Disentangling causes of seasonal infection prevalence patterns: tropical tadpoles and chytridiomycosis as a model system

Sapsford, Sarah J., Alford, Ross A., and Schwarzkopf, Lin (2018) Disentangling causes of seasonal infection prevalence patterns: tropical tadpoles and chytridiomycosis as a model system. Diseases of Aquatic Organisms, 130 (2). pp. 83-93.

[img]
Preview
PDF (Published Version) - Published Version
Download (299kB) | Preview
View at Publisher Website: https://doi.org/10.3354/dao03269
 
7
6


Abstract

Identifying the factors that affect pathogen prevalence is critical to understanding the effects of wildlife diseases. We aimed to examine drivers of seasonal changes in the prevalence of infection by the amphibian chytrid fungus Batrachochytrium dendrobatidis in tadpoles. Because tadpoles may be important reservoirs for this disease, examining them will aid in understanding how chytridiomycosis affects entire amphibian populations. We hypothesized that temperature is a strong driver of prevalence of Bd in tadpoles, and the accumulation of infection as tadpoles become larger and older also drives prevalence in this system. We studied Litoria rheo-cola, a tropical rainforest stream frog with seasonal recruitment of annual tadpoles, and surveyed 6 streams in northeastern Queensland, Australia. Comparisons among models relating infection status to stream type, season, their interaction, tadpole age, and water temperature showed that age explained a large portion of the variance in infection status. Across sites and seasons, larger, older tadpoles had increased mean probabilities of infection, indicating that a large component of the variation among individuals was related to age, and thus to cumulative infection risk. Our results indicate that in systems with annual tadpoles, seasonal changes in infection prevalence may be strongly affected by seasonal patterns of tadpole growth and development in addition to stream type, season, and water temperature. These effects may then influence prevalence of infection in terrestrial individuals in species that have relatively frequent contact with water. This reinforces the need to integrate studies of the drivers of pathogen prevalence across all host life history stages.

Item ID: 55945
Item Type: Article (Research - C1)
ISSN: 1616-1580
Keywords: Batrachochytrium dendrobatidis, cumulative risk, disease dynamics, life stage, stream ecology, tropical systems
Funders: Australian Research Council (ARC), Powerlink QLD, James Cook University (JCU)
Projects and Grants: ARC DP0986537, JCU Graduate Research Scheme
Date Deposited: 24 Oct 2018 09:57
FoR Codes: 41 ENVIRONMENTAL SCIENCES > 4104 Environmental management > 410401 Conservation and biodiversity @ 100%
SEO Codes: 96 ENVIRONMENT > 9604 Control of Pests, Diseases and Exotic Species > 960406 Control of Pests, Diseases and Exotic Species in Fresh, Ground and Surface Water Environments @ 100%
Downloads: Total: 6
Last 12 Months: 5
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page