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Abstract

EgKI-1, a member of the Kunitz type protease inhibitor family, is highly expressed by the

oncosphere of the canine tapeworm Echinococcus granulosus, the stage that is infectious

to humans and ungulates, giving rise to a hydatid cyst localized to the liver and other organs.

Larval protoscoleces, which develop within the hydatid cyst, have been shown to possess

anti-cancer properties, although the precise molecules involved have not been identified.

We show that recombinant EgKI-1 inhibits the growth and migration of a range of human

cancers including breast, melanoma and cervical cancer cell lines in a dose-dependent

manner in vitro without affecting normal cell growth. Furthermore, EgKI-1 treatment arrested

the cancer cell growth by disrupting the cell cycle and induced apoptosis of cancer cells in

vitro. An in vivo model of triple negative breast cancer (MDA-MB-231) in BALB/c nude mice

showed significant tumor growth reduction in EgKI-1-treated mice compared with controls.

These findings indicate that EgKI-1 shows promise for future development as an anti-cancer

therapeutic.

Introduction

Protein-based therapeutics enable targeted approaches for treating cancer [1]. There are many

benefits of proteins over small-molecule drugs mainly because of the increased surface area

accessing a much wider range of protein targets [2]. Protease inhibitors are important as

potential cancer therapeutics as proteases are associated with carcinogenesis and cancer pro-

gression. Numerous plant protease inhibitors have recently entered human clinical trials [3].

Parasites produce a range of protease inhibitors with diverse functions mainly to evade hostile

adverse host reactions [4].

Several parasites, including the liver flukes, Opisthorchis viverrini and Clonorchis sinensis,
and the blood fluke, Schistosoma haematobium, are known risk factors for cholangiocarcinoma

and bladder cancer, respectively [5]. In contrast, other parasites such as Trypanosoma cruzi
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[6], Toxoplasma gondii [7] and Echinococcus granulosus [8] produce metabolites with antican-

cer properties.

An increasing number of studies have shown that the presence of neutrophils in tumors,

known as tumor associated neutrophils (TAN) correlates with poor prognosis [9], specifically

in breast cancers [10]. Neutrophils play major roles in tumor initiation, growth and metastasis

[11] mainly through the serine protease enzyme neutrophil elastase secreted by active neutro-

phils. Neutrophil elastase also acts as a chemoattractant for more neutrophils [12]. Therefore,

potent neutrophil elastase inhibitors have stimulated much interest for development as cancer

therapeutics [13].

The larval stage of the canine tapeworm (phylum Cestoda) E. granulosus causes echinococ-

cosis (hydatidosis) in humans and ungulates (sheep, goats, cattle etc) when they ingest the par-

asite eggs containing oncospheres in contaminated food or water [14]. The oncospheres hatch

and penetrate the intestinal mucosa, enter the blood stream and migrate to the liver or lung. A

fluid-filled larva begins to develop from a single oncosphere with subsequent formation of

multiple layers, resulting in a metacestode or hydatid cyst [15]. Protoscoleces, which develop

asexually within the hydatid cyst, have been shown to induce the death of fibrosarcoma cells

although the specific molecules involved have not been identified [8]. We have shown that

EgKI-1, a member of the Kunitz type protease inhibitor family, is highly expressed in onco-

spheres, is a potent neutrophil elastase and chemotaxis inhibitor [16] and was recently granted

an International Patent Publication [17].

In this study, recombinant EgKI-1 was expressed in yeast, purified and investigated for

potential anti-cancer properties in vitro and in vivo.

Methods

EgKI-1 expression in yeast

The pPICZαA plasmid containing the EgKI-1 gene sequence and EcoRI/ XbaI cloning sites

was synthesized by Biomatik (Wilmington, USA). The plasmid (10 ng) was then transformed

into E. coli XL1-Blue competent cells (Stratagene, San Diego, USA) and sequenced to confirm

the integrity of the insertion. Vector bearing the confirmed sequence was inserted into Pichia
pastoris KM71H cells using the electroporation method described by InvitrogenTM (Carlsbad,

USA). Briefly, a single colony of XL1-Blue cells, bearing the confirmed EgKI-1 sequence iso-

lated from a low salt LB agar plate, was grown in 5 ml of low salt LB medium. From these cells,

DNA was extracted using a Plasmid Midi kit (Qiagen, Hilden, Germany). DNA was linearized

with SacI-HF (New England BioLabs, Ipswich, USA), extracted using phenol/chloroform and

re-suspended in 10 mM Tris (pH 8.5) buffer. Linearized DNA (25 μg) was then mixed with

80 μl KM71H cells on ice and transferred to a 0.2 cm cuvette and an electric shock applied

using Gene Pulser (Biorad, Hercules, USA). Then 1 ml of 1 M sorbitol + 200 μl HEPES mixture

was added to the cells and transferred to a 10 ml tube. Cells were then incubated for 1.5 hours

at 30˚C, plated on YPD agar supplemented with 100 μg/ ml zeocin, and incubated at 30˚C for

2–3 days. A single colony from the YPD plate was then picked and inoculated into BMGY

complete medium (50 ml) and incubated at 30˚C with 30 rcf agitation for 24 hours. Frozen

stocks were then made with 100% sterilized glycerol and stored at -80˚C for future use. The

remainder of the starter culture was then used to inoculate 1 L of BMGY complete medium

and grown with 30 rcf agitation for 24 hours at 30˚C. On the following day, cells were har-

vested by centrifuging at 2000 rcf for 10 min at room temperature and re-suspended in 200 ml

YNB media. Cells were grown with 30 rcf agitation for 96 hours at 30˚C and then induced with

100% methanol to a final concentration of 0.5% every 24 hours to induce expression of the

EgKI-1 gene under the AOX1 promoter.
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Protein purification and identification

The cultured supernatant (200 ml) was then collected by centrifugation at 12,000 rcf for 30

min at 4˚C and stored at -80 0C until required. The supernatant was thawed, dialyzed into 50

mM MES buffer (pH 6) and filtered through a 0.45 μm filter before being loaded on to a Hi-

trap SP sepharose column (GE Healthcare Life Sciences) pre-equilibrated with 50 mM MES

buffer (pH 6) [18]. Unbound material was removed by washing with equilibration buffer and

protein was eluted using a linear gradient of 0–1 M NaCl over 40 ml, with EgKI-1 eluting

between 0.4 and 0.6 M NaCl. Purification was monitored by analysis on SDS-PAGE gels and

protease inhibitory activity in fractions containing EgKI-1. Purified EgKI-1 was then dialyzed

into 50 mM Tris 120 mM NaCl (pH 7) buffer and quantified using the Bradford protein assay

[19]. A sample of the EgKI-1 protein was visualized on 15% SDS-PAGE to verify its purity and

the EgKI-1 gel band was subjected to in-gel trypsin digestion and nano high performance liq-

uid chromatography coupled to mass spectrometry (nano LC-MS) [20].

Cell lines

Human cancer cell lines including breast adenocarcinoma (MCF-7), breast ductal carcinoma

(T47D), mammary gland epithelial adenocarcinoma (MDA-MB-231), pharynx squamous epi-

thelial carcinoma (FaDu), cervical epithelial adenocarcinoma (HeLa), tongue squamous cell

carcinoma (SCC15) and melanoma (CJM) were used to determine the effect of EgKI-1 on cell

growth. Primary neonatal foreskin fibroblast (NFF) cells were used as normal human cell con-

trols. All cells were cultured in complete media (RPMI-1640 supplemented with 10% (v/v)

heat-inactivated fetal calf serum (Thermo Fisher Scientific, Waltham, USA), 3 mM 4-

(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)) and 100 U/ml penicillin and

100 μg/ml streptomycin (Thermo Fisher Scientific). Cell line identity was checked by Short

Tandem Repeat (STR) profiling with the GenePrint1 10 system (Promega, Madison, WI)

according to manufacturer’s instructions. Cultured cells were routinely checked for myco-

plasma infection by a specific PCR-based assay [21] and were always negative.

Cell growth assays

Cells were seeded at 5000 cells per well in 96-well plates and incubated overnight at 37˚C. On

the following day cells were treated with different concentrations of the EgKI-1 protein and

control wells with buffer alone and cultured for 3–5 days until the control non-treated wells

were 95% confluent. Cell lines were then assayed using sulforhodamine B (SRB) to measure

the inhibition of cell growth [22]. The concentration of EgKI-1 needed to inhibit cell growth

by 50% (IC50) was calculated using GraphPad Prism 7 software. The experiments were

repeated three times and the mean ± SEM was determined. Growth of cancer cells was also

monitored real time with the IncuCyte Zoom system in the presence of varying concentrations

of EgKI-1.

Cell migration analysis

In vitro scratch wound assays were carried out to determine the effect of EgKI-1 on cancer cell

migration [23]. This method mimics, to some extent, the migration of cells in vivo and is more

informative and convenient than other methods [23]. CJM, MDA-MB-231 and HeLa cells

were grown to create a confluent monolayer in 96-well plates. Then the monolayers were

scraped in a straight line to create a “scratch” using the Wound Maker-IncuCyte ZOOM-

Image Lock Plate system and washed once with growth medium. After replacing the medium,

cells were treated with 0.5 μM EgKI-1 or control buffer and monitored by IncuCyte Zoom.
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Images were acquired for each well at 12 hours interval by an in built phase contrast

microscope.

The distance between one side of scratch and the other at each time point was measured

using IncuCyte Zoom software. The Wound width (μm) obtained at different time points was

then statistically analyzed with 2-way ANOVA using GraphPad Prism version 7.

Immunocytochemistry

MDA-MB-231 cells were grown in 8-well tissue culture chambers on slides (Sarstedt, Nüm-

brecht, Germany) overnight. On the following day, different chambers were treated with

EgKI-1 (2 μM) and control buffer. After 24 hours incubation, supernatants were removed and

cells were fixed in ice cold methanol for 10 min followed by two washes with PBS. Cells were

then permeabilized with ethanol: acetic acid (2:1) at -20˚C for 5 min. After 3 × 1 min rinses in

PBS, normal donkey serum (10%) was applied for 20 min at room temperature (RT). Excess

normal serum was decanted and mouse anti-EgKI-1 antibody [16] and rabbit anti-tubulin

antibody (Abcam, Cambridge, UK) diluted 1:80 in PBS were applied for 60 min at RT. Cells

were washed with three changes of PBS and Alexa fluor donkey anti-mouse 488 and Alexa

fluor donkey anti-rabbit 555 diluted 1:200 in PBS were applied for 30 min at RT. After washing

with PBS, cells were stained with DAPI (1:35000 in PBS) for 2–5 min followed by another PBS

wash. Prolong fluorescence mount (Thermo Fisher Scientific) was then applied to each slide

and a coverslip applied. Cells were visualized under a Zeiss 780-NLO point scanning confocal

microscope for the presence of EgKI-1 and tubulin. Fluorescence intensity of tubulin and total

cell areas were then measured with ImageJ software [24] and statistically analyzed with Graph-

Pad Prism version 7.

Cell cycle phase analysis

Cells were analyzed using propidium iodide (PI) staining according to a published protocol

[25]. Briefly, MDA-MB-231 and HeLa cells were treated with 1 μM EgKI-1 or control buffer

and cells were harvested at 24 and 48 hours after treatment. At both time points, cells in the

control and EgKI-1 treated wells were collected in to 5 ml polystyrene round-bottom tubes by

trypsinisation and washed thoroughly with PBS. The cells were then fixed with ice-cold 70%

ethanol and stored at 4˚C overnight. The ethanol was discarded after centrifugation and the

cells were washed with PBS. Cells were incubated with PI/triton X-100 solution (0.02% w/v

DNase free RNase, 2% w/v PI in 0.1% v/v triton X-100) for 30 min at RT and analyzed with a

LSR Fortessa flow cytometer using a YG610/20 filter. ModFit LT software was used to com-

plete the cell cycle analysis.

Analysis of apoptosis

An Annexin V-FITC apoptosis detection kit (Biotool, York, UK) was used to determine

whether EgKI-1 induced apoptosis in cancer cells. Cells were seeded at ~60% confluency in

24-well plates and EgKI-1 or control buffer treatment was carried out on the following day.

After 24 hours incubation, cells were harvested by trypsinisation and washed with cold PBS.

Equal amounts of Annexin V-FITC/ PI were added to the cells re-suspended in 1x binding

buffer (10 mM HEPES (pH 7.4), 140 mM NaCl, 2.5 mM CaCl2). Cells were then incubated at

room temperature for 15 min and analyzed with a BD LSR Fortessa flow cytometer using a

YG610/20 filter for PI and a B530/30 filter for FITC. FlowJo version 10 was used to analyze cell

staining and to determine the percentage positivity. Annexin V+/PI- cells were considered as

early apoptotic cells and Annexin V+/PI+ cells were considered as late apoptotic cells.
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Proteomics quantitative analysis following EgKI-1 exposure

To determine which proteins in MDA-MB-231 cancer cells were affected by EgKI-1 treatment,

quantitative SWATH-MS (sequential window acquisition of all theoretical spectra-mass spec-

trometry) was used as described by Gill et al [26] was used with few modifications.

Cells were harvested prior to treatment as the controls, and after 0.5, 2, 4, 8 and 24 hours of

EgKI-1 treatment. Protein extraction and tryptic peptide fragment generation was conducted

following a modified FASP protocol for high-throughput sample preparation [27]. The data

for the ion library generation were obtained using Data Dependent Acquisition (DDA) on

each individual samples as previously described [28] while quantitative data from different

time points was obtained using SWATH acquisition with the same conditions used in the

DDA experiments. A rolling collision energy method was used to fragment all ions in a set of

26 sequential overlapping windows of 25 AMU over a mass range coverage of 350–1,000 (m/

z). Data was acquired and processed using Analyst TF 1.7 software (AB SCIEX).

Protein library generation and Bioinformatic analysis of SWATH protein

quantification

Spectral searches of processed LC-MS/MS data were performed using ProteinPilot v4.5 (AB

SCIEX) using the Paragon algorithm (version 4.5.0.0). Background correction was used and

biological modifications specified as an ID focus. The detected protein threshold was set as 0.5

and the false-discovery rate (FDR) was calculated using searches against a decoy database com-

prised of reversed sequences. Searches were conducted against the UniProt human reference

proteome set comprising 70953 protein sequences.

For spectral library generation and SWATH XIC peak area extraction PeakView v2.2.0 (AB

SCIEX) with the SWATH acquisition MicroApp was used with ion library parameters set to 6

peptides per protein, 6 transitions per peptides, a peptide confidence threshold of 99% and

FDR threshold to 1%. The XIC time window was set to 6 min and XIC width to 75 ppm. All

SWATH experiments used iRT calibrants to normalize retention times. To generate the quan-

titation table files for ions, peptides and proteins, Marker View v1.2.1.1 (AB SCIEX) was used

and the relative area under peaks across the different experiments was normalized based on

the iRT internal calibrant.

Bioavailability of EgKI-1

To determine the absorption rate and stability of EgKI-1 in serum, 50 μg of the protein in 50 μl

of Tris/NaCl buffer (pH 7) was injected intraperitoneally into BALB/c mice and blood samples

were collected at 5, 30, 120, and 300 min after injection. The serum was separated and samples

analyzed using liquid chromatography-mass spectrometry to monitor the presence of EgKI-1

at the different time points.

In vivo animal model

MDA-MB-231 cells (1×106) were injected into the right inguinal mammary tissue of 6–7

weeks old BALB/c nude mice. When the tumors reached approximately 30 mm3, in 20 days,

mice in the control group received buffer only (150 mM NaCl, 20 mM Tris HCl, pH 7) and the

treatment group were treated with 4 mg/kg of EgKI-1 per mouse (equivalent to 80 μg per 20 g

mouse). EgKI-1 and buffer were injected into the tumors in a total volume of 50 μl once a day

every other day. All mice were monitored daily and tumor volumes were measured twice a

week using digital Vernier caliper and expressed as mm3 according to the formula, a × b ×
b × 0.5, where “a” the length and “b” the measured breadth of the tumor. Mice were also
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assessed for clinical signs according to an approved clinical score sheet for distress during the

course of the experiment [29]. Scores for each parameter were summed to give a possible total

of 8. Less than 3 was considered a mild clinical score, between 3–6 a moderate and over 6 was

considered a severe clinical score. Experimentation on an individual mouse was terminated

when an unacceptable clinical score (>6) was reached, or the cumulative tumor burden of the

animal exceeded 1000 mm3. Mice were humanely euthanized by exposure to carbon dioxide at

the end of the experiment and tumors were collected.

Paraffin blocks were made with the harvested tumor tissues and sections were stained with

mouse monoclonal Ki67 antibodies for immunolabelling screening in the QIMRB histology

facility. Ki67 is a nuclear protein that is expressed in proliferating cells and is thus a marker for

cell proliferation in solid tumors [30]. Ki67 stained slides were then scanned at 20× magnifica-

tion with an Aperio Scanscope XT slidescanner and digital images were analyzed with Image-

Scope viewing software. The Aperio nuclear algorithm which is based on the spectral

differentiation between brown (positive) and blue counter staining was used for analysis. Total

percentage positivity for each slide was then calculated and analyzed using GraphPad Prism.

Animal ethics statement

This study was performed in strict accordance with protocols approved by the QIMRB Animal

Ethics Committee, approval number A1606-617M, which adheres to the Australian code of

practice for the care and use of animals for scientific purposes, as well as the Queensland Ani-

mal Care and Protection Act 2001; Queensland Animal Care and Protection Regulation 2002.

Mice were housed in a specific pathogen free facility with 12 hours light/dark cycle and contin-

ual access to food and water.

Statistical analysis

All data are presented as the means ± standard mean of error (SEM) of three different ex-

periments. A P-value of<0.05 was considered as statistically significant according to the Stu-

dent’s t-test and ANOVA tests. All statistical analysis was performed using GraphPad Prism

version 7.

Results

Recombinant EgKI-1 expression and purification

In order to examine the effects of EgKI-1 on cancer cell lines the protein was expressed in

yeast. The denaturing SDS-PAGE of the purified EgKI-1 protein revealed a single band around

8 kDa which is consistent with the predicted molecular size of 8.08 kDa (S1 Fig). MALDI-TOF

MS analysis with the final purified protein sample showed a 100% intensity peak at 7.506 kDa.

In-gel digestion identified the protein band as a BPTI/Kunitz inhibitor from E. granulosus
with 91% coverage.

Recombinant EgKI-1 inhibits cell growth in vitro
To test the effects of EgKI-1 on the proliferation of cancer cell lines, end point and real time

monitored cell growth assays were carried out. EgKI-1 treatment inhibited the growth of a

range of human cancer cells at different rates when assessed by end point SRB assay (S2 Fig;

Table 1). The protein had substantially less effect on the growth of primary neonatal foreskin

fibroblast (NFF) cells, and had ~9–40 fold high IC50 value compared with the IC50 values of

tested human cancer cell lines.
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Real time monitoring using the IncuCyte showed that cells treated with 1 μM EgKI-1 even-

tually lost their typical shape, lost their ability to proliferate with time (Fig 1A), and exhibited

dose-dependent growth inhibition compared with the control cells (Fig 1B). Furthermore, the

IncuCyte analysis showed that cells continued to grow in the presence of EgKI-1, at a concen-

tration of around 0.5 μM, before starting to die after ~60 hours making it a more sensitive

assay than end point staining.

EgKI-1 treatment inhibits cell migration

We examined the effect of EgKI-1 treatment on cell migration on a panel of representative cell

lines. The real time scratch wound assay analysis using the IncuCyte system revealed that

0.5 μM EgKI-1 inhibited the migration of the CJM (melanoma), MDA-MB-231 (breast cancer)

and HeLa (cervical cancer) cells in vitro (Fig 2A). The gap in the scratch wound in control wells

decreased eventually with time. The wound width was significantly larger in EgKI-1-treated

wells compared with controls after 2 days indicating the inhibition of cell migration by EgKI-1.

According to the analysis, the closure of the scratch in EgKI-1-treated cells were 12% in CJM,

18% in MDA-MB-231 and 16% in HeLa compared with 60%, 58% and 100% in the controls

respectively (Fig 2B). This data indicates that EgKI-1 inhibits cancer cell migration.

Immunocytochemistry demonstrates EgKI-1 internalization

The presence of green fluorescence in the cells indicated that cancer cells internalized the

EgKI-1 protein after treatment. Furthermore, vacuoles started to appear in the cytoplasm,

which can lead to cell membrane collapse and eventually necrosis. There were significant

decreases in the intensity of tubulin and total cell area indicating the degradation of the cyto-

skeleton following treatment with the EgKI-1 protein (Fig 3).

EgKI-1 disrupts cell cycle profile

Cell cycle profiles of MDA-MB-231 and HeLa cells were assessed after EgKI-1 treatment. Even

though significant non-adherent cells were observed only attached cells were harvested and

assessed. EgKI-1 treatment caused a significant increase in S phase in both MDA-MB-231 and

HeLa cell lines 2 days post-treatment. MDA-MB-231 cells treated with EgKI-1 (2 μM) signifi-

cantly decreased the G2/M phase (~60%) by arresting the proliferative S phase of the cell cycle

at 2 days post-treatment compared with the control cells (Fig 4). In HeLa cells, EgKI-1 per-

turbed cell cycle progression by significantly decreasing the non-proliferative G0/G1 fraction

(~30%) and increasing the S (~30%) and G2/M (~80%) fractions 2 days post-treatment (Fig

4). No significant difference was observed 1 day post-treatment (S3 Fig).

EgKI-1 can induce apoptosis

As we observed a significant proportion of non-adherent cells following EgKI-1 treatment,

treated cells were assessed for apoptosis. EgKI-1 induced apoptosis in MDA-MB-231 breast

Table 1. IC50 values for different human cancer cell lines tested with EgKI-1.

IC50 values (μM) with 95% CI

Cell line NFF MCF-7 MDA-MB-231 CJM SCC15 FaDu HeLa T47D

47.134

18.2 to 59.4

2.075

1.88 to 2.27

5.162

4.16 to 6.10

4.660

3.12 to 8.33

4.025

3.69 to 4.41

2.674

2.17 to 3.28

1.157

0.9 to 1.49

3.012

2.64 to 3.36

CI—Confidence Interval.

https://doi.org/10.1371/journal.pone.0200433.t001
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cancer cells 24 hours post-treatment in a dose-dependent manner. Cells treated with 0.2 μg/

well of EgKI-1 (2 μM) had a significantly higher percentage of cells (19.9%) in early apoptosis

compared with control cells whereas cells treated with 0.8 μg/well EgKI-1 (0.5 μM concentra-

tion) had a higher percentage of cells (78.6%) in late apoptosis (Fig 5).

Proteomics analysis following EgKI-1 treatment

SWATH-MS analysis identified a total of 1770 proteins (shown in the heat map; S4 Fig) in can-

cer cells. EgKI-1 treatment mainly up-regulated Bcl-2-like protein 13 (Q9BXK5) and inhibitor

of nuclear factor kappa-B kinase subunit beta (O14920) expression with time. Tetraspanin

(H7BXY6), nucleoside diphosphate kinase A (P15531) and double-strand-break repair protein

(O60216) expression were down-regulated with time (S5 Fig).

Bioavailability of EgKI-1

When injected intraperitoneally into mice, the EgKI-1 protein was absorbed into the blood in

5 minutes and the highest serum availability occurred within 30 minutes. Most of the EgKI-1

protein had been cleared from the blood by 5 hours (S6 Fig). No adverse or toxic reactions

resulting from the administration of EgKI-1 to the mice occurred.

Fig 1. Growth of cancer cells inhibited by EgKI-1. (a) CJM, MDA-MB-231 and HeLa cells lost shape and started dying when treated with 1 μM EgKI-1 (0.8 μg in

100 μl/ well) over time. (b) Dose-dependent growth inhibition curves with varying concentrations of EgKI-1.

https://doi.org/10.1371/journal.pone.0200433.g001
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EgKI-1 reduces tumor growth in an in vivo breast cancer model

We assessed the impact of EgKI-1 intra-lesional treatment on the growth of MDA-MB-231

tumors in vivo. The tumors were allowed to reach approximately 30 mm3 before treatment

with 4 mg/kg of EgKI-1, or equivalent vehicle, once per day every other day for 26 days. The

growth of MDA-MB-231 breast tumors was significantly reduced by 57.7% in EgKI-1-treated

mice compared with control mice (Fig 6). Furthermore, expression of Ki67 protein, which is a

proliferation marker, was significantly reduced in the EgKI-1-treated tumor tissues indicating

~80% reduction of tumor proliferation (Fig 6) as suggested by the in vitro data.

Discussion

This study describes the broad-spectrum anti-cancer activities of EgKI-1 which is the first

anti-cancer molecule identified from the cestode E. granulosus. Although we hypothesized

based on our previous studies [16] that the potent neutrophil elastase activity of EgKI-1 would

result in cancer cell regression, the in vitro culture medium we employed did not contain

Fig 2. EgKI-1 inhibits cancer cell migration in vitro. In the control wells the gap closed with time but in the treated wells the gap closure was significantly reduced

compared with the controls. P<0.01�� and p<0.0001����.

https://doi.org/10.1371/journal.pone.0200433.g002
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neutrophils or neutrophil elastase (S2 Fig). Therefore there must be additional mechanisms

whereby EgKI-1 adversely affects cancer cell growth. Inhibition of the growth of the different

cancer cell lines with an IC50 range of 1.1–5.1 μM, with only minimal reduction in cell growth

of primary neonatal fibroblasts, suggests that EgKI-1 potentially interacts with cancer-specific

proteins only. EgKI-1 treatment specifically inhibited the growth of invasive, rapid prolifer-

ative cell lines like MCF-7, FaDu and HeLa [31, 32] with lower IC50 values compared with

other tested cell lines. Cancer cell migration can lead to tumor metastasis and invasion [33].

Therefore the observed inhibition of cancer cell migration by EgKI-1 is also an important

aspect to consider for cancer therapeutic development.

Fig 3. Immunocytochemistry. (a) Control cells; (b) EgKI-1 treated MDA-MB-231 breast cancer cells 24 hours post-treatment. White arrow shows the green in treated

cells indicating the EgKI-1 protein; White dotted arrow indicates the vacuole in the cell; Red indicates tubulin in cytoplasm; Blue, DAPI nuclear stain; (c) Cell area

reduction (p<0.001���) and (d) Red fluorescence intensity of tubulin (p<0.0001����) after analysis by Student’s t-test.

https://doi.org/10.1371/journal.pone.0200433.g003

Fig 4. EgKI-1 induces cell cycle arrest. MDA-MB-231 and HeLa cells were treated with 1 μM and 2 μM EgKI-1 for 48 hours and the cell cycle distribution was

determined by flow cytometry. Results represent the mean ± SEM from 3 independent experiments. p<0.05 �, p<0.01 ��, p<0.001 ��� and p<0.0001���� by 2 way

ANOVA test.

https://doi.org/10.1371/journal.pone.0200433.g004
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Further, the apparent cell growth inhibition by EgKI-1 was due to an increase in apoptosis,

potentially by disrupting cell cycle progression. Both HeLa and MDA-MB-231 exhibited

increased numbers of cells in S phase of the cell cycle following treatment. While MDA-MB-

231 showed a reduction of cell numbers in G2/M transition, HeLa had increased G2/M num-

bers following treatment. Abnormal, deregulated cancer cells undergo unrestricted division

which is different from other cancers and, as an “immortal” cell line, HeLa cells divide differ-

ently [34]. This can possibly be a reason for the changes in the cell cycle of HeLa and

MDA-MB-231 cell lines treated with EgKI-1. Identifying new cancer-specific molecules that

can target mitosis can optimize combinatorial treatments in the future [35]. The induction of

apoptosis by EgKI-1 at the same concentration that led to 50% inhibition in cell growth/prolif-

eration shows the effectiveness of the protein in cancer cell growth inhibition. Apoptosis-tar-

geted cancer therapy has undoubtedly been an indispensable approach in treating cancer, in

order to make damaged cells commit suicide [36]. The immunocytochemistry results pre-

sented here indicated that EgKI-1 was internalized in cancer cells. The immediate effects on

the plasma membrane evident after EgKI-1 treatment might therefore support the sequence of

events involving EgKI-1 in the mechanism of action leading to the induction of apoptosis.

SWATH-MS analysis supports the relative quantification of large fractions of a proteome in

a single sample [37]. EgKI-1 treatment up-regulated BcL-2 like protein 13 (UniProt

ID-Q9BXK5) which promotes the activation of caspase-3 and apoptosis [38]. EgKI-1 treat-

ment further down-regulated the expression of tetraspanin (UniProt ID-H7BXY6) and

BRCA1-associated ATM activator-1 (BRAT1) (UniProt ID-Q6PJG6) proteins. Tetraspanins

can promote multiple cancer stages by playing key roles in tumor initiation and metastasis

[39]. BRAT1 plays broad roles in DNA repair and cell cycle regulation involved in controlling

cell growth [40]. Therefore, down-regulation of tetraspanin and BRAT1, caused by EgKI-1,

can contribute to cancer cell growth inhibition but additional study is required to identify the

precise molecules and mechanisms of action of EgKI-1 in cancer cell growth inhibition.

Metastatic breast cancer is the leading cause of cancer death in women worldwide [41].

Therefore, the MDA-MB-231 cell line was selected for further investigation and in in vivo ani-

mal model studies. In this study we used intra-tumor delivery of EgKI-1 as direct injection

into a tumor lesion has the advantage that much higher drug concentrations can be applied at

Fig 5. Induction of apoptosis in MDA-MB-231 breast cancer cells following EgKI-1 treatment. (a) Control, untreated cells were alive, being Annexin V-/PI-; (b) 20%

of cells treated with the lower EgKI-1 concentration (0.25 μM) were in early apoptosis (Annexin V+/PI-); (c) Cells treated with the higher EgKI-1 (1 μM) concentration

exhibited the highest percentage of late apoptotic/ early necrotic cells (Annexin V+/PI+).

https://doi.org/10.1371/journal.pone.0200433.g005
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the tumor site with the result that intra-lesional anti-tumor therapeutics are considered as

more effective than other routes [42]. After 26 days of EgKI-1 treatment there was ~60%

reduction of tumor growth in treated mice compared with controls. As Ki67 expression is

strongly associated with tumor cell proliferation [30], the significantly decreased numbers of

Ki67-positive cells in tumor tissues treated with EgKI-1 reflect its inhibitory effect on cell pro-

liferation in vivo.

A therapeutic with a molecular size less than 10 kDa allows rapid extravasation from blood

vessels and rapid transport to tumor targets resulting in maximal tumor uptake [43]. However,

such molecules have shorter serum half-lives than longer peptides as they are quickly cleared

by renal filtration [44]. PEGylation, the technique of covalently attaching polyethylene glycol

(PEG) to a molecule, which may be a low molecular size protein, enzyme or nanoparticle, has

proven to be one of the best methods for the passive targeting of anti-cancer therapeutics [45,

46]. Accordingly, this technology will be applied in the future to improve the serum half-life of

EgKI-1 if needed.

Another future consideration will be to monitor the up or down regulation of genes

involved in cancer progression and metastasis following EgKI-1 treatment. EgKI-1 can reduce

Fig 6. Anti-tumor effects of EgKI-1 treatment in vivo. (a) Tumor growth curve of MDA-MB-231 tumor bearing mice receiving EgKI-1 treatment (4 mg/kg) compared

with control mice (P<0.05� by Student’s t-test). (b) Tumor size of EgKI-1 treated (n = 9) and control mice (n = 6) surviving at the end of the experiment (P<0.05� by

Student’s t-test) showing ~60% reduction of tumor growth in treated mice. (c) Representative bright field images for the immunohistochemical staining of Ki67

proliferation marker (brown) in control and treated tumors (scale bar indicates 200 μm). (d) Quantification of Ki67-positive cells (P<0.05� by Student’s t-test).

https://doi.org/10.1371/journal.pone.0200433.g006
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inflammation by inhibiting neutrophil elastase [16], which is important as chronic inflamma-

tion increases the risk of cancer and a reduction in inflammation helps in cancer therapy [47].

Therefore immunomodulation effects induced by EgKI-1 may also play a role in cancer

growth inhibition in vivo, an area that needs to be explored in the future using immunocompe-

tent mouse models of cancer.

Conclusion

The selective killing of malignant cells without affecting normal cells is the ultimate goal of

cancer therapy. As a low molecular weight (<10 kDa) protein, EgKI-1 has potential to pene-

trate tumor tissues for effective interaction and killing of malignant cells. EgKI-1 treatment sig-

nificantly reduced the rate of breast cancer growth in vivo and represents a promising

molecule for development as a future anti-cancer therapeutic.

Supporting information

S1 Fig. Purified recombinant EgKI-1 on an SDS-PAGE gel. 1, 3 μg EgKI-1; L, molecular size

markers; 2, 6 μg EgKI-1.

(TIF)

S2 Fig. Viability of different cancer cell lines in the presence of EgKI-1. Viable cell percent-

ages of primary neonatal foreskin fibroblast cells (NFF), breast cancer cell lines (MCF-7,

MDA-MB-231, T47D), melanoma (CJM), squamous cell carcinomas (SCC15, FaDu) and cer-

vical adenocarcinoma (HeLa) cell lines with different EgKI-1 concentrations in vitro.

(TIF)

S3 Fig. EgKI-1 effect on cell cycle arrest. MDA-MB-231 and HeLa cells were treated with

1 μM and 2 μM EgKI-1 for 24 hours and the cell cycle distribution was determined by flow

cytometry. No significant difference was observed among the different cell cycle phases.

(TIF)

S4 Fig. Differentially expressed proteins quantified by SWATH-MS analysis. Heat map

analysis of 1770 proteins among three biological replicates of the control and EgKI-1 treated

samples after 30 min, 2 hours, 4 hours and 24 hours. The fold change value of the MS signal

intensity is shown.

(PDF)

S5 Fig. Fold change of protein expression which down/up regulated with time for 24

hours. H7BXY6:Tetraspanin, P15531:nucleoside diphosphate kinase A, O60216:double-

strand-break repair protein, O14920:inhibitor of nuclear factor kappa-B kinase subunit beta,

Q9BXK5:Bcl-2-like protein 13.

(TIF)

S6 Fig. Serum stability of EgKI-1. After intraperitoneal injection into mice, EgKI-1 was

absorbed into the blood within 5 minutes and had been cleared in 5 hours.

(TIF)
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