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When electric current flows through a molecular junction, the molecule constantly charges and dis-
charges by tunneling electrons. These charging and discharging events occur at specific but random
times and are separated by stochastic time intervals. These time intervals can be associated with the
dwelling time for a charge (electron or hole) to reside on the molecule. In this paper, the statistical
properties of these time intervals are studied and a general formula for their distribution is derived. The
theory is based on the Markovian master equation which takes into account transitions between the
vibrational states of charged and neutral molecules in the junction. Two quantum jump operators are
identified from the Liouvillian of the master equation—one corresponds to charging of the molecule
and the other discharges the molecule back to the neutral state. The quantum jump operators define
the conditional probability that given that the molecule was charged by a tunneling electron at time
t, the molecule becomes neutral at a later time t + τ discharging the electron to the drain electrode.
Statistical properties of these time intervals τ are studied with the use of this distribution. Published
by AIP Publishing. https://doi.org/10.1063/1.5049770

I. INTRODUCTION

Single-molecule electronics is the active field of research
in chemical physics which has recently seen many advances.1,2

Molecular electronics has been promoted for decades as
something to replace silicon based electronics (the dreams
that never really came through), but rather it has success-
fully grown into an integral part of modern chemical physics
that gives unique and otherwise unavailable opportunities to
study the fundamental issues of quantum mechanics and non-
equilibrium statistical physics of individual electron transfer
events.2–5

One of the main feature that distances molecular elec-
tronics from other nanoscale electron transport systems is the
structural “softness” and as a consequence the possibility to
observe current-induced “chemistry.”6–19 The electric current
is an average quantity—it tells us how much energy is dis-
sipated per unit time in the molecule, but current-triggered
reactions do not only depend on the power pumped into the
molecule but also on the dwelling time allowed for extra
electrons (or holes) to reside on the molecular bridge (if the
molecule remains charged for a considerable time when the
electric field between electrodes has a chance to produce a
significant deformation of the molecular geometry).

Electric current is a series of single electron quantum
tunneling events separated by random time intervals, which
means that the molecular bridge undergoes the continuous
sequence of charging and discharging events also separated
by random time intervals. This paper focuses on the sta-
tistical properties of these time intervals and addresses the
following questions. How long does the fluctuating charge
stay on the molecule when the current flows through it? What
is the distribution of these times and what are the statistical

properties of this distribution? How do the vibrational dynam-
ics and the coupling between electronic and vibrational
degrees of freedom influence the distribution of the charging
times?

This work is based on the ideas of the waiting time distri-
bution (WTD)—the theoretical approach to study statistics of
individual electron tunneling events in nanoscale systems.20,21

WTD is an extension of widely used in quantum transport
methods of full counting statistics.22–32 WTD has recently
gained a significant popularity in quantum transport research
due to its intuitively clear interpretation and flexibility in the
design of various extensions for a wide range of statistical
applications.33–45 Traditional WTD is a conditional proba-
bility distribution to observe electron transfer event in the
detector electrode at time t + τ given that an electron transfer
was detected in the same electrode at earlier time t. WTDs are
measured experimentally using time-resolved charge detec-
tion techniques for single-electron tunneling.46 The charge
detection is usually implemented by monitoring changes in
the electric current in auxiliary quantum point contact capac-
itively coupled to the main system.46–50 Most experiments
have been conducted at ultra-low temperatures (from mK to
several K), although room temperature measurements were
reported for a carbon nanotube by monitoring the optical blink-
ing of semiconductor nanocrystals which is induced by the
charging/discharging events in the nanonotube.51 The main
limitation of all single-electron counting experimental meth-
ods is the restriction of counting no more than of approximately
103 electrons per second (that is very low electric current).
The interesting hybrid approach was proposed to extract WTD
directly from low-order correlation experimental measure-
ments via theoretical post-processing using continuous matrix
product state tomography.52
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In our recent studies,38,45 we used WTD to analyze the
electron transport through molecular junctions with electron-
vibration coupling. In this paper, the WTD notion is adopted
to study different kinds of probability distribution which is
related to the temporal fluctuations of the molecular charg-
ing state rather than electric current, namely, we will define
and explore the conditional probability distribution that given
that the molecule was charged by the tunneling electron
at time t, the molecule becomes neutral at a later time
t + τ discharging an electron to the drain electrode. This
type of WTD follows the same philosophy as tunneling
and residence time distributions explored in papers.42,43 This
distribution will be used in our paper to study statistical
properties of temporal fluctuations of molecular charging
states in a current-carrying junction with electron-vibration
interaction.

The paper is organised as follows. Section II describes the
master equations, defines charging and discharging quantum
jump operators, and gives the derivation of main equations for
WTDs. In Sec. III, we present analytical and numerical study
of statistical properties of the waiting times between charging
and discharging events in a molecular junction with electron-
vibration interaction. Section IV summarises the main results
of the paper.

We use natural units for quantum transport throughout the
paper, ~ = kB = e = 1.

II. THEORY

To have a specific model, let us suppose that when an
electron is transferred to the molecule from the electrodes, the
molecule becomes negatively charged, and when this electron
leaves, the molecule comes back to the neutral state. This sce-
nario corresponds to the case of electron transport through a
single resonant level above the equilibrium Fermi energy of the
electrodes. The opposite case of a molecular bridge acquiring
a positive charge (transport through a resonant level which is
below the Fermi energy) can be considered likewise and we
will simply give the final expression for this process for the
comparison in the end of this section.

We begin with the following intuitively obvious master
equation:

Ṗ0q(t) =
∑
αq′
Γ
α
0q,1q′P1q′(t) − Γ

α
1q′,0qP0q(t), (1)

Ṗ1q(t) =
∑
αq′
Γ
α
1q,0q′P0q′(t) − Γ

α
0q′,1qP1q(t), (2)

where P0q(t) is the probability that the molecule is neutral
and occupied by q vibrational quanta at time t, P1q(t) is
the probability that the molecule is charged and occupied
by q vibrational quanta at time t. The transition rates and
the model are explained in Fig. 1. The rate Γα0q′,1q describes
the transition from the charged state and q vibrations to the
electronically neutral state with q′ vibrations by the electron
transfer from the molecule to α = S, D electrode and the
rate Γα1q′,0q describes the transition to the charged state from
the originally neutral molecule by electron transfer from α
electrode simultaneously changing the vibrational state from
q to q′.

FIG. 1. Sketch of the model. Γαmq,nq′ are the rates for the molecular charg-
ing or discharging processes by the transition of electron to/from source
α = S and drain α = D electrodes by changing the molecular electronic state
from n to m and simultaneously changing the molecular vibrational state from
q′ to q.

We will work with the probability vector ordered such
that the probabilities to observe the molecule in neutral and
charged states are grouped in pairs of equal number of the
vibrational quanta:

P(t) =



P00(t)

P10(t)

P01(t)

P11(t)
...

P0N (t)

P1N (t)



, (3)

where N is the total number of vibrational quanta included into
the calculations. It is useful for our derivations to define the
identity vector of length 2N

I =



1
1
1
1
...
1
1



. (4)

The normalisation of the probability is given by the scalar
product

(I, P(t)) = 1. (5)

Using P(t), we write the master equation (1) and (2) in a
matrix form

Ṗ(t) = LP(t), (6)

whereL is the Liouvillian operator. From the Liouvillian oper-
ator, we can identify two quantum jump operators correspond-
ing to the processes of molecular charging and discharging
by tunneling electrons. These quantum jump operators are
2N × 2N matrices which are determined by considering their
actions on the probability vector. For our discussion of charg-
ing and discharging processes, it is sufficient to define the two
jump operators: the jump operator Jd for transferring an elec-
tron from the molecule to the drain electrode (discharging in
our case)



164105-3 Daniel S. Kosov J. Chem. Phys. 149, 164105 (2018)

(JdP(t))nq = δn0

∑
q′
Γ

D
0q,1q′P1q′(t) (7)

and the operator Jc which describes electron transfer from the
source electrode to the molecule (charging)

(JcP(t))nq = δn1

∑
q′
Γ

S
1q,0q′P0q′(t). (8)

Each quantum jump is associated with the corresponding quan-
tum measurement operator. If P(t) is the probability vector
before the measurement, then after the quantum jump detection
it collapses to the vector53

Mc/dP(t) =
Jc/dP(t)

(I, Jc/dP(t))
, (9)

where Mc/d is the quantum measurement operator related to
the jump Jc/d .

We first extract from the total Liouvillian the part which
generates the evolution without electron transfer from the
molecule to the drain electrode

L0 = L − Jd (10)

and re-write master equation (6) as

Ṗ(t) = (L0 + Jd)P(t). (11)

Next, (11) is converted to the integral equation

P(t) = eL0tP(0) +
∫ t

0
dt1eL0(t−t1)JdP(t1), (12)

which then is resolved as a series

P(t) = eL0tP(0) +
∫ t

0
dt1eL0(t−t1)JdeL0t1 P(0) + · · · .

We truncate this series at the first integral and that is sufficient
to define the required time distributions. The next order terms
in this expansion can be considered to define higher order
probability distributions which describe correlations between
two and more waiting times; for detailed discussion, we refer
to Appendix A in Ref. 45.

The initial probability vector is chosen as

P(0) = McP, (13)

where P describes the non-equilibrium steady state. This
choice of the initial state implies that the charging of the
molecule by an electron transfer from the source electrode
is detected at time t = 0 in the steady state regime and then we
start to monitor the system for discharging events

P(t) = eL0tMcP +
∫ t

0
dt1eL0(t−t1)JdeL0t1 McP. (14)

Using electron detection operator (9), we rewrite (14) in a form
which explains the probabilistic meanings of the integral term
and, consequently, enables extraction of an expression for the
probability distribution of the time delay between charging and
discharging events

P(t) = eL0tMcP +
∫ t

0
dt1

(I, JdeL0t1 JcP)
(I, JcP)

eL0(t−t1)MdeL0t1 McP.

(15)

Let us now interpret (15). The first term, eL0tMcP, is the contri-
bution to the probability vector from all measurements where
no electron transfer from the molecule to the drain electrode
occurs up to time t after the initial molecular charging at time
t = 0. The physical meaning of the integral term in (15) is
deduced using the following arguments.45,54–56 The molecule
is charged by transferring an electron into the molecule from
the source electrode at time t = 0 (term McP), then no detec-
tion of an electron transfer to the drain electrode occurs up
to time t1 (“idle” evolution operator eL0t1 ), then the detec-
tion of the discharging of the molecule by transferring an
electron to the drain electrode is observed at time t1 (quan-
tum measurement operator Md), and finally the system “idle”
without electron transfer up to time t. Therefore, the pre-factor
(I, JdeL0t1 JcP)/(I, JcP) should be understood as the probability
of observing this process.

The main result of this section is summarized in the equa-
tion below. The distribution of waiting times between charging
and discharging events in the molecular junction is

w(t) =
(I, JdeL0tJcP)

(I, JcP)
. (16)

The derivations for fluctuating positive charge (transport
through highest occupied molecular orbital resonant level) can
be performed along exactly the same lines and give

w(t) =
(I, JceL0tJdP)

(I, JdP)
. (17)

These distributions are conceptually similar to tunneling and
residence time distributions proposed for electron transport
through a single resonant level,42,43 though we use different
definition of the “idle” Liouvillian here. It is instructive to
contrast definitions (16) and (17) with standard WTD used in
electron transport theory which is a conditional probability to
observe the electron transfer in the detector electrode given
that an electron was detected in the same detector electrode at
earlier time (I, JdeL0tJdP)/(I, JdP).20

We would like to make an important note on the range
of validity of the developed theory. The expressions for WTD
derived here technically work for bidirectional and unidirec-
tional electron transport. However, the rigorous interpretation
of (16) and (17) as conditional distributions of delay times
between charging and discharging events is possible only in
the absence of the electron back-tunneling against the aver-
age current flow (tunneling from the drain electrode to the
molecule or from the molecule to the source electrode). If the
back-tunneling is not suppressed by the choice of the applied
voltage and other parameters of the model, the charging events
from the reverse tunneling electrons become physically present
but they are concealed inside the idle time-evolution operator
eL0t and are not being explicitly monitored in (16) and (17). For
the case of bidirectional current, one should think about WTDs
given by (16) and (17) as conditional distribution of waiting
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time between events of electron tunneling to the drain elec-
trode and electron tunneling from the source electrode (with
back-tunneling charging and discharging events covert in the
waiting time intervals).

III. MODEL CALCULATIONS

Our study of statistical properties of time delays sepa-
rating charging and discharging events will be based on the
following idealised model. The molecule is attached to two
macroscopic leads (source and drain) held at different chemi-
cal potentials and is represented by a single molecular orbital
linearly coupled to local vibration. The total Hamiltonian of
molecular junction is

H = Hmolecule + Helectrodes + HT . (18)

The molecular Hamiltonian is

Hmolecule = ε0a†a + ωb†b + λa†a(b† + b), (19)

where ε0 is the energy or the molecular orbital, ω is the vibra-
tional frequency, and λ is the strength of electron-vibration
coupling. a†(a) creates (annihilates) an electron on molecular
orbital, and b+(b) is a bosonic creation (annihilation) operator
for the molecular vibration.

Electrodes consist of noninteracting electrons

Helectrodes =
∑
kα

εkαa†kαakα, (20)

where a†kα creates an electron in the single-particle state k of
α electrode and akα is the corresponding electron annihilation
operator. The electron tunneling is described by

HT =
∑
kα

(tkαa†kαa + h.c), (21)

where tkα are the tunneling amplitudes.
The Lang-Firsov unitary rotation (polaron transforma-

tion) of molecular operators57 is used to remove electron-
vibration coupling from the molecular Hamiltonian

a = ãeν(b̃†−b̃), b = b̃ + νã†ã, (22)

where ã†(ã) and b̃†(b̃) are new creation (annihilation) opera-
tors for the molecular electron and vibration. The molecular
Hamiltonian becomes

Hmolecule = ε ã†ã + ωb̃†b̃, (23)

where the molecular orbital energy ε includes the polaron shift
ε = ε0 − λ

2/ω. The Hamiltonian for the electrodes is invari-
ant under Lang-Firsov rotation and the tunneling interaction
becomes

HT =
∑
kα

(tkαe−
λ
ω (b̃†−b̃)a†kαã + h.c). (24)

Now, after Lang-Firsov transformation, the molecular Hamil-
tonian (23) is diagonal. Next, the application of the sequence
of approximations, the Born approximation (keeping terms up
to second order in HT in the Liouville equation for the reduced
density matrix), the Markov approximation (assumption that
the correlation functions of the electrodes decay on a time

scale much faster than tunneling events), and the secu-
lar approximations (amounts to neglect coherences between
charge states of the molecule), leads to the master equation (1)
and (2) with the following transition rates:58

Γ
α
0q′,1q = γ

α |Xq′q |
2 (1 − fα[ε − ω(q′ − q)]

)
(25)

and

Γ
α
1q′,0q = γ

α |Xq′q |
2fα[ε + ω(q′ − q)]. (26)

The rates depend on Fermi-Dirac occupation numbers for the
electrode states f α, Franck-Condon factor Xqq′ , and electronic
level broadening function γα. The Franck-Condon factor

Xqq′ = 〈q|e
−λ/ω(b†−b) |q′〉 (27)

is determined by the strength of the electron-vibration
coupling λ.

Master equations (1) and (2) describes non-equilibrium
dynamics of the molecular vibrations and this fully non-
equilibrium case will shortly be considered numerically. First,
we take the limit where the vibration is maintained in ther-
modynamic equilibrium at some temperature T ; it enables us
to obtain analytical expressions for the probability distribu-
tions. This limit physically means that the molecular vibration
is attached to its own bath, which can be, for example, a sol-
vent around the molecular junction or surface phonons in metal
electrodes.

To implement this limit, we use the following separable
ansatz for the probabilities58

Pnq(t) = Pn(t)
e−qω/T

1 − e−ω/T
, (28)

which assumes that the vibration maintains the equilibrium
distribution at all time. The master equation (1) and (2) is
reduced to the evolution equation for the probabilities to
observe the molecule in neutral and charged states, P0 and
P1, respectively,

d
dt

[
P0

P1

]
=

[
−Γ10 Γ01

Γ10 −Γ01

] [
P0

P1

]
,

where the vibration averaged rates are defined as

Γ
α
mn =

∑
qq′
Γ
α
mq,nq′

e−q′ω/T

1 − e−ω/T
(29)

and the total rates include contributions from the source and
drain electrodes Γmn =

∑
α Γ

α
mn. We write discharging and

charging quantum jump operators in a matrix form and also as
a dyadic product of two vectors

Jd =

[
0 ΓD

01
0 0

]
= ΓD

01

[
1
0

] [
0 1

]
, (30)

Jc =

[
0 0
ΓS

10 0

]
= ΓS

10

[
0
1

] [
1 0

]
. (31)

Next, straightforward vector algebra brings the WTD between
charging and discharging events to

weq(τ) = ΓD
01

[
0 1

]
eL0τ

[
0
1

]
, (32)
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where

L0 = L − Jd =

[
−Γ10 ΓS

01
Γ10 −Γ01

]
. (33)

Here the “eq” subscript in the time distribution indicates the
equilibrium molecular vibration (and, of course, electrons
are still in non-equilibrium). This expression can be further
evaluated and brought to the following analytic form:

weq(τ) =
ΓD

01

2Z

{
(Z + Γ01 − Γ10)e−(Z+Γ01+Γ10)t/2

+ (Z + Γ10 − Γ01)e−(Γ01+Γ10−Z)t/2
}
, (34)

where

Z =
√

(Γ01 − Γ10)2 + 4Γ10Γ
S
01. (35)

The bi-exponential dependence of the distribution function is a
consequence of rare extreme events, electron tunneling against
the current flow from the molecule to the source electrode or
from the drain electrode back to the molecule. Suppressing the
back-scattering electron transfer,

Γ
D
10 → 0, ΓS

01 → 0, (36)

yields single-exponent WTD

weq(τ) = ΓD
01e−Γ

D
01τ . (37)

Figure 2 shows the WTDs for between molecular charg-
ing and discharging processes computed for different values
of the electron-vibration coupling strength. WTDs for equi-
librated vibration are calculated using (34) and fully non-
equilibrium WTDs are computed numerically via (16). All
distributions attain their maximum values at τ = 0; therefore
the mode waiting times between charging and discharging

FIG. 2. WTD between molecular charging and discharging events computed
for different values of the electron-vibrational coupling strength: (a) λ = 1,
(b) λ = 2, and (c) λ = 3. Parameters used in calculations: ω = 1, γS = γD
= 0.01, T = 0.05, ε = 0.1, and V sd = 4. All energy values are given in units
of ω.

process are always zero. It indicates that the short time behav-
ior of time delays between charging and discharging events
is dominated by the Poisson point process noise. It is not
clear at the moment if this short time behavior is merely a
result of approximations used to derive the underlying mas-
ter equation (Markov and secular approximations, in partic-
ular). The electron-vibrational interaction has the opposite
effect on the behavior of time distributions for equilibrium and
non-equilibrium molecular vibrations. The increasing strength
of electron-vibrational interaction significantly squeezes the
non-equilibrium time distribution, but the equilibrium one
is just sightly stretched to the longer than average waiting
times. These different behaviors can be understood based on
the following considerations. In the equilibrium regime, the
molecular vibrational state is forced to be populated to a
given temperature irrespective to electronic degrees of free-
dom and, as a result, the time distribution function (when
scaled by its average waiting time 〈τ〉) shows only small
dependence on the strength of the electron-vibration coupling.
This means that in the case of forcefully equilibrated molec-
ular vibrations, the strength of the electron-vibration cou-
pling affects mostly the average value leaving the other WTD
parameters intact. Contrarily, in the non-equilibrium case, the
different numbers of vibrational quanta can be dynamically
excited and de-excited by tunneling electrons and, therefore,
the electron-vibration interaction plays a critical role for these
processes.

Figure 3 shows the average time delay between molecular
charging and discharging events as a function of the voltage
bias for different strengths of the electron-vibration coupling.
The steps in the average time is related to the resonant exci-
tations of the vibration states by electric currents which occur
when the voltage passes through an integer multiple of the
vibrational energy. The temperature effects smooth the edges

FIG. 3. Average waiting time between charging and discharging processes as
a function of applied voltage V sd computed for different values of electron-
vibrational coupling λ. Parameters used in calculations (all energy values are
given in units of ω): ω = 1, γS = γD = 0.01, T = 0.05, ε = 0.1. The voltage
bias V sd is given in ω and the time is measured in periods of the molecular
vibration 2π/ω.
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of these steps. This behavior reflects the staircase dependence
of the electric current on the voltage;58 the sharp increase
of charging state lifetimes in the regime of strong coupling
and low voltage corresponds to the Franck-Condon blockade
suppression of the electric current.59

Figure 4 shows the relative standard deviation (RSD)

RSD =

√
〈τ2〉 − 〈τ〉2

〈τ〉
(38)

computed for different strengths of electron-vibrational cou-
pling as a function of applied voltage bias. Notice that math-
ematically, a single exponential arbitrary distribution has
always RSD = 1, irrespective of the parameters. At small
voltages, the RSDs are greater than 1 for both equilibrium
and non-equilibrium vibrational dynamics indicating a multi-
exponential character of the WTDs—this is due to the admix-
ture of back-scattering electron transfers from the molecule
back to the source electrode or from the drain electrode to
the molecule. When the backscattering processes are sup-
pressed by the voltage bias (V sd & 0.5), the RSD becomes
exactly 1 for the equilibrium vibrations which means that
weq(τ) is reduced to a single exponential form (37). The WTD
for non-equilibrium vibrations also becomes single exponen-
tial in the voltage range 0.5 . V sd . 1.5 since here the
backscattering processes are already suppressed by the voltage
bias but inelastic vibrational channels for electron transport
have not been opened yet. The further increase of voltage
above the excitation threshold for inelastic channels leads to
the increased RSD, which means that the non-equilibrium
WTD becomes a multi-exponential (i.e., multichannel)
distribution.

FIG. 4. Relative standard deviation (38) as a function of applied voltage V sd
computed for different values of the electron-vibrational coupling strength:
(a) λ = 1, (b) λ = 2, and (c) λ = 3. Parameters used in calculations (all energy
values are given in units ofω):ω = 1, γS = γD = 0.01, T = 0.05, ε = 0.1. The
voltage bias V sd is given in ω.

The numerical calculations elucidate the origin of small
spikes in the RSD voltage dependence seen in Fig. 4 for the
non-equilibrium vibrations. These spikes occur only at the
opening of new vibrational transport channels and they are
due to electron backscattering events governed by the rates
ΓD

1q,0q′ and ΓS
0q,1q′ with q, q′ > 0. If these rates are set to zero,

the RSD spikes vanish. The parallel can be drawn with the
well-known phenomena in electron current noise—the noise
is small when the single channel dominates the transport and
grows once the electron transport is distributed along several
channels.

IV. CONCLUSIONS

We have developed a theoretical approach to compute sta-
tistical distributions of waiting times between charging and
discharging process in a molecular junction with electron-
vibration interactions. The approach is based on the use of
the Markovian master equation with the exact treatment of
electron-vibration interactions to describe electron transport
through a molecular junction. Two quantum jump operators
responsible for molecular bridge charging and discharging
were extracted from the Liouvillian of the master equation.
These jump operators were used to develop WTD for time
delays between charging and discharging events. The statis-
tics of these events were studied analytically and numerically
for a model molecular junction described by the Holstein
Hamiltonian.

The main observations are as follows:

• For the case of equilibrium vibrations, the distribu-
tion of waiting times between molecular charging and
discharging processes is bi-exponential—the dominant
exponent represents the electron transport from the
molecule to the drain electrode, while the other expo-
nent reflects the presence of the rare (at high voltage)
electron tunneling events where an electron is moving
against the average electric current flow.

• The WTDs between charging and discharging events
have distinct dependence of the strength of electron-
vibration coupling. For weak electron-vibration cou-
pling (λ = 1), there is not much difference between
WTDs for equilibrium and non-equilibrium vibra-
tions, whereas as the strength of electron-vibration
coupling grows (λ = 2, 3), the non-equilibrium
WTD narrows down to its mode time (τ = 0),
but equilibrium WTD spreads to the much longer
than its average waiting times. Once scaled by their
average waiting times, the equilibrium WTD shows
much less dependence on λ than its non-equilibrium
counterpart.

• Analysis of the WTDs using RSD (the noise-to-signal
ratio for measuring the average waiting time between
charging and discharging processes) shows that dynam-
ical openings of elastic and inelastic vibrational trans-
port channels by the increasing voltage bias lead to sig-
nificant increase of the RSD (>1) for non-equilibrium
vibrational dynamics indicating the multi-exponential
nature of non-equilibrium WTD.
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