to conduct an exposure assessment of 

plastic pollution for coral reefs, mangroves habitats and flatback sea turtles. The assessment 

raised questions about the consequence of plastic exposure (see Chapter 5), and the source and 

input parameters used in the model. In this chapter, I build on the hydrodynamic model developed 

and presented in Chapter 2 in order to identify the likely sources of plastics at a management-

relevant scale, and to explore the environmental conditions and processes that affect plastic 

accumulation on a complex coastline. To do so, I used field data for macro- and microplastic 

particles to interrogate the model. I found marine sources are likely to be more important than 

coastal sources for microplastics, and coastal sources are more important for macroplastic than 

microplastic particles.  

 

Publication associated with this chapter: Critchell K, Hoogenboom M, Grech A, Wolanski E, 

Hamann M. “Using field data to interrogate a plastics dispersal model” in preparation  
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4.1 Introduction 

To mitigate the impacts of a dispersive and persistent pollutant like plastics it is imperative 

to understand the sources and accumulation areas (sinks) of the pollutant (Kako et al., 2011; 

Carson et al., 2013). Dispersal and accumulation models are useful for understanding the way 

pollutants will move through and impact the environment, and they are integral to the 

development of effective management actions. For example, modelling has been used in 

risk/threat analysis by predicting accumulation of various types of plastic pollution and comparing 

this with areas of interaction with vulnerable species (e.g. Chapter 3; Wilcox et al., 2013; Halpern 

et al., 2015; Darmon et al., 2017). Sherman and van Sebille (2016) have also used models to predict 

the accumulation of microplastics to identify maximum efficiency placement of plastic removal 

devices. However, managing the inputs of plastic pollution is generally a responsibility taken at 

municipal levels, which requires local-, rather than global-scale models. Currently, local models 

are lacking because of challenges incorporating the multiple factors influencing the dispersal 

pathways and accumulation of plastics in the coastal environment, including the supply of plastics 

to the area, the rate of plastic loss from the area, and the processes that move plastics though the 

area. Each of these factors represent key knowledge gaps in plastic dispersal and accumulation. 

In addition to the complexities of hydrodynamic processes in coastal regions, different 

objects can have different dominant driving processes moving them through or across the water 

column. For example, the movement of larger objects floating on the ocean surface will be 

strongly affected by wind whereas objects below the water surface will be most strongly affected 

by currents (Breivik, et al., 2011; Fazey and Ryan, 2016). Objects on beaches, or on the substratum 

sub-tidally, are additionally affected by substratum properties (Carson et al., 2011). 

Understanding these differences is important when considering and comparing the movement of 

macroplastics and microplastics, which could have the same density but the differences in their 

size and shape would alter how the plastics move in an aquatic system (Daniel et al., 2002; Isobe 

et al., 2014). This may result in different sinks for macro- and microplastics even when they 

originate from the same source, but these dynamics are poorly understood. In one study, Kako et 

al., (2010) demonstrated that incorporation of field data could result in estimation of the source 

locations of specific objects. However, that study focussed on just one type of macroplastic 

(disposable cigarette lighters) and the results are difficult to generalise to other types of 

macroplastic or microplastic.  

Combining hydrodynamic models with field-based collection and observations at specific 

locations is a tractable approach to identify sources and sinks of plastics in the marine 
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environment. The alternative approach of identifying the source of plastic items collected from 

the environment (at sink locations, e.g. Tudor and Williams, 2004; Topçu et al., 2013) is time 

consuming and can only be applied to a subset of items found at the sink location. Direct 

identification of plastic sources is possible in local river systems by collecting samples in the river 

channel and estuary environment (e.g. Moore et al., 2011). Conversely, quantifying the input from 

sources a long distance away from the reference location (external to the local system) is 

extremely challenging due to the persistence of plastics in the environment, and the ability of 

plastics to be moved great distances. For some plastic items, barcodes or foreign labels (e.g. Topçu 

et al., 2013; Duhec et al., 2015; Smith et al., 2018) might be able to identify the manufacturer or 

the country of sale for the product, but rarely can they identify the location of its use and disposal. 

Another complication is that the number of objects with labels or barcodes remaining intact and 

readable at a clean-up site is often low (as seen in Duhec et al., 2015; Smith et al., 2018). These 

challenges could be especially prominent in areas with high volume international shipping, or 

areas adjacent to large urban developments. Using hydrodynamic models can overcome these 

limitations because they mathematically predict the movements of the ocean, from which we can 

predict the movement of submerged and floating objects and thus identify source and sink areas 

(Lebreton et al., 2012). However, using modelling alone, in the absence of field data, is 

problematic because model-derived predictions of dispersal or accumulation can be sensitive to 

the parameters used in the model (Chapter 2), many of which cannot be easily measured in natural 

systems. 

There are two ways to understand sources through using a hydrodynamic modelling 

approach: 1) hindcast modelling with reverse dispersal (e.g. Isobe et al., 2009; Reisser et al., 2013); 

or 2) forecast modelling with an advection-dispersion approach (Lebreton et al., 2012). There are 

advantages and disadvantages to both approaches. With hindcast modelling it is possible to 

predict the source candidates of a known sink location through backward-in-time models (Reisser 

et al., 2013). However, the further back in time the model is run, the larger the prediction error 

becomes, and so the confidence that the source is correctly identified is reduced. The “gold 

standard” method is to run subsequent forward models to narrow down the source candidates, 

and enable identification of a more precise source (e.g. Isobe et al., 2009; Kako et al., 2011) but 

this process has not been achieved at a resolution adequate for local management action, nor has 

it been applied to microplastic pollution (Hardesty et al., 2017). It is also the case that some 

hydrodynamic models do not have the capacity to hindcast, as the mathematics are complex. 

Application of hindcast modelling also requires knowing the arrival time of the objects at the sink 

location (Griffin et al., 2016), information that is rarely available for marine plastic debris. Forward 
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modelling is the alternative approach wherein, if the possible source locations are known, a 

particle tracking scheme (e.g. Lagrangian) can be used to predict the sinks for plastics from those 

source locations (e.g. Griffin et al., 2016). This method is advantageous because the user can 

accurately parameterise horizontal mixing of the water due to turbulence (essentially a random 

process) (Andutta et al., 2013; Mao and Ridd, 2015). However, the disadvantage of the forecasting 

approach is that it requires simulation of plastic dispersal from all potential sources, and 

simulation under the environmental conditions specifically relevant to the likely arrival times of 

the plastic debris. As weather conditions have a large influence on the movement and 

accumulation of plastic pollution (Storrier et al., 2007), different plastic accumulation patterns are 

frequently observed in different seasons (as seen in Chapter 3), and among different locations 

depending on exposure to prevailing wind and swell (Storrier et al., 2007; Critchell et al., 2015).  

Plastics found in the marine environment are generally from either local land-based or 

marine sources. Land-based sources include urban rivers and storm drains (Castañeda et al., 2014; 

Eerkes-Medrano et al., 2015; Cable et al., 2017), or beaches (Claereboudt, 2004), while marine 

sources include shipping or fishing actives (Chen and Liu, 2013; Bilkovic et al., 2014), or simply the 

‘stock’ of plastic now present in our global oceans (Dameron et al., 2007; Carson et al., 2013). 

Understanding the dominant source supplying plastic debris to a location can inform management 

decisions because the knowledge can aid priority setting, such as actions to reduce local inputs if 

local sources are dominant, or by cleaning beaches to maintain ecosystem services if external 

sources are dominant, while initiating collaborations with external agencies to reduce inputs at 

the source. However, identification of sources and sinks of plastics is complicated by the physical 

geography of the local area, and the influence this has on the processes driving the accumulation 

at specific sites. For instance, sites with complex topography are likely to have higher variability in 

accumulation, and in plastic retention, due to small-scale water movements (Daigle et al., 2014) 

and the blocking influence of coastal features. Therefore, it may be more difficult to model the 

accumulation of plastics at a complex site than at sites with relatively simple hydrodynamic and 

coastal features (Ballent et al., 2013). The surrounding physical geographic features can also 

influence the supply of plastics to a site. For example, it is possible that blocking features, such as 

islands, can create a “supply shadow” in the downstream locations. Finally, if plastics have become 

ubiquitous in the marine environment it is also possible that using only point-source locations are 

no longer appropriate for understanding plastic accumulation in local areas. Resolving the relative 

effects of source location, local topography, and seasonal effects requires hydrodynamic 

simulation experiments exploring each of these factors.  
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In this chapter I will use field data to interrogate the SLIM plastics hydrodynamic model 

(Chapter 2) to deduce the most likely source (local or external) of the plastic accumulating on 

beaches in the Whitsunday region (Chapter 1, Section 4), and to better understand the processes 

influencing plastic accumulation. I also aim to enhance our ability to accurately represent this 

accumulation with a fine-scale hydrodynamic model. I will do this by comparing field-collected 

micro- and macroplastic data to predictions of plastic accumulation on beaches given dispersal 

from specific source locations, dispersal from a diffuse source, and dispersal under specific 

weather conditions. I treated macro- and microdebris separately in both the model predictions 

and field data because the processes that drive dispersal and accumulation of these types of debris 

are different (Isobe et al., 2014). The results generated in this chapter will improve our 

understanding of the physical processes that dictate plastic accumulation in the coastal zone, 

advance our use of hydrodynamic models to predict accumulation hotspots, and improve our 

ability to provide an empirical basis for management action.  

 

4.2 Methods 

4.2.2 Overview of approach 

To achieve the aims of this chapter required robust field data quantifying plastic 

accumulation at specific locations within the Whitsundays region. For macroplastics, I used an 

existing dataset collected by Eco Barge Clean Seas Inc. (see section 4.2.5 below). For microplastics, 

I collected and analysed beach sediment samples from 18 locations around the Whitsunday’s 

region during August 2016 (see section 4.2.4 below). To select sites for microplastic sampling, I 

first used a hydrodynamic model to simulate dispersal and generate predictions of the spatial 

distribution of microplastics. I then used the model’s outputs to identify potential areas of high 

microplastic accumulation (hotspots) versus low accumulation (coldspots), and I subsequently 

collected sediment samples from those locations. To identify the most likely sources of these 

plastic types, I then compared model predictions of macroplastic and microplastic accumulation 

from land-based versus marine sources with the field data, with the assumption that the model 

predictions that provided a better fit with the field data would be generated from the more likely 

source. These comparisons were made in two phases. First, I tested whether the model correctly 

predicted the location of hotspots and coldspots, and second I tested the correlation between the 

measured and predicted numbers of plastics which accumulated at each location. To understand 

the processes driving accumulation, I compared the field data to predicted accumulation from 
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model scenarios using different weather conditions and, additionally, under dispersal from a 

diffuse source. This final source scenario was included in order to determine if using point sources 

was effective for modelling local plastic pollution distribution, and to assess the effect of site 

exposure on plastic accumulation.  

4.2.3 Modelling scenarios 

I used the version of the SLIM model presented in Chapter 2, which incorporates the physical 

processes affecting plastic dispersal, including beaching, re-floating from the coast, settling to the 

bottom, as well as degrading from macro- to microplastics. These parameters may be important 

since each influences the transport and accumulation of plastic particles in the marine 

environment (Zhang, 2017; Chapter 2). In the model, simulated plastics have two states: 1) 

macroplastics which are assumed to be moved by the vector sum of the wind and currents; and 

2) microplastics which are assumed to drift as neutrally buoyant objects, moving with the currents 

only.  

The field samples I collected for microplastics represent the net microplastic accumulation (input 

minus losses) over an unknown time period, and therefore over unknown environmental 

conditions. To assess how variation in environmental conditions potentially affects microplastic 

accumulation in the time leading up to the field sampling, I generated four sets of plastic (macro- 

and micro-) accumulation predictions using forcing climate data for four different 45 day time 

periods, in February, March, June and August (Table 4.1). Forcing climate data included wind 

speed and direction and sea surface elevation input data (as per Chapter 2). As the sampling 

events for macroplastic quantification occurred sporadically (see section 4.2.5 below), the use of 

these time periods enabled me to compare the field data with a set of typical conditions 

experienced in the region.  

I used the same model inputs and parameters as the model described in Chapter 3, where 

simulated plastics were released from locations that were the most likely to be sources of plastic 

pollution in the Whitsunday Region, e.g. river mouths, tourist beaches and shipping lanes (Chapter 

3; Figure 4.1). To tease apart the importance of the dominant plastic sources of the Whitsunday 

region, the particles originating from each point source were pooled into land-based (local) 

sources and marine (external) sources. I note that particles from these two broad sources are 

either within (local sources) or outside (external sources) the control of the local municipality. 

As shown in Chapter 2, model predictions are strongly influenced by source location and, 

therefore, the role of other model processes can only be determined if the ‘source effect’ is 
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removed. To assess the influence of exposure of sites to prevailing winds and waves on plastic 

accumulation, I ran an additional scenario with a uniform source (the grid scenario, Table 4.1), 

where particles originated at each vertex of a 10 x 10 km grid and predictions of accumulation at 

each site were pooled across the entire grid to give one site-specific accumulation value per 

simulation day.  

As described in Chapter 3, I set some parameters in the model to constant values. I imposed a 

constant wind shadow in the lee of the islands of 2500 m because implementing a variable wind 

shadow would require coupling a wind field model to the SLIM model. In reality, the size of the 

wind shadow would change with the size and shape of the land mass causing it (Myksvoll et al., 

2012). However, in the context of my study a constant wind shadow was acceptable because 

model predictions are not strongly affected by the length of the wind shadow (parameter ranked 

8.75 out of 15 see Chapter 2). The model was also forced with a standard M2 tide inflow and 

forcing from the Coral Sea; both are idealised but have been successfully used in previous studies 

to provide an acceptable representation of water movements (Hamann et al., 2011; Andutta et 

al., 2013; Critchell et al., 2015). The scenarios were run for 45 days, this allowed the particles to 

be well mixed while remaining within the study area, as the majority of particles have left the 

domain after this time. The parameter estimates used in each of the scenarios are presented in 

Table 4.1. 

The model generated outputs for each of six particle categories, three each for macro- and 

microplastics. The three categories were: 1) beached particles, 2) suspended particles, and 3) 

settled particles. The modelled results for beached particles are the most appropriate to compare 

with the field data collected from beaches so only the model outputs for the beached particles 

are considered in this chapter. For each scenario the model gives a daily value of particles 

throughout the entire study area. I extracted the particles present at each site using an automated 

script of my design which counts the particles of all types within a user-defined box that represents 

the site for each day of the simulations (Appendix 1). The number of particles of each type present 

at each site was then transformed for comparison to the field data (described below for simulated 

macro- and microplastics). 
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Figure 4.1: Map showing the study area. Top panel shows the seeding locations used in the scenarios (black circles), 
the rivers (grey lines) and the catchment (green hues). The bottom panel shows the seeding locations used for the grid 
scenario. 
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Table 4.7: table of scenarios of modelled plastic movements. Columns show the values of each parameter used in each scenario and sources for these parameter estimates are described in Chapter 2.  
* shows the scenarios used in prioritising field sites. 

Scenario 
Name 

source 
location 

Forcing 
data 
start 
date 

Length 
(days) 

Wind 
shadow 
length 
(m) 

Number of 
seeding 
locations 

Particles 
per 
seeding 
location 

Degradation 
on land  
(% per day) 

Degradation 
at sea 
(% per day) 

Resuspension 
probability 
(% per day) 

Justification 

February* Land Feb-2014 45  2500 21 10,000 0.00001 0.000001 0.2 First simulation used to choose 
field sites (Figure 4.1A) 

Marine Feb-2014 45  2500 20 10,000 0.00001 0.000001 0.2 First simulation used to choose 
field sites (Figure 4.1A) 

March* Land Mar-
2016 

45 2500 21 10,000 0.00001 0.000001 0.2 Forcing data 5 months prior the 
microplastics field campaign   

Marine Mar-
2016 

45 2500 20 10,000 0.00001 0.000001 0.2 Forcing data 5 months prior the 
microplastics field campaign   

June* Land Jun- 
2016 

45 2500 21 10,000 0.00001 0.000001 0.2 Forcing data 2 months prior to 
the microplastics field campaign   

Marine Jun- 
2016 

45 2500 20 10,000 0.00001 0.000001 0.2 Forcing data 2 months prior to 
the microplastics field sampling   

August Land Jul- 2016 45 2500 21 10,000 0.00001 0.000001 0.2 Forcing data before and during 
the microplastics field sampling   

Marine Jul- 2016 45 2500 20 10,000 0.00001 0.000001 0.2 Forcing data before and during 
the microplastics field sampling   

Grid Uniform 
grid 
macros 

Jul- 2016 45 2500 117 10,000 NA NA 0.2 Uniform distribution to better 
understand the driving 
processes for macroplastics 
(Figure 4.1B) 

Grid Uniform 
grid 
micros 

Jul- 2016 45 2500 117 10,000 NA NA 0.2 Uniform distribution to better 
understand the driving 
processes for microplastics 
(Figure 4.1B) 
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4.2.4 Microplastics field data 

Site selection 

The selection of field sites was based on the combination of three modelled scenarios 

incorporating a variety of weather conditions (denoted by * in Table 4.1). Using the output of the 

last day of the modelled scenarios, the locations of the simulated beached plastics were used to 

identify beaches most likely to accumulate plastic particles (hotspots) and the most likely to be 

clean (coldspots). To assess the model predictions of accumulation, all beaches in the study area 

were categorised into nil, very low, low, medium and high accumulation categories based on the 

spread of data for the individual scenario, using the “natural jenks” function in ArcGIS (ESRI, 10.2). 

Hotspots were chosen as locations with medium to high predicted accumulation in at least one of 

the three scenarios. Coldspots were chosen as locations with nil to very low (deemed insignificant) 

predicted accumulation in all scenarios, and were in relatively close proximity to the hotspot sites 

to minimise travel time between sites during field work (see Figure 4.2). Originally, I chose 20 sites 

for field data collection. Two sites, one hotspot and one coldspot, had to be abandoned due to 

weather and logistical difficulties.  

Sample collection techniques 

At every beach site I collected three replicate samples from three locations (nine samples per 

beach) along the highest high tide mark. The sampling locations were 100 meters apart or 

approximately equidistant for smaller beaches. The replicate samples were taken within 1 m 

square at each of the three locations. Depending on beach type, the sediment samples were either 

collected in a 25x25x2 cm quadrat (~0.00125 m3), or a core sample of 8 cm in depth and diameter 

(~0.0004 m3). The priority was given to the core samples because they provided a more consistent 

volume of sediment whereas, using quadrats, I found it difficult to collect a consistent depth (and 

therefore volume) of sediment. However, if the bedrock was close to the surface and the core was 

impossible (3 out of 18 sites), three replicate quadrats were taken at each sample location along 

the highest high tide mark (total samples N = 162). 
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Figure 4.2: Map showing the predicted accumulation for each scenario used in the field site selection. Sites selected for 
field sampling (black circles) were based on these three sets of simulations (Feb, March, and June). Hotspots had 
“medium” to “high” predicted accumulation in at least one set of simulations, and coldspots had zero to “very low” 
predicted accumulation in all three sets of simulations.  
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Processing sediment samples 

To quantify the microplastics in the sediment samples, I processed the sediment using a method 

modified from Claessens et al., (2013). The samples were first run though the elutriation column 

(or fluidised sand bath) for 15 minutes using a flow rate of approximately 300 L hour-1 (Claessens 

et al., 2013). The lowest density particles from within the sample were collected in a 36 µm sieve 

under the outflow of the elutriation column. These were then transferred to a beaker via washing 

of the sieve with salt water. The low density particles from the elutriation column, containing the 

vast majority of the plastics from the sample (Claessens et al., 2013), was further separated by 

suspending the sample in concentrated potassium and sodium chloride solution (density at least 

1.8 g cm-3) and leaving it to settle. The buoyant particles were siphoned off and filtered onto glass-

fibre filter papers. This high-density fluid separation process was repeated three times to ensure 

maximum plastic removal from samples. Depending on sediment sample type, the number of filter 

papers varied (from four to 18 used for one sample). Samples that had high silt or mud content 

required a smaller volume of the suspension to be filtered on to each filter paper to ensure 

accurate plastic identification (i.e., the sample required more filter papers). At two of the sites 

(Saba Bay and Hazelwood Island - South East site), the highest high tide line was dominated by 

pumice stone. The density separation technique was not appropriate for these samples because 

pumice stone is less dense than plastics. For these samples, manual sorting was the only viable 

option. I sieved the samples into >5 mm, 5-2 mm, and 2-1 mm portions, the larger size classes 

were sorted by eye and the smallest size class was sorted under the dissecting microscope. The 

size class <1 mm was processed using the high density fluid stage described above.  

I visually inspected the filter papers using a dissecting microscope set to 1.5 x magnification, only 

increasing the magnification to clarify the categorisation of a particle. I used this method to limit 

the minimum size of particles that I was categorising (~250 µm). All plastics were identified by eye 

in a conservative manner: if there was any doubt as to the particles material nature it was not 

counted as plastic, this likely resulted in an under-estimation of the microplastic abundance. 

Results, therefore, are likely to underestimate the total number of microplastics present at each 

site but still enable comparison of the relative abundances of microplastics among sites. All 

samples were retained for analysis by Fourier transform infrared spectroscopy at a later stage to 

confirm their identity. I sub-sampled the counting and counted the odd numbered filter papers, 

making at least half of the filter papers of each sample, as a subsample e.g. 9 out of 18 (papers 

numbered 1,3,5, etc.). Plastic counts per sample was calculated to provide an estimate of total 

microplastic abundance per cm3 of sediment on each beach. From these data, the observed 

accumulation category of each site was created. Observed microplastic ‘hotspots’ were defined 
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as sites with above the median observed accumulation and observed microplastic ‘coldspots’ were 

defined as sites with observed accumulation below the median value. 

4.2.5 Macroplastics field data 

I obtained macroplastic data from the Australian Marine Debris Initiative (AMDI) database 

(https://www.tangaroablue.org/database.html). The AMDI database stores counts of debris items 

in categories based on the material that the debris item is made of and its use. I accessed data for 

the Whitsundays region which was primarily collected and entered by a local NGO, EcoBarge using 

the AMDI method (https://www.tangaroablue.org/resources/how-to-manual.html). The raw data 

consisted of many types of marine debris, including wood and metal items that would disperse 

differently in the marine environment compared to plastic pollution. To ensure the data were 

suitable for comparison to the model outputs, I extracted object categories that are likely to 

behave similarly to the simulated plastics in my model. My chosen AMDI categories were: “Bleach 

and cleaner bottles”, “bleach bottle (KKK type)”, “lids & tops, pump spray, flow restrictor and 

similar”, “pens markers and other plastic stationary”, “plastic bits and pieces, hard and similar”, 

“plastics drinks bottles (water, juice, milk, soft drink)”, “toothbrushes, brushes and combs, hair 

ties, etc.” . I chose these categories, as they are regularly found on the beaches of the Whitsunday 

region and easily identified by volunteers. 

The macroplastic data still had inconsistencies that confounded direct quantitative comparison to 

the modelling outputs. As clean-up trips by volunteers happen sporadically, based on weather and 

availability of boats and volunteers, there were very few clean-up trips conducted at times 

consistent with the weather conditions used in the models. The diverse range of weather patterns 

occurring before the clean-up events makes comparing these data to the fairly specific conditions 

represented in the model difficult. To overcome this limitation I used repeat visits to the same 

location to calculate the accumulation rate at each beach. The number of plastics collected for 

each visit was divided by the number of weeks lapsed between visits, with the data from the first 

visit disregarded as it was considered an “initial clean” of plastics that had accumulated over an 

unknown time period. Data collected at subsequent visits were taken to be the plastics 

accumulated since the previous visit and an average accumulation rate calculated for each site. In 

addition, the nature of this citizen science data meant only “hotspot” beaches were sampled, as 

typically volunteer groups will only go to beaches with a large amount of debris to increase debris 

removal per unit effort. Data from sites with fewer than three visits were not analysed, 

consequently only eight sites fit the criterion of this study and could be used to perform the 

comparison to the model outputs.  
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4.2.6 Comparison of model outputs to the field data 

I used a two-step process to compare the field data to the model predictions. First, I assessed 

whether the model predictions under each scenario correctly categorised the site as a hotspot or 

a coldspot based on the field data. To compare the microplastic field data to the scenarios the 

sites were categorised based on the median predicted daily accumulation value, those above the 

median were classed as hotspots and those below were coldspots. This was to ensure each 

scenario had nine hot and coldspots for consistency between scenarios. For the macroplastic data, 

I compared the observed accumulation rate with the model predictions of the weekly 

accumulation rate, i.e. the mean number of simulated plastics accumulated per week of the 45-

day simulation. As all field data were assumed to be from hotspot sites, I used a threshold value 

of 40 particles per week to classify sites in each scenario into predicted hotspots or coldspots. The 

threshold of 40 particles per week was chosen as a representative high value of accumulation as 

determined from the range of accumulation values predicted from all the simulations.  

The second step was to compare the predicted and observed values of accumulation. The 

predicted accumulation in microplastic scenarios was the median daily accumulation value across 

the 45 day simulation and the observed microplastic accumulation was total (per beach) plastics 

per cm3 from the field samples. To compare the macroplastic accumulation, I used the weekly 

observed accumulation rate and the predicted weekly accumulation rate calculated from the 

model outputs for each scenario. I conducted Pearson’s correlation analysis to compare the fit of 

the observed and predicted values for each scenario, with the assumption that the better the fit 

the more likely the scenario was representative of nature. 

4.2.7 Site specific processes 

Exposure to the wind/wind driven waves is often cited as the main cause for accumulation of 

plastics (Storrier et al., 2007; Critchell et al., 2015), however, waves are not currently included in 

the SLIM system. To do so would require coupling with a wave model, which is outside the scope 

of this thesis due to the difficulties coupling the two models in the core code of SLIM. Exposure at 

each site is different based on orientation to the dominant wind direction, and the fetch. These 

site-specific processes, not included in the model, could influence accumulation of plastic debris 

on the surveyed beaches, and lead to a lack of agreement between model predictions and 

observed data. To understand whether exposed or sheltered sites were more reliably predicted 

to be hotspots or coldspots, prediction success was compared to the degree of wave exposure of 

each site (see ‘Relative Exposure Index’ below). To assess whether exposure influenced plastic 

accumulation, the observed accumulation was also compared to the exposure. The influence of 
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bay shape and the orientation of the site were also qualitatively compared with the observed 

accumulation and predictability to understand the influence of these factors. The prediction 

success metric was calculated as the proportion of scenarios that correctly categorised a site as a 

hotspot or coldspot.  

4.2.8 Relative Exposure Index 

To understand the role of exposure in plastic accumulation, I calculated the Relative Exposure 

Index (REI) for each site and compared this metric to the observed accumulation of both macro-

and microplastics. REI is a standard measure of the exposure a location has to wave energy, based 

on the directional frequency of the wind and the fetch distance. Exposed sites (i.e. those that have 

long fetch distance in the direction of the dominant wind) have a high REI score and sheltered 

sites (i.e. those with a value of zero fetch distance in the direction of the dominant wind) have a 

small REI value. I calculated REI using the Generic Relative Exposure Model (GREMO) (Pepper and 

Puotinen, 2009). The method is as follows: at each site, a set of 16 radiating lines were drawn out 

to 650 km, beyond this waves are considered unlimited by fetch. The radiating lines were clipped 

to the closest wave blocking obstacle, and this becomes the fetch distance along the radial 

direction. The wind speed and direction were used to calculate the directional wind frequency 

along each radial direction. The exposure is the sum of these values. 

𝑅𝑅𝑅𝑅𝑅𝑅 =  �(𝑉𝑉 × 𝑃𝑃𝑖𝑖  × 𝐹𝐹𝑖𝑖)
16

𝑖𝑖=1

 

Equation 4.1 

Where i is the ith compass heading, V is the mean wind velocity, Pi is the frequency that the wind 

blows from the ith direction (%) and Fi is the length of the fetch line after clipping to the closest 

obstacle. For this analysis I used all available wind data (Jan 2010 to Sept 2016) which 

encompasses the modelling scenarios used here but also captures the average wind speed and 

direction of the region.   
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4.3 Results 

4.3.2 Microplastics Field data overview 

 I found microplastics at every field site (Figure 4.3). The maximum number found in one 

sediment sample from Saba Bay was 907 plastic particles in 509 cm3 of sediment. The smallest 

number of microplastics found was at Cape Conway where I found one plastic particle in one of 

the nine sediment samples. Consequently, the range in average microplastic density across sites 

varied from 0.002 to 1.78 plastics per cm3 sediment. Within a site, however, the range in 

microplastic density was also large, with an average range across nine samples of 0.27 plastics per 

cm3 of sediment, and a maximum range across nine samples of 1.66 plastics per cm3 of sediment 

at Saba Bay (coefficient of variation = 2.53). The size range of plastics was 0.5 mm (lower limit) to 

objects larger than 10 cm.  
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Figure 4.3: Number of plastics found at each of the sampling sites (top panel). Data presented in the bottom panel are 
the number of plastic particles per sample - boxplots present the median mid-line of the boxes, the 25th and 75th 
percentile (box limits) and the vertical lines represent the range.  
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4.3.3 Macroplastics field data overview 

Macroplastic debris loads, and accumulation rates, were highly variable among sites. The 

maximum number of total items removed from a site in one visit was 17,000 items (Saba Bay) 

compared with the minimum number of 56 items removed from Hamilton Island (South End of 

Runway; Figure 4.4). Accumulation rates were also highly variable among sites, ranging from 3 

items per week at Pine Bay to 725 items per week at Turtle Bay. There was no strong spatial 

pattern to macroplastic loads with high values observed on both land-facing and ocean-facing 

beaches (e.g., Whitsunday Is.; Saba Bay; Figure 4.4).  

 

Figure 4.4: Mean debris loads from all collection visits to macroplastic debris removal sites. The mean debris load is 
depicted by the size of the red circle. 

 

4.3.4 Source of the plastic to the region 

Microplastics 

It would be expected that the scenarios using wind data closest to the field sampling (June 

or August scenarios) would most closely match the field data, however, simulations implemented 

using different seasonal winds suggest that there are different sources of plastics arriving in 

different seasons (Figure 4.5). Using February winds, sites were most accurately predicted as 



  Chapter 4: Field data to interrogate the model 

91 
 

hotspots and coldspots in simulations that included only marine sources (67% of sites accurately 

categorised, Figure 4.5). Plus, when examining the dispersal plumes from the marine and land-

based source locations after the 45 day simulation (Figure 4.6), it can be seen that very few 

particles from the land-based sources reach the northern and eastern islands during the period of 

simulation. Conversely, very few of the particles from marine sources reach the mainland during 

this same simulation. In the February set of simulations, model predictions based on particles from 

the combined sources fit poorly with the observed data (Pearsons R2 = 0.24, p-value = 0.038, 56% 

prediction accuracy Figure 4.5). However, when the scenario was split into marine and land-based 

sources, the fit between the observed and predicted accumulation was improved for the marine 

source component of the model (Pearsons R2 = 0.56, p-value = 0.00037, Figure 4.6). It is therefore 

unlikely that land-based sources supply microplastics to the field collection sites under the 

conditions experienced in February.  

In contrast, simulations using August and March winds better predicted hotspots and 

coldspots using only plastics derived from land-based sources (56 – 67% of sites accurately 

categorised, Figure 4.5). Moreover, using winds from June, combining both land-based and marine 

sources categorised the most sites correctly (56% of sites correct, Figure 4.5). Although prediction 

success was generally low (maximum of 67% sites correct), the categorisation of hotspots and 

coldspots was more accurate than the prediction of the actual values of plastics present at each 

site (Figure 4.6). The accumulation correlations for only the February scenario are shown in Figure 

4.6, the accumulation correlation graphics and statistics for the other scenarios can be found in 

Appendix 2: these have lower correlation values for all scenarios. 



92 
 

 

Figure 4.5: The number of sites correctly categorised by each scenario. For each of the scenarios, the sites were re-
categorised based on the median predicted accumulation value for that scenario. Higher than the median values were 
designated “predicted hotspots” and lower than the median values were classified to be “predicted coldspots”. 
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Figure 4.6: Particle distributions for microplastics from land-based and marine sources during the February scenario. 
The left panel shows the plumes of the two broad source locations at the end of the February 45 day scenario, for 
microplastics. The right panel shows the fit of the observed and predicted accumulation values at the field sites, the y 
axis error bars represent the standard error and the x axis error bars show the 25th and 75th quartiles of the daily 
predicted accumulation values through the simulation. 
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Macroplastics 

Among all the scenarios (Table 4.1), the original scenario categorised the most sites correctly with 

all nine sites correctly categorised as macroplastic hotspots. Unlike the microplastics model, in all 

macroplastic scenarios the combined source model (pooling both land-based and marine sources) 

performed at least as well as models separating land and marine sources (Figure 4.7). For the 

macroplastic data, there was no scenario in which predictions based solely on marine-based 

sources had the highest hotspot/coldspot prediction success. 

 

Figure 4.7: The number of sites correctly predicted in each scenario. 

 

The predicted accumulation values for individual sources did not correlate with the observed 

accumulation (Figure 4.8), and did not perform better than the combined-source model (Appendix 

2). In comparison to the microplastics model for February (Figure 4.6), the dispersal plume of 

marine sources for macroplastics is not so effectively blocked by the islands, as the dominant 

movement process is driven by the wind. Therefore, the coastal sites receive simulated 

macroplastics from the marine sources (Figure 4.8), and the macroplastics from land-based 

sources are more likely to beach on the coastal locations (Figure 4.8) than the microplastics (Figure 

4.6). Indeed, in this scenario, macroplastics from land-based sources were unable to disperse to 

sites >20 km away from the mainland (Figure 4.8). 
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Figure 4.8:  Particle distributions for macroplastics from land-based and marine sources for the February scenario. The 
left panel shows the plumes of the two general source locations at the end of the February scenario, for macroplastics. 
The right panel shows fit of the observed and predicted accumulation values at the field sites. 
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4.3.5 Non-source parameters 

To explore how processes other than source location influence plastic accumulation, I changed 

the source locations from point source type seeding of the land-based and marine sources to a 

grid of uniform seeding locations representing a ubiquitous load of plastic occurring across the 

whole study area (Table 4.1; Figure 4.9A). The microplastic accumulation areas predicted by the 

grid seeding scenario correctly categorised 12 of the 18 field data sites as either hotspots or 

coldspots (66.7% prediction success), and improved the fit between the observed and predicted 

accumulation values, but still did not result in a statistically significant correlation between 

predicted and observed accumulation (Pearsons R2 = 0.03, p-value = 0.49, Figure 4.9B).  

Using the same process as for the microplastics, I used the grid seeding scenario to explore the 

dominant process for macroplastics. The grid seeding for macroplastics correctly categorised six 

of the nine sites (66.7% prediction success). However, the relationship was not as strong as for 

microplastics. The predicted accumulation values for both macro- and microplastics from the grid 

scenario do not correlate well with the field data and many sites have predicted accumulation 

values of zero (Figure 4.9C).  
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Figure 4.9: Details of the grid seeding scenario: A) seeding locations used in this scenario, B) scatter plot showing the 
observed and predicted accumulation values of the microplastic scenario, and C) scatter plot of the observed and 
predicted accumulation per week of macroplastic scenario. In both scatter plots the y axis error bars represent the 
standard error and the x axis error bars show the 25th and 75th quartiles of the daily predicted accumulation values 
through the simulation. 

 
 

4.3.6 Characteristics of sites that influence prediction success for plastic accumulation 

The sites that the model most often predicted correctly to be microplastic hotspots or coldspots 

were; Pioneer Bay (coldspot), Shute Harbour (hotspot), and Saba Bay (hotspot), which were all 

correctly categorised in 8 of the 12 scenarios (66.7% success rate). Conversely, Ten Mile Beach 

was only predicted correctly by one scenario (Figure 4.10). The sites with a high rate of prediction 

success don’t share any obvious physical characteristics, for example, bay shape and coastline 

orientation are different for each site and there was no indication that proximity to the mainland 

influenced prediction success (Figure 4.10). The mean prediction success was below 50% for both 

open and closed bays (42.7% and 47.5%, respectively) as well as for east- (towards open ocean) 

and west- (towards the coast) facing sites (44.2% and 46.9%, respectively).  
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Figure 4.10: The predictability of each microplastic field site (i.e. the ability to categorise the site as hot or coldspot 
correctly). The top panel shows the number of times each site is correctly categorised in any scenario and bottom panel 
shows the geographic spread of predictive success. Insets show case studies of sites with various success rates. Success 
categories are coloured Blue (“Good”) to Red (“Very Poor”) scale shown in the legend and in the graph.  
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Prediction success was not correlated with REI (Pearsons R2 = 0.004, p-value = 0.791, Figure 4.11A). 

Neither was REI correlated with the number of microplastic particles found at the sites (Pearsons 

R2 = 0.024, p-value = 0.539, Figure 4.11B). 

 
Figure 4.11: The correlation between A) relative exposure index and the prediction success of each microplastic site, 
and B) the relative exposure index and the observed accumulation at each microplastic site. 

 

4.3.7 The site-specific processes that result in accumulation of macroplastics 

As with the microplastics, I assessed the number of times any scenario correctly predicted the 

observed accumulation category (hotspots only). The sites most often predicted correctly were; 

Saba Bay (91.7% prediction success), Turtle Bay and Runway (both 66.7% prediction success). 

Conversely, Border Island was only correctly categorised in two of the 12 scenarios (Figure 4.12). 

As for microplastics, the sites with high success do not seem to share physical characteristics, such 

as shape and orientation. 
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Figure 4.12: Prediction success of macroplastic sites, bar graph shows the number of times each site is correctly 
categorised in any scenario. The map shows the geographic spread of predictive success. Success categories are 
coloured Blue (“Good”) to Red (“Very Poor”) scale shown in the legend and in the graph.  

  

0

2

4

6

8

10

12
N

um
be

r o
f s

ce
na

rio
s 

co
rre

ct
ly

 c
at

eg
or

is
ed

Site name



  Chapter 4: Field data to interrogate the model 

101 
 

To explore the role of exposure in the accumulation at each site, I compared the relative exposure 

index (REI) with the prediction success of each site and the observed accumulation per week at 

each site (Figure 4.13). There was no significant correlation with the prediction success (Pearsons 

R2 = 0.0388, p-value = 0.611). While sites that had higher REI values generally have higher observed 

accumulation values, this relationship was not statistically significant, most likely due to small 

sample size in the field data (Pearsons R2 = 0.32, p-value = 0.112). This warrants further study. 

 
Figure 4.13: The correlation between A) relative exposure index and the prediction success of each macroplastic site, 
and B) the relative exposure index and the observed accumulation at each macroplastic site. 
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4.4 Discussion 

In this chapter I used field data to interrogate the SLIM plastics hydrodynamic model to 

better understand the processes controlling the dispersal and accumulation of plastic pollution. I 

found that the most likely sources of the plastic accumulating on beaches around the region are 

different for macro- and microplastics, and that the dominant sources contributing plastic to local 

beaches differs among seasons. Depending on differences in seasonal winds, macro-plastics from 

land-based sources can be prevented from dispersing away from the mainland, and differences in 

seasonal currents prevented microplastics from land-based sources from reaching certain sites on 

offshore islands. In contrast, the presence of offshore islands blocked the dispersal of both micro- 

and macroplastics from marine sources, with plastics from these sources rarely reaching the 

leeward (mainland-facing) side of these islands. Nevertheless, observed spatial patterns of 

macroplastics accumulation rates, and microplastic abundances, diverged from model 

predictions. I found no strong evidence that differences between model predictions and field 

observations were driven by factors like distance from the mainland, beach orientation or bay 

shape but, for macroplastics, correct prediction of debris hotspots was positively (although not 

significantly) associated with the exposure of beaches. These results suggest that coupling a model 

for dynamics of wind-driven waves with the SLIM system could be useful. However, 

hotspot/coldspot prediction success also depended on seasonal winds which indicates that 

knowing the timing of arrival of particles on beaches (and/or timing of release of particle from 

sources) is important for accurately predicting plastic dispersal pathways. Thus, obtaining data on 

the arrival and persistence of micro- and macroplastics at beaches, while challenging to collect, 

would almost certainly improve the statistical power of future modelling exercises. 

Source is one of the most important parameters to understand when attempting to model 

plastic pollution at a small scale in coastal environments (see Chapter 2). Macroplastics degrade 

slowly in seawater (Andrady, 2011), and are released into the environment in a similar state to 

the state that they are found on the beach. Indeed, Carson et al., (2013) used drifters to 

demonstrate that 23% percent of plastics released from local rivers in the Hawaiian island of Hilo 

were found on local beaches. Interestingly, the authors also found low agreement between the 

modelling outputs and the field data, and stressed the importance of nearshore tidal dynamics in 

modelling debris in the coastal zone. In Australia, Reisser et al., (2013) conducted a study using 

field data and known sources and concluded that microplastics on the east coast of Australia are 

derived from local sources. However, the samples were collected off the coast adjacent to major 

cities rather than in more remote areas with a relatively low population density such as occurs in 

my study area. Quantifying specific sources for the micro- and macroplastic beaching in the 
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Whitsundays region is a new challenge. My data indicate there is a correlation between 

accumulation and exposure for macroplastics, inferring the dispersal of macroplastics is 

influenced by wind speed and direction, and suggests a need to couple wind-driven waves into 

hydrodynamic models of plastic dispersal. In the Whitsundays region, there are two distinct wind 

seasons, the strong south-easterly trade wind season (corresponding to the seasonal winds used 

in my model predictions) and the monsoon season which is characterised by weaker more variable 

northerly winds (Wolanski et al., 1981, also see Figure 3.2). Given that the macroplastics data 

analysed in my study were collected in both of these wind seasons, and that my results show that 

prediction success for macroplastic hotspots depends on winds, future debris dispersal simulation 

should be conducted under a broader range of wind conditions. Moreover, the hotspots for 

macroplastic accumulation are likely to differ across seasons which could have implications for the 

timing and locations of beach clean-up or other mitigation efforts. 

Overall my data suggest that measuring the movement and accumulation of macroplastics 

and microplastics in the coastal zone are more complex that they first appear. Microplastics have 

been shown to be patchy in time and space (Reisser et al., 2013), and the physical location of 

accumulation varies at the timescale of season and day (Ryan et al., 2014; Hu et al., 2016). For 

example, buoyant macro- and microplastics have been shown to accumulate in convergence 

zones and fronts (Acha et al., 2003; Lima et al., 2015) and sampling efforts not considering, or 

measuring the presence of the fronts could under- or overestimate environmental plastic loads. 

At small spatial and temporal scales, the tides and wind both move convergence zones at a scale 

of hundreds of meters (or less) (Hu et al., 2016). Plastic polymers also have varying densities and 

this will also influence how the plastic object is transported (Chubarenko et al., 2018), however, 

the shape of the object can overcome this, for example, if an object is hollow or with air pockets 

the buoyancy of the object as a whole will be different again. All these sources of variability would 

reduce the capacity to accurately predict the accumulation of plastics in the ocean and on 

beaches. 

Although wind is clearly important, the lack of a strong relationship between 

accumulation areas with exposure to wind indicates there are other attributes that were not 

included in the exposure model framework. The field data for the microplastics represent the net 

accumulation of plastic waste over an unknown period of time and, for the macroplastics, the field 

data at each site represents the net accumulation over different time periods. Therefore, the 

observed plastics accumulated during unknown and variable winds and currents that are likely a 

result of a mix of environmental conditions potentially not displayed in the model. A more specific 

test of the model predictions would require forward modelling of dispersal from specific source 
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locations (as conducted in this study) combined with satellite tracked drifters released from those 

same locations and I suggest that such an approach could enable more specific refinements of 

hydrodynamic models that aim to predict plastic dispersal. It is also possible that there are missing 

source locations in this study, such as unknown offshore sources, reducing the ability of the model 

to accurately reproduce observed accumulation. Parameter values calculated from field data or 

experiments alongside more field data would be necessary to understand these additional factors. 

Given the unknown timeframes the plastics accumulated on the beaches, I also suggest collecting 

specific macroplastic data at the same time and location as the microplastic samples, or to design 

an experimental setup to trap microplastics as they wash ashore, or are moved along a beach to 

give more accurate data on their arrival and departure from the beaches. It is also likely that 

collecting a time series of field data across many wind and wave scenarios would lead to a more 

robust model analysis. Future studies should consider assessing all plastic types at each site that 

they visit, and through time. The timing of sampling has also been shown to be important (Smith 

and Markic, 2013), which should been taken into account during studies of this kind.  

A common theme in the results of this chapter is high variability, both in the plastic 

accumulation data and in the modelling results. In addition, it is likely that the plastics observed 

on the beach (both microplastics and macroplastics) represent accumulation since the last major 

weather event that could resuspend and export the plastics from the beach, back into the water 

column. The type of weather event that could export the plastics is different for macroplastics and 

microplastics. For example, buoyant macroplastics on the coastline are easily moved by waves 

and tides along shore and it is the strength of the offshore processes acting at the convergence 

point that dictate the export of buoyant macroplastics from the beach to the sea (Kataoka et al., 

2015; Hinata et al., 2017). These buoyant objects have high upward velocity, however, 

microplastics have very low upward velocity due to their smaller size. Therefore, unless 

microplastics are buried in the sediment at a depth below the level waves have influence on the 

sediment mixing, the waves will move microplastics easily offshore and they are then generally 

exported from the near-shore area. This process was described by Jackson et al., (2014) for the 

eggs of horseshoe crabs in beach sediment, which would likely behave in a similar way to 

microplastics because they are less dense then the sediment they are trapped in. There have been 

other analysis of residence time on beaches, among them, the study by Hinata et al., (2017) 

regarding the residence time of microplastics on beaches derived from the residence time of 

macroplastics. The conclusion of the study is likely inaccurate, because the authors consider the 

upward velocity of microplastics to be equivalent to that of macroplastics. This is not the case, 

Stokes Law shows that as the diameter of a particle decreases the upward velocity decreases 
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(shown in Reisser et al., 2015). For microplastics the upward velocity would be negligible at the 

time-scale of a wave and would therefore be moved in a very passive way.  

Another aspect to consider is the physical attributes of the site that is accumulating 

plastics. There was no consistency in physical features of the sites found to have highest 

accumulation in the field data, for macroplastics or microplastics. Orientation and bay shape were 

expected to be important in predicting accumulation, however, these factors did not consistently 

influence macroplastic accumulation rates or microplastics abundances, nor did they affect the 

prediction success of plastic hotspots and coldspots. This may mean that many bay 

shape/orientation combinations will increase the likelihood of a site being an accumulation site 

but there were not enough examples of each in the data set available here to understand the 

patterns or draw significant statistical power from my results. Small topographic features may also 

influence the accumulation as they create localised sub-beach level convergence that would 

create patchy accumulation easily missed by the field sampling (Wolanski and Hamner, 1988; 

Kataoka et al., 2015). Similarly, on beaches the rates of sand accretion, deposition and sand grain 

size are not uniform along a single beach, and it is possible that small pockets of sand/plastic 

accretion occur in relation to beach specific factors such as beach shape (for example, the slope 

or presence of ridges), vegetation, tidal reach (Dawson and Smithers, 2010). More field sites and 

more samples per beach are necessary to understand these processes in more detail, or a 

comprehensive study of a single beach at a very fine spatial resolution. I also suggest separate 

models be developed for each plastic type, using parameter values specific to their type or object, 

such as the effect of wind-drift (e.g. Kako et al., 2010), as different objects and polymer densities 

can display very different transport behaviours. These plastic-type specific models could then be 

combined to understand the variability of specific types of plastic pollution as a whole in a 

particular area.  

There are some limitations to the study presented in this chapter. Firstly, the advection 

time (or integration time) has been found to be a very important factor in the modelling of 

dispersive objects (Mansui et al., 2015). All my simulation lengths were chosen to be comparable 

to one another, but if I had conducted simulations of different durations the results would have 

differed. The results of Mansui et al., (2015) show a marked difference in the model output after 

three months compared to one year. However, the results are not directly applicable to my study 

area, because the study of Mansui et al. was conducted at the scale of the whole Mediterranean 

Sea which is considered to be a semi-closed to closed system. The Whitsundays region of the Great 

Barrier Reef is much smaller and could be considered a semi-open system because water can flush 

though the study area in either direction. In future projects, multiple time scales should be 
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considered, by incorporating multiple release times throughout the simulation, and running the 

scenario for much longer periods to see if there is indeed convergence to a stable spatial 

distribution of macro- and microplastic particles. Another limitation of this study was in using the 

median value as the threshold when reclassifying the sites into hotspot and coldspots for both the 

observed and predicted accumulation. Using the median value may have resulted in 

misclassification of some sites. This is especially important in comparison to the method used to 

select hotspot and coldspot locations for field sampling. The original classification for coldspots 

was that the predicted accumulation had to be nil to very low; by using the median value to 

reclassify there may have been sites that were reclassified as coldspots that should have been 

hotspots as they had some accumulation, i.e. if I had used the nil to very low threshold, sites with 

some accumulation may have been classed as hotspots. A consensus in the literature on what 

constitutes a hotspot would be useful for future studies of this kind. The use of the median value 

for sites and datasets that have such high variability may also misrepresent the correlation of 

observed and predicted accumulation values. 

Overall, this chapter shows that microplastics and macroplastics should not be treated as 

equivalent in modelling or movement studies. The outlook for modelling microplastic dispersal 

and accumulation is promising and the SLIM performed well to consider the physical properties 

of dispersal. However, it is clear from my analysis that more field-based data on beached plastic 

is necessary to improve the correlations between modelled and field data and to train the model. 

That said, my results provide one of the first empirical studies to compare field and modelled data 

of both macro- and microplastics in a coastal environment. Collectively, my results improve our 

understanding of the sources and physical processes that dictate plastic accumulation in the 

coastal zone, and will ultimately improve our ability to predict accumulation hotspots through 

modelling and allow them to be used as an empirical base for municipal-scale management action. 

Understanding sources is important because management strategies will differ based on the 

source. If the source is local, the council can enact local interventions that have noticeable results 

on local habitats. However, if the source is external, the local council must coordinate efforts with 

other councils or the state to reduce inputs (Smith, et al., 2014). Finally, obtaining a strong 

correlation between observed and predicted data would be a strong benefit to management 

action and this chapter provides a framework for achieving that in the future. 

 



 

 
 

  

Chapter 5 
Effects of microplastic exposure on 

the body condition and behaviour of 
planktivorous reef fish 

(Acanthochromis polyacanthus) 
 

 

The effect of a pollutant on the base of the food web can have knock-on effects for trophic 

structure and ecosystem functioning. In this study I assess the effect of microplastic exposure on 

juveniles of a planktivorous fish (Acanthochromis polyacanthus), a species that is widespread and 

abundant on Indo-Pacific coral reefs. Under five different plastic concentrations, with plastics the 

same size as the natural food particles (mean 2 mm diameter), there was no significant effect of 

plastic exposure on fish growth, body condition or behaviour. Consumption rates were low, with 

a range of one to eight particles remaining in the gut of individual fish at the end of a 6-week 

plastic-exposure period, suggesting that these fish are able to detect and avoid ingesting 

microplastics in this size range. However, the number of plastics found vastly increased when 

plastic particle size was reduced to approximately one quarter the size of the food particles, with 

a maximum of 2102 small (< 300 µm diameter) particles present in the gut of individual fish after 

a 1-week plastic exposure period. Under conditions where food was replaced by plastic, there was 

a negative effect on the growth and body condition of the fish. These results suggest plastics could 

become more of a problem as they breakup into smaller size classes, and that environmental 

changes that lead to a decrease in plankton concentrations would likely have a greater influence 

on fish populations than microplastic presence alone. 

 

Citation: Critchell, K., and Hoogenboom, M.O., in review “Effects of microplastic exposure on the 
body condition and behaviour of planktivorous reef fish (Acanthochromis polyacanthus)” PlosONE 
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5.1 Introduction 

Plastic pollution has been reported in every ocean and sea on Earth (Eriksen et al., 2014), 

and is widely recognised as a global threat to marine life, and to the economies of coastal nations 

(Derraik, 2002; Thompson et al., 2009). Plastic pollution can degrade coastal benthic habitats 

through smothering, when plastic sheets form a layer over the benthos and, also, through changes 

in sediment permeability due to buried plastics (Carson et al., 2011). Moreover, plastic pollution 

causes harm to wildlife through entanglement and ingestion (Derraik, 2002). Although plastics do 

not readily biodegrade, they do break up into smaller pieces when exposed to ultraviolet light and 

physical abrasion (Andrady, 2011). As plastic particles become smaller they become available to 

be inadvertently consumed by a wide range of marine organisms. Ingestion of plastics has been 

reported in many species of marine fauna, most notably seabirds (Kinan and Cousins, 2000; Verlis 

et al., 2013) and sea turtles (González Carman et al., 2014), but also fish (Hoss and Settle, 1989; 

Possatto et al., 2011; Neves et al., 2015), corals (Hall et al., 2015), and other invertebrates (Wright 

et al., 2013a; Setälä et al., 2014; Van Cauwenberghe et al., 2015). Consumption of microplastic by 

organisms at the base of food webs, such as mussels (Farrell and Nelson, 2013) and plankton (Cole 

et al., 2013), has raised concerns about the potential for transfer of plastic-associated toxins 

throughout marine food webs (Thompson et al., 2009). 

Ingested plastics can cause harm though physical damage to the gastrointestinal (GI) tract. 

For instance, plastic ingestion can cause abrasions and lesions, or physical disruption of the GI 

tract, as plastics compact in the gut (e.g. Di Bello et al., 2013). Plastic ingestion can also be 

detrimental to the health of various organisms because indigestible particles fill the stomach and 

reduce the feeling of hunger which leads to starvation (e.g. Ryan, 1988; Spear et al., 1995). 

Conversely, microplastics (defined as plastic fragments < 5 mm) have been found in the GI tract of 

marine animals without causing obvious harm. For example, 12.2% of harbour seals assessed in 

the Netherlands contained microplastics and, there was no clear effect of the plastic consumption 

on the animals (Bravo Rebolledo et al., 2013). However, many studies to date have simply 

reported the presence of plastics in the GI tract without assessing the effects on the fitness of the 

organism (Cole et al., 2013; Watts et al., 2014). Overall, while there is growing evidence that many 

different taxa consume microplastic particles, the potential health effects of such ingestion are 

not well known.  

In addition to the physical effects of plastics on animal digestion, many plastics contain 

chemicals, such as flame retardants and plasticisers, which are added during the production 

process to give the plastics certain properties (Derraik, 2002; Rochman et al., 2013a; Eerkes-
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Medrano et al., 2015). Plastic additives can be transferred into the tissues of animals that have 

consumed plastics (Rochman et al., 2013b; Chua et al., 2014), with potential effects on the 

physiology and health of the animal. Laboratory experiments have been used to assess the effect 

of plastic consumption on the development of oganisms. For example, lugworms in an 

experimental trial were found to lose weight over a 28 day exposure to microplastics with 

polychlorinated biphenyls (PCBs - Besseling et al., 2013), but it remains unclear whether it is the 

physical presence of microplastics, or the toxic effects of PCBs, that cause this effect. PCBs can 

alter the regulation of key hormones including oestrogen, testosterone and thyroxine (Colborn et 

al., 1993; Goncharov A et al., 2009). Changes in hormone concentrations can have complex effects 

on animal behaviour. For example, increased testosterone levels are associated with behavioural 

dominance in fish and mammals in general (Hirschenhauser and Oliveira, 2006). Independent of 

toxicological effects, changes in behaviour can also be expected in response to starvation. For 

instance, a hungry individual may become more aggressive or listless; it may also increase 

territoriality (e.g. Adams et al., 1995; Dunbrack et al., 1996; Adams et al., 1998). Despite the 

important role of animal behaviour in determining performance in the natural environment, the 

effects of microplastic exposure and/or ingestion on animal behaviour remain largely unknown. 

Although plastic consumption by marine vertebrates is arguably best documented in 

seabirds (e.g. Ryan, 1987), many studies have also demonstrated that teleost fish consume 

microplastics in the natural environment (Vendel et al., 2017; Hoss and Settle, 1989; Possatto et 

al., 2011; Foekema et al., 2013; Rummel et al., 2016). For seabirds, up to 80% of individuals of 

some species are reported to contain plastics (Acampora et al., 2014), and the mortality from 

starvation is obvious when seabird carcasses are observed on beaches (e.g. Pierce et al., 2004). 

For fish, field studies have revealed that up to 30% of individuals have plastics in their GI tracts 

(Romeo et al., 2015; Rummel et al., 2016). However, some species of fish generally retain lower 

numbers of plastic particles per fish (two to four) (Romeo et al., 2015; Rummel et al., 2016). 

Moreover, plastics consumed by fish tend to be small in size, with 22 of 121 fish gut-content 

samples from the Mediterranean containing plastics of which 70% were  < 5 mm (Romeo et al., 

2015). Nevertheless, it is currently unknown whether ingestion of small quantities of microplastics 

is detrimental to the health of these fish. To date, field studies of fish plastic ingestion have 

primarily focused on pelagic and commercially important species, including mackerel and cod 

(Foekema et al., 2013). These fish prey on smaller species of fish and it is unclear whether these 

piscivorous fishes consume microplastics directly from the water column or whether they 

incidentally ingest plastics by consuming prey that had eaten plastics themselves. Understanding 

the level of fish stock contamination by plastics requires an understanding of these trophic links, 
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and knowledge of whether the small plantivorous fish, that are the prey of fisheries species, 

consume and retain microplastics.  

There is marked variation in fish diets, both within and among species. This difference 

stems from feeding strategy or natural prey size differences (O'Brien et al., 1976; Ma et al., 2015). 

Some species have a highly selective diet (Hobson and Chess, 1977; Ma et al., 2015) suggesting 

that such species might only rarely eat plastics in their natural environments. Carpenter et al., 

(1972) showed that white spheres were the only microplastics found in the gut of eight different 

fish species, indicating selective feeding of white spheres over other types of plastics. Fish also 

display ontogenetic changes in diet as they grow larger, with smaller fish generally eating smaller 

prey (e.g. García-Berthou, 1999). Therefore, fish of different sizes might be more likely to eat a 

particular size range of plastics. For example, some damselfish species increase their reliance on 

consumption of benthic algae as they mature (Emery, 1973), meaning that juvenile fish that 

consume plankton may be more at risk of harm from microplastic consumption than adults. In 

addition to ontogenetic shifts in diet, fish show individual variation in their feeding behaviour (e.g. 

Hoogenboom et al., 2013) and might differ in their propensity to consume plastics. Moreover, fish 

show high variation in their responses to toxins (e.g. Schwaiger et al., 1997; Jaffal et al., 2015). 

Understanding effects of plastic ingestion on fish populations therefore requires quantification of 

among-individual variation in the propensity to ingest plastic, and among-individual variation in 

the effects of plastic ingestion.  

The effects of plastic exposure on fish growth and behaviour are likely to be 

concentration-dependent. If plastic consumption depends on plastic availability in seawater, 

greater plastic ingestion, and greater potential impacts of plastic feeding, should be observed at 

higher plastic concentrations. In an extreme case, if plastic concentrations become so high that 

they replace plankton in seawater, then this is likely to alter fish growth and behaviour through 

starvation effects. In this study, I aimed to quantify whether and how plastic ingestion by fish 

depends upon plastic concentration, and the effects of plastic consumption on the growth and 

body condition of juvenile planktivorous reef fish. I also aimed to determine whether plastic 

consumption and/or plastic presence in seawater affected fish behaviour. This is to test the 

hypothesis that an increase in the concentration of a poor food resource (plastics) may lead to an 

increase in aggressive behaviour due to more frequent failed foraging efforts. My final aim was to 

assess the likelihood of plastic consumption with different size classes of plastics for different size 

classes of fishes. It was my hypothesis that reduced plastics size would increase the rate of 

consumption as the ability to distinguish between food and non-food particles was reduced.  
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5.2 Methods  

5.2.1 Ethics Statement 

This study was carried out in strict accordance with ethics protocol laid out by the Animal 

Ethics Committee of James Cook University, who approved the protocol of these experiments 

(Permit number: A2112), and priority was given to animal care at all stages of this study. 

5.2.2 Overview of approach 

An experimental approach was used to isolate the effects of plastic consumption for a 

common planktivorous reef fish under otherwise controlled conditions. I chose juvenile 

Acanthochromis polyacanthus as a representative species. A. polyacanthus is a geographically 

widespread planktivorous reef fish, common throughout the Great Barrier Reef (GBR), and like 

most planktivores, has relatively low feeding selectivity (Emery, 1973), making them a good 

candidate for feeding trials. Also, A. polyacanthus is a commonly used experimental fish species 

as they are easy to rear and care for in a laboratory environment.  

I conducted an aquarium-based experiment to determine whether plastic ingestion affected the 

growth and body condition of juvenile A. polyacanthus, and whether any effects were 

concentration dependent. This experiment consisted of two phases. First, I assessed whether 

replacement of food by plastic was detrimental to fish growth (referred to hereafter as ‘acute 

exposure’). Second, I assessed the influence of exposure to plastics in addition to the normal level 

of food (referred to hereafter as ‘chronic exposure’). To minimise the number of animals exposed 

to plastics (consistent with animal ethics guidelines), these phases were implemented 

sequentially, with one week of acute exposure followed by six weeks of chronic exposure. Growth 

rates (length and mass) were measured weekly. A separate aquarium experiment was conducted 

to assess whether ingestion rates of plastic by fish depend on plastic particle size. In that 

experiment I exposed fish of two size classes to three size classes of plastic particles for one week, 

after which their gut content was analysed to assess the amount of plastic retained. 

Experiments were conducted in a large recirculated marine aquarium system at the 

Marine and Aquaculture Research Facility (MARF) at James Cook University. Water in aquaria was 

maintained at a temperature of 27.5 °C (±1 °C), natural pH, salinity of 36 ppt, and with nitrates 

(NO3) within the range 28.5 and 32 mg l-1. Tank internal dimensions were 470x325x280 mm (Figure 

5.1). Juvenile A. polyacanthus (N = 112) from three sets of parent stock (hereafter, ‘clutches’, 

labelled A-C) that had been raised in captivity at MARF, were reared between February and April 

2015. Juvenile fish were raised at low stock densities and were fed a commercial, high nutrition 
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food twice per day ad libitum until the cohort average length (fork length) was approximately 3.5 

cm. The fish from each clutch were randomly split into one of five treatments with different 

microplastic concentrations: control (0 mg l-1 plastic), low (average 0.025 mg l-1 plastic), medium 

(average 0.055 mg l-1 plastic), high (average 0.083 mg l-1 plastic) and very high (average 0.1 mg l-1 

plastic). There were two replicate aquaria per clutch, per treatment for a total of six replicate 

aquaria per treatment. During the experiment, the fish were fed the same type of commercial 

food pellets as the growth phase and food amount was adjusted according to fish biomass in the 

aquaria. The amount of plastic added to tanks was also adjusted according to fish biomass in the 

aquaria, so that there was a constant provision of plastic per unit fish biomass in each treatment. 

Differences in fish biomass among clutches, and over time, meant that the amount of plastics 

provided to tanks overlapped slightly between treatments (see Appendix 3, Table 1). Fish were 

fed twice a day for the duration of the experiments and were left to feed for at least four hours 

after exposure. After four hours, the aquaria were cleaned to remove as much of the uneaten 

plastics as possible, this was to ensure each feed was the precise concentrations required for the 

treatment. Each replicate aquarium housed four fish, except for clutch B where only 32 individuals 

were available, and therefore, aquaria housed three or four individuals (Figure 5.1). All aquaria 

contained short sections of PVC pipe at the base of the aquarium as shelters for the fish and mesh 

over the outflow (and aquaria tops) to prevent fish loss. Individual fish were tagged using 

elastomer tags to enable measurement of growth of each individual fish over the experimental 

period. 
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Figure 5.1: Experimental design for acute and chronic plastic exposure experiment. Concentrations shown are the 
mean concentrations for each treatment, as treatment was dependent on tank biomass. The design of the aquarium 
room showing aquaria and outflow filters. 
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5.2.3 Preparation of microplastics 

Polyethylene terephthalate (PET) was used for the experiment as it is one of the most 

common plastics types found in the environment (Morét-Ferguson et al., 2010). For consistency 

with the food supplied to the fish during rearing, and the size of their natural prey, PET 

microplastics with a particle size approximately the same as the commercial food pellets were 

created by cryomilling post-consumer recycled plastic pellets, donated from Visy Plastics 

(Smithfield, NSW, Australia). The cryomilling process created a range of particle sizes, therefore 

the desired plastic size classes were obtained by sieving the cryomilled plastics with stacked sieves 

of the desired sizes. The commercial food pellets were approximately 2 mm in diameter and the 

plastics ranged from 1 to 2 mm. The plastic particles were divided into mesh bags and placed in 

indoor sump aquaria of a mature salt water aquarium system for at least two weeks prior to the 

start of the experiment. This was to encourage the growth of a microbial biofilm on the surface of 

the milled microplastics to better mimic microplastics in nature (Savoca et al., 2017). PET has a 

specific gravity of 1.38 and is, therefore, negatively buoyant in seawater. However, the small 

milled particles have a high surface area to volume ratio and remained at the water surface for ~2 

minutes after being dropped into the water, behaving similarly to the commercial food pellets.  

5.2.4 Acute exposure experiment – food replaced by plastic 

During the first week of the exposure experiment, I assessed the impact that replacement 

of natural food products with plastic particles might have on fish. This ‘acute’ exposure was 

designed to indicate how fish growth might be affected in marine habitats where natural plankton 

concentrations are declining (evidence in (Boyce et al., 2010)) and microplastic concentrations are 

increasing (Ivar do Sul and Costa, 2014). During this week, the fish (N=112) received a total ‘food’ 

allowance between 0.022 g to 0.065 g (0.055-0.16 mg l-1) per feed, depending on aquaria fish 

biomass, which included different proportions of food and PET (see Appendix 3, Table 1).  

5.2.5 Chronic exposure experiment – plastic dose added to normal food  

After the ‘acute’ exposure phase, fish were exposed to plastic concentrations which 

consisted of their normal food (biomass adjusted) plus either zero (control group), low (20%), 

medium (40%), high (60%) or very high (80%) percentage of their diet added as plastic (see 

Appendix 3, Table 1). No tank received more than 0.065g (0.16 mg l-1) food per feeding bout, as 

excess food in the system can reduce water quality. 
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5.2.6 Ontogenetic changes in sizes of microplastics ingested 

A second group of fish (n = 69) were sourced from stock A. polyacanthus at MARF and 

were divided into two size classes, based on fork length, with small fish 30 to 35 mm and large fish 

35 to 45 mm. Fish from these two treatment groups were randomly allocated among three 

different plastic particle size treatments (small, 125-300 µm [approx. 140000 per g]; medium, 300-

1000 µm [approx. 5000 per g]; and large, 1000 – 5000 µm [approx. 60 per g]), with 3 replicate 

aquaria per treatment with three to four fish per aquarium. The fish were fed twice daily with a 

diet of commercial pellets (amount calculated based on fish biomass in each aquaria as above) 

with additional plastic 80% of the food mass (0.05 to 0.13 mg l-1 per feed, see Appendix 3, Table 

2). I acknowledge that using weight of particles resulted in a different number of particles being 

supplied to each tank depending on particle size. The aim of using high concentrations of particles 

was an attempt to make consumption rate limited by particle processing time, rather than the 

number of particles available (a type II functional response) (Staddon, 2016). After one week of 

exposure, the fish were euthanized and dissected to assess the amount of plastic retained in the 

whole length of the GI tract of each animal.  

5.2.7 Measured response variables 

Plastic retention, growth and body condition  

At the conclusion of the plastic exposure experiments, the fish were euthanized according 

to standard animal ethics protocols, by MS-222 overdose (AVMA Guidelines for Euthanasia of 

Animals, 2013). The gut content of the fish was collected to determine the amount of plastics the 

fish retained. This plastic ingestion quantifies the amount of plastic ingested and retained in the 

gut over both the acute and chronic phases of the exposure experiment. The same procedure was 

followed at the end of the seven day duration particle size experiment. 

I collected weekly length and weight data to assess growth through the acute and chronic 

exposure phases. Each fish was photographed using a camera fixed a set distance from a gridded 

background, to accurately measure length and width using ‘Image J’ software (Figure 5.2A). The 

wet weight of each fish was measured by adding the fish to a beaker of aquarium water on pre-

zeroed scales (Kern PBC 3-place analytical balance, Kern and Sohn KmbH, Germany Figure 5.2B). 

Individual growth rates were calculated, as change in mass and change in length, weekly and over 

the duration of the whole experiment. Length-weight ratios were calculated for each fish at the 

beginning and end of both acute exposure and chronic exposure phases. The change in this ratio 

gives an indication of the change to the body condition of each fish over each phase of the 

experiment. During the post-exposure dissections, the liver of each fish was extracted and 
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weighed (ME235P, 5-place Sartorius analytical balance, Germany) to calculate the liver weight to 

body weight ratio (Hepatosomatic index; Equation 1), and used to assess the body condition of 

each fish (Chellappa et al., 1995):  

Hepatosomatic index (HSI) = (LW/BW) * 100    Equation 5.1 

where LW is liver weight and BW is the total body weight of the fish before dissection. The HSI 

reflects the energy reserves in the liver and, as liver function is critical for overall health, is a 

reliable proxy for condition (Pereira et al., 1993). 

 

Figure 5.2: Set up of length (A) and weight (B) data collection. A) shows the camera, grid paper and lighting set up for 
taking images of the fish to length analysis, and B) shows a juvenile A. polyacanthus in a two litre beaker of aquarium 
water on a balance. C) shows an example of a photograph used to measure the length, the green elastomer tag can be 
seen. 
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Behaviour 

Effects of microplastic exposure on fish behaviour were assessed using two sets of video 

observations at the end of the chronic exposure phase. These video observations monitored: 1) 

fish swimming activity and aggression between feeding times (20 minute videos, taken in between 

feeding times between the hours of 10 am and 4 pm); and 2) foraging behaviour and aggression 

at feeding times, for two minutes after food was introduced to each aquarium. To ensure the fish 

were behaving “normally” after the disruption of camera placement, the camera was set up and 

set to record 10 minutes before the introduction of food. I used a GoPro (Hero 3) camera that was 

affixed to a stand that kept the camera at a set distance from the bottom of the aquaria. 

Fish swimming activity was measured between feeding times, using the ‘grid crossings’ 

method (e.g. Ryer et al., 2009). Briefly, a 2 x 2 cm grid (corresponding to approximately one body 

length of A. polyacanthus in our videos) was placed over the computer screen during video 

playback, and the number of times each individual fish crossed a grid line was counted during a 

period of 2 minutes. The fish was considered to have crossed a gridline if the nose and both eyes 

crossed the line. Data are reported as line crossings per second. For this metric I used the longer 

inter-feeding videos with the 2 min sample taken at least 10 min after the start of the video to 

ensure the behaviour had returned to “normal” after camera set up. 

Aggressive behaviour between individual fish was assessed from the videos taken during 

and after feeding, and was measured as active interactions between individuals where a dominant 

fish caused a subordinate to move position within the aquaria. The total number of aggressive 

interactions in the focal aquaria were counted during the remainder of the video, which ranged 

from 5 - 10 minutes (depending on video length) after the food was introduced. I used the 

maximum video time available to gain the maximum data, the count was then made relative to 

time in the aggression index described below (Equation 2). The aggressive interactions observed 

in each aquarium were categorised into short and long interactions. The short interactions 

(hereafter called ‘swoops’) were counted as lunges or movements of a dominant fish that caused 

a subordinate fish to move away, whereas long interactions (hereafter called ‘chases’) were 

counted as interactions where the dominant fish chased a subordinate fish for approximately ¼ 

the aquaria length (assessed visually; not measured for every interaction). An aggression index 

(AI) was calculated to account for the different energy costs of swoops compared with chases, due 

to the different levels of swimming activity and different duration of activity, and was normalised 

by the duration of the observation period as:  

 AI = (S + 2C)/t       Equation 5.2 
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where S is the observed number of swoops, C is the observed number of chases, and t is the 

duration of the observation period (decimal minutes). This creates a measure of aggression 

experienced by the fish per aquaria. All the aquaria were the same dimensions and colour to 

ensure there was no confounding effect of environment on the treatment groups. 

5.2.8 Data analysis 

Analysis of the length-weight relationship of the experimental fish showed that three 

different clutches started with different sizes, and different weights per unit body length (See 

Appendix 3 Figure 1, ANOVA, F = 747.9, df = 5, 106, p-value < 0.001). Consequently, ‘clutch’ was 

retained as a factor in subsequent analyses. 

To assess differences in plastic ingestion between treatments from the chronic exposure 

experiment, I used a generalized linear mixed effect model, fit by Laplace Approximation 

maximum likelihood in the lme4 package in R (Bates et al., 2015; R Core Team), with the Kenward-

Roger approximation to obtain p-values. To understand if the number of plastics retained during 

the chronic exposure varied between treatments, I fit a linear mixed effect model to the plastic 

consumption data for the subset of fish that ate plastics, again using the lme4 package. Due to the 

small number of fish that consumed plastics, there was insufficient statistical power to analyse 

these data among individual treatments and, therefore, the treatments were pooled into high 

(60% and 80%) and low (20% and 40%) treatments for this particular analysis. Consumption levels 

by fish of different sizes, for each of the plastic sizes were assessed using the Fisher’s exact test 

using a multi-level contingency table analysis.  

Generalized linear mixed effect models were fitted to growth, body condition, 

hepatosomatic index, and line-crossing data, to assess effect of treatment and clutch on fish 

health, with aquaria included as a random effect. It was important to include aquaria as a random 

effect to remove the artificial inflation of statistical replicates, while maintaining the individual 

fish data. These analyses were conducted using the nlme package for R (Pinheiro et al., 2018). 

Linear models using the nlme package were also fit to the length and weight data to quantify the 

relationships between and within clutches, and the difference in the slope/intercept of the 

relationship was assessed to understand body condition during the acute phase of the exposure 

experiment. To test the effect of plastics exposure on the activity of the fish, the line-crossings per 

second were compared using a Levene’s Test for homogeneity of variance. An ANCOVA was 

conducted to test the relationship between treatment and aggression with the aggression index 

data. 
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5.3 Results 

5.3.1 Plastic ingestion 
Chronic exposure experiment 

At the end of the chronic phase of the exposure experiment, 19.6% of fish had plastic 

fragments in their GI tracts. For these fish, the number of retained plastic fragments ranged from 

one to eight (Figure 5.2) and there was a general trend toward higher ingestion at intermediate 

plastic exposure concentrations (Figure 5.2). However, neither the proportion of fish that had 

retained plastics (Figure 5.2A-C), nor the number of plastics retained, were dependent on the 

concentration of plastic present in aquaria (Figure 5.2D-F), and these responses did not vary 

between clutches (Table 5.1). Due to an error by a volunteer, on one occasion control tank 11A 

was fed a 20% dose treatment, which resulted in one control fish having one piece of plastic in 

their GI tract (Figure 5.3A).  

 
Figure 5.3: Plastic ingestion by sub-adult A. polyacanthus exposed to different plastic doses. Top panels (A-C) show 
proportion of fish per treatment and clutch which ingested plastics, and the lower panels (D-F) show the range of 
ingestion for fish per pooled treatment (treatments 20, 40 pooled to low, and 60, 80 pooled to high) for each clutch, 
denoted in the grey panel above each graph. 
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Ingestion of different particle sizes 

The number of retained plastics was strongly dependent upon plastic particle size. All fish 

exposed to the smallest plastic fragments were found to have plastics in their GI tract after one 

week of exposure (Figure 5.3), and over half of the fish exposed to medium sized plastics were 

also found to have plastics in the GI tract (Figure 5.3). The observed proportions of fish of different 

sizes that had consumed small and large plastics was significantly different than random (Fishers 

Exact Test, p-value < 0.001). Larger fish appeared to be more likely to ingest plastics of all sizes 

than smaller fish (Figure 5.3A). For each particle size treatment there was no statistical difference 

in amount of plastics consumed between the fish sizes (Figure 5.3B). However, there was a large 

difference in the amount of plastic consumed between particle size treatments, with fish ingesting 

up to a maximum of 2102 small plastic fragments (in a fish classed as large) in comparison to a 

maximum of 5 in the large plastic particle treatment (Figure 5.3). Fish were found to have much 

higher numbers of plastics in their GI tract when exposed to the small particle treatment (Figure 

5.3B, F = 15.523, df = 12, p-value = 0.0005). 

 

Figure 5.4: Particle and fish size dependence of plastic ingestion. A) Shows the proportion of fish that were found to 
have plastics in their digestive tract. B) Shows the range of plastic ingestion for fish per treatment, denoted in the grey 
panel above each graph. The mid-line of the boxes represent means with the boxes showing the 25th and 75th 
percentile and the vertical lines representing the range. 

 

5.3.2 Growth and Body Condition 

Growth over the different exposure regimes 

Fish growth during the acute exposure phase of the experiment was the lowest in the 

higher plastic treatments (Figure 5.4); these fish were receiving much less food than the control 
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fish. However, the different clutches also reacted significantly differently in this experiment (Table 

5.1). Clutch A and C had negative growth in the highest plastic treatment while clutch B had 

reduced, but not negative growth. Conversely, the chronic exposure phase showed very little 

effect of plastic presence (Figure 5.5). During this phase, the fish that had lost mass during the 

acute phase seemed to catch up with the rest of their cohort and by the end of the chronic 

exposure phase (6 weeks) there was no significant difference between treatments in the relative 

change in body mass. There was a significant difference in the way clutch C responded compared 

to the other clutches (Table 5.1), but within clutch, there was no significant effect of plastic 

concentration. 

 

 

Figure 5.5: Fish growth and body condition during the acute phase of the plastic exposure experiment. Top panels (A-C) 
show the change in mass (g) relative to start mass during the acute exposure phase, for each clutch. The lower panels 
(D-F) show the change in length-weight relationship relative to the start of the acute exposure, for each clutch, denoted 
in the grey panel above each graph. The mid-line of the boxes represent means with the boxes showing the 25th and 
75th percentile and the vertical lines representing the range. 

 

Body condition 

Based on the difference in length-weight relationship between the start of the chronic 

exposure and the end of the experiment, there was no significant change in body condition due 
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to the treatments (Table 5.1). The only exception to this general pattern was observed in clutch 

A, where there was an increase in body condition in the 40% plastic treatment compared with the 

control. Based on the hepatosomatic index, there was a general decrease in body condition in 

higher plastic concentration treatments (Figure 5.5D-F). This decrease was most pronounced for 

clutch C, for which condition was lower in the 80% treatment, however, this trend was not 

consistent across clutches.  

 

Figure 5.6: Fish growth and body condition (measured as HSI) during the chronic exposure phase of the experiment. The 
top panels (A-C) show the change in body mass relative to the start of the chronic exposure, for each clutch, denoted in 
the grey panel above each graph. The lower panels (D-F) show the body condition of the fish in the form of the 
Hepatosomatic Index in each treatment and clutch, denoted in the grey panel above each graph. The mid-line of the 
boxes represent means with the boxes showing the 25th and 75th percentile and the vertical lines representing the 
range. 

 

5.3.3 Behaviour 

Different clutches showed a different behavioural response to the plastic exposure 

treatments (Figure 5.6, Table 5.1). For clutch C, there was a general increase in activity (measured 

as line crossings) with increasing plastic concentration, but the same trend was not apparent for 

the other two clutches (Figure 5.6A). Overall, there was generally high variability in activity among 

individuals. There was a significant association between the amount of aggression and the number 



  Chapter 5: Tolerance of microplastic exposure in a juvenile coral reef fish 

123 
 

of line crossings observed in each tank (Pearson’s Test, r = 0.8097, df = 7, p=0.0082). Indeed, the 

majority of the more aggressive interactions (chases) resulted in a long distance travelled for both 

the aggressor and the subordinate fish leading to an association between these behavioural 

metrics. Similar to the observed variation in line crossings, the intensity of aggression was highly 

variable between tanks within treatments groups. Although aggression was higher, on average, 

for clutch A (AI of 9.7 compared with 7.5 and 7.2 in clutch B and C, respectively, Figure 5.6B), 

ANCOVA with Tukey’s post-hoc test showed that these differences were not statistically 

significant. There was also some indication for clutch B of a decline in aggression with plastic 

concentration, but this trend was not statistically significant (Figure 5.6B).  

 

Figure 5.7: Fish behaviour during exposure to different concentrations of microplastics. The top panels (A-C) show the 
number of lines crossed per second for each treatment and clutch, denoted in the grey panel above each graph. The mid-
line of the boxes represent means with the boxes showing the 25th and 75th percentile and the vertical lines representing 
the range. The lower panels (D-F) show the aggression index where the central horizontal line shows the mean and the 
vertical line indicates the range of values. 
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Table 5.1: Summary table of statistical analyses. 

Analysis 
 

Factor Df Test 
statistic 

p Figure 

Proportion of fish that 
ingested plastic 

Treatment 4,96 F = 0.001 0.900 2A-C 
Clutch 2,96 F = 0.006 0.900 
Treatment by Clutch 8,96 F = 0.02 0.900 

Number of plastic 
particles eaten by fish 

Intercept 1,11 F = 42 <0.001 2D-F 
Treatment (pooled) 1,11 F = 1.2 0.290 
Clutch 2,11 F = 4.9 <0.050 
Treatment by Clutch 2,11 F = 0.22 0.800 

Size-dependence of 
plastic ingestion 

Intercept 1,51 F = 17 <0.001 3 
Treatment (pooled) 1,12 F = 0.70 0.420 
Clutch 2,12 F = 16 <0.001 
Treatment by Clutch 2,12 F = 0.40 0.680 

Growth – acute phase 
 

Intercept 1,82 F = 151.4 <0.001 4A-C 
Treatment  4,15 F= 11.1 0.002 
Clutch 2,15 F= 34.1 <0.001 
Treatment by Clutch 8,15 F=1.66 0.189 

Body condition – acute 
phase 

Intercept 1,82 F = 33.7 <0.001 4D-F 
Treatment  4,15 F= 6.75 0.003 
Clutch 2,15 F= 16.01 <0.001 
Treatment by Clutch 8,15 F= 0.74 0.655 

Growth – chronic phase 
 

Intercept 1,82 F = 554.6 <0.001 5A-C 
Treatment  4,15 F= 1.36 0.294 
Clutch 2,15 F= 36.5 <0.001 
Treatment by Clutch 8,15 F= 0.58 0.776 

Body condition – chronic 
phase 
 

Intercept 1,82 F = 786.8 <0.001  
Treatment  4,15 F= 2.53 0.084 
Clutch 2,15 F= 6.47 <0.001 
Treatment by Clutch 8,15 F= 0.91 0.532 

Hepatosomatic index 
 

Intercept 1,82 F = 2267.8 <0.001 5D-F 
Treatment  4,15 F= 2.66 0.074 
Clutch 2,15 F= 4.56 0.028 
Treatment by Clutch 8,15 F= 2.17 0.093 
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5.4 Discussion 

In this study, I found that when microplastic particles were the same size as a fish’s normal 

food, rates of plastic retention in the gut were generally low, and were independent of the 

concentration of microplastic available in seawater. Moreover, this low-level plastic consumption 

had negligible effects on the growth and body condition of juvenile planktivorous reef fish after 

six weeks of exposure. However, when plastic particles replaced food there was a significant 

decrease in growth and body condition compared with controls due to limited food availability. 

Our results also indicated that plastic consumption and/or plastic presence in seawater did not 

affect fish foraging behaviour (activity) or aggressive interactions. However, the amount of plastic 

found in the GI tract was influenced by microplastic particle size, with smaller microplastics much 

more frequently consumed than larger microplastics, regardless of fish size. These results support 

the hypothesis that reduced plastics size will increase the rate of consumption as the ability to 

distinguish between food and non-food particles decreases.  

The low rates of plastic particle retention in the GI tract (up to eight particles per fish) for 

microplastics 1 – 2 mm diameter observed in this study suggests that juvenile A. polyacanthus can 

recognise and avoid consuming microplastic particles of certain sizes, or can readily eject plastic 

particles after consumption. The number of particles in the GI tract of the fish found here is 

generally consistent with field studies. For example, Lusher et al., (2013) found small quantities of 

microplastic particles (one to 15 per fish) were commonly ingested by fish in the natural 

environment regardless of fish species and feeding habitat. A similar range of values was found by 

Neves et al., (2015) and Foekema et al., (2013), who found only one to four particles per fish, with 

most fish containing only 1 particle. Field-sampled fish tended to have mostly plastic fibres in their 

GI tract, as opposed to particles as assessed in this study, suggesting that fish can more readily 

recognise and avoid certain types and/or shapes of microplastics. Hermsen et al., (2017) suggest 

many of these fibres could be a result of contamination from sample preparation methods, and 

this should be considered in future studies. Nevertheless, in my study the particulate microplastics 

used in the experiments were easily distinguishable from fibres and I found that, when plastic 

particles were less than one quarter the size of normal food (300 - 125 µm), retention rates were 

vastly higher. Collectively, these results indicate that when fish are exposed to a variety of sizes of 

plastics, smaller plastics will be ingested more readily than larger ones. This dramatic variation in 

the number of plastics found in the GI tract of different size classes of plastics suggests that as 

plastics get smaller they may be less readily differentiated from normal prey (O'Brien et al., 1976; 

Foekema et al., 2013; Eriksen et al., 2014). While I did not quantify the effects of ingestion of these 

small microplastics, it is likely that very small plastics cause less damage and/or blockage to the 
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digestive system. There is a possibility that fish could reach satiation based on volume not number 

of particles, therefore, consumption of a many very small particles could have a less impact to the 

individual, than fewer larger ones. However, the increased surface area to volume ratio of smaller 

microplastics increases the possibility that associated contaminants or toxins could leach from the 

microplastics and be absorbed by the fish. Further studies are required to assess whether 

microplastics will have a larger effect on fish populations as they break up into smaller pieces, as 

they are more readily consumed and have higher potential to transfer contaminants (Bakir et al., 

2012).  

Under acute exposure conditions, where microplastic particles replaced food particles, 

the fish grew slower and lost body condition, and these effects were larger at higher microplastic 

concentrations. The effects of a reduction in food availability on fish growth and survival are well 

understood (e.g. Elliott, 1973). Indeed, the minimum food requirements for growth of various fish 

species have been quantified in aquaculture and natural settings (Elliott, 1976; Garvey et al., 2004; 

Imre et al., 2004). Consequently, changes in fish growth and condition during this phase of the 

experiment likely reflect the reduction in food ration rather than any toxic effects of microplastic 

exposure. Although I did not measure plastic retention in the gut at the end of the acute phase, 

plastic retention was low at the chronic phase of the experiment. These results indicate that 

plastic ingestion is low even when food availability is restricted, and/or that small PET fragments 

plastics pass through the digestive tract and are evacuated with minimal harm to fish. My results 

also show that fish with decreased, and even negative, growth under low food (high microplastic) 

treatments during the acute phase were the same size, on average, as fish in the high food (low 

microplastic) treatments by the end of the chronic phase. Such, ‘compensatory’ growth is 

commonly observed in fish (Hurst et al., 2005). In my study, fish ‘caught up’ in size within 6 weeks, 

highlighting that sub-adult fish of this species favour growth at the early stage of life to reduce 

predation risk for the individual (Metcalfe and Monaghan, 2001). The literature documents that 

plankton and plastics are both patchy in nature (e.g. Bengfort et al., 2014). Consequently, fish 

might face intermittent periods of low food rations that have negative effects on fitness by slowing 

growth rates, and by flow-on effects associated with compensatory growth of juvenile and sub-

adult individuals.  

Due to the low retention rates and non-significant effect of microplastic exposure (1 – 2 

mm), the consumption of one microplastic in an individual that was in the control treatment was 

unfortunate, but not significant to the overall conclusion of this chapter. 
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5.4.1 Behaviour 

The behavioural measures used in this study (activity and aggression) were directly 

correlated, suggesting that in aquaria that had more active fish, the fish were being active because 

of the aggressive interactions taking place. The dominant and most aggressive fish often utilised 

the shelter, and would chase subordinate fish away from the entrance (KC personal observation). 

Low (1971) reports subordinate fish being driven a total of five metres in a five minute period of 

field observations of reef fish (Family Pomacentridae). Dominance and space use are tightly 

correlated, including feeding position (Hughes, 1992) and shelter use (Phillips and Swears, 1979). 

The feeding dynamics of a group can also change with changing dominance hierarchy (e.g. 

Forrester, 1991; David et al., 2007). I found no significant relationship between activity and 

treatment, with large amounts of variation between and within clutches. There is a slight 

suggestion that fish are more active at medium levels of exposure. This would support findings of 

increased aggression at medium feed levels by Toobaie and Grant (2013). It would have been 

valuable to my study to have behavioural observations before and after exposure, as this would 

have allowed direct observation of changes to behaviour. I observed vastly different feeding 

behaviour between individuals and aquaria, suggesting some individuals or groups within a 

population may be more affected by plastic consumption than others. Indeed, Sparks et al., (1972) 

suggest that a dominance hierarchy can greatly affect the outcome of ecological experiments. 

The rate of interactions between individuals and plastics may influence the rate of 

learning of the individual. There is strong evidence that individual fish learn quickly to avoid 

anglers in catch and release fisheries, which have strong learning experiences (Askey et al., 2006). 

However, when the plastic particle size is small, I suggest the fish do not have the same learning 

experience, as the plastics have the potential to simply pass through their GI tract with little to no 

discomfort. This allows plastics to enter the GI tract, potentially transferring plastics-associated 

toxins, possibly causing harm to the fish, without an avoidance behaviour to stop it. In most parts 

of the oceans, fish would currently encounter plastics very rarely, not allowing the learning 

experience (e.g. < 1 MP m-3 in East China Sea; Zhao et al., 2014). In areas with high microplastics 

load, for example the North-eastern Pacific (~280 MP m-3; Desforges et al., 2014), the fish may 

actually be more equipped to avoid them. The size and shape of particles that could be avoided 

are probably based on fish species, feeding type, gape, etc. that affect the learning experience of 

the individual fish. When particles become so small that they are imperceptible to the fish, it is 

likely they will have different impacts to the fish, including gill irritation (Kashiwada, 2006). 
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To summarise, I found that juvenile A. polyacanthus can be tolerant of plastic exposure, finding 

no significant effect on growth, body condition or behaviour while the plastic particles were the 

same size as their natural food particles. However, plastic retention rates vastly increased when 

the size of the plastic particles was reduced from ~2 mm to 300 - 125 µm. This is of concern 

because plastics in the environment fragment into smaller and smaller pieces and, therefore, 

could become more readily ingested by planktivorous fish. 
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Plastic pollution in the environment has been shown to have dramatic negative effects on 

habitats, wildlife, local economies and environmental values (Derraik, 2002; Thompson et al., 

2009; Jang et al., 2014; Krelling et al., 2017). There have been many studies documenting the 

observed negative interactions of marine species with plastic pollution (see reviews by Thompson 

et al., (2009), Andrady (2011), and Chae and An (2017)). Plastic pollution can also cause damage 

to marine habitats through smothering, scouring (e.g. Uneputty and Evans, 1997; Donohue et al., 

2001) and changed physical properties (Carson et al., 2011). Plastic pollution accumulation is 

negatively impacting local economies (Jang et al., 2014; Krelling et al., 2017). Consequently, plastic 

pollution has become a globally ubiquitous issue for the marine environment, and there is clearly 

a pressing need for management action at multiple spatial scales. However, although it is a global 

issue, management policies and actions are generally implemented at the local municipality scale, 

and local management authorities are usually the entity with the power to reduce the input from 

local sources. 

The management of plastic pollution is challenging because the agencies or levels of 

government responsible generally have small spatial jurisdictions – e.g. municipal areas. At the 

scale of a local management authority, mitigating plastic pollution requires either cleaning up 

existing debris or reducing inputs, or preferably both. These actions require data on where plastic 

pollution is coming from and where it is going within their management area, because 

understanding this transport can identify sources, which is crucial for targeted management 

action. The problem for local managers usually occurs because they generally don’t have the data 

they need at the resolution or scale that is useful to them, and are often under-resourced in 

capacity or finances to collect that data. The available data describing plastic transport and 

sources is often at larger spatial scales and the resolution is too coarse for a small management 

area (Johnson and Eiler, 1999; Hinata et al., 2017). 

The overarching goal of this thesis was to understand the dispersal and risks of plastic 

pollution at a management-relevant scale. Collectively, the results of my thesis show there is large 

variability in the dispersal and accumulation of plastic pollution in the coastal environment, and 

the effects of that accumulation are also highly variable. The thesis aims can be split into those 

pertaining to dispersal and those pertaining to risk. In this chapter I will discuss each of the aims 

of this thesis in the context of existing research and provide a synthesis of findings. I will also 

discuss the approach used in this thesis, the implications of my research, and outline opportunities 

for future research.  
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6.1 Dispersal and accumulation of plastic pollution in the coastal zone 

One of the problems of understanding sources and accumulation of plastics in the coastal 

zone is the lack of understanding of dispersal processes. The first aim of my thesis was to 

understand the dispersal of plastics in the coastal zone at the scale of local management 

jurisdiction. The results I present in this thesis provide an empirical foundation for modelling 

plastics dispersal at small, management-relevant scales, especially in topographically complex 

regions, such as Queensland, Australia.  

There are many processes driving the dispersal and accumulation of plastics in the coastal 

zone. In Chapter 2 I assessed the sensitivity of a plastic specific hydrodynamic model to: the rate 

of resuspension of plastics from the coastline; degradation of macroplastics into microplastics; the 

wind shadow effect; the wind-drift coefficient; settling rate; and the diffusivity parameter. I show 

that the variability in the model predictions is large when model parameters are adjusted, which 

suggests each process can influence the distribution of plastics in the coastal zone and highlights 

the need to obtain accurate estimates for these parameters in natural systems. In Chapter 4 I 

further highlight the need to include plastic-specific processes in dispersal estimates of plastic 

pollution. These many plastic-specific dispersal processes caused large variability in the field data 

presented in Chapter 4. Indeed, the accumulation I observed on the beach is the result of the 

supply and the removal of plastics from the beach, and the observed quantity is heavily dependent 

on the residence time of plastics on the beach. Hence, the supply and removal rates of plastics in 

the environment are influenced by a variety of processes. This is partially demonstrated in Chapter 

2 where I show source to be the most influential model parameter dictating plastic movements 

and, in Chapter 4, the results indicate that macroplastics found on beaches are more likely to be 

from local compared with external sources.  

In my thesis I explored accumulation of plastics on local beaches through the supply rate. 

Export is taken into account in the model in the form of resuspension of simulated macro- and 

microplastics from the coastline and degradation of simulated macroplastics into microplastics. 

However, the degradation parameter I applied in the model was different for beached and 

suspended simulated plastics, but was spatially uniform for all beached particles, and all particles 

at sea. Given that the degradation parameter of the model had a moderate impact on model 

predictions (Chapter 2), future work establishing estimates of degradation in a field setting should 

be prioritised (Weinstein et al., 2016; Welden and Cowie, 2017). Other factors influencing the 

export, mixing and degradation of plastic particles in the environment, not currently incorporated 

into the model, are: ocean properties (e.g. wave height and period of the waves), object properties 
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(e.g. buoyancy and shape); and coastline (e.g. slope and nearshore bathymetry) or substrate 

properties (e.g. habitat and sediment type). Of these, wind-driven waves are likely to be 

particularly important. It is a limitation of SLIM that no wave field is included in the physics code. 

Many of these factors cannot be taken into account within the modelling environment directly at 

this stage, and may have contributed to the divergence between model predictions and data in 

Chapter 4. 

The resuspension of plastics from coastlines is poorly understood. In Chapter 2 I explore 

the sensitivity of my model results to the method of resuspension from the coastline. From my 

results I conclude that the rate of resuspension is less important than whether resuspension 

occurs, concluding that beached particles must be allowed to re-suspend in future modelling 

studies. Resuspension is a large component of residence time but aside from estimates for large 

buoyant objects like fishing floats from tag/recapture type experiments (Johnson and Eiler, 1999; 

Hinata et al., 2017), or modelled estimates based on sequential clean-ups (Smith and Markic, 

2013), there are few data to describe it. For smaller objects, Hinata et al., (2017) estimates the 

residence times of microplastics to be an order of four times lower than that of macroplastics. 

However, their estimate does not consider the dramatic reduction in upward velocity due to the 

reduced size of smaller particles. Although the assumptions of Hinata et al., (2017) are likely to be 

inaccurate, their estimates are a useful starting point for incorporating accurate resuspension 

parameters into future modelling. 

Another factor missing from many existing plastic dispersal models is the wind shadow 

created when wind speed is reduced on the lee side of elevated topographic features. In Chapter 

2, I found that incorporating wind shadow in the modelling of a topographically complex coastal 

zone is imperative at a management-relevant scale. The study area of this thesis has islands of 

many heights, which creates a complex topographic environment. Other hydrodynamic models 

for plastic dispersal have not generally included the wind shadow behind islands because it is less 

relevant at larger scales or in models with coarser resolution than mine. For example, Lebreton 

and Borrero (2013) model the debris generated by the 2011 tsunami at the scale of the whole 

Pacific Ocean, at a resolution of 1/12° (~9.2 km at the equator). At this scale and resolution, the 

wind shadow I used in this thesis (2500 m) would be insignificant within one of their cells. 

However, when the scale of the model domain is reduced, adding a wind shadow effect is essential 

for providing robust model results (Chapter 2).  

Plastic pollution is made up of many different objects, each having different physical 

properties and hydraulic behaviour. This is one of the many challenges to modelling the 
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movements of plastic pollution. For example, in Chapter 4 I present data showing that the 

movement of macroplastics, which tend to be larger and buoyant objects, are driven by the wind 

far more than microplastics, which are smaller and tend not break the surface. A method of 

reducing the variability in the model and obtaining a better fit with field data would be to focus 

on key informant objects that are relatively common in the field data and easy to identify (e.g. 

glow sticks used in longline fisheries, or plastic bottles). Then using experiments and field data to 

obtain key attributes of their hydraulic behaviours as inputs for the model, plastic type specific 

models could be run. This has been done successfully in a few cases: Ebbesmeyer et al., (2007) 

modelled a cargo spill (tub toys); Kako et al., (2011) modelled bottle caps; and Ebbesmeyer et al., 

(2011) modelled crab pots. However, in all cases the resolution and spatial scale were not suitable 

for local management action. Conducting a similar study in the GBR could be feasible, due to the 

extensive dataset of the Australian Marine Debris Initiative1, which categorised the data by object 

type and thus it could be explored to select common items, or items with the highest risk to 

species, such as small plastic fragments.  

6.2 Risks of plastic pollution to the coastal zone  

The second aim of this thesis was to understand the risk of plastic pollution in the coastal 

zone at a management-relevant scale to species and habitats. I have shown that risk is highly 

variable in space and time. I show that the risk to a small planktivorous reef fish from microplastics 

of approximately two millimetres is negligible. The exposure to the reef habitat can be high 

(Chapter 3), but the consequence to planktivorous reef fish in that habitat is very low (Chapter 5) 

resulting in negligible risk. However, the exposure and consequence are potentially increasing as 

plastics continue to degrade into smaller particles (Chapter 5). I have shown that marine habitats 

experience variable exposure to plastics across seasons, and with the exception of habitats on the 

coastline (e.g. mangrove habitats) there is little consistent exposure across seasons. 

Risk assessments are a useful tool for management allowing people to use an objective 

framework to prioritise management action (Bottrill et al., 2008). Risk assessments are in two 

quantifiable parts: the likelihood of a hazard event occurring; and the consequence to the value 

should the hazard event occur. Mitigating the effects of marine plastic pollution is difficult in the 

environment, essentially because the composition, distribution and/or quantity of plastic 

pollution in any local marine environment varies both spatially and seasonally. Thus, the likelihood 

                                                           
1 https://www.tangaroablue.org/database.html 
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of plastic interactions in the coastal marine environment is variable in space and intensity (Chapter 

3). Similarly, the consequence of exposure also varies over time according to variation in habitat 

use or diet at different stages of the life cycle of the organism and the availability of plastic 

particles to them (Chapter 5). These sources of variability result in a complex management 

problem. Many plastic risk assessments focus on the risk posed by plastic on average (e.g. Wilcox 

et al., 2013; Schuyler et al., 2014), however, my research shows that this is inadequate to truly 

understand the risks posed by plastics at a small scale, due to inconsistency of plastic accumulation 

at that scale. 

The exposure (likelihood of interaction) of plastic changes in space and time, due to 

degradation, variability and patchiness of accumulation. Chapter 3 demonstrates that the location 

of the highest exposure changes with seasons, whereas Chapter 5 suggests that the exposure to 

plastics can have a negative consequence and could change on the timescale of plastic 

degradation (years). The physical location of accumulation is also variable at the timescale of 

season and day (Ryan et al., 2014; Hu et al., 2016). Other factors influencing exposure at small 

spatial and temporal scales are tide and wind as both can change convergence zones at a scale of 

hundreds of meters (or less) (Hu et al., 2016). Exposure at these smaller scales is important to 

understand when looking at beach-scale impacts, which is relevant for local management. 

The consequence at locations of highest exposure must be explored further, particularly 

for habitats (Chapter 3). Lack of consequence data, especially how consequence changes with 

concentration, makes risk difficult to quantify at a species’ population level in the environment. 

Chapter 5 demonstrates that the concentration of plastics of a certain size class has little effect on 

the growth or body condition of a planktivorous reef fish species posing a negligible risk of plastics 

of that size class to the study species. However, importantly, Chapter 5 also demonstrates that as 

the plastic particles become smaller relative to gape size of the fish, the rate of ingestion increases. 

Therefore, the degree to which fish are negatively impacted is likely to change in relation to the 

quantity of various size classes of plastic particles available to them for consumption. This suggests 

that risk is not static throughout the life cycle of the plastics, or organism, creating a moving target 

for managers interested in mitigating effects on marine species, and stressing the need for plastic-

item specific models that focus on high-risk plastics.  

6.3 Implications for the management of plastic pollution 

The need to manage inputs, and to reduce the impact of plastics already in the 

environment, has been internationally recognised. The United Nations has recently signed a 
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resolution for plastic pollution (UNEP, 2017). The resolution is voluntary for countries to adopt 

and it is legally non-binding, however, it will provide international governments with leverage to 

design and implement national scale legislation, to manage the issue. In Australia, plastic pollution 

is recognised as a threat to marine vertebrate life under the Environment Protection and 

Biodiversity Conservation Act 1999 (EPBC Act), which led to the development of a threat 

abatement plan for the impacts of marine debris on vertebrate marine life in 2009. This plan, and 

the EPBC Act 1999, called for coordinated strategies to examine the threats and management 

options for separate groups of animals. One such plan is the Marine Turtle Recovery Plan (Wallace 

et al., 2011), which highlights plastic ingestion and entanglement in derelict fishing gear among 

the threats with considerable knowledge gaps. Individual states within Australia have begun 

implementing specific legislation to prevent plastic pollution. For example, plastic bag bans exist 

in many states and will be implemented in Queensland along with a container refund scheme in 

July 2018 (Queensland Government, 2018). These initiatives are a welcome change to federal and 

state legislation, however, smaller municipalities have their part to play to reduce plastic pollution 

in the coastal environment.  

The spatial scale of data is an important factor to consider when developing or using 

outputs from modelling for management action. Nash (2014) suggests ecologists set spatial scales 

relevant to ecological processes when investigating environmental impacts. However, to take 

action on an environmental impact, such as plastic pollution in the marine environment, 

management agencies require information at a spatial scale that is useful for their decision-

making, i.e. within the jurisdiction at adequate spatial resolution. Managers also require data that 

allow them to equally evaluate all locations within their jurisdictions. Field data is commonly 

collected from beach clean-up events and these events are becoming more routine in many 

countries (e.g. International Coastal Clean Up). Yet they only provide information at the locations 

sampled and the locations are generally selected based on the capacity of the group organising 

the clean-up or ease of access, and they may not represent the best areas for collecting 

management-relevant information. Modelling can predict inputs and sinks for a study region, 

however, as my results show, modelling, without robust field data may not accurately represent 

the situation in complex coastal environments, or at the scale the managers require. My thesis 

demonstrates: (1) that the modelling environment exists to understand sources and dispersal, and 

there is a definite need for robust field data at local scales; and (2) field data and modelling studies 

must be used in tandem to provide multiple lines of evidence on which to base decisions. 

My results indicate that local interventions are the most effective method to reduce the 

input of plastic pollution into the local environment of the Whitsundays region. My models 
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demonstrate that the macroplastics appear to be of local origin, most likely from urban water 

ways (Chapter 4) and thus managing input at local scale is important. This means that local 

interventions could have tangible results for reducing exposure to species and habitats in localised 

areas such as the Whitsundays (Chapter 3) to macroplastic pollution. As discussed in Chapter 3 

the consequence of an individual macroplastic item may be higher than the consequence of an 

individual microplastic. In Chapter 5 I show that low consumption of microplastics result in no 

significant decline in health to planktivorous reef fish species. This finding is in agreement with 

Tosetto et al., (2017) who found negligible response to fish personality with plastic consumption 

via tropic transfer, and literature is emerging detailing the limited impact of microplastics at the 

current environmental levels (e.g. Kaposi et al., 2014; Davarpanah and Guilhermino, 2015; Ferreira 

et al., 2016). There is ever-growing literature showing the negative impact of microplastics to the 

fitness of organisms, however, often the concentrations used are far higher than those currently 

found in nature and the beads/fragments used are far smaller than size distributions commonly 

found (Lenz et al., 2016). However, it is logical that if input of plastics into the marine environment 

continues at the current rate, concentrations found in the habitats will increase and, with 

degradation, could eventually reach the levels and sizes that will have been shown to have a 

negative impact to organisms (Cole et al., 2015; Gall and Thompson, 2015; Heindler et al., 2017). 

To limit the future increase of microplastics in the environment, an effective method is to 

reduce/remove the inputs and current load of macroplastic in the environment. Doing this will 

reduce the volume of microplastics arising from macroplastic degradation.  

The reduction of input of primary microplastics (those particles that are <5 mm by design) 

is also desirable. There are methods to reduce the input of primary microplastics. For example, 

microbead bans, which require production companies to discontinue use of plastic beads in 

personal care products, have been implemented in many countries (Xanthos and Walker, 2017). 

Other options lie in technological improvements such as: 1) increasing the capacity of waste-water 

treatment facilities to remove fibres and beads from waste-water; and 2) designing mechanisms 

for domestic appliances to remove fibres from waste-water before it leaves the home. The only 

options that could be implemented at local government scale is to improve waste-treatment 

facilities, and to increase informed decisions at a consumer level, through education programs. 

However, with limited funds for management projects I suggest a focus on tackling macroplastic 

pollution. Action to prevent macroplastics is achievable. Reducing macroplastic pollution would 

have noticeable impact on local habitats, and would have a knock-on effect of reducing future 

microplastic pollution. 



  Chapter 6: General discussion 

137 
 

It is generally accepted that the most effective method of reducing macroplastic input 

from local sources is with local behaviour change initiatives. Behaviour change science is 

developing rapidly in the literature and there is strong evidence of valuable contributions and 

reductions in littering where behaviour change schemes have been undertaken (Benckendorff et 

al., 2012; Boteler et al., 2015; Spehr & Curnow, 2015; Eagle et al., 2016). Outside of littering, 

government initiatives, such as the container deposit scheme (Lifset et al., 2013), have proven to 

reduce plastic waste in the environment. The most effective method of reducing the amount of 

plastic pollution in the environment is with Integrated Solid Waste Management. This 

encompasses waste prevention, mitigation, and remediation strategies (see Modak, 2010). 

Prevention strategies include redesigning products and packaging to minimise waste, or initiating 

legislation to remove products from the waste stream, e.g. plastic bag bans. Mitigation strategies 

include recycling and disposal programmes, including container deposit schemes. Lastly, 

remediation strategies that aim to remove plastic pollution from the environment, including 

beach cleaning actives or automated systems such as waterwheels 

(http://baltimorewaterfront.com/healthy-harbor/water-wheel/ ) and other removal methods 

(e.g. http://seabinproject.com/,  or gross pollutant traps), have been shown to be effective for 

removing plastic pollution and in some cases other contaminants from the environment. Each of 

these can be implemented at localised management scales.  

The Whitsundays region has many programs already in place to remove plastics from the 

environment and educate locals and tourists about plastic pollution. The pollution sources 

identified in this thesis could provide evidence for further specific solutions to be added to 

increase the impact of these measures. One example, would be to form a strategic partnership 

with the town of Mackay, to the south of the Whitsundays management jurisdiction, which is a 

likely source of macroplastics, to incorporate pollution traps at the mouth of the river and storm 

drains in both management regions. Gross pollutant traps on all storm water outflows in the area 

could have significant influence on the amount of debris found on Whitsunday region beaches. 

Lastly, partnering with tourism operators to educate visitors that hire boats and jet skis to conduct 

independent tours of the area, to make sure they understand the consequences of disposing of 

waste while at sea. 

6.4 Key Limitations 

In this section I discuss some of the key limitation to the approach used in this thesis, I 

discuss the limitations of each chapter in the appropriate section within Chapters 2-5. Through 

this thesis I have made significant developments in the field of plastic pollution risk and dispersal 
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modelling. Any such development spawns new areas of understanding, and new avenues of 

research. There are sources of variability at all scales in predicting movement and accumulation 

of plastic pollution that may influence the model result. In an effort to include parameters that 

reflect processes that influence plastic dispersal in the natural world, I have included a number of 

parameters without local-based empirical estimates in the modelling. One example is the 

degradation parameter, which captures the time taken for macroplastics to degrade, and, in 

reality, is likely to be variable and dependent on polymer type, UV exposure, temperature, and 

biofouling. Each of these factors in turn, influences one or more of the others. This can be seen in 

the case of biofouling, which can reduce the irradiance experienced by the plastic surface, and 

some polymer types are more sensitive to UV than others (Weinstein et al., 2016). The time scale 

I used in my modelling approach was deemed applicable based on published literature (Weinstein 

et al., 2016). However, the degradation process actually produces smaller and smaller 

microplastics over a presently unknown amount of time. Determining the patterns of degradation 

of common plastic polymers when at sea and when on beaches would make a useful future 

research project. In my modelling, one macroplastic degrades into one microplastic and I suggest 

that future studies consider a more conservative degradation time, with one macroplastic creating 

many microplastics. 

Though this thesis makes good estimations with the incorporation of the wind shadow 

and reduction of resuspension in areas that are included in the wind shadow. A key limitation of 

the model is that wave dynamics are not explicitly taken into account. A wave field could be used 

in the calculation and prediction of resuspension of plastics from the coast (Isobe et al., 2014). To 

incorporate a wave field into SLIM would have required advanced manipulation of the SLIM source 

code, which was outside the scope of this thesis. Without a wave parameter it is difficult to 

accurately parameterise coastal processes, with affect the accumulation of plastics on the 

shoreline. This parameter is less important if the research project is concerned with suspended 

plastics. 

Another such source of variability is the wind-drift that acts on buoyant objects at or on 

the surface of the ocean. This parameter is often neglected in modelling plastic distributions (Isobe 

et al., 2009; Martinez et al., 2009; Kako et al., 2011; Reisser et al., 2013; Isobe et al., 2014; Maes 

and Blanke, 2015). I used a value of 2% of the wind vector as an average of the values and this is 

based on literature (Ebbesmeyer et al., 2011; Maximenko et al., 2015), and from flume 

experiments conducted at JCU’s engineering department as part of a set of honours theses 

(Dunkin, 2015; Gampe, 2015). The wind-drift experienced in nature by plastic particles is 

dependent on the cross-sectional area of the object exposed to the wind, which is influenced by 
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the object’s size, shape, buoyancy, the angle at which the object floats in the water, and if the 

object is steady or moves (as would occur with a plastic bottle which is partially filled) while 

drifting (Daniel et al., 2002). All of these factors are not consistent across all plastic objects in the 

marine environment. Instead, each object would experience a slightly different wind-drift 

coefficient acting on it. The average wind-drift value used in the modelling is adequate (Dunkin, 

2015) and based on available data, however, to accurately represent the variability in plastic 

pollution it would be necessary to use a range of values in future modelling studies. This could be 

achieved by creating a rule in the modelling that a proportion of the particles released at the start 

of each simulation are driven with a different wind-drift value. 

The time that the particles are left to mix at the beginning of the simulation, known as the 

advection time (or integration time) has been found to be a very important factor in the modelling 

of dispersive objects (Mansui et al., 2015). Therefore, another source of variability in the modelling 

is the simulation length. All my simulation lengths were chosen to be comparable to one another, 

but if I had conducted longer simulations the results may have differed. The results of Mansui et 

al., (2015) show a marked difference in the model output after three months compared to one 

year. However, the results are not directly applicable to my study area, because their study was 

conducted at the scale of the whole Mediterranean Sea which is considered to be a semi-closed 

to closed system. In contrast, the Whitsundays region of the Great Barrier Reef is much smaller 

and could be considered a semi-open system because water can flush though the study area in 

either direction. Indeed, in Chapter 4 I found large variation in the daily estimates of plastic 

accumulation. In future projects, multiple time scales should be considered. This could be 

achieved by incorporating multiple release times throughout the simulation period and running 

the scenario for longer durations. 

The risk posed by plastics to the marine environment is also dependent on the variability 

in the consequence of the interaction. The variability in consequence has many origins, for 

example the species, habitat and plastic type involved in the interaction. For animals, the size of 

the plastic compared with size of the animal’s gape, their foraging behaviour (e.g. surface or 

benthic foragers) or normal diet items, is important as it dictates the type and intensity of 

interaction (e.g. entanglement or ingestion). The size and type of the particles may also affect the 

ability of the animal to recognise plastics as a non-food type or dangerous. Plus, many animals 

would not learn from the putatively negative experiences of eating and passing plastic particles 

(Chapter 5). The learning experience is also influenced by the rate at which the animal interacts 

with the plastic, and this is further dependent on the concentration of the specific plastic type 

(colour, size, shape) in the habitat used by the animal. The interactions with habitats are less 
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complex and are dependent on the rate of accumulation and the concentration thresholds of 

negative impact. The interactions with habitats are likely to vary in time (Chapter 3), with the 

exception of coastline habitats, which were shown in Chapter 3 (Figure 3.12) to have consistent 

areas of accumulation through time. Based on the results of this thesis the risk that would be most 

predictable (have least uncertainty) is the risk of macroplastics to coastline habitats, for example 

mangrove forests. 

6.5 Opportunities for future research 

This thesis highlights many new directions for research on plastic dispersal. The most 

prominent is the need to obtain parameter values for the plastics processes included in the model. 

These values could be obtained through experimental or field-based observation. The variability 

in these parameter values for each type of plastic commonly found in the environment is also 

important to accurately model the dispersal of plastic pollution as a whole. This represents a large 

workload, which could be stratified by first focussing on the types of plastics that most often inflict 

environmental harm. Additional data on the input from external sources, for example, large cities 

further south of the study site, as well as shipping lanes, and at a large scale, the input of plastics 

to the GBR from the Coral Sea, could be used to ground-truth the modelling in a useful way. This 

could be achieved by incorporating the SLIM GBR model into a larger-scale Pacific Ocean 

hydrodynamic model that could predict the rate of flux of plastic from the Coral Sea, or south 

Queensland regions into, and then through, the GBR. Obtaining values for these parameters would 

improve the ability to model plastic dispersal at any point along the Queensland coast.  

An important avenue for future research is ground truthing particle models at this fine 

scale, ocean is drifter buoys which have been used to truth and/or train particle drift models at 

the scale of the whole ocean (e.g. van Sebille et al., 2012; 2015). However, this method is rarely 

used at a small scale, such as the Whitsunday region. Drift card experiments have been conducted 

(e.g. Walker and Collins, 1985; Steinke and Ward, 2003) providing start and end points for drifting 

objects. To ground-truth drift models, modern GPS technology could be used to understand the 

full drift pattern in fine resolution in a small area. 

There remain significant knowledge gaps in the consequences of plastic pollution. The 

consequence at a population level, and for their habitats, must be understood before an 

environmental risk assessment can be robust and fully informative. We should also attempt to 

understand what the exposure categories mean for real world consequences and therefore risk. 

An example of a project would be to investigate ingestion rates and habitat use in each exposure 
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category for a vulnerable species. For example, with marine turtles, a research project could be 

designed to explore different ingestion rates across age classes or species and understand the 

types of plastic most commonly ingested. Another option would be to conduct a water quality 

project sampling for microplastics at the same time as other contaminants in the coastal 

environment. This would be especially useful to create a link between convergence zones and 

other areas of the ocean. These convergence zones can often be observed from remote sensing 

imagery. 

6.6 Concluding remarks 

The ubiquitous and emerging nature of plastic pollution makes it difficult to manage at a 

local scale. There is growing understanding of plastic distribution at ocean and sea scale, however, 

my thesis provides the first example of local jurisdiction scale distribution predictions. With some 

modification, this technique can be used in other areas of the Great Barrier Reef or other coasts 

around the world and could also be developed for other types of pollution impacting within small 

coastal jurisdictions. As well as benefiting smaller-scale needs, my approach can be scaled up to 

provide meaningful distributions of plastics at a larger management scale, for example, the whole 

GBR, for use by a management body with a larger jurisdiction. With plastic production increasing 

exponentially, this pervasive threat will get worse without targeted management action. My thesis 

demonstrates that understanding the risks and consequences of plastic pollution at the scale of 

jurisdictional control requires a spatial multi-dimensional approach and requires multiple lines of 

evidence. The locations of sources need to be understood, especially for macroplastics, and we 

need more robust data on the physical processes that act on plastics in the marine environment. 

The locations of the interactions between plastics with habitats and organisms also change 

through time, with very few consistencies between seasons. These plastics can also affect 

organisms in different ways as the plastics break up, which also influences how they disperse and 

the likelihood of interaction. Altogether, this thesis shows that there are a multitude of processes 

affecting the fate of plastics in the environment. Physical and biological processes all influence the 

fate of plastics to varying degrees based on the plastics own properties (density, size, shape, etc.). 

These processes are all acting together, to spread plastics throughout marine and coastal 

environments. Collectively, my thesis and the new age of modelling are consistently indicating 

that the scales need to be smaller, sources need to be known and knowledge of how plastics 

behave in the water is needed. 
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"""This script will count the number of particles of each type, for each 
timestep, in a set of boxes defined in a file by the  
user.  
Producing a file with the number of particles in the box for every time step 
for each boxID in the Boxlimits file 
the box limits must be in decimal degrees in format 
<SiteID>,<MaxLat>,<MinLat>,<MaxLon>,<MinLon> with no header. 
written by Kay Critchell July 2017""" 
 
 
import os, csv 
 
def main(): 
    findFiles(r'D:\yourFileLocation', "yourLogFileName.txt", 
"yourCoordsFile.csv") #define your top directory location, logfileName and 
boxLimitsfile name 
 
def findParticles(dirpath, fileName, boxLimits): 
#initiate particle counts 
    numberOfParticles = 0 
    numberOfTag1 = 0 
    numberOfTag0 = 0 
 
    fileIn = str(dirpath + '\\' + fileName) 
    print (fileIn) 
    try: 
        fIn = open(fileIn, "r") 
        l = fIn.readline() 
        while l != "": 
            parts = l.split(" ")    
            if float(parts[2]) == 2:       
                if float(parts[3]) > float(boxLimits[4]) and float(parts[3]) < 
float(boxLimits[3]) and float(parts[4]) > float(boxLimits[2]) and 
float(parts[4]) < float(boxLimits[1]): 
                    print(l) 
                    numberOfParticles = numberOfParticles + 1 
                    print(numberOfParticles) 
                    if parts[1] == "0" or  parts[1] == "0.0\n": 
                        numberOfTag0 = numberOfTag0 + 1 
                    elif parts[1] == "1" or parts[1] == "1.0\n": 
                        numberOfTag1 = numberOfTag1 + 1     
            l = fIn.readline() 
 
    except FileNotFoundError: 
        print("file not found") 
         
    print (boxLimits[0], numberOfParticles, numberOfTag0, numberOfTag1)         
    return boxLimits[0], numberOfParticles, numberOfTag0, numberOfTag1         
      
 
 
def findFiles(topDir, logname, boxLimitsFile):     #name of the log file that 
will be saved in the same directory as this script 
    # The top argument for walk: where you define your directory 
    topdir = topDir 
    # The extension to search for 
    exten = '.txt' 
    # What will be logged 
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    results = str() 
    ignore = ['images', 'scripts', 'processed', "All"] # folders to ignore 
that are in the directory tree 
     
    limitsList = getCSVrows(boxLimitsFile) 
  
    for limit in limitsList:         
        for dirpath, dirnames, files in os.walk(topdir): 
        # Remove directories in ignore list 
        # directory names must match exactly! 
            for idir in ignore: 
                if idir in dirnames: 
                    dirnames.remove(idir) 
            print(dirnames) 
                 
            for name in files: 
                if name.lower().endswith(exten) and name.lower() != 
logname.lower() and name.lower() != "triangles.txt": 
                    siteID, numberOfParticles, numberWithTag0, numberWithTag1 
= findParticles(dirpath, name, limit) 
                    # Save to results string 
                    results += '%s\t' % os.path.join(dirpath, name) + "%s\t" 
%siteID + "%s\t" % numberOfParticles + " %s\t" % numberWithTag0 + "%s\n" % 
numberWithTag1 
                    # Write results to logfile when finished 
        with open(logname, 'w') as logfile: 
            logfile.write(results) 
     
 
def getCSVrows(fileLoc): 
    with  open(fileLoc, "r") as inFile: 
        row_list = list(csv.reader(inFile)) 
    return(row_list) 
  
     
main() 
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A2.1 Figure: Scatter plots showing the correlations for each scenario of the predicted and observed accumulation of 
microplastics. 
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A2.2 Figure: Scatter plots showing the correlations for each scenario of the predicted and observed accumulation of 
macroplastics. 
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l) 
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food 
(mg -
l) 

plastics 
(mg l-1) 

A 15A 20 0.083 0.021 0.100 0.020 0.113 0.023 0.140 0.028 0.157 0.031 0.157 0.031 0.174 0.035 
A 2A 20 0.080 0.020 0.100 0.020 0.113 0.023 0.138 0.028 0.146 0.029 0.146 0.029 0.162 0.032 
A 14A 40 0.066 0.044 0.100 0.040 0.125 0.050 0.166 0.067 0.181 0.072 0.181 0.072 0.210 0.084 
A 3A 40 0.069 0.046 0.100 0.040 0.128 0.050 0.165 0.066 0.163 0.065 0.163 0.065 0.225 0.090 
A 13A 60 0.040 0.060 0.100 0.060 0.105 0.063 0.135 0.081 0.147 0.088 0.147 0.088 0.167 0.100 
A 4A 60 0.041 0.062 0.100 0.060 0.110 0.065 0.141 0.085 0.151 0.091 0.151 0.091 0.173 0.104 
A 12A 80 0.022 0.086 0.100 0.080 0.110 0.088 0.140 0.112 0.145 0.116 0.145 0.116 0.168 0.134 
A 5A 80 0.018 0.071 0.100 0.080 0.090 0.070 0.116 0.092 0.123 0.098 0.123 0.098 0.140 0.112 
A 11A Control 0.104 0.000 0.100 0.000 0.113 0.000 0.130 0.000 0.134 0.000 0.134 0.000 0.152 0.000 
A 1A Control 0.098 0.000 0.100 0.000 0.108 0.000 0.132 0.000 0.146 0.000 0.146 0.000 0.171 0.000 
B 19B 20 0.045 0.011 0.100 0.020 0.065 0.013 0.082 0.016 0.089 0.018 0.089 0.018 0.106 0.021 
B 7B 20 0.059 0.015 0.100 0.020 0.080 0.015 0.100 0.020 0.106 0.021 0.106 0.021 0.125 0.025 
B 18B 40 0.041 0.027 0.100 0.040 0.078 0.030 0.096 0.039 0.103 0.041 0.103 0.041 0.124 0.050 
B 8B 40 0.035 0.023 0.100 0.040 0.063 0.025 0.070 0.028 0.076 0.030 0.076 0.030 0.093 0.037 
B 17B 60 0.035 0.053 0.100 0.060 0.093 0.055 0.122 0.073 0.138 0.083 0.138 0.083 0.175 0.105 
B 9B 60 0.030 0.045 0.100 0.060 0.083 0.048 0.099 0.059 0.106 0.063 0.106 0.063 0.127 0.076 
B 10B 80 0.015 0.058 0.100 0.080 0.075 0.058 0.090 0.072 0.093 0.074 0.093 0.074 0.108 0.087 
B 16B 80 0.013 0.052 0.100 0.080 0.068 0.055 0.086 0.069 0.088 0.071 0.088 0.071 0.107 0.085 
B 20B Control 0.091 0.000 0.100 0.000 0.110 0.000 0.137 0.000 0.149 0.000 0.149 0.000 0.185 0.000 
B 6B Control 0.062 0.000 0.100 0.000 0.070 0.000 0.087 0.000 0.094 0.000 0.094 0.000 0.110 0.000 
C 2C 20 0.125 0.030 0.150 0.030 0.157 0.031 0.163 0.033 0.163 0.033 0.163 0.033 0.163 0.033 
C 7C 20 0.118 0.028 0.138 0.028 0.145 0.029 0.154 0.031 0.158 0.032 0.163 0.033 0.163 0.033 
C 3C 40 0.098 0.065 0.163 0.065 0.163 0.065 0.163 0.065 0.163 0.065 0.163 0.065 0.163 0.065 
C 8C 40 0.090 0.059 0.148 0.058 0.148 0.059 0.158 0.063 0.164 0.065 0.163 0.065 0.163 0.065 
C 4C 60 0.060 0.093 0.150 0.090 0.152 0.091 0.162 0.097 0.163 0.098 0.163 0.098 0.163 0.098 
C 9C 60 0.060 0.090 0.143 0.085 0.146 0.088 0.154 0.093 0.162 0.097 0.163 0.098 0.163 0.098 
C 10C 80 0.033 0.130 0.150 0.120 0.162 0.129 0.163 0.130 0.163 0.130 0.163 0.130 0.163 0.130 
C 5C 80 0.030 0.118 0.135 0.108 0.144 0.115 0.154 0.123 0.163 0.130 0.163 0.130 0.163 0.130 
C 1C Control 0.145 0.000 0.140 0.000 0.145 0.000 0.149 0.000 0.156 0.000 0.162 0.000 0.163 0.000 
C 6C Control 0.140 0.000 0.135 0.000 0.142 0.000 0.148 0.000 0.153 0.000 0.162 0.000 0.163 0.000 
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A3.2 Table: Feeding regime for the particle size experiment 

Tank 
Number 

Fish 
Size 
Class 

Plastic 
size 
class 

Food 
(mg l-1) 

plastics 
(mg l-1) 

3 Small Small 0.065 0.05 
4 Large Large 0.14 0.1 
5 Small Small 0.0775 0.06 
6 Large Large 0.1625 0.13 
7 Large Medium 0.15 0.12 
8 Small Medium 0.1 0.08 
9 Small Small 0.085 0.0675 

10 Small Large 0.1325 0.105 
11 Small Large 0.135 0.1075 
12 Large Large 0.1625 0.13 
13 Large Medium 0.1475 0.1175 
14 Small Medium 0.085 0.0675 
15 Large Small 0.1625 0.13 
16 Large Medium 0.1625 0.130 
17 Large Small 0.1625 0.130 
18 Small Medium 0.095 0.075 
19 Large Small 0.1625 0.130 
20 Small Large 0.11 0.088 

 

 

The different clutches of juvenile A. polyacanthus had drastically different length to weight 
relationships. When we applied a linear model to the data the clutches were statistically 
different from each other therefore clutch was kept as a variable in subsequent analyses. 

A3.11 Table: Table of ANOVA results with the response variable initial weight 

                   Df Sum Sq Mean Sq F value Pr(>F)     

Initial Length 1 20.1960 20.1960 3632.957 < 2.2e-16 

Clutch 2 0.2187 0.1093 19.668 5.440e-08 

Initial Length : 
Clutch 

2 0.3750 0.1875 33.727 4.617e-12 

Residuals 106 0.5893 0.0056       
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A3.12 Figure: Length weight relationships of the 3 clutches at the start of the experiment. 

 

A3.13 Table: Coefficients of the three clutches 

Clutch Intercept Slope 

A -0.54460085         0.04746250 

B -1.06841405        0.03484301 

C -2.73881573 0.08678282 
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