Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise

Agha, Mickey, Ennen, Joshua R., Bower, Deborah S., Nowakowski, A. Justin, Sweat, Sarah C., and Todd, Brian D. (2018) Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise. Biological Reviews, 93 (3). pp. 1634-1648.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website:


The projected rise in global mean sea levels places many freshwater turtle species at risk of saltwater intrusion into freshwater habitats. Freshwater turtles are disproportionately more threatened than other taxa; thus, understanding the role of salinity in determining their contemporary distribution and evolution should be a research priority. Freshwater turtles are a slowly evolving lineage; however, they can adapt physiologically or behaviourally to various levels of salinity and, therefore, temporarily occur in marine or brackish environments. Here, we provide the first comprehensive global review on freshwater turtle use and tolerance of brackish water ecosystems. We link together current knowledge of geographic occurrence, salinity tolerance, phylogenetic relationships, and physiological and behavioural mechanisms to generate a baseline understanding of the response of freshwater turtles to changing saline environments. We also review the potential origins of salinity tolerance in freshwater turtles. Finally, we integrate 2100 sea level rise (SLR) projections, species distribution maps, literature gathered on brackish water use, and a phylogeny to predict the exposure of freshwater turtles to projected SLR globally. From our synthesis of published literature and available data, we build a framework for spatial and phylogenetic conservation prioritization of coastal freshwater turtles. Based on our literature review, 70 species (∼30% of coastal freshwater turtle species) from 10 of the 11 freshwater turtle families have been reported in brackish water ecosystems. Most anecdotal records, observations, and descriptions do not imply long‐term salinity tolerance among freshwater turtles. Rather, experiments show that some species exhibit potential for adaptation and plasticity in physiological, behavioural, and life‐history traits that enable them to endure varying periods (e.g. days or months) and levels of saltwater exposure. Species that specialize on brackish water habitats are likely to be vulnerable to SLR because of their exclusive coastal distributions and adaptations to a narrow range of salinities. Most species, however, have not been documented in brackish water habitats but may also be highly vulnerable to projected SLR. Our analysis suggests that approximately 90% of coastal freshwater turtle species assessed in our study will be affected by a 1‐m increase in global mean SLR by 2100. Most at risk are freshwater turtles found in New Guinea, Southeast Asia, Australia, and North and South America that may lose more than 10% of their present geographic range. In addition, turtle species in the families Chelidae, Emydidae, and Trionychidae may experience the greatest exposure to projected SLR in their present geographic ranges. Better understanding of survival, growth, reproductive and population‐level responses to SLR will improve region‐specific population viability predictions of freshwater turtles that are increasingly exposed to SLR. Integrating phylogenetic, physiological, and spatial frameworks to assess the effects of projected SLR may improve identification of vulnerable species, guilds, and geographic regions in need of conservation prioritization. We conclude that the use of brackish and marine environments by freshwater turtles provides clues about the evolutionary processes that have prolonged their existence, shaped their unique coastal distributions, and may prove useful in predicting their response to a changing world.

Item ID: 54866
Item Type: Article (Research - C1)
ISSN: 1469-185X
Keywords: salinization, salinity tolerance, sea level rise, brackish water ecosystems, freshwater turtles, climate change, reptiles
Copyright Information: © 2018 Cambridge Philosophical Society
Date Deposited: 01 Aug 2018 07:33
FoR Codes: 31 BIOLOGICAL SCIENCES > 3103 Ecology > 310304 Freshwater ecology @ 50%
31 BIOLOGICAL SCIENCES > 3104 Evolutionary biology > 310406 Evolutionary impacts of climate change @ 50%
Downloads: Total: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page