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Abstract 
 

Introduction:  The ability to perform typical athletic movements such as running and jumping is 

strongly linked with performance outcomes in many sports.  Resistance training has been associated 

with improving these qualities and is commonly used by elite athletes to aid sports performance.  

Through the careful manipulation of resistance training programs and associated variables, a range of 

program types can be used by athletes to improve strength and power.  As such, the effect of maximum 

strength or maximum power training programs on sports performance are of great interest.  To 

effectively assess this impact on performance, various body composition, morphological and 

neuromuscular tests have been utilised.  The overall aim of this thesis was to examine the responses, 

both chronic and acute, of athletes to maximum strength and maximum power training during various 

preparation and in-season periods.  Subsequently, a series of studies were conducted to examine the 

effects of maximum strength and/or maximum power training on performance in various athlete sub-

groups during their normal preparation and competition periods.  

In the first study (Chapter 4), the effects of an in-season vs preparation period resistance training 

program on body composition, muscle morphology and neuromuscular adaptations were investigated in 

adolescent athletes.  The second study (Chapter 5), extended this research, examining the acute 

neuromuscular effects and recovery profile of adolescent athletes to a fatiguing maximum strength 

training session at three different periods during their annual training.  Study 3 (Chapter 6) examined 

the use of both a bodyweight countermovement jump CMJBW and a loaded countermovement jump 

CMJLOAD as longitudinal, neuromuscular readiness monitoring tools.  The fourth study (Chapter 7) 

compared the effect of both a maximum strength and maximum power training program on the lower 

body power of endurance and strength/power athletes.  The final study (Chapter 8) examined the effects 

of an in-season strength/power program on lower body power in elite team sport athletes. 

Methods: In Chapter 4, 14 adolescent male athletes performed a nine week in-season maximum strength 

training program and a six-week, preparation period maximum strength training program.  Body 

composition, morphological and neuromuscular assessments were also conducted before and after both 

training periods to assess changes over each period.  For Chapter 5, the same 14 adolescent athletes 

performed a fatiguing maximum strength training session consisting of ten sets of five repetitions of 

back squat at 85% 1RM at various time points throughout the year, i.e. early pre-season (block 1), post 

a competition period (block 2) and post a six-week maximum strength training preparation period (block 

3).  To assess the acute neuromuscular effects and recovery profile, a testing battery comprising a 

countermovement jump (CMJ), drop jump (DJ), isometric mid-thigh pull (IMTP) and 20 m sprint was 

performed before as well as immediately, 4, 24s, and 48 h post the training session.  Chapter 6 assessed 
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an elite male adult beach volleyball athlete for neuromuscular readiness using a CMJBW and a CMJLOAD 

over a 23-week period. In Chapter 7, five elite endurance athletes (rowers) and five elite strength/power 

athletes performed a four-week maximum strength program and a four-week maximum power program 

during a preparation period.  To assess the impact of these programs on performance, the athletes were 

tested using a CMJBW and a CMJLOAD (30% 1RM back squat) every week across the training periods.  

For Chapter 8, the same assessment tools were used as in Chapter 7 however this time the subjects were 

elite Australian rules football players (n=46) who were assessed in-season. 

Results: In Chapter 4, the preparation period maximum strength training block resulted in a very likely 

small beneficial change in vastus lateralis thickness and 3RM back squat strength and possibly small 

beneficial changes in multiple CMJ variables.  No real effects were observed in any other tests.  During 

the in-season block, likely small beneficial changes in 20-m sprint variables where observed with no 

other effects found.  For Chapter 5, DJ performance showed the greatest fatigue susceptibility following 

the maximum strength training stimulus with moderate harmful effects on jump height observed 

immediately post strength training for block 1 and block 2 and 24 h and 48 h post block 1.  CMJ also 

showed fatigue susceptibility, however not to the same extent as the DJ.  The IMTP showed a fatigue 

effect only immediately post the strength training session, whereas the 20-m sprint only showed a fatigue 

effect after strength training at the end of a competition period.  Conversely, the 20-m sprint showed a 

performance potentiation effect when testing was performed after the athletes had completed a strength 

training block.  In Chapter 6, relative peak power appeared the most accurate measure of training 

induced neuromuscular fatigue, varying appropriately in relation to training load for both a CMJBW and 

CMJLOAD.  Chapter 7 showed that strength/power athletes exhibited greater increases in relative peak 

power than endurance athletes after the maximum strength block for both the CMJBW (7.8% ± 4.8%) 

and CMJLOAD (5.9% ± 8.3%).  After the maximum power block the strength/power athletes showed 

greater increases compared with endurance athletes both relative peak power and jump height when 

measured via a CMJBW (9.8% ± 8.6% and 8.0% ± 6.4% respectively) and a CMJLOAD (7.0% ± 5.7% and 

5.2% ± 4.6% respectively).  Chapter 8 found that, CMJBW and CMJLOAD, showed similar abilities to 

detect varying levels of neuromuscular readiness.  Performance variables such as relative peak power 

and jump height showed the most similar patterns of fatigue whilst the technique variable, centre of 

gravity movement, showed less similarity in the fatigue response. 

Conclusion: Adolescent athletes who perform a minimum six-week maximum strength training block 

will experience improvements in muscle pennation angle, lower body strength (3RM back squat) and 

CMJ performance whilst a competition block utilising more speed training is likely to see improvements 

in 20-m sprint time as highlighted by the findings of Chapter 4.  Results from Chapter 5 suggest that the 

DJ is more effected by acute fatigue from a maximum strength training session than either the CMJ, 
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IMTP or 20-m sprint whilst stronger athletes may be less susceptible to the fatigue generated by this 

type of training.  Chapter 6 suggests that the CMJBW is an appropriate test to monitor the weekly 

neuromuscular fatigue generated via an athletes’ combined training load.  Strength/power athletes are 

likely to see greater gains in CMJBW and CMJLOAD variables such as relative peak power and jump height 

when compared with endurance athletes when both groups perform either a maximum strength or 

maximum power four-week training block as shown by the results from Chapter 7.  Chapter 8 highlights 

that a CMJBW and CMJLOAD show very similar results when tracking the weekly, in-season 

neuromuscular readiness of elite Australian rules football players with both output and technical 

execution variables showing similar results. 

In summary, strength and power variables as assessed via the above tests show clear but specific effects 

across, different athlete groups.  Specifically, adolescent athletes showed clear adaptations to a six-week 

maximum strength block and a clear acute response to single maximum strength session.  Additionally, 

strength/power athletes showed a larger performance benefit from both strength and power training 

compared with endurance athletes.  In monitoring performance, the CMJ and associated variables was 

consistently a valid measure of performance changes over a training cycle and a valid measure of acute 

neuromuscular readiness.    

Practical applications: Maximum-strength and -power training cause different athletic performance 

changes due to the underpinning effects on muscle and neural physiology.  Simple neuromuscular 

performance tests may be appropriate for assessing these changes, negating the need for invasive or time 

consuming laboratory based assessments.  These effects are also relevant to the type of athlete 

performing the training program and can result in the following training effects: 

1. Adolescents: 

a. A six-week maximum strength training program has beneficial impacts on muscle 

morphology and multiple neuromuscular performance variables. 

b.  Maximum strength training has the largest fatigue effect on DJ performance and less 

effect on IMTP performance. 

c. Adolescent athletes may be better equipped to deal with the neuromuscular fatigue 

associated with a maximum strength training session as detected by CMJ, DJ, IMTP 

and 20 m sprint after performing a six-week strength block. 

2. Adult individual sports: 

a. The CMJBW appears more effective to monitor longitudinal neuromuscular fatigue 

generated by total training load in a Beach Volleyball athlete than the CMJLOAD when a 

taper is included in the monitoring period. 
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b. Strength/power athletes show better performance benefits when compared with 

endurance athletes in both the CMJBW and CMJLOAD after four-week maximum-strength 

and -power training blocks performed during their normal pre-season. 

3. Adult team sports: 

a. CMJBW and CMJLOAD show similar neuromuscular fatigue responses to the demands of, 

weekly competition of elite AFL athletes. 
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Chapter 1 
 

Introduction 
 

1.1 General response to resistance training protocols 
 

Resistance training is commonly used as a method to enhance performance in a multitude of sports 

(Baker, 2001; Beattie, Carson, Lyons, & Kenny, 2016; Bennie & Hrysomallis, 2005; Christou, Smilios, 

Sotiropoulos, Volaklis, Pilianidis, & Tokmakidis, 2006; Harries, Lubans, & Callister, 2016; Hoffman, 

Ratamess, Cooper, Kang, Chilakos, & Faigenbaum, 2005; Howatson, Brandon, & Hunter, 2016; 

Suchomel, Nimphius, & Stone, 2016).  The physiological adaptations that occur in response to a 

resistance training program to subsequently drive enhanced sport performance can be divided in to three 

main areas: 

1. Morphological 

2. Biochemical 

3. Neuromuscular  

These adaptations take place over different time courses, and are underpinned by acute responses 

immediately after a specific training session with acute effects lasting up to 72 hrs post a resistance 

training session (Gathercole, Sporer, Stellingwerff, & Sleivert, 2015a).  Adaptations are wide spread, 

often involving the interaction of various physiological variables.  For example, resistance training has 

been shown to have a positive impact on muscle hypertrophy with a concurrent increase in anabolic 

hormone levels (Folland & Williams, 2007).  Whilst all three areas of adaptation are of equal importance 

in understanding the implications for sport performance benefits, this thesis will focus predominantly 

on the morphological and neuromuscular responses to exercise. 

The changes that have been identified in both morphological (Folland & Williams, 2007) and 

neuromuscular (Folland & Williams, 2007; Gabriel, Kamen, & Frost, 2006) factors have been 

documented in previous literature and are presented in Table 1.1: 

 

 

 



2 
 

Table 1.1.  Morphological and neuromuscular responses to resistance training 

Morphological  Neuromuscular 

Whole-muscle size  Cross transfer 

Muscle fibre hypertrophy  Adaptations in force sensation 

Myofibrillar growth and proliferation  Change in antagonist activity 

Hyperplasia  Motor unit activation (including): 

• Firing frequency 

• Synchronisation 

• Cortical adaptations 

• Spinal reflexes 

Fibre type and myosin heavy chain composition  

Density of skeletal muscle  

Tendon stiffness and connective tissue arrangement  

Muscle architecture (pennation angle)  

 

The use of resistance training programs in elite sports may drive changes in movement patterns 

associated with key outcomes within a specific sport.  For example, jump height may be a movement 

pattern that can provide a competitive advantage over an opponent in sports such as basketball, 

volleyball and netball.  As such the effects of resistance training programs on morphological and 

neuromuscular responses that culminate in an improved jump height over time are of great value.  These 

resistance training programs typically focus on two main qualities that  underpin general sporting task 

performance (Suchomel et al., 2016).  First, maximum strength which can be described as the muscles 

ability to exert force on an external object (Stone, 1993) and second, maximum power or ‘explosive’ 

muscle strength, commonly defined as the rate of rise in contractile force (Aagaard, Simonsen, 

Andersen, Magnusson, & Dyhre-Poulsen, 2002a).  Accordingly, the effects of both maximum strength 

and maximum power training on morphological and neuromuscular acute responses and longer-term 

adaptations have been a focus of scientific research (Folland & Williams, 2007; Kyröläinen et al., 2005). 

 

1.1.1 Acute responses to various resistance training protocols 
 

Maximum strength and power training are commonly referred to in the literature as ‘neuronal schemes’ 

(Crewther, Cronin, & Keogh, 2006) as it is hypothesised that they improve strength and power 

predominantly via changes in neuromuscular pathways.  As such a large body of research exists 

examining acute neuromuscular responses (Bosco, Colli, Bonomi, von Duvillard, & Viru, 2000; 
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Brandon, Howatson, Strachan, & Hunter, 2015; Howatson et al., 2016; Linnamo, Häkkinen, & Komi, 

1997; Linnamo, Newton, Häkkinen, Komi, Davie, McGuigan, & Triplett-McBride, 2000; McCaulley, 

McBride, Cormie, Hudson, Nuzzo, Quindry, & Travis Triplett, 2009) when compared with that 

investigating acute morphological responses.  The bulk of this research has utilised laboratory based 

tests such as isometric maximal voluntary contractions (MVC) with subsequent electromyography 

(EMG) analyses as the assessment tool (Brandon et al., 2015; Linnamo et al., 1997; McCaulley et al., 

2009) post training.  These studies suggest that maximum strength training may have a greater effect on 

neuromuscular readiness than maximum power training with peak force recovering faster than rate of 

force development (RFD).  The use of only isometric measures to track neuromuscular performance 

whilst accurate in detecting neuromuscular changes, provides limited information to applied 

practitioners who are more likely interested in the effects on dynamic movements. 

Brandon et al. (2015) examined neuromuscular responses during dynamic exercise via EMG and found 

that a maximum strength training session resulted in similar levels of neuromuscular recruitment and 

power generation but produced greater levels of fatigue when compared with maximum power training.  

This provides useful insight into acute responses during a maximum strength or power training session 

for the applied practitioner. 

Limited research exists on the recovery time course from either a maximum strength or power program.  

Howatson et al. (2016) have shown that MVC remains depressed up to 24 h post a maximum strength 

session but is not effected by a maximum power session.  This complements the previous research on 

acute responses (Brandon et al., 2015; Linnamo et al., 2000; McCaulley et al., 2009) and indicates that 

the neuromuscular fatigue generated by a strength session is generally, greater than and longer lasting 

than a maximum power session.   

This is valuable knowledge to the practitioner as it helps them better understand the short term 

physiological effects maximum strength or power training has on neuromuscular variables, specifically 

those related to resistance training.  However, the daily/weekly preparation of elite athletes involves a 

range of complex physical activities that involve running and jumping and as such may respond to 

neuromuscular fatigue differently when compared with gym-based resistance training. 

As such, performance tests are now commonly being used to assess neuromuscular fatigue in various 

sports given the similarities in movement patterns (Cormack, Newton, & McGuigan, 2008c; Johnston, 

Cook, Drake, Costley, Johnston, & Kilduff, 2016; Ronglan, Raastad, & Børgesen, 2006; Wiewelhove, 

Raeder, Meyer, Kellmann, Pfeiffer, & Ferrauti, 2015).  The benefits of using these performance tests to 

monitor neuromuscular fatigue is that they provide a valid, reliable measure (Gathercole et al., 2015a) 

that requires minimal familiarisation and produces minimal fatigue, thus limiting their impact on sport-

specific training or competition (Gathercole et al., 2015a).  Given the common acceptance of 
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performance tests, such as the countermovement jump (CMJ), drop jump (DJ) and sprints, in assessing 

neuromuscular fatigue, it could be hypothesised that these tests would also prove to be beneficial and 

practical diagnostic tools when examining the effect of various resistance training protocols on 

neuromuscular fatigue.  

 

1.1.2 Chronic adaptations to various resistance training protocols 
 

When examining adaptations to resistance training it is reported in the literature that changes in muscle 

cross-sectional area have been noted as early as 20 days into a training program (Seynnes, de Boer, & 

Narici, 2007).  As such, research examining the chronic effects of maximum strength or power training 

should utilise a minimum time frame of four weeks and may last two years or more.  Given the longer 

time frames associated with chronic adaptation training studies and the minimum time frames required 

for muscle morphological changes, a substantial body of research exists examining the effects of 

maximum strength and power training on morphological and neuromuscular adaptations (Campos et al., 

2002; Cormie, McBride, & McCaulley, 2009; Cormie, McGuigan, & Newton, 2010; Folland & 

Williams, 2007; Hakkinen, Pakarinen, Alen, Kauhanen, & Komi, 1988; Kyröläinen et al., 2005; Lyttle, 

Wilson, & Ostrowski, 1996; McGuigan, Sharman, Newton, Davie, Murphy, & McBride, 2003; Narici 

et al., 1996; Østerås, Helgerud, & Hoff, 2002; Rønnestad, Kojedal, Losnegard, Kvamme, & Raastad, 

2012; Schmidtbleicher, 1987; Winchester, McBride, Maher, Mikat, Allen, Kline, & McGuigan, 2008).  

This research has focussed on morphological adaptations predominantly via muscle fibre type (Campos 

et al., 2002; Kyröläinen et al., 2005; McGuigan et al., 2003; Winchester et al., 2008), size (Campos et 

al., 2002; Kyröläinen et al., 2005) and myosin heavy chain (MHC) isoform composition (Campos et al., 

2002; Kyröläinen et al., 2005; McGuigan et al., 2003) and neuromuscular changes via specific neuronal 

mechanisms such as RFD, peak fore and EMG (Cormie et al., 2009; Cormie et al., 2010; Hakkinen et 

al., 1988; Kyröläinen et al., 2005; Schmidtbleicher, 1987) or general performance measures (Lyttle et 

al., 1996; Østerås et al., 2002). 

The research examining morphological adaptations suggests that maximum strength training (Campos 

et al., 2002) has direct effects on many of the variables noted above.  These changes are a shift of fibre 

types from IIB towards type IIAB seen after training, shifts in MHC expression from MHCIIB towards 

MHCIIA and increases in the cross-sectional area of the three major fibre types (I, IIA and IIB) whilst 

power training (Kyröläinen et al., 2005; McGuigan et al., 2003; Winchester et al., 2008) has no effects.  

The downside of this type of analyses is that it requires a muscle biopsy which may be detrimental to 

athletes in a daily training environment.  In contrast, more recent research by Cormie et al. (2010) used 

ultrasound to explore changes in muscle thickness and pennation angle and average muscle mass via 
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dual-energy x-ray absorptiometry (DEXA) scans in both maximum strength and maximum power 

trained subjects.  They found positive changes in muscle mass, muscle thickness and pennation angle 

following a maximum strength block whilst only pennation angle showed any change in the power 

training group although this was only seen after 10 weeks.  This less invasive analyses method may be 

very beneficial in quantifying the changes in skeletal muscle in athletes in response to targeted resistance 

training programs. 

Conversely, neuromuscular adaptations to either resistance training protocol shows varying effects.  

Schmidtbleicher (1987) reported improvements in peak force after both resistance training programs but 

found a larger increase in RFD after maximum strength versus maximum power training.  Kyröläinen 

et al. (2005) reported an increase in plantar flexor isometric MVC after power training with no change 

in RFD whilst the knee extensors showed no change in MVC but an increase in RFD.  Whilst Hakkinen 

et al. (1988) found no change in maximal isometric leg extension peak force and EMG after two years 

of training in elite weightlifters.  The variation in results from these studies highlights the challenges 

associated with comparing neuromuscular adaptations across research with different experimental 

variables including subject experience, length of the training study and the assessment tool used.   

A more simple and valid assessment method may be the effect of maximum strength and maximum 

power training on adaptations to commonly used performance tests that underpin the athletic movements 

seen in many sports.  This also provides the applied practitioner with direct information on the effect of 

these same training methods, i.e. maximum strength or maximum power training, on neuromuscular 

performance tests that involve similar muscle patterns to sporting movements such as jumping (vertical 

power), sprinting (horizontal power) and the compound movement, lower body strength, that underpins 

power activities.  Tests that have been most commonly used to assess impact on performance are the 

CMJ (Byrne & Eston, 2002; Cormie et al., 2009; Cormie et al., 2010; Gathercole, Stellingwerff, & 

Sporer, 2015b; Rønnestad et al., 2012; Sheppard, Cronin, Gabbett, McGuigan, Etxebarria, & Newton, 

2008b; Winchester et al., 2008) , DJ (Byrne & Eston, 2002; Sheppard et al., 2008b; Viitasalo, Salo, & 

Lahtinen, 1998), sprints (Christou et al., 2006; Lyttle et al., 1996; Seitz, Reyes, Tran, de Villarreal, & 

Haff, 2014; Wang et al., 2016) , and isometric mid-thigh pull (IMTP) (Haff, Stone, O'Bryant, Harman, 

Dinan, Johnson, & Han, 1997; McGuigan & Winchester, 2008; McGuigan, Winchester, & Erickson, 

2006; Stone et al., 2003; Wang et al., 2016).  This substantial body of research has shown that using 

these tests to assess performance changes is a reliable and valid method to quantify the effects of various 

athletic training methodologies, including resistance training, which may subsequently have a beneficial 

impact on sporting performance. 
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1.1.3 The effects of resistance training on the adolescent athlete 
 

In the quest to discover the next talented athlete, adolescent athletes are a focus of talent development 

programs.  As such, younger athletes are being exposed to all the demands of adult sport including 

competition and training.  This has resulted in adolescent athletes being exposed to resistance training 

protocols used by adult athletes such as maximum strength and maximum power training without the 

same level of scientific research into the effects on the adolescent athlete that exists in adult athletes.  

For the purpose of this thesis, the term adolescent refers to the period of age between 14-18 years for 

males as has been used in previous literature (Behm, Faigenbaum, Falk, & Klentrou, 2008; Faigenbaum, 

Kraemer, Blimkie, Jeffreys, Micheli, Nitka, & Rowland, 2009).  Although this is a common age 

grouping reserved for adolescent males, it presents some limitations such as the differences observed in 

physical development found between the chronological age and biological age of the athlete (Malina, 

Eisenmann, Cumming, Ribeiro, & Aroso, 2004; Sherar, Esliger, Baxter-Jones, & Tremblay, 2007). 

Initial research in this area focussed more on adolescents with limited or no resistance training 

experience (Chelly, Fathloun, Cherif, Amar, Tabka, & Van Praagh, 2009; Christou et al., 2006) and 

developing position statements for general resistance training guidelines for adolescents (Baker et al., 

2011; Faigenbaum et al., 2009; Lloyd et al., 2012).  Both research based on inexperienced resistance 

trained adolescents and general resistance training guidelines are of little value in understanding the 

effects of maximum strength and maximum power training on trained adolescent athletes.  Whilst 

studies exist examining the effects of maximum strength and power training on adolescent athletes with 

prior resistance training experience (Drinkwater, Lawton, Lindsell, Pyne, Hunt, & McKenna, 2005; 

Pullinen, Mero, Huttunen, Pakarinen, & Komi, 2002) substantial gaps still exist in the literature.  The 

limitations of using research in novice resistance trained athletes and the use of various ‘non-traditional’ 

strength/power protocol highlights the need for further research.  Additionally, a lack of research 

examining the acute neuromuscular responses and the recovery period post maximum strength training 

is an area that requires additional research to provide the applied practitioner with a better understanding 

of the recovery time course and aid in the structuring of weekly training. 

 

1.2 Statement of the problem 
 

Previous research on the acute response of maximum strength training and maximum power training in 

elite athletes has focussed predominantly on changes in laboratory based measures such as maximal 

voluntary contractions MVC and EMG.  Limited research exists detailing the effects using performance 

based neuromuscular tests such as the CMJ.  Specifically, the weekly adaptations of these types of 



7 
 

programs across a training block has not been investigated, leaving it unclear for the practitioner on how 

these changes are occurring across a training block and if they are similar amongst different cohorts of 

elite athletes.  That is, do strength / power based athletes respond the same as endurance based athletes, 

or what response do weekly competing field-based athletes have when performing in-season 

strength/power training?   

Additionally, the acute effects and recovery time course of elite adolescent athletes to maximum strength 

training at different periods during the annual cycle has not been investigated.  Similarly, the adaptations 

that occur across in-season and preparation periods in elite adolescent athletes has not been investigated 

previously and remains unclear for applied practitioners working with this age-group. 

 

1.3 Aims of the thesis 
 

The overall aim of this thesis was to examine the neuromuscular and/or morphological effects of various 

resistance training protocols commonly used in athletic development in elite, adolescent and adult 

athletes at various timepoints throughout a training year.  As such, the thesis was separated into five 

studies with the following aims: 

1. To examine the neuromuscular and morphological adaptations to both a pre-season and in-

season maximum strength resistance training protocol in elite adolescent athletes. 

2. To examine the acute neuromuscular fatigue and recovery responses in elite adolescent athletes 

following maximum strength training at three different periods within the annual cycle. 

3. To examine the effectiveness of two different CMJ’s to assess longitudinal neuromuscular 

fatigue. 

4. To examine the lower body power, and associated adaptations of strength/power and endurance 

athletes to both a maximum strength and maximum power, four-week training block. 

5. To examine the weekly neuromuscular responses of elite Australian rules football players 

during a 5-week in-season strength training program. 
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1.4 Research questions 
 

1. Will pre-season maximum strength training result in greater neuromuscular and morphological 

adaptations than in-season maximum strength training? 

2. Will a maximum strength protocol elicit different acute fatigue responses and recovery 

dynamics: 

a. in various neuromuscular tests (i.e. CMJ, DJ, IMTP and 20-m sprint)? And   

b. at various points throughout the annual training cycle (i.e. competition period, and 

early- and late-preparatory period)? 

3. Will different CMJ’s and their associated variables exhibit different neuromuscular fatigue 

responses based on an athletes recent training demands? 

4. Will elite strength/power athletes have greater gains in performance than elite endurance 

athletes when performing similar maximum strength or maximum power training blocks and 

will both groups achieve greater gains in lower body power performance from maximum power 

compared with maximum strength training? 

5. Will elite Australian rules football players see changes in neuromuscular responses during a 5-

week in-season period? 

 

1.5 Significance of the study 
 

This series of studies aims to increase the understanding of acute responses from a single session and 

chronic adaptations across multiple sessions to various resistance training protocols used by elite athletes 

(adolescent and adult), thus benefiting the applied practitioner.  Strength and conditioning (S&C) 

coaches could use the findings from Chapter 3 to confidently and accurately design a maximum strength 

training program to improve this important quality in athletic performance.  Additionally, based on 

Chapter 4, practitioners could better plan a training week for adolescent athletes.  The results of this 

study provide new information on adolescent acute responses to maximum strength training at different 

times throughout the annual training cycle and enhances our understanding of recovery timeframes for 

various neuromuscular performance tasks regularly used in isolation or combined in weekly sport 

training in adolescent athletes. 

The studies focussed on adult athletes provide novel information on the weekly changes in lower body 

power in response to maximum strength or maximum power training in elite strength/power and 
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endurance athletes competing in peaking sports (Chapter 7), whilst Chapter 8 provides novel 

information on the in-season weekly responses for elite, team sport athletes.   

Collectively, the findings from these studies allow practitioners to more precisely plan resistance 

training blocks/sessions dependant on the neuromuscular response they are seeking.  The novel 

information presented in these studies gives clarity around the acute responses following a single 

training session and the subsequent adaptations across a training block.  Additionally, the studies provide 

significant insight into various neuromuscular monitoring tools that may be used to track performance 

changes over a training block or to monitor acute neuromuscular readiness at any time point during the 

athletes training cycle. 

 

1.6 Delimitations 
 

The current adolescent athlete studies (i.e. Chapters 3, 4 and 5) were delimited to: 

1. Trained adolescent male athletes (14-18 y) who were at least six months post-PHV (peak height 

velocity), training for their chosen sport a minimum of eight sessions per week with a minimum 

of two years’ resistance training experience.  Therefore, the findings may not be extrapolated to 

other population groups (i.e. inexperienced resistance trained adolescent athletes or adolescent 

athletes who have not clearly finished their PHV period). 

2. Body composition, morphological and neuromuscular performance variables.  The assessment 

methods chosen whilst typical in athletic assessment were not exhaustive therefore the 

extrapolation of the findings to other assessment tools may not be applicable. 

3. Time frame.  Both the 6-week training adaptation study and the 48 h acute response study time 

frames are specific to the assessment periods used and the findings may not be applicable to 

other training adaptation studies or acute response studies using different time frames.  

The current adult athlete studies (i.e. Chapters 6, 7 and 8) were delimited to: 

1. Trained adult athletes who train for 25 h or more in their chosen sport, are competing at a high 

level and have extensive sport-specific and resistance training history. 

2. Lower body power jump assessments and variables (i.e. bodyweight countermovement jump 

(CMJBW) and loaded countermovement jump (CMJLOAD) at 30% 1RM).  The effect of strength 

training on jumping performance in either a CMJBW or 30% 1RM CMJLOAD may not be the same 

as other lower body power assessment tools. 

3. The four-week maximum strength and maximum power training block used.  Extrapolation of 

these findings to alternative length training blocks may not be applicable. 
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1.7 Limitations 
 

The findings of the current studies were limited by: 

1. Sample size was limited to available athletes within each squad who volunteered for the study 

and performed all the required training and testing sessions. 

2. Subjects were not a random sample of the athletic population but volunteers from the respective 

elite sporting organisations used in the studies. 

3. Standard technical and biological variability.  To limit the impact of such change, tests were 

conducted at the same time of day on the same day of week where possible, all equipment was 

calibrated prior to use and warm-ups prior to testing were standardised.  

 

1.8 Format of the thesis 
 

The first chapter of this thesis provides a brief introduction of acute and chronic responses to resistance 

training in an athlete population and the associated issues with the current research project.  Chapter 2 

is a literature review that introduces the general physiological responses to resistance training.  The 

focus of the review is the variation that exists in physiological response to various resistance training 

and the lack of research examining specific responses in elite adolescent and adult athletes. 

Chapters 3 to 5 were all conducted on elite adolescent athletes.  Chapter 3 reports the reliability of the 

neuromuscular tests used to assess the adolescent athletes in Chapters 4 and 5 as no previous reliability 

data exists for these tests (CMJ, DJ, IMTP and 20-m sprint), within this specific population group.  

Chapter 4 examined the adaptations to a maximum strength program across a training block whilst 

Chapter 5 assessed the acute responses to a maximum strength training session. 

Chapter 6 is shorter than the other studies as it was a case-study examining the validity of two 

neuromuscular tests to be used in subsequent studies and was required as no previous data existed.   

Chapter 7 compared the effects of either a maximum strength or maximum power training block on 

neuromuscular performance in elite athletes from physiologically different sports and training 

backgrounds.  Chapter 8 examined the weekly neuromuscular response to an in-season maximum 

strength/power program performed by elite Australian rules football players. 
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All studies were designed and performed to provide greater insight into the physiological response 

and/or adaptations to typical training programs used in the athletic preparation of elite athletes.  As such 

they were all written in the style typical of journal articles and are in various stages of publication.  

Chapters 3 and 6 have been accepted and published in peer-reviewed journals whilst Chapters 4, 5, 7 

and 8 are currently under review in peer-reviewed journals. 

During this thesis, the author relocated internationally from Qatar to Australia due to a change of 

employment.  Accessibility to trained adolescent athletes changed as a result of this move so the initial 

specific focus of the thesis, adolescent athletes, had to be broadened to include adult athletes.  

Additionally, due to a change in the equipment available for athlete assessment, the morphological and 

neuromuscular assessment tools used were narrowed. 

The flow chart below provides a visual representation of the structure of the thesis. 

  

Chapter 9
Conclusion and outcomes

Chapter 8
Monitoring in-season neuromuscular performance in AFL players

Chapter 7
Endurance vs strength athletes - differences in jump performance during strength or power training  

Chapter 6
Case study of different load jumps in a Beach Volleyball athlete

Chapter 5
Acute responses to maximum strength training at different periods in the annual cycle

Chapter 4
Adaptations to in-season and preparation period maximum strength training

Chapter 3
Reliabiltity of neuromuscular tests in adolescent atheltes

Chapter 2
Literature Review

Chapter 1
Introduction and aims 
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Chapter 2 
 

Literature Review 
 

Due to the wide range of training induced response and adaptations that can occur in different age 

groups as well as a result of the resistance training protocol used, this review first examines the 

general guidelines for resistance training before delving into physiological responses.  When 

examining the physiological changes associated with resistance training, this chapter firstly reviews 

the overarching chronic adaptations that occur at a morphological, biochemical and neuromuscular 

level before examining potential acute responses that happen post training and underpin these 

adaptations.  Whilst this thesis does not examine the biochemical responses to maximum strength or 

maximum power training in either adolescent or adult athletes, the importance of biochemical 

variables in these responses and adaptations is accepted in the literature and as such has been included 

below although as not to the same detail as the morphological and neuromuscular changes.   

 

2.1 General resistance training protocols 
 

Resistance training is a common exercise methodology used by the general population for health benefits 

and aesthetic purposes.  In an athletic population, it is used to enhance targeted physical characteristics 

that may result in beneficial effects on performance in their given sport.  Resistance training is typically 

characterised by the following variables which can be manipulated in designing a program (Kraemer & 

Ratamess, 2004): 

• Exercise – The general type of movement chosen to target a specific muscle or group of muscles. 

• Exercise order – The sequence in which exercises are placed across a single training session. 

• Repetitions – The number of times a specific exercise is performed without resting (reps). 

• Sets – The number of times the group of repetitions is repeated. 

• Load – The resistance used during the exercise.  This is also referred to as intensity and is 

typically displayed as a percentage of the heaviest weight a subject can lift once (one repetition) 

in the chosen exercise (% 1RM).   

• Speed – Also known as repetition velocity, this is the velocity that a repetition is performed at. 

• Rest periods – The period of rest between the completion of one set and commencing a 

subsequent set. 
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• Frequency – The number of training sessions performed during a uniform block of time, i.e. 

during one week. 

These variables can be manipulated to cause specific physiological changes within the body depending 

on whether the goal is hypertrophy, strength, power or endurance.  General guidelines of these variables 

have been provided in previous literature and are summarised in tables 2.1-2.3 below (Kraemer & 

Ratamess, 2004).   

 

Table 2.1.  Program variable guidelines and progressions for hypertrophy training.  Adapted from 

Kraemer & Ratamess, 2004.   

 Novice Intermediate Advanced 

Intensity (% 1RM) 60-70 70-80 70-85 

Volume (sets × reps) (1-3) × (8-12) (Multi) × (6-12) (Multi) × (6-12) 

Rest periods (min) 1-2 1-2 1-3 

Velocity Slow to moderate Slow to moderate Slow to fast 

Frequency (days/week) 2-3 2-4 4-6 

 

Table 2.2.  Program variable guidelines and progressions for strength training.  Adapted from Kraemer 

& Ratamess, 2004.    

 Novice Intermediate Advanced 

Intensity (% 1RM) 60-70 70-80 70-100 

Volume (sets × reps) (1-3) × (8-12) (Multi) × (6-12) (Multi) × (1-12) 

Rest periods (min) 1-2 1-3 ~ 3 

Velocity Slow to moderate Moderate Slow to fast 

Frequency (days/week) (2-3) (2-4) (4-6) 
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Table 2.3.  Program variable guidelines and progressions for power training.  Adapted from Kraemer 

& Ratamess, 2004.  

 Novice Intermediate Advanced 

Intensity (% 1RM) 30-70 30-80 30->80 

Volume (sets × reps) (1-3) × (8-12) (1-3) × (3-6) (3-6) × (1-6) 

Rest periods (min) 1-3 1-3 >3 

Velocity Moderate Fast Fast 

Frequency (days/week) 2-3 2-4 4-6 

 

As highlighted by the authors, different guidelines are necessary for people of different levels of 

experience, i.e. novice, versus intermediate, versus advanced (Kraemer & Ratamess, 2004).  This is due 

to the body’s adaptation to a given training stimulus over time, thereby requiring a greater stimulus to 

continue the adaptive process.  Figure 2.1 below shows a typical physiological response to an imposed 

stimulus and highlights an initial level of performance to which a stimulus is applied, resulting in a 

short-term decrement to performance before undergoing a supercompensation period which results in a 

new level of performance being achieved (Zatsiorsky & Kraemer, 2006). 
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Figure 2.1.  Theory of supercompensation time course.  If an additional stimulus is applied at the correct 

time, i.e. as performance level peaks, the stimulus required to produce a similar depletion, restitution 

and therefore, supercompensation is greater.  Adapted from Zatsiorsky & Kraemer (2006).  

Once this first stimulus or exercise session is completed, the adaptation sequence begins initiating a 

time-course adaptation that is specific to the individual and the exercise protocol used. (Kraemer, Fleck, 

& Evans, 1996).  For example, if a resistance training protocol utilising programming variables that 

target strength is chosen, various physiological adaptations will occur resulting in a higher level of 

strength performance at the completion of the program (Kraemer & Ratamess, 2004).  Specifically, 

cellular and molecular responses to strength training are dictated by the combination of program design 

variables used and thereby underpin associated adaptations (Bickel, Slade, Mahoney, Haddad, Dudley, 

& Adams, 2005).  These adaptations and responses are detailed later in this review.  The magnitude of 

increase seen in performance varies across different population groups and even across individuals 

within groups (Asçi & Açikada, 2007).  As an individual performs regular strength training and 

experiences the associated gains in strength, the training stimulus they require to continue to experience 

these performance benefits moves from the classifications of novice, through intermediate and if 

performed long enough, to advanced.  This then requires the individual to provide a stronger stimulus 

than when they were classed as novice trainers by manipulating the variables shown in Table 2.2 such 

as intensity, volume, rest and frequency.  As such, due to their accumulated history of resistance training, 

most elite athletes should be considered as advanced with respect to these guidelines (Ahtiainen & 

Häkkinen, 2009; Baker, 2001; Peterson, Rhea, & Alvar, 2005).   

Workout 

Initial level of 

preparedness 
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Within an athletic population, the ability to run faster, jump higher/longer, change direction more 

quickly and complete any other number of athletic movements is beneficial across a range of sports.  As 

such any training modality that improves these qualities is of benefit.  Resistance training has been 

associated with improvements in these qualities and as such, a large body of research has focussed on 

the general effects of resistance training on athletic performance and more specifically, the link between 

specific strength/power and athletic performance (Baker, 2001; Beattie et al., 2016; Cormie et al., 2010; 

Harries et al., 2016; Lyttle et al., 1996; McBride, Triplett-McBride, Davie, & Newton, 1999; Østerås et 

al., 2002; Sheppard, Cormack, Taylor, McGuigan, & Newton, 2008a; Stone et al., 2003; Suchomel et 

al., 2016).   

In targeting improvements in athletic performance, it is necessary to understand which effect a resistance 

training program (hypertrophy, strength, power or endurance) will have on performance.  An example 

of this is a recent article which reviewed the importance of muscular strength in athletic performance 

(Suchomel et al., 2016).  The authors suggested that stronger athletes outperformed weaker athletes in 

sport-specific performance measures from both strength/power and endurance based sports.  Sports 

studied included, cycling, boxing, ice hockey and endurance runners amongst others and show the 

breadth and impact that strength can have on sporting performance.  Indeed, some recent studies suggest 

that maximum strength and maximum power training may have the largest benefits on physiological 

characteristics that contribute to athletic performance and thereby enhance sport performance (Cormie 

et al., 2010; Suchomel et al., 2016) 

It is therefore unsurprising that most resistance training programs utilised by athletes throughout the 

year focus on developing both maximum strength and maximum power qualities.  However, the 

placement of these types of training in an athletes annual training cycle must be planned carefully to 

ensure, a) that the athlete is not subject to a stimulus they are not prepared for and is subsequently injured 

or does not achieve the desired performance gains, or b) is not placed in a state of fatigue that 

compromises competition performance.  As such, these resistance training programs are planned and 

organised throughout the year to maximise performance and minimise fatigue in a concept known as 

periodisation (Fleck, 1999; Harries, Lubans, & Callister, 2015; Rhea & Alderman, 2004). 

2.1.1 Periodisation of resistance training for the athlete 
 

As detailed above, various resistance training schemes exist to target certain physiological outcomes, 

i.e. hypertrophy, strength, power or endurance.  Whilst all these may provide some benefit to overall 

sporting performance, the time spent on each type of training scheme and the appropriate placement of 

these training schemes within the athlete’s yearly calendar are critical to proper preparation.  The 

organisation of these planned variations of training variables (i.e. volume, intensity, frequency, etc.), 
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aimed at maximising performance gains and minimising fatigue is termed periodisation and is 

commonplace in athletic preparation  (Harries et al., 2015; Rhea & Alderman, 2004).  The practical 

example of these forms of planned variation is the manipulation of volume and intensity throughout an 

athlete’s season which may contain multiple phases (Baker, 2001).  These phases are dependent upon 

the number and length of competitive periods within the annual calendar and vary across sport type (e.g. 

individual versus team sport) and level of competitiveness (adult versus junior).  The overall goal of 

periodisation should be to provide a framework of structured training phases to divide the yearly 

calendar into smaller, more manageable time frames for which appropriate training can be planned 

(Fleck, 1999; Issurin, 2010).  The first step in developing the training plan is to determine the three 

phases of training that are common to all sports and athletes which are preparatory, competitive and 

transition (off-season) with an example shown in Figure 2.2 (Bompa, 1999).  Once these three phases 

are determined, the practitioner may then divide the training plan into shorter periods such as mesocycles 

consisting of approximately three to six weeks and microcycles ranging from four to ten days, dependant 

on the training schedule or competition requirements, i.e. days between competition of their specific 

sport (Issurin, 2010).  This provides a conceptual framework for organising the specific resistance 

training schemes as mentioned above to ensure the athlete is in peak physical condition when competing 

(Graham, 2002).   

 

Nov. Dec. Jan. Feb. Mar. Apr. May. June July Aug. Sep. Oct. 

Preparatory phase Competitive phase Transition 

Figure 2.2.  Typical periodisation model for athletes competing in the Australian Football League 

 

Variations in resistance training design are common when comparing preparatory versus competitive 

phase programs.  Typically, the higher volume, moderate intensity of hypertrophy training occurs earlier 

in the annual training plan preceding the lower volume, higher intensity of maximum strength and 

maximum power training closer to the beginning of the competitive phase and a further reduction in 

volume once the competitive period begins.  This organisation of the training schemes is referred to as 

linear periodisation and is characterised by this linear reduction in volume and concurrent increase in 

training intensity (Harries et al., 2015; Rhea, Ball, Phillips, & Burkett, 2002).  In contrast, an undulating 

or non-linear periodisation model incorporates more frequent manipulations of training variables, either 

daily or weekly and is proposed to enhance strength/power gains via a more frequent change in training 

stimulus (Harries et al., 2015; Rhea et al., 2002).  A recent meta-analysis of linear and undulating 

periodised resistance training programs by Harries et al. (2015) found no difference in the effectiveness 
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of either model in developing muscular strength.  This potentially indicates that the inclusion of some 

type of periodisation or variation in the annual training cycle of athletes may be more critical to 

maximising adaptation to training than the periodisation model chosen.  Indeed, modern periodisation 

models have evolved to meet the demands of modern day sport which include factors such as an increase 

in number of competition days (Issurin, 2010).  The traditional linear periodisation model as mentioned 

above has been complemented by more complex/dynamic methods of organising training units such as 

block periodisation and concentrated loading periods (Issurin, 2010).  As such, S&C coaches are 

implementing these mixed-model periodisation strategies in the real world in an attempt to develop 

appropriate physical qualities over one or more training years and to peak these physical qualities 

multiple times throughout a year.  The diverse range of sports, competition models and range of athlete 

i.e. adult versus adolescent requires substantial research to examine the effect of these training 

manipulations on short and long-term performance. 

Whilst a significant body of research exists examining the effects of different types of general 

periodisation strategies in adult athletes (Bartolomei, Hoffman, Merni, & Stout, 2014; Graham, 2002; 

Harries et al., 2015; Monteiro, Aoki, Evangelista, Alveno, Monteiro, Piçarro, & Ugrinowitsch, 2009; 

Rhea & Alderman, 2004; Rhea et al., 2002), limited research exists examining the use of pre-season and 

in-season strength training programs in adult and adolescent athletes across a range of sports and 

requires further attention. 

 

2.2 General physiological responses to resistance training 
 

To better understand the performance benefits seen across multiple sports and their movements in 

relation to resistance training, researchers have attempted to isolate the individual and combined 

physiological responses to resistance training.  As a result, a large body of research exists examining the 

physiological effects of resistance training on the human body including morphological (Ahtiainen, 

Pakarinen, Alen, Kraemer, & Häkkinen, 2003; Alegre, Jiménez, Gonzalo-Orden, Martín-Acero, & 

Aguado, 2006; Brandenburg & Docherty, 2002; Folland & Williams, 2007; Hakkinen, Kallinen, Komi, 

& Kauhanen, 1991; Holm et al., 2008; Kawakami, Abe, Kuno, & Fukunaga, 1995; Kyröläinen et al., 

2005; McGuigan et al., 2003; Narici et al., 1996; Raastad, Glomsheller, Bjøro, & Hallén, 2001; 

Rønnestad et al., 2012; Schmidtbleicher, 1987; Seynnes et al., 2007; Vissing et al., 2008; Winchester et 

al., 2008) neuromuscular (Aagaard et al., 2002a; Aagaard, Simonsen, Andersen, Magnusson, & Dyhre-

Poulsen, 2002b; Ahtiainen & Häkkinen, 2009; Bastiaans, Diemen, Veneberg, & Jeukendrup, 2001; 

Beattie et al., 2016; Bosco et al., 2000; Brandenburg & Docherty, 2002; Brandon et al., 2015; 

Buckthorpe, Pain, & Folland, 2014; Byrne & Eston, 2002; Folland & Williams, 2007; Gabriel et al., 
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2006; Hakkinen et al., 1988; Howatson et al., 2016; Kyröläinen et al., 2005; Linnamo et al., 1997; 

Linnamo et al., 2000; McCaulley et al., 2009; Narici et al., 1996; Raeder, Wiewelhove, De Paula, 

Kellmann, Meyer, Pfeiffer, & Ferrauti, 2016; Raeder et al., 2015; Remaud, Cornu, & Guével, 2010; 

Schmidtbleicher, 1987; Walker, Davis, Avela, & Häkkinen, 2012) and biochemical (Bosco et al., 2000; 

Fry, Kraemer, Stone, Koziris, Thrush, & Fleck, 2000; Hakkinen & Pakarinen, 1993; Hakkinen et al., 

1988; Kraemer et al., 1992; Kraemer et al., 1991; Kraemer et al., 1998a; Kraemer et al., 1990; Kraemer 

& Ratamess, 2005; Kraemer, Volek, Bush, Putukian, & Sebastianelli, 1998b; Linnamo, Pakarinen, 

Komi, Kraemer, & Häkkinen, 2005; McCaulley et al., 2009; Ojasto & Hakkinen, 2009; Pullinen et al., 

2002; Pullinen, Mero, MacDonald, Pakarinen, & Komi, 1998; Raastad, Bjøro, & Hallen, 2000; Smilios, 

Pilianidis, Karamouzis, & Tokmakidis, 2003; Uchida, Aoki, Navarro, Tessutti, & Bacurau, 2006) acute 

responses and chronic adaptations.  These effects are wide spread, involving the interaction of various 

factors.  For example, resistance training has been shown to have a positive impact on muscle 

hypertrophy with a concurrent increase in anabolic hormone levels and strength (Folland & Williams, 

2007).  The complexity of human physiology can be displayed by the large number of different 

physiological responses within each physiological system. 

This review will discuss both the adaptations and acute responses to resistance training with a focus on 

maximum strength and maximum power protocols.  For this review, chronic adaptations refer to the 

body’s changes in relation to multiple stimuli over time, whereas acute responses refer to the body’s 

changes in relation to a single stimulus.  With this in mind, acute responses to a single resistance training 

bout may last as long as 72 h post stimulus (Gathercole et al., 2015a) and chronic adaptations have been 

tracked over time periods of up to at least two years (Hakkinen et al., 1988). 

Chronic physiological adaptations to resistance training have long been an area of scientific interest.  As 

such, a significant body of literature exists examining the human body’s chronic adaptations to various 

resistance training protocols (Ahtiainen et al., 2003; Campos et al., 2002; Folland & Williams, 2007; 

Hakkinen et al., 1988; Häkkinen, Pakarinen, Kraemer, Häkkinen, Valkeinen, & Alen, 2001; Hakkinen, 

Pakarinen, Kraemer, Newton, & Alen, 2000; Kyröläinen et al., 2005; McGuigan et al., 2003; Narici et 

al., 1996; Rønnestad et al., 2012; Vissing et al., 2008; Winchester et al., 2008).  Both maximum strength 

and power training protocols are planned regularly throughout the yearly training calendar in the pursuit 

of improved athletic ability.   As such understanding the morphological, biochemical and neuromuscular 

adaptations associated with each training type is critical for program design.  The literature below 

presents a review of these adaptations and highlights areas that have not yet been investigated. 
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2.2.1 Morphological changes and adaptations to a strength or power program 
 

Morphological changes due to resistance training are well accepted in the scientific literature and are 

most commonly depicted by the changes in whole-muscle size that occur after resistance training 

(Folland & Williams, 2007; Wernbom, Augustsson, & Thomeé, 2007) due to its ease of measurement.  

Muscle hypertrophy and other morphological muscle adaptations have not traditionally been associated 

with maximum strength or power training protocols.  Typically, resistance training protocols that utilise 

a higher volume and moderate intensity are used when morphological adaptations such as increased 

cross-sectional area are the goal.  However, a small body of research has examined the effect of 

maximum strength and power training on morphological parameters.  The list of morphological 

adaptations associated with resistance training is significantly more extensive than hypertrophy alone 

and can include changes in (Folland & Williams, 2007): 

• Whole-muscle size 

• Muscle fibre hypertrophy 

• Myofibrilliar growth and proliferation 

• Hyperplasia 

• Fibre type and MHC composition 

• Density of skeletal muscle 

• Tendon stiffness and connective tissue arrangement 

• Muscle architecture (pennation angle) 

Within these individual adaptations, great variation in response can occur due to the unpredictability of 

inter- and intra-individual responses and the challenges associated with many of these measurements.  

Whole muscle size measurement involves either computerised tomography, magnetic resonance 

imaging (MRI) or ultrasound and can be measured via either physiological cross-sectional area (PCSA) 

or anatomical cross-sectional area (ACSA) (Folland & Williams, 2007).  They differ in that PCSA is 

measured perpendicular to the line of pull of the muscle fibres whereas ACSA is measured directly 

across the muscle at its widest anatomical point irrespective of muscle fibre pennation angle (Folland & 

Williams, 2007).  PCSA is deemed the more valid measure of cross sectional area, however both 

methods are commonly used in the literature (Folland & Williams, 2007).  This is due to the challenges 

of the precise measurement  required of variables such as fibre pennation, muscle volume and fibre 

length estimation, associated with PCSA (Aagaard et al., 2001).  Other confounding factors in the 

reporting of changes in whole muscle size include, muscle group trained, gender, age and even selective 

muscle growth.  Narici et al (1996) found differences in rectus femoris change in cross sectional area 

(CSA) of between 19% and 50% dependant on where the measurement was taken along the muscle 
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however the training program used in this study did utilise a lifting intensity and repetition volume not 

commonly associated with maximal strength training.  

Changes in muscle CSA as a result of chronic strength training is thought to be primarily driven by 

muscle fibre hypertrophy (Jones, Rutherford, & Parker, 1989).  Due to the number of different types of 

muscle fibres and their individual properties, this also adds to the variability in response to a resistance 

training stimulus.  Campos et al (2002) reported the preferential hypertrophy of type IIB fibres in 

response to an eight week resistance program resulting in increases of 12.5% for type I, 19.5% for type 

IIA and 26% for type IIB.  Their study included low repetitions, medium repetitions and high repetition 

groups with the low repetition group performing a typical maximum strength program consisting of 

three to four sets of three to five repetitions at an intensity of 3-5RM with three minutes rest between 

sets performed two to three times weekly for eight weeks.  The results of this study suggest that the 

maximum strength program had a beneficial effect on muscle fibre CSA. 

However, the research surrounding morphological changes to muscle have not been limited to 

hypertrophy with a growing body of literature examining muscle fibre type composition via changes in 

the expression of MHC composition.  In the same study (Campos et al., 2002) the researchers also 

investigated the effects of the eight-week maximum strength training protocol on MHC isoform 

composition.    The authors found adaptations in MHC isoforms with significant decreases and increases 

in MHCIIb and MHCIIa isoforms, respectively.  This finding is important as it suggests the possibility 

of achieving positive morphological adaptations whilst utilising maximum strength training protocols 

of lower volume than hypertrophic protocols. 

In research examining the morphological adaptations of human muscle to power training there has been 

less clear findings.  McGuigan et al. (2003) examined the effects of an eight-week power training (jump 

squat) program on fibre type and MHC isoform composition.  The study used two experimental groups, 

one training at 30% of their 1RM Back Squat and the other group at 80% 1RM.  During the training 

period, subjects trained twice weekly with the volume of both the experimental and control groups 

varying.  No specific data on the total volume performed by either training group was given however, 

from the information provided it can be assumed that the group that trained at the higher intensity 

performed less volume.  No differences were found in either fibre type or MHC isoform type in either 

of the two experimental groups indicating that the power training protocols of both light and heavy load 

had no effect on the morphological parameters measured.   

Subsequent research into chronic adaptations has substantiated these findings (Kyröläinen et al., 2005; 

Winchester et al., 2008).  Kyröläinen et al. (2005) investigated the changes in muscle structure after a 

15-week power training program utilising various power exercises.  Needle biopsies were obtained from 

the middle portion of the gastrocnemius muscle before and after the training period to allow analysis of 
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muscle fibre type and size and MHC isoform composition.  No effects were found for any of the 

morphological variables measured despite increases in some of the neuromuscular parameters assessed 

including DJ height and knee extension maximal RFD.   Additionally, Winchester et al. (2008) found 

no change in muscle fibre type distribution in the vastus laterals muscle after eight weeks of jump squat 

training performed three times per week.   

The combined results of these studies suggest that whilst maximum strength training may affect 

morphological changes, power training protocols do not affect morphological variables.  These findings 

suggest that if morphological changes are a desired outcome from a resistance training program, a 

maximum strength program may provide sufficient stimulus to drive such adaptations whereas a power 

program may not.  These morphological changes may result in altered force production characteristics 

of the muscle which may in turn have a positive impact on performance related activities. 

 

2.2.2 Biochemical changes and adaptations to a strength or power program 
 

As with the above morphological research, biochemical responses and adaptations to resistance training 

have been substantially researched (Ahtiainen et al., 2003; Gonzalez, Hoffman, Stout, Fukuda, & 

Willoughby, 2016; Hakkinen et al., 1988; Häkkinen et al., 2001; Hakkinen et al., 2000; Kraemer et al., 

1999; Uchida et al., 2006).  However, the number of hormones within the body, their dependency on 

each other and the effect of hormone precursors means that the analysis of specific hormonal responses 

and the effect they have on the body is challenging.  Common biochemical parameters linked with 

resistance training can be found below (Crewther et al., 2006; Kraemer & Ratamess, 2005): 

• Testosterone 

• Growth hormone 

• Insulin-like growth factor 1 

• Cortisol 

• Catecholamines: Dopamine, Adrenaline, Noradrenaline 

• Serotonin 

• Creatine Kinase 

 

In addition to the various biochemical parameters effected by resistance training programs, the interplay 

of other variables adds further complexity to the biochemical response that can be expected from one or 

more bouts of resistance training.  The most important of these is resistance exercise program design, 

however other factors such as age, gender, nutrition, training status and circadian rhythm can also impact 



23 
 

the response (Crewther et al., 2006; Kraemer & Ratamess, 2005).  Whilst a full review of the 

biochemical responses to resistance training is beyond the scope of this chapter, specific studies relevant 

to maximum strength and power training have been presented below to complement the information 

presented in previous sections. 

Although a substantial body of research exists examining biochemical adaptations to resistance training, 

the majority of this research has focussed on hypertrophic training schemes with considerably less 

literature available regarding maximum strength or maximum power training (Ahtiainen et al., 2003; 

Hakkinen et al., 1988; Kraemer et al., 1999).  In one of the few studies to examine the hormonal 

responses to the specific resistance training protocols of interest Hakkinen et al. (1988) examined the 

hormonal adaptations of elite weightlifters over a two-year training period.  Over the training period a 

significant increase in resting serum testosterone was found with no changes in cortisol levels observed 

showing that elite athletes may gain positive benefits in basal hormone levels after a chronic maximum 

strength/power training period.  However, the content of the training over this period was described in 

general terms of ‘they trained for weightlifting’ stating that they performed a variety of common power 

training and maximum strength training exercises.  This general training information results in it being 

difficult to draw any meaningful conclusions on the effectiveness of specific maximum strength or 

maximum power training on hormonal adaptations.   

Ahtiainen et al. (2003) examined the effects of a 21-week resistance training program on hormonal 

adaptation in strength trained and untrained men.  However, the resistance training program was referred 

to as a protocol used in previous research (Hakkinen et al., 2000) and utilised an intensity of between 

50-80% 1RM, loads that cannot be included in maximum strength research.  Additionally, heavy 

resistance and ‘explosive’ strength training regimes were used concurrently during this exercise program 

making it impossible to separate the effects either protocol may have had on the variables assessed.  

Similarly, Kraemer et al. (1999) compared hormonal levels in younger and older men after a 

strength/power training block.  However, as in the previous study the resistance training protocol used 

both a blended training program with the subjects performing one day of maximum strength, one day of 

hypertrophy and one day of power training per week.  As above, this makes it impossible to separate the 

effects of either maximum strength or power training on hormone levels.   

The scarcity of research on adaptations in hormone levels following a maximum strength or maximum 

power training protocol leaves a gap in the literature that should be addressed.  Further research into the 

chronic biochemical adaptations of elite athletes to either maximum strength or power training is 

warranted to gain greater insight into these potential changes and their impacts on performance. 
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2.2.3 Neuromuscular changes and adaptations to a strength or power program 
 

Neuromuscular adaptations following maximum strength or power training has received significant 

attention in the literature (Cormie et al., 2009; Cormie, McCaulley, & McBride, 2007a; Cormie et al., 

2010; Hakkinen et al., 1988; Kyröläinen et al., 2005; Lyttle et al., 1996; Østerås et al., 2002; 

Schmidtbleicher, 1987; Winchester et al., 2008).  However, the neuromuscular tests used and variables 

monitored within each to assess adaptations vary greatly giving a wide range of results that are 

challenging to compare.  Some tests and variables are more mechanism driven, using laboratory based 

assessments to examine variations in variables such as RFD, peak force and EMG activity (Cormie et 

al., 2009; Hakkinen et al., 1988; Schmidtbleicher, 1987) whilst others focus on the effects on common 

performance measures such as the CMJ, DJ, IMTP and sprints  (Cormie et al., 2010; Lyttle et al., 1996; 

Winchester et al., 2008). 

Previous research has detailed possible mechanisms that may be positively affected by resistance 

training (Folland & Williams, 2007; Gabriel et al., 2006) including: 

• Cross transfer 

• Adaptations in force sensation 

• Change in antagonist activity 

• Motor unit activation 

o Firing frequency 

o Synchronisation 

o Cortical adaptations 

o Spinal reflexes 

Understanding and accounting for the neuromuscular adaptations to resistance training are important 

due to the difference in timeframe and magnitude of muscle strength increases versus the changes in 

morphological changes, such as CSA, found in scientific studies (Folland & Williams, 2007).  

Neuromuscular activation is complex, involving multiple variables from both central and peripheral 

factors.  Typically, these two areas are differentiated by changes in processes either above the 

neuromuscular junction (central) or below (peripheral) and can be observed by changes in motor neuron 

or excitation-contraction coupling as respective examples (Carroll, Taylor, & Gandevia, 2017).  

 Changes in neural drive, as measured by increases in EMG, have been postulated as a potential source 

of early strength gains in response to a resistance training stimulus (Gabriel et al., 2006).  A person’s 

ability to voluntarily activate all available muscle fibre’s has been investigated previously using the 

interpolated twitch technique (ITT) and may be a contributor to positive performance adaptations 

(Brandon et al., 2015; Howatson et al., 2016; Knight & Kamen, 2001).  Knight and Kamen (2001) found 
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that an additional electrical stimulation applied on top of a MVC resulted in adults producing 3-5% more 

maximal force.  Additionally, a six-week resistance training program utilising a hypertrophy based 

scheme an effect on muscle activation was observed, with an improvement of 1.7% in central activation 

ratio (CAR) (Knight & Kamen, 2001). 

Motor unit firing frequency has also been proposed as a mechanism of resistance training based strength 

gains (Gabriel et al., 2006; Kamen & Knight, 2004). Kamen and Knight (2004) found that younger 

adults had a higher motor unit firing rate than older adults although no change was found between 

baseline testing and after a six-week resistance training program.  This program did not utilise a typical 

maximum strength or power scheme and as such, whilst it presents interesting information on general 

resistance adaptations the results have limited application to the majority of resistance training utilised 

in athlete physical preparation. 

The changes in neuromuscular activation mentioned above may be caused by different mechanisms such 

as changes in motor cortex signals or spinal reflexes and remains a subject of debate (Aagaard et al., 

2002b; Carroll, Riek, & Carson, 2002; Gabriel et al., 2006).  Due to the challenges in assessing the 

specific mechanisms of neuromuscular adaptations to resistance training, research investigating the 

training effects of maximum strength and power have focussed on accepted variables such as MVC and 

EMG as detailed below. 

Schmidtbleicher (1987) used an isometric MVC  of the triceps brachii to investigate maximal RFD, 

maximal force and EMG analysis in a bespoke apparatus that allowed isometric and concentric shot put 

movement of the arm.  Two groups, maximum strength and maximum power, trained four times weekly 

across a 12-week period.  The strength group training consisted of seven sets of three repetitions or less 

at intensities of ≥90% MVC, whilst the power training group performed five sets of eight repetitions at 

a set intensity of 45% MVC.  Peak force increased similarly for both groups, 18% and 17% respectively, 

however RFD showed a much larger increase for the maximum strength group (34%) versus the power 

group (11%). 

In a similar study, Kyröläinen et al. (2005) examined the effects of a power training on neuromuscular 

performance.  Recreationally trained adult males trained twice weekly for fifteen weeks and performed 

weighted jump squats and other various stretch-shortening cycle (SSC) exercises.  The training protocol 

consisted of a variety of unloaded single and double leg hopping and hurdle jumps, loaded (30-60% 

1RM back squat) jump squats and DJs.   Knee and plantar flexor isometric MVC’s and EMG were 

assessed for changes in performance as was maximal effort DJ from 50 centimetres.  The tests were 

performed pre-training and after five weeks, ten weeks and post-training (15 weeks).  An increase in 

plantar flexor MVC was observed by the ten-week test as was an increase in EMG however no additional 

changes were observed by the 15-week test.  No change in knee extensor MVC or EMG were observed 
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at any time point despite an increase in maximal RFD.  The cumulative effects on performance resulted 

in DJ height improving over the course of the experimental period.  The authors suggested that the 

increases seen in both DJ performance and plantar flexor MVC and EMG as opposed to knee extensor 

changes highlight the role of specificity in the adaptations mirroring the muscle groups most directly 

targeted by the training protocol.  This study however must be interpreted with caution as the subjects 

were recreationally trained and despite undergoing a two-week preparatory phase, would likely respond 

differently to the training program used compared to trained athletes. 

Most training studies investigate the chronic training effects over a training period from between 8-16 

weeks.  However, Hakkinen et al. (1988) examined neuromuscular adaptations  over a two-year training 

period in elite male weightlifters following a predominantly power training program.  Maximal 

isometric leg extension performance (peak force and EMG) and maximal static squat jumps at a range 

of additional loads were assessed for changes in performance (jump height).  Although performance 

varied during the period, there was no clear effect on any of the variables measured between the first 

and last measurements.  A small increase in weightlifting performance was seen indicating that any 

change in performance may have been due to technical improvements.  Additionally, the authors noted 

that the lack of clear effects on neuromuscular performance could be due to the elite training status of 

the athletes as compared with less-trained or even untrained subjects.  

In designing either maximum strength or maximum power training programs to target performance 

benefits in athletes, strength and conditioning coaches will schedule these sessions amongst the other 

weekly training commitments of the athletes including their sport specific technical and tactical training 

sessions.  The cumulative effects of each individual session result in the longer-term adaptations seen 

over a training cycle as described earlier in section 2.1.  However, each individual session contributes a 

certain level of fatigue and depending on the training stimulus given, the athlete undertaking the training 

will exhibit their own unique recovery profile.  As such, it is important to consider and understand the 

consequences, positive and negative, associated with performing a maximum strength or maximum 

power training session. 

 

2.3 Acute responses and recovery dynamics to various resistance training protocols in 
adults 
 

Various resistance training protocols such as maximum strength and power training result in different 

acute physiological responses and recovery dynamics (Brandon et al., 2015; Howatson et al., 2016).  An 

understanding of these acute responses and recovery dynamics is important when designing resistance 

training programs for athletes with a specific physiological goal in mind.  Not only do these acute 
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responses potentially drive the longer-term chronic adaptations that are sought for performance benefits 

but the acute effects may also have positive or negative implications for other concurrent training that 

is occurring within the athlete’s weekly schedule such as technical/tactical training.  The following 

section examines the literature surrounding the acute morphological and neuromuscular responses and 

recovery dynamics to both maximum strength and power training in an athlete population.  

 

2.3.1 Acute morphological responses 
 

As mentioned previously, changes in whole-muscle size is an extensively researched area due to the link 

between muscle size and strength.  General consensus is that 8-12 weeks of resistance training  is needed 

to see substantial changes in muscle size (Folland & Williams, 2007).  However, changes in CSA have 

been noted as early as 20 days in to a training program (Seynnes et al., 2007).  However, this time course 

remains well outside an acute response window and as such, this adaptation has not been a topic of focus 

in acute responses to resistance training.  Despite the overwhelming body of research examining the 

chronic adaptations associated with resistance training, the literature agrees that this process begins at a 

molecular and cellular level within hours of cessation of a training session (Bickel et al., 2005).   

The significant markers driving morphological changes in skeletal muscle following resistance training 

are muscle protein synthesis (MPS) and muscle protein breakdown (MPB), a net positive protein balance 

being required to induce hypertrophic changes (Damas, Phillips, Vechin, & Ugrinowitsch, 2015).  MPB 

shows less variation in response to resistance training in comparison to MPS, resulting in most research 

focussing on MPS as the key monitoring variable (Damas et al., 2015).  Resistance training is recognised 

to have a strong stimulation effect on MPS and a less powerful effect on MPB, resulting in this net 

positive protein balance occurring.  Chelsey et al. (1992) examined the effect of a hypertrophy training 

program on MPS rate at 4 h and 24 h post exercise utilising four sets of 6-12 reps at 80% 1RM.  They 

found that MPS rates were elevated post-exercise at both time points compared with the non-exercise 

control, highlighting the benefit of resistance training on MPS and therefore muscle hypertrophy.   

Damas et al. (2015) recently published a review comparing the magnitude and time course of MPS in 

untrained versus trained resistance exercise subjects.  The authors concluded that resistance trained 

individuals experience a faster peak in MPS post-exercise compared with untrained counterparts.  

However, the peak change in MPS was less than that experienced by the untrained subjects, additionally, 

the rate of decay of MPS occurred more quickly in the trained group resulting in the untrained group 

experiencing an approximate three-fold greater increase in MPS in the 48 h period after a resistance 

training session.  These results are congruent with the impaired hypertrophy adaptations seen in trained 

versus untrained individuals to a hypertrophy-based resistance training program (Ahtiainen et al., 2003).  
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This provides further evidence of the need for the more advanced program variables used in resistance 

training programs for individuals with an extensive training history such as an athletic population 

(Ahtiainen et al., 2003). 

In a further attempt to understand the acute morphological responses to resistance training, creatine 

kinase has been used as a marker to indicate muscle damage from resistance training that is linked to 

protein turnover and remodelling (Soares, Mota, Duarte, & Appell, 1996).  Whilst this topic is relevant 

to morphological changes, due to the multi-factorial relationship between resistance training, muscle 

damage and protein synthesis, creatine kinase will be discussed in further detail in the acute biochemical 

response to resistance training section (2.3.2) below.  As detailed above, acute morphological responses 

to resistance training, specifically the effect of various training protocols such as maximum strength and 

maximum power remain poorly understood and would benefit from additional research to aid the design 

and planning of resistance training programs for athletes. 

 

2.3.2 Acute biochemical responses  
 

The focus of this literature review is on the morphological and neuromuscular adaptations and responses 

to maximum strength and power training as has been detailed above.  However, the acute morphological 

responses are linked with the acute biochemical responses and as such it is important to understand these 

acute biochemical responses to resistance training. 

A large body of scientific literature is available examining the biochemical response to maximum 

strength training compared with power training.  The number of biochemical parameters that have been 

studied are extensive and their responses vary greatly both within and between resistance training 

protocols.  Adding to the confusion is the number of different factors that can affect acute responses 

such as program design, sex, age, previous training history and nutrition (Crewther et al., 2006).  Due 

to these confounding factors, previous scientific literature has found mixed biochemical responses to 

both maximum strength (Hakkinen & Pakarinen, 1993; Kraemer et al., 1998a; Raastad et al., 2000) and 

power training (Bosco et al., 2000; Crewther et al., 2006; Izquierdo, Ibanez, Hakkinen, Kraemer, Ruesta, 

& Gorostiaga, 2004).   

In examining the biochemical response of adult males to maximum strength training, Kraemer et al. 

(1990), manipulated training intensity and rest periods of a typical 5RM maximum strength program 

and examined blood lactate, serum testosterone, serum human growth hormone and serum insulin-like 

growth factor 1.  Biochemical responses were measured immediately, 5, 10, 15, 30, 60, 90 and 120 

minutes post training.  They utilised a ‘primary’ training program consisting of a whole-body workout 
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of eight exercises that the subjects performed 3-5 sets of at 5RM with three minutes rest between sets.  

The intensity and rest period were then manipulated in subsequent sessions by either decreasing the 

intensity and increasing volume to 10RM, or decreasing the rest period to one minute between sets.  The 

primary strength program significantly increased blood lactate levels immediately post as well as 5 and 

15 minutes post-exercise.  When rest was shortened, blood lactate was significantly higher compared 

with normal resting conditions at zero and five minutes post.  Conversely, when rest was maintained 

and load was decreased, no effects on blood lactate when compared with resting values were seen.  A 

similar response was seen in testosterone levels with both the primary strength program and shortened 

rest program showing significant increases in testosterone levels when compared with normal resting 

whilst the decreased load program showed no effects.  Human growth hormone and insulin like growth 

factor 1 showed more inconsistent results varying in response across time points however in general, 

the higher volume, lower intensity program appeared to have greater effect on both these hormones.  

This suggests that typical maximum strength training intensities of 5RM or higher have significant 

effects on testosterone and less effect on human growth hormone and insulin-like growth factor 1 in 

male adults.  In a follow up study, Kraemer et al. (1993) repeated their research on female adults.  

Interestingly, no changes were found in testosterone and insulin-like growth factor 1 highlighting the 

different hormonal responses between male and female adults when exposed to the same maximum 

strength stimulus. 

Hakkinen and Pakarinen (1993) examined acute responses in human growth hormone, testosterone and 

cortisol to a workload of 20 sets of one repetition at 100% of 1RM.  No significant changes in serum 

testosterone concentration, serum free testosterone or cortisol concentration were found immediately 

post, the morning after, and 2 mornings after exercise.  As highlighted by the authors this indicates that 

hormonal response to resistance training is dependant not only on the workload performed but on the 

intensity/volume breakdown of the resistance training and in this case, the use of a very heavy load 

(1RM) and a total volume of 20 reps with three-minute rest periods was not sufficient to induce changes 

in the hormones examined.   

In similar maximum strength research, Smilios et al. (2003) examined the effects of varying volume and 

intensity of a maximum strength protocol on biochemical markers including blood lactate, serum 

testosterone, serum cortisol and human growth hormone.  Volume and intensity was varied by subjects 

performing exercises of either two, four or six sets of five repetitions at intensities ranging between 79 

% and 88% of 1RM.  Blood analysis performed pre, immediately post, 15 and 30 minutes post-exercise 

showed that blood lactate increased significantly immediately post-exercise at all time points when 

compared with pre-workout levels, regardless of the number of sets performed.  Interestingly, no change 

was seen in serum testosterone for any protocol at any of the time points despite the fact that increased 



30 
 

blood lactate levels stimulates testosterone secretion in the Leydig cells (Raastad et al., 2000).  Human 

growth hormone showed increases immediately post all sessions with the four-set protocol showing 

higher responses than the two-set protocol, whilst cortisol concentrations decreased significantly after 

all the exercise sessions with no difference between protocols.  Conversely, in a study by Zafeiridis, 

Smilios, Considine & Tokmakidis (2003)  using four sets of five repetitions at 88% 1RM, no significant 

changes in cortisol levels were found whereas a significant increase in blood lactate levels was found 

immediately after resistance training, returning to baseline levels by 30 minutes post-exercise.   

Raastad et al. (2000) examined acute hormonal response and recovery dynamics in adult males 

following two differing maximum strength training protocols.  The ‘heavy’ protocol utilised a load of 

100% of the corresponding RM for each exercise whilst the ‘moderate’ protocol utilised a load of 70% 

of the corresponding RM.  The same set and repetition scheme was used for each group and the rest 

period between sets was also the same.  Testosterone increased significantly more immediately post the 

heavy protocol compared with the moderate protocol whilst cortisol decreased significantly more after 

the moderate protocol.  Human growth hormone response was similar between the two groups although 

this showed the greatest inter-individual differences.  These varied findings in the hormonal responses 

to maximum strength training reinforce the influence of confounding factors as mentioned previously, 

especially program design including exercise selection, volume, intensity and overall workload. 

The body of research examining the acute hormonal responses to maximum power training is 

significantly less than that performed on maximum strength training.  In one such study, Bosco et al. 

(2000) examined acute hormonal response following various maximum strength and power training 

protocols.  Male track and field sprinters performed maximum strength training comprising of 6 series 

of 16 repetitions (6+6+4 reps, 3 minutes rest between sets) at 80% 1RM, whilst two groups of Olympic 

Weightlifters performed different power training protocols performing either ten sets of 2-3 repetitions 

at 60-80% 1RM or 20 sets of 2-4 repetitions at 50-70% 1RM.  The maximum strength session resulted 

in significant decreases in testosterone and cortisol immediately post-exercise.  Conversely, the higher 

intensity power training group experienced a significant increase in testosterone post-exercise with no 

changes in cortisol levels, whilst the lower intensity power training group had no changes in either 

hormone.  These results are interesting because they highlight the difference in responses between three 

neuronal resistance training protocols, even within a similar training scheme as seen with the two power 

training groups.  The decrease in testosterone seen in the maximum strength group is contrary to the 

effects seen in the previous studies (Kraemer et al., 1990; Raastad et al., 2000), however this may be 

due to the very high volume of repetitions performed (96), which is higher than the volumes typically 

performed in maximum strength training programs.  McCaulley et al. (2009) examined acute 

testosterone, cortisol and blood lactate responses immediately post, one, 24 and 48 h post-exercise 
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following a single bout of both maximum strength and power training.  The maximum strength training 

protocol consisted of 11 sets of three repetitions of the parallel back squat at 90% 1RM with five-minute 

rest periods between sets whereas the power training protocol consisted of eight sets of six jump squats 

at body mass with three minute rest periods.  No significant changes were observed in the raw hormone 

data for either group at any time point although trends of a higher percentage increase in testosterone 

pre- to immediately post-exercise were found for the maximum strength versus power group whereas a 

larger percent decrease was found in the power group.  Only blood lactate showed a significant increase 

during the study, exclusive to the maximum strength training group immediately post-exercise. 

The body of research examining catecholamine response to maximum strength or power training is 

limited, especially when compared to the hormone research presented above.  In addition, the use of 

alternative training protocols not typical of those used in maximum strength or power training make the 

findings from this literature challenging to apply in a practical setting (Pullinen et al., 2002; Pullinen et 

al., 1998).  The research highlights that resistance training influences catecholamine response, with 

Pullinen et al. (1998) finding that a training protocol of 10 sets of five repetitions of bilateral leg 

extensions performed with one minute rest between sets increased both adrenaline and noradrenaline 

post-exercise, whilst extending the rest periods to four minutes resulted in an increase in noradrenaline 

only.  Other catecholamine’s requiring further research include dopamine and serotonin due to their 

proposed role as possible markers in central fatigue (Meeusen, Watson, Hasegawa, Roelands, & 

Piacentini, 2006). 

The large variance in acute biochemical responses in adults to a maximum strength or maximum power 

training sessions is apparent and requires further research to provide more specific guidelines for applied 

practitioners. 

 

2.3.3 Acute neuromuscular responses  
 

Maximum strength and power training is commonly referred to in the literature as ‘neuronal schemes’ 

(Crewther et al., 2006) as it is hypothesized  that they improve strength and power predominantly via 

changes in neuromuscular pathways as opposed to morphological adaptations.  As discussed previously, 

morphological changes take at least three weeks to occur after commencing a resistance training 

program (Seynnes et al., 2007).  However, gains in strength during resistance training are noted to occur 

earlier.  In conjunction with this, strength training appears to result in disproportionately larger increases 

in muscle strength than size (Behm et al., 2008), further increasing interest in the neuromuscular 

responses to strength training.  As such, acute neuromuscular responses have been a focus of previous 

research with the literature investigating two distinct areas, neuromuscular responses (Bosco et al., 2000; 
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Brandon et al., 2015; Linnamo et al., 2000) and neuromuscular fatigue (Howatson et al., 2016; Linnamo 

et al., 1997; McCaulley et al., 2009).  In general, neuromuscular response studies have detailed the 

immediate effect, positive or negative, of strength or power training sessions on subsequent performance 

whilst neuromuscular fatigue literature has examined the time course of the recovery of these measures.  

Of interest to the applied practitioner are any differences in acute responses to typical resistance training 

protocols.  The research summarised below details the differences and similarities that have been found 

in acute neuromuscular responses to either maximum strength or maximum power training. 

Previous research examining the acute neuromuscular response to training has typically utilised a time 

course ranging from immediately post-exercise up to 72h post exercise (Gathercole et al., 2015a).  

Linnamo et al. (1997) investigated neuromuscular fatigue following a power training protocol in male 

and female subjects.  Their protocol comprised of 5 sets of 10 bilateral leg extension performed as 

explosively as possible.  Intensity of the exercise was difficult to ascertain as no absolute intensity was 

provided by the authors.  Maximal peak force and maximal RFD measured via a maximal bilateral 

isometric leg extension test were both significantly lower immediately following exercise with peak 

force recovering to baseline levels 1 h post, whilst maximal RFD required 2 h to return to pre-training 

levels.  In addition, integrated electromyography (iEMG) activity of the vastus medialis, vastus lateralis 

and rectus femoris was also examined and, for the time period of 0-100 ms of the movement, was still 

found to be depressed two days after exercise in males.  In contrast to this, the female group showed a 

full recovery of iEMG activity within 1 h of having completed the exercise indicating potentially 

different neuromuscular responses between genders to power training.  The recovery of maximal peak 

force and RFD were similar to that found in the male group indicating that although males had recovered 

force production qualities in a similar time frame, the mechanism for developing the force was different 

due to the depressed iEMG activity.  In a follow up study, Linnamo et al. (2000) examined the 

neuromuscular response to power training via  concentric only incline leg press.  Subjects performed 

the same volume as in the previous study however the exercise examined was changed to an incline leg 

press that utilised a computer controlled braking system to eliminate the eccentric component of the 

movement.  The load used for training was 40 ± 6% of the subject’s isometric maximum at a knee angle 

of 100°.  In contrast to their previous work, no significant decreases in neuromuscular responses were 

found leading the authors to suggest the lower volume, propagated via the lack of an eccentric portion 

of the movement, as a possible mechanism for these findings. 

In examining the acute neuromuscular response to a maximum strength training protocol, Bosco et al. 

(2000) tested the leg extensor muscles of male and female sprinters whilst performing a maximal 

dynamic half-squat and a full squat training session.  Average power output, measured in a full and half-

squat, was found to decrease in the male sprinters during the session whilst the females showed no 
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decrease in power output for either lift.  EMG analysis of the leg extensor muscles showed no significant 

changes for either group in the full-squat over the exercise period, however significant decreases in 

EMG activity were found for both groups during the training session.  As above, the different 

neuromuscular response between male and female athletes is of great interest showing potentially 

different responses to resistance training.  The decrease in power output during the full-squat shown by 

the males with EMG activity remaining unchanged indicates that peripheral fatigue may have been more 

heavily affected than neural factors.  This response was in direct contrast to that found after power 

training by Linnamo et al. (1997) where force output recovered quickly but EMG remained depressed 

suggesting different acute responses to the two resistance training protocols.  However, caution must be 

used when interpreting these results, as different athlete groups, subjects and exercise selections were 

used adding unknown variation.  Additionally, in the Bosco study, training volume consisted of six sets 

of 16 repetitions with eight minutes rest between sets.  Each set of 16 repetitions was broken into smaller 

sets of six, six and four reps with three minutes rest between smaller sets resulting in a total 96 reps 

performed across the session.  Whilst significant rest was given between efforts, the total volume for 

this type of training stimuli is very large.  Additionally, no clear idea of training load/intensity was given, 

making it impossible to determine whether this protocol was targeting maximum strength, or maximal 

power adaptations and therefore whether a larger morphological or neuromuscular response was 

expected.   

In a study examining both maximum strength and power training groups, McCaulley et al. (2009) 

investigated the acute neuromuscular response in an isometric squat following a single bout of either 

maximum strength or power training.  The maximum strength protocol consisted of 11 sets of three 

repetitions of the back squat performed at an intensity of 90% 1RM with five minutes rest between sets, 

whilst the power training group performed eight sets of six repetitions of a jump squat with no external 

load and a between set rest period of three minutes.  The study found a significant decrease in peak force 

and rate of force development immediately following the maximum strength protocol and again at 1h 

post exercise.  Additionally, maximum RFD was still depressed 24 h post-exercise whilst peak force 

had returned to pre-exercise levels.  Conversely, the power group exhibited no significant changes in 

the isometric squat for either peak force or maximum RFD.  In contrast, the authors reported a non-

significant trend as peak force surpassed that recorded in the rest condition group at 1, 24 and 48 h post 

the power training protocol suggesting a possible potentiating effect from the power training.   

Brandon et al. (2015) also investigated the neuromuscular responses of elite athletes to various resistance 

training protocols.  However, this study utilised the same ten elite track and field athletes to perform 10 

sets of five maximal squat repetitions, with three minutes rest between sets, at either heavy (85% 1RM), 

moderate (75% 1RM) or light (50% 1RM) loads, potentially allowing for greater accuracy in comparing 
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results between the different loads.  To account for the variations in load and to maintain typical athletic 

training principles, the moderate and heavy loads were performed with a controlled eccentric phase and 

an explosive concentric phase whereas the light load was performed with a fast eccentric phase.  The 

athletes were instructed not to jump in any of the loading conditions.  Pre, mid and post-session maximal 

isometric voluntary contractions were also performed on a leg extension machine for each condition 

with the mid-test performed after the fifth set.  In addition, each set was assessed via surface EMG.  The 

researchers found that the heavy load session increased neuromuscular recruitment but failed to maintain 

power, indicating the accumulation of peripheral fatigue.  In contrast, the medium load maintained 

neuromuscular recruitment but maintained power and produced less fatigue.  The light load did not 

increase neuromuscular recruitment, maintained power and completely avoided any residual fatigue.  

These results show that different resistance training protocols produce different neuromuscular 

responses, indicating that the applied practitioner should utilise different protocols at different times 

within the yearly training cycle and weekly plan depending on goals.  However, this study didn’t provide 

any information on the time course of this fatigue, i.e. how long does it take for neuromuscular fatigue 

to return to pre-training levels.  Additionally, whilst this study provided novel information regarding 

athlete responses to various resistance training protocols, the fatigue assessment tool used, isometric leg 

extension, whilst accurate, is not reflective of compound, multi-joint movements as seen in most athletic 

tasks.  The study also does not indicate how these typical training protocols affect more common 

performance tests that may provide a more accurate indication of an athlete’s readiness to perform 

dynamic, coordinated activities such as jumping and sprinting in either a training or competitive 

environment.  More research needs to be performed to gain a greater insight in this area.  

Limited research exists examining this particular area on maximum power training with only a study by 

Howatson et al. (2016) giving some indication to these acute responses.  Elite track and field athletes 

performed either a maximum strength or power training session on separate days.  Each session utilised 

three exercises, either a strength or corresponding power version, with the load during the power 

exercises equal to 30% of that used during the strength session.  Four sets of five repetitions were 

performed with three minutes rest between sets.  A maximal isometric knee extension test as used by 

Brandon et al. (2015) and three maximal CMJ’s were assessed before, immediately post and 24 h post 

the training session.  Differences between the two sessions showed that MVC of the knee extensors was 

found to be depressed immediately post and 24 h post the strength session but not following the power 

session which had no effect on MVC.  This result reinforces the findings of Brandon et al. (2015), that 

heavy load, maximum strength training may lead to increased peripheral fatigue when compared to 

lower load, power training.  No differences in CMJ were reported for either training group either mid-

session, immediately post or 24 h post training indicating that the fatiguing effect of either resistance 

training session was not substantial enough to affect CMJ performance.   
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The above research shows that the acute neuromuscular effects of various resistance training protocols 

on training fatigue and post-training recovery dynamics can be assessed using EMG and isometric MVC 

tests.  The type of acute effects seen may vary based on the type of training protocol used, the training 

age of the athlete and the training type of the athlete, i.e. strength/power based or endurance based.  

Additionally, it should be considered that the time-course of these effects may not be uniform and as 

such may require multiple assessment methods.  Whilst the use of single joint, isometric measures to 

monitor this fatigue has been shown to be a useful laboratory based method, it’s practical applications 

in the field is limited given it’s time cost.  The use of quicker and easier to administer performance tests 

that are commonly associated with athletic performance may provide useful global information in 

understanding the various neuromuscular effects of strength and power training and their effect on 

performance.  Whilst limited research has investigated these effects in relation to strength and power 

training (Howatson et al., 2016) their practical applications remain unclear.  This highlights the need for 

further research in this area as other studies have shown the usefulness of field based performance tests 

to assess neuromuscular fatigue such as the CMJ (Andersson, Raastad, Nilsson, Paulsen, Garthe, & 

Kadi, 2008; Cormack et al., 2008c), DJ (Byrne & Eston, 2002) and sprint tests (Gathercole et al., 2015a). 

 

2.4 The effects of resistance training on adolescent athletes 
 

The following section of this review focuses on the effects of resistance training on adolescents.  Due 

to the studies in this thesis focussing on male athletes, this review will focus predominantly on male 

adolescents. 

For the purpose of this review the term adolescent refers to the period of age between 14 – 18 y for 

males as has been used in previously (Behm et al., 2008; Faigenbaum et al., 2009).  Whilst this is a 

common method to distinguish adolescence, it does come with limitations, namely the effect of 

contrasting maturity within a chronological age group (Malina et al., 2004; Sherar et al., 2007).  This 

can lead to substantial differences among boys of different maturity status in physical tests of strength 

and power (Malina et al., 2004) and may have a subsequent effect on responses and adaptations to 

resistance training.  A common method for assessing and controlling for biological age variation is the 

determination of years post peak height velocity (PHV), that is the age at which maximum growth rate 

occurs (Sherar et al., 2007).   

The effects of resistance training on adolescence has been studied since the 1970’s (Vrijens, 1978) and 

has continued to receive attention in the scientific literature.  Over the past 15 years a growing interest 

in resistance training for children and adolescents has resulted in an increased number of studies 

focussed on these age groups (Behm et al., 2008; Behringer, Neuerburg, Matthews, & Mester, 2013; 
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Chelly et al., 2009; Christou et al., 2006; Croix, 2007; Drinkwater et al., 2005; Faigenbaum & 

McFarland, 2008; Faigenbaum, McFarland, Keiper, Tevlin, Ratamess, Kang, & Hoffman, 2007; 

Faigenbaum, Milliken, & Westcott, 2003; Faigenbaum, Ratamess, McFarland, Kaczmarek, Coraggio, 

Kang, & Hoffman, 2008; Faigenbaum & Schram, 2004; Faigenbaum, Westcott, Micheli, Outerbridge, 

Long, LaRosa-Loud, & Zaichkowsky, 1996b; Gorostiaga, Izquierdo, Iturralde, Ruesta, & Ibanez, 1999; 

Harries et al., 2016; Ingle, Sleap, & Tolfrey, 2006; Keiner, Sander, Wirth, Caruso, Immesberger, & 

Zawieja, 2013; Lillegard, Brown, Wilson, Henderson, & Lewis, 1997; Meylan, Cronin, Oliver, Hopkins, 

& Contreras, 2014; Philippaerts et al., 2006; Pikosky, Faigenbaum, Westcott, & Rodriguez, 2000; 

Pullinen et al., 2002; Pullinen et al., 1998; Ramsay, Blimkie, Smith, Garner, Macdougall, & Sale, 1990; 

Sailors & Berg, 1987; Sander, Keiner, Wirth, & Schmidtbleicher, 2013; Secomb, Nimphius, Farley, 

Lundgren, Tran, Parsonage, & Sheppard, 2015; Tibana, Prestes, da Cunha Nascimento, Martins, De 

Santana, & Balsamo, 2012; Tsolakis, Messinis, Stergioulas, & Dessypris, 2000; Tsolakis, Vagenas, & 

Dessypris, 2004).  Further evidence of the interest in resistance training on these age groups can be 

found in the publication of position statements by various international strength and conditioning 

associations (Baker et al., 2011; Faigenbaum et al., 1996a; Lloyd et al., 2012), health organisations 

(Behm et al., 2008), an international consensus between leaders in related research (Baker et al., 2011; 

Lloyd et al., 2014), review articles (Behringer, Heede, Matthews, & Mester, 2011; Harries, Lubans, & 

Callister, 2012; Lesinski, Prieske, & Granacher, 2016; Malina, 2006; Moran, Sandercock, Ramírez-

Campillo, Meylan, Collison, & Parry, 2016; Payne, Morrow Jr, Johnson, & Dalton, 1997) and discussion 

papers (Bernhardt et al., 2001; Guy & Micheli, 2001).  In general, this body of work makes 

recommendations based on training for general children and youth populations with little guidance or 

specific recommendations for adolescent athletes who may be more advanced than their untrained peers 

(discussed in section 2.1).  This increased exposure to resistance training may lead to an ability to 

tolerate and potentially require higher intensities of training to ensure adaptation to training does not 

stagnate.  Behm et al. (2008) attempted to address this in the Canadian Society for Exercise Physiology 

position paper on resistance training in children and adolescents stating that, ‘Youth with resistance 

training experience can gradually progress to more intense or voluminous workouts to target specific 

training objectives (i.e. strength, power, hypertrophy)’, however the training guidelines they provided 

are not typical for the objectives mentioned and they provide no direct references justifying these 

guidelines.  Lloyd et al. (2014), as part of an international consensus paper, extended these guidelines 

on the principle of physiological adaptation.  This consensus statement suggested that adolescents who 

can display and maintain technical competency may utilise lower repetition ranges (≤6) and higher 

external loads (>85% 1RM) during periodic phases of strength training.     

To accurately prescribe effective resistance training programs for adolescent athletes there must be a 

clear understanding of their specific physiological responses, recovery dynamics and adaptations to 
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various programs such as maximum strength versus power training as exists for the adult population.  

An understanding of these responses, recovery, dynamics and adaptations will allow more specific 

guidelines to be developed for practitioners working with this growing subgroup of athletes.  A portion 

of the current body of literature on this population group has focussed on the biochemical responses in 

relation to resistance training (Fry et al., 2000; Gorostiaga et al., 1999; Kraemer et al., 1992) and its 

comparison to adult responses.  This has included both hormonal (testosterone, insulin-like growth 

factor and cortisol) and catecholamines (dopamine, adrenaline, noradrenaline).  In comparing the results 

from these studies, substantial variation was seen in the results however it was apparent that differences 

exist between adolescents and adults in the biochemical responses to resistance training.  One study 

directly compared the biochemical response of adolescent (14 ± 0 y) boys and male adults (27 ± 3 y) 

males to the same resistance training protocol (Pullinen et al., 2002).  The subjects performed five sets 

of ten repetitions at 40% 1RM with 40 seconds rest between sets followed by two sets of maximal 

repetitions at the same intensity with three minutes rest between sets.  Both the adolescents and adults 

performed a similar number of reps for their two max effort sets (adolescents 23 ± 9 and 18 ± 3; adults 

21 ± 6 and 17 ± 7).  A summary of these findings is presented in Table 2.4. 

Table 2.4.  A comparison of the biochemical response of adolescents and adults after performing a 

similar resistance training protocol (Pullinen et al., 2002) 

Biochemical parameters Adolescents Adults 

Hormonal (measured 

pre-exercise and post 

sub-max and max2 

Total testosterone No Sig. changes Sig. ↑ after max2 only 

Free testosterone No Sig. changes Sig. ↑ after max2 only 

Cortisol Sig ↑ after max2 only No Sig. changes 

Catecholamines 

(measured pre-exercise 

and post sub-max, 

max1 and max2) 

Adrenaline 

Sig. ↑ after max1 and 

remained elevated after 

max2 

Sig. ↑ after max1 and 

remained elevated after 

max2 

Noradrenaline 

Sig. ↑ after sub-max, 

further Sig, ↑ after max1 

and remained elevated 

after max2 

Sig. ↑ after sub-max, 

further Sig. ↑ after 

max1 and Sig. ↑ after 

max2 

* Sig. = Significant; sub-max = sub-maximal sets, max1 = 1st set of maximum repetitions, max2 = 2nd set 

of maximum repetitions 
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The results of the study (Pullinen et al., 2002) showed that adolescent and adult males have different 

biochemical responses when exposed to the same resistance training stimulus.  However, these findings 

cannot be extrapolated to maximum strength or maximum power training sessions as the exercise 

protocol used was not typical of ‘normal’ maximum strength or maximum power repetition/set schemes 

used in athletic training. 

With the differences found in biochemical responses it could be reasonably assumed that differences 

also exist between these two age groups in morphological and neuromuscular responses.  Previous 

research examining the effect of resistance training on morphological and neuromuscular responses and 

adaptations in adolescents is presented below.  Due to the dearth of related research focussing on this 

population, no restriction was placed on the type of resistance training protocol (maximum strength, 

power, hypertrophy or other) used in these studies.   

In a study by Gorostiaga et al. (1999) adolescent male handball players completed a six-week resistance 

training program to investigate neuromuscular adaptations in addition to their normal handball training.  

The resistance training group performed two resistance training sessions per week consisting of five 

exercises with four sets of varying repetitions performed whilst the handball group performed their 

normal handball training only.  Intensities also varied across sets, beginning at 40% 1RM for the first 

two sets and increasing to 80% and 90% for the third and fourth sets respectively.  As intensity increased, 

volume decreased, with the first two sets consisting of 12 repetitions whilst sets three and four had six 

and three repetitions, respectively.  A rest period of approximately 1.5 minutes was given between sets.  

The authors found that the group who performed the strength training had a significant increase in 

maximal isometric force measured via unilateral leg extension and flexion while the control group 

showed no change.  The resistance training group also had a significant increase in throwing velocity 

whilst the handball only group did not.  In contrast, the handball group increased their squat jump height 

over the training period whilst the resistance training group had no change.  The increases seen in the 

resistance training group are similar to results seen in adult athletes in response to resistance training.  

However the results from the jump squat are unexpected as the exercises utilised included half squats, a 

movement pattern that has been shown to have positive effects on jump height in adults (Rønnestad et 

al., 2012) although it must be considered that the exercise protocols used in both studies were 

substantially different. 

In a similar study, young male soccer players (age = 13.8 ± 0.4 y) performed a 16 week resistance 

training program twice weekly (Christou et al., 2006).  The players had 4.3 ± 1.9 y soccer playing 

experience however no mention was made of their resistance training history.  It could be assumed they 

had no previous experience as the methods state that the strength training group performed a twice 

weekly, four-week introduction program at a reduced intensity.  The study utilised three groups, a soccer 
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training plus resistance training, a soccer training only and a control group were tested for 1RM leg 

press and bench press, SJ, CMJ, 30-m sprint time and peak sprint velocity.  Whilst all three groups 

showed improvements in performance during the study, the resistance training group experienced 

greater improvements than the other groups.  The results of the study suggest that the resistance training 

had a beneficial effect on performance although the average age of the participants was below that 

considered for adolescents.  It must also be considered that the subjects possibly had no resistance 

training experience and as such, the results may not be representative of what could be expected in 

adolescent athletes with previous resistance training experience.  Indeed, the resistance training protocol 

used for this study would suggest the untrained nature of the subjects as the set and repetition scheme 

progressed from two sets of 15 repetitions in week 1 to two sets of eight repetitions in week 16 with 

intensity starting at 55-60% 1RM and finishing at 75-80% 1RM.  

In another study on adolescent (age = 17.0 ± 0.4 y) soccer players, Chelly et al. (2009) examined the 

effects, of a two month back half squat program performed twice weekly immediately before the regular 

season.  The subjects performed four sets in the following regime; seven repetitions at 70% 1RM, four 

repetitions at 80% 1RM, three repetitions at 85% 1RM and two repetitions at 90% 1RM with 1RM 

reassessed after week four of the training.  To assess changes in performance both the strength and 

control group performed pre-post testing of SJ, CMJ, 5-jump test, 40-m sprint, cycle ergometer power 

test and anthropometry assessment to calculate thigh CSA.  The strength group experienced a larger 

change in performance in SJ height, 5-jump distance, cycling power and various running velocity 

measures.  Whilst this appears to be a beneficial finding at first glance, it should be noted that none of 

the subjects had previous resistance training experience.  This could significantly affect the adaptations 

shown by the resistance training group who, although termed ‘athletes’, were novices with regards to 

resistance training. 

Drinkwater et al. (2005) examined the acute fatigue response and adaptations of two types of resistance 

training protocols in elite junior basketball (age = 18.6 ± 0.3 y) and soccer (age = 17.4 ± 0.5 y) players.  

All subjects had previous resistance training experience ranging between six months to three years and 

were pair-matched for sport, strength and years of experience and were placed into either a repetitions 

failure or repetitions not to failure group.  The repetitions failure protocol consisted of eight sets of three 

repetitions whilst the not to failure protocol consisted of four sets of six repetitions with the goal of 

either protocol to either allow the subject to perform all reps during the training session or to require a 

spotter to help the subject complete the final reps of their training program.  Training was performed 

three times per week on the bench press with exercise intensity ranging from 85-105% 1RM across a 

six-week training period.  Results of the training showed that whilst both groups experienced an increase 

in bench throw power, the repetitions to failure group experienced a greater increase than the non-failure 
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group.  This study shows the neuromuscular benefits of maximal strength training in adolescent athletes, 

although the age of the subjects was at the very limit of and some cases exceeding what is considered 

adolescent (14-18 y). 

Pullinen et al. (2002) compared the effects of resistance training on isometric and MVC in adolescent 

versus adult athletes .  Adolescent (14.0 ± 0 y) males and adult (27.0 ± 3.0 y) males performed an 

isometric MVC of the knee extensor muscles before and after seven sets of dynamic bilateral knee 

extension flexion movements.  The exercise regime was performed in two parts: Part 1 required the 

subjects to perform five sets of 10 repetitions at 40% of 1RM with 40 s recovery between sets and three 

minutes later perform Part 2, comprising two sets of maximal repetitions with the same load with three 

minutes recovery between sets.  Both the adolescent and adults showed significant peripheral 

neuromuscular fatigue with a decrease in MVC post the exercise session however no difference in the 

changes was observed between groups.  These results suggest that adolescent and adult subjects had a 

similar fatigue response to the training protocol. The implications of this to the applied practitioner in 

athletic development however are limited given the non-traditional resistance training protocol used was 

substantially different from that found in typical maximum strength or power training protocols.   

In a study on adolescent surfers, Secomb et al. (2015) examined the effects of a twice weekly strength 

training program performed for seven weeks on a battery of tests.  The performance tests consisted of 

the CMJ, SJ and IMTP whilst lower body muscle structure was assessed via ultrasonography of the 

vastus lateralis (VL) and lateral gastrocnemius (LG) for thickness, pennation angle and fascicle length.  

Minimal detail was provided on the make-up of the strength training sessions, simply being referred to 

as consisting of ‘both upper- and lower-body compound movements, that were appropriately block 

periodised’.  Results from the study show that no effects from the strength training program were seen 

on any of the performance tests.  Additionally, the only morphological test to show change post-training 

was an increase in VL thickness.  Interestingly, the study included a follow up test session three weeks 

after the cessation of strength training.  A performance improvement was noted in IMTP peak force and 

relative peak force, relative to the pre-testing, however not when compared with the post testing session.  

The authors concluded that adolescent athletes may require a longer time period to realise strength gains 

from a program than can be seen in testing immediately post a training block.  Interestingly, a 

performance decrement was seen in SJ peak velocity when compared with the post-training testing as 

well as decreases in VL fascicle length and VL thickness.  This may indicate that the performance 

improvements seen in the IMTP were related to improved familiarity with the test rather than actual 

performance changes given that underpinning morphological changes were in direct contrast to these 

results. 
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The studies listed above have examined adaptations across a moderate training time frame (6-16 weeks).  

However, in a substantially longer study, Sander et al. (2013) examined the effects of a two-year 

resistance training program on back and front squat 1RM and 30 m sprint in youth soccer players.  A 

large cohort of athletes (n=134) were split across three groups according to age at pre-test with an under 

19 group (A), under 17 group (B) and an under 15 group (C) with each group divided in half again to 

provide an experimental group and a control group.  Due to U-19 and U-15 groups both having athletes 

outside of the adolescence age guidelines listed above, their results will not be discussed.  Following the 

two-year training period, U-17 strength trained athletes showed significant improvements in 30-m sprint 

time at the 5-, 10-, 20- and 25-m splits.  Additionally, the strength group showed a significantly higher 

increase in back and front squat 1RM strength after the two-year training period.  It is interesting to note 

that the percentage increase in performance seen in the back and front squat for the strength group was 

115% and 123% respectively, whilst the range of performance increase seen across the 30-m splits was 

(-3.8% to -4.6%) indicating the transference of strength improvements to sprint speed improvements 

was limited and reinforcing the concept of specificity of training as discussed previously.  In another 

study examining youth soccer players (age = 17 ± 0.5 y), subjects performed a strength training program 

twice weekly for two months.  To assess changes in performance, pre- and post-testing was performed 

on the SJ, CMJ and 40-m sprint.  Additionally, morphological changes were assessed via changes in leg 

muscle volume, thigh muscle volume and mean thigh CSA.  A typical maximum strength training 

protocol was used with training loads of 85% 1RM or above used throughout the two-month training 

block with back half squat utilised as a training exercise.  No significant changes were observed in any 

of the morphological tests.  Conversely, 40-m sprint and SJ significantly improved when compared with 

changes in the control group.  The improvements in neuromuscular measures and lack of change in 

morphological variables compares favourably with the effects of maximum strength training seen in 

adults. 

The studies reviewed above highlights the variations in responses to strength training in adolescent 

athletes.  Nevertheless, the limitations of using novice resistance trained athletes and various ‘non-

traditional’ strength/power protocols highlight the need for further applied research using more 

traditional strength/power training programs with resistance trained adolescent athletes.  Additionally, 

to the author’s knowledge, no research exists highlighting the acute neuromuscular fatigue responses to 

strength training over an extended period (48 h) as found in adult literature (Howatson et al., 2016; 

McCaulley et al., 2009).  This information could prove critical in better understanding adolescent athlete 

recovery time courses and thus provide crucial information regarding structuring weekly training.   
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2.5 Performance tests as a measurement tool for neuromuscular fatigue 
 

Performance tests are now commonly used to assess neuromuscular fatigue in various sports and 

exercise modalities (Andersson et al., 2008; Cormack, Newton, McGuigan, & Cormie, 2008a; 

Gathercole et al., 2015b; Johnston et al., 2016; Ronglan et al., 2006; Wiewelhove et al., 2015).  The 

benefits of using these tests to monitor neuromuscular fatigue is that they provide a valid, reliable test 

that requires minimal familiarisation and produces minimal fatigue, thus limiting their impact on sport-

specific training or competition (Gathercole et al., 2015a). 

In assessing neuromuscular fatigue following a fatiguing Yo-Yo running protocol, Gathercole et al. 

(2015a) found the CMJ to be superior to the DJ and squat jump (SJ) based on the number of variables, 

the size of the effects and the time course (immediate and prolonged).  However, the DJ also showed 

substantial effects and the 20-m sprint showed the largest decrease immediately post the fatiguing 

protocol however recovered within 24 h.  This research also introduced a novel analysis method to assess 

fatigue, adding technique related variables such as concentric and eccentric time, based off previous 

work by Cormack et al. (2008b).  Gathercole et al. (2015a) reported that the use of both output (jump 

height, peak power) and technique variables strengthened the diagnosis of neuromuscular fatigue and 

further expanded upon this in subsequent research examining neuromuscular fatigue in snow-boarding 

athletes (Gathercole et al., 2015b).  Given the common acceptance of performance tests in assessing 

acute neuromuscular fatigue it could be hypothesised that these tests would also be a practical diagnostic 

tool for examining the effects of various resistance training protocols on neuromuscular fatigue. 

The research presented above confirms that various resistance training protocols elicit different 

neuromuscular responses.  However, more research is needed to explore the effect of these different 

training methods on performance tests.  A greater understanding of these acute responses may lead to 

more appropriately structured resistance training programs that in turn can drive greater chronic 

physiological adaptations. 

 

2.6 Monitoring athlete performance and readiness 
 

This review so far has detailed the acute physiological responses and adaptations of adult athletes to 

maximum strength and power training programs.  However, resistance training entails only a part of the 

weekly training schedule that is used in the development of athletes for elite sport.  Other training 

modalities include conditioning, speed and agility and the sport specific technical/tactical training 

required for their chosen sport (Mendez-Villanueva, Buchheit, Kuitunen, Douglas, Peltola, & Bourdon, 

2011; Millet, Candau, Fattori, Bignet, & Varray, 2003; Siegler, Gaskill, & Ruby, 2003).  During the 
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annual training cycle, coaches will manipulate the volume and intensity of these training modalities 

based on the goal of the current training plan and their place within the preparation or competitive 

season.  To track the longitudinal athletic performance changes of an athlete, regular monitoring may 

be performed utilising tests to assess the different physiological systems being developed.  In addition, 

it is also important to understand an athlete’s current level of preparedness, which has been described 

previously as the athletes level of fitness minus any fatigue that exists from acute or chronic training 

load (Chiu & Barnes, 2003; Zatsiorsky & Kraemer, 2006).  This concept can also be applied to a single 

training session, as depicted in Figure 2.3 with the positive ‘fitness’ effects generated by a workout 

summed with the negative ‘fatigue’ effects generated by the same workout to give the athletes level of 

preparedness. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.  The fitness-fatigue model also known as the two-factor theory.  Adapted from Zatsiorsky 

& Kraemer, 2006  

To assess an athlete’s current level of preparedness, numerous monitoring tools have been developed.  

These monitoring tools are generally grouped as either a neuromuscular type (Cormack et al., 2008c; 

Twist & Highton, 2013), cardiac parasympathetic activity (Stanley, D’Auria, & Buchheit, 2015), 

biochemical (Coutts, Reaburn, Piva, & Rowsell, 2007; Twist & Highton, 2013) or athlete self-report 

measures (Foster et al., 2001; Twist & Highton, 2013).  Neuromuscular monitoring is now common 

place, with practitioners utilising a range of tests across both adult and adolescent athletes.  In adults 

these tests include the SJ (Argus, Gill, Keogh, McGuigan, & Hopkins, 2012; Gee, Caplan, Gibbon, 

Howatson, & Thompson, 2016), CMJ (Andersson et al., 2008; Johnston et al., 2016; Spiteri, Nimphius, 

Wolski, & Bird, 2013), DJ (Byrne & Eston, 2002), IMTP (Beattie et al., 2016; Kawamori et al., 2006) 
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and short sprints (Baker & Newton, 2008; Fletcher & Jones, 2004; Wiewelhove et al., 2015) whilst 

similarly in adolescent athletes research has also utilised the SJ (Chelly et al., 2009; Coelho E Silva, 

Figueiredo, Moreira Carvalho, & Malina, 2008), CMJ (Christou et al., 2006; Santos & Janeira, 2008), 

DJ (Foden, Astley, Comfort, McMahon, Matthews, & Jones, 2015), IMTP (Secomb et al., 2015) and 

sprint (Dasteridis, Piliandis, & Mantzouranis, 2011; Sander et al., 2013) performance monitoring tests.   

The popularity of neuromuscular tests is due to several reasons including (Twist & Highton, 2013): 

• Their ability to monitor low-frequency fatigue compared with other indirect markers. 

• Ease of administration. 

• Non-invasive. 

• Reliability 

As a result of these properties and their links with the neuromuscular responses/adaptations seen after 

resistance training, neuromuscular tests should be considered as an appropriate way to monitor 

longitudinal performance and acute preparedness in elite athletes. 

 

2.6.1 Reliability and validity of neuromuscular monitoring tests 
 

With any test or monitoring tool, the reliability of the test must be high to allow the practitioner 

confidence that any change shown in test performance is a ‘real’ change associated with a change in the 

performance of the individual performing the test and not the sum of any measurement errors. Such 

errors include the biological variation between tests and the error of measurement associated with the 

test based on the tester and/or equipment used (Hopkins, 2000a).  Additionally, the validity of 

neuromuscular tests is an important consideration when considering their use.   

Whilst multiple sub-qualities of validity exist (Johnson, 1997), it’s importance in performance testing 

relates to how closely a test replicates results when compared against a criterion reference test of similar 

type and is referred to as concurrent validity (Aragón, 2000; Leard, Cirillo, Katsnelson, Kimiatek, 

Miller, Trebincevic, & Garbalosa, 2007).  For example, is vertical jump height as measured by a Vertec 

valid against a criterion measure of jump height assessed using a three camera motion analysis system 

(Leard et al., 2007).  Previous research has examined validity in common neuromuscular tests used 

(Aragón, 2000; James, Roberts, Haff, Kelly, & Beckman, 2017).  However, more research is required 

to ensure that criterion measures exist for the range of tests available and their associated variables.  

Given the expanding use of various neuromuscular tests in performance assessment and fatigue 

monitoring, additional research should be performed to determine the validity of each test for the 

assessment method it is being chosen for. 
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The reliability of the neuromuscular tests outlined above has received significant focus in the literature 

with a number of variables within each test being noted as acceptable in adults (i.e. coefficient of 

variation (CV) <10%) (Cormack et al., 2008b) (Alemany, Pandorf, Montain, Castellani, Tuckow, & 

Nindl, 2005; Aragón, 2000; Cormack et al., 2008b; Duthie, Pyne, Ross, Livingstone, & Hooper, 2006; 

Feldmann, Weiss, Ferreira, Schilling, & Hammond, 2011; Flanagan, Ebben, & Jensen, 2008; Hori, 

Newton, Kawamori, McGuigan, Kraemer, & Nosaka, 2009; Kurz, Lang, Richter, & Schwameder, 2009; 

Lloyd, Oliver, Hughes, & Williams, 2009; Moir, Button, Glaister, & Stone, 2004; Moir, Garcia, & 

Dwyer, 2009; Slinde, Suber, Suber, Edwen, & Svantesson, 2008; Taylor, Cronin, Gill, Chapman, & 

Sheppard, 2010).  This literature confirms that the CMJ, DJ, IMTP and short sprints all contain specific 

variables that can be considered reliable if the assessor, test equipment, protocol and time of day are 

controlled for. 

Whilst the reliability of these tests has been proven to be acceptable when used to assess adult athletes 

and despite their common place use with adolescent athletes, very little scientific research exists 

examining whether the same levels of reliability apply when used to assess changes in adolescent athlete 

performance or preparedness.  As such, this leaves a gap in the scientific literature which requires 

attention.  One study that contributes to this area of interest examined the between day reliability of CMJ 

performance amongst other markers in  adolescent rugby union players (Roe, Darrall-Jones, Till, Phibbs, 

Read, Weakley, & Jones, 2016).  The authors reported that between day (5 days) reliability of multiple 

variables were acceptable compared to the value above (CV < 10%).  The authors also noted the need 

for reliability data to be population specific based on factors such as physical characteristics and 

anthropometry.  This reinforces the need for subsequent reliability research into neuromuscular tests 

that are used in various adolescent athletes. 
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Chapter 3 
 

Reliability of common neuromuscular performance tests in adolescent 

athletes 
 

Haines, B., Bourdon, P., & Deakin, G. (2016). Reliability of common neuromuscular performance tests 

in adolescent athletes. Journal of Australian Strength and Conditioning, 24(4), 16-22 

 

This chapter was designed to assess the reliability of neuromuscular tests commonly used in the 

assessment of athletes’ during their annual training cycle.  Whilst previous research has determined the 

reliability of the CMJ, DJ, IMTP and 20-m sprint in adult athletes, no data exists confirming the 

reliability of these tests in an adolescent athlete population.  Prior to these tests being used to assess 

changes in performance over a training block or as a measure of acute neuromuscular readiness, their 

reliability must be determined. 

 

3.1 Abstract  
 

The purpose of this study was to examine the reliability of four commonly used neuromuscular tests and 

their associated variables in adolescent athletes.  A total of 17 male adolescent athletes (age 16.5 ± 1.1 

y, height 171.2 ± 6.3 cm, body mass 65.5 ± 11.2 kg) performed a test battery consisting of the 

countermovement jump (CMJ), drop jump (DJ), isometric mid-thigh pull (IMTP), all performed on a 

force plate and 20-m sprint on two consecutive days.  Inter-day reliability of a number of variables from 

each test was determined using the coefficient of variation (CV) and intraclass correlation coefficient.  

A number of variables within each test were found to have acceptable inter-day reliability (CV < 10%) 

with corresponding reliable ICC values greater than 0.75.  For the CMJ and DJ peak concentric impulse 

(CV = 1.6%; ICC = 0.99 and 5.1%; 0.94 respectively) and take-off velocity (CV = 1.7%; ICC = 0.97 

and 4.8%; 0.85 respectively) were the most reliable variables.  Other commonly reported variables also 

showed acceptable levels of reliability for both tests such as peak power (CV = 3.2%; ICC = 0.98 and 

6.1%; 0.95) and jump height (CV = 3.4%; ICC = 0.96 and 9.8%; 0.85, respectively).  Peak force was 

the most reliable variable in the IMTP (CV = 6.4%; ICC = 0.87) as was the 20-m split time for the 20-
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m sprint (CV = 0.8%; ICC = 0.98).  Peak RFD was not found to be reliable in any of the tests it was 

measured (CMJ, DJ and IMTP).  The results of this study indicate that the CMJ, DJ, IMTP, 20-m sprint 

are reliable measures of performance in adolescent athletes.  

 

3.2 Introduction 
 

Athletic preparation, specifically the development of strength and power characteristics, can be 

monitored by a number of different performance tests (Cormie et al., 2010; Newton, Rogers, Volek, 

Hakkinen, & Kraemer, 2006; Stone et al., 2003).  The countermovement jump (CMJ), drop jump (DJ), 

isometric mid-thigh pull (IMTP) and various sprint tests are all commonly used to quantify changes in 

athletic performance (Cormie et al., 2010; McGuigan & Winchester, 2008; McGuigan et al., 2006; Stone 

et al., 2003; Stone, Sands, Pierce, Carlock, Cardinale, & Newton, 2005; Viitasalo et al., 1998).  In order 

to ensure that the changes being reported from test to test are indeed a real change in athletic capabilities 

and not the technical error of measurement or ‘noise’ present within a test it is essential each test used 

be reliable (Cormack et al., 2008b; Duthie et al., 2006; Moir et al., 2004).  Common measures of 

reliability are the CV and intraclass correlation coefficient ICC. The CV refers to ‘the typical percent 

error’, the standard deviation of an individual’s repeated measures expressed as a percent of the 

individual’s mean test score and is the within subject random variation from one trial to the next 

(Hopkins, Schabort, & Hawley, 2001).  The ICC, measures how well the values from one trial relate to 

the values from another trial when moving from subject to subject as well as the reproducibility of the 

rank order of the subjects on retest (Hopkins, 2000a; Hopkins et al., 2001).  

Numerous reliability studies have been performed on the aforementioned tests in adult populations 

(Aragón, 2000; Cormack et al., 2008b; Feldmann et al., 2011; Flanagan et al., 2008; Hori et al., 2009; 

Kurz et al., 2009; Randell, Cronin, Keogh, Gill, & Pedersen, 2011) with previous researchers stating 

that a CV of less than 10% can be classed as reliable (Cormack et al., 2008b).  Although there is differing 

opinion in the literature, an ICC of > 0.75 has previously been described as reliable in neuromuscular 

tests (Walmsley & Amell, 1996).  These studies have reported on the reliability of certain variables that 

can be extracted from these tests and have established a practical range of CV’s and ICC’s that can be 

expected from performing these tests with an adult population using a variety of measurement devices 

and protocols.  Reliability of CMJ variables has been shown to range from a CV of 1.0% - 36.3% 

(Cormack et al., 2008b; Moir et al., 2004; Sheppard et al., 2008a) with ICC’s of 0.25-0.96 (Sheppard et 

al., 2008a).  In a study by Cormack et al., (2008b) the authors found that mean force was the most 

reliable variable (CV = 1.1%), with flight time (CV = 2.9%), peak force (CV = 3.5%) and peak power 

(CV = 3.5%) also showing excellent reliability whilst concentric time (CV = 17.1%) and concentric: 
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eccentric time (CV = 16.5%) showed unacceptable levels of reliability.  Sheppard et al., (2008a) found 

similar results for peak force in the CMJ (CV = 3.5%; ICC = 0.96) however peak power (CV = 9.5%; 

ICC = 0.80), whilst still reliable was not as strong.  The authors also reported that rate of force 

development (RFD), a commonly reported variable, was highly unreliable (CV = 36.3%; ICC = 0.43).  

Drop jump variables have also been shown to be reliable with CV’s ranging from 6.1% - 11.3% with 

ICC’s of 0.83-0.94 (Feldmann et al., 2011).  Feldman and colleagues (2011) reported jump height (CV 

= 6.1%; ICC = 0.94) and contact time (CV = 8.2; ICC = 0.83) as reliable whilst reactive strength index 

(RSI)(CV = 11.3%; ICC = 0.94) though reported as reliable by the authors failed to meet the criterion 

for CV reliability detailed.   

In relation to the IMTP, previous research has shown the CV of various variables to range from 2.3% 

(peak force) to 10.1% (RFD) (McGuigan, Newton, & Winchester, 2008).  Other researchers have 

reported the ICC’s for specific IMTP variables ranging from 0.81 for peak RFD to 0.98 for peak force 

(McGuigan & Winchester, 2008; Stone et al., 2003).  Reliability data surrounding the 20-m sprint and 

associated variables has also been shown to have excellent reliability with Fletcher & Jones  (Fletcher 

& Jones, 2004) showing 20-m sprint time had a CV of 1.7% with an associated ICC of 0.94.  

Additionally, Tanner reported a CV of 2.9% for 20-m sprint time (2012).   

Whilst there are a number of studies on athletic adult population groups as mentioned above, limited 

data exists on the reliability of these tests when performed on an athletic, adolescent population group.  

Whilst some studies exist that have utilised some of these or similar performance tests in non-athletic 

(Nuzzo, Cavill, Triplett, & McBride, 2009) and athletic (Kurz et al., 2009; Quatman, Ford, Myer, & 

Hewett, 2006) adolescent population groups, to the authors knowledge, there is no research to date that 

has directly investigated the reliability of all these neuromuscular tests simultaneously within one 

athletic population group.  As such, it is unknown whether these tests remain reliable given the inclusion 

of the increased physical development that occurs during adolescence and its consequent effect on 

anthropometric variables such as limb length, and lean body mass. 

Therefore, the purpose of this study was to investigate the inter-day reliability of the CMJ, DJ, IMTP 

and 20-m sprint across a range of parameters in an athletic adolescent population. 
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3.3 Methods 
Approach to the Problem 

To assess the inter-day reliability of various parameters taken from four neuromuscular tests commonly 

used to measure athletic performance, a group of adolescent athletes performed three trials each of 

CMJ’s, 20-m sprints and DJ’s and two IMTP trials separated by 24 hours.  This test-retest period was 

chosen to provide reliability data for the forthcoming study examining acute changes in these 

performance tests at 24-hour time periods (Chapter 5).  In an attempt to standardise testing days, both 

test sessions were performed immediately after the weekend, during which no training took place.  Prior 

to the first testing session a 4-wk familiarisation block was utilised for the tests subjects were not familiar 

with, specifically the IMTP and Drop Jump.  Due to equipment constraints, familiarisation was limited 

to correct technique execution of the tests as no force plates were available to give performance feedback 

on either test. 

Participants 

Seventeen male adolescent athletes (age 16.5 ± 1.1 y, height 171.2 ± 6.3 cm, body mass 65.5 ± 11.2 kg, 

back squat 3RM = 82.6 ± 23.7 kg) who were students at an elite sports academy participated in the test-

retest reliability study.  The students competed in a range of sports including Squash, Fencing and Judo 

and each participant had a minimum background of two years of resistance training and was familiar 

with all of the tests used.  As part of their normal training week, each participant performed eight training 

sessions including both physical preparation and sports specific training.  All participants received a 

clear explanation of the study, including the risks and benefits of participation and were asked to provide 

their written consent before the start of the study.  The study was approved by the Institutional Human 

Research Ethics Committee.  

Procedures 

At the beginning of each test session participants were required to complete a standardised 10 minute 

dynamic warm-up which included dynamic running drills, dynamic stretches, CMJ’s, DJ’s and 25-m 

submaximal sprints.  In addition to the warm-up, practice trials for the CMJ, DJ and 20-m sprint were 

performed before testing began.  The practice trials consisted of 2 sets of 3 at 80-90% effort for the CMJ, 

1 set of 3 DJ performed from a 30cm box and 1 20-m sprint performed at 90% effort.  Two submaximal 

IMTP practice trials were performed immediately prior to the IMTP testing effort.    Upon completion 

of the warm-up, the participants performed the four neuromuscular tests in the same order, that is, 3 

trials each of CMJ’s, 20-m sprints, DJ’s from a 40 cm box and 2 trials of an IMTP.  To assist with 

controlling technical and biological variations across the two days, equipment was calibrated prior to 

use, tests were performed at the same time of day and participants wore the same shoes for each testing 
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session.  Participants were given a minimum of two minutes rest when moving from one test type to the 

next. 

Countermovement Jump 

Participants were required to perform the CMJ with their hands placed on their hips for the entire trial 

as has been used in previous research (Cormack et al., 2008b).  All jumps were performed on a, 

permanently mounted force plate (9287BA Kistler Force Plate, Kistler Instrument Corp, Winterthur, 

Switzerland).  Countermovement depth was self-selected with the participant instructed to utilise a 

technique that would result in the maximum height possible.  A minimum of 1 minute rest was provided 

between each effort.    

20-metre sprint 

The 20-m sprints were performed on an indoor running track using dual-beam electronic timing gates 

(Swift Performance Equipment, Lismore, Australia).  A staggered starting stance was chosen with the 

participant self-selecting which foot to place in front.  When the participant was given the command 

‘ready’ they began the maximal effort sprint at a self-selected time, thus eliminating reaction time.  Splits 

were measured at 5, 10 and 20-m.  Foot movement or swaying of the upper-body to facilitate momentum 

was not allowed.  A minimum of 2 minutes rest was given between trials with participants performing 

three valid trials.     

Drop Jump 

The DJ’s were performed on two force plates (9287BA Kistler Force Plate, Kistler Instrument Corp, 

Winterthur, Switzerland) with the participant beginning on a 40-cm box placed on the first force plate 

and performing the drop jump on to an adjacent force plate.  When instructed, the participant stepped 

off the box towards the force plate attempting to minimise vertical displacement.  The participants were 

instructed to minimise ground contact time whilst attempting to maximise height as has been used in 

previous research (Hamilton, 2009a).  As per the CMJ, participants were required to perform the trial 

with their hands placed on their hips with a minimum rest of 1 minute given between efforts.     

Isometric mid-thigh pull 

The IMTP was conducted on a portable force plate (9281CA Kistler Force Plate, Kistler Instrument 

Corp, Winterthur, Switzerland) with each participant having previously determined the appropriate 

height of the bar to perform the trials.  This was determined by the following protocol.  The participant 

starting position consisted of the mid-line of the foot being placed directly under the bar, the bar height 

was set to the first adjustable position above the top of the patella, shoulders were set forward of the bar, 

a pronated hook grip was used to hold the bar with arms straight and a neutral or slightly lordotic spine 
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position.  The bar was adjustable in 3cm increments resulting in a knee angle of between 145–150 

degrees in every participant.  Following a warm-up consisting of two sub-maximal trials, participants 

assumed the starting position where they were instructed to ‘take tension’ by beginning to apply a 

minimal amount of force through their feet before maximally pulling on the bar by attempting to drive 

their feet through the ground.  Subjects were not required to pull as fast as possible, rather they were 

instructed to build force to a maximal effort and maintain for an effort of 5 seconds.  A trial was deemed 

as a failure if the foot position was unable to be maintained, shoulders did not remain in front of the bar, 

the arms bent during the trial, excessive kyphosis or lordosis occurred, knee angle was not maintained 

in which case it was discarded and another trial performed.  The testing session was concluded after the 

completion of 2 successful trials.   

All trials from the CMJ’s, DJs and IMTP’s were collected at a sample rate of 500 Hz and were analysed 

using custom-designed software using the impulse momentum approach as described previously 

(Dugan, Doyle, Humphries, Hasson, & Newton, 2004).  The raw data from the force plate was filtered 

and smoothed using a fourth-order, low-pass Butterworth digital filter with a cut-off frequency of 10 

Hz. 

Statistical Analyses 

The mean ± standard deviation was calculated for all variables within each neuromuscular test. 

Additionally, the change in means from trial one to trial two was calculated as a percent change with 

90% confidence limits.  The inter-day reliability of each test was determined by calculation of the 

coefficient of variation (CV) and intraclass correlation coefficient (ICC) with 90% confidence limits for 

the best of 3 trials for the CMJ, DJ and 20-m sprint and best of 2 trials for the IMTP.  Both the CV and 

ICC for the four neuromuscular tests were calculated utilising the Hopkins Excel spreadsheet (Hopkins, 

2000b).  A variable was deemed as reliable if the CV was less than the threshold of 10% as has been 

used in previous literature (Cormack et al., 2008b).  In conjunction with this, an ICC threshold of 0.75 

has previously been used as a threshold for reliable data and therefore was subsequently used in the 

current study (Randell et al., 2011).  A Pearson correlation was also used to determine the relationship 

between all variables.  The magnitude of relation was reported based on the following thresholds; nearly 

perfect (>0.90), very high (0.9 – 0.7) and high (0.7 – 0.5) as proposed by Hopkins (Hopkins, Marshall, 

Batterham, & Hanin, 2009).   
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3.4 Results 
 

Inter-day (1 day) reliability for the variables measured from the four neuromuscular performance tests 

for the best of three trials are shown in Tables 3.1–3.3.  Variables that had a CV < 10% and are 

commonly used are presented.  Selected variables that are commonly examined in these performance 

tests but resulted in a CV of greater than 10%, a level referred to as unreliable in previous literature 

(Cormack et al., 2008b), were also included. 

Within the CMJ (Table 3.1) the most reliable variables were peak concentric impulse (CV = 1.6%, ICC 

= 0.99) and take-off velocity (CV = 1.7%, ICC = 0.97).  Other variables that displayed excellent 

reliability were peak power (CV = 3.2%, ICC = 0.98), relative peak power (CV = 3.4%, ICC = 0.91) 

and jump height from force (CV = 3.4%, ICC 0.96).  Peak rate of force development (RFD) displayed 

unacceptable reliability (CV = 37.8%, ICC = 0.27).   

Within the DJ take-off velocity was the most reliable variable followed closely by a number of other 

variables such as peak concentric impulse, mean concentric power and peak concentric power (Table 

3.2).  A number of commonly reported variables displayed unacceptable levels of reliability including 

contact time, peak force and peak RFD. 

The IMTP (Table 3.3) was analysed across three variables with peak force (CV = 6.4%, ICC = 0.87) 

and relative peak force (CV = 6.4%, ICC = 0.73) both displaying acceptable levels of reliability whereas 

peak RFD did not (CV = 26.1%, ICC = 0.64). 

The 20-m sprint (Table 3.3) displayed excellent reliability across all variables measured ranging from 

20-m split (CV = 0.8%, ICC = 0.98) as the most reliable variable to 10-20-m split (CV = 2.7%, ICC = 

0.80) as the least reliable variable.  

Correlations between selected variables from the four performance tests are presented in Table 3.4.  

Nearly perfect correlations (r > 0.90) were observed between variables within a performance test for 

CMJ, DJ and 20-m sprint and between tests for CMJ peak concentric impulse and DJ peak concentric 

impulse (r = 0.92) and also between CMJ peak power and DJ peak concentric impulse. 
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Table 3.1.  Countermovement jump inter-day reliability variables 

Variable Mean ± SD Change in Mean (%) CV (%) ICC 

Peak concentric impulse (N.s) 196.0 ± 44.5 -0.5 (-1.5 to 0.5) 1.6 (1.3 to 2.1) 0.99 (0.99 to 1.00) 

Take-off velocity (m.s-1) 2.75 ± 0.26 -0.4 (-1.4 to 0.5) 1.7 (1.3 to 2.4) 0.97 (0.92 to 0.99) 

Peak power (W) 3677 ± 831 -1.8 (-3.6 to 0.1) 3.2 (2.5 to 4.6) 0.98 (0.95 to 0.99) 

Relative peak power (W.kg-1) 54.2 ± 6.0 -1.9 (-3.8 to 0.1) 3.4 (2.6 to 4.9) 0.91(0.80 to 0.96) 

Jump height from force (m) 0.42 ± 0.08 -0.8 (-2.7 to 1.2) 3.4 (2.7 to 4.9) 0.96 (0.91 to 0.98) 

Peak concentric force (N) 1694 ± 321 -3.9 (-6.8 to -0.8) 5.4 (4.2 to 7.7) 0.92 (0.81 to 0.97) 

Concentric phase duration (s) 0.27 ± 0.04 5.5 (1.8 to 9.5) 6.3 (4.9 to 9.0) 0.76 (0.50 to 0.89) 

Centre of gravity downwards movement (m) 0.35 ± 0.08 6.2 (1.9 to 10.7) 7.2 (5.6 to 10.3) 0.89 (0.75 to 0.95) 

Ratio eccentric/concentric duration (%) 221 ± 38 0.9 (-3.4 to 5.4) 7.6 (5.8 to 10.9) 0.76 (0.51 to 0.89) 

Eccentric phase duration (s) 0.59 ± 0.08 6.5 (1.7 to 11.5) 8 (6.2 to 11.5) 0.7 (0.40 to 0.86) 

Peak RFD (kN.s-1) 11.98 ± 6.93 -11.1 (-26.6 to 7.8) 37.8 (28.4 to 57.6) 0.27 (-0.15 to 0.62) 

   * ± 90% CL are displayed for change in mean, CV and ICC in the brackets.  
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Table 3.2.  40 cm drop jump inter-day reliability variables 

Variable Mean ± SD Change in Mean (%) CV (%) ICC 

Take-off velocity (m.s-1) 2.31 ± 0.29 2.1 (-0.7 to 5.0) 4.8 (3.7 to 6.8) 0.85 (0.67 to 0.94) 

Peak concentric impulse (N.s) 159.2 ± 37.3 2.3 (-0.7 to 5.3) 5.1 (3.9 to 7.3) 0.94 (0.87 to 0.98) 

Ratio eccentric/concentric duration (%) 106 ± 14 1.5 (-1.9 to 5.0) 5.8 (4.5 to 8.3) 0.85 (0.66 to 0.93) 

Mean concentric power (W) 2414 ± 709 1.2 (-2.3 to 4.7) 5.9 (4.6 to 8.5) 0.95 (0.89 to 0.98) 

Peak concentric power (W) 4305 ± 1325 -0.1 (-5.1 to 5.1) 6.1 (4.7 to 8.8) 0.95 (0.89 to 0.98) 

Peak relative concentric power (W) 63.4 ± 14.5 0.7 (-3.0 to 4.5) 6.4 (5.0 to 9.2) 0.92 (0.82 to 0.97) 

Reactive Strength Index (m.s-1) 1.28 ± 0.39 1.4 (-3.9 to 7.0) 9.4 (7.3 to 13.6) 0.92 (0.81 to 0.96) 

Jumping Height from force (m) 0.28 ± 0.07 4.2 (-1.5 to 10.2) 9.8 (7.6 to 14.2) 0.85 (0.67 to 0.94) 

Peak RFD (kN.s-1) 13.28 ± 6.67 1.5 (-13.6 to 19.4) 31.1 (23.5 to 46.7) 0.62 (0.28 to 0.83) 

Reactive strength index = jump height from force / contact time; ± 90% CL are displayed for change in mean, CV and ICC in the brackets.  
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Table 3.3.  Isometric mid-thigh pull and 20-m sprint inter-day reliability variables 

Variable Mean ± SD Change in Mean (%) CV% ICC 

20-m sprint times 

20-metre split (s) 3.18 ± 0.17 -0.6 (-1.1 to -0.1) 0.8 (0.6 to 1.1) 0.98 (0.95 to 0.99) 

10-metre split (s) 1.85 ± 0.11 0.1 (-0.6 to 0.8) 1.2 (0.9 to 1.7) 0.96 (0.91 to 0.98) 

5-10-metre split (s) 0.74 ± 0.04 0.5 (-0.7 to 1.8) 2.1 (1.6 to 3.1) 0.85 (0.66 to 0.93) 

5-metre split (s) 1.10 ± 0.08 -0.6 (-1.9 to 0.6) 2.1 (1.7 to 3.0) 0.92 (0.81 to 0.96) 

10-20-metre split (s) 1.31 ± 0.07 -1.3 (-2.8 to 0.3) 2.7 (2.1 to 3.8) 0.8 (0.57 to 0.91) 

Isometric mid-thigh pull 

Peak force (N) 2176 ± 375 5.8 (1.8 to 9.9) 6.4 (4.9 to 9.4) 0.87 (0.71 to 0.95) 

Relative peak force (BW) 3.35 ± 0.41 5.7 (1.7 to 9.9) 6.4 (5.0 to 9.4 0.73 (0.45 to 0.88) 

Peak RFD (kN.s-1) 9.4 ± 3.5 -10.1 (-22.1 to 3.8) 26.1 (19.7 to 39.6) 0.64 (0.29 to 0.84) 

Body weight (BW), Rate of force development (RFD), ± 90% CL are displayed for change in mean, CV and ICC in the brackets.
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Table 3.4.  Correlations between neuromuscular test variables 

  Countermovement jump Drop jump 20-m sprint Isometric mid-

thigh pull 
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Peak concentric impulse (Ns-1)                 

Take off velocity (ms-1) 0.67                

Peak power (W) 0.98 0.73               

Peak relative power (W.kg-1) 0.51 0.92 0.64              

Jump height (m) 0.72 1.00 0.77 0.91             

Peak concentric force (N) 0.81  0.76  0.53            

D
ro

p 
ju

m
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Take off velocity (ms-1)  0.61  0.56 0.59            

Peak concentric impulse (Ns-1) 0.92 0.66 0.91 0.53 0.70 0.80 0.64          

Peak relative concentric Power (W.kg-1) 0.37 0.69 0.40 0.62 0.66 0.33 0.84 0.50         

Peak concentric power (W) 0.85 0.81 0.85 0.66 0.82 0.68 0.73 0.9 0.79        

Reactive strength index (m.s) 0.37 0.66 0.39 0.59 0.65 0.32 0.84 0.51 0.99 0.78       

20
-m
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t 

20-m split (s)  -0.79 -0.51 -0.72 -0.76  -0.63 -0.52 -0.63 -0.64 -0.57      

5-m split (s) -0.49 -0.71 -0.53 -0.63 -0.70    -0.58 -0.64 -0.52 0.90     

10-20-m split (s)  -0.64  -0.67 -0.62  -0.59     0.83 0.58    
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ll Peak force (N) 0.81  0.77  0.52 0.54  0.75  0.69  -0.62     

Peak relative force (BW)            -0.57     

B
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k 
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t 3 Repetition maximum (kg) 0.87 0.73 0.84 0.55 0.76 0.77 0.57 0.86 0.49 0.82 0.48 -0.72 -0.61 -0.61 0.73  

Correlations: > 0.9 = nearly perfect; 0.7 – 0.9 = very high; 0.5 – 0.7 = high; 0.3 – 0.5 = moderate; < 0.3 small to trivial (not shown) 
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3.5 Discussion 
 

The purpose of this study was to investigate the inter-day reliability of variables collected from 

the CMJ, DJ, IMTP and 20-m sprint when performed by adolescent male athletes.  The large 

number of reliable variables found across the range of performance tests indicates that these tests 

are a reliable measure of strength and power in an adolescent athletic population. 

Variables commonly used in CMJ analysis and measured during this study showed similar 

reliability to those found in adult populations (Cormack et al., 2008b; Moir et al., 2009) (i.e., peak 

power CV = 3.2%, ICC = 0.98; relative peak power CV = 3.4%, ICC = 0.91; peak force CV = 

5.4%, ICC = 0.92 and jump height CV = 3.4%, ICC = 0.96).  All these variables showed good 

reliability as did some less commonly used variables such as peak concentric impulse (CV = 

1.6%, ICC = 0.99) and take-off velocity (CV = 1.7%, ICC = 0.97).  These variables, although less 

frequently used warrant consideration in the analysis of CMJ performance given their higher inter-

day stability.  In addition to the abovementioned variables, some other less commonly used 

variables also resulted in CV’s of less than 10% including concentric and eccentric phase duration 

(CV = 6.3% and 8% respectively), centre of gravity downwards movement (CV = 7.2%) and ratio 

of eccentric to concentric duration (CV = 7.6%).  These variables should also be considered in 

the performance analysis of CMJ’s as they relate to the changes in technique that may occur from 

test to test, such as the influence of fatigue where a different jump strategy may be utilised to 

achieve a similar outcome such as jump height.  However, caution should be employed if using 

these variables as their respective ICC values (Table 3.1) were found to reflect a lower level of 

reliability at the level of 0.75, even though others (Randell et al., 2011) have considered this an 

acceptable level of reliability.  Of all the variables measured peak RFD showed the poorest 

reliability (CV = 37.8%, ICC = 0.27) which is similar to research in adults reported by Sheppard 

et al (2008a).   As suggested by the authors a more reliable measure of RFD may involve using 

an average RFD utilising the average rate of change across all samples in the propulsive portion 

as opposed to the current method of the largest change of force between two sequential data 

samples.  As stated previously, limited data exists for the CMJ for adolescents.  In the literature 

that is available, Nuzzo et al, (2009) reported a vertical jump peak power r-value of 0.96 for within 

session test-retest reliability, similar to the value found in the current study (r = 0.98).  

As with the CMJ, the DJ variables found in this study on adolescent athletes compared favourably 

with published data for adults (Feldmann et al., 2011; Hori, Newton, Kawamori, McGuigan, 

Andrews, Chapman, & Nosaka, 2008).  However in general, the inter-day variability found in the 

DJ was greater than that found in the CMJ.  This could be due to the DJ being a less familiar and 

more complex skill when compared with the CMJ and despite the athletes being ‘trained’ in the 

DJ, greater variability existing in the execution of the movement.   Unlike the CMJ there is less 
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uniformity in variables reported in the scientific literature for the DJ, with most literature reporting 

either jump height, reactive strength index or ground contact time depending on the authors 

preference, reason for testing (i.e. performance versus fatigue monitoring) or assessment tools 

(Feldmann et al., 2011; Hori et al., 2008; Kurz et al., 2009).  However, as shown in Table 3.2, a 

large number of variables can be extracted from DJ’s performed on a force plate with acceptable 

levels of reliability.  Additionally, ICC values (Table 3.2) were also shown to be high further 

strengthening the use of these variables as reliable measures of DJ performance.  Similar to the 

CMJ, take-off velocity and peak concentric impulse were the two most reliable variables (CV = 

4.8%, ICC = 0.85 and 5.1%, ICC = 0.94 respectively).  Other variables of note that could be of 

importance to practitioners utilising this test were, ratio of eccentric to concentric phase duration 

(CV = 5.8%, ICC = 0.85), both absolute average and peak concentric power (CV = 5.9%, ICC = 

0.95 and 6.1%, ICC = 0.95 respectively) and relative concentric power (CV = 6.4%, ICC = 0.92).  

The reliability of reactive strength index (RSI) reported in adult literature has displayed average 

reliability (CV =11.3%) (Feldmann et al., 2011) with the authors also stating that RSI had 

‘negligible utility for explaining 40cm DJ performance’.  The current study found a CV of 9.4% 

(ICC = 0.92), within the accepted 10% range, however due to the number of other variables with 

stronger reliability the authors also question the continued use of this variable within the analysis 

of DJ when performance is the desired outcome.  A continued use of RSI may be more appropriate 

where mechanistic or technique changes are of importance, such as the impact of neuromuscular 

fatigue.   

In the one study found examining DJ in adolescents, Quatman et al, (2006) performed an inter-

day reliability study as part of a larger research study on a 31-cm DJ.  They found peak vertical 

ground reaction force at take-off to have an ICC of 0.983 and peak vertical jump height an ICC 

of 0.986.  In the current study both these variables were found to be less reliable than a number 

of other variables measured (Table 3.2), such as take-off velocity and peak concentric impulse.  

In the current study peak force was not deemed as reliable as its CV (13.9%) was greater than the 

10% cut-off mark despite an ICC of 0.77, higher than the 0.75 level mentioned above.  This 

contrast could be due to the difference in population groups.  In the Quatman study (2006), all 

participants listed there primary sport as basketball indicating a high level of uniformity within 

participants whereas the current study utilised participants from a range of sports which may 

influence their reactive strength abilities and thus allow greater variability within the group. 

Due to the nature of the IMTP test a comparatively smaller number of variables are collected 

when compared with the jump tests as shown in previous research conducted on adults 

(McGuigan & Winchester, 2008; Stone et al., 2003; Stone et al., 2005).  Peak force and relative 

peak force both showed an acceptable CV of 6.4% whilst peak force was found to have an ICC 

of 0.87 and relative peak force an ICC of 0.73.  In contrast, peak RFD showed high variability 
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with a CV of 26.1% and an ICC of 0.64.  Interestingly, peak force CV was found to be even 

stronger (CV = 2.9%) in a subsequent study on the same population group by the authors (n = 9) 

when further familiarisation had been performed (unpublished data).  This difference is thought 

to be due to familiarisation of the test despite a 1 month, pre-testing, familiarisation period during 

which participants performed the IMTP in a practice session, twice weekly.  The follow-up CV 

(2.9%) matches that found in adult data as reported by McGuigan et al (CV = 2.3% and ICC = 

0.96) (2008) and may be due to a greater level of familiarisation with the test in a maximal test 

effort setting despite the participants having undergone one month of familiarisation previous to 

the first test session as mentioned above.  The strong CV and ICC values for the majority of the 

variables measures coupled with its ease of execution makes the IMTP an excellent measure for 

lower body peak force capabilities in athletes whether they be adult or adolescent as long as 

adequate familiarisation has been performed. 

As reported in other reliability studies conducted on adults (Duthie et al., 2006; Fletcher & Jones, 

2004), the variables associated with the 20-m sprint showed very high reliability with CVs ranging 

from as low as 0.8% in the 20-m split to only as high as 2.7% found in the 10-20-m split.  The 

ICC values for all variables were also high, ranging from 0.98 (20-m split) to 0.80 (10-20-m split).  

As with peak force in the IMTP, a significant difference (p = 0.05) was found between tests for 

the 20-m split.  Subjects were considered familiar with the test, the between test differences likely 

related to acute fatigue experienced by the subjects.  Despite difference in mean for 20-m split 

the 20-m sprint should be considered a reliable measure of performance in an athletic adolescent 

population group. 

The correlation analyses across the four tests showed some (very high to nearly perfect) 

correlations that could be considered note-worthy.  More correlations were found within a specific 

neuromuscular test, such as CMJ jump height having a nearly perfect correlation with CMJ 

relative peak power (r = 0.91).  In assessing correlations between variables across different tests, 

20-m split showed a strong negative correlation (R > -0.7) with a number of variables from CMJ 

including take-off velocity, relative peak power and jump height.  The lack of correlations found 

highlights the specific neuromuscular demands of each test and reinforces the need to carefully 

determine the athletic quality required for performance in any given sport before choosing a test.  

That is force, low velocity power (CMJ) and high velocity power (DJ/20-m sprint) are all 

independent qualities that are best assessed via specific assessment tests. 
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3.6 Practical applications 
 

Neuromuscular testing is an accepted and common practice for assessing and tracking 

performance in an athletic population.  The reliability of these tests and their specific variables 

must be understood and accounted for when determining whether a performance change is 

meaningful or the result of typical error associated with the test.  In the current study each 

performance test was found to have reliable variables that could be used to accurately measure 

performance changes in adolescent athletes.  The most reliable performance tests were those that 

the athletes were most familiar with specifically, the 20-m sprint and CMJ.  All CV values of 

variables associated with the 20-m sprint variables were less than 3% whilst the CMJ had five 

variables with a CV of less than 5% including peak concentric impulse, take off velocity, peak 

power, relative peak power and jump height.  The DJ and IMTP were the least reliable tests with 

only drop jump take off velocity having a CV of less than 5% whilst the commonly used RSI had 

a CV of 9.8%. Both IMTP variables had a CV of 6.4% although as stated previously, subsequent 

unpublished data from the authors found this to be 2.9% after great familiarisation.  This confirms 

the need to ensure athletes are very familiar with any test that will be used to monitor performance.  

A consistent unreliable variable was peak RFD as it displayed a CV of between 26-37% dependant 

on the test used and should not be used in assessing performance in an adolescent population with 

the current calculation method.  Given that each test measures slightly difference physical 

qualities, the decision ultimately lies with the strength and conditioning coach to decide which 

performance measure(s) is the best indicator of performance for their respective athletes.  This 

decision should include which variable is the most relevant to their, sport its reliability and has 

the athlete received adequate familiarisation. 
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Chapter 4 
 

Body composition, morphological and neuromuscular 
adaptations.  Preparatory vs competition period strength training 

in adolescent athletes. 
 

Haines, B., Bourdon, P., & Deakin, G.  (Submitted).  Body composition, morphological and 

neuromuscular adaptations.  Preparatory vs competition period strength training in adolescent 

athletes.  Journal of Sport and Health Science. 

 

The aim of this study was to use a variety of body composition, morphological and neuromuscular 

tests to determine the adaptations of adolescent athletes to strength programs performed during a 

preparatory (six-week) and competition period (nine-week) of an annual training cycle.  The 

reliability of the neuromuscular tests utilised were determined previously and are presented in 

Chapter 3.  This study was designed to be reflective of the various training blocks performed in 

an annual training cycle. 

 

4.1 Abstract 
 

To examine the effects of periodised strength training blocks on body composition, muscle 

morphology and neuromuscular performance in adolescent athletes.  Fourteen subjects (age 16.5 

± 1.1 y, height 171.3 ± 6.3 cm, body mass 65.0 ± 11.2 kg) performed the following tests before 

and after two strength training blocks (competition and preparatory); whole body DEXA, 

ultrasound of the vastus lateralis (VL), countermovement jump (CMJ), drop jump (DJ), isometric 

mid-thigh pull (IMTP), 20-m sprint and 3RM back squat.  Results were assessed for magnitude 

of change (effect sizes [ES]) for differences across training blocks. Body composition showed 

trivial changes after both periods. VL thickness increased (7.5 ± 3.3%) as did CMJ variables (e.g., 

jump height = 4.9 ± 3.1%) after the preparatory period. Most DJ variables decreased during both 

training periods, whilst IMTP measures only improved during the competition period (peak force 

= 11.0 ± 6.2%).  Most 20-m sprint variables showed positive effects (e.g., 5m split = 5.0 ± 4.7%) 

following the competition period.  Whilst other training factors may contribute to changes in NM 

performance it is likely that a specific preparatory period strength program will result in greater 

improvements in dynamic lower body strength/power measures compared to one conducted in-
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season in adolescent male athletes.  Competition period strength training in conjunction with 

specific athletic training may contribute to a beneficial impact on speed. 

4.2 Introduction 
 

Athletic preparation, specifically the development of relevant strength and power indices related 

to improving sport performance are a major focus of S&C coaches.  Historically, monitoring 

improvements in strength and power were performed by RM tests conducted on the exercises 

employed within a resistance training program (Baker & Newton, 2008; Lyttle et al., 1996).  More 

recently, neuromuscular tests such as the CMJ (McGuigan et al., 2008; Riggs & Sheppard, 2009), 

DJ (Flanagan et al., 2008; Quatman et al., 2006), IMTP (Haff et al., 2005; Winchester et al., 2008) 

and sprints (Gathercole et al., 2015a; Seitz et al., 2014) have been commonly used to monitor 

physical performance.  These tests provide specific performance feedback that may otherwise be 

undetectable by standard RM testing, and allowing the S&C Coach to monitor the impact of any 

resistance training stimulus with greater specificity. 

In addition to neuromuscular  adaptations, resistance training can also positively impact the body 

composition and morphological profile of an athlete (Campos et al., 2002; Cormie et al., 2010; 

Uchida et al., 2006), with improvements in lean muscle mass parameters (Alegre et al., 2006; 

Campos et al., 2002; Cormie et al., 2010) and decreases in fat mass being linked to increases in 

performance (Ahtiainen et al., 2003).  Specific changes in muscle thickness (Ahtiainen et al., 

2003; Cormie et al., 2010; Holm et al., 2008) and muscle pennation angle (Alegre et al., 2006; 

Cormie et al., 2010; Kawakami et al., 1995) have also been linked to specific improvements in 

force production capabilities.   

S&C coaches use a variety of resistance training protocols to elicit the physiological responses 

desired for maximizing athletic performance.  Maximum strength, or force production is a specific 

training modality that is regularly employed in the development of athletes with such training 

regimens typically involving low repetitions (1-5) of very high loads (85-100% 1RM)(Kraemer 

& Ratamess, 2004).  In contrast to this, power training typically involves low repetitions but 

performed at significantly lower loads (20-60% 1RM)(Winchester et al., 2008), although this may 

be dependent on the specific exercise used and whether ballistic or non-ballistic exercises are 

performed (Kraemer & Ratamess, 2004).  Whilst the effects of either in-season (Baker, 2001; 

Veliz, Requena, Suarez-Arrones, Newton, & de Villarreal, 2014) or pre-season (Hansen, Cronin, 

Pickering, & Newton, 2011) strength and/or power training have been documented previously, 

the authors are unaware of any research comparing in-season to pre-season strength training 

periods. 
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The effects of maximum strength training on athletic performance assessed via improvements in 

CMJ (Cormie et al., 2009; Gathercole et al., 2015b), DJ (Argus et al., 2012), IMTP (Stone et al., 

2003) and sprint performance (Dasteridis et al., 2011; Seitz et al., 2014) have been linked to 

improved athletic performance and as such are now considered common tests for tracking 

performance in senior athletes.  However, research studying the effect of resistance training 

programs on body composition, morphological and neuromuscular measures in various training 

phases in adolescent athletes has not yet been documented.  Therefore, the aim of this study was 

to compare the effects of competition and preparation period maximum strength resistance 

training programs on body composition, morphological and neuromuscular parameters in 

adolescent male athletes.  

4.3 Methods 
 

Approach to the Problem 

To determine the effects of the maximum strength training programs on body composition, 

morphological and neuromuscular parameters the subjects performed a test battery consisting of 

a full-body DEXA scan, ultrasound of the vastus lateralis (VL) and performance measures (three 

CMJ’s, three DJ’s, three 20-m sprints and two IMTP’s). This test battery was performed three 

times during the 18-week study period (Figure 4.1).  This period was chosen to coincide with 

competition and preparatory training periods in the athletes’ annual plan where training could be 

controlled and the baseline, post-competition period and post-preparation period testing sessions 

could be completed without interruption.  

 

January February March April May 

Competition Period Preparation Period 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Testing was conducted in weeks 1 (baseline), 11 (post-competition), 18 (post-preparation) 

Figure 4.1.  The 18-week training study period as a part of the standard yearly training plan for 

the athletes 

 

Participants 

Fourteen adolescent male athletes were recruited to participate in the study.  Subjects (age 16.5 ± 

1.1 y, height 171.3 ± 6.3 cm, body mass 65.0 ± 11.2 kg and 3RM back squat 82.6 ± 23.7 kg) were 
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all students at an elite sports academy and competed in either squash, taekwondo or fencing.  Each 

athlete undertook a minimum of eight training sessions per week including sport specific and 

physical development training plus occasional competitions.  Due to the training structure used 

within the academy, this group of athletes experienced a large deal of uniformity in their weekly 

training schedule, performing all physical preparation sessions under the supervision of the same 

S&C coach.  Whilst the sport specific training sessions for each athlete was inherently different 

from a skill development perspective, the focus of these sessions during this period was for sport 

skill development only.  As such it was assumed that the physical demands of these sessions were 

low, and of a similar level across athletes and hence should not be considered a co-variate for the 

purpose of this study.  Each athlete had a minimum of two years of resistance training experience 

and was familiar with all of the tests used in the study.  All subjects received a clear explanation 

of the study, including risks and benefits of participation and provided written consent before the 

start of the study.  The study was approved by the James Cook University Human Ethics 

Committee. 

Procedures 

Body composition  

Prior to each neuromuscular test session, the athletes performed a whole-body DEXA scan to 

assess body composition (GE Healthcare, Lunar iDXA, Madison, USA).  These scans were 

performed at similar times in the morning before breakfast and prior to any exercise being 

performed. The same qualified technician was used for all DEXA scans to help maximise 

reliability.  All scans were performed following the same protocol with subjects arriving 15 

minutes prior to the scan and changing into appropriate clothing before sitting quietly for 10 

minutes.  Body composition changes assessed including total body mass, total lean body mass, 

legs lean mass, arms lean mass, total bone mineral content (BMC), total tissue mass and total fat 

mass.  The typical error of measurement for the technician was 1.41% (determined from the 

variable percent body fat). 

Morphological assessments 

The athletes also had an ultrasound scan of the VL (Siemens, Acuson 500, Erlangen, Germany) 

to assess in vivo muscle architecture prior to each neuromuscular test session.  The same 

experienced technician conducted all the ultrasound scans to help maximise reliability.  For the 

initial scan the technician measured the distance between the centres of the greater trochanter and 

the lateral condyle of the head of the femur of the subjects’ dominant leg and marked a distance 

equal to 50% of the calculated thigh length.  This distance was recorded and used for all 

subsequent trials.  Digital ultrasound images were taken of the scan sight and for all subsequent 

scans so as to best match the analysis site in all trials.  These images were analysed post session 
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to determine muscle thickness and pennation angle as previously described by Cormie et al 

(2010).  The chosen leg was scanned three times; first with the leg supine, in full extension with 

muscles completely relaxed, secondly in double flexion with both the knee/hip flexed to 90 

degrees and third, again in full extension as per the first scan.  The results from the 2 repeat full 

extension scans were averaged and used in subsequent analyses. 

Neuromuscular assessments 

Before commencing the neuromuscular assessments, the subjects performed a 10 minute, 

standardized dynamic warm-up which included dynamic running drills, dynamic stretches, two 

sets of three CMJ’s (60% and 90% intensity), two 25-m submaximal sprints (70% and 90% 

intensity) and one set of three DJ’s (60%, 80% and 100% intensity).  A minimum of three minutes 

rest was given after the warmup before testing began to minimize carry-over of fatigue.  The 

neuromuscular tests were completed in the following order; three maximal CMJ’s, three maximal 

DJ’s from a 40 cm box, three maximal 20-m sprints and two maximal IMTP’s.  One minute rest 

was allowed between each CMJ and DJ, two minutes rest was allowed between each 20-m sprint 

and three minutes rest was given between IMTP trials.  A minimum of two minutes rest was given 

between the different neuromuscular tests.  The test protocols for these neuromuscular tests have 

been detailed previously (Haines, Bourdon, & Deakin, 2016). 

In the week preceding the test sessions 3RM back squat was determined for each athlete.  This 

required the athlete to squat until their thighs were parallel with the floor.  Squat depth was 

monitored visually by the same experienced tester who observed all trials to ensure uniformity 

between subjects.  3RM was determined after specific warm-up sets were performed at 50% (five 

to eight repetitions), 70% (five repetitions) and 90% (one to three repetitions) of their previous 

3RM.  A five minute rest period was allowed between efforts of 90% and above (Winchester, 

Erickson, Blaak, & McBride, 2005). 

Reliability of test protocols  

The reliability of CMJ variables, as indicated by a percent typical error via coefficient of variation 

(CV) were:  peak concentric impulse (1.6%), peak power (3.2%), relative peak power (3.4%) and 

jump height (3.4%).  Similarly, DJ variables were also found to be reliable: take-off velocity 

(4.8%), peak concentric impulse (5.1%), peak concentric power (6.1%) and relative peak 

concentric power (6.4%).  The 20-m sprint showed very strong reliability with variables ranging 

from a minimum of 0.8% (20-m split) to a maximum 2.7% (10 to 20-m split).  Within the IMTP, 

the two key variables of interest were seen to reliable for this population group with both peak 

force and relative peak force having a CV of 6.4%.  The reliability data presented above and 

additional reliability for all variables analysed in this study were taken from previous research by 
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the authors (Haines et al., 2016).  Previous analysis in this laboratory had determined the 3RM 

back squat reliability to have a CV of 6.1%. 

Training protocols 

Each week of the competition period (weeks 2 to 10) included zero to two maximum strength 

sessions (Table 4.1 – Lifting session; 9 total sessions over the 9-week period) and five to six sport 

specific training sessions that included one speed and agility and one conditioning session.  The 

same strength training program was performed in two four-week blocks, block 1 (weeks 2 to 5), 

and block 2 (weeks 7 to 10).  Week 6 was a deload week during which no strength sessions were 

performed due to school scheduling restrictions whilst the program was performed twice in week 

10.  Each week of the preparation training block (weeks 12 to 17) included two to three maximum 

strength sessions (Table 4.2 – Lifting session; 15 total sessions over the 6-week period) and five 

to six sport specific training sessions that incorporated one to three speed and agility and 

conditioning sessions. 

 

Table 4.1.  Strength training program for the competition period  
 

Competition Period Exercises 

Exercise Week 2 (7) Week 3 (8) Week 4 (9) Week 5 (10) 

Drop Jumps 4 x 5 @ 30cm 5 x 3 @ 40cm 4 x 5 @ 40cm 3 x 3 @ 40cm 

Countermovement 

Jumps (bodyweight) 
2 x 5 3 x 3 2 x 5 3 x 3 

Back Squat 
4 x 6 @ 77% 

2 x 6 @ 77%, 2 

x 4 @ 81% 
4 x 4 @ 81% 3 x 3 @ 86% 

Bench Pull 4 x 8 @ 73% 4 x 6 @ 77% 4 x 4 @ 81% 3 x 3 @ 86% 

Dumbbell Press 4 x 8 @ 73% 4 x 6 @ 77% 4 x 4 @ 81% 3 x 3 @ 86% 

Isometric Mid-Thigh 

Pull (maximal) 
2 x 6 s 3 x 3 s 3 x 5 s 2 x 5 s 

Weeks (in brackets), indicate the corresponding set and rep scheme used in the second block of 

the competition period strength program. 
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Table 4.2.  Strength training program for the preparation period  

(A) Preparation Period Exercises 

Day 1 Day 2 Week 12 Week 13 Week 14 Week 15 Week 16 Week 17 

Sessions per week 2 3 2 3 2 3 

Intensities (% 1RM) 85% 88% 91% 88% 85% 91% 

Back Squat Deadlift 4 x 5 4 x 4 2 x 4, 3 x 3 4 x 4 4 x 5 5 x 3 

Romanian Deadlift Split Squat 4 x 5 4 x 4 2 x 4, 3 x 3 4 x 4 4 x 5 4 x 3 

Single Leg Press Leg Press 4 x 5 4 x 4 2 x 4, 3 x 3 4 x 4 4 x 5 3 x 3 

Bench Press Decline Press 4 x 5 4 x 4 2 x 4, 3 x 3 4 x 4 4 x 5 4 x 3 

Bench Pull Chin-Ups 4 x 5 4 x 4 2 x 4, 3 x 3 4 x 4 4 x 5 4 x 3 

Total lower body reps for each week 120 144 102 144 120 108 

*  The same intensities (% 1RM were performed on day 1 and day 2 of the program.
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Statistical Analyses 

To asses if the effect of  training phase on each variable was practically beneficial, trivial or 

harmful, the data were assessed using a magnitude-based inferences approach (Hopkins et al., 

2009).  These methods were selected because traditional statistical approaches often do not 

indicate the magnitude of an effect, which is typically more relevant to athletic performance than 

any statistically significant effect.  

Of interest was the magnitude of changes in body composition, morphological and neuromuscular 

variables between baseline (week 1) to post-competition (week 11) and post-competition (week 

11) to post-preparation (week 18) testing sessions.  All analyses were performed using a modified 

statistical spreadsheet (Hopkins, 2006b).  ES were calculated using 0.2 x between-athletes SD 

with the following threshold inferences used: ≤ 0.2 (trivial), >0.2 (small), >0.6 (moderate), >1.2 

(large), >2.0 (very large) and >4.0 (extremely large) (17). 

In addition, a qualitative description of the differences were assessed with the change/difference 

evaluated as follows: <0.5%, almost certainly not; 0.5-5%, very unlikely; 5-25%, unlikely; 25-

75% possibly; 75-95%, likely; 95-99.5%, very likely and >99.5%, almost certainly.  If the 90% 

confidence intervals of the ES overlapped both ES small boundaries, then changes were deemed 

unclear (17). 

 

4.4 Results 
 

A total of nine subjects completed the DEXA, ultrasound, CMJ, DJ and IMTP tests at all three 

test sessions, five subjects choosing to voluntarily withdraw from the study.  Only eight subjects 

completed the 20-m sprint test due to a restriction from medical staff for one subject, this however 

had no impact on any of the other tests.  Training compliance during the competition and 

preparation periods was 88% and 92% respectively.  Mean ± standard deviation (SD) for all test 

variables are reported in Table 4.3. 
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Table 4.3.  Athlete test results. Mean ± SD  

 
Baseline 

Post 

Competition 

Post 

Preparation 

Countermovement Jump    

Take off velocity (m.s-1) 2.77 ± 0.25 2.73 ± 0.23 2.80 ± 0.25 

Peak power (W) 3704 ± 983 3612 ± 869 3794 ± 932 

Relative peak power (W.kg-1) 54.9 ± 6.9 53.1 ± 5.4 54.8 ± 5.6 

Jump height (m) 0.42 ± 0.07 0.41 ± 0.07 0.43 ± 0.07 

Peak concentric force (N) 1606 ± 306 1686 ± 363 1780 ± 370 

Relative Peak concentric force (kg.bm) 2.56 ± 0.35 2.53 ± 0.19 2.64 ± 0.24 

Peak concentric impulse (N.s) 195.7 ± 50.1 195.7 ± 47.2 203.2 ± 48.0 

Concentric Phase duration (s) 0.28 ± 0.049 0.28 ± 0.036 0.28 ± 0.028 

Drop Jump    

Take off velocity (m.s-1) 2.40 ± 0.27 2.24 ± 0.21 2.21 ± 0.3 

Peak power (W) 4218 ± 1130 4134 ± 1227 3906 ± 1026 

Relative peak power (W.kg-1) 62.9 ± 11.5 60.7 ± 10.6 56.9 ± 10.7 

Jump height (m) 0.30 ± 0.06 0.26 ± 0.05 0.25 ± 0.06 

Average eccentric power (W) 3462 ± 654 3749 ± 853 3623 ± 928 

Relative average eccentric power (W.kg-1) 52.0 ± 6.5 55.3 ± 7.5 52.4 ± 7.4 

Peak concentric impulse (N.s) 165.1 ± 36.8 155.3 ± 36.1 152.6 ± 31.6 

Average concentric power (W) 2402 ± 607 2318 ± 660 2196 ± 577 

Relative average concentric power (W.kg-1) 35.8 ± 5.6 34.0 ± 5.6 32.1 ± 6.4 

Reactive strength index (m.s-1) 1.24 ± 0.29 1.19 ± 0.30 1.08 ± 0.30 
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Baseline 

Post 

Competition 

Post 

Preparation 

Isometric Mid-Thigh Pull and 3RM Back Squat 

Peak force (N) 2238 ± 527 2466 ± 469 2555 ± 551 

Relative peak force (BW) 3.39 ± 0.40 3.71 ± 0.30 3.8 ± 0.54 

3RM Back Squat (kg) 86.1 ± 28.8 91.7 ± 27.7 105.7 ± 27.7 

20 m Sprint    

5-m split (s) 1.12 ± 1.10 1.07 ± 0.06 1.1 ± 0.07 

10-m split (s) 1.88 ± 0.15 1.80 ± 0.10 1.83 ± 0.10 

20-m split (s) 3.20 ± 0.21 3.12 ± 0.17 3.12 ± 0.14 

5-10-m split (s) 0.74 ± 0.05 0.72 ± 0.04 0.72 ± 0.03 

10 – 20-m split (s) 1.31 ± 0.07 1.30 ± 0.09 1.29 ± 0.06 

DEXA and Ultrasound    

Total mass (kg) 66.74 ± 11.80 67.50 ± 11.84 68.15 ± 11.01 

Total lean mass (kg) 53.71 ± 9.54 54.03 ± 9.30 54.69 ± 8.88 

Legs lean mass (kg) 18.77 ± 3.86 18.89 ± 3.68 19.37 ± 3.51 

Arms lean mass (kg) 6.60 ± 1.39 6.64 ± 1.32 6.77 ± 1.29 

Total bone mineral content (kg) 2.86 ± 0.40 2.91 ± 0.38 2.93 ± 0.37 

Total tissue mass (kg) 63.87 ± 11.44 64.59 ± 11.51 65.22 ± 10.68 

Total fat (kg) 10.16 ± 3.38 10.56 ± 3.99 10.54 ± 3.4 

Average angle supine (°) 19.90 ± 5.68 17.90 ± 2.89 17.60 ± 5.08 

Angle double flexion (°) 12.10 ± 4.31 11.30 ± 3.27 12.20 ± 3.12 

Average thickness supine (mm) 25.06 ± 3.88 24.56 ± 2.92 26.40 ± 3.69 
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Body composition 

No clear differences were found in any of the body composition measures conducted over the 18-

week study period (Figures 4.2a & 4.2b). 
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Figure 4.2a.  Baseline vs Post-Competition effect sizes (mean ± 90% confidence limits) and 

qualitative magnitude based inference for DEXA and ultrasound scans 
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Figure 4.2b.  Post-Competition vs Post-Preparation effect sizes (mean ± 90% confidence limits) 

and qualitative magnitude based inference for DEXA and ultrasound scans 
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Morphological measures  

No observable differences were seen in the VL ultrasound scans during the competition block, 

whilst a very likely beneficial difference in the mean (mean ± 90% CL) for muscle thickness 

(7.3% ± 2.9%, chances that the true difference were higher/trivial/lower, 98/2/0 %) measured in 

the supine position following the preparation training block.  No clear change was seen in 

pennation angle over the course of the preparation period (Figures 4.2a & 4.2b). 

Neuromuscular performance 

3RM back squat showed likely trivial changes (7.5% ± 4.5%, 44/56/0 %) during the competition 

period (Figure 4.3a) however it showed a very likely beneficial improvement (16.9% ± 5.2%, 

99/1/0 %) during the six-week preparation training block  (Figure 4.3b).   
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Figure 4.3a.  Baseline vs Post-Competition effect sizes (mean ± 90% confidence limits) and 

qualitative magnitude based inference for 3RM back squat, 20-m sprint and isometric mid-thigh 

pull 
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Figure 4.3b.  Post-Competition vs Post-Preparation effect sizes (mean ± 90% confidence limits) 

and qualitative magnitude based inference for 3RM back squat, 20-m sprint and isometric mid-

thigh pull 

 

The competition block produced a possibly beneficial change in one of the CMJ variables 

measured, peak concentric force (4.4% ± 6.5%, 52/46/2 %).  However, a possibly negative change 

was seen for relative peak power (-3.1% ± 4.5% 2/41/57 %) during this period.  In contrast, the 

six-week preparation training block resulted in improvements in several CMJ variables with 

possible increases in relative peak power (3.3% ± 3.5%, 60/39/1 %), jump height (4.9% ± 3.1%, 

73/27/0 %), and peak concentric force (5.7% ± 7.4%, 64/34/2 %) (Figures 4.4a & 4.4b).   



74 
 

T a k e  o f f  v e l o c i t y

P e a k  p o w e r

R e l  p e a k  p o w e r

J u m p  h e i g h t

R e l  p e a k  c o n c  f o r c e

P e a k  C o n c  f o r c e

P e a k  c o n c  i m p u l s e

C o n c  p h a s e  d u r a t i o n

E f f e c t  S i z e

l i k e l y  t r i v i a l

u n c l e a r

u n c l e a r

p o s s i b l y  t r i v i a l

p o s s i b l y  h a r m f u l

u n c l e a r

p o s s i b l y  b e n e f i c i a l

v e r y  l i k e l y  t r i v i a l

- 0 . 6 - 0 . 2 0 . 2 0 . 6

 

Figure 4.4a.  Baseline vs Post-Competition effect sizes (mean ± 90% confidence limits) and 

qualitative magnitude based inference for countermovement jump 
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Figure 4.4b.  Post-Competition vs Post-Preparation effect sizes (mean ± 90% confidence limits) 

and qualitative magnitude based inference for countermovement jump 
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Drop Jump performance showed a decrease after the competition block in a number of variables 

with a likely decrease in jump height (-12.7% ± 17.0%, 3/15/85 %) and a possible decrease in 

peak concentric impulse (-5.9% ± 7.1%, 1/38/62 %).  This decrease continued during the 

preparation block with a likely decrease seen in relative concentric peak power (-6.6% ± 7.0%, 

3/22/75 %), RSI (-10.1% ± 11.2%, 1/19/80 %) and relative average eccentric power (-5.2% ± 

5.7%, 1/19/80 %) (Figure 4.5a & 4.5b).   
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Figure 4.5a.  Baseline vs Post-Competition effect sizes (mean ± 90% confidence limits) and 

qualitative magnitude based inference for drop jump 
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Figure 4.5b.  Post-Competition vs Post-Preparation effect sizes (mean ± 90% confidence limits) 

and qualitative magnitude based inference for drop jump 

 



76 
 

Peak force and relative peak force measures during the IMTP showed a likely and very likely 

beneficial improvement after the competition block (11.0% ± 6.2%, 94/6/0 % & 9.8% ± 7.0%, 

95/4/1 %) whilst all other variables showed trivial or unclear changes at every time point (Figure 

4.3a & 4.3b).   

Subjects improved in all variables measured in the 20-m sprint after the competition block except 

10-20-m split (unclear).  There was a likely decrease in 5-m split (-5.0% ± 4.7%, 1/13/86 %), 10-

m split (-4.0% ± 3.7%, 1/13/86 %) and 5-10-m split (-2.5% ± 1.5%, 0/10/90 %) whilst the 

preparation block resulted in a possible increase in 5-m split (3.0% ± 2.8%, 68/31/1) (Figure 4.3a 

& 4.3b).   

 
 
4.5 Discussion 
 

This study compared changes in body composition, morphological and neuromuscular 

adaptations to maximum strength programs conducted performed in conjunction with other sport 

training during competition and preparation periods in adolescent male athletes.  As such this 

study provides novel information on the adaptations that occur within an adolescent athletic 

population in response to maximum strength training performed as part of the athlete’s overall 

sport preparation at various times during an annual training cycle. The key findings of this study 

were; 1) VL thickness increased during the 6-week preparation period training block and this was 

reflected in a concomitant increase in 3RM back squat during the same period, 2) CMJ variables 

showed the most change of the various neuromuscular tests in response to the preparation period 

training block, and 3) multiple 20-m sprint variables had positive changes during the competition 

training block.   

Body composition 

No changes were seen in any of the body composition variables measured during either of the 

training periods.  The lack of changes related to body composition such as body fat, lean mass 

and bone mineral content measures was expected due to the nature of the training ( i.e. maximum 

strength training)  which is traditionally associated more with neuromuscular changes rather than 

body composition changes (Folland & Williams, 2007).   

Morphological 

Changes to muscle architecture were not observed during the competition training periods.  As 

reported in Figure 4.2a, the competition training period stimulus was insufficient to have any 

meaningful impact on VL thickness.  This period of reduced strength training volume also resulted 
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in unclear changes in VL pennation angle when measured in the supine position (ES = -0.25 ± 

0.47).  

It was unclear if the preparation period training had any meaningful effect on pennation angle, 

however a small (ES = 0.44 ± 0.18) increase was observed in VL thickness during this block.  

Although not a direct measure of muscle architecture, these results suggest that non-invasive 

ultrasound method may be beneficial for assessing morphological changes that may take place 

during maximum strength training and hence its contribution towards increases in muscle force 

production and overall improvements in athletic performance (Cormie et al., 2010). 

Neuromuscular 

Back squat strength showed a very likely beneficial effect (99% chance) of improving over the 

preparation period and a possibly trivial effect (56% chance) of change during the competition 

period.  These results indicate that an average of one session a week (i.e. competition period) may 

be effective in maintaining performance in the 3RM back squat, whilst increasing the number of 

sessions to two to three sessions per week as done in the preparation period likely improves the 

chance of having a positive impact on performance (16.5% effect vs 7.5% effect).  This is not 

surprising given the greater volume of strength training conducted during the preparation period.  

It also reinforces previous research that indicates the benefits of designated ‘strength blocks’ 

during the annual cycle, even when working with adolescent athletes (Christou et al., 2006; Santos 

& Janeira, 2008).  These results also reinforce the concept of specificity of training, i.e., the 

majority of the training during the preparation period was focused on high force/low velocity 

lower body training which is similar to the contraction type that occurs during a 3RM back squat 

test.  

Although the improvements in 3RM back squat where not reflected in body composition changes 

such as increases in leg lean mass (Figure 4.2b), some of the improvement could be linked to the 

increase in VL thickness.  This increase in muscle thickness (7.3%) after the heavy force training 

is similar to findings from other researchers (Cormie et al., 2010) and suggests that a change in 

muscle thickness has a positive impact on force generation ability.    

The IMTP, another high force/low velocity neuromuscular measure did not have as conclusive 

results as the 3RM back squat.  The preparatory period showed no clear effects on peak force and 

relative peak force (Figure 4.3b) whilst the competition period training resulted in a likely and 

very likely chance that there was an increase in peak force and relative peak force respectively.  

The differences between 3RM back squat and IMTP results could be explained by specificity of 

training (i.e., a greater range of movement, dynamic exercise (3RM back squat) vs. an isometric 

exercise (IMTP) as seen in other research (Stone et al., 2003).  However, although a four-week 

familiarization program was conducted during resistance training sessions prior to the initial 
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testing block in week 1, it is possible that the differences may also be due to lack of familiarity of 

the IMTP as a testing procedure rather than a training exercise.   The results of a concurrent 

reliability study showed significant improvements in peak force across trials indicating that 

‘training familiarization’ may not equate to ‘testing familiarization’ and that the additional 

motivation and intent present during a testing session may not be accounted for during a 

familiarization period (Haines et al., 2016).  These data should not be interpreted to assume that 

dynamic lower body strength training has no impact on isometric peak force measures, as this has 

been shown otherwise in previous research (Beattie et al., 2016). 

The 20-m sprint showed mixed results across variables and training periods.  During the 

preparation period no positive meaningful changes in 20-m sprint variables were seen.  There was 

however a possible chance that 5-m split time was slower (ES = 0.27 ± 0.25).  During the 

competition period almost all 20-m sprint variables showed small improvements with likely 

improvements in 5-m, 10-m, 5-10-m split and possible improvements in 20-m split.  Other 

researchers have shown a link between increase in force development via high force/low velocity 

training and faster sprint times (Cormie et al., 2010; Seitz et al., 2014).  However the data in the 

current study supports a theory suggesting acute physiological and performance characteristics 

will move towards the predominant training modality performed during a given cycle (Brandon 

et al., 2015).  That is, within the current study more time was given to higher velocity training 

during the competition period as the focus was more on sport specific training and competition 

than during the preparation period where the combined training stimulus had a higher volume of 

force related training.  This is substantiated by research that ballistic power training resulted in 

greater improvements in sprint speed variables then heavy strength training (Cormie et al., 2010). 

Both training periods saw meaningful changes occur across multiple variables for the CMJ.  

During the preparation period a possibly small beneficial effect on take-off velocity (2.6%), 

relative peak power (4.8%) and jump height (4.9%) (Figure 4.4b) was reported.  These results 

were in direct contrast with the competition period after which the majority of variables showed 

trivial effects from the program and relative peak power even showing a possible small decrease 

(-3.1%).  The positive improvement seen in CMJ performance after the preparation period 

confirms the benefit of performing lower body strength exercises such as the back squat and 

deadlift.  The underlying gains made in dynamic strength as measured in the 3RM back squat also 

showed some transfer to the CMJ. 

Results from the DJ were the most confounding with performance across the majority of variables 

showing a steady decline in performance across the entire study (Figures 4.5a and 4.5b).  During 

the preparation period the majority of variables measured showed chances of a negative effect 

with some (relative peak power, relative average concentric power and RSI) showing a likely 
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negative effect.  This was less pronounced during the competition period with take-off velocity 

and jump height both having a likely small negative effect whilst peak concentric impulse showed 

a possibly harmful effect on performance.  These results indicate that performance in the DJ, 

which is reliant on the ability to develop high levels of force in a very short time (contact times 

of approximately 200 ms or less), was possibly ‘detrained’ during the preparation period and to a 

lesser extent during the in-season program.  Similar to the CMJ results this is not surprising given 

the nature of training performed during both periods.  No specific reactive strength or short (< 

200 ms) contraction time exercise was performed during either of these training periods and, as 

shown previously (Viitasalo et al., 1998), specific neuromuscular training that utilizes a strong 

eccentric stretch may be needed to elicit better performance in the DJ. 

 

4.6 Conclusion  
 

The current study suggests that in adolescent male athletes a specific preparation period will result 

in improvements in dynamic lower body strength.  Whilst during a competitive period 

incorporating only one strength session per week dynamic lower body strength can be maintained.  

Improvements in dynamic lower body strength, partly driven by changes to the associated muscles 

such as increased muscle thickness can also transfer to similar movement pattern dynamic 

performance measures (e.g. CMJ).  However, during such a period it is unlikely that changes in 

sprint speed will occur unless similar sprint type training is integrated into the program.   

For S&C coaches to see concurrent increases in sprint speed they should also include faster 

contraction velocity exercises such as jumping or sprint related training as was seen during the 

competition period.  This has implications across a wide range of sports as many benefit from 

improvements in sprint speed as well as CMJ.  

These findings should influence the organisation of training throughout a year and remind S&C 

coaches to appropriately place their various training blocks in the annual cycle allowing them to 

maximise targeted qualities (i.e. utilising preparation periods to develop maximal strength and 

periods closer to or during competition to improve sport specific performance qualities). 
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Chapter 5 
 

Acute effects and recovery from a maximum strength session at 
different points of the annual cycle in adolescent athletes 

 

Haines, B., Bourdon, P., & Deakin, G. (Submitted). Acute effects and recovery from a maximum 

strength session at different points of the annual cycle in adolescent athletes. International 

Journal of Sports Physiology and Performance.  

 

This chapter continues on from the research presented in Chapter 4 and was designed to 

investigate the response of adolescent athletes to a fatiguing maximum strength training session 

and the subsequent recovery profile.  The same neuromuscular tests used in Chapters 3 and 4 were 

employed and neuromuscular readiness was monitored 0-, 4-, 24- and 48-h post training session.   

 

5.1 Abstract 
 

Purpose: To examine the acute effects of a fatiguing maximum strength session at three different 

periods in the annual training cycle on neuromuscular performance in adolescent athletes.  

Methods: Young male athletes (age 16.5 ± 1.1 y, height 171.3 ± 6.3 cm, body mass 65.0 ± 11.2 

kg and 3RM Back Squat 82.6 ± 23.7 kg) performed a battery of tests before, 0-, 4-, 24- and 48-h 

after a fatiguing maximum strength session.  Tests included a CMJ, DJ, IMTP and 20-m sprint.  

Meaningful changes in performance were assessed using a magnitude-based inferences approach 

with qualitative descriptors of change also calculated.  Results: DJ performance showed the most 

sensitivity to fatigue immediately post and up to 48 h later.  Stronger athletes tended to show an 

improved ability to recover from fatigue, especially in the DJ and 20-m sprint.  Conclusion: 

Maximum strength training elicits different fatigue time course patterns in the CMJ, DJ, IMTP 

and 20-m sprint highlighting the importance of appropriate placement within the athlete’s weekly 

schedule.   Additionally, tolerance to such training sessions may be affected by the time within 

the annual cycle and consequently, the athlete’s exposure to maximum strength stimuli.  
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5.2 Introduction 
 

Maximum strength training is an established and common place mechanism used by athletes to 

improve athletic performance (Baker, 2001; Harries et al., 2016; Suchomel et al., 2016).  This 

type of training typically involves low repetitions (1-5) and high intensities (>80% 1RM) 

(Aagaard et al., 2002a; Campos et al., 2002).  Whilst utilising this type of training to develop 

maximum strength, the combination of volume and intensity may be enough to elicit acute 

neuromuscular fatigue.  This fatigue may impact on subsequent training sessions performed by 

the athlete, either skill or capacity based, as observed by (Girard & Millet, 2008).   

Whilst strength training is an important part of athletic preparation, other neuromuscular 

movements such as jumping and sprinting are also commonly trained to elicit improvements in 

athletic performance.  Common examples of these are the CMJ, DJ, IMTP and 20-m sprint which 

have been used both as training tools, performance tests (Seitz et al., 2014; Viitasalo et al., 1998; 

Wang et al., 2016) and more recently as tools to monitor acute (Gathercole et al., 2015b; 

Hamilton, 2009a) and chronic (Gathercole et al., 2015b) neuromuscular fatigue.  A number of 

factors are known to influence performance in these exercises such as time of day (Taylor et al., 

2010) and strength levels.  However only a small body of research has examined the effect of 

various fatigue generating stimuli on these type of tests (Cormack et al., 2008c; Gathercole et al., 

2015a; Hamilton, 2009b).   

Repeat high intensity running has been shown to diminish CMJ and DJ performance immediately, 

24 h and 72 h later whilst 20-m sprint is only effected immediately afterwards (Gathercole et al., 

2015a).  In a sport specific context, fatigue generated from performing various sports has been 

shown to effect neuromuscular performance with an Australian rules football match resulting in 

reduced CMJ performance at least 24 h post-match (Cormack et al., 2008c).  A competitive soccer 

match has also been shown to impair neuromuscular performance with CMJ diminished up to 69 

h post-match whilst sprint performance (20 m) was only effected immediately post-match, 

recovering within 5 h (Andersson et al., 2008).      

The effects of strength training protocols commonly used in athletic preparation on muscle 

activity and force development has shown various muscle activity patterns occur as a result of the 

fatigue generated from such training (Linnamo et al., 1997; McCaulley et al., 2009).  However, 

this research used either the isometric squat or bilateral leg extension to monitor changes in 

performance.  Whilst both tests have merit within a strength/power testing battery, they provide 

little insight into the effects of strength training on athletic ability as measured via more 

performance orientated tests such as the CMJ. 
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Other research examined the effect of strength training on neuromuscular performance and 

highlights that CMJ and DJ performance is affected by a high volume strength training session 

up to 72 h later (Byrne & Eston, 2002).  This finding, whilst interesting, gives limited insight into 

typical athletic training program effects, due to the strength training protocol used (10 sets of 10 

reps of the barbell squat at 70% 1RM) not being reflective of an athletic preparation session.   

It is clear that limited research exists examining the effects of a typical maximum strength training 

program on acute neuromuscular fatigue in an athletic population.  The primary aim of this study 

was to investigate the acute effects of a fatiguing maximum strength training session on common 

neuromuscular tests immediately, 4-, 24- and 48-h post.  A secondary aim of this study was to 

compare these effects between athletes at different periods within the annual cycle to investigate 

variations in fatigue time course caused by adaptations to the predominant training focus. 

 

5.3 Methods 

 

Subjects 

Following approval by the local ethics committee and in accordance with the declaration of 

Helsinki, 14 athletes from an elite sports academy were invited to participate in the study.  All 

athletes (age 16.5 ± 1.1 y, height 171.3 ± 6.3 cm, body mass 65.0 ± 11.2 kg and 3RM Back Squat 

82.6 ± 23.7 kg) received a clear explanation of the study, including risks and benefits of 

participation and provided written consent before the start of the study.  Each subject had a 

minimum of two years resistance training history and was familiar with all of the tests used in the 

study. 

 

Design 

Athletes were assessed in a battery of neuromuscular tests over three training blocks, spanning an 

18-week period within the annual cycle (Figure 5.1).  

The 18-week period was divided into two periods, the ‘competition period’ and ‘preparation 

period’.  During the competition period an average of one strength training session (Table 5.1a) 

per week (nine total sessions for the 9-week period) and five to six sport specific training sessions 

that included one speed and agility session and one conditioning session were performed.  During 

the preparation period two to three strength training sessions (Table 5.1b) per week were 

performed (15 total sessions for the 6-week period) and five to six sport specific training sessions 

that included one to two speed and agility and conditioning sessions.  Each testing block began 
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with the athletes performing the neuromuscular test battery to determine baseline measures.  After 

24 h rest the athletes then performed a fatiguing maximum strength session before repeating the 

same neuromuscular test battery immediately post, 4-, 24- and 48-h post the strength session to 

assess the acute fitness vs fatigue state of the group.   

 

Table 5.1.  Strength training programs for competition (A) and preparation (B) periods 

(A) Competition Period Exercises  (B) Preparation Period Exercises 

Day 1  Day 1 Day 2 

Drop Jumps 3-4 sets of 4-6 reps  Back Squat Deadlift 

Countermovement 

Jumps 

3-4 sets of 4-6 reps  Romanian 

Deadlift 

Split Squat 

Back Squat 3-4 sets of 4-6 reps  Single Leg Press Leg Press 

Bench Pull 3-4 sets of 4-6 reps  Bench Press Decline Press 

Dumbbell Press 3-4 sets of 4-6 reps  Bench Pull Chin-Ups 

Isometric Mid-Thigh 

Pull 

2-3 sets of 3-6 s  Volume: 3-5* sets of 3-5 reps. 

Intensity: 85-91% 1 repetition max 

*Fifth set performed for Back squat or Deadlift only.  
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Figure 5.1. The 18-week training study period as a part of the yearly training plan for the subjects 
 

January February March April May 

Preparation period 1 Competition period 1 Preparation period 2 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

* Weeks 1, 11 & 18 – denote testing weeks.  Week 1 – block 1; week 11 – block 2; week 18 – block 3
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Methodology 

To minimise variability and limit the differing effects of one test upon another, the test battery 

was performed in the same order on each occasion.  Before commencing the test battery, the 

athletes were required to perform a 10-minute, standardized dynamic warm-up which included 

dynamic running drills, dynamic stretches, two sets of three CMJ’s (60% and 90% intensity), two, 

25-m submaximal sprints (70% and 90% intensity) and one set of three DJ’s (60%, 80% and 

100% intensity).  A minimum of three minutes rest was then given before the testing began.  No 

additional dynamic warm-up was performed between the maximum strength session and the test 

battery immediately post.  At the completion of the rest period, each subject completed the 

neuromuscular tests in the following order; three maximal CMJ’s, three maximal DJ’s from a 40 

cm box, three maximal 20-m sprints and two maximal IMTP’s.  One minute rest was allowed 

between trials for the CMJ and DJ, two minutes rest was allowed between trials for the 20-m 

sprint and three minutes rest between trials for the IMTP.  A minimum of two minutes rest was 

given as the subject moved from one neuromuscular test to the next.  The exact testing procedures 

for these neuromuscular tests have been detailed previously and their respective reliability 

reported (Haines et al., 2016).   

The maximum strength session was performed under the guidance of an experienced S&C coach.  

The strength session was designed to replicate a fatiguing maximum strength session whilst 

minimising variability from test block to test block.  As such, one exercise was chosen, the back 

squat and each athlete performed 10 sets of 5 back squats at a starting weight of 85% 1RM, with 

three minutes rest between sets.   

In the week before the testing blocks estimated 1RM back squat was determined for each subject.  

During the assessment the subjects were required to squat until their thighs were parallel with the 

floor.  Squat depth was monitored visually by an experienced tester who observed all trials to 

ensure uniformity between subjects and testing blocks.  Estimated 1RM was determined after 

specific warm-up sets were performed at 50% (five to eight repetitions), 70% (five repetitions) 

and 90% (one to three repetitions) of their previous known 3RM with their best set used to 

calculate estimated 1RM.  A five minute rest period was allowed between efforts of 90% and 

above as previously described (Winchester et al., 2005). 

Statistical Analysis 

In order to assess if the time differences immediately, 4-, 24- and 48-h, post strength session for 

each test block were practically beneficial, trivial or harmful, the data were assessed using a 

magnitude based inferences approach. (Hopkins et al., 2009). Of interest was the magnitude of 

changes in CMJ, DJ, 20-m sprint and IMTP variables between baseline and each recovery time 

point, for the three test blocks.  All analyses were performed using a modified statistical 
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spreadsheet (Hopkins, 2006b) with data reported in text as means with standard deviations (SD) 

and figures as mean with 90% confidence intervals (CI).  ES were calculated using 0.2 x between-

athletes SD with the following threshold inferences used: ≤ 0.2 (trivial), > 0.2 (small), >0.6 

moderate), >1.2 (large), >2.0 (very large) and >4.0 (extremely large) (Hopkins et al., 2009).  

These methods were selected because traditional statistical approaches often do not indicate the 

magnitude of an effect, which is typically more relevant to athletic performance than any 

statistically significant effect.  A qualitative description of the differences was assessed with the 

chance the change/difference was a true effect evaluated as follows: 25-75% possibly; 75-95%, 

likely; 95-99%, very likely; > 99% almost certainly.  If the 90% confidence intervals of the ES 

overlapped both ES small boundaries (0.2), then the changes were deemed unclear (Hopkins et 

al., 2009).   

 

5.4 Results 
 

A total of 10 subjects completed all neuromuscular tests in block 1 except for the IMTP (n=9).  

In block 2 a total of 7 subjects completed all the neuromuscular tests.  A total of 10 subjects 

completed all neuromuscular tests in block 3 except for the 20-m sprint (n=9), where one athlete 

was withheld on medical advice from the academy doctor to recover from a minor calf strain.  

The varied subject numbers in the different test blocks were a result of either voluntary withdrawal 

from the study (n =2), a long-term injury that occurred external to the study (n = 1), or absence 

due to sporting competition.  Mean ± SD data for selected test variables across all three tests 

blocks are reported in Table 5.2 (CMJ), Table 5.3 (DJ) and Table 5.4 (IMTP and 20-m sprint).  

All results are displayed as ES ± 90% CL with the true change likelihood also represented (%).  

Estimated 1RM performance varied across block 1 (90.2 ± 27.5 kg), block 2 (103.0 ± 33.5 kg) 

and block 3 (113.7 ± 28.0 kg), however a clear effect was only found between block 3 and block 

1 (ES = 0.77 ± 0.23, 100%).
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Table 5.2.  Countermovement jump variables means ± SD for the three testing blocks 

Variable Block Pre IM Post 4 h post 24 h post 48 h post 

Jump height (m) 

1 0.41 ± 0.07 0.37 ± 0.06 0.40 ± 0.06 0.39 ± 0.07 0.41 ± 0.08 

2 0.42 ± 0.07 0.39 ± 0.05 0.42 ± 0.07 0.42 ± 0.07 0.44 ± 0.07 

3 0.43 ± 0.07 0.40 ± 0.06 0.42 ± 0.07 0.43 ± 0.06 0.43 ± 0.06 

Relative peak power (W.kg-1) 

1 53.2 ± 5.3 49.2 ± 4.8 52.2 ± 5.1 52.2 ± 5.6 52.2 ± 7.0 

2 52.5 ± 5.8 49.7 ± 5.9 52.8 ± 5.1 53.8 ± 6.5 54.3 ± 5.7 

3 54.5 ± 5.4 52.0 ± 5.4 52.4 ± 5.3 53.9 ± 5.3 54 ± 5.3 

Peak concentric force (N) 

1 1626 ± 285 1514 ± 262 1617 ± 273 1616 ± 308 1650 ± 358 

2 1755 ± 347 1622 ± 265 1803 ± 382 1703 ± 414 1705 ± 368 

3 1777 ± 349 1648 ± 252 1731 ± 309 1687 ± 342 1715 ± 361 

Eccentric : Concentric Ratio 

1 223.3 ± 41.2 214.8 ± 42.8 210.3 ± 41.1 213 ± 33.6 206.4 ± 40.3 

2 214.8 ± 34.5 215.4 ± 34.0 213.2 ± 38.5 213 ± 36.2 203.6 ± 24.5 

3 228.1 ± 32.8 236.6 ± 45.3 221.6 ± 39.9 214.2 ± 29.6 228.5 ± 28.4 
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Table 5.3.  Drop jump variables means ± SD for the three testing blocks 

Variable Block Pre IM Post 4 h post 24 h post 48 h post 

Jump height (m) 

1 0.30 ± 0.07 0.25 ± 0.04 0.29 ± 0.07 0.24 ± 0.06 0.26 ± 0.07 

2 0.25 ± 0.05 0.20 ± 0.06 0.24 ± 0.04 0.25 ± 0.04 0.26 ± 0.04 

3 0.25 ± 0.06 0.22 ± 0.05 0.24 ± 0.03 0.24 ± 0.05 0.23 ± 0.05 

Relative peak power (W.kg-1) 

1 64.1 ± 10.9 54.8 ± 7.3 64.2 ± 14.8 54.3 ± 12.2 60.8 ± 16.5 

2 61.1 ± 10.3 49.0 ± 14.7 56.5 ± 10.7 57.6 ± 10.9 60.5 ± 12.0 

3 57.6 ± 10.2 52.2 ± 9.6 59.4 ± 9.2 57.8 ± 11.5 59.7 ± 12.2 

Reactive strength index (m.s-1) 

1 1.32 ± 0.30 1.05 ± 0.21 1.32 ± 0.40 1.01 ± 0.33 1.23 ± 0.36 

2 1.20 ± 0.29 0.89 ± 0.37 1.10 ± 0.28 1.10 ± 0.30 1.20 ±0.36 

3 1.11 ± 0.30 0.99 ± 0.26 1.16 ± 0.25 1.11 ± 0.31 1.14 ± 0.30 
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Table 5.4.  IMTP and 20m sprint variables means ± SD for the three testing blocks 

Variable Block Pre IM Post 4 h post 24 h post 48 h post 

Peak force (N) 

1 2208 ± 555 2425 ± 484 2558 ± 584 2659 ± 569 2748 ± 597 

2 2529 ± 516 2425 ± 496 2600 ± 633 2585 ± 546 2605 ± 562 

3 2549 ± 519 2413 ± 377 2563 ± 455 2578 ± 487 2535 ± 428 

Relative peak force (N/kg) 

1 3.32 ± 0.34 3.64 ± 0.25 3.81 ± 0.37 4.00 ± 0.42 4.13 ± 0.43 

2 3.73 ± 0.31 3.57 ± 0.34 3.77 ± 0.41 3.77 ± 0.30 3.78 ± 0.23 

3 3.80 ± 0.51 3.62 ± 0.43 3.82 ± 0.44 3.84 ± 0.52 3.79 ± 0.46 

5-m split time (s) 

1 1.13 ± 0.10 1.09 ± 0.06 1.05 ± 0.06 1.08 ± 0.07 1.07 ± 0.08 

2 1.07 ± 0.06 1.14 ± 0.09 1.15 ± 0.06 1.14 ± 0.07 1.16 ± 0.08 

3 1.10 ± 0.07 1.10 ± 0.07 1.09 ± 0.06 1.08 ± 0.06 1.06 ± 0.05 

20-m split time (s) 

1 3.22 ± 0.20 3.22 ± 0.15 3.17 ± 0.15 3.19 ± 0.17 3.17 ± 0.17 

2 3.14 ± 0.17 3.25 ± 0.18 3.21 ± 0.16 3.20 ± 0.15 3.23 ± 0.17 

3 3.12 ± 0.14 3.19 ± 0.18 3.12 ± 0.13 3.10 ± 0.13 3.08 ± 0.13 

 



90 
 

Neuromuscular performance 

Small effects were seen on a number of CMJ performance variables across the various blocks and 

time points (Figure 5.2).  Immediately post strength session showed the most susceptibility to 

variations in performance with jump height (ES ± block 1 -0.44 ± 0.29, 92%; block 2 -0.45 ± 

0.19, 99%; block 3 -0.38 ± 0.14, 98%), relative peak power (block 2 -0.44 ± 0.21, 96%; block 3 

-0.45 ± 0.17, 93%) and peak concentric force (block 1 -0.38 ± 0.21, 92%; block 2 -0.32 ± 0.18, 

88%; block 3 -0.31 ± 0.28, 75%) all being likely or very likely reduced.  Relative peak power was 

also very likely reduced (-0.70 ± 0.32, 99%) immediately post strength training during block 1.  

Technique based changes were seen at a greater number of time points such as eccentric to 

concentric ratio in block 1 which showed a likely reduction (-0.42 ± 0.10, 58%) relative to 

baseline up to 48 h post strength session. 

DJ exhibited greater variation and magnitude in response to a maximum strength session (Figure 

5.3).  Jump height showed moderate reductions immediately post strength training for both block 

1 (-0.65 ± 0.30, 99%) and block 2 (-1.15 ± 0.56, 99%) and also 24-h and 48-h post during block 

1 (-0.72 ± 0.67, 90% and -0.61 ± 0.63, 87%).  RSI showed a moderate reduction immediately and 

24-h post strength session within block 1 (-0.77 ± ; 100% and -1.01 ± ; 96%) and a large reduction 

immediately post strength session during block 2 (-1.47 ± 0.91, 98%).  Other small reductions 

were noted at various time points within each block. 

Peak force measured via the IMTP was improved during block 1 with small effects noted 

immediately post- (0.39 ± 0.20, 94%), 4-h post (0.58 ± 0.15, 100%) and moderate effects 24-h 

(0.73 ± 0.90, 100%) and 48-h post (0.85 ± 0.19, 100%).  Relative peak force showed a similar, 

with greater magnitude, trend across all time points during block 1 (0.85 ± 0.47, 98%, 1.23 ± 0.37, 

100%, 1.64 ± 0.39, 100% and 1.93 ± 0.44, 100%) however it also showed a small decrease 

immediately post strength session for both blocks 2 (-0.49 ± 0.58, 81%) and 3 (-0.31 ± 0.35, 70%). 

Within the 20-m sprint the 5-m split showed moderate increases at every time point for block 2.  

In contrast block 1 experienced a small reduction immediately (-0.37 ± 0.33, 82%), 24- (-0.4 ± 

0.35, 84%) and 48-h (-0.53 ± 0.37, 93%) post and moderate reduction 4-h (-0.68 ± 0.33, 99%) 

post the strength session.   Block 3 experienced a small reduction in 5-m split 24- (-0.27 ± 0.32, 

66%) and 48-h (-0.51 ± 0.32, 94%) post strength training.  Small increases in 20-m split time were 

seen during block 2 at all recovery time points whilst small reductions were seen 4- and 48-h post 

training in block 1 (-0.21 ± 0.23, 53%; -0.22 ± 0.23, 56%).  Block 3 showed the most interesting 

pattern with a small increase in 20-m split immediately post training (0.47 ± 0.48, 84%) and a 

small reduction in time 48-h post (-0.25 ± 0.13, 73%) as shown in Figure 5.4. 
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Figure 5.2.  Changes in CMJ variables post strength session across the three different testing periods.  The trivial effect (ES = 0.2) thresholds are presented as 

a percentage for each variable as the grey shaded area.  # = small effect size, ° = moderate effect size 
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Figure 5.3.  Changes in drop jump variables post strength session across the three different testing periods.  The trivial effect (ES = 0.2) thresholds are presented 

as a percentage for each variable as the grey shaded area.  # = small effect size, ° = moderate effect size, * = large effect size 
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Figure 5.4.  Changes in isometric mid-thigh pull and 20 m sprint variables post strength session across the three different testing periods.  The trivial effect (ES 

= 0.2) thresholds are presented as a percentage for each variable as the grey shaded area.  # = small effect size, ° = moderate effect size, * = large effect size 
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5.5 Discussion 
 

The present study investigated how a fatiguing maximum strength session affected CMJ, DJ, IMTP 

and 20-m sprint at multiple time points across 48 h in three different periods within the annual training 

cycle of adolescent athletes.  The key findings were that; 1) select neuromuscular tests exhibit 

different recovery profiles over a 48 h period and therefore will benefit from appropriate scheduling 

within the weekly training cycle, 2) the DJ may be the most sensitive test for detecting neuromuscular 

fatigue in adolescent athletes, 3) athletes displaying higher levels of back squat strength (block 3) 

may be less susceptible to neuromuscular fatigue generated via maximum strength training sessions 

when assessed by the 20-m sprint. 

Jumping performance was most effected immediately post a fatiguing maximum strength session as 

indicated by the harmful effects seen in multiple variables for CMJ (Figure 5.2) and DJ (Figure 5.3).  

Decreases in common performance variables such as jump height, relative peak power and peak force 

for CMJ and jump height, RSI and relative peak power for DJ highlight that these exercises whether 

used as tests or training tools should not be performed when high levels of neuromuscular fatigue 

exist.  However, the CMJ showed that from 4 h post session onward, minimal performance effects 

(harmful or beneficial) will be experienced if is utilised as training exercise.  When examining 

fatigued CMJ performance, previous research (Gathercole et al., 2015b) has highlighted the need to 

include technique-based variables in the analysis due to differing effects when compared with 

performance variables only.  The current data (Figure 5.2) suggests that changes in technique, as 

indicated by a reduction in the eccentric: concentric ratio, may exist at least 48 h post a fatiguing 

strength session in weaker athletes (block 1) with effects not lasting as long in stronger athletes (block 

3).   

As mentioned above, DJ performance showed harmful performance effects immediately after the 

strength session however in comparison to the CMJ, these effects were of greater magnitude with 

some variables showing moderate (jump height and relative peak power) and even large (RSI) 

harmful effects immediately post session.  Additionally, the effects appeared to be longer lasting with 

DJ performance effected for at least 48 h for jump height, relative peak power and RSI (Figure 5.3).  

Specifically, both block 1 and block 2 showed small to moderate harmful effects 24 h post in multiple 

variables.  However, as with the CMJ this was only found in the weaker groups with the strongest 

group (block 3) showing no clear harmful performance effects at any time point other than 

immediately post.  The increased magnitude and duration of harmful performance effects may be 

explained by the shorter available contraction time used when performing a DJ compared with a CMJ.  
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This is similar to results reported by Gathercole et al, (2015a) however in their study, whilst 

magnitude of effects immediately post a fatiguing session where higher in the DJ when compared 

with a CMJ, the effects were longer lasting in the CMJ.  It is important to note that the fatigue 

generating sessions used were different in these studies, with the subjects exposed to repeat high 

intensity running instead of the maximum strength training session used in the current study which 

may affect fatigue profiles.  Previous literature also found the fatigue generated from a soccer match 

to have a negative effect on RSI measured via the DJ, again highlighting the usefulness of this test in 

detecting changes in performance after various stimuli (Hamilton, 2009a). 

Within the IMTP, minimal effects of fatigue were seen during block 2 and block 3 (Figure 5.4) with 

only relative peak force showing likely and possibly small harmful effects (-0.49 and -0.31) 

immediately post session, with no clear effects seen in peak force.  In contrast, in block 1 athletes 

showed small to moderate beneficial effects in peak force and moderate to large beneficial effects in 

relative peak force.  The authors contend that rather than a ‘true’ effect of the fatiguing strength 

session (block 1), the trend of the magnitude of effect for both variables indicate that the athletes 

where improving from test to test.  This is inconsistent with the results seen in blocks 2 and 3.  The 

authors’ postulate that the familiarisation block, whilst focussing on correct set-up and technique may 

not have fully recreated the intent for the athlete to perform the exercise with a maximal effort.  The 

data suggests that the athletes were not ‘test familiar’ with the IMTP until the beginning of block 2.  

It is however interesting to note that the performance recorded for either peak force or relative peak 

force 24-h and 48-h post in block 1 were higher than at any other time points during the study (Table 

5.1). 

In the 20-m sprint differing fatigue related time courses were seen across the 3 blocks (Figure 5.4).  

During blocks 1 and 3 the only harmful effect seen at any time point was a likely small effect (0.47) 

immediately post.  Block 1 consistently showed small to moderate, likely or very likely beneficial 

effects on 5-m sprint time (all time points) and also showed possibly small beneficial effects on 20-

m sprint time 4- and 48 h post (Figure 5.4).  This result is somewhat surprising as it could be expected 

that there would be a harmful effect on sprint performance as seen in other literature (Gathercole et 

al., 2015a).  The current results may simply reflect the period during which block 1 was performed, 

that is prior to the athletes having completed any significant sprint training during the annual cycle 

and therefore recording their slowest sprint times from all three blocks (Table 5.3).  That is, 

accumulated fatigue may not have been sufficient to decrease performance any lower than the athletes 

were already capable of.  Interestingly, both 5-m and 20-m performance appeared to show a specific 

trend in fatigue recovery during block 3.  The 5-m split showed a trend towards improved 
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performance over time with both 24- and 48-h post showing possibly and likely effects (-0.27 and -

0.51), respectively.  A similar, yet more pronounced trend was seen in 20-m performance with a likely 

small harmful effect seen immediately post, trivial effects at 4- (-0.01) and 24-h (-0.13) post and a 

possibly small beneficial effect (-0.24) seen 48 h post.  These results suggest that adolescent athletes 

who have obtained higher levels of strength (block 3) as measured in the back squat and have 

potentially greater tolerance to a lower body strength session due to completing a specific strength 

block, may exhibit delayed potentiating effects on sprint performance.  In contrast, block 2 showed 

either likely or very likely harmful effects for both 5-m (moderate effect) and 20-m (small effect) 

splits at all the recovery time points.  As with block 1 this may in part be due to the specific timing 

with the annual cycle and the preceding training block.  Block 2 was performed at the end of a 

competition period where a much lower training volume had been completed.  Although athletes 

showed good baseline performance in 5-m and 20-m variables (Table 5.3) the lack of tolerance to 

strength training may have resulted in significant fatigue being accumulated during the strength 

session subsequently effecting performance at all measured recovery time points. 

Results of this study showed that a maximum strength training session produced an immediate fatigue 

that dissipated over time.  The data shows that performance in the neuromuscular assessments used 

in this study, irrespective of whether they are used as training exercises or as a monitoring tool, may 

be affected at different time-courses post a strength session such as the one used in the current this 

study.  Consequently, S&C coaches should consider these fatigue related effects planning their 

athletes training schedule.  Whilst the findings from the current study suggest multiple effects as a 

result of the training, they must be interpreted with caution due to the low subject numbers assessed.  

The authors’ also note that due to the small sample of athletes combined with the range of physical 

qualities present in adolescent athletes, many results displayed large confidence intervals, potentially 

resulting in unclear results.  This does however highlight the occurrence of individual responses to 

fatigue generation and the need to determine individual responses when working with elite athletes. 

 

5.6 Conclusion and Practical Applications 
 

The present study highlights the various neuromuscular fatigue patterns that occur after performing a 

fatiguing maximum strength session at different time periods in the annual cycle.  In practice, these 

different neuromuscular fatigue recovery profiles indicate that specific training should be planned to 

maximise an athlete’s readiness to perform such training.  For example, if a maximum strength 

session is performed in the morning, CMJ training may be performed as early as that same afternoon 



97 
 

whereas DJ training should be avoided for at least 24 h.  As peak force was found to return to baseline 

as measured in the IMTP 4-h post training, it may be possible to perform a subsequent maximum 

strength session at such a time.  However, importantly such a session should be similar in nature 

involving similar muscle contraction patterns and ranges given the specific nature of the IMTP.  

Similarly, the 20-m sprint may also be trained 4 h post a strength session.  Importantly, practitioners 

should consider what period within the annual cycle the athlete currently sits, specifically what 

training the athlete has completed over the previous 6 weeks and what tolerance to fatigue they 

currently possess.  That is, as shown in the current study, athletes that have performed a 6-wk 

maximum strength training block may better tolerate a maximum strength training session. 
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Chapter 6 
 

Longitudinal neuromuscular monitoring tool: A case study using 
bodyweight vs loaded countermovement jump 

 

Haines, B., & Deakin, G. (2014). Longitudinal neuromuscular monitoring tool: A case study using 

bodyweight vs loaded countermovement jump. Journal of Australian Strength and Conditioning, 

22(5), 37-40 

 

Due to relocating from Qatar to Australia at the completion of study 3 (Chapter 5), the subject group 

available for assessment changed.  As such, the focus of this study shifted from adolescent to adult 

athletes with the aim of comparing the effectiveness of both a CMJBW and CMJLOAD to longitudinally 

monitor neuromuscular readiness in adult athletes.  Although this study has been published in a peer-

reviewed journal, the abbreviations BWCMJ and LCMJ have been replaced with CMJBW and 

CMJLOAD respectively to ensure continuity throughout this thesis. 

This chapter is an extension of the research presented in Chapter 5 and was designed to investigate 

simple neuromuscular assessments that can potentially be used to assess neuromuscular fatigue in 

response to strength training in an adult athlete population.  The previously used test battery of CMJ, 

DJ, IMTP and 20-m sprint could not be used with the cohort of adult athletes available for this study 

and as such, simplified tests which were familiar to the athletes were used.  This resulted in the 

selection of two different load CMJ’s to be assessed in this study.  This study presents rare 

longitudinal data (23 weeks) collected on an elite athlete. 

 

6.1 Abstract 

 

Purpose: To examine the effectiveness of both the BWCMJ and LCMJ in monitoring 

neuromuscular readiness in an elite athlete during an extensive training block.   Methods: An elite, 

male beach volleyball player (height = 191 cm, weight = 95.6 kg, age = 25 y, back squat 1RM = 

200 kg) performed three BWCMJ and three LCMJ weekly during a 23-week training block.  
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Changes in performance were compared against baseline data collected prior to the training period 

and reported as percent change from baseline.  Results: Both BWCMJ and LCMJ showed 

sensitivity to neuromuscular fatigue over the period, however BWCMJ was more effective at 

determining the effects of the competition taper than LCMJ.  Conclusion: Relative peak power was 

able to detect varying levels of neuromuscular fatigue throughout the study period however when 

measured via either the BWCMJ or LCMJ however during the taper period, only the BWCMJ was 

able to effectively determine the improved neuromuscular performance. 

 

6.2 Introduction 

 

Monitoring neuromuscular readiness in athletes has been a topic of scientific and applied interest 

recently, the benefit, allowing the practitioner to monitor the effect of training interventions on the 

physiological readiness of their athlete both acutely and longitudinally throughout a training and 

competitive season. The ability to monitor the acute neuromuscular readiness of an athlete via a CMJ 

has previously been established in the literature (Cormack et al., 2008a; Cormack et al., 2008c; Taylor 

et al., 2010).  Some research has examined the use of BWCMJ  (Cormack et al., 2008c) whilst others 

have  examined LCMJ (Taylor et al., 2010).  A number of variables have been investigated in the 

literature with researchers examining force, power and displacement measures from absolute, 

relative, peak and mean variations.  Taylor (2010) previously reported that peak force and relative 

peak power were ‘good’ variable measures to use due to the inter-day test reliability (Taylor et al., 

2010).  However, to date the majority of research has focused on larger team sports (Andersson et al., 

2008; Cormack et al., 2008a; Cormack et al., 2008c; Ronglan et al., 2006; Spiteri et al., 2013).  In 

determining an effective load to be used in a LCMJ previous research has found that an additional 

CMJ load of as little as 27% 1RM back squat may alter performance variables such as relative peak 

power (Cormie, McCaulley, Triplett, & McBride, 2007b).  In selecting an appropriate load for a 

LCMJ assessment tool, it may be prudent to use a load that elicits a different performance result to a 

BWCMJ, but that minimises any risk to the athlete by placing a large external load across their 

shoulders when jumping.  To the authors knowledge no research has monitored the neuromuscular 

readiness of an elite beach volleyball athlete or has examined if any difference in response is observed 

between a BWCMJ or LCMJ.  The purpose of this case study was to examine the efficacy of using a 

BWCMJ or LCMJ to monitor neuromuscular readiness throughout a preparation period for an elite 

beach volleyball athlete. 
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6.3 Methods 
 

To investigate the differences between a BWCMJ and a LCMJ as a neuromuscular monitoring tool, 

an elite male beach volleyball athlete was tested once per week over a period of twenty-three weeks 

(May 2013 – October 2013).  The subject (height = 191 cm, weight = 95.6 kg, age = 25 y, back squat 

1RM = 200 kg) was a member of the Australian beach volleyball program with over seven years’ 

experience as a national team member and more than nine years strength training experience.  For the 

duration of the case study he was preparing for an international competition, performing strength 

training three times per week in addition to his on-sand training which varied during the monitoring 

period.  The subject received a clear explanation of the study, including risks and benefits of 

participation and provided written consent before the start of the study.  The study was approved by 

the James Cook University Human Ethics Committee.  Strength training sessions focused primarily 

on the lower body, however most sessions contained some upper body and trunk strengthening 

exercises.  Training volume and intensity across the analysis period for the lower body is presented 

in Table 6.1.   

Both a BWCMJ and LCMJ equal to 30% of the subject’s 1RM back squat (60 kg) were tested at the 

same approximate time each Monday morning during the athlete’s first training session for the week.  

The athlete performed his normal warm-up consisting of a five minute general dynamic warm-up, 

concluding with three submaximal BWCMJ’s and LCMJ’s before completing three maximal 

BWCMJ’s and three maximal LCMJ’s on a portable force plate (AMTI, Frappier Acceleration, USA).  

To maintain a similar jumping technique and allow for comparison between the two types of jumps, 

a wooden broom stick (approx. 0.7 kg) was used for each BWCMJ.  The countermovement used for 

each jump was self-selected by the athlete and a minimum of 30 s rest was given between each jump, 

with a minimum of two minutes rest given between the BWCMJ and LCMJ.  Data was collected 

using DartPower software version 1.6 at a sampling frequency of 200 Hz and analysed using custom-

designed software using the impulse momentum approach as described by Dugan et al. (Dugan et al., 

2004).  A fourth-order, low-pass Butterworth digital filter with a cut-off frequency of 10Hz was used 

to filter and smooth the data.  The only cue given to the athlete was to maximize jump height, as such 

the best trial for analysis was selected on the jump that elicited the highest jump height.  The variables 

chosen to monitor neuromuscular fatigue were peak force (N) and relative peak power (W/kg-1) with 

body mass (kg) changes also displayed.  Additionally, this protocol was performed in the four-weeks 

preceding the monitoring period during which a return to strength-training program was performed. 

The subsequent values were averaged to create baseline values.   
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Table 6.1.  Training load distribution across the monitoring period 

 Max strength High load power 1 High load power 2 Repeat Power Low load power Taper 

Volume Intensity Volume Intensity Volume Intensity Volume Intensity Volume Intensity Volume Intensity 

CMJBW   67      105  84 
 

 

CMJLOAD   128 40-50% 168 50-70% 720 30-50% 51 30-50% 51 30-50% 

Power 

clean 
46 60-80% 72 85-105% 96 75-105%   36 30%   

Clean 

pull 
      228 50-70%     

LB force 124 80-95%   50 80-90%       

Volume presented as total reps per program phase, intensity range presented as percentage of 1RM.  *LB = lower body force exercise (back squat, 

box squat and trap bar deadlift).  CMJBW = Bodyweight countermovement jump. CMJLOAD = Loaded countermovement jump. 
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6.4 Results 
 

Changes in body mass over the monitoring period are shown in Figure 6.1.   

When considering relative peak power, both types of BWCMJ and LCMJ showed sensitivity to 

varying levels of neuromuscular fatigue (Figure 6.2) with similar trends throughout the monitoring 

period.  The only major difference appeared during weeks 2 and 3 of the taper period when relative 

peak power in the BWCMJ increased to its highest levels of the monitoring period (+6.0%) and 

remained high (+5.3%) whilst relative peak power in the LCMJ remained at baseline (-0.2%) before 

decreasing (-3.6%).  Both measures also showed good sensitivity to the high levels of strength training 

volume and intensity that occurred during the repeat power mesocycle with both BWCMJ and LCMJ 

showing their biggest decrements from baseline with -7.9% and -8.7% respectively after the high 

volume of power endurance week 3.  

In contrast, peak force from the two jump types showed varying impacts of neuromuscular readiness 

for the majority of the study (Figure 6.3) with only the last four weeks showing any similarity in 

results.  Additionally, BWCMJ peak force appeared to be a less consistent measure throughout the 

period.   
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Figure 6.1. Changes in body mass (kg) over the monitoring period (weeks) 

 

Figure 6.2. Percentage change in relative peak power (W/kg-1) for bodyweight countermovement jump and loaded countermovement jump for 

relative peak power (W.kg-1). 
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Figure 6.3. Percentage change in peak force (N) for bodyweight countermovement jump and loaded countermovement jump. 
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6.5 Discussion 
 

The findings from this case study indicate that relative peak power when measured via a BWCMJ 

or LCMJ may be sensitive to neuromuscular fatigue in an elite beach volleyball athlete for the 

majority of a training season.  However, attention should be paid when monitoring during tapering 

periods as reductions may be seen in LCMJ relative peak power compared to improvements in 

BWCMJ.  In this case the decrement seen was most likely due to a reduction in high force strength 

training activities during the low load power and taper weeks. 

The data also suggests that peak force measured via either a BWCMJ or LCMJ is not an accurate 

measure of neuromuscular fatigue for this athlete.  Additionally, it suggests that the specificity of 

training may play a large role on the amount of force that can be expressed in a similar power 

movement.  That is, peak force in the LCMJ increased throughout the monitoring period whilst 

high force exercises, either maximal or explosive, were being performed and peaked in week three 

of the high-load power 2 phase. This then stabilized whilst severe fatigue was accumulated during 

the power endurance phase and then returned to baseline levels during the low-load power training 

period with a final peak during the taper period. 

The large differences in peak force responses during the monitoring period between the BWCMJ 

and LCMJ could be due to the longer contraction time experienced during the LCMJ.  The 

increased contraction time could allow fatigued muscles the time to produce peak force that is 

otherwise not possible during a shorter contraction type as seen in the BWCMJ.  

6.6 Practical applications 
 

When considering an appropriate test and the variables within to monitor neuromuscular fatigue 

longitudinally then applied practitioners should consider using the BWCMJ with relative peak 

power as the more appropriate monitoring tool than peak force.  Day of testing, time of testing 

and volume/intensity of exercise preceding the test day should also be standardized as much as 

possible to provide consistency in the testing environment and aid reliability. 
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Chapter 7 
 

Changes in jump performance of endurance vs strength athletes 
during a maximum strength and maximal power resistance 

training block 
 

Haines, B., Bourdon, P., Stanley, J., & Deakin, G. (Submitted). Changes in jump performance of 

endurance vs strength athletes during a maximum strength and maximal power resistance training 

block.  International Journal of Sports Physiology and Performance 

 

In follow-up to the findings on adaptations of adolescent athletes reported in Chapter 4, the 

authors wanted to perform a similar investigation on adult athletes.  Due to the change in testing 

equipment available after the principal author’s relocation and the limited time available for 

performing assessments on elite level athletes, the test battery was simplified.  In order to keep 

continuity with the preceding chapter, the authors chose the tests used in chapter 6 (CMJBW and 

CMJLOAD) to assess changes across the training periods.  Four-week strength or power training 

blocks were chosen to reflect a ‘typical’ training mesocycle utilised with adult athletes. 

 

7.1 Abstract 
 

Purpose: To compare the responses of endurance (END) or strength (STR) based athletes to a 

maximum strength (MS) and maximum power (MP) resistance training program.  Methods: Ten 

athletes completed a 4-week MS and 4-week MP resistance program with weekly monitoring of 

neuromuscular performance.  Results: During a MS block bodyweight countermovement jump 

(CMJBW) relative peak power (7.8% ± 4.8%) and loaded countermovement jump (CMJLOAD) 

relative peak power (5.9% ± 8.3%) and jump height (8.4% ± 8.5%) exhibited greater changes for 

STR vs END athletes.  A MP block resulted in CMJBW relative peak power (9.8% ± 8.6%), jump 

height (8.0% ±6.4%), CMJLOAD relative peak power (7.0% ± 5.7%) and jump height (5.2% ± 

4.6%) increasing more for STR vs END athletes.  Jump technique varied in effect direction for 

the LCMJ, having a larger positive effect during a MS block and a larger negative effect during a 

MP block for STR vs END athletes.  Conclusion: STR athletes showed consistently greater 

improvements in performance variables for both CMJBW and CMJLOAD during either a MS or MP 

block when compared with the changes seen in END athletes.  In the CMJBW this is due to changes 
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in neuromuscular performance as opposed to a change in technique.  Within the CMJLOAD, 

although changes in technique are apparent, these are not consistent with concurrent performance 

variable changes. 

7.2 Introduction 
 

Resistance training is commonly used as a method to enhance performance in a multitude of 

sports (Baker, 2001; Beattie et al., 2016; Bennie & Hrysomallis, 2005; Christou et al., 2006; 

Haines & Deakin, 2014; Harries et al., 2016; Hoffman et al., 2005; Howatson et al., 2016).  These 

resistance training programs typically focus on two main qualities that underpin general sporting 

task performance (Suchomel et al., 2016). First, strength which can be described as the muscles 

ability to exert force on an external object (Stone, 1993) and second, power or ‘explosive’ muscle 

strength, commonly defined as the rate of rise in contractile force (Aagaard et al., 2002a).  In an 

applied setting, external mechanical power as measured by the output of general sport 

characteristics such as jumping or sprint is more commonly of interest due to its direct impact on 

sport performance (Suchomel et al., 2016) and as such is a frequently used test to monitor 

increases in performance (Cormie et al., 2010; Rønnestad et al., 2012; Sheppard et al., 2008b). 

Adaptations to both maximum strength (MS) or maximum power (MP) training in different 

athletes, has not been extensively researched.  Previous literature has focussed on either athletes 

of different level responses within a sport, (Baker, 2001; Beattie et al., 2016; Dasteridis et al., 

2011), or examining the strength/power ability of athletes from differing sporting backgrounds at 

a specific time-point (Asçi & Açikada, 2007; Izquierdo et al., 2004; McBride et al., 1999).  Whilst 

this information provides useful data within each specific sport, it does not contribute to the 

general understanding of how athletes from different sporting backgrounds may respond to 

similar resistance training programs.  For example, athletes from a strength/power based 

background may show different responses to either a MS or MP program when compared with 

endurance athletes.  Consequently, assumptions on MS or MP training block outcomes may be 

erroneous if the specific population group performing the training stimuli is not accounted for.  

Hakkinen and Keskinen (Häkkinen & Keskinen, 1989) demonstrated that endurance and 

strength/power based athletes exhibited different maximal force characteristics in both absolute 

and relative to muscle CSA and different maximal RFD.  They postulated that the highly specific 

stimuli of either strength/power training or endurance training over a very long period of time 

may result in differences in neural activation to the muscle and/or characteristics of the muscle 

tissue itself.  Based on these findings it is reasonable to assume that endurance (END) athletes, 

characterised by a high volume of low resistance, long duration exercise will respond differently 

to various resistance training programs compared with strength/power athletes (STR), 
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characterised by a low volume of high resistance, short duration exercise. (Häkkinen & Keskinen, 

1989). 

Several performance tests are commonly used in athletic testing to monitor the effects of a training 

stimulus on neuromuscular performance (Gathercole et al., 2015a; Gathercole et al., 2015b; 

Kyröläinen et al., 2005; Raeder et al., 2015; Wang et al., 2016).  A test that has high reliability, 

the precision to detect changes and is familiar to most athletes given its ease of execution is the 

CMJ (Gathercole et al., 2015a; Raeder et al., 2015; Sheppard et al., 2008b).  However, it has been 

recently proposed that the use of a two-load method in assessing changes in force-velocity profiles 

may give additional insight into performance changes (Jaric, 2016).  Similarly, previous research 

has shown that the addition of load to a CMJ as little as 27% 1RM back squat may alter 

performance in key variables such as relative peak power (Cormie et al., 2007b).  Therefore, the 

use of a bodyweight CMJ (CMJBW) and loaded CMJ (CMJLOAD) may give additional insight into 

the effects of different resistance training protocols. 

The primary aim of the study was to investigate and compare the responses of END athletes to 

STR athletes when performing either a MS or MP block in conjunction with their sport specific 

training.  

7.3 Methods 
 

Experimental Design 

To determine the effects of either a MS or MP resistance training program on neuromuscular 

responses in sub-elite END vs STR athletes during specific 4-week training blocks.   

Subjects 

Ten athletes from an elite sports institute were recruited to participate in the study.  Athletes were 

split in to two groups depending on the predominant physiological characteristic trained, i.e. 

rowing athletes were placed in the END group (3 males and 2 females), while sprint cyclists were 

placed in the STR group (2 males and 3 females).  Subject characteristics are shown in Table 7.1.   
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Table 7.1.  Athlete characteristics for the Endurance and Strength/Power groups (Mean ± SD) 

 Endurance Sprint 

Age (y) 20.1 ± 0.7 22.2 ± 4.6 

Height (m) 1.87 ± 0.04 1.70 ±0.07 

Body mass (kg) 84.7 ± 7.2 73.6 ± 14.9 

1RM Back squat (kg) 121.0 ± 31.1 111.0 ± 41.0 

 

The subjects trained > 25 h/wk for their chosen sport including both sport specific and athletic 

preparation training, and had represented their chosen sport at U23 national championships or 

higher.  Whilst they performed different sport-specific training, both groups of athletes were in 

their respective preparation periods, characterised by higher training loads.  As such, it could be 

reasonably assumed that both groups (STR and END) were in similar phases of their annual 

training cycle.  All athletes had extensive resistance training and sport specific experience.  

Rowing and cycling athletes were chosen due to their similarity in primary musculature involved 

in their sport, i.e. lower body.  All subjects received a clear explanation of the study, including 

risks and benefits of participation and provided written consent before the start of the study.  The 

study was approved by the James Cook University Human Ethics Committee. 

Procedures 

Prior to the beginning of the training study 1RM back squat was determined for each athlete.  

Successful completion of a repetition required the subject to squat until their thighs were parallel 

with the floor.  Squat depth was monitored visually by the same experienced tester for all trials to 

ensure uniformity between subjects.  1RM was determined after specific warm-up sets were 

performed at 50% (five to eight repetitions), 70% (five repetitions) and 90% (one to three 

repetitions) of their previous 1RM score.  A five minute rest period was allowed between efforts 

of 90% and above (Winchester et al., 2005). 

Training study 

The training study was conducted over 2 x 4-week blocks with athletes performing a 4-week MS 

block followed by a 4-week MP block during a preparation period macrocycle.  At the beginning 

of the first training session each week, athletes performed a standardised dynamic warm-up 

concluding with a set of five CMJ of increasing intensity, culminating with a maximal effort jump.  

Following a minimum 3 minute rest, subjects then performed 3 maximal CMJBW and CMJLOAD.  

A rest of 60 s was given between trials for both types of jumps and a minimum of 3 minute rest 
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between CMJBW and CMJLOAD test sets.  The load used for the CMJLOAD was 30% of the subjects 

back squat 1RM and was rounded to the nearest kilogram as used in previous research (Haines & 

Deakin, 2014) and was kept consistent for the duration of the study.  This load was selected as it 

was a familiar training load used by all athletes and was therefore deemed not to place the athletes 

at undue risk.  To avoid change due to diurnal variation, testing was performed at the same time 

of day for each athlete, although due to logistical reasons the testing time was different between 

groups (END = 15:30-17:00; STR = 09:30-11:00). All jumps were performed on a, portable force 

plate (AMTI, Frappier Acceleration, USA) with a sampling frequency of 200Hz.  

Countermovement depth was self-selected with the subject instructed to utilise a technique that 

would result in the maximum height possible.  To maintain a similar jumping technique and allow 

for comparison between the two types of jumps, a wooden broom stick (mass = 0.7 kg) was used 

for each CMJBW to simulate the bar used in the CMJLOAD.  Data was collected using DartPower 

software version 1.6 and analysed using custom-designed software using the impulse momentum 

approach as described by Andersson et al. (Andersson et al., 2008).  A fourth-order, low-pass 

Butterworth digital filter with a cut-off frequency of 10 Hz was used to filter and smooth the data.  

The only cue given to the athlete was to maximize jump height, as such the jump that elicited the 

highest jump height was selected for analysis.  Each CMJBW and CMJLOAD  was analysed for a 

number of performance and technique related variables (Gathercole et al., 2015a; Gathercole et 

al., 2015b).  The variables targeted for further analyses included three performance related 

variables; jump height from force (CV = 3.4%), relative peak power (CV = 3.4%), relative peak 

force (CV = 5.1%) and two technique related variables; centre of gravity (CG) downwards 

movement (CV = 7.2%), concentric: eccentric ratio (CV = 7.6%).  Each variable was considered 

as reliable due to their CV being less than 10% (Haines et al., 2016).   

During the 4-week training blocks subjects performed a program focussed on developing either 

MS or MP.  Programs varied slightly between athletes due to exercise selection, although intensity 

and volume remained similar between athletes and groups.  This method was chosen because it 

reflects program design and implementation within an applied setting. Whilst it introduced some 

variability due to exercise selection, this was not biased towards either the END or STR group.  

The same, experienced strength coach oversaw the programming, training and testing of all 

athletes to ensure consistency. 

Statistical Analyses 

Weekly data is expressed as means ± SD.  Individual changes in jump performance were log 

transformed and plotted.  For each variable, we calculated within-condition changes during the 4-

week training block using within subject modelling (Hopkins, 2010).  For example, individual 

slope was calculated and then used to determine a predicted change across the 4 weeks for each 
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training group, END and STR during both periods, MS and P.  Difference in the changes in means 

for END vs STR were then calculated using a modified statistical spreadsheet (Hopkins, 2006a).  

Thresholds for harmful or beneficial change were determined as a factor of CV.  The CV for jump 

height was 3.4%, for relative peak power 3.4%, relative peak force 5.1%, centre of gravity 

downwards movement 7.2% and concentric: eccentric ratio 7.6% as found previously (Haines et 

al., 2016).  Chances the differences were a ‘true’ effect were evaluated qualitatively as follows: 

25-75% possibly, 75-95% likely, 95-99% very likely and > 99% almost certainly.  If the 90% CI 

overlapped both threshold boundaries the change was deemed unclear and any true change falling 

within the boundaries deemed trivial.  The magnitude of change was expressed as ES and was 

calculated using 0.2 x between-athletes SD with the following threshold inferences used: ≤0.2 

(trivial), >0.2 (small), >0.6 (moderate), >1.2 (large), >2.0 (very large) and >4.0 (extremely large) 

(Hopkins et al., 2009). 

 
7.4 Results 
 

Weekly data for selected jump variables (CMJBW and CMJLOAD) for both the END and STR 

groups are presented for both the MS (Table 7.2) and MP blocks (Table 7.3). 

Difference in changes in means during the MS block for the END vs STR group in the CMJBW 

variables are shown in Figure 7.1.  The difference in mean (mean ± 90% CL) for relative peak 

power was likely higher for the STR group compared with the END group (7.8% ± 4.8%, chances 

that the true difference were higher/trivial/lower, 94/6/0 %).  Within the CMJLOAD (Figure 7.2), 

relative peak power was possibly higher comparing the STR with END group (5.9% ± 8.3%, 

71/26/3 %) whilst jump height was likely higher (8.4% ± 8.5%, 86/13/1 %).  However, in contrast 

to the MS block, the change in concentric: eccentric ratio for the STR group was likely higher 

than that observed for the END group (14.8% ± 10.3%, 90/10/0 %).   

During the MP block relative peak power showed similar results in the CMJBW (Figure 7.3) to 

those seen during the MS block with the STR group again displaying a likely higher change in 

mean when compared with the END group (9.8% ± 8.6%, 91/8/1 %).  However, unlike the MS 

block, jump height also showed a likely higher change in mean between the STR and END groups 

(8.0% ± 6.4%, 90/10/0 %).  The CMJLOAD showed likely higher changes for the STR vs END 

group (Figure 7.4) in both relative peak power (7.0% ± 5.7%, 87/13/0 %) and jump height (5.2% 

± 4.6%, 77/23/0 %).  Like the MS block concentric: eccentric ratio also showed a clear difference 

however the direction of the difference was reversed with the STR group displaying a likely lower 

change (-14.1% ± 7.7%, 0/7/93 %). 
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Table 7.2.  Mean ± SD of variables for both the bodyweight countermovement jump and loaded countermovement jump during a 4-week maximum strength 

training block 

  Bodyweight CMJ Loaded CMJ 

 Group Week 1 Week 2 Week 3 Week 4 Week 1 Week 2 Week 3 Week 4 

Jump height (m) 
Endurance 0.40 ± 0.08 0.410 ± 0.08 0.41 ± 0.08 0.39 ± 0.06 0.26 ± 0.04 0.27 ± 0.04 0.27 ± 0.04 0.25 ± 0.03 

Strength 0.43 ± 0.05 0.43 ± 0.05 0.42 ± 0.05 0.44 ± 0.04 0.27 ± 0.03 0.27 ± 0.03 0.27 ± 0.03 0.27 ± 0.03 

Relative peak power 

(W.kg-1) 

Endurance 50.9 ± 8.4 51.2 ± 7.8 50.5 ± 7.9 48.8 ± 6.5 50.0 ± 8.5 51.0 ± 7.7 51.2 ± 7.3 48.8 ± 7.0 

Strength 57.1 ± 4.7 56.6 ± 4.9 57.7 ± 6.0 57.9 ± 4.4 56.2 ± 6.9 57.9 ± 5.9 57.5 ± 6.2 57.7 ± 5.0 

Relative peak force 

(BW) 

Endurance 2.25 ± 0.25 2.25 ± 0.22 2.27 ± 0.25 2.21 ± 0.22 2.80 ± 0.17 2.85 ± 0.18 2.82 ± 0.19 2.81 ± 0.18 

Strength 2.38 ± 0.22 2.36 ± 0.17 2.37 ± 0.10 2.35 ± 0.06 2.49 ± 0.21 2.52 ± 0.20 2.53 ± 0.17 2.49 ± 0.21 

Centre of gravity 

movement (m) 

Endurance 0.43 ± 0.06 0.45 ± 0.05 0.45 ± 0.03 0.45 ± 0.05 0.45 ± 0.04 0.45 ± 0.04 0.44 ± 0.06 0.43 ± 0.08 

Strength 0.38 ± 0.06 0.42 ± 0.05 0.39 ± 0.07 0.40 ± 0.07 0.38 ± 0.06 0.38 ± 0.07 0.39 ± 0.06 0.39 ± 0.05 

Concentric: eccentric 

ratio (%) 

Endurance 46.3 ± 8.4 51.4 ± 3.4 49.3 ± 4.8 50.9 ± 4.9 59.4 ± 7.5 57.9 ± 2.7 57.8 ± 8.2 56.4 ± 5.2 

Strength 51.5 ± 1.2 52.7 ± 5.2 52.3 ± 3.5 54.8 ± 1.3 57.7 ± 4.8 55.1 ± 3.8 59.4 ± 7.1 58.3 ± 3.8 

*BW: Bodyweight 
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Table 7.3.  Mean ± SD of variables for both the bodyweight countermovement jump and loaded countermovement jump during the a 4-week maximum power 

training block 

  Bodyweight CMJ Loaded CMJ 

 Group Week 1 Week 2 Week 3 Week 4 Week 1 Week 2 Week 3 Week 4 

Jump height (m) 
Endurance 0.40 ± 0.08 0.41 ± 0.09 0.41 ± 0.09 0.41 ± 0.09 0.25 ± 0.03 0.26 ± 0.04 0.25 ± 0.04 0.25 ± 0.03 

Strength 0.41 ± 0.04 0.44 ± 0.06 0.44 ± 0.05 0.44 ± 0.06 0.26 ± 0.04 0.27 ± 0.03 0.28 ± 0.04 0.27 ± 0.03 

Relative peak power 

(W.kg-1) 

Endurance 50.5 ± 7.7 50.2 ± 8.0 49.9 ± 8.4 49.5 ± 8.5 50.2 ± 6.3 50.7 ± 6.9 50.0 ± 6.4 49.6 ± 6.6 

Strength 56.2 ± 6.1 57.3 ± 6.1 58.6 ± 6.1 57.6 ± 5.1 55.5 ± 5.6 57.0 ± 6.8 57.8 ± 6.6 57.5 ± 6.3 

Relative peak force 

(BW) 

Endurance 2.11 ± 0.13 2.19 ± 0.25 2.20 ± 0.16 2.24 ± 0.21 2.79 ± 0.13 2.80 ± 0.18 2.82 ± 0.16 2.83 ± 0.19 

Strength 2.35 ± 0.13 2.35 ± 0.23 2.39 ± 0.14 2.43 ± 0.27 2.53 ± 0.15 2.54 ± 0.16 2.62 ± 0.19 2.64 ± 0.24 

Centre of gravity 

movement (m) 

Endurance 0.46 ± 0.04 0.48 ± 0.04 0.49 ± 0.03 0.50 ± 0.03 0.49 ± 0.06 0.51 ± 0.05 0.52 ± 0.65 0.53 ± 0.05 

Strength 0.38 ± 0.06 0.40 ± 0.06 0.40 ± 0.08 0.40 ± 0.07 0.40 ± 0.07 0.39 ± 0.07 0.40 ± 0.08 0.39 ± 0.08 

Concentric: eccentric 

ratio (%) 

Endurance 53.0 ± 6.6 53.4 ± 6.0 50.4 ± 9.3 56.0 ± 5.7 62.6 ± 6.7 64.9 ± 7.7 64.8 ± 8.2 67.7 ± 5.9 

Strength 54.2 ± 4.4 54.1 ± 3.6 54.4 ± 5.6 55.6 ± 3.0 62.1 ± 4.6 60.9 ± 5.7 57.0 ± 2.4 60.5 ± 4.7 

*BW: Bodyweight 



 

114 
 

 

Figure 7.1.  Endurance vs Strength/Power group bodyweight countermovement jump mean changes 

in response to a maximum strength training block.  Descriptive terms for each variable indicate the 

likelihood an effect is a true effect, the magnitude of the effect and the direction of the effect.  The 

shaded area indicates the trivial effect boundaries for each specific variable expressed as a percentage. 

 

Figure 7.2.  Endurance vs Strength/Power group loaded countermovement jump mean changes in 

response to a maximum strength training block.  The shaded area indicates the trivial effect 

boundaries for each specific variable expressed as a percentage. 
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Figure 7.3.  Endurance vs Strength/Power group bodyweight countermovement jump mean 

changes in response to a maximum power training block.  The shaded area indicates the trivial 

effect boundaries for each specific variable expressed as a percentage. 

 

Figure 7.4.  Endurance vs Strength/Power group loaded countermovement jump mean changes in 

response to a maximum power training block.  The shaded area indicates the trivial effect 

boundaries for each specific variable expressed as a percentage. 
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7.5 Discussion 
 

The present study investigated how END versus STR athletes responded to common resistance 

training blocks used in athletic development performed concurrently with their typical sport-specific 

training.  The primary finding was that STR based athletes show better performance gains compared 

with END athletes when comparing changes in CMJBW and CMJLOAD during 4-week MS and MP 

training blocks.   

During the STR block the only CMJBW performance related variable to demonstrate a clear difference 

between the two training groups was relative peak power which improved more for the MS group 

than the END group (Figure 7.1).  No clear differences were observed in any of the technique related 

variables suggesting that this change was due to alterations in neuromuscular function and not the 

technique chosen.  Over the same training period CMJLOAD performance showed clear differences 

between two variables with both relative peak power and jump height improving to a greater extent 

for the MS group when compared with the END group (Figure 7.2).  However, a clear difference in 

the change in technique used to perform the jump was observed between the two training groups over 

the training block (Figure 7.2) with concentric: eccentric ratio increasing more for the MS group than 

END group.  Such an increase in ratio suggests a faster eccentric phase in relation to the concentric 

phase indicating a more ‘dynamic’ countermovement was chosen.  This difference in technique was 

further reflected by differences in some performance variables.  The more dynamic countermovement 

could indicate an increased ability to produce the force required to perform an efficient 

countermovement resulting in the improved performance variables of jump height and relative peak 

power.  The absence of associated changes in relative peak force suggest that rather than a change in 

the magnitude of the force produced, possible changes in the RFD may explain these differences in 

performance as previous research has shown this to be highly correlated with CMJ performance 

(McLellan, Lovell, & Gass, 2011).  Previous research examining various CMJ protocols either using 

bodyweight only or additional load has found that using a heavier external load increases the 

magnitude of change seen in peak force across a 12-week period (Sheppard et al., 2008a).  It should 

be noted however that the use of peak force instead of relative peak force may result in different 

findings. 

During the MP block, the changes in both relative peak power and jump height showed clear 

differences between both training groups. The MS group demonstrated a likely larger change in the 

aforementioned variables compared with the change seen in the END group (Figure 7.3).  As with 
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the STR block, this appeared due to neuromuscular changes as no clear difference existed between 

the groups in relation to the technique related variables (Figure 7.3). 

In comparison to the CMJBW the CMJLOAD showed similar effects, with the changes in relative peak 

power and jump height showing clear differences between both training groups with the MS group 

again showing likely higher changes when compared with the END group (Figure 7.4).  These 

performance based changes were also reflected in technique related changes, with the changes in 

concentric: eccentric ratio showing a clear difference between groups (Figure 7.4).  Interestingly, this 

effect was the opposite to the effect on CMJLOAD seen during the STR block with the MS group 

showing a likely decrease in the change of the ratio over the training block when compared with the 

change observed in the END group during the same period (Figure 7.2). 

The results from the current study show that when comparing changes in performance during a 

resistance training block (MS or MP) between STR and END athletes, the CMJBW is a good choice 

of test.  These results support the findings of Gathercole et al. (2015a).  This is due to the lack of 

difference observed in technique based variables, indicating that any changes in performance can be 

attributed to neuromuscular changes (Figures 7.1 & 7.3).  Conversely, CMJLOAD may not be as 

appropriate for assessing changes in athletic performance due to the coinciding change in technique 

as observed via the changes in concentric: eccentric ratio (Figures 7.2 & 7.4).  However, despite an 

apparent trend for changes in centre of gravity (CG) movement to track in the same direction as 

concentric: eccentric ratio, no clear differences were seen in CG movement between the MS and END 

group during either the MS (Figure 7.2) or MP (Figure 7.4) training block.  With this in mind, the 

authors contend that based on available data, the change in this ratio is more related to improved 

force/velocity characteristics as opposed to any change in the depth of countermovement chosen. 

The larger changes observed in general for the STR group vs END athletes may be explained by an 

increased ability to produce greater muscle activation during resistance training as observed 

previously (Ahtiainen & Häkkinen, 2009; Tillin, Jimenez-Reyes, Pain, & Folland, 2010).  Whilst this 

previous study compared strength athletes with non-athletes, it may be the case that similar 

differences are likely between strength/power and endurance athletes (Ahtiainen & Häkkinen, 2009).  

Caution must be shown in interpreting the results from this study as the subject number was low for 

both groups (n = 5) due to the elite nature of athletes included in the study.  To account for this small 

sample size, analyses and interpretation has been based around the magnitude of change as used in 

similar research (Gathercole et al., 2015b).    
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7.6 Conclusion and practical applications  
 

Due to the widespread use of resistance training to develop physical performance, it is fundamental 

to understand the difference in performance athletes from various sport types may expect from 

completing similar resistance training programs.  This novel study showed that similar resistance 

training performed whilst undertaking different sport-specific training did not result in similar 

strength or power gains.  Specifically, STR based athletes can expect consistently higher changes 

during both MS and MP training blocks when compared with END athletes.  This is regardless of the 

training block assessed (MS vs MP) or the assessment tool used (CMJBW vs CMJLOAD).  Such 

differences must be considered by the strength and conditioning staff when planning a training 

program. If such performance markers are important for overall success in their chosen sport 

sufficient time must be allocated to develop these qualities given the likely differing time frames 

required depending on the nature of concurrent, sport-specific training being performed. 

A four-week resistance training block of either maximum strength or maximum power training 

performed concurrently with sport-specific training shows clear effect differences between STR 

(sprint cyclists) and END athletes (rowers). 
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Chapter 8 
 

Monitoring in-season neuromuscular performance in Australian 

rules football players using different types of countermovement 

jump 
 

Haines, B., Poulos, N., Bourdon, P., & Deakin, G. (Submitted). Monitoring in-season neuromuscular 

performance in Australian rules football players using different types of CMJ.  Journal of Sports 

Science & Medicine. 

 

This study was designed as a follow up to Chapter 6, after determining the effectiveness of the CMJBW 

and CMJLOAD in assessing neuromuscular readiness over a longitudinal preparation period in an 

individual athlete.  Subsequently, the authors wanted to replicate this assessment method within the 

in-season period of an elite team sport and monitor the impact of weekly training and competition.  

This study addresses the challenges of assessing elite team sport athletes competing in a weekly 

competition. 

8.1 Abstract 

Purpose: To compare the pattern and magnitude of neuromuscular fatigue measured via a 

bodyweight countermovement jump (CMJBW) and loaded countermovement jump (CMJLOAD) in elite 

Australian rules football (AFL) players.  Methods: Six male AFL players performed 3 maximal 

CMJBW and CMJLOAD weekly over a 5-week in-season period which were compared to baseline 

measurements.  Meaningful changes (ES ± 90% CL) in neuromuscular readiness were assessed using 

a magnitude-based inferences approach along with qualitative descriptors of change.  Of specific 

interest were jump height, peak power, relative peak power and centre of gravity movement and these 

were analysed for both jump types.  Results: Both the CMJBW and CMJLOAD were sensitive to 

performance and technique based changes at various time points.  CMJBW was the most sensitive to 

changes in jump height (week 2, -0.79 ± 0.38; week 4 -0.85 ± 0.48 and week 5, -0.36 ± 0.50) whilst 

CMJLOAD was the most sensitive to changes in both centre of gravity movement (week 2, -0.50 ± 0.44 

and week 5, -0.43 ± 0.32) and relative peak power (week 2, -0.55 ± 0.42; week 3 -0.31 ± 0.60; week 
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4, -0.66 ± 0.79 and week 5, -0.57 ± 0.77) showing clear fatigue effects at various time points that 

matched with predicted fatigue.  Conclusions:  Both CMJBW or CMJLOAD may be used to assess 

neuromuscular readiness in elite AFL players.  Practitioners should use a combination of technique 

and performance related variables to maximise the accuracy of any decisions based on the data.   

8.2 Introduction 

Monitoring acute neuromuscular fatigue in athletes has become common place in elite sport with 

practitioners choosing from a variety of tests and their associated variables to determine 

neuromuscular readiness (Cormack et al., 2008a; Cormack et al., 2008c; Gathercole et al., 2015b; 

Haines & Deakin, 2014).  Different types of neuromuscular performance tests, such as the CMJ and 

DJ have displayed similar fatigue time courses whilst other tests such as the 20-m sprint may display 

different time courses (Gathercole et al., 2015a).  These time course variations in fatigue highlight 

the need for an appropriate test(s) to monitor the fatigue versus freshness state of athletes and help 

inform practitioners as to their readiness to compete.   

This is especially important in weekly competition, team-sports such as Australian Rules Football 

(AFL).  Previous research has shown that the CMJ is very useful for neuromuscular monitoring due 

to its high repeatability compared to other tests such as the DJ (Gathercole et al., 2015a).  

Additionally, the CMJ has also been shown to detect neuromuscular fatigue for longer after fatiguing, 

running based events compared to other highly repeatable tests such as the 20-m sprint (Gathercole 

et al., 2015a).  Specific AFL research has established the CMJ’s usefulness as a diagnostic tool to 

assess neuromuscular fatigue in elite AFL players 24 h post-match (Cormack et al., 2008c).  In 

determining the appropriate time to conduct fatigue monitoring assessments Cormack et al examined 

neuromuscular fatigue throughout an AFL season and found that players showed neuromuscular 

fatigue up to 144 h post-match (Cormack et al., 2008a).    

The use of a single test, such as the CMJ may not give a clear indication of all the fatigue experienced 

by players during an AFL season or of any differences in their fatigue-recovery time course.  Given 

the effectiveness of the body weight CMJ (CMJBW) as a monitoring tool (Cormack et al., 2008a) it 

may be that the use of a loaded CMJ (CMJLOAD) may give additional precision in detecting the impacts 

of fatigue generated from AFL preparation and competition and any variations in their time course.  

In assessing muscle force and power capacities, recent research has advocated the use of the ‘Two-

Load Method’ which strengthens the argument for the inclusion of the CMJLOAD as a potential tool 

for monitoring fatigue (Jaric, 2016; Pérez-Castilla, Jaric, Feriche, Padial, & García-Ramos, 2017).  

Previous research has shown that peak power relative to body mass measured via a CMJLOAD is 

significantly different at 27% of back squat 1-repetion maximum (1RM) compared with a CMJBW 
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(Cormie et al., 2007b).  Therefore, 30% 1RM may be an acceptable external load to detect different 

neuromuscular fatigue responses in elite AFL athletes. 

The aim of this study was therefore to investigate whether CMJBW and CMJLOAD at 30% of back squat 

1RM have different neuromuscular fatigue responses and time courses in elite AFL players during 

an in-season monitoring period. 

8.3 Methods 

 

Experimental Approach to the Problem 

To monitor the effects of an in-season strength /power block on power characteristics, players 

performed weekly neuromuscular testing over a five-week period (Rounds 7-11).  This specific 

period and protocol was chosen for several reasons.  Firstly, it was hypothesised that after six rounds 

players would be well adapted to the physical demands of the competition thus allowing for a stable 

physiological response after each match.  Secondly, Round 7 corresponded with the beginning of a 

new strength training cycle and allowed for a similar training exposure across the collection period.  

Thirdly, it allowed the use of a current in-season baseline instead of one determined pre-season to 

compare the changes in physiological demands of a typical in-season week. 

Subjects 

Forty-six male AFL players training with a club in the national competition participated in the study.  

All players were contracted by the club, trained as a group and played in either the national or 

development league teams.  Only data from players who played in the national league team for each 

of the five weeks monitored were included in the analyses.  Subject consent was given by the club as 

a part of the athlete’s training agreement.  Players also gave their consent and the study was approved 

by the James Cook University Human Ethics Committee. 

Procedures 

During test sessions players performed a minimum of three CMJBW and three CMJLOAD at 30% of 

their estimated Back Squat 1RM.  To ensure similarity between jump types a wooden dowel was held 

across the shoulders for each CMJBW trial whilst a barbell loaded to a total mass equal to 30% of the 

subject’s Back Squat 1RM was used for each CMJLOAD.  If any trial was not completed correctly a 

replacement trial was performed.  All data was collected using the Ballistic Measurement System and 

software (BMS; Fit-ness Technology, Adelaide, Australia) incorporating a force plate (400 series; 
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Fitness Technology, Adelaide, Australia) sampling at 600 Hz.  Testing was performed at either 9:30 

am or 12:30 pm on the 2nd day post-match.  The testing days and times were immediately prior to the 

first main training session after the preceding game and as such were dictated by the clubs training 

schedule and outside the control of the researchers.  Due to the varied nature of elite AFL, several 

variables that may impact on neuromuscular readiness such as home/away match (i.e. impact of travel 

and testing time (circadian rhythm) could not be fully controlled and therefore could be considered a 

limitation of the study.  These variables are presented in Table 8.1 to allow the reader to observe any 

impact these data may have on neuromuscular readiness.  Match workload data was unable to be used 

in the comparisons due to the missing workload data (GPS derived) for those games played indoors. 

Each trial was analysed using custom designed software (Force Test Analyser - Aspire) incorporating 

a Butterworth Low-Pass 4th order filter with a cut-off frequency of 10 Hz.  The best trial selected 

based the highest jump height as determined by force was used in subsequent analyses.  

Table 8.1.  Time of testing, match location and results for the in-season period assessed 

Week (Round)  Testing time Home / Away Win / Loss 

1 (7)  12:30 pm Home Win 

2 (8) 9:30 am Away Win 

3 (9) 12:30 pm Home Loss 

4 (10) 9:30 am Away Win 

5 (11) 9:30 am Bye Bye 

 

Statistical Analyses 

Weekly data are expressed as means ± SD.  Differences in the change in means were calculated using 

a modified statistical spreadsheet (Hopkins, 2006a).  The magnitude of change from baseline (week 

1 testing) compared with subsequent weeks was expressed as ES and 90% CL and was calculated 

using 0.2 x between-athletes SD with the following threshold inferences used: ≤0.2 (trivial), >0.2 

(small), >0.6 (moderate), >1.2 (large), >2.0 (very large) and >4.0 (extremely large).  If both 90% CL 

overlapped both small ES boundaries, the changes were deemed unclear (Hopkins et al., 2009).  A 

qualitative description of the chance the change/difference was a true effect was evaluated as follows: 

25-75% possibly; 75-85%, likely; 95-99%, very likely; >99%, almost certainly (Hopkins et al., 2009). 
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8.4 Results 
Due to differing player availability during the testing period, only six athletes completed all five 

consecutive weekly test sessions.  The weekly data for selected jump variables for these athletes are 

presented in Table 8.2 (CMJBW) and Table 8.3 (CMJLOAD).   

When considering both types of jump the following trends were observed.  CMJBW jump height 

appeared to be the most sensitive to change during this period showing clear, possible small to very 

likely moderate effects at 3 different time points; week 2 (ES = -0.79 ± 0.38, 99%), week 4 (-0.85 ± 

0.48, 98%) and week 5 (-0.36 ± 0.50, 72%) (Figure 8.1).  CG movement showed a clear, possible 

small effect at week 2 (-0.23 ± 0.40, 58%).  In observing the results from the CMJLOAD, relative peak 

power was the most sensitive to change with clear, likely small or moderate effects observed at weeks 

2 (-0.55 ± 0.42, 92%), 4 (-0.66 ± 0.79, 85%) and 5 (-057. ± 0.77, 83%) (Figure 8.2). CMJLOAD peak 

power and jump height were also seen to be sensitive performance measures of change.  CG 

movement appeared to be a sensitive technical measure of change with both weeks 2 (-0.50 ± 0.44, 

88%) and 4 (-0.43 ± 0.32, 90%) showing likely small effects. 
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Table 8.2.  Weekly mean ± SD scores for the bodyweight countermovement jump variables 

Variable Week 1 Week 2 Week 3 Week 4 Week 5 

Jump height (m) 0.39 ± 0.03 0.36 ± 0.03 0.39 ± 0.03 0.36 ± 0.03 0.38 ± 0.04 

Peak power (W) 4579 ± 624 4416 ± 653 4615 ± 623 4460 ± 603 4554 ± 689 

Relative peak power (W.kg-1) 51.8 ± 4.9 50 ± 4.8 52.3 ± 4.5 50.4 ± 4.4 51.3 ± 5.5 

Centre of gravity movement (m) 0.34 ± 0.04 0.33 ± 0.04 0.34 ± 0.06 0.32 ± 0.05 0.33 ± 0.05 

 

Table 8.3.  Weekly mean ± SD scores for the loaded countermovement jump variables 

Variable Week 1 Week 2 Week 3 Week 4 Week 5 

Jump height (m) 0.27 ± 0.03 0.24 ± 0.02 0.25 ± 0.02 0.24 ± 0.02 0.25 ± 0.02 

Peak power (W) 4713 ± 511 4428 ± 490 4568 ± 533 4382 ± 516 4454 ± 648 

Relative peak power (W.kg-1) 53.5 ± 5.2 50.1 ± 2.9 51.5 ± 3.5 49.6 ± 4.2 50.1 ± 5.4 

Centre of gravity movement (m) 0.33 ± 0.06 0.30 ± 0.07 0.32 ± 0.07 0.32 ± 0.07 0.30 ± 0.06 
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Figure 8.1.  The neuromuscular readiness of AFL players as assessed by bodyweight countermovement jump variables across a 5-week period.  

The number of asterisks (*) indicate the likelihood for the between-groups differences to be substantial; * = possible, ** = likely and *** = 

very likely 
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Figure 8.2.  The neuromuscular readiness of AFL players as assessed by loaded countermovement jump variables across a 5-week period.  

The number of asterisks (*) indicate the likelihood for the between-groups differences to be substantial; * = possible, ** = likely and *** = 

very likely 
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8.5 Discussion 
This study provides novel and practical findings regarding the use of either CMJBW or CMJLOAD 

to monitor acute neuromuscular function and readiness in elite AFL players. CMJBW appears to 

be more sensitive to changes in jump height whilst CMJLOAD may be more sensitive to changes 

in relative peak power and centre of gravity movement. 

 In the current study, the players performed a typical in-season schedule consisting of a weekly 

game (except for week 5 - bye) and concurrent training program including sport specific and 

athletic preparation.  In examining the results of the neuromuscular assessments during this 

period, the acute response pattern of CG movement shown in the CMJBW indicate that the players 

jump strategy were very consistent across the testing period with only a small, clear effect (-0.23 

± 0.40, 58%) seen in week 2 (Figure 8.1).  This negative effective size indicates that a smaller 

countermovement or ‘dip’ preceded the jump which may indicate a decreased level of 

neuromuscular fatigue when compared with week 1 as has been proposed in previous research 

(Gathercole et al., 2015a).  In considering the other CMJBW performance variables, clear moderate 

decreases in jump height (week 2 = -0.79 ± 0.38, 99%; week 4 = -0.85 ± 0.48, 98%) and clear 

small decreases in relative peak power (week 2 = -0.33 ± 0.29, 79%; week 4 = -0.25 ± 0.22, 67%) 

were also observed. Whilst it could be assumed that these results are reflective of a decreased 

level of neuromuscular preparedness, differences in testing times as presented in Table 8.1 

(weeks 2 and 4 at 9.30 am; baseline/week 1 at 12.30 pm) may have had a negative impact on 

performance as previously reported by Taylor et al. (2010).  However, it should be noted that the 

time difference in that study was 6 h (8am – 2pm) as opposed to 3 h in the current study.  In 

addition, whilst Taylor et al. (2010) found that time of day resulted in relative peak power 

improving by approximately 5% from AM to PM, the increase seen in the present study was on 

average, less than 3%. 

CMJLOAD results showed centre of gravity movement being moderately affected at weeks 2 (-0.5 

± 0.44, 88%) and 5 (-0.43 ± 0.32, 90%) with a smaller countermovement (dip) reported for both 

weeks compared to week 1.  This is similar to the results seen for CMJBW, but of greater 

likelihood, confirming that time of day may impact the depth of countermovement selected in a 

CMJ.  Other CMJLOAD performance variables also displayed similar results to CMJBW with jump 

height exhibiting a moderate decrease in week 2 (-0.69 ± 0.49, 95%) and small decrease in week 

5 (-0.55 ± 0.73, 81%), while relative peak power showed a small decrease in weeks 2 (-0.55 ± 

0.42, 92%) and 5 (-0.57 ± 0.77, 83%) and a moderate decrease in week 4 (-0.66 ± 0.79, 85%).  

Whilst these results indicate the presence of neuromuscular fatigue 48-h post an AFL match the 

design of the present study does not differentiate as to whether this fatigue is solely a result of 

the preceding match or is a combination of match and training factors.  Interestingly, previous 

research in a similar population group detected fatigue as measured via a single CMJ performed 
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72-h post a single AFL match (Cormack et al., 2008c) and for at least 144-h post-match 

throughout a season (Cormack et al., 2008a), indicating that various assessment time points may 

be viable.  

The fatigue patterns observed within both types of jump were similar across the 5 weeks with 

only week 3 showing no clear effects of fatigue for either the CMJBW or CMJLOAD.  However, 

more data time points across a larger number of subjects would provide further addition to this 

area.  To the authors knowledge, no previous research has used two different load CMJ’s to assess 

fatigue in weekly team-sport athletes and as such these specifics from the current study cannot 

be compared.  Without the corresponding match workload data, it is impossible to determine if 

the total workload the players were exposed to during this period were similar, which in turn may 

influence their level of preparedness for the subsequent monitoring.  However, as observed in 

Table 8.1, the variables associated with week 3 were most like week 1, i.e. 12:30 pm testing time 

and a home game.  This may indicate that time of testing may be of high importance in assessing 

neuromuscular fatigue during an AFL in-season as has been found in research for rugby union 

players (Taylor et al., 2010).  Also, the reduced travel fatigue experienced during the home games 

(weeks 1 and 3) may account for their better performance scores and lower levels of fatigue 

(Tables 8.1 – 8.3) may effect performance as previous research has postulated (Leatherwood & 

Dragoo, 2012; Samuels, 2012) .  Further research that utilises a longer testing period and higher 

subject numbers may provide greater insight into the neuromuscular response to weekly AFL 

matches assessed utilising two different load CMJ’s.  Caution must be shown in interpreting the 

results from this study as the subject number was low (n = 6) due to constraints of the research 

design. 

 

8.6 Practical applications 
To the authors’ knowledge, this is the first study to investigate neuromuscular readiness via both 

CMJBW and CMJLOAD, in-season, on a weekly basis in AFL players.  These data suggest that 

either jump type may be a useful diagnostic tool given the similar fatigue responses found.  As 

has been noted elsewhere, technique and performance related variables should both been used 

when assessing neuromuscular fatigue in elite athletes (Gathercole et al., 2015a; Gathercole et 

al., 2015b).  In addition, when selecting an assessment tool, practitioners should consider both 

the variables assessed within a test as well as the test itself. For example, jump height, relative 

peak power or centre of gravity movement may give an increased likelihood of detecting changes 

in fatigue when paired with the appropriate test (CMJBW or CMJLOAD). 
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8.7 Conclusion 
This study demonstrates the ability of both the CMJBW and CMJLOAD to assess neuromuscular 

readiness in elite AFL players.  Variables from both tests displayed levels of accuracy as strong 

as could be reasonably expected based on the variability of conditions encountered during a 

professional team during its competition season. 
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Chapter 9 
 

Summary and Conclusion 
 

9.1 Summary 

The overall aim of this thesis was to examine the responses and adaptations of athletes to 

maximum strength and maximum power training during various preparation and in-season 

periods.  As is typical with athlete preparation, these training blocks were performed in 

conjunction with period relevant, sport-specific training.  The specific aims of the project were 

to (i) understand the neuromuscular and morphological adaptations to both a pre-season and in-

season maximum strength resistance training protocol in elite adolescent athletes, (ii) determine 

the acute neuromuscular fatigue and recovery responses over a 48 h period after a maximum 

strength resistance training protocol at three different periods within the annual cycle in elite 

adolescent athletes, (iii) compare the weekly, lower body power adaptations of strength/power 

and endurance athletes to four-week maximum strength and maximum power training blocks, 

and (iv) examine the weekly neuromuscular responses of elite AFL players during a five-week 

in-season period. 

A review of physiological adaptations to resistance training, specifically maximum strength and 

maximum power as utilised pre-dominantly by elite athletes, highlighted the various specific 

adaptations and responses that occur.  Changes observed in morphological, neuromuscular and 

biochemical parameters are largely dictated by the specific program variables associated with the 

resistance training stimulus applied to an athlete (Tillin & Folland, 2014).  Additionally, the use 

of common performance tests has been shown to be a time effective, practical and applied means 

of assessing the adaptations of athletes to a block of resistance training (Kyröläinen et al., 2005; 

Veliz et al., 2014) and to assess the acute effects and recovery dynamics of individual training 

sessions across a wide range of athletes (Brandon et al., 2015; Johnston, Cook, Crewther, Drake, 

& Kilduff, 2015). 

To observe these adaptations and responses in adolescent athletes it was first important to 

determine the reliability of the assessment methods commonly used in adults to assess whether 

the same level of precision applied.  Previous research has suggested that a CV of <10% is an 

acceptable level of reliability in adults and therefore, this same CV was applied to adolescent 

athletes (Cormack et al., 2008b).  Whilst the use of a CV threshold such as this is useful in 

providing practical guidelines, it is an arbitrary guideline and S&C coaches should where 

possible, select tests and the associated variables with CV’s as low as possible.  Adolescent 
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athletes displayed similar reliability of inter-day test results to adults across multiple performance 

and technical variables in the four neuromuscular tests used, CMJ (Moir et al., 2009; Sheppard 

et al., 2008a), DJ (Feldmann et al., 2011), IMTP (McGuigan & Winchester, 2008) and 20-m 

sprint (Fletcher & Jones, 2004) indicating that these tests may be used to monitor both chronic 

adaptations and acute response to resistance training in this population (Chapter 3). 

These tests were then used to monitor an adolescent athlete cohort perform both an in-season and 

pre-season strength training block as a part of their overall training plan.  The pre-season training 

period showed better improvements in back squat strength and specific neuromuscular tests such 

as CMJ.  This was likely underpinned by morphological changes in lower body muscle mass such 

as the observed changes in VL thickness (Chapter 4) as has been previously observed (Cormie et 

al., 2010).  The type of resistance training performed during a ‘typical’ pre-season maximum 

strength block appears not to have any effect on sprint-speed over 20-m and could possibly have 

a harmful effect on 5-m sprint time.   The lack of change in 20-m sprint is likely due to the 

difference in contraction velocity observed between a low velocity maximum strength exercise 

and the high contraction velocity utilised in sprinting.  Previous research has shown similar 

findings with maximum strength training resulting in no change in 30-m sprint time over a pre-

season training period whilst a combination of strength and power training did (Harris, Stone, 

O'Bryant, Proulx, & Johnson, 2000).  This premise was supported by the decrease in performance 

observed in the DJ across the same period, which also utilises a faster contraction velocity than 

observed in maximum strength training.  In contrast, it has been reported that a program utilising 

a combination of low and high contraction velocity exercises such as the back squat and jumping 

activities respectively will likely have positive performance benefits on sprinting speed (Comfort, 

Haigh, & Matthews, 2012; Harris et al., 2000).  It is unlikely that this is due to increases in 

maximum force production ability due to the lack of improvement in this physiological quality 

as measured via a back squat.  However, improvements may be driven by changes in the athlete’s 

ability to develop force quickly.  Previous research substantiates this with Cronin & Hansen 

(2005) finding that whilst back squat 3RM did not correlate significantly with 5-m, 10-m and 20-

m sprint time, faster contraction velocity tests such as CMJ height did.  In general, the training 

adaptations that can be expected from a training period will be specific to the training stimulus 

as  has been shown previously (Tillin & Folland, 2014).  

For any training adaptations to occur, maximum strength training must be performed regularly 

and as such, will induce a specific neuromuscular fatigue response and recovery profile 

(Howatson et al., 2016).  It is important to understand this fatigue and recovery profile as it may 

influence the scheduling of subsequent training sessions.  For example, an athlete’s ability to 

train with minimal fatigue may be an important consideration when the focus is developing 

physical, tactical or technical qualities.  Maximum strength training exhibited a clear acute 
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fatigue and recovery profile in adolescent athletes (Chapter 5) with the fatigue generated resulting 

in distinct recovery profiles across differing neuromuscular activities.  For instance, activities 

involving peak force and long contraction times appear to be minimally affected by maximum 

strength, recovering within four hours of cessation of strength training.  Previous research has 

found that peak force may still be negatively affected 24-h post a strength session however this 

study was performed on elite adult track and field athletes (Howatson et al., 2016) and utilised a 

different training regime. 

In contrast, power activities that require shorter contraction times showed a slower recovery rate.  

This is indicated in the current study by CMJ performance variables such as jump height and 

peak force showing signs of fatigue up to 24 hours-post training, which is in support of the 

findings of Johnston et al. (2015).  As the speed of the movement increases and thus decreases 

the time available for a forceful contraction, performance appears to become even more sensitive 

to fatigue generated from maximum strength training.  Fast contraction speed exercises such as 

the DJ and 20-m sprint exhibited the negative performance effects of fatigue up to 48 hours later.  

Previous research examining CMJ, DJ and 20m sprint fatigue response has shown somewhat 

conflicting results (Gathercole et al., 2015a).  The authors found that CMJ showed the largest 

fatigue effects 72-h post a fatiguing interval running session, whilst DJ and 20-m sprint showed 

similar but smaller effects.  These differences may be a consequence of the different fatigue 

stimuli, i.e., strength training versus interval training.         

Whilst this provides insightful information into the fatigue response of adolescent athletes after 

maximum strength training and the subsequent organisation of follow-up training sessions, 

Chapter 5 also highlighted the potential ‘fatigue-resistance’ benefits associated with the increases 

in strength observed following a maximum strength training block.  The adolescent athletes were 

exposed to the same fatiguing strength stimulus at three separate occasions during their annual 

training cycle and showed that when athletes were at their strongest, as measured by their 

respective back squat 1RM, the fatiguing effects of the strength session appeared to be the 

smallest, despite the same relative intensity being used for the session.  To the authors knowledge, 

no previous research has been conducted that would contribute to this premise. 

It is at this point the neuromuscular readiness assessment tools initially used were changed for 

the rest of the thesis chapters.  The initial four assessments used (CMJ, DJ, IMTP and 20-m 

sprint) were replaced by the CMJBW and CMJLOAD.  This lack of continuity between assessment 

methods throughout the thesis may be viewed as a limitation.  The change in assessment methods 

were a result of the author’s change of employment and subsequent change in population group 

available for assessment.  The athlete group available for Chapters 6-8 were elite athletes in either 

National teams or professional sports and as such were not available for multiple assessment 
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methods in measuring neuromuscular readiness, as such, the simplified assessment method of the 

two-load approach was utilised  (Jaric, 2016).  This had the dual benefit of minimising the amount 

of time used for assessment and ensuring familiarity of the assessment tests for the athletes. 

When monitoring neuromuscular fatigue/readiness in elite athletes, the use of a CMJBW or 

CMJLOAD, may both be acceptable tests (Chapter 6).  Relative peak power was the variable that 

gave the best indication of the athlete’s training status, with CMJBW being the most sensitive, 

detecting the restoration of performance during the tapering period whilst the CMJLOAD did not.  

This area requires further research as recent studies have supported the idea of two different loads 

being used to assess changes in the force-velocity profile of specific performance tasks (Jaric, 

2016; Pérez-Castilla et al., 2017). 

In examining the effect of maximum strength and maximum power training on adult athletes 

from different sporting backgrounds, the results from Chapter 7 indicate that strength/power 

athletes obtain superior performance gains compared to endurance athletes in response to 

performing either a maximum strength or maximum power training block.  It is unclear as to the 

mechanism behind these differences, however previous research has observed the ability of 

resistance trained versus untrained subjects to produce greater muscle activation during resistance 

training (Ahtiainen et al., 2003).  It is possible that similar difference exists between 

strength/power and endurance athletes based on their general morphology and training 

requirements.  However, it may also be that the impact of concurrent aerobic training, a major 

training tool in many endurance sports, has an detrimental effect on high velocity force activities 

as required in the monitoring tool used in this study (i.e. CMJ) (Wilson, Marin, Rhea, Wilson, 

Loenneke, & Anderson, 2012). 

The final study (Chapter 8) demonstrated that the use of either a CMJBW or CMJLOAD will show 

similar fatigue patterns across multiple successive weeks in AFL players when assessed in-

season.  Although these two monitoring tests differ in the speed of the contraction with the 

CMJLOAD resulting in the concentric contraction taking 15-20% longer than the CMJBW, this does 

not appear to influence the fatigue response.  Indeed, it may be that the average concentric 

contraction duration seen in a CMJLOAD compared with that in a CMJBW does not alter the 

resultant fatigue effects.  This is supported by the results seen in Chapter 5 where it was noted 

that faster contraction activities (DJ and sprinting) showed a different fatigue response to the 

CMJ.  Whilst this study (Chapter 5) was performed on adolescent athletes and, not adults, it may 

be that any lengthening of the CMJBW contraction time via the addition of an external load will 

not provide different fatigue information than to what is already provided by this test. 
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9.2 Practical applications 
The various adaptations and responses seen throughout the study suggest that strength and 

conditioning coaches need to consider the specific structure and scheduling of maximum 

strength/power training programs and choose the appropriate monitoring tool to monitor these 

changes across various athlete sub-groups.  To enhance the beneficial and limit the detrimental 

effects of these types of programs, practical applications have been provided for practitioners to 

aid in the planning and execution of athletic preparation. 

Adolescent athletes who have substantial (>2 y) previous resistance training history will display 

improvements in neuromuscular performance tests from as little as a six-week maximum strength 

training block.  However, these improvements are limited to performance tests of a slower 

contraction type nature such as the CMJ and are unlikely to be observed in faster contraction type 

tests such as the DJ or 20-m sprint.  When scheduling weekly training for adolescent athletes, the 

fatigue time course of a maximum strength session will have different time course effects on 

various neuromuscular movements.  Peak force exercises with slow contraction times such as the 

IMTP recover within four hours of completing the session, as will performance related variables 

derived from CMJ, whereas fast contraction exercises such as the DJ may suffer from impaired 

performance for up to 24 h later.  These recovery time courses may vary throughout the year with 

athletes who have performed a pre-season strength training program of at least six weeks, 

potentially experiencing an attenuated performance decrement and accelerated recovery profile 

in the CMJ, DJ and 20-m sprint and may even benefit from a quasi, post-activation potentiation 

effect in the 20-m sprint, 24- and 48-h post a maximum strength session. 

Adult athletes who participate in sports requiring substantially different competition and 

therefore training metabolic demands, e.g. rowing vs sprint cycling, exhibit different performance 

benefits from similar type maximum strength and power training blocks.  In completing either a 

maximum strength or maximum power block, strength/power athletes such as sprint cyclists 

show better performance gains compared to their endurance counterparts (rowers).  This may 

impact the duration of a strength training block needed for to gain performance benefits such as 

improvements in lower body power in rowers. 

In monitoring the impact on neuromuscular readiness during a preparation period in an individual 

based sport, either a CMJBW or a CMJLOAD may be used.  Within these tests relative peak power 

may be a more effective monitoring variable than peak force.  When monitoring in-season 

neuromuscular readiness in a weekly-competition team sport, either jump type may be used with 

both jump height and relative peak power showing good sensitivity to player readiness.  

Whether assessing performance changes over a training block or monitoring neuromuscular 

fatigue, the reliability of each test and its associated variables must also be considered.  This 
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study found good reliability for multiple variables across the CMJ, DJ, IMTP and 20-m sprint.  

However, some variables commonly reported in the literature had either unacceptable reliability 

such as RFD, whether it was assessed via a CMJ or DJ. 

To summarise the practical applications: 

1. Adolescents: 

a. A six-week maximum strength training program has beneficial impacts on 

muscle morphology and multiple neuromuscular performance variables. 

b.  Maximum strength training has the largest fatigue effect on DJ performance and 

less effect on IMTP performance. 

c. Adolescent athletes may be better equipped to deal with the neuromuscular 

fatigue associated with a maximum strength training session as detected by CMJ, 

DJ, IMTP and 20 m sprint after performing a six-week strength block. 

2. Adult individual sports: 

a. The CMJBW appears more effective to monitor longitudinal neuromuscular 

fatigue generated by total training load in a Beach Volleyball athlete than the 

CMJLOAD when a taper is included in the monitoring period. 

b. Strength/power athletes show better performance benefits when compared with 

endurance athletes in both the CMJBW and CMJLOAD after four-week maximum-

strength and -power training blocks performed during their normal pre-season. 

3. Adult team sports: 

a. CMJBW and CMJLOAD show similar neuromuscular fatigue responses to the 

demands of in-season, weekly competition of elite AFL athletes. 

 

 

9.3 Future research 
Topics that warrant further investigation based on the current findings include: 

1.   Adolescent athlete adaptations and acute response to maximum power training 

a) Chapter 4 showed that adolescent athletes improved morphological, and neuromuscular 

adaptations to a maximum strength training block performed during a preparation period 

in their annual training cycle.  Chapter 5 highlighted the various acute neuromuscular 

effects and recovery timelines of adolescent athletes to a maximum strength training 

session and how this can vary at different times in the annual calendar.  Follow-up studies 

were planned by the authors to expand on these earlier studies; one to investigate the 

morphological and neuromuscular adaptations to a maximum power training block and 
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another to examine the acute neuromuscular effects and recovery profiles of adolescent 

athletes to a maximum power training session.  However, due to the relocation of the 

PhD candidate after the completion of the maximum strength training studies this was 

not possible.  Given the use of maximum power training as a common preparation tool 

it would be interesting to examine these adaptations and acute effects in adolescent 

athletes. 

b) The present study focussed primarily on morphological and neuromuscular adaptations 

and responses, however as mentioned in the review of literature (Chapter 2), biochemical 

factors also play a key role in the adaptations and acute responses to training.  

Subsequently, additional research could investigate the biochemical adaptations and 

responses of adolescent athletes to the typical maximum strength/power training 

programs used by strength and conditioning coaches so as to provide an insight into the 

biochemical responses that may influence performance gains. 

2.    Adult athletes 

a) Chapter 7 highlighted the differences in adaptations between strength/power athletes and 

endurance athletes when exposed a four-week maximum strength or maximum power 

training block.  However, typical preparation periods usually occur over longer time 

periods and so it would be interesting to track the strength/power development of both 

types of athletes over an extended period.  Additionally, a larger sample size for this type 

of study would provide additional statistical power and therefore more confidence in 

drawing inferences from the findings. 

b) The acute neuromuscular readiness of AFL players assessed in-season (Chapter 8) 

provided a useful introduction into the weekly variations that may be seen.  Due to 

limitations in the scope of this study, no inferences could be made on the relationships 

to match playing data.  Additional research that also tracked relevant game/training data 

and related this to the strength/power program performed and the neuromuscular 

readiness of the athlete group across a season would provide additional insight into the 

interplay of these variables and help practitioners’ best monitor the readiness and 

recovery of their athletes. 
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9.4 Conclusion 
Neuromuscular adaptations to maximum strength and maximum power training in different 

athlete population groups show similar over-arching responses based on the underpinning acute 

responses to a single and multiple sessions.  However, the magnitude of these adaptations can 

vary greatly across these different groups, most likely based on the underpinning morphological, 

biochemical and neuromuscular acute responses.  In addition, the time-course of the both the 

adaptations and acute responses appears different between athletic populations (i.e. adolescents 

vs adults, endurance vs strength/power) and should be considered when planning an athletes 

annual cycle.  A summary of the major findings from this collection of studies is as follows: 

• A preparation period maximum strength block performed in conjunction with sport-

specific training improved dynamic strength and CMJ neuromuscular performance 

whilst also positively impacting on muscle pennation angle in adolescent athletes. 

• DJ was the neuromuscular test most susceptible to fatigue, in both magnitude of effects 

and the time taken to recover, following a maximum strength training session in 

adolescent athletes. 

• Adolescent athletes showed improved neuromuscular fatigue resistance to a maximum 

strength session after completing a six-week maximum strength block. 

• The CMJBW and CMJLOAD may both be effective for monitoring neuromuscular 

readiness/fatigue in adult athletes across the yearly training cycle, however the CMJBW 

may provide additional precision during taper periods. 

• Strength/power athletes showed better adaptations to both maximum strength and 

maximum power training blocks when performed in conjunction with their normal sport 

specific training compared to endurance athletes. 
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Appendix 3 – Conference Proceedings 
 

Body composition, morphological and neuromuscular adaptations to strength 
training in adolescent male athletes 
 

Bourdon, P., Haines., & Deakin, G.  (2016).  Body composition, morphological and 

neuromuscular adaptations to strength training in adolescent male athletes. Medicine & Science 

in Sports & Exercise, 48(5S1), 987 

 

Monitoring the effects of maximum strength training programs conducted at various times in the 

periodized training cycle has been well documented in adult athletes, however, research on 

adolescent athletes is scarce.   

Purpose:  The purpose of this study was to examine the effects of strength training at different 

periods in the annual training cycle on body composition, muscle morphology and neuromuscular 

performance in adolescent athletes. 

 Methods: Fourteen young male athletes (age 16.5 ± 1.1 y, height 171.3 ± 6.3 cm, body mass 

65.0 ± 11.2 kg) performed a battery of tests before and after two specific strength training blocks; 

in-season and preparatory period. Tests included a DEXA whole-body scan, ultrasound of the 

vastus lateralis (VL), countermovement jump (CMJ), drop jump (DJ), isometric mid-thigh pull 

(IMTP), 20 m sprint and 3RM back squat.  Meaningful differences following each training period 

were assessed using a magnitude-based inferences approach (effect sizes [ES]) with qualitative 

descriptors of change also calculated.   

Results: Body composition showed trivial changes throughout both study periods.  VL muscle 

thickness increased during the preparatory period (7.5% ± 3.3%).  The CMJ variables showed no 

positive effects during the in-season period, however increases were seen in several of these 

variables during the preparatory period (e.g., jump height = 4.9% ± 3.1%; peak concentric power 

5.3% ± 5.9%).  Most DJ variables decreased during both training periods whilst IMTP measures 

showed improvements during the in-season period but remained stable during the preparatory 

period.  Most 20 m sprint variables showed positive effects (e.g., 5 m split = 5.0% ± 4.7%) 

following the in-season period but no clear changes during the preparatory period.  3RM back 

squat showed a small increase following in-season training (7.5% ± 4.5%) and an even greater 

increase during the preparatory period (16.9% ± 5.2%). 
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  Conclusion: This study found that in adolescent male athletes a specific preparatory period 

strength program will likely result in greater improvements in dynamic lower body 

strength/power measures compared to one conducted in-season.  In-season strength training may 

however have a more beneficial impact on sport specific physical performance variables such as 

sprint speed. 
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