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We present a theoretical approach to solve the Markovian master equation for quantum transport with
stochastic telegraph noise. Considering probabilities as functionals of a random telegraph process, we
use Novikov’s functional method to convert the stochastic master equation to a set of deterministic
differential equations. The equations are then solved in the Laplace space, and the expression for the
probability vector averaged over the ensemble of realisations of the stochastic process is obtained.
We apply the theory to study the manifestations of telegraph noise in the transport properties of
molecular junctions. We consider the quantum electron transport in a resonant-level molecule as well
as polaronic regime transport in a molecular junction with electron-vibration interaction. Published
by AIP Publishing. https://doi.org/10.1063/1.5033354

I. INTRODUCTION

Recently, there have been significant experimental and
theoretical interest in studying the fluctuations of the electric
properties of molecular junctions.1–16 There are two distinctly
different types of stochastic fluctuations in current-carrying
molecular junctions. On the fundamental level, there is always
noise due to the probabilistic nature of quantum mechanics.17

Moreover, the electron transport in molecular junctions often
demonstrates random switching of the electric current between
multiple different values due to the presence of localised
electronic states, various geometric stochastic conformational
switching, and current-triggered irregular motion of interface
atoms.18–22

The scope of theoretical work on telegraph noise in steady
state quantum transport is still very limited.23–26 The reso-
nant electron tunneling through a “two-level fluctuator” was
studied more than 20 years ago using Green’s function meth-
ods.23,24 Then, only recently, Gurvitz et al. described both
time-dependent and steady state electric current through the
single-electron transistor with random Markovian jumps of
the single-electron energy level.25 The approach, which incor-
porates telegraph noise into Keldysh nonequilibrium Green’s
functions, was proposed last year to study quantum heat
transport through a single fluctuating level electronic junc-
tion.26 In this paper, we develop a statistical theory of electron
transport in molecular junctions with time-varying param-
eters, which can switch stochastically between two differ-
ent values (telegraphic noise). We work with the Markovian
master equation and we incorporate the telegraph process
into electron transfer rates—it results in the stochastic master
equation. The stochastic differential equations, which repre-
sent the master equation with telegraph noise, are converted
to the closed system of deterministic differential equa-
tions by using Novikov’s method of stochastic functionals.27

The method was first proposed by Novikov in 1964 in
the theory of turbulence27 and then developed in detail by

Klyatskin in the series of monographs.28–30 A similar
approach was recently employed to study the electron trans-
port through a single fluctuating energy level.25 Telegraph
stochastic processes considered in this paper are closely
related to Markovian kinetic equations with the Keilson-
Storer kernel,31 which have many applications in chemical
kinetics.32–37

This paper is organised as follows. Section II describes the
solution of the general Markovian master equation with rates,
which depend on a stochastic telegraph process. In Sec. III, we
apply the theory to the problem of electron transport through a
molecular junction: first, we consider a simple case of a single
resonant molecular orbital and, second, we discuss the tele-
graph noise in a molecular junction with electron-vibrational
interaction. Section IV summarises the main results of the
paper.

We use natural units for quantum transport throughout the
paper: ~ = kB = e = 1.

II. MARKOVIAN MASTER EQUATION
WITH TELEGRAPH NOISE

In this section, we consider a general problem of finding
the solution for the master equation with time dependent rates
which undergo jumps between two different values at specific
but ransom times (telegraph noise). We discuss general theory
first (applicable to any Markovian dynamics with telegraph
noise) and then apply the theory to quantum electron trans-
port through molecular junction in Sec. III. We begin with the
Markovian master equation

Pk(t) =
∑

k′
Wkk′Pk′(t), (1)

where Pk(t) is the probability of observing our system in state
k at time t and W kk′ is the transition probability per unit time
(rate) from state k ′ to state k. In matrix form, master equation
(1) can be compactly written as
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dP(t)
dt
=WP(t). (2)

Suppose that the parameters of the system experience
some stochastic variations, which result in the telegraph noise
in the rates of the master equation. The master equation
becomes

dP(t)
dt
=WP(t) + ξ(t)AP(t). (3)

Here function ξ(t) describes the stochastic telegraph noise pro-
cess, the function switches stochastically between two values
as time progresses

ξ(t) = γ(−1)n(0,t), (4)

where n(t, t ′) is the random sequence of integer numbers
describing the number of telegraph jumps within the time
interval [t, t ′].30 It means that the dynamics of the probabil-
ities is governed by the time-dependent matrix that switches
stochastically between W + A and W � A, and the probability
vector itself P(t) becomes a stochastic function of time. The
matrix A is not completely arbitrary, it should have two general
properties of W-matrices of a Markovian master equation38

Wkk′ ± γAkk′ ≥ 0 for k , k ′ (5)

to preserve the positivity of the probabilities and∑
k

Akk′ = 0 for any k ′ (6)

to maintain the proper normalization of the probability vector
at each moment of time despite of the stochastic discontinuous
changes of the rate matrix.

We assume that the distribution of times at which telegraph
jumps to occur is the Poisson point distribution. It means that
the probability to observe n jumps during the time interval
[t, t ′] is

pn(t,t′)=n =
(α(t − t ′))n

n!
e−α(t−t′) (7)

with an average number of telegraph jumps during the time
interval

n(t, t ′) =
∞∑

n=0

npn(t,t′)=n = α(t − t ′). (8)

Using the Poisson point distribution, we compute the first few
moments of the stochastic function ξ(t) averaging over the
realisations of the stochastic process. The average value of the
stochastic process ξ(t) at time t is

〈
ξ(t)

〉
ξ =

∞∑
n=0

pn(0,t)=nγ(−1)n = γe−2αt , (9)

where
〈
. . .

〉
ξ means the averaging over all possible realization

of stochastic process ξ(t). Two-time correlation function for
t1 > t2 is

〈
ξ(t1)ξ(t2)

〉
ξ =

〈
γ(−1)n(0,t1)γ(−1)n(0,t2)〉

ξ

= γ2〈(−1)n(t2,t1)〉
ξ = γ

2e−2α(t1−t2) (10)

and all higher order correlation functions can be fac-
torised in terms of average process and two-time correlation
functions.30

Let us now average the stochastic master equation (3) over
the ensemble of telegraphic noise realisations

d
dt

〈
P(t)

〉
ξ =W

〈
P(t)

〉
ξ + A

〈
ξ(t)P(t)

〉
ξ . (11)

Differential equation (11) is not yet in a complete form since
we do not know how to compute 〈ξ(t)P(t)〉ξ .

To evaluate 〈ξ(t)P(t)〉ξ , we notice that P(t) can be
considered as a functional of the stochastic process ξ(t)

P(t) = P[ξ](t). (12)

Next we use Novikov’s method of computing averages of
products of functional of the stochastic process with the pro-
cess function itself.27–30 Following the Novikov ideas,27 we
introduce 〈

ξ(t)P[ξ + z](t)
〉
ξ
, (13)

where z(t) is an arbitrary reasonably smooth deterministic
function. We expand P[ξ + z](t) in the Taylor-like series using
functional differentiation around ξ(t) = 0

P[ξ + z](t) = exp
{ ∫ ∞

0
dt1ξ(t1)

δ

δz(t1)

}
P[z](t). (14)

We notice that P[z](t) is a completely deterministic functional
and all stochastic variables are now localised in the operator
exponent in (14); therefore

〈
ξ(t)P[ξ +z](t)

〉
ξ
=

〈
ξ(t) exp

{ ∫ ∞
0

dt1ξ(t1)
δ

δz(t1)

}〉
ξ

P[z](t).

(15)
Expanding the operator exponent in (15), we get

〈
ξ(t)P[ξ + z](t)

〉
ξ
=

〈
ξ(t)

[
1 +

∞∑
k=1

1
k!

∫ ∞
0

dt1

∫ ∞
0

dt2 . . . .
∫ ∞

0
dtkξ(t1)ξ(t2) . . . ξ(tk)

δ

δz(t1)
δ

δz(t2)
. . .

δ

δz(tk)

]〉
ξ

P[z](t)

=
[〈
ξ(t)

〉
ξ

+
∞∑

k=1

∫ ∞
0

dt1

∫ t1

0
dt2 . . . .

∫ tk−1

0
dtk

〈
ξ(t)ξ(t1)

〉
ξ

〈
ξ(t2) . . . ξ(tk)

〉
ξ

δ

δz(t1)
δ

δz(t2)
. . .

δ

δz(tk)

]
P[z](t)

=
[〈
ξ(t)

〉
ξ

+
∫ ∞

0
dt1

〈
ξ(t)ξ(t1)

〉
ξ

δ

δz(t1)

〈
exp

{ ∫ t1

0
dt ′ξ(t ′)

δ

δz(t ′)

}〉
ξ

]
P[z](t). (16)

Substituting expressions for the moments of the stochastic process (9) and (10) yields
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〈ξ(t)P[ξ + z](t)〉ξ =
[
γe−2αt + γ2

∫ ∞
0

dt1e−2α(t−t1) δ

δz(t1)

〈
exp

{ ∫ t1

0
dt ′ξ(t ′)

δ

δz(t ′)

}〉
ξ

]
P[z](t). (17)

We differentiate the lhs and the rhs of this equation with respect to t and obtain

(
d
dt

+ 2α)〈ξ(t)P[ξ + z](t)〉ξ =
[
γe−2αt + γ2

∫ ∞
0

dt1e−2α(t−t1) δ

δz(t1)

〈
exp

{ ∫ t1

0
dt ′ξ(t ′)

δ

δz(t ′)

}〉
ξ

] d
dt

P[z](t), (18)

which is simply

(
d
dt

+ 2α)〈ξ(t)P[ξ + z](t)〉ξ = 〈ξ(t)
d
dt

P[ξ + z](t)〉ξ . (19)

Setting z(t) = 0 in the above equation, we get30,39

(
d
dt

+ 2α)〈ξ(t)P[ξ](t)〉ξ = 〈ξ(t)
d
dt

P[ξ](t)〉ξ . (20)

Equation (20) is sometimes called the Shapiro-Loginov dif-
ferential formula.25,39 Substituting d

dt P[ξ](t) from the initial
master equation (3) into the right-hand side of (20) gives

(
d
dt

+ 2α −W)〈ξ(t)P(t)〉ξ = γ
2A〈P(t)〉ξ . (21)

We omit here and throughout the rest of the paper the func-
tional dependence notation in P for brevity. Note that although
(20) can be generalized to an arbitrary Gauss-Markov stochas-
tic process,39 Eq. (21) already requires that ξ(t) should be
a dichotomic process in order to close the hierarchy of the
differential equations at the 〈ξP〉ξ term.

We have converted the initial stochastic master equa-
tion (3) to the closed system of two coupled determinis-
tic differential equations (11) and (21). Next we introduce
function

F(t) = 〈ξ(t)P(t)〉ξ (22)

and perform the Laplace transformation on the system of
differential equations (11) and (21). We find

s〈P̃(s)〉ξ − P(0) =W〈P̃(s)〉ξ + AF̃(s), (23)

(sI + 2α −W)F̃(s) − γP(0) = γ2A〈P̃(s)〉ξ , (24)

where “tilde” denotes functions in the Laplace space, for exam-
ple, P̃(s) = ∫

∞
0 dte−stP(t) and I is the identity matrix. While

deriving [(23) and (24)], we took into account that the proba-
bility vector P(t) does not depend on stochastic variable ξ at
initial time t = 0, therefore 〈P(0)〉ξ = P(0) and

〈ξ(0)P(0)〉ξ = 〈ξ(0)〉ξP(0) = γP(0). (25)

Eliminating F̃(s) from (23) and (24) gives the following expres-
sion for the noise averaged probability vector in Laplace
space

〈P̃(s)〉ξ =

[
(sI −W) − γ2A

1
(s + 2α)I −W

A
]−1

×
[
I + γA

1
(s + 2α)I −W

]
P(0). (26)

III. APPLICATIONS TO THE QUANTUM TRANSPORT
A. Electron transport through single-resonant
level with telegraph noise in the contacts

Let us consider the electron transport through a molecu-
lar junction represented by a single resonant molecular orbital
connected to two leads (left and right) held at different chem-
ical potentials. The electron spin is not considered; therefore,
the molecular orbital can only contain zero or one electron.
The Markovian master equation is given by (3), where matrix
W is

W =
[
−T10 T01

T10 −T01

]
, (27)

and P(t) is the probability vector

P(t) =

[
P0(t)
P1(t)

]
. (28)

Here P0(t) is the probability that the molecular orbital has zero
electrons at time t and P1(t) is the probability for the orbital to
be occupied by one electron at time t. The dynamical evolution
of these probabilities is determined by two rates: T01 describes
the transition from the occupied to empty state and T10 is the
rate for the opposite process. The total rates consist of two
contributions from left and right electrodes

T10 = TL
10 + TR

10, T01 = TL
01 + TR

01. (29)

The partial rates are given by the standard Fermi golden rule
expressions

TL
01 = ΓLfL, TR

01 = ΓRfR, (30)

TL
10 = ΓL(1 − fL), TR

10 = ΓR(1 − fR), (31)

where ΓL/R are molecular level energy broadening functions
due to the coupling of the left/right electrode. Fermi occupation
numbers for left and right electrodes are

fL = [1 + e(ε−µL)/TL ]−1, fR = [1 + e(ε−µR)/TR ]−1. (32)

Voltage bias is defined as the difference between left and right
electrodes’ chemical potentials: V = µL � µR.

Let us introduce the telegraph noise into the master equa-
tion. Recently Gurvitz et al.25 used a similar method to model
a single electron transistor with an energy level which can
stochastically jump between two given values. The most pre-
vailing scenario for molecular junctions is not the fluctua-
tion of the molecular orbital itself but rather the telegraph
noise originating from various processes on the molecule-
metal interfaces.18 To model this setting, we assume that
the coupling between the molecule and the left electrode
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ΓL undergoes telegraph type stochastic oscillations (the choice
of left electrode is arbitrary, we can also consider the coupling
between molecule and the right electrode ΓR)

ΓL(t) = ΓL(1 + ξ(t)). (33)

Here ξ(t) is a stochastic telegraph noise variable, which can
switch between two states. Therefore, matrix A is

A =
[
−TL

10 TL
01

TL
10 −TL

01

]
. (34)

With this definition of matrix A, the amplitude of the stochastic
telegraph process |γ| should be ≤1 to preserve the positivity of
the probabilities (5).

The limit lims→0 s̃f (s) of the Laplace transformed function
corresponds to the asymptotic time limit of the real time func-
tion limt→∞f (t). Therefore, the stationary (nonequilibrium
steady state) probability vector is

〈P〉ξ = lim
s→0

s〈P̃(s)〉ξ . (35)

Substituting matrices W (27) and A (34) into the expression
for the probability vector in the Laplace space (26), then mul-
tiplying it by s and letting s tend to zero, we obtain the steady
state probability vector

〈P〉ξ =
1

4Γ(Γ + α) − Γ2
Lγ

2

×



2(Γ + α){ΓL(1− fL) + ΓR(1− fR)} − Γ2
Lγ

2(1− fL)

2(Γ + α){ΓLfL + ΓRfR} − Γ2
Lγ

2fL


,

(36)

where we introduced Γ = (ΓL + ΓR)/2. Notice that any depen-
dence on initial probability vector P(0) completely disappears
from the expression in the steady state. In the noiseless limit
(γ = 0), we get

〈P〉ξ =
1

2Γ

[
ΓL(1 − fL) + ΓR(1 − fR)

ΓLfL + ΓRfR

]
, (37)

which is the correct standard expression for the occupation
probabilities of a single resonant-level.

The current is computed with the use of the continuity
equation. The average number of electrons in the system is

〈N(t)〉ξ = 〈P1(t)〉ξ . (38)

The continuity equation

d
dt
〈P1(t)〉ξ = JL(t) + JR(t) (39)

is used to identify expressions for the electron current

〈J〉ξ = 〈JL〉ξ = −〈JR〉ξ = ΓR[−fR, (1 − fR)] · 〈P〉ξ . (40)

Computing the dot product in (40), we get

〈J〉ξ =
ΓLΓR(2Γ + 2α − ΓLγ

2)

4Γ(Γ + α) − Γ2
Lγ

2
(fL − fR). (41)

Figures 1 and 2 show the current-voltage characteristics
of a single resonant-level averaged over realisations of the

FIG. 1. Noise averaged current for a single resonant-level as a function of
the applied voltage bias for different values of the amplitude of the telegraph
noise γ. Parameters used in calculations: ΓR = ΓL = Γ = 1, T = 0.1, and
ε = 0—all energy units are given in terms of Γ. The unit for electric current
is Γ (or if we put ~ and e back, it is eΓ/~) and values of voltage bias V sd are
given in Γ.

stochastic telegraph process. The noise in molecular electrode
contact reduces the electric current and also reduces the molec-
ular conductivity (the slope of the I-V curve). The reduction
of the current is more significant for the larger amplitudes of
the telegraph noise γ. The rare telegraph processes (the small
density of telegraph jump points on the time axis, α) give
the larger reduction and very frequent jumps bring the cur-
rent to the noiseless limit. To get physical insight, we may
consider the ratio α/Γ as the number of telegraph jumps per
average time required for an electron to tunnel across the
molecule. Therefore, with our choice of the parameters, α = 5
roughly corresponds to 5 telegraph switching per one tunnel-
ing electron and α = 0.1 represents one telegraph jump during
approximately 10 electron tunneling events.

B. Telegraph noise in molecular junctions
with electron-vibration coupling

Let us consider the case of the electron transport
through a molecular junction with electron-vibration inter-
action. The molecular bridge itself is described by Holstein
Hamiltonian

FIG. 2. Noise averaged current for a single resonant-level as a function of the
applied voltage bias for different values of the number of telegraph jumps per
unit time α. Parameters and units are the same as in Fig. 1.
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Hmolecule = ε0a†a + λω(b† + b)a†a + ωb†b, (42)

where ε0 is the molecular orbital energy, ω is the molecular
vibration energy, and λ is the strength of the electron-vibration
coupling. a†(a) creates (annihilates) an electron on the molec-
ular orbital and b+(b) is the bosonic creation (annihilation)
operator for the molecular vibration.

We assume that the vibration maintains the equilibrium
Bose-Einstein distribution at all time and, as a result, we
obtain the thermally averaged rates for the electron transfers
(m, n = 0, 1)

TL/R
mn =

∑
qq′
Γ

L/R
mq,nq′

e−q′ω/T

1 − e−ω/T
. (43)

The individual transition rates between microscopic molecular
states are computed using the Fermi golden rule.40

Γ
L/R
0q′,1q = ΓL/R |Xq′q |

2 (1 − fL/R[ε − ω(q′ − q)]
)

(44)

is the rate for the transition from the state occupied by one
electron and q vibrations to the electronically unoccupied state
with q′ vibrations by the electron transfer from the molecule
to left and right electrodes, respectively, and

Γ
L/R
1q′,0q = ΓL/R |Xq′q |

2fL/R[ε + ω(q′ − q)] (45)

is the rate for the transition when electron is transferred from
the left/right electrode into the originally empty molecules
simultaneously changing the vibrational state from q to q′.
These rates depend on the electronic level broadening func-
tions ΓL/R, the Fermi occupation numbers f L/R, and the
Franck-Condon factors Xqq′ .

The matrices W and A have the same structure as in the
transport through a single resonant-level that are (27) and (34)
with the transitional rates defined by (43). Likewise to the
electron transport through a single resonant-level, we com-
pute steady state probabilities and electric current which are
averaged over the realisations of the telegraph process.

FIG. 3. Noise averaged current in a molecular junction with electron-
vibration interaction as a function of the applied voltage bias computed for
different values of the number of telegraph jumps per unit time. Parameters
used in the calculations: ΓR = 0.01, ΓL = 0.01, T = 0.05, λ = 1, ω = 1,
ε = 0—all energy units are measured in terms of vibrational frequency energy
ω. The unit for electric current isω (or if we put ~ and e back, it is eω/~) and
values of voltage bias V sd are given in ω.

Figure 3 shows the current as a function of the applied
voltage computed for different densities of telegraph jump
points on the time axis. The steps in the current correspond
to the resonant excitations of the vibration states by elec-
tric current which occur when the voltage passes through
an integer multiple of the vibration energy.40–42 As in the
single resonant-level case considered before, the telegraph
noise in the molecule-electrode contacts results in the reduc-
tion of the electric current, but the frequent switching events
(large α) again bring the I-V curve to the optimal noiseless
limit.

IV. CONCLUSIONS

We have developed a theoretical approach to solve Marko-
vian master equations with a telegraph noise. The rates of the
master equation depend on a set of time-dependent parame-
ters, which switch randomly between two values. We treated
the probabilities as functionals of a stochastic telegraph pro-
cess. We used Novikov’s method, originally developed in the
theory of turbulence, to shift the stochastic functionals to the
deterministic function domain; this procedure converted the
stochastic master equation to a closed system of determin-
istic differential equations. The equations were solved with
the use of the Laplace transformation, and the general expres-
sion for the probability vector averaged over realisations of
the stochastic process was derived. The theory was applied
to quantum electron transport through model molecular junc-
tions. We studied the role of the noise in the molecule-electrode
contacts on the current-voltage characteristics. Two models
were considered: a single resonant-level transport and the Hol-
stein model in the polaronic regime. In both models, the contact
telegraph noise reduces the electric current and lowers the
molecular conductivity.
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