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INTRODUCTION

Anthropogenic climate change is having a dra-
matic effect on marine ecosystems worldwide (Wern-
berg et al. 2016, Hughes et al. 2017). Increased sea

surface temperatures have already affected the
metabolism, behaviour, phenology and distribution
of species across a range of taxa (Scheffer et al. 2001,
Johansen et al. 2014, Byrne et al. 2017, Pecl et al.
2017). Ocean acidification (OA) — altered seawater
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ABSTRACT: Macroalgae are the major habitat-forming organisms in many coastal temperate and
subtropical marine systems. Although climate change has been identified as a major threat to the
persistence of macroalgal beds, the combined effects of ocean warming and ocean acidification on
algal performance are poorly understood. Here we investigate the effects of increased tempera-
ture and acidification on the growth, calcification and nutritional content of 6 common subtropical
macroalgae; Sargassum linearifolium, Ulva sp., Amphiroa anceps, Corallina officinalis, Delisea
pulchra and Laurencia decussata. Algae were reared in a factorial cross of 3 temperatures (23°C
[ambient], 26°C and 28°C) and 3 pH levels (8.1 [ambient], 7.8 and 7.6) for 2 wk. The highest (28°C)
temperature decreased the growth of all 6 macroalgal species, irrespective of the pH levels. In
contrast, the effect of decreased pH on growth was variable. The growth of Ulva sp. and C. offici-
nalis increased, L. decussata decreased, while the remaining 3 species were unaffected. Interest-
ingly, the differential responses of macroalgae to ocean acidification were unrelated to whether or
not a species was a calcifying alga, or their carbon-uptake mechanism — 2 processes that are pre-
dicted to be sensitive to decreased pH. The growth of the calcifying algae (C. officinalis and A.
anceps) was not affected by reduced pH but calcification of these 2 algae was reduced when
exposed to a combination of reduced pH and elevated temperature. The 3 species capable of
uptake of bicarbonate, S. linearifolium, L. decussata and Ulva sp., displayed positive, negative and
neutral changes in growth, respectively, in response to reduced pH. The C:N ratio for 5 of the 6
species was unaffected by either pH or temperature. The consistent and predictable negative
effects of temperature on the growth and calcification of subtropical macroalgae suggests that this
stressor poses a greater threat to the persistence of subtropical macroalgal populations than ocean
acidification under ongoing and future climate change.
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chemistry as a result of uptake of atmospheric CO2

emissions — is also predicted to alter the growth, cal-
cification, reproduction and behaviour of many mar-
ine species (Langdon et al. 2000, Ross et al. 2011,
Byrne et al. 2013, Watson et al. 2017). Ocean warm-
ing and acidification are both increasing at unprece-
dented rates (IPCC 2014), hence understanding their
combined impacts on the performance and growth of
marine organisms will be key to predicting future
changes in marine communities (Byrne 2011, Przes-
lawski et al. 2015).

The effects of climate change on an ecosystem may
be the most pronounced when they directly affect the
health of the foundation species (Wernberg et al.
2012). For example, increasing sea surface tempera-
tures have already lead to increased frequency of
global coral bleaching events (Hughes et al. 2017,
2018), and the loss of habitat-forming kelp and
macroalgae (Wernberg et al. 2016), and seagrasses
(Orth et al. 2006). Macroalgae are foundation species
in many shallow temperate and subtropical marine
systems, providing habitat for a diversity of species
(Steneck 2013). Any changes to the abundance and
composition of macroalgae may have direct and/or
indirect effects on ecosystem diversity and/or ecolog-
ical processes that could cascade through the entire
ecosystem (Wernberg et al. 2010). Ocean warming
and OA have already been shown to alter the growth
(Madsen & Sand-Jensen 1994, Zou 2005, Gao &
Zheng 2010), competitive ability (Campbell et al.
2011, Diaz-Pulido et al. 2011, Hofmann et al. 2012)
and resilience to storms (Wernberg et al. 2010) of
many macroalgae.

Macroalgae are predicted to be particularly sensi-
tive to increasing temperature as their rates of bio-
chemical and physiological processes are largely de-
termined by environmental temperature, similar to
ectotherms (Davison 1991, Brown et al. 2004). Within
a species’ thermal tolerance range, the rates of physi-
ological processes and traits (e.g. growth) typically in-
crease with temperature until they reach a thermal
optimum, after which rates rapidly decrease (Brown
et al. 2004). The effect of temperature on organism
performance will therefore depend on the species’
thermal tolerance range and how close the organism’s
current environmental temperatures are to their ther-
mal optima (Tewksbury et al. 2008). Changes in envi-
ronmental temperature have already been shown to
influence growth (Gutow et al. 2016), photosynthesis
(Mertens et al. 2015), respiration (Carr & Bruno 2013),
distribution (Wernberg et al. 2016), antibacterial
chemical defence (Campbell et al. 2011) and competi-
tive ability (Wernberg et al. 2010) across a range of in-

dividual macroalgal species. However, few studies
have considered how these effects of temperature are
influenced by ocean acidification.

The uptake of atmospheric CO2 by the ocean is
altering the carbonate chemistry of seawater,
increasing the partial pressure of carbon dioxide
(pCO2), and bicarbonate (HCO3

−) and hydrogen (H+)
ions and decreasing the concentration of carbonate
minerals (predominately CaCO3), a process coined
ocean acidification or OA (Guinotte & Fabry 2008).
While all macroalgae use carbon for photosynthesis,
they differ in their sources and mechanisms for the
uptake of carbon, and therefore may respond differ-
ently to OA (Hurd et al. 2011). Some species rely
solely on passive uptake of CO2 from surrounding
seawater, while other species have carbon-concen-
trating mechanisms (CCMs) that facilitate the uptake
of HCO3

− for photosynthesis (Raven 1997). Species
with CCMs can be further categorized into 3 groups
based on their sources of inorganic carbon: (1) those
that use HCO3

− only, (2) those that use both HCO3
−

and CO2, and (3) those that use CO2 only for photo-
synthesis (Diaz-Pulido et al. 2016, Cornwall et al.
2017b). CCMs can be energetically costly; however,
they make photosynthesis more efficient at the car-
bon fixation site (Raven 1997). The increased avail-
ability of CO2 in seawater may benefit algae who uti-
lize CO2 as their main carbon source if they are
carbon limited (Koch et al. 2013), and algae who uti-
lize HCO3

− only if they are able to switch to passive
diffusion of CO2 to offset the energetic costs of their
CCM (Johnston & Raven 1990, Cornwall et al.
2017b). There are conflicting results within the grow-
ing body of literature investigating the response of
productivity and growth of marine macroalgae to
OA. Elevated pCO2 has been shown to either in -
crease (Falkenberg et al. 2014, Hofmann et al.
2015b), decrease (Hofmann et al. 2012, 2015a, Gutow
et al. 2014), or have no effect on the growth or photo-
synthesis of marine macroalgae (Israel & Hophy
2002, Egilsdottir et al. 2013, Campbell et al. 2014).
Recently, this variation in the response of macro-
algae to OA has been linked to the macroalga’s in -
organic carbon physiology (Cornwall et al. 2017b),
and suggests a more detailed categorization of dis-
solved inorganic carbon (DIC) affinity within species-
 specific CCMs may be beneficial in predicting
macroalgal responses to OA (Cornwall et al. 2017b).

OA is also predicted to negatively impact calcified
algae due to reductions in the carbonates available to
build calcareous structures and increases of H+ ions
that may cause dissolution of existing tissues (Büden-
bender et al. 2011, Diaz-Pulido et al. 2011, 2012,
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Johnson & Carpenter 2012, Kamya et al. 2017). To
add further complexity to this problem, photosynthe-
sis and calcification have been shown to be positively
linked (Digby 1977, Hofmann & Bischof 2014). The
fixation of CO2 during photosynthesis increases the
pH of surrounding seawater, thereby increasing the
calcite saturation state to favour CaCO3 deposition in
the tissues (Digby 1977). In addition, CO2 is a by-
product of calcification, thereby stimulating photo-
synthesis (McConnaughey 1991). Lastly, there is also
evidence that coralline algae may be able to use
HCO3

− and CO2 for calcification, leading to potential
shifts between calcification and net dissolution as
CO2 and HCO3

− concentrations increase under OA
conditions, as both processes will be affected by
these changes. Until recently, coralline algae have
been thought to be particularly vulnerable to dissolu-
tion under OA conditions (Kuffner et al. 2008) as they
deposit the highly soluble high-Mg calcite within
their intercellular spaces and surface of the cell (Lit-
tler 1976). However, recent evidence suggests that at
least some calcified algae may be able to regulate
their internal and surface pH to buffer against the
effects of OA (crustose coralline algae: Hofmann et
al. 2016, Cornwall et al. 2017a).

To date, the majority of research investigating the
effects of OA on coralline algae have reported re-
duced growth (e.g. Ragazzola et al. 2012, James et al.
2014), calcification (e.g. Gao & Zheng 2010, Kamenos
et al. 2013) and increased dissolution (e.g. Reyes-
Nivia et al. 2014) of individuals, and reductions in
overall abundance (e.g. Kuffner et al. 2008, Ordoñez
et al. 2014) and recruitment (e.g. Porzio et al. 2013).
However, a few studies have reported potential disso-
lution while rates of growth, calcification and/or pho-
tosynthesis have remained unaffected or even in-
creased in response to OA (e.g. Egilsdottir et al. 2013,
Kamenos et al. 2013, Noisette et al. 2013), suggesting
that calcification and dissolution may be most sensitive
to OA. Therefore, calcification and dissolution may be
the most sensitive of the aforementioned physiological
processes. In tropical crustose coralline algae, changes
in relative concentrations of aragonite versus dolomite
within the tissues have been reported in response to
OA (Diaz-Pulido et al. 2014). Further, the magnitude
of responses of coralline algae to OA can also be influ-
enced by diffusive boundary layers (Cornwall et al.
2014) and the rate of declining pH (Kamenos et al.
2013). Due to the complex interaction between photo-
synthesis, calcification and dissolution in response to
OA and its interaction with other environmental vari-
ables, the response of these processes to a changing
ocean is still poorly understood.

Relatively few studies have examined the potential
interaction between increasing temperature and OA
on marine macroalgae across a range of co-occurring
species (Wernberg et al. 2012). This is important, as
these 2 factors are occurring simultaneously (IPCC
2014). Therefore, understanding the combined ef -
fects between ocean warming and acidification on
macroalgae may provide insight as to how these 2
factors may impact the composition of foundation
species in a community (Kroeker et al. 2013b, Ola -
barria et al. 2013). Increasing temperature and OA
may also interact to affect the palatability of algal tis-
sue to herbivores, and given that the abundance of
primary producers is very strongly regulated by her-
bivory in marine systems (Poore et al. 2012); any
changes to the tissue traits are likely to affect the
strength of top-down control of algal abundance. The
objective of this study was to investigate the effects
of simultaneous OA and warming on the growth, cal-
cification, carbon metabolism and tissue quality (C:N
ratio and calcification) of 6 co-occurring subtropical
macroalgae from a climate change ‘hotspot’ in south-
eastern Australia. Sea surface temperatures in this
region are predicted to increase by >4°C, which is
the upper range of predicted warming of 2.6 to 4.8°C
for the worlds oceans for 2100 (Hobday & Lough
2011, IPCC 2014).

MATERIALS AND METHODS

Study species and collection sites

Six common co-occurring macroalgal species were
collected by hand from shallow (<2 m) subtidal
coastal habitats in the autumn (May−June) of 2011
from the Coffs Harbour region, central New South
Wales, Australia. Five macroalgal species (Sargas-
sum linearifolium: leathery phaeophyte; Ulva sp.:
foliose chlorophyte; Laurencia decussata: non-calci-
fied branching rhodophyte; and Corallina officinalis
and Amphiroa anceps: both geniculate coralline
rhodophytes) were collected from Charlesworth Bay
(30° 16’ 03.0’’ S, 153° 08’ 16.19’’ E), and the sixth spe-
cies (Delisea pulchra: non-calcifying branching
rhodophyte) was collected from the south side of
Muttonbird Island, Coffs Harbour, New South Wales,
Australia (30° 18’ 19.7’’ S, 153° 08’ 53.7’’ E). Ambient
seawater pH for this region averaged 8.07 ± 0.002 SE
for the duration of the study. Average coastal sea
 surface temperatures in the region range from 20
to 26°C, and was 22.23 °C (0.004 SE) at the time of the
study (IMOS 2018).
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Experimental treatments and sample preparation

Algae were placed in individual aquaria within
30 min of collection, rinsed with filtered seawater
and cleaned of visible fauna and epiphytes. Algae
were cut into similar lengths of 2 to 4 cm composed
largely of meristematic tissue, weighed by blotting
the sample dry, and placed in individual 100 ml con-
tainers with 40 ml fresh filtered seawater. Algae were
negatively buoyant and sank to the bottom of the
containers. The large size of S. linearifolium, D. pul-
chra and L. decussata allowed 9 pieces of meristem-
atic tissue to be sourced from each thallus. This
allowed the same individual ‘clone’ to be replicated
across all treatments. For the remaining 3 species,
each replicate was taken from a separate individual
thallus. Average ± SE initial wet weights of experi-
mental thalli were: 0.024 ± 0.001 g for S. lineari-
folium, 0.0299 ± 0.0009 g for Ulva sp., 0.046 ± 0.002 g
for A. anceps, 0.046 ± 0.002 g for C. officinalis, 0.055
± 0.005 g for D. pulchra and 0.040 ± 0.002 g for L.
decussata across all pH and temperature treatment
combinations. Each sample was randomly allocated
to one of 9 pH and temperature treatments.

A factorial cross of 3 temperatures (23°C [ambient],
26°C and 28°C) and 3 pH levels (8.1 [ambient], 7.8,
and 7.6) was used, yielding 9 experimental treatments.
These temperature treatments are commensurate
with projections for warming (2.6 to 4.8°C) and acidifi-
cation (0.3 to 0.5 pH units) of southeastern Australian
waters by the year 2100 (Hobday & Lough 2011, IPCC
2014). Each algal species was subjected to increased
temperature and acidification in all combinations of
treatments with 5 replicates per treatment. The algae
were gradually introduced to increased temperature
and pH treatments over a 2 d period (temperature:
2.5°C per day; pH: 0.25 pH units per day) and then
held at the target treatment levels for 2 wk.

The experimental pH of flowthrough seawater was
regulated using a CO2-injection system and temper-
ature was regulated with 300 watt bar heaters (Aqua
One) within header tanks (60 l for CO2, which fed to
smaller, 30 l temperature header tanks), which then
fed experimental seawater at a flow rate of ~0.13 ml
s−1 to individual rearing containers (for full details see
the Supplement at www. int-res. com/ articles/ suppl/
m595 p055 _ supp. pdf). The system was illuminated at
30 µmol photons m−2 s−1 supplied by 3 twin 36-watt
‘cool white’ fluorescent lights for a 16 h night:8 h day
photoperiod. The experimental light level was equiv-
alent to midday light measurements at 1−2 m water
depth at the Charlesworth Bay collection site — 29.8
(±1.92 SE, n = 10) µmol photons m−2 s−1.

Temperature, pH (NIST scale) and salinity were
measured daily in all seawater treatments using a
portable multi-probe (Hach HQD) by randomly
choosing 5 individual rearing containers per pH
and temperature treatment per day. The pH probe
was calibrated daily using high-precision buffers
(pHNIST 4.0, 7.0 and 10 at 20°C, ProScitec). Total pH
scale (pHT) of the experimental seawater was
determined using seawater TRIS buffer using the
millivolt scale (Dickson 1993). For measurements of
total alkalinity, water samples (100 ml) were col-
lected daily and filtered with a 0.45 µm syringe
 filter, and preserved using saturated mercuric
 chloride (HgCl2) solution. Total alkalinity was mea -
sured by potentiometric titration using an automatic
titrater at 24.17 °C (±0.25 SE) (Metrohm 888 Titran -
do), calculated using the Gran method and com-
pared with Dickson total alkalinity standards. Par-
tial pressure of CO2 (pCO2) and calcite saturation
states (ΩCa) were calculated using the CO2SYS MS
Excel Macro (Pierrot et al. 2006; Table S1 in the
Supplement) using the dissociation constants of
Merbach (1973) as refitted by Dickson & Millero
(1987) from measures of salinity, temperature, pHT

(total scale) and total alkalinity.
Over the 2 wk experimental period, the pH treat-

ments averaged 8.074 (±0.002 SE, n = 225), 7.786
(±0.002 SE, n = 225) and 7.599 (±0.003 SE, n = 225)
pHNIST. Temperature treatments averaged 22.82°C
(±0.040 SE, n = 225), 26.0°C (±0.047 SE, n = 225) and
28.39°C (±0.086 SE, n = 225). Carbonate chemistry
parameters for the treatments are presented in
Table S1 in the Supplement.

Algal growth

Algal growth as a relative growth rate (RGR) was
quantified as the increase in wet mass as a percent-
age of the initial mass of each alga. Each alga was
weighed every other day for the 2 wk experimental
period by gently blotting dry with paper towel and
recording the wet mass to the nearest microgram
(µg). Individual thalli of each species were of similar
length and weight at the beginning of the experi-
ment. Any indications of stress, in particular bleach-
ing of algal tissue, were noted. Growth of S. lineari-
folium, C. officinalis, D. pulchra and L. decussata
were estimated as the change in mass over 2 wk,
while growth of Ulva sp. and A. anceps was esti-
mated after 9 d as Ulva sp. spawned on the tenth day,
and the majority of individuals of A. anceps died in
the pH 8.1/29°C treatment on the 11th day.
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CCMs and pH drift

The ability of the algae to use bicarbonate for
photo synthesis was determined by a pH drift experi-
ment (Hepburn et al. 2011). In a pH drift experiment,
macroalgae in a closed system will alter DIC concen-
trations during photosynthesis, and thereby alter the
alkalinity of the seawater. If the macroalgae raise the
pH above 9 where there is very little CO2, this is
indicative that the algae use HCO3

− only for photo-
synthesis (Cornwall et al. 2012). If the macroalgae
are unable to raise the pH above 9, this indicates that
CO2 is a carbon source for photosynthesis, and can be
indicative of CO2-only users or CO2 + HCO3

− users
(Diaz-Pulido et al. 2016). For the drift experiment,
fresh algae were collected by hand from the same
collection sites. Only non-coralline algae were used
in this analysis as calcification and photosynthesis
are linked, and these 2 processes both together and
independently alter seawater alkalinity and DIC con-
centrations. Therefore, a pH drift analysis is inappro-
priate for determining carbon-use strategies in calci-
fying algae. Nine replicates (~0.8 g wet weight) of
each alga (excluding A. anceps and C. officinalis)
were placed in individual 40 ml airtight glass vials
filled with seawater of ambient pH 8.1. To ensure
that photosynthesis was not light limited, the vials
were placed in random order directly in front of a flu-
orescent light of 120 µmol photons m−2 s−1 for 24 h
(Hepburn et al. 2011). A pilot study determined 24 h
as the optimal time to measure maximal pH. Initial
and final pH of the seawater was measured using a
portable pH meter (Hach HQD Portable Multiprobe
± 0.02 pHNIST from factory calibration). After 24 h, the
algae were removed and the seawater was left to sit
in the open containers for a further 24 h, after which
the pH was recorded. Treatments in which the pH of
the water returned to, or approached, ambient condi-
tions (pHNIST = ~8.1) after 24 h (i.e. the seawater had
re-equilibrated with the atmosphere) indicated that
algal exudates or processes other than photosynthe-
sis did not interfere with changes to seawater pH
(Hepburn et al. 2011).

Tissue quality and carbon:nitrogen ratio

At the end of the growth experiment, the algal tis-
sue was freeze dried in preparation for elemental
analyses. The coralline algae (C. officinalis and A.
anceps) were treated with 2 ml of 1.0 M HCl to
remove carbonates, rinsed with distilled water and
then re-dried. Total carbon (%) and nitrogen (%)

content were then measured using an Environmental
Analytic Isotope Ratio Mass Spectrophotometer
(IMRS; Flash EA 112 and Delta V Plus) connected by
an Interface at 1020°C (Conflo IV). Precision esti-
mates using laboratory STD AT2 were better than
0.2‰ for both nitrogen and carbon. As Ulva sp.
released spores in the 26°C and 28°C temperature
treatments, it was excluded from analysis for carbon
and nitrogen.

Calcification rate

Calcification rates of the coralline algae, C. offici-
nalis and A. anceps, were estimated using the
‘alkalinity anomaly technique’ (Chisholm & Gattuso
1991). Fresh thalli were collected and incubated in
pH and temperature treatments for 2 wk as de -
scribed above. Following the incubation period,
approximately 0.2 g of each algal species were
placed in individual 40 ml airtight containers con-
taining experimental seawater and no air (3 pH × 3
temperature treatments) with 3 replicates per treat-
ment, for each species. Small amounts of dissolution
occur in the dark when respiration occurs instead
of photosynthesis. Therefore, closed containers
were left for 24 h in water baths to regulate tem-
perature and under 16 h night:8 h day of 20−
30 µmol photons m−2 s−1 light to allow for the meas-
urement of a daily calcification rate. Initial and
final measurements of total alkalinity of the experi-
mental seawater were measured as described
above. The production of calcium carbonate by the
thalli was calculated as:

ΔCaCO3 = (TAi – TAf) × 0.5 × 1000 × V × T−1 × W−1

where, ΔCaCO3 is the rate of CaCO3 production
(µmol h−1 g−1), TAi and TAf are the initial and final
total alkalinity (mmol l−1) respectively, V is the vol-
ume of seawater in the closed containers (l), T is time
(h) and W is wet weight of the algae (g).

Statistical analyses

For A. anceps, C. officinalis and Ulva sp., the per-
centage growth, calcification rates (if applicable), pH
drift and carbon to nitrogen ratio (C:N) were con-
trasted among treatments by analyses of variance
(ANOVA) with pH and temperature as fixed factorial
factors. For S. linearifolium, D. pulchra and L. decus-
sata, the same response variables were analysed
with linear mixed effects models with temperature
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and pH as fixed factorial factors and genetic clones
(i.e. replicates from the same plant) as a random
blocking factor using the ‘nlme’ package (Pinheiro et
al. 2017). The proportion of variance explained by
random effects were calculated for each species by
approximating fitted values for fixed effects and
extracting variance components for random effects
and the residuals. Linear mixed models were only
used for 3 of the 5 species because
clones were not used for Ulva sp., A.
anceps or C. officinalis (and thus
there was no random effect of clone).
Statistical tests were conducted in
the R environment (R Develop -
ment Core Team 2016). If replicates
among treatments were unbalanced,
a restricted maximum likelihood
framework was used (as opposed
to maximum likelihood) for mixed
effects tests. Marginal sums of
squares (type III SS) were used to
partition model components when
treatments were unbalanced for lin-
ear models with only fixed effects
(i.e. C. officinalis, A. anceps and Ulva
sp.). For all tests, model residuals
were examined for homogeneity of
variance and normality using diag-
nostic plots (e.g. residual vs. fitted
plot and Q−Q plot, respectively), and
were transformed ac cordingly if
needed (see Tables 1–3 for specific
transformations). When significant
differences among treatments were
detected, post hoc Tukey pairwise
tests among means were conducted
with the ‘glht’ function in the ‘mult-
comp’ package (Hothorn et al.
2008). When an interaction between
treatments was significant, multiple
comparisons were conducted using
the ‘multcompView’ package.

RESULTS

Algal growth

All algae increased in mass over
the 2 wk experimental period across
all treatments. The RGR of Amphiroa
anceps was the least variable (aver-
age RGR ± SE range: 9.31% ± 1.71 to

45.31% ± 4.52) and relative growth of Sargassum lin-
earifolium was the most variable (25.82% ± 19.46 to
232.21% ± 82.93) across all pH and temperature
treatments (Fig. 1). Algal growth was significantly
lower in the 28°C temperature treatment than the
ambient (23°C) treatment for all algal species, with
these declines consistent among pH treatments
(Fig. 1, Table 1). Overall, the reductions in growth
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ranged from a 30% decline in Corallina officinalis to
a 95% decline in Ulva sp. between the 23°C and
28°C treatments (Fig. 1). Bleaching of the tissues of
Delisea pulchra, A. anceps and Laurencia decussata
were observed in the 28°C treatments.

In contrast to temperature, the effects of pH on
algal growth varied among species (Fig. 1, Table 1).
The relative growth rates of Ulva sp. and C. offici-
nalis increased with decreasing pH, while the re -
lative growth rate of L. decussata decreased
(Fig. 1b,c,f). There was no detectable effect of pH
on the growth of S. linearifolium, A. anceps and D.
pulchra (Fig. 1, Table 1). For the 3 algal species in
which individual clones were used across treat-
ments, the within-clone variability (i.e. the random
effect) for algal growth was low (S. linearifolium:
7% of model variation; D. pulchra and L. decussata:
<1% of model variation).

Tissue quality and carbon:nitrogen ratio

Carbon:nitrogen ratios for each macroalgal species
were relatively insensitive to changes in pH and tem-
perature (Fig. 2, Table 2). The only exception was the
higher C:N ratio of S. linearifolium in the 28°C treat-
ment compared with the 23°C treatment (Fig. 2d,
Table 2). This change was driven by an increase in
carbon content of S. linearifolium with temperature
(F2,30 = 11.80, p = 0.0002, Tukey’s post hoc: 23°C <
26°C = 28°C; Table S2 in the Supplement); no
changes in the nitrogen content of S. linearifolium
were detected (Figs. S2 & S3, Tables S3 & S4 in the

Supplement). In addition, increasing temperature led
to increases in the absolute nitrogen and carbon con-
tent of A. anceps and C. officinalis (Figs. S1 & S2 in
the Supplement), resulting in no change to the C:N
ratio (Fig. 2). The within-clone variability (i.e. the
random effect) associated with C:N ratios was low for
D. pulchra and L. decussata (<1% of model varia-
tion), but high for S. linearifolium (64% of model
variation).

CCMs and pH drift

The pH compensation points of S. linearifolium,
Ulva sp. and L. decussata were all >9.0, indicating
that these species use HCO3

− as their main carbon
source. The pH compensation point of D. pulchra
was <9.0, indicating that it does not directly take
up HCO3

− and uses CO2 for photosynthesis (Fig. 3,
F5,51 = 63.95, p < 0.01).

Calcification rate

The effect of water temperature on the calcification
rates of both A. anceps and C. officinalis was not con-
sistent among pH treatments (a significant Tempera-
ture × pH interaction, Table 3). For A. anceps, calcifi-
cation rate was similar across all temperatures within
the highest (8.1) pH treatment, but decreased signif-
icantly with temperature within the 2 lower pH (7.8
and 7.6) treatments (Fig. 4a). For C. officinalis, calci-
fication rates decreased with increasing temperature
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                                            Sargassum linearifoliuma Delisea pulchraa Laurencia decussataa

Source                               df                     F                 p                        F                 p                        F                 p

pH                                    2,32                 1.78           0.19                 0.35             0.7                 4.28         0.02
Temperature                   2,32                 8.72           <0.01                 6.75           <0.01                 21.5           <0.01
pH × Temperature             4                   1.54           0.22                 1.82           0.15               1.44         0.24

                                                                      Ulva sp.                               Amphiroa anceps                       Corallina officinalis
Source                               df              MS           F             p                  MS            F             p                 MS            F             p

pH                                    2,36           1.92       7.22       <0.01           4.62     0.04     0.96         730.33    4.38     0.02
Temperature                   2,36           0.91       3.44       0.04           3976.71     34.31     <0.01           2991.7      17.93     <0.01
pH × Temperature         4,36           0.13       0.49       0.74           230.93     1.99     0.12         126.59    0.76     0.56
aSpecies with growth data 4th-square root transformed

Table 1. Analyses of the growth (%) of each algal species in the pH and temperature (3 pH × 3 temperature treatments with 5
replicates each). For Ulva sp. Amphiroa anceps and Corallina officinalis, growth was analysed with analyses of variance with
temperature and pH as fixed factorial factors. For Sargassum linearifolium, Delisea pulchra and Laurencia decussata, growth
was analysed with linear mixed models with temperature and pH as fixed factorial factors and individual thallus as a random
factor. Significant treatment effects (p ≤ 0.05) are in bold. Note that S. linearifolium is missing one observation due to a death in 

the pH 8.1/28°C treatment (Den df = 31)
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within the pH 8.1 treatment, but did not differ among
temperatures in the pH 7.8 and 7.6 treatments
(Fig. 4b, Table 3). Calcification rates of A. anceps
were negative at 28°C in the pH 7.8 and pH 7.6 treat-
ments, and at 26°C in the pH 7.6 treatment, indica-
ting dissolution of calcite. Similarly calcification rates
of C. officinalis were negative at 28°C in the pH 7.6
(Fig. 4b).

DISCUSSION

Increasing sea surface temperatures and OA are
widely viewed as 2 of the major threats to habitat-
forming marine species; however, the relative impact
of these stressors on macroalgae in the subtropics is

largely unknown. We showed that increas-
ing water temperature suppressed the
growth of 6 species of macroalgae in the
subtropics and that these effects were inde-
pendent of OA (i.e. decreasing pH). In con-
trast, the effects of increasing pCO2 varied
among species, with growth increasing in
Ulva sp. and Corallina officinalis, decreas-
ing in Laurencia decussata, and not chang-
ing in Sargassum linearifolium, Amphiroa
anceps and Delisea pulchra. Interestingly,
the differential responses of macroalgae to
decreasing pH were unrelated to the pres-
ence of calcification in the algal tissues, or
their mechanism of carbon uptake, 2 pro-
cesses that are predicted to be sensitive to
decreased pH (Hurd et al. 2009, Diaz-Pulido
et al. 2016, Cornwall et al. 2017a). Calcium
carbonate began dissolving from calcified
macroalgae at low pH (7.6), but growth was
either unaffected or enhanced at this pH
level. These findings illustrate the complex-
ities of the responses of marine macroalgae,
both among species and between physiolog-
ical processes, to changing environmental
conditions.

Rearing macroalgae at 28°C (i.e. 5°C
above ambient) for 2 wk reduced growth by
30−95% compared with conspecifics reared
at ambient temperatures. This decline in
growth with increasing temperature is con-
sistent with previous experimental studies
that show significant reductions in biomass
(5−35% reductions) of most subtropical
macroalgae in response to short-term (2−
3 wk) exposure to elevated (3−4°C above
ambient) temperatures (Poore et al. 2016,

Provost et al. 2017). Such short-term increases in
temperature are typical of marine heatwaves,
although +5°C is extreme. For example, the 2016 El
Niño led to seawater temperatures off of Muttonbird
Island in the Coffs Harbour region being 1.8–3.5°C
above the long-term average for 20 d in late Febru-
ary and early March 2016 (thermistor data provided
by the NSW Department of Primary Industries).
Warming of 2−4°C above long-term averages off the
Western Australian coast caused an ecosystem shift
from habitat-forming kelps to a tropical/subtropical
system dominated by algal turf communities and
corals (Wernberg et al. 2016). The differential effects
of elevated temperatures on macroalgae reported in
previous laboratory and field studies and the present
study (i.e. lethal vs. sublethal) are most likely attrib-
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uted to the duration of exposure to elevated temper-
atures (i.e. 10 wk heatwave vs. 2 wk experimental
period). Importantly, short-term marine heatwaves
are predicted to increase in severity and frequency
as greenhouse gas emissions continue to increase
(Harley et al. 2006), with future suppression of
growth and survivorship of macroalgae within their
current ranges, and shifts in their geographic distri-
butions likely. Understanding the impacts and devel-
oping strategies to mitigate the effects of ocean
warming on macroalgae is a matter of urgency.

The responses of the 6 macroalgal species to OA
were variable, and did not conform to expectations
based on the presence of calcification in the algal
tissues or the presence of a CCM. Macroalgal taxa
that have a CCM are predicted to either benefit or
be unaltered by increased pCO2 depending on the
metabolic costs of running a CCM (e.g. Zou 2005,
Wu et al. 2008, Hepburn et al. 2011, Raven et al.
2011). While the growth of 2 of the HCO3

−-using
species (S. linearifolium and Ulva sp.) conformed
to expectations and is consistent with previous
studies (Axelsson et al. 1995, Wu et al. 2008), the
reduced growth of L. decussata (the third HCO3

−

user) under low pH was counter to expectations.
Carbonic anhydrase (CA) is an important enzyme
for CCMs, converting HCO3

− and H+ ions to CO2

and H2O for CO2 to then be used for photosynthe-
sis. It has been suggested that in some instances,
the production of CA can be suppressed if the
algae are grown in a high pCO2 environment, ren-
dering the algae less efficient at carbon uptake

(Gao et al. 1993). However, in other instances,
such as in coralline species, CA activity can be
stimulated in a high pCO2 environment as found
in C. officinalis (Hofmann et al. 2013). It has also
been shown that CA assists in calcification of
coralline species and may facilitate synergistic in -
teractions between photosynthesis, calcification
and growth (Hofmann & Bischof 2014). Therefore,
a more detailed understanding of the type(s) of
CCMs and their energetic costs, how they relate to
calcification processes, and the plasticity in re -
sponse to changing pCO2 is needed to predict the
likely responses of individual species to OA.

OA is expected to be particularly deleterious for
calcifying species such as C. officinalis and A. anceps
with the reduced carbonate saturation state of
increased pCO2 making it more energetically costly
for calcareous species to calcify and subsequently
grow (Diaz-Pulido et al. 2014). Species from the order
Corallinales are the only calcifying macroalgae to
deposit the highly soluble high-Mg calcite in both the
cell surface and in the cell walls (Littler 1976), which
makes them most vulnerable to dissolution in OA
conditions (Hofmann & Bischof 2014). OA had a neg-
ative effect on calcification in both calcifying species
of this study, but the effects on the growth of these
species differed. Reduced calcification in response to
increased pCO2 has been reported across a wide
range of coralline algae (Kroeker et al. 2010, Hof-
mann & Bischof 2014) and is exacerbated by in -
creased temperature with warming further reducing
calcification and causing dissolution (Martin & Gat-
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Sargassum linearifoliuma Delisea pulchra Laurencia decussata
Source df F p F p F p

pH 2,30 0.03 0.97 2.30 0.12 1.28 0.30
Temperature 2,30 4.48 0.02 1.13 0.34 1.44 0.26
pH × Temperature 4,30 0.25 0.91 0.69 0.61 2.19 0.10

Amphiroa anceps Corallina officinalisb

Source df MS F p SS F p

pH 2 17.06 0.44 0.65 18.9 0.32 0.73
Temperature 2 13.55 0.35 0.71 158.5 2.65 0.08
pH × Temperature 4 28.59 0.73 0.58 31.2 0.26 0.90
Residual 36 39.08 1015.7
aC:N data for S. linearifolium was transformed (x −1.5)
bMarginal sums of squares (Type III SS) were used to partition model components for C. officinalis

Table 2. Analyses of the C:N ratio of each algal species (with the exception of Ulva sp.) for the pH and temperature treatments
(3 pH × 3 temperature treatments with 4 or 5 replicates each) (details of predictor variables as in Table 1). Significant treatment
effects (p ≤ 0.05) are in bold font and associated post hoc Tukey’s tests are presented. Note that the residual df differs slightly
among species due to a loss of replicates during stable isotope processing (34 for Corallina officinalis, 34 for Delisea pulchra

and 35 for Laurencia decussata)
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tuso 2009), as found here. In our study, the absolute
growth (change in mass) was positive, albeit small,
across all treatments; ranging from 0.0034 g (±0.0008
SE) in the pH 8.1 and 28°C treatment to 0.0137 g
(±0.0025 SE) in the pH 7.6 and 26 °C treatment in A.
anceps and 0.0082 g (±0.0012 SE) in the pH 8.1
and 28°C treatment to 0.0322 g (±0.0022 SE) in the
pH 7.8 and 26°C treatment in C. officinalis (Fig. S3 in
the Supplement). Interestingly, the treatments that
yielded the highest growth rates (i.e. increase in
mass) of the calcifying species also resulted in the

highest rates of calcium dissolution (Fig. 4, Fig. S3),
suggesting that organic matter accumulation was
greater than the rate of dissolution (Hofmann &
Bischof 2014). Previous studies investigating the
effects of OA on Corallina have reported mixed
results, with some reporting declines in both mass
and calcification (C. officinalis: Hofmann et al. 2012;
C. sessilis: Gao & Zheng 2010), while others have
reported no change to growth and photosynthesis,
but increased dissolution (C. officinalis: Yildiz et al.
2013; C. elongata: Egilsdottir et al. 2013). The differ-
ent responses of these species is difficult to resolve
and requires further investigation, but could relate to
differences in experimental protocols and environ-
mental conditions (e.g. light) among studies, or spe-
cies-specific differences in the ratio of CaCO3 and
other organic matter (Hofmann & Bischof 2014). For
example, absence of growth could be attributed to a
reduction in CaCO3 caused by dissolution (as growth
is mostly determined by change in mass) or the
increasing energetic demand in maintaining calcifi-
cation under reduced calcite saturation states (Yildiz
et al. 2013). This is possible as photosynthesis and
calcification have been shown to not only be posi-
tively linked, but also temperature-dependant pro-
cesses leading to the potential for growth and calcifi-
cation even if dissolution is present (Digby 1977,
Hofmann & Bischof 2014).

Although OA reduced calcification of both coral -
line species in our study, it is important to recognise
that some coralline algae have been shown to be
able to calcify, even under moderate OA conditions
(pH 7.7−7.8) predicted for the year 2100 (Kamenos
et al. 2013, 2016). This may be due to the diffusion
boundary layer that can form in some species as a
result of flow and metabolic processes, and subse-
quently buffers the corrosive effect of decreased pH
(Cornwall et al. 2014). Alternatively, some coralline
algae are able to increase the pH in the microenvi-
ronment between their surface and the seawater
(Hofmann et al. 2016) and at the site of calcification
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Corallina officinalis Amphiroa anceps
Source df MS F p MS F p

pH 2 4.24 × 10−6 16.15 <0.01 1.06 × 10−7 22.24 <0.01
Temperature 2 6.76 × 10−6 25.77 <0.01 9.49 × 10−6 19.83 <0.01
pH × Temperature 4 9.81× 10−5 3.74 0.02 2.42 × 10−6 5.05 <0.01
Residual 18 2.62 × 10−5 4.79 × 10−5

Table 3. Analyses of variance for the effects of pH and temperature on calcification rates (µmol g−1 d−1) of Corallina officinalis
and Amphiroa anceps (3 pH × 3 temperature treatments with 3 replicates each). Significant treatment effects (p ≤ 0.05) are in

bold. Contrasts between main effects were explored with relation to interactions among treatment levels (see Fig. 2)
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within the calcifying fluid (Cornwall et al. 2017a).
These processes appear to be context, species and
mechanism specific (Roleda et al. 2012, Cornwall et
al. 2017a), but may explain why growth and calcifi-
cation for both study species were decoupled. The
variability in growth and calcification responses of
both calcifying species to acidification is consistent
with other studies (e.g. Hofmann et al. 2012,
Comeau et al. 2013). Calcification is a key algal trait
that allows persistence of coralline algae in heavily
grazed systems and so reduced calcification is likely
to have important consequences in a changing envi-
ronment (Bü den bender et al. 2011, Hofmann et al.
2012).

Understanding how other changes to plant tissue
quality, such as increases in the C:N ratio, potentially
making algae less palatable to herbivores, will also
be important for predicting the ecosystem wide
impacts of a changing ocean. The C:N ratio of most
algae in this study was unaffected by both tempera-
ture and OA. The only exception was S. linearifolium
in which the C:N ratio increased with temperature.
However, the fixed effects of the analysis did not
account for much of the variation. The lack of change
to the C:N ratio in these 6 species may be due to the
short duration of this study, and quantifying potential
longer-term changes to the nutritional quality will be
important for understanding the likely outcomes of
plant−herbivore interactions. Many other studies
have reported no change to %C, %N or the C:N ratio
in response to increased temperatures (e.g. Simon-
son et al. 2015) or a combination of pH and tempera-
ture (e.g. Poore et al. 2013, Mensch et al. 2016). How-
ever, Brown et al. (2014) reported an increase in the
C:N ratio of Macrocystis pyrifera in response to an
increase in temperature (+3°C) and OA (1500 µatm)
after a 4 wk experimental period. As herbivores
strongly determine algal abundance in coastal sys-
tems (Poore et al. 2012), it is important to consider
how changes to both herbivore grazing rates and
algal palatability may be affected by climate change
(Kroeker et al. 2010). The control of primary produc-
ers by herbivores is predicted to be stronger with
increased temperature (O’Connor 2009), and con-
sumption rates have been shown to decrease (Siika -
vuopio et al. 2007, Falkenberg et al. 2014), increase
(Cummings et al. 2011) or be unaffected (Gooding et
al. 2009) by increasing pCO2. Few studies have in -
vestigated whether these changes are best explained
by effects on the consumers or producers.

Predicting the effects of ocean warming and acidi-
fication is also complicated by potential interactions
between these 2 stressors (e.g. Wernberg et al. 2012,
Koch et al. 2013, Kroeker et al. 2013a, Przeslawski et
al. 2015). Our results suggest that although pH and
temperature acted independently on macroalgal
growth, the effects of pH on the calcification rate of
the 2 coralline algae did vary with temperature. As
calcification scales positively with temperature (Mar-
tin et al. 2006), increasing temperature may buffer
the negative effects of OA (Byrne et al. 2013). How-
ever, it seems that for calcareous algae, warming
exacerbates the negative effects of pH on calcifica-
tion (Anthony et al. 2008, Diaz-Pulido et al. 2012, Sin-
utok et al. 2012, this study). This might be because
warming increases the rate of dissolution of algal
CaCO3 (e.g. Reyes-Nivia et al. 2013). Coralline algae
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are composed of high-Mg calcite, a highly soluble
form of CaCO3, which is predicted to become under-
saturated in the ocean worldwide as a result of pre-
dicted warming for the year 2100 (Kuffner et al. 2008,
Martin & Gattuso 2009). This is important for calcare-
ous algae because of the role CaCO3 plays in their
ecology. Coralline algae are critical to coastal ecosys-
tems as they provide structure, habitat, food, induce
larval settlement and metamorphosis of a variety of
different species, and play key roles in carbonate
deposition (Nelson 2009). As coralline algae also
range from polar to tropical habitats and from deep to
shallow zones, the synergistic interaction between
pH and temperature on calcification seen in this
study could be detrimental to ecosystems worldwide
(Nelson 2009).

In summary, increasing ocean temperatures appear
to pose a greater threat than OA to the growth and
persistence of subtropical macroalgal assemblages.
Elevated water temperatures had consistent negative
effects on macroalgal growth, while the effects of
OA were species specific. Counter to expectations,
changes in macroalgal growth in response to reduced
pH were not related to the presence of calcium car-
bonate in the algal tissues, or inorganic carbon physi-
ology. The results of this study further reinforce the
point that macroalgal responses to climate change are
species, process and mechanism specific, making it
difficult to draw generalities in predicting likely
future trajectories. Clearly, further research is needed
to understand how marine macrophytes and other
marine habitat-forming organisms will be affected by
ocean warming and acidification, and how these
changes may influence trophic interactions (O’Connor
2009, Kroeker et al. 2013a, Poore et al. 2013) and the
structure of communities (Asnaghi et al. 2013, Ferrari
et al. 2015). Given the fundamental role that primary
producers play in marine food webs and nutrient cy-
cling, the development of an accurate prediction
model for future climate change impacts is critical.
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