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Accurate modelling of electron transport in plasmas, plasma-liquid and plasma-tissue interactions requires (i)
the existence of accurate and complete sets of cross-sections, and (ii) an accurate treatment of electron trans-
port in these gaseous and soft-condensed phases. In this study we present progress towards the provision of
self-consistent electron-biomolecule cross-section sets representative of tissue, including water and THF, by
comparison of calculated transport coefficients with those measured using a pulsed-Townsend swarm experi-
ment. Water-argon mixtures are used to assess the self-consistency of the electron-water vapour cross-section
set proposed in [de Urquijo et al. J. Chem. Phys, 141, 014308 (2014)]. Modelling of electron transport in
liquids and soft-condensed matter is considered through appropriate generalisations of Boltzmann’s equation
to account for spatial-temporal correlations and screening of the electron potential. The ab-initio formalism is
applied to electron transport in atomic liquids and compared with available experimental swarm data for these
noble liquids. Issues on the applicability of the ab-initio formalism for krypton are discussed and addressed
through consideration of the background energy of the electron in liquid krypton. The presence of self-trapping
(into bubble/cluster states)/solvation in some liquids requires a reformulation of the governing Boltzmann equa-
tion to account for the combined localised-delocalised nature of the resulting electron transport. A generalised
Boltzmann equation is presented which is highlighted to produce dispersive transport observed in some liquid
systems.

I. INTRODUCTION

The application of plasmas in medicine is a key new field
that relies on the synergistic effects of plasmas interacting
with human tissue and liquids (see the roadmaps [1–3]). Op-
timization of efficacy and selectivity of future generation
plasma-medicine is dependent on (among other things) a de-
tailed understanding of the underlying fundamental micro-
scopic physics and associated predictive modelling. Electron-
induced processes and interactions with biomolecules that
constitute human tissue (e.g. water, DNA bases and sugars)
play a key, though understudied, role in these systems [1–3],
and there remain many fundamental research questions that
underpin this understanding.

As a necessary input, progress in plasma-based medical ap-
plications requires a comprehensive database of electron-
induced processes in representative biomolecules so that in-
formed predictive models including electron transport in hu-
man tissue can be constructed. The atomic and molecular
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physics community has been active in this space, both theo-
retically and experimentally, and there are a number of bio-
logically relevant targets for which electron scattering cross-
sections have been extensively studied. Of particular note
is water: as the natural surrogate for human tissue it has re-
ceived particular attention [4–16]. More recently, while elec-
tron scattering from DNA is currently not convenient to study,
electron scattering from tetrahydrofuran (THF - C4H8O) has
been systematically investigated as a close analogue for 2-
deoxyribose, a sugar that links phosphate groups in the DNA
backbone [17–25]. Electron scattering from other biologically
relevant molecules studied include pyrimidine, tetrahydrofur-
furyl alcohol, para-benzoquinone and others [23, 26–31], and
the reader is referred to the comprehensive review article [32]
for further details.

Despite the wealth of scattering information for electron-
biomolecule interactions, there are always issues associ-
ated with the completeness and accuracy of the electron-
biomolecule cross-section sets subsequently formed. In recent
times we have developed a program for the measurement, as-
sessment and subsequent application of electron interactions
with biologically relevant molecules [8, 12, 13, 17, 18, 24].
Our rationale is to establish the most accurate cross sections
for all relevant collision processes, by combining accurate
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measurement of scattering events with contemporary, state-
of-the-art molecular theoretical models. These cross sections
are compiled into self-consistent sets, which are then tested
for accuracy and completeness using the swarm process [33–
36]. In a swarm experiment, electrons are driven through a
gas (or liquid) under the influence of an electric (and possi-
bly magnetic) field and the associated currents are measured
and interpreted in terms of transport coefficients. The elec-
tron velocity distributions are distinctly non-equilibrium and
this non-equilibrium nature varies as the applied field to pres-
sure ratio is varied. Comparison of calculated and measured
swarm transport properties provides an assessment of the par-
ticle, momentum and energy balance within the cross-section
set. Iterative adjustments within the error bars of the experi-
ment and theory can then yield cross-section sets with a mea-
sure on the self-consistency of the electron-biomolecule cross-
section set [8, 12, 13, 15, 19, 37, 38].

The transition from the gas phase to address electron transport
in biological soft-condensed matter for modelling plasma-
tissue interactions is an extremely difficult problem. The crud-
est approximation is to scale the dilute gas phase results to
liquid densities. Experimental evidence however indicates the
treatment of electron transport in the liquid phase is consider-
ably more complex than this - even for simple atomic liquids
and particularly at low energies [39–47]. We have developed
a program that aims to address those deficiencies. Our start-
ing point has been to consider electron transport in cryogenic
atomic liquids as the simplest prototype of electron transport
in liquids. For such systems there exists a wealth of electron
swarm experiments [39, 41–50] to facilitate benchmarking of
the theoretical foundations.

There are various theoretical approaches to the modelling of
electron transport in atomic liquids [39–43, 45, 46, 48–51].
Generally these theories have restricted domains of validity
and are separated into various models dependent on the inher-
ent mobility of electrons within the dielectric liquid. For high
mobility liquids (e.g. argon, xenon, krypton) the electron is
treated essentially as a “free” particle that is coherently scat-
tered from atoms/molecules in the background medium which
exhibits short range order but no/limited long range order of
atoms/molecules which are in thermal motion. Scattering is
treated through an effective single particle scattering process,
where the dominant effects that are included in its calculation
are (i) the liquid structure and the spatial and temporal correla-
tions of the constituent molecules within the soft-matter , (ii)
the modifications to the electron interaction potential within
the liquid environment, and (iii) the background energy of the
electron within the liquid or equivalently the energy at the bot-
tom of the conduction band, V0 [39–43, 46, 48–51].

While the foundations for accounting for the liquid’s tempo-
ral and spatial correlations are clear [51], there exists a vari-
ety of different methods for calculating the effective scattering
potential that the electron sees within the liquid [39–43, 48–
50]. The foundations were laid by Lekner [40] building up
the effective potential from the electron-single atom potential

and the pair correlation function. Atrazhev and co-workers
[52, 53] simplified this process by identifying that the cross-
section at low energies became energy independent and de-
pendent solely on density. The energy range for constancy
in the cross-section was a flexible parameter that was empir-
ically determined. In subsequent studies, Atrazhev and co-
workers [49, 50, 54] developed a theory for calculating the
cross-section based on muffin tin potential using the using a
variable phase-function method with an effective range de-
fined by the Wigner- Seitz sphere surrounding each atom in
the liquid. The quantity of V0 has been addressed using differ-
ent approaches, including an assumption of quasi-periodicity
inside of Wigner-Seitz cells [55–58], extensions to include
perturbations due to the distribution of atomic positions [59]
and path-integral techniques [60, 61]. More recently, Evans
and co-workers have proposed a local-Wigner-Seitz theory to
calculate V0. They combine these calculations with field en-
hanced photoemission [62] and field-ionisation measurements
[63] to obtain V0 in a variety of gases and liquids, and ex-
plore parameter regimes that include the critical point in these
species.

In contrast to the above, a number of other theories emerged
whose foundations are different. Sakai et al. [42, 43] used
a swarm-derived iterative fitting procedure to adjust the mo-
mentum transfer cross-sections (and an inelastic process) to fit
the experimental transport data. Borghesani and co-workers
[46] heuristically combined the liquid effects identified above
to obtain an effective cross-section, utilising gas-phase cross-
sections and sampling a shifted energies to account for the V0

effects. Their results continue to be very accurate and could
predict the enhancements/reductions in the zero-field mobil-
ity. Likewise, the theory developed by Braglia and Dallacasa
[64] using a Green’s function approach with appropriate ap-
proximations to the self-energy could explain this behaviour.
Unfortunately they did not go beyond linear response theory
and hence the theory was not able explain non-equilibrium
behaviour at high fields.

For low electron mobility liquids (e.g. neon, hydrogen, wa-
ter, etc.), the physical mechanisms present for electrons are
distinctly different. Polischuk [65, 66] applied the Green’s
function approach to calculate mobility in dense polar gases
from the vertex functions, accounting for the anisotropic na-
ture of the scatterers, comparing to the measurements and the-
ory of Krebs and co-workers [67–69]. In addition to the above
scattering processes, in such systems electrons can be trapped
(self-trapped) within in the liquid through a variety of differ-
ent mechanisms [59, 70–77] and electron becomes localised
in space. Some trapped states can be quite stable while oth-
ers may only be weakly bound [41, 59, 70, 71]. The trans-
port is thus physically both localised and delocalised in na-
ture. Gallicchio and Berne [78] obtained real-time correlators
by maximum entropy inverse of imaginary-time path integral
Monte-Carlo calculations. This allowed them to extract both
the existence of localised states and the diffusion coefficient of
delocalised states. There were attempts to theoretically model
this transport behaviour [41, 45], however there was no unified
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model developed to describe the non-equilibrium behaviour
observed for neon.

Recently, we have attempted to develop an ab-initio uni-
fied theory, which builds upon the foundational works [39–
43, 45, 46, 48–51] accounting for the various components as-
sociated with scattering detailed above [79, 80], as well as the
combined localised-delocalised nature of transport that has
been demonstrated to exist in such media [41, 81]. We bring
to bear the modern day scattering and transport theory, over-
coming a number of approximations that are present in some
of the earlier investigations. We avoid the use of approximate
potentials (e.g. the Buckingham potential which neglects the
exchange interaction - the errors of which we have highlighted
previously [79], or the retention of only the important parts of
the potentials [49]), and instead use the accurate forms for
the electron-atom interaction which are systematically bench-
marked in the gas-phase. From a transport theory viewpoint,
we develop and implement a multi-term Boltzmann equation
solution framework to model highly non-equilibrium electron
transport in liquids. All previous theories have been two-term
in nature, which a priori assumes a quasi-isotropic velocity
distribution and restricts the ability to account for the highly
anisotropic nature of the effective differential scattering cross-
section for electrons in liquids.

We begin this study in Section II with a brief review of Boltz-
mann’s equation and the associated multi-term solution tech-
nique. In Section III, we present results for both gaseous wa-
ter and THF, including new self-consistency checks of water
cross-section through an analysis of mixtures with argon gas.
The foundations for our ab-initio treatment for electrons in
atomic liquids are detailed in Section IV, and applied to the
development of scattering cross-sections for electrons in liq-
uid argon and liquid krypton. The self-consistency of these
cross-sections is assessed through comparison with available
swarm experiments in the associated liquids. In Section V,
we consider evidence for other physical processes present in
liquids and highlight further and future modifications to trans-
port theories required to treat electron transport in general liq-
uid and soft-condensed systems. We conclude in Section VI
with a summary, together with some key challenges for further
studies in this domain.

II. THEORY

A. Multi-term solution of Boltzmann’s equation

Non-equilibrium electrons drifting and diffusing through mat-
ter, whether it be in the gaseous, liquid or soft-condensed
state, subject to an external electric field E, can be described
by the solution of the Boltzmann’s equation for the phase-

space distribution function F (r,v, t):

∂F

∂t
+ v · ∇F +

eE

me
· ∂F
∂v

= −J(F ), (1)

where r, v and e denote the position, velocity and charge
of the electron respectively. The collision operator J(f) ac-
counts for all the necessary collision types and interactions be-
tween the electrons of mass me and the background medium.
For each process in each mixture component, there are vari-
ous contributions to the collision operator associated with the
various collision processes:

J(F, F0) =
∑
i

αi
[
JWUB(F, F i0) + JA(F, F i0) + JI(F, F

i
0) + ...

]
,

(2)
where the sum is over the components in the mixture, αi rep-
resents the mole fraction of component i and F i0 is its neu-
tral velocity distribution function. Suppressing the mixture
index, the elastic, inelastic and super elastic collisions in the
gas phase are described by [82]:

JWUB(F, F0) =
∑
jk

∫ [
F (r,v, t)F0j(v0) (3)

− F (r,v′, t)F0k(v0
′)
]
gσ(jk; gχ)dĝ′dv0

and σ(jk; gχ) is the differential cross section for the scatter-
ing process (j, v,v0)→ (k,v′,v′0), with cosχ = g ·g′ where
g represents the relative velocity in the collision, and j, k are
the internal states of the molecule. F0j(v0) is a Maxwell-
Boltzmann distribution for neutrals with internal state j. Elec-
tron attachment processes (e.g. dissociative electron attach-
ment (DEA)) are described by:

JA(F, F0) =
∑
j

F (r,v, t)

∫
F0j(v0)gσA(j; g)dv0 , (4)

where σA(j, g) is the relevant attachment cross section. The
ionisation operator implemented takes the form [83]:

JI(F, F0) =
∑
j

n0j

{
vσI(j; v)F (r,v, t)

}
, (5)

− 2

∫
v′σI(j; v

′)B(v,v′; j)F (r,v′, t)dv′

where σI(j, v) is the ionization cross-section and B(v,v′; j)
is the probability for one of the two electrons after ionisation
having a velocity in the range of v to v + dv, for incident
electron velocity v′.

Modifications to the collision operators to account for addi-
tional processes present in soft-condensed matter (e.g. coher-
ent scattering and the combined localised-delocalised nature)
are detailed below in Sections IV A and V.

With all collision operators defined, the first step in solution
of (1) is typically the representation of the distribution func-
tion in directions of velocity space through an expansion in



4

spherical harmonics Y [l]
m (v̂):

F (r,v, t) =

lmax∑
l=0

l∑
ml=−l

f (l)
ml

(r, v, t)Y [l]
ml

(v̂) . (6)

where v̂ denotes the angles of v. Note that this reduces
to an expansion in terms of Legendre polynomials Pl(cos θ)
for rotational symmetry considered here. It has long been
established that a multi term analysis is often required, in
which lmax must be varied incrementally until some conver-
gence/accuracy criterion is attained. It is not at all unusual to
require an lmax > 5 to have transport coefficients accurate to
better than 1% for electrons in molecular systems. Note that
one simply increments lmax until (6) (or integrals involving it)
converges to within the desired accuracy.

For the transport coefficients under consideration in this study,
using the orthogonality of spherical harmonics, combining (1)
and (6) leads to the following system of coupled equations for
f

(l)
m under spatially homogeneous conditions:

J lf (l)
m −

eE

m

{
l + 1

2l + 3

[
d

dv
+
l + 2

v

]
f (l+1)
m

− l

2l − 1

[
d

dv
− l − 1

v

]
f (l−1)
m

}
= 0. (7)

The transport coefficients can then be calculated directly from
solution of the above system of equations (7). Of particular
note here, we consider the flux drift velocity via:

W =
4π

3

∫ ∞
0

vf
(1)
0 (v)v2dv, (8)

where the distribution function is normalised according to
4π
∫∞

0
f

(0)
0 (v)v2dv = 1. The reduced effective ionization

coefficient is calculated via

R/n0 = 4π

∫ ∞
0

(σI − σA) f
(0)
0 (v)v2dv, (9)

where n0 is the neutral number density, which can be directly
related to the first Townsend ionization coefficient α [84]. In
this study we also compute the characteristic energy (ratio
of the transverse diffusion coefficient to the mobility, DT /µ,
where µ = W/E) [33]. For further details on the multi-term
solution of Boltzmann’s equation and calculation of the vari-
ous transport coefficients the reader is referred to [85–87].

III. TOWARDS SELF-CONSISTENT
ELECTRON-BIOMOLECULE CROSS-SECTION SETS

As detailed in Section I, swarm experiments provide one of
the key discriminating tests on the accuracy and complete-
ness of cross-section sets [33, 35, 36]. In swarm experiments,

electrons are passed through matter of known temperature
and pressure (density) under the influence of applied external
fields. Currents are interpreted in terms of transport coeffi-
cients such as drift velocities, diffusion coefficients and ion-
ization/attachment rates. In the gas phase, experiments are
conducted over a range of applied electric fields and pressures.
Comparison of measured transport coefficients with those cal-
culated from transport theory/simulation enables one to assess
the ability of the proposed cross-section set to accurately rep-
resent particle, momentum and energy (and higher order) bal-
ance.

In the current program on swarm transport in gaseous sys-
tems, we utilise a pulsed-Townsend (PT) experiment swarm
technique to measure drift velocities, diffusion coefficients
and various rate coefficients [88–91]. The primary aim is to
build and then assess the completeness and accuracy of vari-
ous electron-biomolecule cross-section sets.

A. Experimental measurement of electron transport
coefficients using the pulsed Townsend method

A schematic of the PT experiment is shown in Figure 1. Elec-
trons are generated from the aluminium cathode by the in-
cidence of a UV pulsed-laser (355 nm, 3 ns duration, 1Hz
repetition rate). The electrons (and their subsequent ions gen-
erated) are accelerated through the parallel plate capacitor ar-
rangement via an applied potential difference, and a balance
is achieved between the energy input from the field and that
dissipated in collisions. The displacement current in the ex-
ternal circuit is measured, with the faster component repre-
senting the electrons and the slower component representing
the ions generated. The analysis of the electron component
enables the determination of the electron drift velocity, the
longitudinal diffusion coefficient and the effective ionization
coefficient [88, 89].

All the measurements were carried out at room temperature
(291-301 K) and were measured with a thermocouple probe
to an accuracy of ±0.5 K. Measurements were repeated at var-
ious pressures and fixed E/n0, with the low-pressure limit
determined by the minimum anode voltage required to avoid
space-charge effects. Explicit details for the experimental pa-
rameters used for electrons in pure water are presented in [8],
while those for pure THF are detailed in [19]. Water-Ar mix-
tures with 5%, 10%, 20% and 50% water were studied here. In
order to avoid water saturation effects, all water partial pres-
sures were kept below 16 Torr (saturation vapour pressure is
close to 20 Torr at the room temperatures used in these experi-
ments). High purity water (Sigma Aldrich) was used through-
out, while the Ar gas sample was obtained from Praxair with
a stated purity of 99.995%. Gas mixtures were prepared in-
side the experimental chamber using an absolute capacitive
pressure transducer with an accuracy of 0.15 %. A fixed gap
distance of 31 mm was used, set with a micrometer to an ac-
curacy of 0.025 mm. Base vacuum pressures of 2 × 10−6
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Figure 1. Schematic representation of the pulsed Townsend experi-
ment.

Torr could be achieved, while the minimum water-Ar mixture
pressure used was 1 Torr.

B. Electron swarms in pure water and pure THF gases

In Figure 2, we present experimental results for the drift veloc-
ity for electrons in pure water and pure THF. We consider the
density-reduced electric field (E/n0) range from 0.1 - 1000
Td (1 Td = 10−21V m2) while background gas mixture tem-
perature is fixed between 293-300 K for all measurements.
The drift velocities between the two biomolecules are both
quantitatively and qualitatively different. At low fields, the
electron drift in water is lower than THF, while the situation
is reversed at higher electric fields. For electrons in water,
at reduced fields below approximately 35 Td, the deviation
from thermal equilibrium is suppressed due to the the large
number of rotational channels. For THF, the thermal equilib-
rium deadlock is broken at lower fields than for water, reflect-
ing the reduced rotational cross-sections in THF. From 35-90
Td, a quasi-runaway situation develops for electrons in water
vapour due to the rapidly falling momentum transfer and ro-
tational cross-sections in this energy regime - the implications
are discussed further below. For THF there is no such quasi-
runaway regime. Above these fields, electronic and ionisation
channels open up and the field variation of the drift velocity
in both systems remain relatively constant between the two.

In the study of Ness et al. [12] we revisited the issue of assess-
ing the completeness, accuracy and consistency of electron
water vapour cross-section sets through comparisons of cal-
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Figure 2. Comparison of the electron drift velocities in water vapour
and THF. The water vapour results are calculated using the cross-
section set proposed in [8] with the available experimental swarm
measurements of Cheung and Elford [92], Hasegawa et al. [9] and
de Urquijo et al. [8]. The THF results are calculated using the cross-
section set proposed in [19] developed using the PT measurements
in that same study.

culated transport coefficients with those measured in swarm
experiments using an improved Boltzmann equation solution
code to facilitate higher accuracy. The study focussed on sen-
sitivity to the calculated transport coefficients arising from
new cross-section measurements of the electronic-state exci-
tations of Brunger and co-workers [14]. The cross-section set
was refined in a subsequent study where mixtures of water
vapour with helium were considered [8]. The primary mod-
ification was a slight change to the total momentum transfer
cross-section which ensured self-consistency with the mea-
sured drift velocities in mixtures with helium to within ap-
proximately 5% over the range of reduced fields and He con-
centrations considered. The results for the pure water vapour
are displayed in Figure 2.

In the recent study of Casey et al. [19], we revisited the set of
cross-sections for electron impact on THF proposed by Gar-
land et al. [17] and utilised where appropriate new/updated
cross-sections available since that study. Until the study of
Casey et al. [19] there was no experimental swarm data avail-
able to assess the self-consistency of the cross-section set pro-
posed. A sensitivity study of the transport coefficients to the
errors and uncertainties in the various electron-THF scatter-
ing cross-sections was conducted. It was clear from the sen-
sitivity study that there was physics missing from the avail-
able cross-sections. In addition to extrapolations to the exist-
ing elastic and dissociative electron attachment cross-sections
where data/calculations did not exist, we found that addi-
tional energy deposition channels were required and which
were proposed as neutral dissociation (ND) channels. ND
cross-sections are not currently measurable and the swarm
technique represents a possible means of establishing such
cross-sections. Figure 2 demonstrates that the proposed cross-
section set is essentially self-consistent with the available ex-
perimental swarm data. The reader is referred to [19] for fur-
ther details.
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C. Electron swarms in water-argon gas mixtures - a further
assessment

A further test on the self-consistency of a particular cross
section set is to consider mixtures with an atomic/molecular
species whose cross-sections are known accurately [34, 93–
95]. This addition of the atomic/molecular species modifies
the energy and momentum balance within the swarm, and
consequently the velocity distribution of the electrons.

As detailed above, this process was adopted in [8], where
the self-consistency of the water vapour cross-sections was
assessed and improved using mixtures with helium. In this
study, we present a further test on the self-consistency of
electron-water cross-sections through the consideration of
electrons in mixtures of water with argon. The electron im-
pact cross-sections for argon are distinctly different to those
in helium and hence the modifications to the energy distribu-
tion function arising over the reduced electric fields consid-
ered will sample the water vapour cross-sections in a manner
different from those in the pure and helium mixture cases.

In Figure 3, we present the experimental data for electrons in
various water-argon mixture ratios ranging from 5% water to
50% water (see Table I for tabulated values). It is clear that
the drift velocity profiles are very sensitive to the mixture ra-
tio, highlighting the modifications to the velocity distribution
function. Interestingly, we observe for the 5% and 10% water
mixture ratios the emergence of negative differential conduc-
tivity (NDC) [96, 97], i.e. the fall of the drift velocity with
increasing reduced electric fields. The existence of NDC for
mixtures has been observed and understood previously [98–
100], and arises for certain combinations of momentum and
energy transfer rates. The addition of a small fraction of wa-
ter to argon then begins to modify the energy transfer via the
substantial rotational and vibrational processes present, and
presents the necessary conditions for NDC to arise.

In this process, we can assess the self-consistency of the
electron-water cross-section set proposed in [8]. We should
emphasise that anisotropic scattering is considered in both
the elastic and rotational cross-sections. Superelastic scat-
tering processes in water are considered through thermally
excited rotational state populations calculated according to
Boltzmann statistics. The reader is referred to [8] for further
details. For argon, we utilise the cross-section set proposed by
Biagi (MAGBOLTZ V8), for which self-consistency has been
recently assessed [101].

We observe from Figure 3 that the set of water vapour
cross-sections proposed in [8] is consistent with the new
water-argon mixture data in the low-energy and high-energy
regimes. The set describes the NDC present in the 5% and
10% water cases, however it also predicts (albeit a weak one)
NDC in the 20% case which is not observed experimentally.
In the intermediate energy regimes, the calculated NDC pre-
dicted is more pronounced than observed experimentally. The
largest discrepancies between the calculated and measured
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Figure 3. Variation of the drift velocities (top) and mean energy (bot-
tom) of electrons with reduced electric fieldE/n0 for varying water-
argon mixture ratios. The symbols represent the measured values
using the current pulsed-Townsend technique while the solid lines
represent the calculated values from a multi-term Boltzmann equa-
tion solution using the water vapour cross-section set proposed in [8].
See legend in figure for further details.

appear in the intermediate energy regimes where the mean
swarm energies are in the range of 2-5 eV as shown in Fig-
ure 3. This indicates that further assessment/refinement is re-
quired in developing a self-consistent cross-section set. We
also highlight there is other physics which should possibly be
investigated.

In Figure 3, we observe the presence of a “quasi runaway”
regions for the various mixtures. This is highlighted by the
regions of rapid increase in the mean energy of the electron
swarm with increasing reduced electric field, and is indica-
tive of cross-sections which are falling off sufficiently rapidly
with energy. From a numerical calculation of transport coef-
ficients viewpoint, this manifests itself as poor convergence
rates, or convergence that is very sensitive to the numeri-
cal technique parameters. This was recently discussed in
[102, 103]. Furthermore, it could be that in this small region
of E/n0 the hydrodynamic approximation breaks down, and
drift and diffusion coefficients alone may not be sufficient to
describe the current trace. These regions ofE/n0 warrant fur-
ther investigation, and resolution may be achieved in this re-
gion using a Monte Carlo technique [104] or space-time non-
hydrodynamic Boltzmann equation solution [105] to simulate
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directly the form of the displacement current in the external
circuit and compare with the measured current trace.

IV. ELECTRON SWARMS IN ATOMIC LIQUIDS

As we strive towards a treatment of non-equilibrium electron
transport in soft-condensed biological matter, we need to be
able to translate and adapt the information gained from the
electron-molecule interactions in the gas-phase to the soft-
condensed phase. As detailed above, the treatment of electron
transport in liquids involves distinctly more complicated phys-
ical processes than in the gaseous and crystalline phases. The
randomness assumption inbuilt in the theoretical treatment of
gases is no longer present, and neither is the long range order
generally present in crystalline materials. Rather in liquids
there exists some short range order, where the scattering cen-
tres are spatially and temporally correlated. For electrons in
liquids and dense gases, we often have the situation where the
de Broglie wavelength of the electron is of the order of the
average inter-particle spacing ∼ n

−1/3
0 . In this regime, the

electron can no longer be considered as a point particle, and
must be treated as a wave, coherently scattering from scat-
tering centres which are temporally and spatially correlated.
Furthermore, in these phases the electron-atom interaction po-
tential is modified from that in the dilute gas phase through
screening effects. In what follows, we detail an ab-initio for-
mulation that adapts the gas phase treatment and addresses
the additional complexity associated with treating electrons in
liquid environments [79, 80].

A. Coherent scattering effects

In previous studies the development of a collision operator in
the multi-term formalism was presented that accurately treats
the effects of coherent elastic scattering present in liquids and
dense matter [106, 107]. An expression for the adjoint colli-
sion operator was developed from the definition of the double
differential cross-section where it was represented in terms of
the product of the single particle (screened) differential cross-
sections and the dynamic structure factor [108]. In summary,
the spherical harmonic projections of the elastic collision op-
erator, in the small mass ratio limit, accounting for coherent
scattering, are given by:

J0
(
f

(0)
0

)
=

m

m0v2

d

dv

{
vν1(v)

[
vf

(0)
0 +

kT

m

d

dv
f

(0)
0

]}
(10)

J lf (l)
m = ν̃l(v)f (l)

m for l≥1, (11)

where m0 is the mass of the atom, and

νl(v) = n0v2π

∫ π

0

σ(v, χ) [1− Pl(cosχ)] sinχdχ, (12)

is the binary l-th order transfer collision frequency in the ab-
sence of coherent scattering effects with σ(v, χ) representing
the (screened) differential scattering cross-section. In addi-
tion,

ν̃l(v) = n0v

(
2π

∫ π

0

Σ(v, χ) [1− Pl(cosχ)] sinχdχ

)
(13)

are the structure-modified higher-order collision frequencies
that account for coherent scattering [107], while

Σ(v, χ) = σ(v, χ) S

(
2mv

~
sin

χ

2

)
, (14)

represents an effective differential cross-section and S is the
static structure factor. The static structure factor is a mea-
surable quantity and can also be determined from the pair-
correlator. In what follows we also define the momentum
transfer collision frequencies without and with coherent scat-
tering via ν1(v) = n0vσm(v) and ν̃1(v) = n0vΣm(v), re-
spectively. In a two-term framework only these can be sam-
ple. The multi-term solution procedure enables higher order
components of the differential cross-sections to be sampled.
The reader is referred to [79, 107] for further details.

B. Screening of the scattering potential and ab-initio
calculation of liquid-phase scattering cross-sections

While the coherent scattering of an electron takes into account
that the electron wavepacket extends over many atoms, ex-
hibiting interference in elastic scattering processes, this only
addresses part of the multiple scattering features that take
place in dense media. We must also account for the scatter-
ing environment of each individual atom, which is modified
by the presence of the surrounding atoms. In particular we
would like to include effects of polarisation screening and the
overlap of the surrounding atom potentials.

Figure 4 depicts these contributions. An isolated atom (see
Figure 4a)) feels a potential due to a test charge placed nearby.
This potential can be broken into a static part from the ground
state of the atom and a polarisation contribution which re-
sults from the test charge inducing a multipole structure in
the atom. In the liquid this atom, denoted as the “focus atom”
to distinguish it from its surrounds, also senses the multipoles
that are induced in the surrounding atoms. The major con-
tribution comes from the induced dipole of the atom. As the
majority of these dipoles in the surrounds are oriented against
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Figure 4. Schematic representation of the various components of the
screening of the electron-atom potential in a liquid environment. a)
Gas phase potential is a combination of the static interaction potential
Ustatic and the polarisation component Upol; b) Interaction potential
U1 associated with the “focus atom” is a combination of Ustatic and
the polarisation potential screened by the surrounding atoms; c) In-
teraction potential U2 associated with the surrounding atoms. Here r
denotes the position of the electron and s the position of surrounding
atoms.

the focus atom’s dipole, the overall effect is to screen the focus
atom’s dipole, making the polarisation contribution weaker.
We obtain this screening function f(r), where r is the distance
of the electron from the focus atom, by averaging over the
surrounding atomic positions and solving the self-consistent
equation:

f(r) = 1− πN
∫ ∞

0

ds
g(s)

s2

∫ r+s

|r−s|
dtΘ(r, s, t)

αd(t)f(t)

t2
.

(15)
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Figure 5. The screening function F (r) of the polarization interaction
potential for scattering of an electron from a single atom: of argon
(n0 = 0.0213 Å−3) and krypton (n0 = 0.0172 Å−3).

Here g(s) is the pair correlator, αd(t) is the dipole polaris-
ability for an electron at a distance t from an isolated atom
and

Θ(r, s, t) =
3

2

(s2 + t2 − r2)(s2 + r2 − t2)

s2
+(r2 + t2−s2).

(16)
The screening function is shown in Figure 5 for various atomic
liquids. In the limit of r → 0 the spherical symmetry of
the surrounding atoms causes no screening to occur. In the
limit of r → ∞, the screening is related to the dielectric
constant of the liquid and is given by the Lorentz factor,
fL =

[
1 + 8

3πNαd(r →∞)
]−1

.

The screening affects the polarisation potential of the focus
atom. The other major contribution from the surrounding
atoms is to modify the total scattering potential (see Figure
4). This is because the atoms are close enough together that
the electron always feels a varying potential from more than
one atom. The total potential (Ueff = U1 + U2) is made up
of the combined focus (U1) and surrounding (U2) potentials.
After averaging over the surrounding atomic distribution, we
find:

U2(r) =
2πN

r

∫ ∞
0

dt tU1(t)

∫ r+t

|r−t|
ds sg(s). (17)

An example of U1, U2 and their combination is shown in Fig-
ure 6 for scattering from atoms in liquid krypton. The strong
static attraction dominates for short distances, where the con-
tribution of the surrounding atoms is relatively constant. At
around half of the average separation between the atoms, the
contributions from the focus and surrounding atoms become
roughly equal.

The presence of the surrounding atoms also mean that the
scattering problem cannot be solved with asymptotic plane
waves as the boundary conditions. Instead we consider that
each atom has a spherical scattering cell, of size rm. We
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Figure 6. The total effective potential Ueff felt by an electron when
colliding with one krypton atom. Also shown are the components,U1

and U2, which represent the direct potential of the atom and the con-
tribution of the remaining atoms in the bulk respectively. The dashed
vertical line indicates the (Lekner) proposed collisional sphere ra-
dius, rm. The effects of exchange are not represented in this figure.
We find that a shift V0 is required, which is indicated by a dashed
horizontal line (see text).

choose rm to be the first turning point of the combined po-
tential (see Figure 6) with the goal of finding a good represen-
tation of the free volume in which the electron can move.

The liquid-phase cross sections are calculated using the Dirac
scattering equations including both static and dynamic po-
larization potentials as determined by the polarized-orbital
method [109–111]. We consider the full multipole polariza-
tion potential and a true non-local treatment of exchange. The
accuracy of the interaction potential is assessed through com-
parison with the measured (benchmarked) gas-phase cross-
sections. In contrast to previous investigations, our process
involves a complete treatment of the static and polarisation
parts of the potential including the screening component and
a non-local treatment of exchange, for both the focus and sur-
rounding atoms. For further details the reader is referred to
[79, 80].

C. Electron cross-sections and transport in liquid Ar.

As a demonstration of the implementation of the above ab-
initio framework we consider electrons in liquid argon. In Fig-
ure 7, we present the electron-argon scattering cross-sections
in the gas and liquid phases using the formalism detailed
above. We compare the dilute gas-phase cross-section with
the benchmark cross-sections of Buckman et al. [112], and
the agreement confirms the validity of the electron-argon scat-
tering potential and solution technique. We observe that the
effect of the screening is to remove the presence of the Ram-
sauer minimum in the cross-section, making the cross-section
essentially independent of energy at low incident electron en-

m

Figure 7. The momentum transfer cross-sections in the gas-phase
(Gas), liquid-phase (Liq) and their modifications when coherent scat-
tering effects are included (+Coh). The recommended momentum
transfer cross-section of reference [112] for a dilute gas is a com-
bination of experimental measurements and theoretical calculations.
(Source: Reproduced from [79], with the permission of AIP Publish-
ing.)

ergies. The inclusion of coherent scattering is seen to re-
duce the momentum transfer cross-section at low-energies. At
higher energies, where the de Broglie wavelength is reduced
below the interparticle separation, the liquid phase cross-
section approaches the dilute gas phase cross-section.

In Figure 8, we present the calculated drift velocity and char-
acteristic energy of electrons in liquid argon using cross-
sections developed using the formalism detailed above [79,
80] and the multi-term Boltzmann equation solution frame-
work. The results are compared with the available experi-
mental data. Transport properties are presented as a function
of the reduced electric field, and thus extract out the explicit
density dependence. The results demonstrate the inadequacy
of treating transport in liquids through the dilute gas cross-
sections and transport theory scaled by the liquid density. The
accuracy of the gas phase cross-section (and hence electron-
argon interaction potential) is once again confirmed for trans-
port in the dilute gas phase. The results highlight the ability of
our ab-initio technique to calculate liquid phase cross-sections
and associated transport properties. In Figure 8, we also high-
light the explicit impact of coherent scattering and screening
separately, and demonstrate that both effects are required to
accurately represent the transport [79].

In a recent study [80], the same ab-initio procedure was ap-
plied to electrons in liquid xenon and was demonstrated to
have similar levels of agreement. In the following section, we
apply the procedure to liquid krypton for the first time.
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n0

n0

Figure 8. Comparison of the measured drift velocities W (top) and
characteristic energies DT /µ (bottom) in gaseous and liquid argon,
with those calculated from the various approximations to the cross-
sections. Experimental data - Ar: Robertson [113, 114] at 90 K;
Miller et al [115] at 85 K; Halpern et al [116] at 85 K; Warren
and Parker [117, 118] at 77 K; Townsend and Bailey [117, 119]
at 288 K; Shibamura et al [120] at an unmeasured liquid tempera-
ture. The various approximations used are: gas-phase only cross-
sections (Gas), gas-phase cross-sections with coherent scattering
(Gas+Coh), and liquid phase cross-sections with coherent scattering
effects (Liq+Coh). The results have been calculated using the full
differential cross-section and results are converged multi-term val-
ues. (Source: Reproduced from [79], with the permission of AIP
Publishing.)

D. Electrons in liquid Kr

In Figure 9, we present the electron impact cross-sections for
liquid krypton using the ab-initio procedure detailed in Sec-
tion IV A. A comparison of the calculated gas phase cross-
section with the benchmark cross-section of Biagi [121], gives
a representative indication of the accuracy of the electron-
krypton interaction potential and associated cross-section, and
this is supported in the comparison of the calculated drift ve-
locities with the experimental values available in the litera-
ture (see [121, 122] and references therein). Application of
the ab-initio screening procedure again results in suppression
of the Ramsauer minimum in the momentum transfer cross-
section. This is consistent with the procedure implemented by

10−2 10−1 100 101

ε (eV)

10−1

100

101

σ m
 (Å

2 )

Gas
Liq
LiqShift
Buckman

Figure 9. The electron-krypton momentum transfer cross- sections
in the gas-phase (Gas) and liquid-phase (Liq and LiqShift) without
coherent effects. The standard procedure (Liq) appears to produce
cross sections that are much too small. To address this, we apply a
shift (LiqShift, see text) which better matches experimental results.
The modifications due to coherent effects (not shown) are the same
for both liquid cross sections. The recommended gas phase momen-
tum transfer cross-section (Buckman) is from reference [112].

Atrazhev and co-workers [48], however the value of the low-
energy cross-section deviates substantially from their value.
In Figure 10, we compare the drift velocities calculated us-
ing the ab-initio cross-sections with the available experimen-
tal data [115, 123]. We can see immediately that our results
are inconsistent with experiment, particularly at low reduced
fields. Although the gas-phase results indicate that there are
some small issues with the electron-krypton interaction po-
tential and associated cross-sections, it is clear that the ab-
initio framework presented above fails to capture some essen-
tial physics in the particular case of liquid krypton.

We subsequently began to investigate some of the parameters
that are specified in the calculation of the liquid-phase scatter-
ing cross-sections.

One parameter that has attracted much investigation in the lit-
erature is V0, generally referred to as the background energy
of the electron in the liquid [59, 63, 124, 125]. This is likened
to the bottom of the conduction band for electrons in a liquid,
in analogy with solid state band-structure. For the purposes of
our scattering calculation, this modifies the asymptotic energy
of the electron. Instead of asymptoting to ε = ~2k2/2m as
r →∞ for a single-atom scattering calculation, we now have
the electron asymptoting to ε = V0 + ~2k2/2m as r → rm.

There have been field-ionisation experiments which have ex-
tracted the value of V0 for krypton over a range of densi-
ties [63], and consequently we use the approximate value of
V0 = −0.6 eV in this study. We then shift our scattering po-
tential by this amount to account for the changed asymptote.
We see in Figure 9 that this predominantly raises the low en-
ergy part of the liquid phase cross-section. Consequently, we
find in Figure 10 that calculated drift velocity in the low-field
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Figure 10. Comparison of the calculated drift velocities W of elec-
trons in gaseous and liquid krypton with the available experimental
data (Gas: Pack et al. [121, 122] and references therein; Liquid:
Miller et al. [115], Schnyders et al. [123], Jacobsen et al. [126],
Yoshino et al. [127]). The standard procedure (Liq) results in drifts
that are too large compared with experiment. By applying an energy
shift (LiqShift, see text) we can obtain reasonable agreement with
experiment. The transport coefficients are converged multi-term val-
ues.

regime then decreases in line with experimental data. The
calculated drift velocity still slightly underestimates the ex-
perimental data, however this is consistent with the gas phase
results used to assess the interaction potential.

There is an obvious discrepancy between the approach re-
quired here for kyrpton and our previous investigations of
liquid argon and liquid xenon [79, 80]. In the language of
this study, our previous investigations applied a "zero shift" of
V0 = 0. As there are also field-ionisation measurements for
argon [63], we have repeated those calculations for argon us-
ing the experimental value of V0 but found that the transport
quantities were pushed in the wrong direction producing dis-
agreement between the calculations and measurements. How-
ever, we also find that we can choose a non-zero value of V0

shift empirically that matches well with the transport measure-
ments. That is, there exist two possible shifts (one of which is
approximately zero for argon) which produce transport quan-
tities that differ slightly but are in close agreement with each
other and the experimental transport measurements. This will
be the focus of future work where we directly probe V0 in our
formalism, which may expose subtle differences to the exper-
imentally measured values of V0.

V. OTHER PHYSICAL PROCESSES IN LIQUIDS

Experimental evidence of electron transport in soft-condensed
matter indicates that more complex physics is required to be
included in addition to the above traditional scattering pro-
cesses [59, 70–77]. More specifically, electrons can be sol-

Losses

Velocity

Scattering

Detrapping with
distribution of
velocities

Free states

Trapped states

Trapping

Position

Position

Figure 11. Phase-space diagram illustrating the combined localised-
delocalised nature of transport in liquids and soft-matter, with scat-
tering events combined with scattering into localised trap states, and
subsequent detrapping processes with a specified velocity distribu-
tion.

vated within the liquid/soft-condensed matter through a vari-
ety of mechanisms, including self-trapping into localised bub-
ble or solvated states (even for non-polar liquids) [59, 70–77].

For atomic liquids, experimental and theoretical evidence fur-
ther suggests that these states can be weakly bound [41, 59,
70, 71]. The study of Sakai et al. [41] is particularly notewor-
thy here. Considering electrons in liquid neon, their exper-
imental results exhibit what is known as dispersive, anoma-
lous or fractional transport [128, 129], where the current trace
for a certain range of fields exhibits two distinct power-law
components at short and long times (see Figure 14 of [41]).
Such current transients are ubiquitous in charge transport in
amorphous and organic materials (so called Scher-Montroll
behaviour [130]), and reflect a process of trapping and detrap-
ping of charged particles. Consequently, in addition to the
capture events of the electrons into localised states within the
liquid, they can be followed by subsequent detrapping back
into delocalised transport states at a later time. A phase-space
depiction of this is schematically represented in Figure 11.
We have recently developed a generalised Boltzmann equa-
tion that is capable of capturing these trapping and detrapping
processes, accounting for the combined localised-delocalised
nature of electron transport exhibited in these materials. The
generalised Boltzmann equation for the free particle phase-
space distribution function f (r,v, t) is given by [81](

∂

∂t
+ v · ∂

∂r
+
eE

m
· ∂
∂v

)
f (r,v, t) = −J(f)

−νtrap (v) f (r,v, t) + Φ (t) ∗ [n (r, t) 〈νtrap (v)〉] w̃detrap (v) .
(18)

The second term on the right hand side represents the loss
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of free particles to trapped states, while the third term rep-
resents the return of these electrons back to the delocal-
ised states at a later time with a specific velocity distribu-
tion function w̃detrap (v). Here, trapping losses are charac-
terised by the trapping frequency νtrap (v) (determined by
the trapping cross-sections), ∗ denotes a convolution in time,
〈·〉 denotes an average over velocity space and n(r, t) rep-
resents the free particle number density is defined through
n (r,t) ≡

∫
f(r,v, t) dv. The residence time in the trapped

or localised state is sampled from the effective waiting time
distribution [81]

Φ (t) ≡ e−ν
(trap)
loss tφ (t) , (19)

defined in terms of a trapping time distribution φ (t) and
weighted by an exponential decay term that describes the pos-
sibility of recombination of trapped particles at the rate ν(trap)

loss
[81]. The trapping time distribution is calculable from the
density of trapped states in the liquid. For simplicity, the pro-
cesses of detrapping are taken to be isotropic and to take the
form of Maxwellian-type velocity distributions. Specifically,
we introduce

w̃detrap (v) ≡ νtrap (ε)w (αdetrap, v)∫
dvνtrap (ε)w (αdetrap, v)

, (20)

where the Maxwellian velocity distribution of temperature T
is defined

w (α, v) ≡
(
α2

2π

) 3
2

exp

(
−α

2v2

2

)
, (21)

α2 ≡ m

kT
, (22)

where k is the Boltzmann constant.

In [81, 131], we demonstrated that a steady-state solution
of (18) for the velocity distribution for particular functional
forms of the distribution of trapping times φ (t) was able to
reproduce the Scher-Montrol current traces and hence the dis-
persive nature of transport in these systems. An ability to ex-
tract φ(t) enables an understanding of the density of trapped
states in energy space. Whilst we could fit the current trace
to these solutions and hence extract out the functional form
of the trapping time distribution and the trapping rates νtrap,
our goal is to develop an ab-initio method for calculating
these quantities. Recently, we have made progress towards
this goal, postulating electron capture into local fluctuations
in the liquids as the mechanism of self-trapping bubble/cluster
formation. The probability of scattering into these fluctuations
(which determines νtrap) and the subsequent stability of these
“bubbles/clusters” (which determine φ(t)) are calculable in an
ab-initio manner. The reader is referred to [132] for details.

VI. CONCLUSION

In this study we present progress towards a generalised frame-
work for the modelling of non-equilibrium electron transport
in liquids and soft-condensed matter. The framework is based
on generalisation of Boltzmann’s equation to account for var-
ious processes present in such matter including coherent scat-
tering processes, interaction potential modification and the
combined localised-delocalised nature of the transport .

For plasma interactions with biological matter, the develop-
ment of self-consistent cross-sections is imperative. In this
study, we have presented self-consistency checks for electron-
water and electron-THF cross-section sets in the pure gaseous
forms, as well as in mixtures with atomic gases. The swarm
studies of water vapour in mixtures with atomic (and/or
molecular) gases represents an important check on the self-
consistency of the electron water vapour cross-section set. Im-
portantly, it goes part way to removing the degeneracy in the
cross-section sets i.e., various cross-section sets can produce
the same transport coefficients. The electron-water vapour
cross-section presented in [8] identified some minor issues in
the intermediate energy range (1-5 eV mean energies) present
in the water-argon mixtures that were not observed in the
water-helium mixtures. This warrants further investigation,
including an assessment of the impact of “quasi-runaway” at
the fields where the discrepancies are largest. The next phase
of this work is to consider water vapour in other mixtures
(e.g. molecular nitrogen). Likewise, the degeneracy and self-
consistency of the electron-THF cross-section set proposed
in [19] needs an equivalent interrogation using atomic and
molecular admixtures.

The extension to consider transport in liquids and soft-
condensed matter represents a grand challenge within the
field. Even for simple high-mobility atomic liquids, there
is still much physics which is unknown and requires fur-
ther attention. While our ab-initio theory has been shown
to work well for argon and xenon, in the current study we
have shown that further physics is required for krypton. For
low-mobility atomic liquids, we have presented a Boltzmann
equation framework that accounts for the combined localised-
delocalised nature of the transport experimentally demon-
strated to exist in some liquids. Further work is required for
the ab-initio calculation of the trapping and detrapping rates
for implementation. As we move to consider the long-range
interactions present in dipolar liquids such as water etc, fur-
ther physics will need to be included for any non-equilibrium
transport modelling. The transition to solvation under non-
equilibrium conditions remains a key question in this field
[3, 73].
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The European Physical Journal D 68, 125 (2014).

[19] M. J. E. Casey, J. de Urquijo, L. N. S. Loli, D. G. Cocks, G. J.
Boyle, D. B. Jones, M. J. Brunger, and R. D. White, J. Chem.
Phys. 17, 17 (2017).

[20] L. Chiari, E. Anderson, W. Tattersall, J. R. Machacek, P. Pal-
ihawadana, C. Makochekanwa, J. P. Sullivan, G. García,
F. Blanco, R. P. McEachran, M. J. Brunger, and S. J. Buck-
man, The Journal of Chemical Physics 138, 074301 (2013).

[21] M. C. Fuss, A. G. Sanz, F. Blanco, P. Limão-Vieira, M. J.
Brunger, and G. García, The European Physical Journal D 68,
161 (2014).

[22] C. S. Trevisan, A. E. Orel, and T. N. Rescigno, Journal of
Physics B: Atomic, Molecular and Optical Physics 39, L255
(2006).

[23] D. Jones, J. Builth-Williams, S. Bellm, L. Chiari, H. Chalu-
vadi, D. Madison, C. Ning, B. Lohmann, O. Ingólfsson, and
M. Brunger, Chemical Physics Letters 572, 32 (2013).

[24] H. V. Duque, T. P. T. Do, M. C. A. Lopes, D. A. Konovalov,
R. D. White, M. J. Brunger, and D. B. Jones, Journal of Chem-
ical Physics 142, 124307 (2015).

[25] P. Limão-Vieira, D. Duflot, M. J. Hubin-Franskin, J. Del-
wiche, S. V. Hoffmann, L. Chiari, D. B. Jones, M. J. Brunger,
and M. C. Lopes, Journal of Physical Chemistry A 118, 6425
(2014).
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Radenović, Journal of Physics D: Applied Physics 42, 194002
(2009).
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R. P. McEachran, Plasma Sources Science and Technology 19,
034001 (2010).

[87] G. J. Boyle, W. J. Tattersall, D. G. Cocks, S. Dujko, and R. D.
White, Physical Review A 91, 1 (2015).

[88] J. L. Hernández-Ávila, E. Basurto, and J. de Urquijo, Journal
of Physics D: Applied Physics 35, 2264 (2002).

[89] E. Basurto, J. L. Hernández-Ávila, A. M. Juárez, and
J. de Urquijo, Journal of Physics D: Applied Physics 46,
355207 (2013).

[90] J. de Urquijo, A. Mitrani, G. Ruíz-Vargas, and E. Basurto,
Journal of Physics D: Applied Physics 44, 342001 (2011).

[91] A. Bekstein, J. de Urquijo, O. Ducasse, J. C. Rodríguez-Luna,
and A. M. Juárez, Journal of Physics: Conference Series 370,
012006 (2012).

[92] B. Cheung and M. T. Elford, Australian Journal of Physics 43,
755 (1990).



15

[93] R. Band, Z. L. Petrovic, and R. W. Crompton, Australian Jour-
nal of Physics 40, 347 (1987).

[94] S. Dupljanin, J. de Urquijo, O. Šašić, E. Basurto, a. M. Juárez,
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Table I. Experimentally measured drift velocities for electrons in Ar-water mixtures using the pulsed-Townsend experiment.

95% Ar - 5% Water 90% Ar - 10% Water 80% Ar - 20% Water 50% Ar - 50% Water
E/n0 W Error E/n0 W Error E/n0 W Error E/n0 W Error
(Td) (cm/s) (cm/s) (Td) (cm/s) (cm/s) (Td) (cm/s) (cm/s) (Td) (cm/s) (cm/s)
0.33 144000 2160 0.5 107000 1605 1.4 152000 2280 2.6 115000 2300
0.36 156000 2340 0.55 116000 1740 1.6 175000 2625 3 130000 2600
0.4 172000 2580 0.6 128000 1920 1.8 196000 2940 3.3 140000 2800

0.45 195000 2925 0.65 141000 2115 2 218000 3270 3.6 158000 3160
0.5 217000 3255 0.7 150000 2250 2.3 253000 3795 4 175000 3500

0.55 238000 3570 0.8 172000 2580 2.6 286000 4290 4.5 198000 3960
0.6 261000 3915 0.9 198000 2970 3 333000 4995 5 221000 4420

0.65 283000 4245 1 220000 3300 3.3 368000 5520 5.5 244000 4880
0.7 307000 4605 1.2 270000 4050 3.6 403000 6045 6 266000 5320
0.8 351000 5265 1.4 313000 4695 4 451000 6765 6.5 289000 5780
0.9 396000 5940 1.6 363000 5445 4.5 514000 7710 7 311000 6220
1 441000 6615 1.8 417000 6255 5 578000 8670 8 357000 7140

1.2 533000 7995 2 445000 6675 5.5 640000 9600 9 404000 8080
1.4 633000 9495 2.3 520000 7800 6 708000 10620 10 453000 9060
1.6 740000 11100 2.6 595000 8925 6.5 782000 11730 12 552000 11040
1.8 859000 12885 3 701000 10515 7 861000 12915 14 653000 13060
2 986000 14790 3.3 789000 11835 8 1040000 15600 16 770000 15400

2.3 1210000 18150 3.6 880000 13200 9 1270000 19050 18 903000 18060
2.6 1480000 22200 4 1020000 15300 10 1560000 23400 20 1070000 21400
3 1920000 28800 4.5 1220000 18300 12 2410000 36150 23 1420000 28400

3.3 2290000 34350 5 1470000 22050 14 3420000 51300 26 1940000 38800
3.6 2640000 39600 5.5 1760000 26400 16 4070000 61050 30 3020000 60400
4 3040000 45600 6 2110000 31650 18 4440000 66600 33 3970000 79400

4.5 3330000 49950 6.5 2520000 37800 20 4580000 68700 36 4800000 96000
5 3390000 50850 7 2910000 43650 23 4720000 70800 40 5750000 115000

5.5 3350000 50250 8 3540000 53100 26 4850000 72750 45 6690000 133800
6 3250000 48750 9 3860000 57900 30 5090000 76350 50 7380000 147600

6.5 3120000 46800 10 3940000 59100 33 5210000 78150 55 8000000 160000
7 3040000 45600 12 3810000 57150 36 5360000 80400 60 8550000 171000
8 2830000 42450 14 3700000 55500 40 5690000 85350 65 8860000 177200
9 2700000 40500 16 3620000 54300 45 6030000 90450
10 2640000 39600 18 3600000 54000 50 6330000 94950
12 2580000 38700 20 3720000 55800 55 6600000 99000
14 2610000 39150 45 4850000 72750 60 6880000 103200
16 2660000 39900 50 5170000 77550 65 7240000 108600
18 2920000 46050 55 5420000 81300 70 7450000 111750
20 3010000 45150 60 5740000 86100 80 8050000 120750
23 3140000 47100 65 6040000 90600 90 8660000 129900
26 3270000 49050 100 9330000 139950
30 3450000 51750 120 10800000 162000
33 3610000 54150 140 12300000 184500
36 3760000 56400 160 13700000 205500
40 4030000 60450 180 15400000 231000
45 4350000 65250 200 17300000 259500
50 4670000 70050 230 19400000 291000
55 5040000 75600 260 21800000 327000
60 5370000 80550
65 5810000 87150
70 6140000 92100
80 6740000 101100
90 7430000 111450

100 8100000 121500
120 9510000 142650
140 10900000 163500
160 12700000 190500
180 14100000 211500


