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Abstract

A general phase-space kinetic model for non-equilibrium charged particle transport
through combined localised and delocalised states is presented that accounts for scat-
tering, trapping/detrapping and recombination loss processes in organic and soft-
condensed matter. The model takes the form of a generalised Boltzmann equation, for
which an analytical solution is found in Fourier-Laplace space. A Chapman-Enskog-
type perturbative solution technique is also applied, confirming the analytical results
and highlighting the emergence of a density gradient series representation in the weak-
gradient hydrodynamic regime. This representation validates Fick’s law for this model,
providing expressions for the flux transport coefficients of drift velocity and diffusion.
By applying Fick’s law, a generalised diffusion equation with a unique global time oper-
ator is shown to arise that coincides with both the standard diffusion equation and the
Caputo fractional diffusion equation in the respective limits of normal and dispersive
transport. A subordination transformation is used to efficiently solve the generalised
diffusion equation by mapping from the solution of a corresponding classical diffusion
equation.

From the aforementioned density gradient expansion, we extend Fick’s law to con-
sider also the third-order transport coefficient of skewness. This extension is in turn ap-
plied to yield a corresponding generalised advection-diffusion-skewness equation. Neg-
ative skewness is observed and a physical interpretation is provided in terms of the
processes of trapping and detrapping. By analogy with the generalised Einstein re-
lation, a relationship between skewness, diffusion, mobility and temperature is also
formed.

The phase-space model is generalised further by introducing energy-dependence in
the collision, trapping and loss frequencies. The solution of this resulting model is
explored indirectly through balance equations for particle continuity, momentum and
energy. Generalised Einstein relations (GER) are developed that enable the anisotropic
nature of diffusion to be determined in terms of the measured field-dependence of the
mobility. Interesting phenomena such as negative differential conductivity (NDC) and
recombination heating/cooling are shown to arise from recombination loss processes
and the localised and delocalised nature of transport. Fractional generalisations of the
GER and mobility are also explored.

Finally, a planar organic semiconductor device simulation is presented that makes
use of the aforementioned generalised advection-diffusion equation to account for the
trapping and detrapping of charge carriers. In this simulation, we use Poisson’s equa-
tion to account for space-charge effects and Kirchhoff’s circuit laws to account for RC
effects. These considerations allow for a variety of charge transport experiments to
be simulated in a planar geometry, including time of flight (TOF), charge extraction
by linearly increasing voltage (CELIV) and resistance-dependent photovoltage (RPV)
experiments. The simulation is used to explore a proposed experimental technique for
the characterisation of the recombination coefficient, as well as to study what effects
traps would have on the measured current.
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6.8 Plots of number density and electric field at five instances in time (a)–(e) for a TOF exper-
iment in the planar geometry depicted in Figure 6.6. These instances are denoted on the
accompanying current plot using dashed vertical lines. Charge carriers are photogenerated
as depicted in Figure 6.7 by light masked by the electrodes that is absorbed according to
the Beer-Lambert law with optical absorption coefficient αBL = 10d−1. Here we have the
charge carrier mobilities µp = µn = d2/ttrUref, a relative semiconductor permittivity of
εs = 3ε0, a Langevin recombination coefficient β = βL, and an initial light intensity such
that the initial photogenerated charge is Qph = 103CUref. For simplicity, the temperature,
T , external resistance, R, and the trapping frequencies, νtrap,p and νtrap,n, are all set equal
to zero. Due to the specified Langevin bimolecular recombination, we observe an overall
decrease in number density with time that is most prominent between (a) and (b). Also, due
to the equal mobilities of the charge carriers, we observe a symmetric separation of charge
carriers that occurs quicker adjacent to the electrodes, as expected from the increased field
strength there. Transient space charge effects are seen most clearly in the electric field in
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6.12 TOF current transients for various optical absorption coefficients, αBL,
for the planar geometry depicted in Figure 6.6. Charge carriers are pho-
togenerated as depicted in Figure 6.7 by light masked by the electrodes
that is absorbed according to the Beer-Lambert law. Here we have the
charge carrier mobilities µp = µn = d2/ttrUref, a relative semiconductor
permittivity of εs = 3ε0, a Langevin recombination coefficient β = βL,
and an initial light intensity such that the initial photogenerated charge
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istance, R, and the trapping frequencies, νtrap,p and νtrap,n, are all set
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6.15 Plots of number density and electric field at five instances in time (a)–(e) for a TOF exper-
iment in the planar geometry depicted in Figure 6.6. These instances are denoted on the
accompanying current plot using dashed vertical lines. Charge carriers are photogenerated
as depicted in Figure 6.7 by light masked by the electrodes that is absorbed according to the
Beer-Lambert law with optical absorption coefficient αBL = 10d−1. Here we have the charge
carrier mobilities µp = µn = d2/ttrUref, a relative semiconductor permittivity of εs = 3ε0, a
Langevin recombination coefficient β = βL, and an initial light intensity such that the initial
photogenerated charge is Qph = 103CUref. For simplicity, the temperature, T , and external
resistance, R, are set equal to zero. Trapping occurs at equal frequencies for both holes and
electrons, νtrap,p = νtrap,n = 10t−1

tr , and traps are described by a multiple trapping model
trapping time distribution function, ϕ (t) = αν0 (ν0t)

−α−1 γ (α+ 1, ν0t) with α = 0.5 and
ν0 = 100t−1

tr . Unlike Figure 6.8, which lacks traps, there is no clear separation of electrons
and holes here. In fact, memory of the initial condition in the form of trapped carriers
persists through (a)–(e). In addition, the trapping of charge carriers is seen to extend the
transient space charge effects observed in Figure 6.8 (b), which here persist through (b)–(e). 113
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6.17 TOF current transients for various trapping frequencies, νtrap,p and
νtrap,n, for the planar geometry depicted in Figure 6.6. Charge carri-
ers are photogenerated as depicted in Figure 6.7 by light masked by
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mittivity of εs = 3ε0, a Langevin recombination coefficient β = βL, and
an initial light intensity such that the initial photogenerated charge is
Qph = CUref. For simplicity, the temperature, T , external resistance, R
are set equal to zero. Traps are described by a multiple trapping model
trapping time distribution function, ϕ (t) = αν0 (ν0t)

−α−1 γ (α+ 1, ν0t)
with α = 0.5 and ν0 = 100t−1

tr . At early times, few trapping events have
occurred and all plots coincide. At intermediate times, prior to the
carrier transit time, the case of largest trapping frequencies νtrap,p and
νtrap,n (red curve) has the lowest current, due to having more particles
entering traps. At late times, these trapped particles exit the system,
resulting in the red curve exceeding all the others. In each case, the same
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6.20 RPV current transients for various trap severities, α, alongside the trap-
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tr , and traps are described by a multiple trapping model trapping
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−α−1 γ (α+ 1, ν0t) with ν0 =
100t−1
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1
Introduction

1.1 Dispersive transport in disordered systems
Semiconductors are fundamental to the operation of modern electronic devices, with
applications to computing, lighting and solar energy production. Recent research has
focused on organic semiconductors to their unique electronic properties, mechanical
flexibility, light weight and cost effective processing [7–9]. There thus exists a huge
space of potential organic molecules which can, in principle, be tailored to specific
applications. In this tailoring process, it is important to be able to characterise the
charge carrier transport in these materials. Unlike inorganic semiconductors that are
crystalline in nature, many organic materials are disordered and consequently exhibit a
fundamentally slower type of charge transport, known as “dispersive transport” [7,10].

In normal charge transport, as could be described by the diffusion equation, the
mean squared displacement of charge carriers increases in linear proportion to time,
t. Dispersive transport, however, is characterised by a mean squared displacement
that scales sublinearly, proportional to tα where 0 < α < 1 [11]. Due in part to this
non-integer power-law dependence, dispersive transport is also known as “fractional
transport”.

Physically, dispersive transport arises due to the presence of traps causing particles
to become immobilised (localised states) for extended periods of time and resulting in
fundamentally slower transport [12]. A number of physical systems have the potential
to exhibit dispersive transport. For example, in organic semiconductors, and other
disordered media, trapped states arise due to local imperfections or variation in the
energetic landscape [12–16]. Trapped states also exist in organic-inorganic metal-halide
perovskites and influence the delocalised nature of transport in these materials [17].
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Rload

Oscilloscope

Figure 1.1: Typical charge transport experiment configuration.

Electron transport in certain liquids can be influenced through electrons becoming
trapped in (localised) bubble states (see e.g. [18,19]), giving rise to dispersive electronic
transport in liquid neon [20]. Similar trapping processes occur for positronium in
bubbles (see e.g. [21–23]) and positrons annihilation on induced clusters (see e.g. [24]).
The combined localised/delocalised nature of charged transport occurring in many
materials warrants the development of a new transport theory to treat and explore the
problem, and this represents the theme of this thesis.

1.2 Characterising charge transport experimentally
A number of experiments have been introduced to determine the nature of charged-
particle transport in different systems, including in some systems which exhibit dis-
persive transport. Figure 1.1 illustrates the typical configuration used in many charge
transport experiments.

1.2.1 Time Of Flight (TOF)

The Time Of Flight (TOF) experiment, or transient photoconductivity experiment,
was introduced in 1957 by Spear [12, 25, 26] to study charge carrier transport in thin
evaporated films of amorphous selenium. As illustrated in Figure 1.1, the TOF exper-
iment places a semiconductor sample between two electrodes with a large DC voltage
difference. One of the electrodes is transparent, allowing for a brief flash of laser light
to photogenerate a thin sheet of charge carriers near the transparent electrode. This
sheet then begins to drift due to the electrode potential difference and diffuse due to
the temperature . The total time taken for the sheet to traverse and leave the sample
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is known as the transit time, ttr, and is observable on the measured current trace.
Although described here in terms of semiconductors, TOF is a very general technique
that has also been used to determine charged particle transit times in both gaseous
and liquid systems.

Accurately determining the transit time is important as it provides the charge
carrier drift velocity W, which in turn allows for the calculation of the the charge
carrier mobility, µ (the constant of proportionality between drift velocity and electric
field, E, satisfying W ≡ µE). However, in the case of dispersive transport, the sheet
of drifting charge disperses longitudinally due to repeated trapping events, obfuscating
this transit time. For this reason, disordered organic semiconductors are difficult to
study with experiments like TOF. It is evident that alternative techniques are required
to aid with the classification of organic semiconductors.

1.2.2 Charge Extraction by Linearly Increasing Voltage (CELIV)

The Charge Extraction via Linearly Increasing Voltage (CELIV) experiment was in-
troduced in 2000 by Juška et al. [27], in part, to overcome the shortcomings of other
methods, like TOF. As with TOF, the CELIV experiment configuration is described
by Figure 1.1, except that, rather than using an applied DC voltage, the CELIV ex-
periment uses a pulse of linearly increasing voltage. This has the benefit of producing
current traces with easily discernible features, including in the case where transport is
dispersive.

There are two types of CELIV experiments which can be performed [27]:
Photo-CELIV — Extraction of photogenerated charge carriers in undoped semi-

conductors.
Dark-CELIV — Extraction of thermally generated charge carriers in doped semi-

conductors.
The Photo-CELIV experiment is thus very similar to a TOF experiment, differing

only in the voltage applied.

1.2.3 Resistance-dependent PhotoVoltage (RPV)

The Resistance-dependent PhotoVoltage (RPV) experiment was introduced in 2014 by
Philippa et al. [28] to overcome various limitations of the charge transport experiments
described above. For example, CELIV current traces are often difficult to interpret
accurately without comparing to a corresponding numerical simulation.

As depicted in Figure 1.1, the RPV experiment uses an identical experiment config-
uration to TOF, with charge initially photogenerated using a brief flash of laser light.
What distinguishes RPV from TOF is the variation of the load resistance, R, over
many orders of magnitude. The resulting transients of the voltage on this resistance
reveal the transit time of each charge carrier as a “shoulder” in the voltage transient.
In turn, this allows for the calculation of the mobility of each charge carrier.
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Figure 1.2: One-hundred instances of the classical random walk described by Eq. 1.1
for steps of length l = 1.

1.3 Existing models for dispersive transport
Mathematical models for charge transport can be used to design and interpret charge
transport experiments, like those discussed in the previous section and depicted in
Figure 1.1. Applying any of these charge transport experiments to organic devices
thus requires models capable of describing transport that is dispersive. There are a
number of dispersive transport models that exist in the literature. We outline some of
the main ones in this section, in order of increasing sophistication.

1.3.1 Continuous-time random walks

Both normal and dispersive transport have stochastic formulations in terms of random
walk processes [11]. For example, the classical random walk is a simple model for
normal transport that consists of a random walker that steps repeatedly in directions
sampled from a discrete probability distribution. Consider, for instance, a random
walker in one dimension that performs steps of length l with equal likelihood in each
direction. In this case, the displacement of each step is sampled uniformly, ∆x ∈
{−l, l} . Figure 1.2 overlays one-hundred instances of this random walk, hinting at the
average behaviour of the walker.

To study this simple random walk, we consider a random sequence of N steps,
{∆x1, . . . ,∆xN}. The overall displacement of the random walker from the origin is
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then simply the sum of displacements due to each step [29]:

xN =
N∑
i=1

∆xi. (1.1)

As a step in each direction is equally likely, the average displacement of each step is
zero ⟨∆xi⟩ = 0 and thus the expected displacement overall is also zero [29]:

⟨xN ⟩ = 0. (1.2)

This can be seen in Figure 1.2 as the symmetry about the origin. This figure also
strongly suggests a mean squared displacement that increases monotonically. Indeed,
we can confirm using Eq. (1.1) that we have the mean squared displacement [29]

⟨
x2N
⟩
= Nl2, (1.3)

which increases with the number of steps N . Note that N can be thought of as an
operational time for the random walker. If we enforce that the random walker has
an average speed W , then the mean squared displacement (1.3) can be shown to be
proportional to the physical time t [29]:

⟨
x2N
⟩
=Wlt. (1.4)

This property is indicative of normal transport and thus classical random walks are
applicable to modelling phenomena where transport is normal. Consequently, classical
random walks cannot be applied successfully to modelling cases of dispersive transport
where the mean squared displacement increases sublinearly with time.

Montroll and Weiss [30] introduced a generalisation of classical random walks that
samples both the jump length and the waiting time between jumps from continuous
distributions. This so-called continuous-time random walk (CTRW) is defined entirely
by a probability density function Ψ(t, x), introduced such that Ψ(t, x) dtdx is the
infinitesimal probability of jumping a distance between x and x+ dx after waiting for
a time between t and t + dt. From this general distribution, we can state separate
PDFs for the respective jump length and waiting time [30]:

λ (x) ≡
ˆ ∞

0
Ψ(t, x) dt, (1.5)

w (t) ≡
ˆ ∞

−∞
Ψ(t, x) dx. (1.6)

When it comes to modelling phenomena with a CTRW it can be shown that the precise
form of the waiting time and jump length distributions is rarely important and that
the model is specified entirely by the moments of the above distributions [11], including
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the characteristic waiting time

T ≡
ˆ ∞

0
tw (t)dt, (1.7)

the characteristic jump length

χ ≡
ˆ ∞

−∞
xλ (x)dx, (1.8)

and the jump length variance

σ2 ≡
ˆ ∞

−∞
x2λ (x)dx. (1.9)

CTRWs have been applied to modelling dispersive transport in disordered semicon-
ductors by Scher and Montroll [12] who proposed a waiting time distribution with a
power law tail of the form [12]:

w (t) ∼
(τ
t

)1+α
, 0 < α < 1, (1.10)

where τ is a scaling parameter for the distribution and α describes the severity of
trapping, with smaller values corresponding to longer-lived traps. A distribution of
this form lacks a characteristic waiting time and so is ideal for modelling dispersive
transport where trapping times span many orders of magnitude. Indeed, Scher and
Montroll [12] were able to confirm that a heavy-tailed waiting time distribution of this
results in a CTRW with a mean squared displacement that scales sublinearly:

⟨
x2 (t)

⟩
∝ tα, (1.11)

indicating dispersive transport.

1.3.2 Fractional advection-diffusion equation

In addition to stochastic formulations in terms of random walk processes, both normal
and dispersive transport have deterministic formulations using diffusion equations [11].
Indeed, the linear time-scaling of the mean squared displacement (1.4) in a classical
random walk is indicative of the diffusion equation. In fact, it is known that the prob-
ability density function, n (t, x), which describes the likelihood of finding the classical
random walker within a certain region of space during a certain interval of time satisfies
the diffusion equation [29]:

∂n

∂t
−D

∂2n

∂x2
= 0, (1.12)

where D is a diffusion coefficient, proportional to the variance of the classical random
walker.

In the case of dispersive transport, the power-law scaling of mean squared displace-
ment (1.11) is distinct from, but reminiscent of, the linear scaling of the diffusion
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equation. This suggests that we may be able to describe a dispersive CTRW with
a differential equation that is similar in form to the diffusion equation. We can ex-
plore the nature of such a generalisation by studying the probability density function
n (t, x) in the context of a CTRW. For general CTRWs, the form of n (t, x) is known
in Fourier-Laplace space (t, x) → (p, k) [31]:

n (p, k) ≡ 1− w (p)

p

n (0, k)

1− λ (k)w (p)
, (1.13)

where n (p, k) ≡
´∞
0 dt

´∞
−∞ dxe−(pt+ıkx)n (t, x). At late times, a waiting time distribu-

tion of the form of Eq. (1.10) can be approximated in Laplace-space as [31]

w (p) ≈ 1− (τp)α . (1.14)

Similarly, far from the origin, we can approximate the jump length distribution as [31]

λ (k) ≈ 1 + χık − 1

2
σ2k2, (1.15)

so long as it has a defined jump length variance σ, as is the case considered by Scher
and Montroll [12]. Substituting these approximate expressions into Eq. (1.13) and
omitting higher order terms (as we are not interested in transient effects) results in
the Fourier-Laplace-transformed equation:

(τp)α−1 [pn (p, k)− n (0, k)]− χ

τ
ıkn (p, k) +

σ2

2τ
k2n (p, k) = 0. (1.16)

Performing the inverse Fourier-Laplace transform and making use of the convolution
theorem yields

τα−1 t−α

Γ (1− α)
∗ ∂n
∂t

+W
∂n

∂x
−D

∂2n

∂x2
= 0. (1.17)

where we have introduced the drift velocity

W ≡ χ

τ
, (1.18)

and diffusivity

D ≡ σ2

2τ
. (1.19)

This is a generalised advection-diffusion equation that describes dispersive transport.
The new time operator present is known as the Caputo fractional derivative of order
0 < α < 1 and is defined:

C
0 Dα

t n (t, x) ≡
τα−1

Γ (1− α)

ˆ t

0
(t− τ)−α ∂n

∂t
dτ. (1.20)

Fractional derivatives and fractional calculus in general, are described in more detail
in Chapter 2. This generalisation of the advection-diffusion equation is known as a
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“fractional advection-diffusion” equation:

C
0 Dα

t n+Wα
∂n

∂x
−Dα

∂2n

∂x2
= 0, (1.21)

with fractional transport coefficients:

Wα ≡ τ1−αW, (1.22)

Dα ≡ τ1−αD. (1.23)

As the Caputo fractional derivative coincides with ordinary differentiation when α = 1,
the above fractional advection-diffusion equation evidently coincides with the classical
one as α → 1. Importantly, this is consistent with the power-law time-scaling of the
mean squared displacement (1.11).

Note that in the above derivation there is an explicit assumption of small spatial
gradients in the number density, which manifests implicitly in the fractional advection-
diffusion equation (1.21) as the drift-diffusion spatial operator. At the same time, the
Caputo fractional derivative is a global time operator can potentially cause initially
large spatial gradients to persist for all time. This inconsistency challenges the validity
of fractional diffusion equations. In the following section, as an alternative, we describe
phase-space kinetic models for dispersive transport that make no such assumptions on
the size of spatial gradients [32,33].

1.3.3 Generalised Boltzmann equation

In 1872, Ludwig Boltzmann introduced the following kinetic equation [34]:(
∂

∂t
+ v · ∂

∂r + a · ∂
∂v

)
f (t, r,v) =

(
∂f

∂t

)
coll

, (1.24)

where f (t, r,v) is a distribution function of particles in phase-space. Here v · ∂f
∂r

describes the movement of particles in configuration space due to having a velocity v
and a · ∂f

∂v describes the movement of particles in velocity space due to the applied
acceleration a. The

(
∂f
∂t

)
coll

term is an operator that describes changes in particle
velocity due to binary elastic collisions. For example, for the collision of two particle
species “1” and “2” the Boltzmann collision term is(

∂f

∂t

)(1,2)

coll
=

ˆ
dv2

ˆ
dΩg′gσ

(
g,g′) [f1 (v′

1

)
f2
(
v′
2

)
− f1 (v1) f2 (v2)

]
, (1.25)

where numbers denote respective particle quantities, primes denote post-collision
quantities, g = v1 − v2 is the relative velocity between particles, dΩg′ = sinχdχdψ is
the solid angle of scattering in terms of χ and ψ, the polar angles of g′, and σ (g,g′)

is the differential cross section defined by [35]

σ
(
g,g′)dΩg′ ≡

number of particles scattered into solid angle dΩg′

incident particle flux . (1.26)
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The Boltzmann collision integral relies on the assumption that the distribution func-
tions of colliding particles are uncorrelated, known as the collision hypothesis, or
Stosszahlansatz. As this assumption is no longer true after collision, Boltzmann has
thus introduced an “arrow of time” through the formalism of his calculation.

A common simplification of the Boltzmann collision integral is the Bhatnagar-
Gross-Krook (BGK) collision operator [36] for collisions between a species of particle
and its surrounding medium:(

∂f

∂t

)
coll

= −νcoll [f (t, r,v)− n (t, r)w (α, v)] , (1.27)

where the particle number density in configuration space is given by n (t, r) ≡´
dvf (t, r,v). The BGK operator describes the relaxation of the distribution function

at the collision frequency νcoll to the Maxwellian equilibrium distribution:

w (α, v) ≡
(
α2

2π

) 3
2

exp
(
−α

2v2

2

)
, (1.28)

α2 ≡ m

kBT
, (1.29)

where m is the particle mass, T is the background temperature and kBis the
Boltzmann constant. Alternatively, the Boltzmann equation with BGK operator
can be thought of as a rate equation in phase space with a loss of incident particles
at the rate νcollf (t, r,v) and an instantaneous gain of scattered particles at the rate
νcolln (t, r)w (α, v). Although generally introduced in this sort of ad hoc fashion, the
BGK operator can be derived rigorously for the case of resonant charge exchange with
a polarisation potential [37]. Due to its simplicity, the BGK collision operator has
been applied extensively in the literature on crystalline semiconductors [38]. The use
of the BGK collision operator also has the benefit of making the Boltzmann equation
amenable to analytical solution techniques [39].

In the weak-gradient hydrodynamic regime, for both of the collision operators above,
the Boltzmann equation coincides with the diffusion equation and so cannot be used
to describe dispersive transport. With the goal of modelling dispersive transport in
organic semiconductors, Philippa et al. introduced a new operator that generalises the
BGK collision operator to describe trapping and detrapping rather than collisions and
scattering, respectively [33]:(

∂f

∂t

)
trap/detrap

= −νtrap [f (t, r,v)− ϕ (t) ∗ n (t, r)w (α, v)] . (1.30)

Here, similar to the BGK operator, particles are lost at a constant rate (according to
the trapping frequency νtrap). However, unlike BGK, this operator does not return
scattered particles immediately, but rather after a delay defined by the distribution
of trapping times ϕ (t), as depicted in Figure 1.3. As in CTRW theory, choosing
a distribution of trapping times with the power-law tail as in Eq. (1.10) results in
transport that is dispersive [33]. In particular, Philippa et al. considered a multiple
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Figure 1.3: Phase space diagram depicting the trapping and detrapping processes
modelled by the BGK-type operator (1.30).

trapping model with a uniform trapping cross-section for charge carriers [40], which
results in the dispersive trapping time distribution [33]:

ϕ (t) = αν0 (ν0t)
−α−1 γ (α+ 1, ν0t) , (1.31)

where γ (a, z) ≡
´ z
0 dζ ζa−1e−ζ is the lower incomplete Gamma function and ν0 is a

frequency characterising the rate of escape from traps. In this case, the trap severity
has a physical interpretation as the ratio α ≡ T/Tc, where T is the temperature and Tc

is a characteristic temperature that describes the width of the density of trapped states.
The delayed BGK operator (1.30) in conjunction with the heavy-tailed trapping time
distribution (1.31) will be used extensively throughout this thesis to model dispersive
transport due to traps.

1.4 Thesis outline
In Chapter 2 of this thesis, we introduce fractional calculus and outline a technique for
the efficient solution of fractional advection-diffusion equations. Chapter 3 introduces
and explores a generalised Boltzmann equation that considers collisions, trapping and
recombination, and is capable of describing dispersive transport. Chapter 4 contin-
ues the investigation of this model by studying the form of its third-order transport
coefficient of skewness. Chapter 5 introduces energy-dependence to the aforemen-
tioned model and explores a variety of displayed energy-dependent phenomena includ-
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ing particle heating/cooling, generalised Einstein relations and NDC. Chapter 6 applies
the kinetic model to a simulation of charge transport experiments on planar organic
semiconducting devices. Finally, Chapter 7 presents the conclusion and recommenda-
tions for future work.
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2
Fractional transport

This chapter contains material that has been published in the following journal article:
[1] Peter W. Stokes, Bronson Philippa, Wayne Read, and Ronald D. White.

Efficient numerical solution of the time fractional diffusion equation by mapping
from its Brownian counterpart. Journal of Computational Physics, 282, 334 (2015).
doi:10.1016/j.jcp.2014.11.023

2.1 Introduction
A consequence of dispersive systems, especially those with long-lived traps, is their
dependence on their history. The diffusion equation, which uses a local time operator,
is fundamentally incapable of describing such memory effects. Mathematically, an
adequate model for dispersive transport requires a global time operator that acts on
the entire history of the system. In the previous chapter we outlined one successful
approach for modelling dispersive transport that involves replacing the the local time
derivative in the diffusion equation with a global fractional time derivative of order
α [41, 42]. This resulting fractional diffusion equation describes memory effects while
also satisfying the required sublinear scaling of the mean squared displacement. This
is one of many examples where derivatives of non-integer order have been particularly
successful in describing a variety of complex processes with memory effects. Other
applications arise in statistical finance [43], economic modelling [44], image processing
[45], quantum systems [46] and kinetics [13,33,47–51].

In this chapter, we are concerned with the numerical solution of a Caputo fractional
advection diffusion model. In particular, for the application toward modelling the
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current in a time-of-flight experiment for a disordered semiconductor [13, 49, 52–54].
The Caputo fractional advection diffusion equation is

C
0 Dα

t u (t, x) = D
∂2

∂x2
u (t, x)−W

∂

∂x
u (t, x) , (2.1)

where W is a generalised drift velocity, DL is a generalised diffusion coefficient and the
operator for Caputo fractional differentiation of order 0 < α < 1 is defined in terms of
the convolution integral [55]

C
0 Dα

t f (t) ≡
1

Γ (1− α)

ˆ t

0
dτ (t− τ)−α f ′ (τ) . (2.2)

Note that the normal advection diffusion equation can be recovered in the relevant
limit of no trapping

lim
α→1

C
0 Dα

t u (t, x) =
∂

∂t
u (t, x) . (2.3)

Numerous methods exist [56–62] for finding the numerical solution of fractional
differential equations of the form of Eq. (2.1). Many of these are direct analogues to
approaches that are also applicable to integer order differential equations. This is to
be expected with the definition of fractional differentiation (2.2) defined in terms of
both differentiation and integration. Unfortunately, when solving fractional differential
equations numerically there is an increase [63] in time computational complexity over
that encountered when solving differential equations of integer order. This is due
to the global nature of fractional differentiation and, as in the case of anomalous
diffusion, can be interpreted as a result of the system having memory. Consequently,
any numerical algorithm that computes the solution at a present point in time requires
the entire solution history to do so. In the context of an N -point finite difference time
discretisation, this causes a time computational complexity increase from O (N) to
O
(
N2
)
[64].

A number of approaches have been proposed to accelerate the computation of the
numerical solution of fractional differential equations [63–67]. As this added compu-
tational complexity stems from the memory inherent to the system, many of these
approaches involve restricting this memory in some way. Podlubny [63] considered
this approach by introducing the fixed memory principle, which amounts to truncating
the convolution integral in the definition of fractional differentiation (2.2). In effect,
this restricts the memory of the system to a fixed interval of time into the past, sub-
sequently allowing for the solution to be found numerically in O (N) in exchange for
some loss in solution accuracy. Unfortunately, the only way to guarantee the accuracy
of a numerical method used in conjunction with the fixed memory principle is to choose
a fixed interval of time that encompasses the entire history of the solution, returning
the computational complexity to O

(
N2
)
. Ford and Simpson [64] demonstrated ex-

actly this and, as an alternative, introduced the logarithmic memory principle, which
samples from the solution history in a logarithmic fashion, allowing for the solution to
be found in O (N lnN) without compromise in solution accuracy. Finally, a number
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of parallel computing algorithms have also been introduced [66,67]. These approaches
are viable ways for accelerating the computation of the solution although, as they
often involve splitting the problem into smaller problems of the same computational
complexity, they are ultimately still of O

(
N2
)
.

In Section 2.2, we briefly introduce fractional calculus and the operators of frac-
tional integration and differentiation. Section 2.3 compares the analytical solution of
the fractional diffusion equation (2.1) for a particular order 0 < α < 1 to the clas-
sical diffusion case where α = 1. In Section 2.4, we show that the solution to the
fractional advection diffusion equation (2.1) can be related to the solution of the nor-
mal advection diffusion equation through a linear mapping in time. This mapping
relationship, which takes the form of a matrix multiplication, provides an approach
for the numerical acceleration of the fractional solution. In Section 2.5, an algorithm
for the computation of the matrix that defines the linear mapping is presented that
utilises the fast Fourier transform. Additionally, we show that many elements of this
matrix may contribute negligibly to the solution and so can be neglected, subsequently
allowing for even further acceleration. In Section 2.5.3, we demonstrate the accuracy
of this mapping approach by benchmarking the numerical solution of a fractional re-
laxation equation against its exact analytic solution. In Section 2.6, this mapping is
applied successfully to accelerate the fitting of Eq. (2.1) to experimental data for a
time-of-flight experiment. Finally, in Section 2.7, we present conclusions and briefly
list possible applications of our approach to various generalisations of the considered
fractional-order problem.

2.2 Fractional calculus
Fractional calculus is a generalisation of calculus that considers differentiation and
integration to arbitrary real or complex orders [63]. Although not as well-known as
calculus, fractional calculus has a long history with origins in a 1695 exchange of
letters between l’Hôpital and Leibniz, a mere decade after calculus was published
by Leibniz in his Nova Methodus [68, 69]. In this correspondence, while referencing
Leibniz’s notation for n-th order differentiation, dn

dxn , l’Hôpital asked “What if n is
1
2?” [68]. Leibniz responds that there arises “an apparent paradox from which one
day, useful consequences will be drawn” [68]. The paradox Leibniz refers to is an
unexpected ambiguity in fractional differentiation, akin to the ambiguity of indefinite
integration. That is, in general, fractional differentiation is a global operator that acts
on an interval [70]. It is only when the order of fractional differentiation is a non-
negative integer that fractional differentiation becomes ordinary differentiation and
acts locally on a single point [63].
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2.2.1 Fractional integration

Fractional integration follows directly from Cauchy’s formula for repeated integration
[63]:

0D−n
t f (t) ≡

ˆ t

0
dτn
ˆ τn

0
dτn−1 · · ·

ˆ τ1

0
dτ1f (τ1)

≡ 1

(n− 1)!

ˆ t

0
(t− τ)n−1 f (τ)dτ

≡ tn−1

(n− 1)!
∗ f (t) , (2.4)

where the operator 0D−n
t denotes n-fold integration over the interval [0, t], and ∗ de-

notes a convolution over that same interval. We can relax the requirement that n
be an integer through use of the Gamma function. Thus, we define α-fold fractional
integration as

0D−α
t f (t) ≡ 1

Γ (α)

ˆ t

0
(t− τ)α−1 f (τ)dτ

≡ tα−1

Γ (α)
∗ f (t) , (2.5)

where α is an arbitrary positive real number. This definition of fractional integration
can be extended to non-negative real orders through the identity operation:

0D0
t f (t) ≡ lim

α→0
0D−α

t f (t) ≡ f (t) . (2.6)

This operator, 0D−α
t , is also known as the Riemann-Liouville fractional integral [63].

It should be noted that Riemann-Liouville fractional integration has the desirable
semigroup property [63]:

0D−α
t 0D−β

t ≡ 0D−(α+β)
t , (2.7)

where α and β are non-negative real numbers.

2.2.2 Fractional differentiation

Fractional differentiation follows naturally by drawing inspiration from the semigroup
property (2.7) and applying both fractional integration and integer-order differenti-
ation in succession. In what follows, we will consider only fractional derivatives of
orders 0 < α < 1, as these are what typically arise in fractional calculus models for
dispersive transport. Fractional differentiation of order α can thus be achieved by per-
forming ordinary differentiation of order 1 followed by fractional integration of order

Chapter 2. Fractional transport 15



Stokes, Peter Anomalous Transport in Organic and Soft-Condensed Matter

1− α. This results in the Caputo fractional derivative [55]:

C
0 Dα

t f (t) ≡ 0D−(1−α)
t D1f (t)

≡ 1

Γ (1− α)

ˆ t

0
dτ (t− τ)−α ∂f

∂t

∣∣∣∣
t=τ

≡ t−α

Γ (1− α)
∗ ∂f
∂t
. (2.8)

Alternatively, we could have first performed fractional integration followed then by
differentiation. Since integer-order differentiation and fractional integration do not
commute [63], this would have resulted in an alternative definition for fractional dif-
ferentiation known as the Riemann-Liouville fractional derivative. When present in
initial value problems, the Riemann-Liouville fractional derivative requires initial con-
ditions to be specified in terms of fractional integrals, which are difficult to interpret
physically. For this reason, we will exclusively use the Caputo fractional derivative
(2.8).

2.3 Direct solution of the fractional diffusion equa-
tion

The classical diffusion equation is

∂

∂t
u (t, x) = D

∂2

∂x2
u (t, x) , (2.9)

where D is the diffusion coefficient. A fractional diffusion equation simply has one
or both of the above integer-order derivatives replaced with fractional derivatives. In
1989, Schneider and Wyss introduced a so-called time-fractional diffusion equation
where the time derivative in the classical diffusion equation (2.9) had been replaced
with a Caputo fractional derivative (2.8) of order α [71]:

0Dα
t n (t, x) = Dα

∂2

∂x2
n (t, x) , (2.10)

where Dα denotes a generalised diffusion coefficient with fractional units of time. Un-
like the classical diffusion equation (2.9) that describes Brownian motion, the fractional
diffusion equation (2.10) describes transport that is dispersive. We can thus compare
both kinds of transport by comparing the solutions of each diffusion equation. Using
Fourier-Laplace transform techniques, it is straightforward to find an analytical ex-
pression for the solution of the fractional diffusion equation (2.10). In the case of an
impulse initial condition centred at the origin, n (0, x) ≡ δ (x), we have the fundamental
solution [63]:

n (t, x) =
1

2
√
Dαtα

W

(
− |x|√

Dαtα
;−α

2
, 1− α

2

)
, (2.11)
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where the Wright function is defined

W (z;α, β) ≡
∞∑
k=0

zk

k!Γ (αk + β)
, ℜ (α) > −1, β ∈ C. (2.12)

By choosing α = 1, we recover the well-known fundamental Gaussian solution of the
classical diffusion equation (2.9):

u (t, x) =
1

2
√
πDt

exp
[
−
(

x

2
√
Dt

)2
]
. (2.13)

We now compare normal and dispersive transport by plotting in Figure 2.1 the fun-
damental solution (2.11) at various times for α = 1 and α = 1

2 . This figure shows
the fundamental slowness of dispersive transport in comparison to normal transport.
Additionally, in the case of fractional diffusion, the impulse initial condition persists
as a cusp at the origin. This memory of the location of the initial impulse manifests
mathematically as the global time operator (2.8) of fractional differentiation acting on
the entire solution history.

2.4 Mapping between normal and fractional diffu-
sion

In this section we will explore accelerating the numerical solution of the fractional
advection-diffusion equation (2.1) by relating it to the solution of the normal advection
diffusion equation

∂

∂t
v (t, x) = D

∂2

∂x2
v (t, x)−W

∂

∂x
v (t, x) . (2.14)

By enforcing both equivalent initial conditions and boundary conditions, we can relate
these solutions using the known integral transform [41,72–75]

u (t, x) =

ˆ ∞

0
dτA (τ, t) v (τ, x) , (2.15)

which also holds true for any other shared linear spatial operator in the considered
advection diffusion equations. Here, the kernel is defined

A (τ, t) ≡ L−1
{
sα−1e−sατ

}
=

∂

∂τ

[
1− Lα

(
t

α
√
τ

)]
, (2.16)

where L denotes the Laplace transform and Lα (t) is the one-sided Lévy distribution,
which is expressible in terms of the one-sided Lévy density lα (t) as

Lα (t) ≡
ˆ t

0
dτ lα (t) , Llα (t) ≡ e−sα . (2.17)
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Figure 2.1: Plots of the fundamental solutions, (2.13) and (2.11), of the normal and
fractional diffusion equations. The vertical dotted line denotes the location of the
impulse initial condition at the origin. The persisting cusp at this location in the
fractional solution is due to the memory effects of dispersive transport and the corres-
ponding global nature of fractional differentiation.
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This integral relationship is known as a subordination transformation, where A (τ, t)

is the probability distribution function providing subordination of the random process
governed by Eq. (2.1) on the physical time scale t to that governed by Eq. (2.14) on
the operational time scale τ [76].

In order to determine the fractional order solution numerically, we wish to find a
discrete analogue of this transform. We note that this relationship acts on time alone,
independent of space. As such, in what follows, we shall consider the solutions u (t, x)
and v (t, x) solely as functions of time and reintroduce spatial dependence at a later
point. Performing separation of variables, we can instead consider the ordinary time
differential equations

C
0 Dα

t u (t) = λu (t) , (2.18)
∂

∂t
v (t) = λv (t) , (2.19)

where λ is the separation constant or eigenvalue of the shared spatial operator. We
will now perform a finite difference time discretisation of these ordinary differential
equations. We will denote time steps by superscripts un ≡ u (n∆t), where ∆t is the
time step size and n = 0, . . . , N is the time step number with N being the total number
of time steps and t ≡ N∆t being the present point in time. To numerically approximate
the fractional time derivative we will make use of the L1 algorithm [77], which was
introduced by Oldham and Spanier to approximate the Riemann-Liouville fractional
derivative. This algorithm has since been applied by a number of authors [56,57,78–80]
to the Caputo fractional derivative, resulting in the approximation

C
0 Dα

t u (t) = ∆t−α
N∑

n=1

wn

(
uN−n+1 − uN−n

)
+O (∆t) , (2.20)

where we have the quadrature weights defined

wn ≡ n1−α − (n− 1)1−α

Γ (2− α)
. (2.21)

This discretisation of the Caputo fractional derivative includes the limiting case where
α→ 1 from which we can recover the Euler method

∂

∂t
v (t) =

vN − vN−1

∆t
+O (∆t) . (2.22)

Applying these discretisations to the ordinary differential equations (2.18) and (2.19)
yields recurrence relationships for the approximate finite difference solutions

(
1− λ

∆tα

w1

)
uN = ŵNu

0 +
N−1∑
n=1

(ŵn − ŵn+1)u
N−n, (2.23)

(1− λ∆t) vN = vN−1, (2.24)
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where we have introduced the normalised quadrature weights ŵn ≡ wn/w1. As ex-
pected, the fractional order solution at each time step depends on the entire solution
history, while the integer order solution depends only the nearest prior point in the
neighbourhood of the present. We can solve these recurrence relationships analytically
for the present time step in terms of their respective initial conditions

uN =

N∑
n=1

aNn
u0(

1− λ∆tα

w1

)n , (2.25)

vN =
v0

(1− λ∆t)N
, (2.26)

where aNn, which is yet to be determined, denotes the n-th weight in the weighted
sum for the fractional order solution at the N -th time step. If we choose the integer
order initial condition to coincide with the fractional one v0 = u0 and also choose a
time step size for the integer order case of ∆tα/w1 we can relate the solution to the
fractional order problem directly to the solution of the integer order one as

uN =

N∑
n=1

aNnv
n. (2.27)

This is a discrete analogue of the continuous integral relationship (2.15) and so the
weights aNn can be interpreted as quadrature weights. We should expect this discrete
analogue to coincide with the continuous relationship in the limit of many time steps
N . Most generally, reintroducing spatial dependence and considering all time steps, we
can write each weighted sum in the form of Eq. (2.27) using the matrix multiplication

U = AV, (2.28)

where we have the matrix of quadrature weights

A =


a11 0 0
... . . . 0

aN1 · · · aNN

 , (2.29)

which allows for mapping from the integer order solution matrix

V =


— v1 —

...
— vN —

 , (2.30)

to the fractional order solution matrix

U =


— u1 —

...
— uN —

 , (2.31)
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where the rows of these solution matrices correspond to the spatial solution at each
time step for the same spatial points. As the mapping matrix A is lower triangular,
determining the solution matrix U using this matrix multiplication is of O

(
N2
)
. This

is no better than directly applying Eq. (2.23) to find the solution recursively. Fortu-
nately, this is only the case if we absolutely require the solution at every time step.
Indeed, if we are content with the solution at a subset of the overall time steps, we
can partially perform the matrix multiplication in Eq. (2.28) in O (N). Consider, for
example, stability limitations such as the Courant-Friedrichs-Lewy condition [81] that
arise in explicit finite difference schemes and may require time steps smaller than would
otherwise be needed. In such a situation, we can solve the integer order problem with
sufficiently small time steps (to satisfy the stability criterion), and then map it onto the
fractional problem using sparser time steps. Of course, the usefulness of this approach
also depends on the computational complexity of computing the required rows of the
mapping matrix. Fortunately, as the solution mapping depends solely on the operator
of fractional differentiation, the mapping matrix can be precomputed for a given value
of α and used repeatedly. The precise computational complexity of computing the
mapping matrix will be considered in Section 2.5.

2.5 The solution mapping matrix A
In the following sections, we address the problem of efficiently computing and applying
the mapping matrix A, present in Eq. (2.28) for the numerical relationship between
integer and fractional order solutions.

2.5.1 Computation using the fast Fourier transform

Substitution of the fractional finite difference solution approximation (2.25) back into
its recurrence relationship (2.23) allows us to express the elements of the mapping
matrix A in the form of a generating function recurrence relationship

An (x) = Ω (x)An−1 (x) , (2.32)

where we have the generating function for the n-th column of the mapping matrix

An (x) ≡
∑
m≥1

amnx
m, (2.33)

with the first column given by the initial condition weights from Eq. (2.23)

A1 (x) ≡
∑
m≥1

ŵmx
m, (2.34)

and the generating function of past time step weights from Eq. (2.23)

Ω(x) ≡
∑
m≥1

(ŵm − ŵm+1)x
m. (2.35)
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The Cauchy product [82] allows us to write this generating function recurrence rela-
tionship explicitly using a discrete linear convolution

ann
...

aNn

 =


ŵ1 − ŵ2

...
ŵN−n+1 − ŵN−n+2

 ∗


an−1,n−1

...
aN−1,n−1

 , (2.36)

where the initial column vector is provided by its generating function A1 (x)
a11
...

aN1

 =


ŵ1

...
ŵN

 . (2.37)

This convolution representation can be implemented using the fast Fourier transform,
allowing for the computation of an N × N mapping matrix in O

(
N2 lnN

)
. Evid-

ently, determining the mapping matrix alone is more computationally intensive than
finding the finite difference solution recursively in only O

(
N2
)
. Certain situations

exist, however, where the mapping matrix may be precomputed and reused, allowing
for computational benefit even with this larger computational complexity. One such
situation is the focus of Section 2.6, where the least squares fit of a fractional order
model to experimental data is considered. Fortunately, as described in the following
section, we are not limited to only these situations when it comes to useful application
of this solution mapping.

2.5.2 Column truncation

The magnitude of the elements of the mapping matrix A is illustrated in Figure 2.2
for various values of the fractional differentiation order α. It can be seen that, as
α decreases, fewer elements are likely to contribute to the solution mapping. This
suggests that we can truncate the mapping matrix at some point during its column-wise
computation described by Eq. (2.36). Here, we will specifically consider truncating
the weighted sum (2.27) corresponding to the solution at the last time step. As a
simplification, we will take both integer and fractional order solutions to be constant
and hence equal, allowing us to remove all solution dependence and focus on truncating
the summation ∑

n>0

aNn = 1. (2.38)

This expression can also be derived from the generating function representation (2.32)
and is equivalent to stating that the rows of the mapping matrix sum to unity. Now,
by introducing a truncation tolerance 0 < ε < 1, which is proportional to the absolute
error incurred by the truncation, we can define the number of columns in the truncated
mapping matrix as the smallest integer Ntrunc that satisfies∑

n>Ntrunc

aNn ≤ ε. (2.39)
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Figure 2.2: Illustration of the matrix A that maps from the solution of the normal
diffusion equation (2.14) to the solution of the order α fractional diffusion equation
(2.1). Each matrix is of size 50× 50 with elements that have been coloured according
to their magnitude on a logarithmic scale. (a) As α → 1, the identity matrix is re-
covered, corresponding to the fractional and integer order solutions coinciding. (b-c)
As α decreases, the matrix is dominated by elements with a lower column number,
indicating that the early time solution to the integer order problem becomes increas-
ingly significant. (d) As α → 0, the matrix approaches having only an initial column
of ones, which corresponds to a time-invariant solution. This rapid decrease in element
magnitude suggests the possibility of column-wise truncation of the mapping matrix,
allowing for improved efficiency in both its computation and application, especially for
small values of α.
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Evidently, to determine Ntrunc using this inequality requires computation of matrix
elements that will ultimately be truncated. Fortunately, using the row summation
identity (2.38), we can restate this inequality using known matrix elements∑

1≤n≤Ntrunc

aNn ≥ 1− ε. (2.40)

We can gain some insight into the asymptotic form of Ntrunc, and hence any com-
putational benefit of this truncation, by considering the continuous analogue of this
solution mapping, provided by Eq. (2.15). As before, by choosing an integer order
solution that is constant, we find that

ˆ ∞

0
dτA (τ, t) = 1, (2.41)

which is evident from the Laplace space representation (2.16) of A (τ, t) as being the
normalisation condition for an exponential distribution in τ . By nondimensionalising
in terms of the finite difference time step indices, that is taking t = N∆t and τ =

n∆tα/w1, we find the continuous analogue to the row summation identity (2.38)
ˆ ∞

0
dnaNn = 1, aNn ≡ ∆tα

w1
A

(
n∆tα

w1
, N∆t

)
, (2.42)

where both n and aNn are continuous here. Continuing with the analogy, we can now
choose to truncate this integral at the point n = Ntrunc, resulting in the continuous
analogue to truncation tolerance definition (2.39)

ε ≡
ˆ ∞

Ntrunc

dnaNn = Lα
α

√
w1Nα

Ntrunc
, (2.43)

where we have made use of the Lévy distribution representation (2.16) of the kernel
A (τ, t). It is evident here that we can make this truncation tolerance an arbitrarily
small constant that is independent of N by choosing that Ntrunc is directly proportional
to Nα. As the discrete truncation tolerance coincides with this continuous one in the
limit of large N , we should expect to find the asymptotic behaviour Ntrunc ∼ Nα for
the continuous case. Indeed, Figure 2.3 shows precisely this as the size of the mapping
matrix is increased for select values of α. Therefore, when truncated, an N × N

mapping matrix becomes of size N × O (Nα), allowing for column-wise computation
of it using the recurrence relationship (2.36) in only O

(
N1+α lnN

)
. Similarly, we can

now find the fractional order solution at particular instants in time in O (Nα). Finally,
with this truncation, it should be noted that we are no longer required to precompute
the mapping matrix in order to obtain a solution in a computational complexity better
than O

(
N2
)
.
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Figure 2.3: The number of columns in the mapping matrix A, truncated according to
the inequality (2.40) with a truncation tolerance of ε = 10−2. The gradient of each case
approaches α as the number of time steps N grow large, suggesting the asymptotic
form Ntrunc ∼ Nα.

2.5.3 Benchmarking the truncated mapping

In this section, we will demonstrate the expected accuracy of the truncated mapping
solution described in Section 2.5 relative to the direct finite difference solution provided
either recursively or by the full mapping introduced in Section 2.4. Specifically, we
will consider the solution of the fractional relaxation equation [11]

C
0 D

1
2
t u (t) = u (t) , u (0) = 1, (2.44)

which we chose because it has the exact analytic solution [83]

u (t) = et
(
1 + erf

√
t
)
, (2.45)

where erf (x) ≡ 2√
π

´ x
0 dξe−ξ2 is the Gauss error function. Additionally, the finite

difference solution here can be found recursively by simply taking Eqs. (2.23) and
(2.24) with α = 1/2 and λ = 1.

Figure 2.4 shows that the truncated mapping can be applied to find the solution
to the fractional relaxation equation (2.44) to an accuracy comparable to the finite
difference method, while still maintaining an improved computational complexity.
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Figure 2.4: The error of an N = 100 point finite difference solution of the fractional
relaxation equation (2.44) relative to its analytic solution (2.45). The truncated solu-
tion mapping described in Section 2.5 is applied for decreasing values of the truncation
tolerance ε. Note how the truncated mapping can be made to be arbitrarily accurate,
while still retaining its O

(√
N
)
computational complexity. The divergence in accur-

acy for late times stems from the truncation of more terms at later time steps. To
perform this plot, a truncated mapping matrix A was precomputed in O

(
N

3
2 lnN

)
and then truncated further as required.

2.6 Efficient fitting of experimental data via solution
mapping

The solution mapping outlined in Sections 2.4 and 2.5 is ideally suited to the accel-
eration of curve-fitting problems where the solution defining the curve must be found
repeatedly and at relatively few points. In this section we will demonstrate this by
fitting a fractional-order model to experimental data for the current in a time-of-flight
experiment for a disordered semiconductor. As stated in Section 2.1, this can be de-
scribed by the fractional advection diffusion model (2.1). This model describes the
charge carrier density in a thin sample held between two large plane-parallel boundar-
ies with all spatial variation occurring normal to these boundaries. It will be assumed
that the boundaries are perfectly absorbing, providing the Dirichlet boundary condi-
tions

u (t, 0) = 0 = u (t, L) , (2.46)
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where L is the thickness of the sample. We will choose the initial distribution of charge
carriers to be governed by the Beer-Lambert law resulting in the exponential initial
condition

u (0, x) ∝ e−ax, (2.47)

where a is the absorption coefficient of the sample. We can use the expression for the
current in a time-of-flight experiment [49]

I (t) ∝ ∂

∂t

ˆ L

0

(x
L

− 1
)
u (t, x) dx, (2.48)

to find the current directly from the number density solution of Eq. (2.1). For spatial
consideration, we will make use of the centred finite difference approximations

∂

∂x
u (t, x) =

uNj+1 − uNj−1

2∆x
+O

(
∆x2

)
, (2.49)

∂2

∂x2
u (t, x) =

uNj+1 − 2uNj + uNj−1

∆x2
+O

(
∆x2

)
, (2.50)

where j = 0, . . . , J is the spatial index, J is the total number of spatial nodes and
subscripts have been used to denote spatial indexing unj ≡ u (n∆t, j∆x). Hence, we
can enforce the boundary conditions by setting un0 = 0 = unJ for all n = 0, . . . , N .
Applying these spatial derivative approximations, in conjunction with Eq. (2.20) for
approximating the Caputo fractional derivative, results in the recurrence relationship
for the number density solution to Eq. (2.1)

CuN = ŵNu0 +

N−1∑
n=1

(ŵn − ŵn+1)uN−n, (2.51)

where we have the tridiagonal matrix

C ≡


1− 2r r + s 0

r − s 1− 2r
. . .

0
. . . . . .

 , r ≡ − D∆tα

w1∆x2
, s ≡ W∆tα

2w1∆x
. (2.52)

Figure 2.5 plots photocurrent data alongside the model (2.48) fitted using a trust-
region-reflective non-linear least squares algorithm [84, 85], as implemented in the
lsqcurvefit function [86] located in MATLAB’s Curve Fitting Toolbox.

To explore the computational benefits of applying the solution mapping described
in Section 2.4 and its truncation described in Section 2.5, we require the number density
solution when α = 1, corresponding to normal transport. Proceeding as before, this
time using Eq. (2.22) for the approximation of the first derivative, yields the recurrence
relationship for the integer order solution v (t, x)

CvN = vN−1. (2.53)
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Figure 2.5: A least squares fit of the model (2.48) to the transient photocurrent in a
sample of intrinsic hydrogenated amorphous silicon a-Si:H at 160K (adapted from Ref.
[6]). To within a confidence interval of 95%, the fitting algorithm determined a severity
of trapping of α = 0.535±2%, a generalised drift velocity ofWtαtr/L = 2.89×10−1±4%
and a generalised diffusion coefficient ofDtαtr/L2 = 6.07×10−3±21%, where the “transit
time” separating the current regimes has been taken as ttr ≡ 10−5s.

As C is tridiagonal, we can step forward the fractional order solution recurrence rela-
tionship (2.51) in a time computational complexity of O (J) [87]. As such, the total
computational complexity to determine the fractional order solution in time and space
becomes O

(
N2J

)
. Similarly, by applying the solution mapping we have a computa-

tional complexity of O
(
N2J lnN

)
, which improves to O

(
N1+αJ lnN

)
with truncation.

The value of α present here can be estimated by noting the asymptotic form of the
current in a time-of-flight experiment [12]

I (t) ∼

t−(1−α), early times,

t−(1+α), late times,
(2.54)

which provides a criterion for recognising dispersive transport by noting that the sum
of the slopes of the asymptotic regions of a current versus time plot on logarithmic
axes is −2. In this particular case, we can use this criterion to bound the severity of
trapping to within the interval 0.5 < α < 0.55.

Figure 2.6 plots the computation time for fitting the model (2.48) to the photo-
current data considered in Figure 2.5 for an increasing number of time steps. The
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Figure 2.6: Comparison of computation time versus number of time steps for least
squares fitting performed using the finite difference method (2.51), the accelerated
solution mapping developed here (2.28) and the truncation thereof defined by Eq.
(2.40). To maintain solution accuracy, the truncation tolerance ε was chosen to decrease
in proportion to N and the spatial nodes J were chosen to increase in proportion to√
N . It can be seen that the solution mapping without truncation is two orders of

magnitude faster than the recursive approach for the largest problem size considered.
With truncation, this improves to a three orders of magnitude speed up.

observed fitting times do not increase monotonically with N . This is due to the nature
of the fast Fourier transform (FFT) algorithm. The FFT is very sensitive to the prime
factorisation of the input size. For example, the FFT is fastest when N is a power of 2,
and it is especially slow when N is prime. Additional variations in fitting time may be
due to the curve fitting algorithm and the number of iterations it requires to perform
the fit.

2.7 Concluding remarks and future work
Finite difference solutions to fractional differential equations are known to have a
computation time that scales with the square of the number of time steps. This stems
mathematically from the global nature of fractional differentiation, and physically can
be interpreted as a consideration of memory effects. In this study, we have related
the solution of the fractional diffusion equation (2.1) of order 0 < α < 1 to the
solution of a the normal diffusion equation (2.14) using a linear mapping in time Eq.
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(2.28). We have found that, for an N -point finite difference time discretisation, we can
use this mapping to improve upon the O

(
N2
)
time computational complexity of the

finite difference method and determine the solution at any instant in time in O (Nα),
given a precomputation of O

(
N1+α lnN

)
. This representation is especially useful in

situations where the solution must be found repeatedly, as then the relatively expensive
precomputation only has to be performed once. We have presented one such situation
in Section 2.6 where we have successfully applied this approach to fit the fractional
advection diffusion model (2.1) to experimental data for the current in a time-of-flight
experiment. For this we achieved computational speed ups in the range of one to three
orders of magnitude for the realistic problem sizes considered.

Although this chapter considered a fractional advection-diffusion model, the map-
ping approach described is applicable for any other linear spatial operator, including
those of higher dimensions. For example, in Section 3.6 we apply this same technique
to a different generalisation of the advection-diffusion equation. With modifications,
this solution mapping can be generalised to consider both the inclusion of a source
term as well as higher order fractional derivatives for which α > 1.
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3
Phase-space model for combined

localised and delocalised transport

This chapter contains material that has been published in the following journal articles:
[2] Peter W. Stokes, Bronson Philippa, Daniel Cocks, and Ronald D. White.

Solution of a generalized Boltzmann’s equation for nonequilibrium charged-particle
transport via localized and delocalized states. Physical Review E, 93, 032119 (2016).
doi:10.1103/PhysRevE.93.032119

[3] Peter W. Stokes, Bronson Philippa, Daniel Cocks, and Ronald D. White. Gen-
eralized balance equations for charged particle transport via localized and delocalized
states: Mobility, generalized Einstein relations, and fractional transport. Physical Re-
view E, 95, 042119 (2017). doi:10.1103/PhysRevE.95.042119

3.1 Introduction
In the previous chapters, dispersive transport was modelled by replacing the the local
time derivative in the diffusion equation with a global fractional time derivative of
order α [41,42]. Although the resulting fractional diffusion equation (2.1) satisfied the
required sublinear scaling in mean squared displacement, it still has the same spatial
operator as the standard diffusion equation which implies implicitly an assumption
of small spatial gradients. At the same time, the memory of the initial condition can
cause large spatial gradients to persist for all time, as seen in Figure 2.1. This inconsist-
ency challenges the validity of fractional diffusion equations. This has been addressed
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by using phase-space kinetic models for dispersive transport that make no such as-
sumptions on the size of spatial gradients [32, 33]. Specifically, these approaches have
made use of a Boltzmann equation with a generalisation of the Bhatnagar-Gross-Krook
(BGK) collision operator [36], the standard collision operator in semiconductor physics.
In the kinetic equation for dispersive transport, described in Section 1.3.3, trapping
and detrapping is considered equivalent to a BGK collision scattering event occurring
after a delay governed by a trapping time distribution. That model does not consider
scattering as a separate process from trapping, thereby limiting it to situations where
trapping dominates over scattering. However, scattering events are key to transport
in delocalised states, such as in the conduction band of a semiconductor. The present
chapter builds upon previous work by incorporating a genuine scattering model into a
kinetic equation with memory of past trapping events. The new, proposed model also
incorporates loss mechanisms such as charged carrier recombination.

In Section 3.2 of this chapter, we present a generalised Boltzmann equation with
a BGK collision operator to describe transport via delocalised states, a delayed BGK
operator to model trapping and detrapping associated with localised (trapped) states,
and loss terms corresponding to free and trapped particle recombination. In Section
3.3, we determine an analytical Fourier-Laplace space solution of this model. This
analytical solution is used, among other things, to determine analytical expressions
for phase-space averaged moments of the generalised Boltzmann equation. Spatial
moments provide transport coefficients describing the the motion of the centre of mass,
while velocity moments are used in conjunction to describe the particle flux using
flux transport coefficients. In Section 3.4, the model is explored in the weak-gradient
hydrodynamic regime where it is shown to coincide with both a standard diffusion
equation and a generalised diffusion equation with history dependence. In Section
3.5, the model is also shown to coincide with a Caputo fractional diffusion equation
in the particular case where transport is dispersive. In Section 3.6, the solution of
the generalised diffusion equation is expressed as a subordination transformation of
the solution of a corresponding standard diffusion equation. We explore the signature
impact of recombination loss processes in both the delocalised and localised states on
the time-of-flight current transients in Section 3.7. Finally, in Section 3.8, we present
conclusions and possible avenues for future work.

3.2 Generalised Boltzmann equation
We consider a generalised phase-space kinetic model describing the transport of free
particles undergoing collisions, trapping, detrapping and recombination as illustrated
in Figure 3.1. The free particles will be described by the phase-space distribution
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Figure 3.1: Phase-space diagram illustrating the collision, trapping, detrapping and
recombination processes considered in the model defined by Eqs. (3.1)–(3.8).

function f (t, r,v) which satisfies the Boltzmann equation

(
∂

∂t
+ v · ∂

∂r + a · ∂
∂v

)
f (t, r,v) = −νcoll [f (t, r,v)− n (t, r)w (αcoll, v)]

− νtrap [f (t, r,v)− Φ(t) ∗ n (t, r)w (αdetrap, v)]− ν
(free)
loss f (t, r,v) , (3.1)

where collision, trapping and free particle loss rates are respectively denoted νcoll, νtrap

and ν
(free)
loss and the free particle number density is defined n (t, r) ≡

´
dvf (t, r,v).

Collisions are described above by the Bhatnagar-Gross-Krook (BGK) collision oper-
ator [36]. Specifically, free particles are instantaneously scattered to a Maxwellian
distribution of velocities of temperature Tcoll. The Maxwellian velocity distribution is
defined

w (α, v) ≡
(
α2

2π

) 3
2

exp
(
−α

2v2

2

)
, (3.2)

α2 ≡ m

kBT
, (3.3)

where m is the free particle mass, kB is the Boltzmann constant and T is the temper-
ature of the scattered particles. Similarly, trapping and detrapping processes occur as
described by a delayed BGK model (1.30) [33], according to an effective waiting time
distribution Φ(t), with trapped particles eventually detrapping with a Maxwellian ve-
locity distribution of temperature Tdetrap. To define this waiting time distribution,
consider the simple case of traps of fixed duration τ . Particles enter traps at the rate
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νtrapn (t, r) and so leave traps at this same rate τ units of time in the future. From
the present perspective this rate of detrapping is νtrapn (t− τ, r). More generally, for
a distribution of trapping times ϕ (t), the rate of detrapping is now written as the
convolution

νtrapϕ (t) ∗ n (t, r) = νtrap

ˆ t

0
dτϕ (τ)n (t− τ, r) . (3.4)

Here, the quantity dP ≡ ϕ (τ)dτ can be interpreted as an infinitesimal probability
that particles will remain trapped for duration τ . Note that this expression does not
take into account the possibility that particles may undergo trap-based losses instead
of detrapping. As trapped particles are being lost exponentially at the rate ν(trap)

loss , the
probability of detrapping decays correspondingly, dP = e−ν

(trap)
loss τϕ (τ)dτ . That is, we

have now the effective waiting time distribution

Φ(t) ≡ e−ν
(trap)
loss tϕ (t) . (3.5)

Appendix D.1 contains an alternative derivation of this waiting time distribution. As
trapped particles are localised in configuration space, we describe them with the num-
ber density ntrap (t, r) that satisfies the continuity equation

∂

∂t
ntrap (t, r) = νtrap (1− Φ∗)n (t, r)− ν

(trap)
loss ntrap (t, r) , (3.6)

where ν(trap)
loss is the loss rate of trapped particles. Although the loss processes of the

free and trapped particles can occur through various mechanisms (e.g. recombination,
attachment, ...), for simplicity we will refer to all losses as being due to recombination
processes. The number of free and trapped particles that undergo recombination,
N

(free)
loss (t) and N (trap)

loss (t), can be counted accordingly

d
dtN

(free)
loss (t) = ν

(free)
loss N (t) , (3.7)

d
dtN

(trap)
loss (t) = ν

(trap)
loss Ntrap (t) , (3.8)

in terms of the number of free and trapped particles, defined by N (t) ≡
´
drn (t, r)

and Ntrap (t) ≡
´
drntrap (t, r).

The physical origin of the differences in the functional form of the waiting time
distribution is dependent on the mechanism for trapping. For example, for amorph-
ous/organic materials, trapping is into existing trapped states, and the waiting time
distribution is calculated from the density of trapped states (see e.g. [33]). For dense
gases/liquids, the trapped states are formed by the electron itself, and hence the waiting
time distribution is dependent on the scattering, the fluctuation profiles and subsequent
fluid bubble evolution (see e.g. [88]).
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3.3 Analytical solution of the generalised Boltzmann
equation

3.3.1 Solution in Fourier-Laplace-transformed phase space

The Boltzmann equation with the BGK collision operator has been solved analytic-
ally in Fourier-Laplace space [39]. This same solution technique can be applied to
the generalised Boltzmann equation (3.1) with the additional processes of trapping,
detrapping and recombination. Applying the Laplace transform in time, t → p, and
Fourier transform in phase-space, (r,v) → (k, s), Eq. (3.1) transforms to

(
p̃+ ν̃ + ı

∂

∂s · ık + a · ıs
)
f (p,k, s) = f (t = 0,k, s) + νcolln (p,k)w (αcoll, s)

+ νtrapΦ(p)n (p,k)w (αdetrap, s) , (3.9)

where the Fourier-Laplace transformed phase-space distribution function is

f (p,k, s) ≡
ˆ ∞

0
dt
ˆ

dr
ˆ

dve−(pt+ık·r+ıs·v)f (t, r,v) , (3.10)

the Fourier-transformed Maxwellian velocity distribution is

w (α, s) ≡ exp
(
− s2

2α2

)
, (3.11)

and the following frequencies have been introduced

p̃ ≡ p+ νtrap [1− Φ(p)] + ν
(free)
loss , (3.12)

ν̃ ≡ νcoll + νtrapΦ(p) . (3.13)

By writing all vectors in terms of components parallel and perpendicular to the unit
vector k̂ ≡ k/k

s∥ =
(

s · k̂
)

k̂, (3.14)

a∥ =
(

a · k̂
)

k̂, (3.15)

s⊥ = s − s∥, (3.16)

a⊥ = a − a∥, (3.17)

the Fourier-Laplace transformed Boltzmann equation (3.9) can be restated as a single
first-order differential equation in the Fourier velocity space variable s∥[

∂

∂s∥
− 1

k

(
p̃+ ν̃ + a∥ıs∥ + a⊥ · ıs⊥

)]
f (p,k, s) = −f (t = 0,k, s)

k

− νcoll
k
n (p,k)w (αcoll, s)−

νtrapΦ(p)

k
n (p,k)w (αdetrap, s) . (3.18)
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Finally, solving Eq. (3.18) provides the Fourier-Laplace transformed solution of the
generalised Boltzmann equation (3.1):

f (p,k, s) = − 1

kµ
(
s∥
) ˆ s∥

−∞
dσµ (σ)

{
f (t = 0,k, σ, s⊥) + n (p,k)

[
νcollw (αcoll, σ, s⊥)

+ νtrapΦ(p)w (αdetrap, σ, s⊥)
]}
, (3.19)

written in terms of the integrating factor

µ
(
s∥
)
≡ exp

[
−
s∥

k

(
p̃+ ν̃ +

1

2
a∥ıs∥ + a⊥ · ıs⊥

)]
. (3.20)

We will use the this analytical expression (3.19) to evaluate relevant spatial and velocity
moments to obtain macroscopic transport properties.

3.3.2 Particle number and the existence of a steady state

Integration of the Boltzmann equation (3.1) throughout all phase-space provides the
equation for the free particle number, N (t):[

d
dt + νtrap (1− Φ∗) + ν

(free)
loss

]
N (t) = 0. (3.21)

Similarly, integration over configuration space for the trapped continuity equation (3.6)
provides an equation for the trapped particle number, Ntrap (t):[

d
dt + ν

(trap)
loss

]
Ntrap (t) = νtrap (1− Φ(t) ∗)N (t) . (3.22)

In conjunction with Eqs. (3.7) and (3.8) for the respective number of recombined free
and trapped particles, each particle number can be written explicitly in Laplace space

N (p) =
N (0)

p+ νtrap [1− Φ(p)] + ν
(free)
loss

, (3.23)

Ntrap (p) =
νtrap [1− Φ(p)]

p+ ν
(trap)
loss

N (p) , (3.24)

N
(free)
loss (p) =

ν
(free)
loss
p

N (p) , (3.25)

N
(trap)
loss (p) =

ν
(trap)
loss
p

Ntrap (p) , (3.26)

allowing for steady state values to be determined using the final value theorem,
limt→∞N (t) = limp→0 pN (p). Two possible situations arise in the long time limit.
In the case of no recombination, ν(free)

loss = ν
(trap)
loss = 0, an equilibrium steady state is
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reached between the free and trapped particle numbers

lim
t→∞

N (t)

N (0)
=

νdetrap
νdetrap + νtrap

, (3.27)

lim
t→∞

Ntrap (t)

N (0)
=

νtrap
νdetrap + νtrap

, (3.28)

where the detrapping rate has been defined

ν−1
detrap ≡

ˆ ∞

0
dtϕ (t) t. (3.29)

Figure 3.2 plots the number of free and trapped particles, N (t) and Ntrap (t), and
their respective steady state values (3.27) and (3.28) for an exponential waiting time
distribution ϕ (t) = νdetrape−νdetrapt.

In the case of any recombination, ν(free)
loss > 0 or ν(trap)

loss > 0, no free particle steady
state is reached as all free and trapped particles are eventually lost in the proportions

lim
t→∞

N
(free)
loss (t)

N (0)
=

ν
(free)
loss

ν
(free)
loss + νtrapPloss

, (3.30)

lim
t→∞

N
(trap)
loss (t)

N (0)
=

νtrapPloss

ν
(free)
loss + νtrapPloss

, (3.31)

where the probability that a trapped particle undergoes recombination instead of de-
trapping is

Ploss ≡ 1−
ˆ ∞

0
dtΦ(t) . (3.32)

Figure 3.3 plots the number of free, trapped and recombined particles in this case where
recombination is present for the same exponential waiting time distribution used in
Figure 3.2. It can be seen that, although there is an initial increase in the number of
trapped particles, all free and trapped particles are eventually lost to recombination
in the respective proportions (3.30) and (3.31).

3.3.3 Number density, moments and transient transport coefficients

In this and later sections we will be predominantly interested in steady state quantities,
independent of the choice of initial condition. For simplicity, we will assume there are
initially N (0) free particles centred at the origin with a Maxwellian distribution of
velocities of temperature T0 ≡ m/kBα2

0

f (t = 0, r,v) ≡ N (0) δ (r)w (α0, v) . (3.33)

Velocity integration of the generalised Boltzmann equation (3.1) provides the continuity
equation for the free particle number density[

∂

∂t
+ νtrap (1− Φ(t) ∗) + ν

(free)
loss

]
n (t, r) + ∂

∂r · [n (t, r) ⟨v⟩ (t, r)] = 0. (3.34)
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Figure 3.2: Free and trapped particle numbers for the exponential waiting time distri-
bution ϕ (t) = νdetrape−νdetrapt. As no recombination is present, ν(free)

loss = ν
(trap)
loss = 0, an

equilibrium steady state is reached between the particles as described by Eqs. (3.27)
and (3.28). Here, the detrapping and trapping rates are set equal, νdetrap = νtrap,
resulting in the same number of free and trapped particles in the steady state.

This can be solved analytically using the generalised Boltzmann equation solution
(3.19), yielding

n (p,k) = N (0) ζ0 (k)Z [− (p̃+ ν̃) ζ0 (k)]
1− νcollζcoll (k)Z [− (p̃+ ν̃) ζcoll (k)]− νtrapΦ(p) ζdetrap (k)Z [− (p̃+ ν̃) ζdetrap (k)]

,

(3.35)
where the plasma dispersion function, Z (ξ), is defined [89]

Z (ξ) ≡ 1√
π

ˆ ∞

−∞
dx e−x2

x− ξ
, (3.36)

and each Maxwellian yields a term of the form

ζ (k) ≡
[
2ık ·

(
ık
α2

− a
)]− 1

2

. (3.37)

From this analytical solution, phase-space averaged moments of the generalised
Boltzmann equation can be found exactly at all times. For example, we have the
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Figure 3.3: Free, trapped and recombined particle numbers for the exponential trap-
ping time distribution ϕ (t) = νdetrape−νdetrapt. As recombination is present, all free
and trapped particles are eventually lost in the proportions given by Eqs. (3.30)
and (3.31). Transiently, however, there is an initial increase in the number of
trapped particles. Here, we set equal the free particle recombination rate and the
product of the trapping rate with the trapped particle recombination probability,
ν
(free)
loss = νtrapPloss. For this exponential distribution of waiting times this probab-
ility is Ploss = ν

(trap)
loss /

(
νdetrap + ν

(trap)
loss

)
. By making the aforementioned quantit-

ies equal, the number of recombined free and trapped particles also become equal
in the long time limit. In this case, the detrapping and trapping rates are set to
νdetrap = νtrap = ν

(free)
loss + νtrapPloss, which consequently specifies the trapped particle

recombination rate ν(trap)
loss = ν

(free)
loss + νtrapPloss.
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spatial moments

L
{
N (t)

N (0)
⟨r⟩ (t)

}
=

a
p̃2 (p̃+ ν̃)

, (3.38)

L
{
N (t)

N (0)
⟨rr⟩ (t)

}
=

2I
p̃2 (p̃+ ν̃)2

[
p̃

α2
0

+
νcoll
α2

coll
+
νtrapΦ(p)

α2
detrap

]

+
2aa

p̃2 (p̃+ ν̃)2

(
1

p̃
+

2

p̃+ ν̃

)
, (3.39)

where the Laplace transform operator has been denoted explicitly here as L. From
these moments, the motion of the centre of mass (CM) can be described. The CM
velocity is defined as the time rate of change of its position

WCM (t) ≡ d
dt ⟨r⟩ (t) , (3.40)

while the CM diffusivity is defined as being proportional to the rate of change of
particle dispersion about it

DCM (t) ≡ 1

2

d
dt [⟨rr⟩ (t)− ⟨r⟩ (t) ⟨r⟩ (t)] . (3.41)

CM transport coefficients can be defined for the free, trapped and total particles.
Although trapped particles are localised in space their CM still moves due to repeated
trapping and detrapping.

The movement of the free particles can also be described by looking directly at
velocity moments of the generalised Boltzmann equation (3.1)

L
{
N (t)

N (0)
⟨v⟩ (t)

}
=

a
p̃ (p̃+ ν̃)

, (3.42)

L
{
N (t)

N (0)
⟨rv⟩ (t)

}
=

I
p̃ (p̃+ ν̃)2

[
p̃

α2
0

+
νcoll
α2

coll
+
νtrapΦ(p)

α2
detrap

]

+
aa

p̃ (p̃+ ν̃)2

(
1

p̃
+

2

p̃+ ν̃

)
, (3.43)

from which we define the average velocity

W (t) ≡ ⟨v⟩ (t) , (3.44)

and average diffusivity

D (t) ≡ ⟨rv⟩ (t)− ⟨r⟩ (t) ⟨v⟩ (t) . (3.45)

Figure 3.4 plots the CM velocity WCM (t) for the free, trapped and total particles
alongside the average velocity W (t) for the free particles. We see that all measures of
velocity begin at zero due to the Maxwellian initial condition (3.33) being spherically
symmetric in velocity space. All velocities then increase due to the applied field, with
the free particle CM velocity W(free)

CM (t) and average velocity W (t) coinciding linearly
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at early times
W (t) ≈ W(free)

CM (t) ≈ at. (3.46)

A similar small time expansion can be written for the free particle diffusivites

D (t) ≈ D(free)
CM (t) ≈ I

α2
0

t+
aa
12

[
νcoll + 6

(
ν
(free)
loss + νtrap

)]
t4. (3.47)

This coincidence between the free particle CM and average velocities only lasts tem-
porarily before the CM velocity decreases, becoming negative prior to reaching its
positive steady state value. This movement of the free particle CM against the field
is due to the processes of trapping and detrapping. Specifically, as all particles are
initially free, an unusually large "pulse" of particles are trapped near the origin, which
is later released, causing a bias of the distribution and shifting the CM towards the
origin. Similarly, as the diffusivity of particles trapped early is initially small, the free
particle CM diffusivity D(free)

CM (t) can also become transiently negative, as the distri-
bution appears to "bunch up" near the origin as the initial pulse is released. Finally,
we can see that all CM velocities approach the same steady state value, while the
free particle average velocity approaches a separate steady state. Specifically, the CM
transport coefficients, WCM (t) and DCM (t), approach the values given by Eqs. (3.84)
and (3.85), while the average transport coefficients, W (t) and D (t), approach Eqs.
(3.61) and (3.77).

3.4 Hydrodynamic regime and the generalised diffu-
sion equation

3.4.1 Chapman-Enskog perturbative solution

The Chapman-Enskog perturbative solution technique [90] assumes that certain terms
in the Boltzmann equation are small relative to others, allowing the solution to be
written in the form of a Maclaurin series expansion. Traditionally, the Chapman-
Enskog expansion assumes that both the explicit and implicit time derivatives in the
Boltzmann equation are small. An implication of this is that the perturbative solution
is valid only when the applied field is also small. We will relax this condition and in-
stead use a generalisation of the Chapman-Enskog expansion that only considers small
explicit time and space derivatives, known as a hydrodynamic expansion. We expect
the resulting solution to be most accurate in the long distance steady state. Note, how-
ever, in Section 3.3.2 we determined that a steady state is not always attainable for
our generalised Boltzmann equation (3.1). Specifically, if there is any recombination
present, all free and trapped particles are eventually lost. For the purpose of perform-
ing a hydrodynamic expansion, we ensure that a steady state can always be reached by
introducing a scaled phase-space distribution function with a constant particle number
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Figure 3.4: Plot of the centre of mass (CM) velocities for free, trapped and total
particles, W(free)

CM (t), W(trap)
CM (t) and W(total)

CM (t), as well as the actual average ve-
locity for the free particles, W (t), for the exponential waiting time distribution
ϕ (t) = νdetrape−νdetrapt. The free particle CM velocity W(free)

CM (t) and average velo-
city W (t) coincide linearly at early times according to Eq. (3.46). The free particle
CM velocity WCM (t) is seen to transiently become negative due to particles trapped
early near the origin leaving their traps. In this case, there is no recombination present,
ν
(free)
loss = ν

(trap)
loss = 0, the collision frequency is set to νcoll/νdetrap = 1 and the trapping

rate is made sufficiently large so as the transient negative velocity manifests, with
νtrap/νdetrap = 10. An additional consequence of this relatively large trapping rate is
that almost all free particles become trapped early on, allowing the velocities to almost
reach their steady state values after only a single trapping time νdetrapt = 1.
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N (0)

F (t, r,v) ≡ N (0)

N (t)
f (t, r,v) . (3.48)

Substitution into the generalised Boltzmann equation (3.1) provides a corresponding
equation for this scaled distribution(

∂

∂t
+ v · ∂

∂r + a · ∂
∂v

)
F (t, r,v) = −νcoll [F (t, r,v)− nF (t, r)w (αcoll, v)]

− νtrap [R (t)F (t, r,v)−R (t, r)nF (t, r)w (αdetrap, v)] , (3.49)

where nF (t, r) ≡
´
dvF (t, r,v) and we have introduced the ratio of detrapping and

trapping rates
R (t, r) ≡ Φ(t) ∗ n (t, r)

n (t, r) , (3.50)

and its spatially homogeneous form

R (t) ≡ Φ(t) ∗N (t)

N (t)
. (3.51)

On the terms we wish to denote as small, we will temporarily introduce a multiplicative
parameter δ

δ

(
∂

∂t
+ v · ∂

∂r

)
Fδ (t, r,v) + a · ∂

∂vFδ (t, r,v) = −νcoll [Fδ (t, r,v)− nF (t, r)w (αcoll, v)]

− νtrap [R (t)Fδ (t, r,v)−R (t, r)nF (t, r)w (αdetrap, v)] , (3.52)

through which we can expand the solution in a power series

Fδ (t, r,v) =
∑
n≥0

F (n) (t, r,v) δn. (3.53)

This allows the actual solution to be recovered by setting δ = 1 in the above series
expansion [90]

F (t, r,v) =
∑
n≥0

F (n) (t, r,v) . (3.54)

The terms in this series solution can be found recursively by substituting the δ expan-
sion (3.53) for Fδ (t, r,v) into the generalised Boltzmann equation (3.52) and equating
powers of δ[

νcoll + νtrapR (t) + a · ∂
∂v

]
F (n) (t, r,v) = −

(
∂

∂t
+ v · ∂

∂r

)
F (n−1) (t, r,v) . (3.55)
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This recurrence relationship is valid for n ≥ 1, with the initial term given separately
as[
1 + ⟨v⟩(0) (t) · ∂

∂v

]
F (0) (t, r,v) = νcollw (αcoll, v) + νtrapR (t, r)w (αdetrap, v)

νcoll + νtrapR (t, r) nF (t, r) ,

(3.56)
in terms of its corresponding average velocity

⟨v⟩(0) (t) ≡ a
νcoll + νtrapR (t)

. (3.57)

Note here we have enforced the normalisation condition
ˆ

dvF (0) (t, r,v) ≡ nF (t, r) . (3.58)

In Fourier-transformed velocity space we can write this initial term explicitly

F (0) (t, r, s) = w̃ (t, r, s)nF (t, r) , (3.59)

where

w̃ (t, r, s) ≡ 1

1 + ⟨v⟩(0) (t) · ıs
νcollw (αcoll, s) + νtrapR (t, r)w (αdetrap, s)

νcoll + νtrapR (t, r) . (3.60)

We can confirm that this approximate hydrodynamic solution is most accurate in
the steady state by noting that its average velocity coincides with the actual average
velocity (3.44) at late times, limt→∞ ⟨v⟩(0) (t) = limt→∞ ⟨v⟩ (t). We will denote this
shared steady state velocity as

W ≡ a
νeff

, (3.61)

where the separate collision and trapping processes contribute to the effective frequency

νeff ≡ νcoll +Rνtrap, (3.62)

defined in terms of the spatially averaged limiting ratio of detrapping and trapping
rates

R ≡ lim
t→∞

R (t) ≡ lim
t→∞

Φ(t) ∗N (t)

N (t)
. (3.63)

This limit can be evaluated implicitly as satisfying

R ≡
ˆ ∞

0
dtΦ(t) e

[
ν
(free)
loss +νtrap(1−R)

]
t
. (3.64)

This implicit definition of R can be solved analytically only for certain choices of
trapping time distribution ϕ (t). A table of such R values for a variety of corresponding
ϕ (t) is presented in Appendix A.
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In terms of this velocity, W, we can write the steady state limit of Eq. (3.60) as

w̃ (r, s) = 1

1 + W · ıs
νcollw (αcoll, s) + νtrapR (r)w (αdetrap, s)

νcoll + νtrapR (r) , (3.65)

where the limiting ratio of detrapping and trapping rates is

R (r) ≡ lim
t→∞

R (t, r) . (3.66)

In direct analogy with the implicit definition (3.64) of R we have the following implicit
definition of R (r)

R (r) ≡
ˆ ∞

0
dtΦ(t) exp

{[
ν
(free)
loss + νtrap (1−R (r)) + 1

n

∂

∂r · n ⟨v⟩
]
t

}
. (3.67)

Finally, we can explore the spatial dependence of w̃ (r, s) by considering a perturbation
from its spatially averaged state

w̃ (s) = νcollw (αcoll, s) + νtrapRw (αdetrap, s)

νcoll + νtrapR+ a · ıs . (3.68)

To spatially perturb w̃ (s), we must first spatially perturb R using the definition (3.67)
of R (r). Introducing the first order spatial perturbation δR and using the asymptotic
velocity in the hydrodynamic regime, ⟨v⟩ ∼ W, provides the expression

R+ δR = R

⟨
exp

[(
1

n

∂n

∂r · W − νtrapδR

)
t

]⟩
, (3.69)

in terms of the time average defined by

⟨η (t)⟩ ≡ 1

R

ˆ ∞

0
dtΦ(t) e

[
ν
(free)
loss +νtrap(1−R)

]
t
η (t) . (3.70)

Performing a power series expansion and truncating beyond first order gives the solu-
tion R (r) = R+ δR as a density gradient expansion up to first order

R (r) = R+ R(1) · 1
n

∂n

∂r , (3.71)

in terms of the vector coefficient

R(1) ≡ R ⟨t⟩
1 + νtrapR ⟨t⟩

W. (3.72)

Now the spatially averaged steady state velocity distribution w̃ (s) can be spatially
perturbed using the density gradient expansion (3.71), resulting in, to first spatial
order

F (0) (t, r, s) = w̃ (s)nF (t, r)

+
w (αdetrap, s)− w̃ (s)
νcoll + νtrapR+ a · ısνtrapR(1) · ∂nF

∂r . (3.73)
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Using the recurrence relationship (3.55) and the continuity equation (3.34) to evaluate
the explicit time derivative provides the next term, also to first spatial order

F (1) (t, r, s) =
Ww̃ (s)− ı ∂∂s w̃ (s)
νcoll + νtrapR+ a · ıs · ∂nF

∂r . (3.74)

Similarly, F (2) (t, r,v) can be found and shown to be of minimum second order in
spatial gradients. In general, F (n) (t, r,v) is described by a full density gradient ex-
pansion of minimum spatial order n. Including all zeroth and first order contributions,
the generalised Boltzmann equation solution is

f (t, r, s) = w̃ (s)n (t, r)

+

[
W − νtrapR(1) − ı ∂∂s

]
w̃ (s) + νtrapR(1)w (αdetrap, s)

νcoll + νtrapR+ a · ıs · ∂n
∂r . (3.75)

Velocity integration provides Fick’s law for the free particle flux

n ⟨v⟩ = Wn− D · ∂n
∂r , (3.76)

which implies that W is the flux drift velocity and defines the flux diffusion coefficient
as

D ≡ 1

νeff

[
I
α2

eff
+
(

W + νtrapR(1)
)

W
]
, (3.77)

written in terms of the effective frequency (3.62) and the effective temperature

Teff ≡ νcoll
νcoll +Rνtrap

Tcoll +
Rνtrap

νcoll +Rνtrap
Tdetrap. (3.78)

Similar to the flux drift velocity W, the flux diffusion coefficient D could have also
been derived as the long time limit of the average diffusivity (3.45)

D ≡ lim
t→∞

[⟨rv⟩ (t)− ⟨r⟩ (t) ⟨v⟩ (t)] . (3.79)

The flux diffusion coefficient derived here differs slightly from what was derived in [33]
for a similar phase-space kinetic model utilising the same operator for trapping and
detrapping. It is likely they did not consider the spatial dependence in Eq. (3.50)
for the ratio of detrapping and trapping rates R (t, r), as their diffusion coefficient
lacked the additional anisotropic component νtrap

νeff
R(1)W. Subsequently, their diffusion

coefficient is only valid in the isotropic case without an applied field, where W = 0, or
in the limit of instantaneous detrapping, where R(1) = 0.

3.4.2 Analytical correspondence of transport coefficients

Diffusion equations in the hydrodynamic regime

In the previous section we considered a perturbative solution of the generalised
Boltzmann equation (3.1), written in the hydrodynamic regime as the density gradient
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expansion (3.75). This solution directly provided the flux transport coefficients of
velocity (3.61) and diffusion (3.77). In this section, we look to reconcile these results
analytically using Eq. (3.35) for the number density. We can describe the asymptotics
of the number density by looking at its poles in Laplace space, found by solving the
dispersion relation [39]

1− νcollζcoll (k)Z [− (p̃+ ν̃) ζcoll (k)]− νtrapΦ(p) ζdetrap (k)Z [− (p̃+ ν̃) ζdetrap (k)] = 0.

(3.80)
Using the asymptotic series representation of the plasma dispersion function [89]

Z (ξ) = −1

ξ

∑
n≥0

(2n− 1)!!

2n
ξ−2n = −1

ξ

(
1 +

1

2
ξ−2 +

3

4
ξ−4 + · · ·

)
, (3.81)

we perform a small k expansion and find the root of the dispersion relation to second
spatial order

p = −νtrap (1−R)− ν
(free)
loss − WCM · ık + DCM : ıkık, (3.82)

which corresponds to the diffusion equation[
∂

∂t
+ νtrap (1−R) + ν

(free)
loss + WCM · ∂

∂r − DCM :
∂2

∂r∂r

]
n (t, r) = 0. (3.83)

Here the steady state centre of mass (CM) transport coefficients are defined

WCM ≡ R(1)

R ⟨t⟩
, (3.84)

DCM ≡
⟨
t2
⟩

2 ⟨t⟩
WCMWCM − R(2)

R ⟨t⟩
, (3.85)

using the density gradient expansion of R (r)

R (r) = R+ R(1) · 1
n

∂n

∂r + R(2) :
1

n

∂2n

∂r∂r , (3.86)

written now to second order using the flux diffusion coefficient D

R(2) ≡
R
⟨
t2
⟩

2 (1 + νtrapR ⟨t⟩)3
WW − R ⟨t⟩

1 + νtrapR ⟨t⟩
D, (3.87)

where time averages are defined by Eq. (3.70). Substitution of the root of the dispersion
relation into the time operator of the continuity equation yields, to second spatial order

p+ νtrap [1− Φ(p)] + ν
(free)
loss = −W · ık + D : ıkık, (3.88)

which corresponds to the generalised diffusion equation[
∂

∂t
+ νtrap (1− Φ(t) ∗) + ν

(free)
loss + W · ∂

∂r − D :
∂2

∂r∂r

]
n (t, r) = 0, (3.89)
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in terms of the flux transport coefficients W and D. This could have alternatively
been derived by approximating the flux in the continuity equation directly using its
density gradient expansion (Fick’s law) given by Eq. (3.76).

Approaching the steady state

Thus far we have considered the continuity equation in both the steady and near
spatially homogeneous state. Using the analytical solution, it is possible to relax this
steady state assumption. We can write the flux exactly by rearranging the continuity
equation (3.34) in Fourier-Laplace space

ık · L {n (t,k) ⟨v⟩ (t)} =

[
N (0)

n (p,k) − p̃

]
n (p,k) . (3.90)

Performing a small k expansion of the above coefficient of n (p,k) gives an approximate
continuity equation valid for large distances or near spatially homogeneous states[

p+ νtrap (1− Φ(p)) + ν
(free)
loss +W (p) · ık −D (p) : ıkık

]
n (p,k) = N (0) , (3.91)

where the following p-dependent velocity and diffusivity are defined in Laplace space

W (p) ≡ a
p̃+ ν̃

, (3.92)

D (p) ≡ I
(p̃+ ν̃)2

[
p̃

α2
0

+
νcoll
α2

coll
+
νtrapΦ(p)

α2
detrap

]
+

2aa
(p̃+ ν̃)3

, (3.93)

although in the time domain W (t) and D (t) have units of length and area respectively.
Performing the inverse Fourier-Laplace transform yields[

∂

∂t
+ νtrap (1− Φ(t) ∗) + ν

(free)
loss +W (t) ∗ · ∂

∂r −D (t) ∗ : ∂2

∂r∂r

]
n (t, r) = 0, (3.94)

which is of a similar form to the generalised diffusion equation, but now the “transport
coefficients” are time convolved with the number density. It should be noted that, as
the flux has been written to second spatial order, the first and second order spatial
moments of this approximate continuity equation are exact for all times.

3.5 Connection with fractional transport
As described in Section 1.1, dispersive transport is physically characterised by long-
lived traps. For the right choice of parameters, the generalised Boltzmann equation
(3.1) is capable of modelling such trapped states. A necessary condition for dispersive
transport is a waiting time distribution with a divergent mean [12]. One choice is a
waiting time distribution with a heavy tail of the power law form

ϕ (t) ∼ t−(1+α), (3.95)

Chapter 3. Phase-space model for combined localised and delocalised transport 48



Stokes, Peter Anomalous Transport in Organic and Soft-Condensed Matter

where 0 < α < 1. In Laplace space, this is equivalent to the small p approximation

ϕ (p) ≈ 1− rαp
α, (3.96)

where rα is a constant that is potentially dependent on α. Additionally, we must
enforce that no trap-based recombination occurs, ν(trap)

loss = 0, as this has the effect of
causing particles to prematurely detrap, shortening the trapping time so that the mean
trapping time no longer diverges. In this case, the effective waiting time distribution
(3.5) is no longer weighted by an exponential decay term, Φ(t) → ϕ (t), and the
continuity equation (3.34) becomes[

∂

∂t
+ νtrap (1− ϕ (t) ∗) + ν

(free)
loss

]
n (t, r) + ∂

∂r · [n (t, r) ⟨v⟩ (t, r)] = 0. (3.97)

We can separate the power law tail from the waiting time distribution as

ϕ (t) ∗ n (t, r) = ψ (t) ∗ n (t, r)− rα

[
C
0 Dα

t n (t, r) +
t−α

Γ (1− α)
n (0, r)

]
, (3.98)

where ψ (t) is a time distribution with well-defined moments and the operator of Caputo
fractional differentiation of order α is defined

C
0 Dα

t n (t, r) ≡
1

Γ (1− α)

ˆ t

0
dτ (t− τ)−α ∂

∂τ
n (τ, r) . (3.99)

The continuity equation can now be written exactly as[
∂

∂t
+ rανtrap

C
0 Dα

t + νtrap (1− ψ (t) ∗) + ν
(free)
loss

]
n (t, r)

+
∂

∂r · [n (t, r) ⟨v⟩ (t, r)] = − rανtrap
tαΓ (1− α)

n (0, r) . (3.100)

Performing a small p expansion in Laplace space and truncating yields a form of the
continuity equation that is valid for long times(

C
0 Dα

t +
ν
(free)
loss

rανtrap

)
n (t, r)+ ∂

∂r ·
[
n (t, r) ⟨v⟩ (t, r)

rανtrap

]
=

[
δ (rανtrapt)−

t−α

Γ (1− α)

]
n (0, r) ,

(3.101)
written now solely in terms of the time operator of fractional differentiation. Fi-
nally, performing a small k approximation in Fourier space provides the Caputo time-
fractional advection-diffusion equation(

C
0 Dα

t +
ν
(free)
loss

rανtrap
+ Wα · ∂

∂r − Dα · ∂2

∂r∂r

)
n (t, r) =

[
δ (rανtrapt)−

t−α

Γ (1− α)

]
n (0, r) ,

(3.102)
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with fractional transport coefficients defined as

Wα ≡ W
νtraprα

, (3.103)

Dα ≡ D
νtraprα

, (3.104)

in terms of the flux drift velocity (3.61) and diffusion coefficient (3.77), respectively.
Note that, as the waiting time distribution ϕ (t) has a divergent mean, the flux diffusion
coefficient now takes the particular form

D ≡ 1

νeff

(
I
α2

eff
+ 2WW

)
. (3.105)

In addition, the quantity R, which affects the transport coefficients through its presence
in Eq. (3.62) for the effective frequency νeff, can no longer be defined by the integral in
Eq. (3.64) as this integral now diverges due to the asymptotic power law form (3.95)
of the waiting time distribution. In the case of fractional transport, we have instead

R ≡ 1 +
ν
(free)
loss − ν

(trap)
loss

νtrap
, (3.106)

valid irrespective of the chosen heavy-tailed trapping time distribution.
It should be noted that performing a similar asymptotic approximation of the gen-

eralised Boltzmann equation (3.1) does not result in a fractional time operator that
acts on the phase-space distribution function f (t, r,v). That is, it does not seem
possible to derive a similar “fractional Boltzmann equation” from our model. This
conclusion differs from [32] who used a similar kinetic model to successfully derive a
fractional Boltzmann equation. However, their model was inconsistent as it simultan-
eously described trapping while also maintaining a constant number of free particles.

There also exist generalisations of time-fractional diffusion equations, like Eq.
(3.102), where spatial derivatives are also taken to be of non-integer order [91]. Phys-
ically, these fractional space derivatives arise when particles undergo long jumps in
space [92]. This is analogous to the above situation where a time-fractional diffusion
equation arose from particles experiencing traps of long duration. As our model
currently only allows for variation in the trapping time, we conclude that to similarly
derive a space-fractional diffusion equation would require adjustments to the kinetic
theory.

3.6 Mapping between normal and generalised diffu-
sion

As shown in the previous section, the generalised diffusion equation is capable of de-
scribing dispersive transport in the same way the Caputo fractional diffusion equation
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does. A general feature shared by both of these diffusion equations is the history de-
pendence of their solutions. This is physically due to the existence of trapped states
and delayed detrapping. Mathematically, this manifests as a global time operator, be
it a fractional derivative or, in the case of the generalised diffusion equation (3.89), a
convolution with the effective waiting time distribution Φ(t).

As described in Chapter 2, the nature of global operators introduces additional
complexity when it comes to solving problems numerically. For example, in finite
difference schemes with only local time operators the computation time scales linearly
with the number of time steps chosen. When a global time operator is present, however,
the computation time scales quadratically with the number of time steps. Although
this increased computational complexity is inherent to these systems, a number of
techniques have been suggested to improve upon it for fractional differential equations
[1, 63–65]. One approach, explored in Section 2.4, involves first solving a standard
diffusion equation and then performing a subordination integral transformation [1,41]
to find the desired solution of the fractional diffusion equation. We will generalise
this approach to solve the generalised diffusion equation for the free particle number
density n (t, r).

Replacing the time operator in the generalised diffusion equation with an expli-
cit time derivative yields a standard diffusion equation with the same linear spatial
operator (

∂

∂τ
+ W · ∂

∂r − D :
∂2

∂r∂r

)
u (τ, r) = 0. (3.107)

For the same initial conditions, u (0, r) ≡ n (0, r), we can relate both solutions directly
in Laplace space

n (p, r) = u
(
p+ ν

(free)
loss + νtrap [1− Φ(p)] , r

)
, (3.108)

which in the time domain corresponds to the subordination integral transform, denoted
by A:

n (t, r) ≡ Au (t, r)

≡
ˆ t

0
dτA (τ, t− τ)u (τ, r) , (3.109)

where the kernel is defined in terms of the inverse Laplace transform L−1

A (τ, t) ≡ e−
(
ν
(free)
loss +νtrap

)
τe−ν

(trap)
loss tL−1

{
eνtrapϕ(p)τ

}
. (3.110)

Appendix B contains kernels corresponding to various choices of the waiting time
distribution ϕ (t).

As a simple example, consider the case of a shifted Dirac delta waiting time distri-
bution

ϕ (t) = δ
(
t− ν−1

detrap

)
, (3.111)
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corresponding to traps of fixed duration ν−1
detrap. In this case, the subordination trans-

formation (3.109) simply becomes the summation

n (t, r) =
∑
k≥0

n(k)
(
t− kν−1

detrap, r
)
, (3.112)

the terms of which can be physically interpreted as those free particles which have
been trapped k times in the past

n(k) (τ, r) ≡ H (τ)

e−
ν
(trap)
loss

νdetrap νtrapτ

k

k!
e−

(
ν
(free)
loss +νtrap

)
τ
u (τ, r) , (3.113)

where H (τ) is the Heaviside step function. Figure 3.5 plots this solution on a
one-dimensional unbounded domain z ∈ (−∞,∞) for the impulse initial condition
n (0, z) ≡ N (0) δ (z), and shows its construction in terms of the corresponding Gaus-
sian solution of the standard diffusion equation (3.107)

u (t, z) =
N (0)

2
√
πDt

exp
[
−
(
z −Wt

2
√
Dt

)2
]
. (3.114)

Note that, as the subordination transformation acts on time alone, the same map-
ping operator A can be used to map between spatial moments of the normal and
generalised diffusion equations

⟨r⟩(GDE) (t) = A⟨r⟩(SDE) (t) , (3.115)

⟨rr⟩(GDE) (t) = A⟨rr⟩(SDE) (t) , (3.116)

where the superscript “(GDE)” denotes the generalised diffusion equation (3.89) and
“(SDE)” denotes the standard diffusion equation (3.107). Additionally, the commuta-
tion relationship [

A, ddt

]
≡
[
ν
(free)
loss + νtrap (1− Φ(t) ∗)

]
A, (3.117)

also allows the centre of mass (CM) transport coefficients for each diffusion equation
to be related through the subordination transformation A

W(GDE)
CM (t) = AW(SDE)

CM (t)−
[
ν
(free)
loss + νtrap (1− Φ(t) ∗)

]
A⟨r⟩(SDE) (t) , (3.118)

D(GDE)
CM (t) = AD(SDE)

CM (t)

− 1

2

[
ν
(free)
loss + νtrap (1− Φ(t) ∗)

]
A
[
⟨rr⟩(SDE) (t)− ⟨r⟩(SDE) (t) ⟨r⟩(SDE) (t)

]
, (3.119)

where the CM transport coefficients are defined in terms of spatial moments according
to Eqs. (3.40) and (3.41).
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Figure 3.5: The solution n (t, z) of the generalised diffusion equation (3.89) is written by
sampling from the Gaussian solution u (t, z) of the standard diffusion equation (3.107)
at multiple points in time. This is achieved using the subordination transformation
(3.109). Here, traps are of fixed duration, νdetrapt = 1, as described by the waiting time
distribution ϕ (t) /νdetrap = δ (νdetrapt− 1). In this case, the subordination transform-
ation becomes the summation (3.112) whose individual terms n(k) (t, z) correspond to
those free particles which have been trapped k times in the past. Here, there is no
recombination, ν(free)

loss = ν
(trap)
loss = 0, the trapping rate is set to νtrap/νdetrap = 1 and

the diffusion coefficient is made small so as to emphasise each individual Gaussian’s
contribution to the solution, Dνdetrap/W

2 = 1/15.

3.7 Time-of-flight current transients
In practice, charged particle transport properties can be quantified using a time-of-
flight experiment, where the transit time through a material for a pulse of charge
carriers is found by measuring the corresponding current. In this section, we explore
the impact that recombination losses of both delocalised and localised particles has
on time-of-flight current transients. We consider the analytical current in a time-of-
flight experiment for a material of thickness L situated between two plane-parallel
electrodes. As this geometry is one-dimensional, the charge carrier number density
n (t, x) is defined by the generalised diffusion equation (3.89) in one dimension:[

∂

∂t
+ νtrap (1− Φ(t) ∗) + ν

(free)
loss

]
n+W

∂n

∂x
−D

∂2n

∂x2
= 0, (3.120)
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where W is a scalar drift velocity and D is a scalar diffusion coefficient. From the
number density, the current in a time-of-flight experiment can be found as the spatially
averaged flux [49]:

j (t) = e
∂

∂t

ˆ L

0

(x
L

− 1
)
n (t, x) dx. (3.121)

For an impulse initial condition, n (0, x) = N (0) δ (x− x0), and perfectly absorbing
boundaries, n (t, 0) = n (t, L) = 0, we can proceed as in [33] to write this current
explicitly in Laplace space:

j (p) = eN (0)
W

Lp̃

{
1− e−λx0

[
e−βx0 +

sinh (βx0)
sinh (βL)

(
eλL − e−βL

)]}
, (3.122)

where

p̃ ≡ p+ νtrap [1− Φ(p)] + ν
(free)
loss , (3.123)

λ ≡ W

2D
, (3.124)

β ≡
√
p̃

D
+ λ2. (3.125)

Note that the trapped carrier recombination rate is present here in the term Φ(p) ≡
ϕ
(
p+ ν

(trap)
loss

)
.

3.7.1 Normal transport

We consider the explicit effect that free and trapped particle recombination rates have
on the current transient in a time-of-flight experiment in Figure 3.6 by plotting Eq.
(3.122) for the current, keeping the effects of mobility (drift velocity) and diffusion
constant. A system of units is chosen that uses the material thickness L and the trap-
free transit time, defined as ttr ≡ L/W . In this system of units, the drift velocity is
equal to unity. We specify the diffusion coefficient to be Dttr/L2 = 0.02, the initial
impulse is set to occur at x0/L = 1/3 and the trapping rate is made large so as trap-
based effects can occur within the transit time, νtrapttr = 102. For trapping times, an
exponential distribution is considered, ϕ (t) = νdetrape−νdetrapt, with a mean trapping
time of (νdetrapttr)

−1 = 0.03.
In Figure 3.6, the recombination-free current transient is included in black as a

reference. This transient has a number of notable regimes. At early times, the
current is still close to unity as no processes have had a chance to affect it greatly.
What then follows is a decrease in current as free charge carriers enter traps. This
decrease is temporary, however, and eventually the current plateaus as a transient
equilibrium arises between free and trapped particles. The value of the current at
this plateau is numerically equal to the proportion of free particles at the equilibrium,
νdetrap/ (νdetrap + νtrap) = 0.25 ≈ 10−0.6. Finally, the last of the free particles ex-
tract causing the remaining filled traps to gradually exhaust and the system to leave
equilibrium.
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Figure 3.6a) considers an increasing free particle recombination rate, ν(free)
loss , without

any trapped particle recombination, ν(trap)
loss = 0. It can be seen that the free particle

losses start decreasing the current at roughly the characteristic time for free particle
recombination,

(
ν
(free)
loss ttr

)−1
. Because free particles are being lost, an equilibrium is

not established as in the recombination-free case. However, detrapping events do still
cause a slowing in the descent of the current.

Figure 3.6b) considers an increasing trapped particle recombination rate, ν(trap)
loss ,

without any free particle recombination, ν(free)
loss = 0. Trap-based recombination can

only affect the current via detrapping events and so we do not see a decrease in the
current until at least the characteristic time for trapping, (νtrapttr)

−1 = 10−2. Similar
to Figure 3.6a), an equilibrium cannot be established here due to the constant loss of
trapped particles. Unlike Figure 3.6a), however, detrapping events have a diminishing
contribution to the current as increasing trap-based recombination also increases the
probability that trapped particles recombine instead of detrapping.

In practice, time-of-flight current transients will be measured in experiments. These
current traces will be fitted to solutions of the generalised diffusion equation (3.120),
which enable the transport coefficients (drift velocity W, diffusion coefficient D), vari-
ous rates ν and the trapping time distribution ϕ (t) to be determined empirically.

3.7.2 Fractional transport

Plotting the current in a time-of-flight experiment versus time takes on a signature form
when transport is dispersive. That is, two power-law regimes arise whose exponents
sum to −2. Specifically, for a trapping time distribution of the asymptotic form of
Eq. (3.95), these exponents are − (1− α) and − (1 + α) [12]. This signature has
been observed experimentally in a variety of physical systems, including charge-carrier
transport in amorphous semiconductors [6, 12] and electron transport in liquid neon
[20].

As was done in Figure 3.6 for normal transport, Figure 3.7 explores the effect that
varying free and trapped particle recombination rates has on time-of-flight current
transients by plotting the current given by Eq. (3.122) for dispersive transport. For
this, we have chosen to use the heavy-tailed trapping time distribution (1.31), as
derived in [33]:

ϕ (t) = αν0 (ν0t)
−α−1 γ (α+ 1, ν0t) , (3.126)

where γ (a, z) ≡
´ z
0 dζ ζa−1e−ζ is the lower incomplete Gamma function and ν0 is a

frequency characterising the rate of escape from traps. In this case, the trap severity
has a physical interpretation as the ratio α ≡ T/Tc, where T is the temperature and
Tc is a characteristic temperature that describes the width of the density of states. In
Figure 3.7 we use the same system of units as Figure 3.6 and all the same relevant
parameters, except for the trapping frequency which we increase to νtrapttr = 104. The
new parameters that we must specify here are chosen as α = 1/2 and ν0ttr = 5× 105.
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Figure 3.6: The impact of free and trapped particle recombination on current tran-
sients for an ideal time-of-flight experiment as modelled by Eq. (3.122). Nondimen-
sionalisation has been performed using the material thickness L, trap-free transit time,
ttr ≡ L/W , and the initial current j (0) = eN (0) /ttr. For these plots we define the
diffusion coefficient, Dttr/L2 = 0.02, the initial impulse location, x0/L = 1/3, and the
trapping rate, νtrapttr = 102. We choose an exponential distribution of trapping times,
ϕ (t) = νdetrape−νdetrapt, with the mean trapping time chosen as (νdetrapttr)

−1 = 0.03.
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In Figure 3.7, the recombination-free current transient is included in black as a
reference. The most notable aspect of this curve are the two power-law regimes indic-
ative of dispersive transport. The first power-law regime is analogous to the plateau in
Figure 3.6, as we have trapping and detrapping simultaneously and contrarily affecting
the current. However, unlike Figure 3.6, detrapping is such a rare event that we never
reach a transient equilibrium and the current decreases overall. The second power-law
regime is analogous to the rapid drop in current seen in Figure 3.6 after almost all free
particles have been extracted. Here we actually have a slower decrease in current as,
unlike Figure 3.6, traps are so long-lived that detrapping events continue to contribute
to the current, even at very late times.

Figure 3.7a) considers an increasing free particle recombination rate, ν(free)
loss . Not-

ably, as the free particle recombination rate increases, the first power-law regime van-
ishes. In effect, the large recombination rate of free particles causes an earlier emer-
gence of the second power-law regime that occurs when most free particles have been
extracted. Thus, it is also possible to conclude the existence of dispersive transport
from a time-of-flight current transient with a single power-law regime at late times.

Figure 3.7b) considers an increasing trapped particle recombination rate, ν(trap)
loss .

This subplot illustrates the necessity that there to be no trap-based recombination for
transport to be dispersive, as even a small amount of trapped particle losses causes
the second power-law regime to vanish. We observe that the first power-law regime
does not always vanish completely and so it is important to note that the presence of
a single power-law regime at intermediate times does not imply dispersive transport.

3.8 Conclusion
We have considered a general phase-space kinetic equation (3.1) which considers trans-
port of charged particles via both delocalised and localised states, including collisional
trapping, detrapping and recombination processes. The solution of this model was
found analytically in Fourier-Laplace space which in turn provided analytical expres-
sions for phase-space averaged spatial and velocity moments. These moments provided
determination of both centre of mass (CM) and flux transport coefficients. As con-
sequence of the processes of trapping and detrapping, the free particle CM transport
coefficients were found to be transiently negative for high trapping rates. We have also
shown that, in the hydrodynamic regime, a number of diffusion equations accurately
describe the generalised Boltzmann equation (3.1). These include the standard diffu-
sion equation (3.83), the generalised diffusion equation (3.89) and, when transport is
dispersive, the Caputo fractional diffusion equation (3.102). Finally, we have written
the solution of the generalised diffusion equation (3.89) as a subordination transforma-
tion (3.109) from the corresponding solution of a standard diffusion equation (3.107).

The model of focus in this work, Eqs. (3.1)–(3.8), was considered only for con-
stant process rates, independent of particle energy. Extension to higher order balance
equations (e.g. momentum and energy) including energy dependent rates represents
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Figure 3.7: The impact of free and trapped particle recombination on current transients
for an ideal time-of-flight experiment as modelled by Eq. (3.122) for the case of dispers-
ive transport. Nondimensionalisation has been performed using the material thickness
L, trap-free transit time, ttr ≡ L/W , and the initial current j (0) = eN (0) /ttr. For
these plots we define the diffusion coefficient, Dttr/L2 = 0.02, the initial impulse loc-
ation, x0/L = 1/3, and the trapping rate, νtrapttr = 104. For dispersive transport
to occur we have chosen to describe trapping times by the heavy-tailed distribution
(1.31) with a trap severity of α = 1/2. This corresponds specifically to the distribution
ϕ (t) = 1

2t

(√
π
2

erf
√
ν0t√

ν0t
− e−ν0t

)
, where we have chosen ν0ttr = 5 × 105. The exponents

of the power-law regimes are indicated with arrows. Such regimes, especially at late
times, can be indicative of dispersive transport.
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the next step in extending this model and is the focus of Chapter 5. This will facilit-
ate the generalisation of well known empirical relationships (e.g. Generalised Einstein
relations, Wannier energy relation, mobility expressions) to include combined local-
ised/delocalised transport systems. Additionally, for our model to be applied to trans-
port in dense fluids, it is necessary to have reasonable inputs νtrap and ϕ (t). Although
there are many investigations of the trapping, for example light-particle solvation in
the literature [93–95], including free-energy changes and solvation time-scales, none of
these directly produce an energy-dependent trapping frequency or waiting time distri-
bution. The ab initio calculation of such capture collision frequencies and waiting time
distributions in liquids and dense gases remains the focus of our current attention.
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4
Third-order transport coefficients for

localised/delocalised transport

This chapter contains material that has been published in the following journal article:
[4] Peter W. Stokes, Ilija Simonović, Bronson Philippa, Daniel Cocks, Saša Dujko,

and Ronald D. White. Third-order transport coefficients for localised and delocalised
charged-particle transport. Scientific Reports, 8, 2226 (2018). doi:10.1038/s41598-018-
19711-5

4.1 Introduction
Very little data regarding third-order transport coefficients (the skewness tensor) can be
found in the literature. This is understandable, since they have not been included in the
interpretations of traditional swarm experiments. There is, however, a growing interest
regarding these transport coefficients, partially due to estimations that third-order
transport coefficients could be measured in the present or near future [96,97]. It is also
considered that third-order transport coefficients would be very useful, in combination
with transport coefficients of a lower order, for determination of cross section sets, by
means of inverse swarm procedure [96, 97]. Third-order transport coefficients are also
required for the conversion of the hydrodynamic transport coefficients into transport
data measured in steady state Townsend and arrival time spectra experiments [98,99].
The skewness tensor can also be employed in fluid models of discharges, by pairing
a generalised diffusion equation, which includes the contributions of the third-order
transport coefficients, with Poisson’s equation. This could be particularly important
for discharges where ions play an important role [100], or in situations where the
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hydrodynamic approximation is at the limit of applicability, as in the presence of
sources and sinks of particles or in the close vicinity of physical boundaries.

In this chapter, we are concerned with the form of the skewness tensor for charged-
particle transport in the presence of trapped (localised) states. In particular, we are
interested in the scenario where transport is dispersive, with a mean squared dis-
placement that increases sublinearly with time. Third-order transport coefficients are
expected to be more sensitive to the influence of non-conservative collisions than those
of lower order, suggesting that the presence of such trapped states would significantly
influence the skewness tensor. Indeed, skewness and other higher order transport coef-
ficients have been used to characterise fractional transport in a variety of contexts,
including transport in biological cells [101–104]. Consider also Figure 4.1, which plots
the solution of the Caputo fractional advection-diffusion equation (2.1). Notice that
this solution exhibits a large skewness in comparison to the accompanying Gaussian
solution of the corresponding classical advection-diffusion equation.

In the following, we describe charged particle transport using a full phase-space
kinetic model as defined by a generalised Boltzmann equation with a corresponding
trapping and detrapping operator. In the previous chapter, we introduced and studied
such a generalised Boltzmann equation (3.1), deriving lower-order transport coefficients
(up to diffusion) and corresponding generalisations of the Einstein relation. We will
extend these results to determine the skewness tensor. Calculations of the skewness
tensor for the Boltzmann equation have been performed previously by a number of
authors [39, 97, 105–107]. We will use these earlier studies to confirm the structure of
the skewness tensor and to benchmark our results in the trap-free case.

In Section 4.2 of this chapter, we derive the flux transport coefficients up to third
order for the for the phase-space model introduced in the previous chapter. Section 4.3
explores the structure of these transport coefficients and their symmetries under parity
transformation. The transport coefficients are used to extend Fick’s law, which leads to
a generalised advection-diffusion-skewness equation, presented in Section 4.4. In this
section, we also provide a physical interpretation of trap-induced skewness. By analogy
with Einstein’s relation, Section 4.5 provides a relation between skewness, diffusion,
mobility and temperature. Section 4.6 looks at the case of fractional transport and
its effects on the flux transport coefficients. Finally, Section 4.7 lists conclusions along
with possible avenues for future work.

4.2 Skewness
In Section 3.4, we confirmed that the flux of free particles described by the generalised
Boltzmann equation (3.1) could be written as a density gradient expansion in the
weak-gradient hydrodynamic regime. In Eq. (3.76) we wrote such an expansion to
first spatial order and introduced the transport coefficients of drift velocity W, given
by Eq. (3.61), and diffusion D, given by Eq. (3.77).
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Figure 4.1: Skewed solution of the Caputo fractional advection-diffusion equation
alongside the corresponding Gaussian solution of the classical advection-diffusion equa-
tion. Both pulses have evolved from an impulse initial condition. The cusp in the
fractional solution denotes the location of this initial impulse.

In this section, we consider the transport coefficient beyond diffusion, known as
skewness and denoted as the rank-3 tensor Q. Extending the expression for the flux
in Eq. (3.76) to also include skewness yields the following generalisation of Fick’s law:

n ⟨v⟩ = Wn− D · ∂n
∂r + Q :

∂2n

∂r∂r − · · · . (4.1)

The above flux transport coefficients can be determined by performing a similar ex-
pansion of the phase-space distribution function f (t, r,v). Extending the first-order
expansion in Eq. (3.75) to second spatial order yields

f (t, r,v) = f (0) (v)n+ f(1) (v) · ∂n
∂r + f(2) (v) : ∂2n

∂r∂r + · · · , (4.2)

where, in Fourier-transformed velocity space:

f (0) (s) = νcollw (αcoll, s) +Rνtrapw (αdetrap, s)

νcoll +Rνtrap + a · ıs , (4.3)

f(1) (s) =
νtrapR(1)w (αdetrap, s) + f (0) (s)

(
W − νtrapR(1)

)
− ı∂f

(0)

∂s
νcoll +Rνtrap + a · ıs , (4.4)

f(2) (s) =
νtrapR(2)w (αdetrap, s)− f (0) (s)

(
D + νtrapR(2)

)
+ f(1) (s)

(
W − νtrapR(1)

)
− ı∂f(1)

∂s
νcoll +Rνtrap + a · ıs .

(4.5)
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Using the above expansion to evaluate the flux term-wise, results in the following
expressions for the transport coefficients

W ≡
ˆ

dv vf (0) (v) , (4.6)

D ≡
ˆ

dv vf(1) (v) , (4.7)

Q ≡
ˆ

dv vf(2) (v) , (4.8)

which when evaluated yields

W ≡ a
νeff

, (4.9)

D ≡ 1

νeff

(
kBTeff
m

I + 1 + 2νtrapR ⟨t⟩
1 + νtrapR ⟨t⟩

WW
)
, (4.10)

Q ≡

[
1 +

(
1 + 2νtrapR ⟨t⟩
1 + νtrapR ⟨t⟩

)2

−
νtrapR

⟨
t2
⟩

4 (1 + νtrapR ⟨t⟩)3
νeff

]
2WWW

ν2eff

+
1 + 2νtrapR ⟨t⟩
1 + νtrapR ⟨t⟩

kBTeff
mν2eff

(IW + e1We1 + e2We2 + e3We3)

+
νtrapR ⟨t⟩

1 + νtrapR ⟨t⟩
νcoll
νeff

kB (Tcoll − Tdetrap)

mνeff

WI
νeff

, (4.11)

where e1, e2 and e3 are standard orthonormal basis vectors. As is expected, the
transport coefficients for drift velocity W and diffusion D, found previously in Eqs.
(3.61) and (3.77), are also recovered in addition to the skewness Q.

We confirm that when there are no traps present, νtrap = 0, the transport coeffi-
cients agree with those of the BGK collision model, previously found by Robson [39]:

W ≡ a
νcoll

, (4.12)

D ≡ 1

νcoll

(
kBTcoll
m

I + WW
)
, (4.13)

Q ≡ 1

ν2coll

[
kBTcoll
m

(IW + e1We1 + e2We2 + e3We3) + 4WWW
]
. (4.14)

4.3 Structure and symmetry of transport coefficients
In this section, we consider an applied electric field E, corresponding to the acceleration

a ≡ eE
m
. (4.15)
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If we align the basis vector e3 parallel to the applied electric field E, the transport
coefficients (4.9)–(4.11) take on the known tensor structure [37,97,105,107,108]:

W ≡

 0

0

W

 , (4.16)

D ≡

 D⊥ 0 0

0 D⊥ 0

0 0 D∥

 (4.17)

Qxab ≡

 0 0 Q1

0 0 0

Q1 0 0

 , (4.18)

Qyab ≡

 0 0 0

0 0 Q1

0 Q1 0

 , (4.19)

Qzab ≡

 Q2 0 0

0 Q2 0

0 0 2Q1 +Q2 +Q3

 , (4.20)

where a, b ∈ {x, y, z}. Here, the drift velocity is defined by the speed

W ≡ eE

mνeff
, (4.21)

the diffusion coefficient is defined by two components perpendicular and parallel to the
field

D⊥ ≡ kBTeff
mνeff

, (4.22)

D∥ ≡ D⊥ +
1 + 2νtrapR ⟨t⟩
1 + νtrapR ⟨t⟩

W 2

νeff
, (4.23)

and the skewness is defined by the three independent components

Q1 ≡
1 + 2νtrapR ⟨t⟩
1 + νtrapR ⟨t⟩

kBTeff
mνeff

W

νeff
, (4.24)

Q2 ≡
νtrapR ⟨t⟩

1 + νtrapR ⟨t⟩
νcoll
νeff

kB (Tcoll − Tdetrap)

mνeff

W

νeff
, (4.25)

Q3 ≡

[
1 +

(
1 + 2νtrapR ⟨t⟩
1 + νtrapR ⟨t⟩

)2

−
νtrapR

⟨
t2
⟩

4 (1 + νtrapR ⟨t⟩)3
νeff

]
2W 3

ν2eff
. (4.26)

Although this is the case in general, there are situations where the skewness can be
defined using fewer than three components. Indeed, this is the case for the BGK model
as studied by Robson [39] where the skewness given by Eq. (4.14) is defined using only
the components Q1 and Q3, with Q2 = 0. The component Q2 vanishes in this case
due to the simple Maxwellian source term used to describe scattered particles. For Q2
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to arise, it is necessary that this source term has some spatial dependence, as occurs
for our model through the concentration of particles leaving traps, Φ(t) ∗ n (t, r), and
its density gradient expansion (3.86).

Lastly, we also confirm that the symmetry of transport coefficients with respect to
the parity transformation E → −E depends on the parity of the order of each transport
coefficient [105,109]:

W → −W, (4.27)

D → D, (4.28)

Q → −Q. (4.29)

4.4 Generalised advection-diffusion-skewness equa-
tion

Using the density gradient expansion (4.1) for the flux Γ (t, r) up to second spatial order
in conjunction with the continuity equation 3.34 results in the generalised advection-
diffusion-skewness equation[

∂

∂t
+ νtrap (1− Φ(t) ∗) + ν

(free)
loss

]
n (t, r)+W· ∂n

∂r −D :
∂2n

∂r∂r+Q
... ∂3n

∂r∂r∂r = 0, (4.30)

valid in the weak-gradient hydrodynamic regime. In Cartesian coordinates (x, y, z)

with the electric field E aligned in the z-direction, the transport coefficients take the
form of Eqs. (4.16)–(4.20) and the advection-diffusion-skewness equation becomes

[
∂

∂t
+ νtrap (1− Φ(t) ∗) + ν

(free)
loss

]
n (t, x, y, z)+W

∂n

∂z
−D⊥

(
∂2n

∂x2
+
∂2n

∂y2

)
−D∥

∂2n

∂z2

+ 3Q⊥

(
∂2

∂x2
+

∂2

∂y2

)
∂n

∂z
+Q∥

∂3n

∂z3
= 0, (4.31)

where the skewness manifests as components perpendicular and parallel to the applied
field [97,100,107]:

Q⊥ ≡ Qzxx +Qxzx +Qxxz

3
, (4.32)

Q∥ ≡ Qzzz, (4.33)

which in terms of the independent components (4.24)–(4.26) are

Q⊥ =
2Q1 +Q2

3
, (4.34)

Q∥ = 2Q1 +Q2 +Q3. (4.35)
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Written in full, the perpendicular and parallel skewnesses are

Q⊥ =
2D⊥W

3νeff

+
νtrapR ⟨t⟩

1 + νtrapR ⟨t⟩

(
D⊥ −

kBTdetrap
3mνeff

)
W

νeff
, (4.36)

Q∥ = 3Q⊥ +
4W 3

ν2eff

+
νtrapR ⟨t⟩

1 + νtrapR ⟨t⟩

[
6− 2

1 + νtrapR ⟨t⟩
−

νeff
⟨
t2
⟩

2 ⟨t⟩ (1 + νtrapR ⟨t⟩)2

]
W 3

ν2eff
, (4.37)

where terms present due to trapping have been grouped separately and the lower-order
transport coefficients (4.21)–(4.23) have been used to simplify. An alternative form of
the skewness tensor that makes use of these components explicitly is

Q̃xab ≡

 0 0 0

0 0 0

0 0 0

 , (4.38)

Q̃yab ≡

 0 0 0

0 0 0

0 0 0

 , (4.39)

Q̃zab ≡

 3Q⊥ 0 0

0 3Q⊥ 0

0 0 Q∥

 , (4.40)

where a, b ∈ {x, y, z}. This form was used by Robson [39] when expressing the BGK
model skewness (4.14) and is valid only when the skewness is triple-contracted with a
symmetric tensor, as occurs in the advection-diffusion-skewness equation (4.30).

To provide some physical intuition regarding the perpendicular and parallel skew-
ness coefficients, Q⊥ and Q∥, we solve the advection-diffusion-skewness equation (4.31)
for an impulse initial condition and perform contour plots of the resulting pulse in Fig-
ure 4.2. Figure 4.2 a) considers the case of no skewness, Q⊥ = Q∥ = 0, and displays
the expected Gaussian solution with elliptical contours due to anisotropic diffusion.
Figure 4.2 b) and c) consider positive perpendicular and parallel skewnesses, respect-
ively. In both cases, it can be seen that skewness introduces asymmetry in the pulse
in the direction of the field. In general, positive skewness can be seen to reduce the
spread of particles behind the pulse, while enhancing the spread toward the front of
the pulse. In Figure 4.2 b) for positive perpendicular skewness, this change in particle
spread primarily occurs transverse to the field, resulting in a vaguely triangular pulse
profile. In Figure 4.2 c) for positive parallel skewness, this change in particle spread
occurs longitudinally which, in the language of statistics, results in a distribution with
positive skew.

In the previous chapter, we interpreted the trap-induced anisotropic diffusion
present in Eq. (4.23) as a consequence of the physical separation between trapped
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particles and free particles moving with the field. In a similar fashion, we can interpret
the trap-induced skewness present in the perpendicular and parallel skewness coeffi-
cients (4.36) and (4.37). To achieve this, we plot the skewness against the detrapping
temperature Tdetrap for various mean trapping times in Figure 4.3. The resulting plots
are linear with gradients that characterise of the type of skewness caused by traps.
That is, positive or negative gradients correspond respectively to positive or negative
trap-based skewness.

When the mean trapping time is zero, the gradients in Figure 4.3 are positive and
traps cause positive skewness. This is to be expected as, in this case, trapping and
detrapping simply act as an elastic scattering process with a positive skewness akin
to Eq. (4.14) for the BGK collision model. As the mean trapping time increases, the
nature of the skewness caused by traps changes, ultimately becoming negative for the
parameters considered in Figure 4.3. As illustrated in Figure 4.2, negative skewness
corresponds to an increased spread of particles behind the pulse. We interpret the in-
creased spread here as being due to particles returning from traps. This interpretation
implies that the skewness coefficients could become overall negative if particles remain
trapped for a sufficient length of time before returning with a sufficiently large tem-
perature. Indeed, these are the conditions for which the skewness coefficients become
negative in Figure 4.3.

This phenomenon of negative skewness has been observed previously by Petrović et
al. [100] in the calculation of the perpendicular skewness of electrons in methane. Only
collisions were considered in this study and so trapping is evidently not a necessary
condition for negative skewness to occur. However, it should be emphasised that the
skewness is strictly positive when collisions are described by the simple BGK collision
operator, as is seen in Eq. (4.14).

4.5 Relating skewness, mobility and temperature
The classical Einstein relation between diffusion, mobility and temperature is [110]

D
K

=
kBT
e
, (4.41)

whereK is the mobility defined as satisfying W ≡ KE and T is the rank-2 temperature
tensor. As seen by Eq. (4.10) for the diffusion coefficient, the phase-space model
described by Eq. 3.1 has an enhanced diffusivity in the direction of the field due to
trapping and detrapping. This enhancement manifests as the following generalised
Einstein relation [3]

D
K

=
kBT
e

+
νtrapR ⟨t⟩

1 + νtrapR ⟨t⟩
mWW

e
. (4.42)
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Figure 4.2: Contours of constant number density as defined by the advection-diffusion-
skewness equation (4.31) with drift velocity W and anisotropic diffusion D∥ > D⊥ > 0
for no skewness, a), positive perpendicular skewness, b), and positive parallel skewness,
c). Each profile has evolved from an impulse initial condition. As the skewness tensor
is odd under parity transformation, Eq. (4.29), the case of negative skewness can be
considered by reflecting the above profiles horizontally across the vertical axis.

By relating the skewness to the temperature tensor though this diffusion coefficient,
we find a skewness analogue to the Einstein relation:

Q ≡

[
1−

νtrapR
⟨
t2
⟩

4 (1 + νtrapR ⟨t⟩)3
νeff

]
2WWW

ν2eff

+
1 + 2νtrapR ⟨t⟩
1 + νtrapR ⟨t⟩

DW +D⊥e1We1 +D⊥e2We2 +D∥e3We3

νeff

+
νtrapR ⟨t⟩

1 + νtrapR ⟨t⟩
νcoll
νeff

kB (Tcoll − Tdetrap)

mνeff

WI
νeff

. (4.43)

Koutselos [111] has presented a similar relationship between the skewness tensor and
lower-order transport coefficients for the case of the classical Boltzmann equation.
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Figure 4.3: Linear plots of perpendicular and parallel skewness coefficients, Q⊥ and Q∥,
versus the detrapping temperature Tdetrap. Here, traps are described by an exponential
distribution of trapping times ϕ (t) = 1

τ exp
(
− t

τ

)
, and no recombination is considered,

ν
(free)
loss = ν

(trap)
loss = 0. To perform these plots, we choose a trapping frequency of

νtrap/νcoll = 1/9, while b) also requires that we specify a drift velocity W, which we
choose such that mW 2/kBTcoll = 1/4. The gradients in b) are of smaller magnitude
than a) due to the greater dependence of the parallel skewness (4.37) on the drift
speed W as compared to the perpendicular skewness (4.36). Thus, as the drift speed
decreases, the plots in b) coincide with those in a). When detrapping is instantaneous,
τ = 0, the skewness gradients are positive, implying that the skewness caused by
traps is also positive. As the mean trapping time τ increases, the skewness gradients
decrease, becoming negative and implying a corresponding negative skewness due to
traps. The limiting case of an infinite mean trapping time, τ → ∞, corresponds to
fractional transport, which is the subject of Section 4.6. We observe from this figure
that the skewness coefficients become overall negative when particles leave traps with
a sufficiently large temperature Tdetrap after a sufficiently long amount of time τ . This
observation coincides with the illustration of skewness in Figure 4.2 where negative
skewness is characterised by an increased particle spread behind the pulse, which we
attribute here to particles returning from traps.
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4.6 The case of fractional transport
For the phase-space kinetic model described by Eq. 3.1, fractional transport can occur
when the distribution of trapping times has a heavy power-law tail of the form [2]

ϕ (t) ∼ t−(1+α). (4.44)

Note that, as transport here is dispersive in nature, the mean trapping time diverges:
ˆ ∞

0
dtϕ (t) t→ ∞. (4.45)

Consequently, the time averages defined by Eq. (5.87) also diverge, correspondingly
affecting the transport coefficients. Thus, for fractional transport, the transport coef-
ficients (4.9)–(4.11) take on the simpler form [2]

W =
eE
mνeff

, (4.46)

D =
1

νeff

(
kBTeff
m

I + 2WW
)
, (4.47)

Q =
2WWW

ν2eff

+
2
(
DW +D⊥e1We1 +D⊥e2We2 +D∥e3We3

)
νeff

+
νcoll
νeff

kB (Tcoll − Tdetrap)

mνeff

WI
νeff

, (4.48)

where the effective frequency is now defined

νeff ≡ νcoll + νtrap + ν
(free)
loss . (4.49)

Note that transport coefficients are now independent of the specific choice of the trap-
ping time distribution ϕ (t), so long as the condition (4.44) for fractional transport is
satisfied.

Knowledge of the skewness coefficient (4.48), as well as other higher-order transport
coefficients, is useful for characterising fractional transport. For example, Norregaard
et al. [101] use higher-order moments to analyse the motion of biological particles.

4.7 Conclusion
We have explored the transport coefficients of a phase-space kinetic model 3.1 for both
localised and delocalised transport. In particular, we have considered up to the third-
order transport coefficient of skewness Q, which takes the form of a rank-3 tensor. The
structure of the skewness tensor and its symmetry under parity transformation was
found to be in agreement with previous studies. These transport coefficients provide
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an extension to Fick’s law, Eq. (4.1), which we used to form a generalised advection-
diffusion-skewness equation (4.30) with a non-local time operator. We observed trap-
induced negative skewness and provided a corresponding physical interpretation. In
addition, by analogy with Einstein’s relation, the skewness was related to the mobility
and temperature through Eq. (4.43). Lastly, the form of the transport coefficients for
the particular case of fractional transport were outlined in Eqs. (4.46)–(4.48).

There exist a number of possibilities for future work. The focus of this chapter
was on constant transport coefficients that define the flux in the hydrodynamic regime
as the density gradient expansion (4.1). Transient transport coefficients and transport
coefficients of the bulk were not considered. Section 3.3 outlines an analytical solution
of the kinetic model 3.1 that could be used to compute such transport coefficients
through time-varying velocity and spatial moments of the phase-space distribution
function f (t, r,v).

Another extension to this work could be to explore what consequences energy-
dependent collision, trapping and recombination frequencies have on the skewness.
Such a generalisation for Eq. 3.1 is the focus of Chapter 5, although the nature of
skewness is not explored there. This would allow for the derivation of a skewness
analogue of Einstein’s relation that would also take into account the field dependence
of mobility [3]. This may also shed light on the recent results of Petrović et al. [100],
that suggest a correlation between the energy-dependent phenomenon of negative dif-
ferential conductivity and skewness.

Lastly, it is important to note that the extension to Fick’s law described in this
chapter is only useful when an electric field is present. Without an applied field, the
drift velocity, skewness and all other odd-ordered transport coefficients would vanish.
If we wish to extend Fick’s law in such a situation, we must also consider the kurtosis
coefficient, the next even-ordered transport coefficient beyond diffusion. The kurtosis
can be found in a straightforward fashion from the rank-3 tensorial coefficient f(3) (v) in
the density gradient expansion (4.2) of the phase-space distribution function f (t, r,v),
in the same way drift velocity, diffusion and skewness were found using Eqs. (4.6)–
(4.8).
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5
Energy-dependent localised and

delocalised transport phenomena

This chapter contains material that has been published in the following journal article:
[3] Peter W. Stokes, Bronson Philippa, Daniel Cocks, and Ronald D. White. Gen-

eralized balance equations for charged particle transport via localized and delocalized
states: Mobility, generalized Einstein relations, and fractional transport. Physical Re-
view E, 95, 042119 (2017). doi:10.1103/PhysRevE.95.042119

5.1 Introduction
In Chapters 3 and 4, we explored a generalised phase-space kinetic model for charged
particle transport that considered separate collisional, trapping/detrapping and re-
combination loss processes. This model takes the form of a generalised Boltzmann
equation (3.1) with corresponding operators for each aforementioned process. Rather
than performing a direct solution of this Boltzmann equation, as is considered in
Section 3.3, in this chapter we embrace a more physical insight and explore the rela-
tionships between the measured macroscopic transport properties and the underlying
microscopic processes (as determined by the appropriate collision frequencies). This
is a philosophy that has been adopted in swarm physics, and now is routinely applied
in a variety of fields including low-temperature plasma physics [32, 112–115], positron
physics [116–118], liquid particle detectors [119,120] and radiation damage [121–123].

For gaseous systems, or those where transport occurs through delocalised states,
there exists a wealth of literature that explores relationships between experimentally
measurable transport properties, and links the underlying microscopic physics to the
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macroscopic through simple analytic expressions. In fact, transport properties were
initially used as the means to indirectly measure scattering cross-sections and their
energy dependence. In this chapter, we aim to generalise many existing results for such
systems and explore the impact of localised (trapped) states and loss/recombinations
on (i) the mobility, (ii) the Wannier energy relation [124], which relates the mean
energy of the charged particles to the mobility, and (iii) the Einstein relations [125,
126] which relate the mobility to the diffusivity and enable the quantification of the
anisotropic nature of diffusion. Using these we postulate the existence of a number
of new phenomena, including trap-induced particle heating/cooling and trap-induced
negative differential conductivity (NDC), the origin of which differs significantly from
that in which transport is delocalised. Criteria on the various collision, trapping and
loss frequencies are presented for the occurrence of such phenomena.

In Section 5.2 of this chapter we present a generalised Boltzmann equation with
energy-dependent process rates for collisions, trapping and recombination. In Section
5.3, balance equations are formed for particle continuity, momentum and energy, via
the appropriate moments of the generalised Boltzmann equation, which are also used
to develop expressions for mobility, mean energy and diffusivity. Phenomena such
as heating/cooling, NDC, and generalised Einstein relations (GER) are explored in
Sections 5.4–5.5. In Section 3.5, the fractional transport equivalents of the above are
considered including fractional GER, while in Section 5.6, we present conclusions and
outline some possible avenues for future work.

5.2 Extended phase-space model
In this section, we consider a generalisation of the kinetic model defined by Eq. (3.1)
of Chapter 4 that describes the processes of collisions, trapping and recombination, as
depicted by Figure 3.1. Specifically, we consider processes that are selective of particle
energy ϵ ≡ 1

2mv
2. This results in a free particle phase-space distribution function

f (t, r,v), defined by the generalised Boltzmann equation(
∂

∂t
+ v · ∂

∂r +
eE
m

· ∂
∂v

)
f (t, r,v) =− νcoll (ϵ) f (t, r,v) + n (t, r) ⟨νcoll (ϵ)⟩ w̃coll (v)

− νtrap (ϵ) f (t, r,v) + Φ (t) ∗ [n (t, r) ⟨νtrap (ϵ)⟩] w̃detrap (v)

− ν
(free)
loss (ϵ) f (t, r,v) , (5.1)

which describes particles of charge e and mass m in the presence of an applied electric
field E. Here, the energy-dependent process rates for collisions, trapping and recom-
bination losses are respectively denoted νcoll (ϵ), νtrap (ϵ), ν(free)

loss (ϵ), ∗ denotes a time
convolution and ⟨·⟩ denotes an average over velocity space:

⟨ψ (v)⟩ ≡ 1

n (t, r)

ˆ
dv f (t, r,v)ψ (v) , (5.2)

where the free particle number density is defined n (t, r) ≡
´
dvf (t, r,v).
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Note that, unlike the free particle process rates, the recombination rate of trapped
particles ν(trap)

loss , which is present in the effective trapping time distribution Φ(t) ≡
e−ν

(trap)
loss tϕ (t) , is not a function of energy as trapped particles are localised in space.
The processes of scattering and detrapping are taken to be isotropic and to occur

according to Maxwellian velocity distributions. Specifically, we introduce

w̃coll (v) ≡
νcoll (ϵ)w (αcoll, v)´
dvνcoll (ϵ)w (αcoll, v)

, (5.3)

w̃detrap (v) ≡
νtrap (ϵ)w (αdetrap, v)´
dvνtrap (ϵ)w (αdetrap, v)

, (5.4)

where the Maxwellian velocity distribution of temperature T is defined

w (α, v) ≡
(
α2

2π

) 3
2

exp
(
−α

2v2

2

)
, (5.5)

α2 ≡ m

kBT
, (5.6)

where kB is the Boltzmann constant.
As stated, this model is very general and requires the precise specification of atomic

and molecular details to properly define the process frequencies. In practice, this is
usually achieved by using cross-section data in the relationship ν (ϵ) ≡ n0vσ (ϵ) , where
n0 is the number density of the background medium and σ (ϵ) is the cross-section
corresponding to the process of frequency ν (ϵ).

Similar to the description of free particles by Eq. (5.1), trapped particles can be
described by a distribution function in configuration space ntrap (t, r), defined by the
continuity equation

∂

∂t
ntrap (t, r) = (1− Φ(t) ∗) [n (t, r) ⟨νtrap (ϵ)⟩]

− ν
(trap)
loss ntrap (t, r) . (5.7)

Lastly, the number of particles lost to recombination can also be counted

d
dtN

(free)
loss (t) =

⟨⟨
ν
(free)
loss (ϵ)

⟩⟩
N (t) , (5.8)

d
dtN

(trap)
loss (t) = ν

(trap)
loss Ntrap (t) , (5.9)

where ⟨⟨·⟩⟩ denotes an average over phase-space

⟨⟨ψ⟩⟩ ≡ 1

N (t)

ˆ
dr
ˆ

dv f (t, r,v)ψ, (5.10)
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and free and trapped particle numbers are respectively defined

N (t) ≡
ˆ

drn (t, r) , (5.11)

Ntrap (t) ≡
ˆ

drntrap (t, r) . (5.12)

5.3 Balance equations
A knowledge of the full free particle phase-space distribution, f(t, r,v), defined by the
generalised Boltzmann equation (5.1), is often not required to analyse and interpret
experiment. A computationally economical and more physically appealing alternative
is to solve for average quantities directly, through solution of the appropriate fluid
or velocity moment equations. In what follows, we form these moment equations by
evaluating velocity averages of the phase-space distribution function, thus grounding
them physically through the generalised Boltzmann equation.

From the Boltzmann equation (5.1), we show most generally that the average of a
velocity functional ψ (v) satisfies the differential equation

∂

∂t
n ⟨ψ⟩+ ∂

∂r · n ⟨vψ⟩ − eE
m

· n
⟨
∂ψ

∂v

⟩
=− n ⟨ψνcoll (ϵ)⟩+ n ⟨νcoll (ϵ)⟩ ⟨ψ⟩coll

− n ⟨ψνtrap (ϵ)⟩+Φ(t) ∗ (n ⟨νtrap (ϵ)⟩) ⟨ψ⟩detrap

− n
⟨
ψν

(free)
loss (ϵ)

⟩
, (5.13)

where the velocity average ⟨·⟩ is defined by Eq. (5.2), while ⟨·⟩coll and ⟨·⟩detrap are
defined as

⟨ψ (v)⟩coll ≡
ˆ

dvψ (v) w̃coll (v) , (5.14)

⟨ψ (v)⟩detrap ≡
ˆ

dvψ (v) w̃detrap (v) . (5.15)
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By choosing ψ (v) = 1, ψ (v) = mv and ψ (v) = ϵ ≡ 1
2mv

2, respective balance equa-
tions for free particle continuity, momentum and energy result:

∂

∂t
n+

∂

∂r · n ⟨v⟩ =− n ⟨νtrap (ϵ)⟩+Φ(t) ∗ (n ⟨νtrap (ϵ)⟩)

− n
⟨
ν
(free)
loss (ϵ)

⟩
, (5.16)

∂

∂t
n ⟨mv⟩+ ∂

∂r · n ⟨mvv⟩ − eEn =− n ⟨mvνcoll (ϵ)⟩

− n ⟨mvνtrap (ϵ)⟩

− n
⟨
mvν(free)

loss (ϵ)
⟩
, (5.17)

∂

∂t
n ⟨ϵ⟩+ ∂

∂r · n ⟨ϵv⟩ − eE · n ⟨v⟩ =− n ⟨ϵνcoll (ϵ)⟩+ n ⟨νcoll (ϵ)⟩ ⟨ϵ⟩coll

− n ⟨ϵνtrap (ϵ)⟩+Φ(t) ∗ (n ⟨νtrap (ϵ)⟩) ⟨ϵ⟩detrap

− n
⟨
ϵν

(free)
loss (ϵ)

⟩
. (5.18)

The latter two equations can be written explicitly as differential equations in the aver-
age momentum and energy by expanding time derivatives and applying the continuity
equation (5.16):

n
∂ ⟨mv⟩
∂t

+
∂

∂r · n ⟨mvv⟩ − ⟨mv⟩ ∂
∂r · n ⟨v⟩ − eEn =− n ⟨mvνcoll (ϵ)⟩

− n ⟨mvνtrap (ϵ)⟩+ n ⟨mv⟩ ⟨νtrap (ϵ)⟩

− ⟨mv⟩Φ(t) ∗ (n ⟨νtrap (ϵ)⟩)

− n
⟨
mvν(free)

loss (ϵ)
⟩
+ n ⟨mv⟩

⟨
ν
(free)
loss (ϵ)

⟩
,

(5.19)

n
∂ ⟨ϵ⟩
∂t

+
∂

∂r · n ⟨ϵv⟩ − ⟨ϵ⟩ ∂
∂r · n ⟨v⟩ − eE · n ⟨v⟩ =− n ⟨ϵνcoll (ϵ)⟩+ n ⟨νcoll (ϵ)⟩ ⟨ϵ⟩coll

− n ⟨ϵνtrap (ϵ)⟩+ n ⟨ϵ⟩ ⟨νtrap (ϵ)⟩

−
(
⟨ϵ⟩ − ⟨ϵ⟩detrap

)
Φ(t) ∗ (n ⟨νtrap (ϵ)⟩)

− n
⟨
ϵν

(free)
loss (ϵ)

⟩
+ n ⟨ϵ⟩

⟨
ν
(free)
loss (ϵ)

⟩
.

(5.20)

Solution of these balance equations requires some approximation in the evaluation
of the averages of the collision frequencies. In what follows we solve these balance
equations using momentum transfer theory [126] to develop expressions for the mobility,
diffusion and the mean energy in terms of the underlying microscopic frequencies for
collisions, trapping and losses. Application of these relationships yield some interesting
phenomenon including negative differential conductivity (NDC) and heating/cooling,
as well as conditions on the relevant frequencies for such phenomena to occur.
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5.4 Mobility and the Wannier energy relation: heat-
ing/cooling and NDC

In this section, we are interested in physical properties in the weak-gradient hydro-
dynamic regime. In this limit, properties that are intensive (independent of particle
number) become time invariant and spatial gradients vanish [113], resulting in simpli-
fied momentum and energy balance equations that provide expressions for the applied
acceleration and power input by the field:

eE
m

= ⟨vνcoll (ϵ)⟩(0)

+ ⟨vνtrap (ϵ)⟩(0) − (1−R)W ⟨νtrap (ϵ)⟩(0)

+
⟨

vν(free)
loss (ϵ)

⟩(0)
− W

⟨
ν
(free)
loss (ϵ)

⟩(0)
, (5.21)

eE · W = ⟨ϵνcoll (ϵ)⟩(0) − ⟨νcoll (ϵ)⟩(0) ⟨ϵ⟩coll

+ ⟨ϵνtrap (ϵ)⟩(0) − ε ⟨νtrap (ϵ)⟩(0) +R ⟨νtrap (ϵ)⟩(0)
(
ε− ⟨ϵ⟩detrap

)
+
⟨
ϵν

(free)
loss (ϵ)

⟩(0)
− ε

⟨
ν
(free)
loss (ϵ)

⟩(0)
. (5.22)

where the superscript “(0)” denotes that quantities are in the steady, spatially uniform
state. Here, the moments of drift velocity and mean energy have been respectively
defined

W ≡ ⟨v⟩(0) , (5.23)

ε ≡ ⟨ϵ⟩(0) , (5.24)

and we have reintroduced the steady-state ratio R defined previously by Eq. (3.63):

R ≡
(
Φ(t) ∗ n (t, r)

n (t, r)

)(0)

≡ lim
t→∞

Φ(t) ∗N (t)

N (t)
. (5.25)

In the following sections, we make these balance equations more useful by using mo-
mentum transfer theory to approximate the velocity averages of the form ⟨ν (ϵ)⟩,
⟨vν (ϵ)⟩ and ⟨ϵν (ϵ)⟩. The simplified balance equations that result provide expres-
sions for particle mobility and mean energy which in turn can be used to quantify
heating/cooling and to explore NDC.

5.4.1 Momentum transfer theory

Momentum-transfer theory [126] enables a systematic procedure for evaluating the
average rates detailed above. In this procedure, process rates, ν (ϵ), are expanded
about some representative energy, which we take to be the mean energy, ε:

ν (ϵ) =
∑
i≥0

ν(i) (ε)

i!
(ϵ− ε)i , (5.26)
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where the superscript “(i)” denotes the i-th energy derivative. This expansion can then
be truncated to the desired order of accuracy. By truncating to just the initial constant
term, we have zeroth-order momentum transfer theory, which provides a mobility and
a Wannier energy relation that is sufficient for exploring NDC and energy-independent
heating/cooling. For heating/cooling that varies with energy, we must use first-order
momentum transfer theory by truncating the above expansion linearly.

Zeroth-order momentum transfer theory

Truncating the energy expansion, Eq. (5.26), to the constant term gives the zeroth-
order momentum transfer theory approximation

⟨ψ (v) ν (ϵ)⟩ ≈ ⟨ψ (v)⟩ ν (ε) . (5.27)

This approximation yields results that are functionally equivalent to what arises for the
case of constant process rates, as considered in Chapter 4, but with some functional
dependence on the representative energy ε. Substituting this approximation into the
momentum and energy balance equations (5.17) and (5.18) yields

eE
m

= Wνeff (ε) , (5.28)

eE · W =

[
ε− 3

2
kBTeff (ε)

]
νeff (ε) , (5.29)

where we have introduced an effective frequency

νeff (ε) ≡ νcoll (ε) +Rνtrap (ε) , (5.30)

and an effective temperature, written as a weighted sum of the two Maxwellian source
temperatures

Teff (ε) ≡ ωcoll (ε)Tcoll + ωdetrap (ε)Tdetrap, (5.31)

with energy-dependent weights defined

ωcoll (ε) ≡
νcoll (ε)

νcoll (ε) +Rνtrap (ε)
, (5.32)

ωtrap (ε) ≡
Rνtrap (ε)

νcoll (ε) +Rνtrap (ε)
. (5.33)

These effective quantities, νeff (ε) and Teff (ε), arose previously in Eqs. (3.62) and
(3.78), without any dependence on energy. Similarly, the quantity R is now also energy-
dependent, as evident by its implicit definition in Eq. (3.64), which now takes the form

R ≡
ˆ ∞

0
dtΦ(t) e

[
ν
(free)
loss (ε)+νtrap(ε)(1−R)

]
t
. (5.34)
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The zeroth-order momentum balance equation (5.28) provides the drift velocity in
terms of the electric field E:

W ≡ KE, (5.35)

where the constant of proportionality K defines the charged particle mobility

K ≡ e

mνeff (ε)
. (5.36)

We observe that the mobility is inversely proportional to both collision and trapping
process rates through the effective frequency defined in Eq. (5.30). This result is
expected as both the scattering and detrapping processes occur isotropically. Evidently,
precisely how mobility varies with energy depends entirely on the energy dependence
of the process frequencies.

Using both the momentum and energy balance equations (5.28) and (5.29), we can
also find the Wannier energy relation for the average energy

ε =
3

2
kBTeff (ε) +mW 2. (5.37)

We can confirm that when there is no trapping, νtrap (ε) = 0, the mobility and Wannier
energy relation reduce to the classical results valid for dilute gaseous systems [113]:

K =
e

mνcoll (ε)
, (5.38)

ε =
3

2
kBTcoll +mW 2. (5.39)

The zeroth-order mobility and Wannier energy relation derived here are used to de-
scribe energy-independent heating/cooling in Sections 5.4.2 and 5.4.2 as well as NDC
in Section 5.4.3.

First-order momentum transfer theory

Including an additional term in the energy expansion, Eq. (5.26), gives the first-order
momentum transfer theory approximation

⟨ψ (v) ν (ϵ)⟩ ≈ ⟨ψ (v)⟩ ν (ε) + ⟨ψ (v) (ϵ− ε)⟩ ν ′ (ε) , (5.40)

where ν ′ (ε) denotes the energy derivative of ν (ε). Substitution into the momentum
and energy balance equations (5.17) and (5.18) yields

eE
m

= Wνeff (ε) + cov (v, ϵ) ν ′total (ε) , (5.41)

eE · W =

[
ε− 3

2
kBTeff (ε)

]
νeff (ε) + var (ϵ) ν ′total (ε)

−
3
2 (kBTcoll)

2 ν ′coll (ε)

1 +
(
3
2kBTcoll − ε

) ν′coll(ε)
νcoll(ε)

−
3
2 (kBTdetrap)

2Rν ′trap (ε)

1 +
(
3
2kBTdetrap − ε

) ν′trap(ε)

νtrap(ε)

, (5.42)
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where we define νtotal (ε) ≡ νcoll (ε) + νtrap (ε) + ν
(free)
loss (ε), and higher-order velocity

moments have been introduced in the form of the velocity-energy covariance

cov (v, ϵ) ≡ ⟨(v − W) (ϵ− ε)⟩(0) ≡ ξ − εW, (5.43)

where ξ ≡ ⟨ϵv⟩(0) is the energy flux, and the energy variance

var (ϵ) ≡
⟨
(ϵ− ε)2

⟩(0)
≡
⟨
ϵ2
⟩(0) − ε2. (5.44)

These higher-order velocity moments can be approximated using zeroth-order mo-
mentum transfer theory, as is done in Appendix C, to yield approximations expressed
solely in terms of the lower-order velocity moments W and ε. For example, the velocity-
energy covariance can be approximated with

cov (v, ϵ) ≈ 2

3

(
ε+ 2mW 2

)
W. (5.45)

Using this approximation in conjunction with the first-order momentum balance equa-
tion (5.41), we find the mobility, as defined by Eq. (3.61):

K ≈ e

m
[
νeff (ε) +

2
3 (ε+ 2mW 2) ν ′total (ε)

] . (5.46)

This is of the same functional form as the zeroth-order mobility, Eq. (5.36), but with
a modification to the effective frequency in the denominator. Note that the mobility
now depends explicitly on the drift velocity, through the 2mW 2 term. Terms such as
this are sometimes omitted in the literature as their contribution is minimal when light
particles are being considered [113].

As in zeroth-order momentum transfer theory, a Wannier energy relation can be
formed by combining both momentum and energy balance equations (5.41) and (5.42):

ε =
3

2
kBTeff (ε) +mW 2

− ν′total (ε)

νeff (ε)
cov (ϵ, ϵ−mW · v) +

3
2 (kBTcoll)

2 ν′
coll(ε)
νeff(ε)

1 +
(
3
2kBTcoll − ε

) ν′
coll(ε)

νcoll(ε)

+

3
2 (kBTdetrap)

2 Rν′
trap(ε)

νeff(ε)

1 +
(
3
2kBTdetrap − ε

) ν′
trap(ε)

νtrap(ε)

.

(5.47)

This first-order Wannier energy relation is written in terms of higher-order velocity
moments via the covariance

cov (ϵ, ϵ−mW · v) ≡ var (ϵ)−mW · cov (v, ϵ) . (5.48)
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As before, the results in Appendix C allow for this covariance to also be written
approximately in terms of lower-order velocity moments:

cov (ϵ, ϵ−mW · v) ≈ 2

3

(
ε− 1

2
mW 2

)2

+
17

6

(
mW 2

)2
+

5

3
ωcoll (ε)ωtrap (ε)

[
3

2
kB (Tcoll − Tdetrap)

]2
. (5.49)

This expression can be used to write the first-order Wannier energy relation (5.47) in
an approximate closed form, independent of higher-order velocity moments.

Comparing the above first-order momentum transfer theory results for mobility and
average energy, Eqs. (5.46) and (5.47), to their zeroth-order counterparts, Eqs. (5.36)
and (5.37), provides an estimate of the error incurred by the zeroth-order momentum
transfer theory approximation.

In Section 5.4.2, we use the first-order mobility and Wannier energy relation derived
here to describe heating/cooling that is due to the energy dependence of physical
processes.

5.4.2 Heating and cooling

In this section, we determine the effect that each of the physical processes described by
the generalised Boltzmann equation (5.1) have on the average particle energy. That
is, whether there is an increase or decrease in the average energy corresponding to
a respective heating or cooling of the particles as a result of collisions, trapping or
recombination.

Collisional and trap-based heating/cooling

To consider the effect of collisions on the average energy, we consider the case of
constant process rates where the average energy is given by the zeroth-order Wannier
energy relation (5.37). For collisions that are infrequent relative to trapping, i.e. νcoll <

Rνtrap, the average energy can be written approximately to first order in νcoll/Rνtrap:

ε ≈ ε0 + 2

(
3

2
kBTHC − ε0

)
νcoll
Rνtrap

, (5.50)

where the subscript “0” denotes the collisionless case, i.e. νcoll = 0:

ε0 =
3

2
kBTdetrap +mW 2

0 , (5.51)

W0 =
eE

mRνtrap
, (5.52)

and THC is a threshold temperature which defines the transition between collisional
heating and cooling:

THC ≡
Tcoll + Tdetrap

2
. (5.53)
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In the event that ε0 = 3
2kBTHC, the first-order term in the expansion above vanishes

and we must instead consider the second-order approximation:

ε ≈ ε0 +mW 2
0

(
νcoll
Rνtrap

)2

. (5.54)

The expansions (5.50) and (5.54) show that the introduction of collisions cause cooling
only if the initial average energy ε0 exceeds the threshold energy proportional to the
temperature THC:

ε0 >
3

2
kBTHC, (5.55)

with collisional heating occurring otherwise.
These conditions can also be shown to be applicable to trap-based heating/cooling,

in which case ε0 would denote the trap-free mean energy with νtrap = 0.

Energy-indiscriminate recombination heating/cooling

We now explore the possibility of recombination heating/cooling by once again consid-
ering constant process rates. It is usually expected that constant loss rates, which act
indiscriminate of energy, result in a decrease in particle number that affects extensive
properties but leaves intensive properties, like the average energy, unchanged [113].
Although it is true that the recombination considered here is not selective of particle
energy, the separate recombination rates for free and trapped particles means that
recombination is selective of whether particles are trapped or not. Indeed, the aver-
age energy can be shown to be a function of the difference in these recombination
rates, ∆νloss ≡ ν

(free)
loss − ν

(trap)
loss , only becoming independent when recombination acts

uniformly across all particles, i.e. ν
(free)
loss = ν

(trap)
loss . The recombination dependence

appears in the average energy through the quantity R, whose definition in Eq. (5.34)
is rewritten here explicitly in terms of ∆νloss:

R ≡
ˆ ∞

0
dt ϕ (t) e[∆νloss+νtrap(1−R)]t. (5.56)

The original definition of R was given by Eq. (3.63) as the steady-state ratio between
the number of particles leaving and entering traps. Without recombination, this ratio
is unity as an equilibrium arises between free and trapped particles, Eqs. (3.27) and
(3.27). Even with recombination, this ratio should remain at unity so long as the
number of free and trapped particles decrease equally due to recombination, ∆νloss = 0.

We explore the effect of R on heating/cooling by performing a small ∆νloss expan-
sion:

R ≈ 1 +
∆νloss

νdetrap + νtrap
, (5.57)

where the detrapping rate has been introduced

ν−1
detrap ≡

ˆ ∞

0
dt ϕ (t) t. (5.58)
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Proceeding to perform a small ∆νloss expansion of the average energy, in part by using
the above expansion of R, gives the average energy to first order:

ε ≈ ε0 + 2

(
3

2
kBTHC − ε0

)
νtrap

νcoll + νtrap

∆νloss
νdetrap + νtrap

, (5.59)

where the subscript “0” denotes the case of uniform recombination, ∆νloss = 0:

ε0 =
3

2
kBTeff,0 +mW 2

0 , (5.60)

W0 =
eE

m (νcoll + νtrap)
, (5.61)

Teff,0 =
νcollTcoll + νtrapTdetrap

νcoll + νtrap
, (5.62)

and the threshold temperature in this case is defined as

THC ≡
Teff,0 + Tdetrap

2
. (5.63)

In the event that ε0 = 3
2kBTHC, we have instead the second-order approximation for

average energy:

ε ≈ ε0 +mW 2
0

(
νtrap

νcoll + νtrap

∆νloss
νdetrap + νtrap

)2

, (5.64)

From the small ∆νloss expansions (5.59) and (5.64), we see that if there is a relative
loss of free particles, ν(free)

loss > ν
(trap)
loss , then recombination cooling can occur if those

free particles are sufficiently energetic prior to being lost:

ε0 >
3

2
kBTHC. (5.65)

Conversely, if there is a relative gain of free particles, ν(free)
loss < ν

(trap)
loss , then recombina-

tion cooling can occur if those free particles are sufficiently cold to begin with:

ε0 <
3

2
kBTHC. (5.66)

Overall, for distinct free and trapped particle recombination rates such that ν(free)
loss ̸=

ν
(trap)
loss , the condition for recombination cooling can be summarised as(

ε0 −
3

2
kBTHC

)
∆νloss > 0, (5.67)

with recombination heating occurring otherwise.

Energy-selective recombination heating/cooling

In the event that no traps are present, νtrap = 0, or where recombination acts uniformly
across all free and trapped particles, ν(free)

loss = ν
(trap)
loss , heating and cooling can not occur
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due to the trap-selective recombination described previously. In this case, heating or
cooling can only occur if recombination acts selectively based on the energy of the free
particles. To show this, we will consider the first-order Wannier energy relation (5.47)
with constant collision and trapping rates and constant free particle recombination
rate energy derivative ν(free)′

loss . Performing a small ν(free)′
loss /νeff expansion of this average

energy gives, to first order:

ε ≈ ε0 −

{
2

3

(
ε0 +

1

2
mW 2

0

)2

+
11

2

(
mW 2

0

)2
+

5

3
ωcollωtrap

[
3

2
kB (Tcoll − Tdetrap)

]2}
ν
(free)′
loss
νeff

,

(5.68)
where the subscript “0” denotes no energy dependence in the free particle recombina-
tion rate, ν(free)′

loss = 0:

ε0 =
3

2
kBTeff +mW 2

0 , (5.69)

W0 =
eE
mνeff

. (5.70)

As is expected, the expansion (5.68) suggests that recombination cooling occurs when
recombination is selective of higher energy particles,

ν
(free)′
loss > 0, (5.71)

with recombination heating occurring when it is selective of lower energy particles. This
confirms for this model the well known phenomena of attachment heating/cooling [113].

5.4.3 Negative differential conductivity

Negative differential conductivity (NDC) occurs when an increase in field strength
causes a decrease in the drift velocity [126]:

dW
dE < 0. (5.72)

The field rate of change of drift velocity can be found directly from the zeroth-order
Wannier energy relation (5.37) as

dW
dE =

1

2mW

[
1− 3

2
kBT

′
eff (ε)

]
dε
dE , (5.73)

which provides the condition for the occurrence of NDC:

3

2
kBT

′
eff (ε) > 1. (5.74)

The NDC condition assumes that the mean energy increases monotonically with the
field

dε
dE > 0. (5.75)
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This is equivalent to restricting the effective frequency νeff (ε) so as to avoid runaway
and ensure that an equilibrium is reached [127]:

d
dε

(
νeff (ε)

√
ε− 3

2
kBTeff (ε)

)
> 0. (5.76)

Note that the occurrence of NDC depends solely on how the effective temperature
varies with energy. This energy rate of change is proportional to the difference in
Maxwellian temperatures:

T ′
eff (ε) = (Tcoll − Tdetrap)ω

′
coll (ε) = (Tdetrap − Tcoll)ω

′
trap (ε) . (5.77)

Hence, in comparison with Eq. (5.74), we see that NDC here cannot occur when
both scattering and detrapping sources are of equal temperature or when the relative
collision or trapping rates, ωcoll (ε) and ωtrap (ε) , do not vary rapidly enough with
mean energy.

Figure 5.1 plots both the drift velocity W and mean energy ε as functions of the
applied electric field E for a situation in which NDC arises. Previous studies [126,128]
found that, for inelastic processes, the signature of NDC is a rapidly-increasing mean
energy. Interestingly, the opposite is true in the example considered for our model,
with the mean energy plateauing when NDC occurs. This contrast can be understood
by considering the frequency that defines the mobility in each case. For NDC to occur,
this frequency must increase sufficiently quickly with applied field. In the referenced
studies this frequency increases over a range of energies, causing the mean energy to
increase rapidly through this range when NDC occurs. However, in our example in
Figure 5.1, the effective frequency increases rapidly at a particular energy, causing the
mean energy to plateau at this energy during the NDC regime.

5.5 Generalised Einstein relation
In this section, we form a generalisation of the classical Einstein relation between
diffusivity D and temperature T tensors [110]:

D
K

=
kBT
e
, (5.78)

for the phase-space model described by Eq. (5.1). To do this, we make use of Fick’s
law:

⟨v⟩ ≈ W − D · 1
n

∂n

∂r . (5.79)

The use of Fick’s law here is justified in Section 3.4 where it is shown that velocity av-
erages can be written in the weak-gradient hydrodynamic regime as a density gradient
expansion

⟨ψ⟩ = ⟨ψ⟩(0) + ⟨ψ⟩(1) · 1
n

∂n

∂r + ⟨ψ⟩(2) : 1

n

∂2n

∂r∂r + · · · . (5.80)
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Figure 5.1: Plots of drift velocity, Eq. (3.61), and mean energy, Eq. (5.37), against
electric field for a situation in which negative differential conductivity arises. All
quantities have been nondimensionalised with respect to the mean energy without a
field applied, ε⋆ ≡ 3

2kBTeff (ε
⋆). Specifically, we have chosen to nondimensionalise using

W ⋆ ≡
√

ε⋆

m and E⋆ ≡ mνeff(ε
⋆)

e W ⋆. For this figure, we consider a constant collision
frequency, νcoll (ε) = 1, and a trapping frequency that approximates a step function,
Rνtrap (ε) =

1
2 {1 + tanh [5 (ε− εthresh)]} ≈ H (ε− εthresh), turning on at the threshold

energy εthresh = 6. In addition, Maxwellian temperatures have been chosen such that
kBTcoll = 1 and kBTdetrap = 5.

To find an expression for the diffusion coefficient, we must apply density gradient
expansions to all average quantities in the momentum and energy balance equations
(5.17) and (5.18). For the mean energy we have, to first spatial order

⟨ϵ⟩ ≈ ε+ γ · 1
n

∂n

∂r , (5.81)

where γ is the energy gradient parameter. Using the density gradient expansions of
average velocity and energy, Eqs. (5.79) and (5.81), we can determine the following
density gradient expansions valid for an arbitrary frequency ν (ϵ):

⟨ν (ϵ)⟩ ≈ ν (ε) + ν ′ (ε)γ · 1
n

∂n

∂r , (5.82)

⟨vν (ϵ)⟩ ≈ Wν (ε) +
[
ν ′ (ε)γW − ν (ε)D

]
· 1
n

∂n

∂r , (5.83)

⟨ϵν (ϵ)⟩ ≈ εν (ε) +
[
ν (ε) + εν ′ (ε)

]
γ · 1

n

∂n

∂r . (5.84)
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Lastly, we also perform the density gradient expansion of the concentration of particles
leaving traps

Φ(t) ∗ n (t, r) ≈ Rn+ R(1) · ∂n
∂r , (5.85)

where R is defined by Eq. (5.34) as the steady-state ratio between the number of
particles leaving and entering traps, and R(1) is a vector that has a component due
to the energy dependence of R and an intrinsic component present even for constant
process rates, as was found in Eq. (3.72):

R(1) ≡ R′ (ε)γ +
Rτ

1 + νtrap (ε)Rτ
W, (5.86)

where we have introduced the average time

τ ≡ 1

R

ˆ ∞

0
dtΦ(t) e

[
ν
(free)
loss (ε)+νtrap(ε)(1−R)

]
t
t, (5.87)

which coincides with the mean trapping time when the free and trapped particle re-
combination rates coincide, ν(free)

loss (ε) = ν
(trap)
loss .

The weak-gradient hydrodynamic regime balance equations can now be considered
to first spatial order by applying all of the above density gradient expansions. Doing
so and equating first-order terms yields

kBT
m

= νeff (ε)D − ν ′eff (ε)γW − νtrap (ε)Rτ

1 + νtrap (ε)Rτ
WW, (5.88)

− Qheat
νeff (ε)

=

[
1− 3

2
kBT

′
eff (ε)

]
γ + 2mW · D

+
3

2
kB (Tcoll − Tdetrap)ωcoll (ε)ωdetrap (ε)

Rτ

1 + νtrap (ε)Rτ
W, (5.89)

where the temperature T and heat flux Qheat are defined in terms of the peculiar
velocity V ≡ v − W as

kBT ≡ m ⟨VV⟩(0) , (5.90)

Qheat ≡
1

2
m
⟨
V 2V

⟩(0)
. (5.91)

By writing the above system of equations in terms of components of diffusivity and
temperature perpendicular and parallel to the field:

D ≡ D⊥

(
I − ÊÊ

)
+D∥ÊÊ, (5.92)

T ≡ T⊥

(
I − ÊÊ

)
+ T∥ÊÊ, (5.93)
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and solving for each component of diffusivity separately yields the generalised Einstein
relations

D⊥ =
kBT⊥

mνeff (ε)
, (5.94)

D∥ =
kBT∥ +mW 2 νtrap(ε)Rτ

1+νtrap(ε)Rτ
−

[
Q
W

+ 3
2
kB (Tcoll − Tdetrap)

νcoll(ε)
νeff(ε)

νtrap(ε)Rτ

1+νtrap(ε)Rτ

]
mW2

1− 3
2
kBT ′

eff(ε)

ν′
eff(ε)

νeff(ε)

mνeff (ε)
(
1 + 2mW2

1− 3
2
kBT ′

eff(ε)

ν′
eff(ε)

νeff(ε)

) .

(5.95)

Using the zeroth-order mobility and Wannier energy relation derived in Section 5.4.1,
we find the identity:

d lnK
d lnE

1 + d lnK
d lnE

≡ − 2mW 2

1− 3
2kBT ′

eff (ε)

ν ′eff (ε)

νeff (ε)
, (5.96)

which allows the above generalised Einstein relations to be written in terms of the
field-dependence of the mobility K:

D⊥
K

=
kBT⊥
e

, (5.97)

D∥

K
=
kBT∥ +mW 2 νtrap(ε)Rτ

1+νtrap(ε)Rτ

e

[
1 + (1 + ∆)

d lnK
d lnE

]
, (5.98)

where

∆ ≡
Q+ 3

2kB (Tcoll − Tdetrap)W
νcoll(ε)
νeff(ε)

νtrap(ε)Rτ
1+νtrap(ε)Rτ

2kBT∥W + 2mW 3 νtrap(ε)Rτ
1+νtrap(ε)Rτ

. (5.99)

We can see that the perpendicular generalised Einstein relation coincides with the
classical Einstein relation (5.78) and that the parallel one deviates from it, highlighting
the anisotropic nature of diffusion. In the case where there is no trapping, νtrap (ε) = 0,
the above parallel Einstein relation reduces to

D∥

K
=
kBT∥
e

[
1 + (1 + ∆)

d lnK
d lnE

]
, (5.100)

with
∆ ≡ Q

2kBT∥W
, (5.101)

which coincides with the well-known gas-phase results [125,126]. The deviation of this
collision-only generalised Einstein relation (5.100) from the classical Einstein relation
(5.78) is due entirely to the energy dependence of the process rates. Interestingly, this
is not the case when trapping is considered, as choosing constant process rates for the
generalised Einstein relation (5.98) results in a parallel diffusion coefficient that still
has some enhancement:

D∥

K
=
kBT∥ +mW 2 νtrapRτ

1+νtrapRτ

e
, (5.102)

as observed previously in Chapter 4 where anisotropic diffusion was quantified for
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constant process rates in Eq. (5.102). This anisotropy is to be expected as, rather
than moving with the applied field, some particles become localised in traps only to
detrap later to contribute to the spread of free particles.

5.6 Conclusion
We have explored a generalised phase-space model that considers collision, trapping, de-
trapping and recombination processes, all of which act selectively according to particle
energy. We form balance equations (5.16)–(5.18) describing the conservation and trans-
port of particle number, momentum and energy, and use these balance equations to
form expressions for the particle mobility, Eqs. (5.36) and (5.46), and for the aver-
age particle energy in the form of Wannier energy relations (5.37) and (5.47). These
Wannier energy relations were then used to provide conditions for particle heating
or cooling due to collisions or trapping, Eq. (5.55), and recombination, Eqs. (5.67)
and (5.71). Notably, recombination heating and cooling was found to occur even when
particles recombined indiscriminate of energy, in contrast to the case where recombina-
tion occurs only in the delocalised states. Transport via combined localised/delocalised
states was shown to produce negative differential conductivity under certain conditions
(5.74), and the impact of scattering, trapping/detrapping and recombination on the
anisotropic nature of diffusion was expressed through the development of the gener-
alised Einstein relations (5.97) and (5.98). Lastly, fractional transport analogues of
the aforementioned results were explored by using a trapping time distribution with a
heavy tail of the form of Eq. (3.95).

For direct application of this model, it is necessary to have reasonable inputs for
the trapping frequency, νtrap, and the trapping time distribution, ϕ (t). Some pro-
gress has been made already for organic materials where the trapping time distri-
bution can be calculated from the density of existing trapped states [33]. Also for
dense gases/liquids, where trapped states are formed by the electron itself and the
trapping time distribution is dependent on the scattering, fluctuation profiles and sub-
sequent fluid bubble evolution [88]. Other investigations of trapping also exist in the
literature [93–95], including free energy changes and solvation time scales, but none
of these directly produces an energy-dependent trapping frequency or trapping time
distribution. Presently, the focus of our attention is on the ab initio calculation of
energy-dependent trapping frequencies and waiting time distributions in liquids and
dense gases, as well as the simulation of charge carrier transport in 2D organic devices,
including those with long-lived traps where transport is dispersive. The latter is the
subject of Chapter 6.
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6
Planar organic semiconductor

device simulation

This chapter outlines a simulation for charge carrier transport in planar organic semi-
conductors. The model takes the form of a two-dimensional generalised drift-diffusion-
Poisson system that accounts for charge carrier trapping and detrapping, as well as
recombination of both free and trapped carriers. We begin by describing each compon-
ent of this model separately, before presenting the model in its entirety. Numerical
details regarding the implementation of the model in the Julia programming language
are then presented. The resulting model implementation is then benchmarked against
known results for one-dimensional plane-parallel systems. Finally, we apply the model
to a parameter exploration of a planar TOF experiment. In the process, we explore a
potential experimental technique for the characterisation of the recombination coeffi-
cient. Finally, we explore what effects traps may have on the measured current in vari-
ous charge transport experiments in planar geometry, including TOF, Photo-CELIV
and RPV.

This chapter forms the basis of a forthcoming publication:
[129] Peter W. Stokes, Bronson Philippa, Almantas Pivrikas, and Ronald D. White.

Localised and delocalised charge transport in planar organic semiconducting devices
(2018)
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6.1 Outline of planar device model

6.1.1 Charge-carrier transport

We describe the transport of free and trapped electrons and holes using the generalised
continuity equations (3.34) and (3.6):[
∂

∂t
+ νtrap,n (1−Rn (t, r))

]
n+

∂

∂r · Γn (t, r) = −ν(free)
loss,nn, (6.1)[

∂

∂t
+ νtrap,p (1−Rp (t, r))

]
p+

∂

∂r · Γp (t, r) = −ν(free)
loss,pp, (6.2)

∂ntrap
∂t

= νtrap,n (1−Rn (t, r))n− ν
(trap)
loss,n ntrap,

(6.3)
∂ptrap
∂t

= νtrap,p (1−Rp (t, r)) p− ν
(trap)
loss,p ptrap,

(6.4)

where n (t, r) and p (t, r) are free electron and hole number densities, ntrap (t, r) and
ptrap (t, r) are trapped electron and hole number densities and quantities are subscrip-
ted with “n” or “p” when they pertain to electrons or holes, respectively, including
the carrier flux Γ (t, r), free and trapped carrier recombination rates, ν(free)

loss and ν(trap)
loss ,

and the ratio between carriers leaving and entering traps, R (t, r), specified in terms
of the distribution of carrier trapping times ϕ (t):

Rn (t, r) =

(
e−ν

(trap)
loss,n tϕn (t)

)
∗ n (t, r)

n (t, r) , (6.5)

Rp (t, r) =

(
e−ν

(trap)
loss,p tϕp (t)

)
∗ p (t, r)

p (t, r) . (6.6)

As stated, the above continuity equations consider time-invariant recombination rates
for both free and trapped particles. However, in the context of a semiconductor device
simulation, we can be more specific regarding the recombination process. In particular,
we consider bimolecular recombination where the recombination rate of one carrier is
proportional to the number density of the other [130–132]:(

∂n

∂t

)
recomb with p

=

(
∂p

∂t

)
recomb withn

= −βn (t, r) p (t, r) , (6.7)

where β is the bimolecular recombination coefficient. In a similar way, we also account
for trap-assisted bimolecular recombination between free and trapped carriers. We
consider such recombination as being transport-limited, where the recombination rate
between free and trapped carriers decreases by a factor proportional to the relative
mobility of the free carrier [133]. For electron and hole mobilities, µn and µp, we thus
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have the following recombination rates:(
∂n

∂t

)
recomb with ptrap

=

(
∂ptrap
∂t

)
recomb withn

= − µn
µp + µn

βn (t, r) ptrap (t, r) , (6.8)(
∂p

∂t

)
recomb withntrap

=

(
∂ntrap
∂t

)
recomb with p

= − µp
µp + µn

βntrap (t, r) p (t, r) . (6.9)

Given each of the above recombination rates, the resulting coupled continuity equations
for free and trapped electrons and holes become[

∂

∂t
+ νtrap,n (1−Rn (t, r))

]
n+

∂

∂r · Γn (t, r) = −βnp− µn

µp + µn
βnptrap, (6.10)[

∂

∂t
+ νtrap,p (1−Rp (t, r))

]
p+

∂

∂r · Γp (t, r) = −βnp− µp

µp + µn
βntrapp, (6.11)

∂ntrap
∂t

= νtrap,n (1−Rn (t, r))n− µp

µp + µn
βntrapp,

(6.12)
∂ptrap
∂t

= νtrap,p (1−Rp (t, r)) p−
µn

µp + µn
βnptrap,

(6.13)

where Γn (t, r) and Γp (t, r) are electron and hole fluxes, and Rn (t, r) and Rp (t, r) are
ratios between electrons and holes leaving and entering traps. These ratios now take
on the following form to account for the decrease in particles leaving traps due to
trap-based bimolecular recombination:

Rn (t, r) ≡
ϕn (t) ∗

[
n (t, r) exp

(
µp

µp+µn
β
´ t
0 dτp (τ, r)

)]
n (t, r) exp

(
µp

µp+µn
β
´ t
0 dτp (τ, r)

) , (6.14)

Rp (t, r) ≡
ϕp (t) ∗

[
p (t, r) exp

(
µn

µp+µn
β
´ t
0 dτn (τ, r)

)]
p (t, r) exp

(
µn

µp+µn
β
´ t
0 dτn (τ, r)

) , (6.15)

where ϕn (t) and ϕp (t) are distributions of trapping times for electrons and holes. De-
tails regarding the derivation of these ratios are presented in Appendix D.2. Finally, as
was justified in Section 3.4, we can use Fick’s law to evaluate the fluxes approximately:

Γn (t, r) = Wnn (t, r)− Dn · ∂n
∂r , (6.16)

Γp (t, r) = Wpp (t, r)− Dp ·
∂p

∂r . (6.17)

Thus, transport of each carrier is described by a generalised drift-diffusion equation,
similar to Eq. (3.89). Using Einstein’s relation (4.41), along with the mobility µ, which
satisfies the definition W ≡ µE, we can express the above fluxes as

Γn (t, r) = −µnE (t, r)n (t, r)− µnkBT

e

∂n

∂r , (6.18)

Γp (t, r) = µpE (t, r) p (t, r)− µpkBT

e

∂p

∂r , (6.19)
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where T is the temperature of the material and E (t, r) is the local electric field. Al-
though the classical Einstein relation has been used here to relate diffusion and tem-
perature, any of the more sophisticated Einstein relations, Eqs. (5.98) and (5.102),
could also have be used, allowing for the consideration of anisotropic diffusion.

Finally, we specify the various boundary conditions for the particle fluxes:
Blocking boundary condition — At interfaces between the semiconductor and an

insulator, such as the surrounding air, we set the fluxes to zero:

Γn (t, r) = 0, (6.20)

Γp (t, r) = 0. (6.21)

Outflow boundary condition — At interfaces between the semiconductor and the
metal electrodes, when charge extraction occurs, we set the fluxes proportional to the
field strength at the interface:

Γn (t, r) = −µnE (t, r)n (t, r) , (6.22)

Γp (t, r) = µpE (t, r) p (t, r) . (6.23)

This guarantees that charges will leave the device if there is a field there to drive
them. This boundary condition has been used previously in both numerical simulations
[134,135] and analytical solutions [136].

Ohmic boundary condition — At interfaces between the semiconductor and the
metal electrodes, when charge injection occurs, the number density within the injecting
electrode is held fixed at an effective density of states nEDOS [137]:

Γn (t, r) = µnE (t, r)nEDOS, (6.24)

Γp (t, r) = −µpE (t, r)nEDOS. (6.25)

In practice, nEDOS is an additional parameter that must be fit using experimental data.

6.1.2 Electric potential and field

To fully define the carrier fluxes in Eqs. (6.18) and (6.19), the electric field E (t, r)
must be known throughout the device. In terms of the electric potential V (t, r), the
electric field is

E (t, r) = − ∂

∂rV (t, r) . (6.26)

In turn, the electric potential V (t, r) can be found by solving Poisson’s equation:

∂

∂r ·
[
ε (r) ∂V

∂r

]
= −ρ (t, r) , (6.27)

where ε (r) is the electric permittivity and

ρ (t, r) ≡ e [p (t, r)− n (t, r) + ptrap (t, r)− ntrap (t, r)] , (6.28)
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Figure 6.1: Planar semiconductor and accompanying measurement circuitry.

is the net charge density. The voltages of the metal electrodes provide Dirichlet bound-
ary conditions for Poisson’s equation. Specifically, we define one electrode to have a
voltage equal to the potential difference between both electrodes, U (t):

V (t, r) = U (t) , ∀r ∈ positive electrode, (6.29)

with the other electrode consequently having a zero voltage:

V (t, r) = 0, ∀r ∈ negative electrode. (6.30)

Lastly, as the problem domain is unbounded, a zero-field Neumann boundary condition
is applied at a radial distance from the device. This approximates the actual zero-field
condition at infinity:

lim
∥r∥→∞

E (t, r) = 0. (6.31)

6.1.3 External measurement circuitry

As described in the previous section, in order to solve Poisson’s equation (6.27) we
require knowledge of the electrode potential difference U (t). An expression containing
U (t) can be found by applying Kirchhoff’s voltage law to the circuit depicted in Figure
6.1:

Vpsu (t) = U (t) + i (t)R, (6.32)
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where i (t) is the current in the external circuit. This current can in turn be found
using Kirchhoff’s current law:

‹
S
dS · i (t, r) =


i (t) , S encloses positive electrode,

−i (t) , S encloses negative electrode,

0, otherwise,

(6.33)

where dS is a differential of the surface S. Here, i (t, r) is the current density, which is
a sum of conduction and displacement current densities:

i (t, r) = jc (t, r) +
∂D (t, r)

∂t
, (6.34)

where jc (t, r) ≡ e [Γp (t, r)− Γn (t, r)] is the conduction current density and D (t, r) ≡
ε (r)E (t, r) is the electric displacement field. Taking the surface S to lie on the surface
of the positive electrode yields the following expression for the current:

i (t) = ic (t) +
∂Q

∂t
, (6.35)

where the conduction current being injected by the positive electrode is

ic (t) ≡
‹

S
dS · jc (t, r) , (6.36)

and the charge on the positive electrode is given by Gauss’s law:

Q (t) ≡
‹

S
dS · D (t, r) . (6.37)

Substituting Eq. (6.35) for the current into Eq. (6.32) yields an ordinary differential
equation for the charge Q (t) on the positive electrode:

∂Q

∂t
=
Vpsu (t)− U (t)

R
− ic (t) . (6.38)

Notice that writing Eq. (6.37) for the charge Q (t) out in full suggests that Q (t) is
linearly related to U (t):

Q (t) ≡
‹

S
dS · D (t, r) =

‹
S
dS · ε (r)E (t, r) = −

‹
S
dS · ε (r) ∂V (t, r)

∂r . (6.39)

Thus, the above differential equation (6.38) for Q (t) is also a differential equation for
U (t) and we can find U (t) in practice by quantifying the linear relationship between
Q (t) and U (t). To do this, we use the principle of superposition to write the electric
potential V (t, r) as a linear function of U (t):

V (t, r) ≡ Ṽ (t, r)U (t) + VU=0 (t, r) , (6.40)
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where Ṽ (t, r) is a dimensionless potential characterising purely the geometric effect of
the electrodes on the electric potential and VU=0 (t, r) is simply what the electric po-
tential would be if both electrodes had equal potentials, i.e. U (t) = 0. Corresponding
expressions follow for both the electric field E (t, r) and the electric displacement field
D (t, r):

E (t, r) ≡ Ẽ (t, r)U (t) + EU=0 (t, r) , (6.41)

D (t, r) ≡ D̃ (t, r)U (t) + DU=0 (t, r) . (6.42)

Finally, performing the surface integral in Eq. (6.37) yields an expression for the charge
on the positive conductor Q (t) in terms of the electrode potential difference U (t):

Q (t) = CU (t) +QU=0 (t) , (6.43)

where the geometric capacitance is defined as

C ≡
‹

S
dS · ε (r) Ẽ (t, r) (t, r) , (6.44)

and the charge on the positive conductor solely due to space charge is

QU=0 (t) =

‹
S
dS · ε (r)EU=0 (t, r) . (6.45)

In practice, the differential equation (6.38) can be solved for the charge Q (t), which
in turn can be used to find the potential difference U (t) via Eq. (6.43):

U (t) =
Q (t)−QU=0 (t)

C
. (6.46)

6.1.4 Photogeneration of charge carriers

To model charge transport experiments that photogenerate charge carriers with an
initial flash of light, we set the free electron and hole number densities to be initially
equal to

n (0, r) = p (0, r) = QphQ1 (r) , (6.47)

where Q1 (r) is normalised to unity within the semiconductor and describes the initial
distribution of charge due to photogeneration and Qph is the total charge generated,
which increases with the intensity of the light. The precise form of Q1 (r) depends
on the device geometry, where the light is directed, whether the light is focused or
not and also on the optical absorption model used. For example, in the case of the
Beer-Lambert law in one spatial dimension x, we have an exponential decay in light
intensity:

Q1 (x) ∝ e−αBLx, (6.48)

where αBL is the optical absorption coefficient of the semiconductor.
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6.1.5 Model summary and implementation

Collating Eqs. (6.10)–(6.15), (6.18), (6.19), (6.26), (6.27), (6.38), (6.36), (6.45) and
(6.46) yields the following complete description of the general planar semiconductor
model:[

∂

∂t
+ νtrap,p (1−Rp (t, r))

]
p+

∂

∂r · Γp (t, r) = −βnp− µp

µp + µn
βntrapp, (6.49)[

∂

∂t
+ νtrap,n (1−Rn (t, r))

]
n+

∂

∂r · Γn (t, r) = −βnp− µn

µp + µn
βnptrap, (6.50)

∂ptrap
∂t

= νtrap,p (1−Rp (t, r)) p−
µn

µp + µn
βnptrap,

(6.51)
∂ntrap
∂t

= νtrap,n (1−Rn (t, r))n− µp

µp + µn
βntrapp,

(6.52)
∂Q

∂t
=
Vpsu (t)− U (t)

R (t)
− ic (t) , (6.53)

∂

∂r ·
[
ε (r) ∂V

∂r

]
= e (n− p+ ntrap − ptrap) , (6.54)

Rp (t, r) =
ϕp (t) ∗

[
p (t, r) exp

(
µn

µp+µn
β
´ t
0
dτn (τ, r)

)]
p (t, r) exp

(
µn

µp+µn
β
´ t
0
dτn (τ, r)

) ,

(6.55)

Rn (t, r) =
ϕn (t) ∗

[
n (t, r) exp

(
µp

µp+µn
β
´ t
0
dτp (τ, r)

)]
n (t, r) exp

(
µp

µp+µn
β
´ t
0
dτp (τ, r)

) ,

(6.56)

Γp (t, r) = µpE (t, r) p (t, r)− µpkBT

e

∂p

∂r , (6.57)

Γn (t, r) = −µnE (t, r)n (t, r)− µnkBT

e

∂n

∂r , (6.58)

E (t, r) = −∂V
∂r , (6.59)

U (t) =
Q (t)−QU=0 (t)

C
, (6.60)

ic (t) =

‹
S
dS · e [Γp (t, r)− Γn (t, r)] , (6.61)

QU=0 (t) =

‹
S
dS · ε (r)EU=0 (t, r) . (6.62)

To simplify the resulting device simulation and to aid the interpretation of results, we
nondimensionalise each physical quantity using a system of units similar to those used
for one-dimensional systems by Juška [135, 138] and Philippa [134]. In this system of
units, we make use of a reference voltage Uref that depends on the experiment being
performed. For the TOF experiment, this is simply the applied voltage, Uapplied. For
CELIV, this is the maximum of the voltage ramp, Umax. Similarly, the time scale
is also chosen depending on the experiment. For the CELIV experiment, the most
natural scale is the pulse time tpulse of the voltage ramp. For other experiments, we
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Table 6.1: System of units used in simulation.
Variable Reference value

Voltage Uref =

{
Umax, CELIV,
Uapplied, TOF.

Length d

Time tscale =

{
tpulse, CELIV,
ttr =

d2

µfastUref
, other.

Permittivity Cd/S

Bimolecular recombination coefficient βL =
e(µn+µp)

εs
Charge CUref

Charge density CUref/Sd
Number density CUref/eSd = εrefUref/ed

2

Particle flux CUref/eStscale = εrefUref/edtscale
Mobility d2/tscaleUref

Electric field Uref/d
Current CUref/tscale

Resistance tscale/C
Temperature eUref/kB

choose to use the “transit time” of the faster carrier:

ttr =
d2

µfastUref
, (6.63)

where d is our chosen length scale, the inter-electrode spacing. In analogy to a one-
dimensional plane-parallel geometry, we also make use of the surface area S of the
positive electrode to define the reference permittivity:

εref =
Cd

S
. (6.64)

For the bimolecular recombination coefficient β, we normalise using the case of
Langevin recombination [139–141]:

βL =
e (µn + µp)

εs
, (6.65)

where εs is the permittivity of the semiconductor.

Chapter 6. Planar organic semiconductor device simulation 98



Stokes, Peter Anomalous Transport in Organic and Soft-Condensed Matter

The full system of units is listed in Table 6.1. In this system, we have the full
dimensionless model:[

∂

∂t
+ νtrap,p (1−Rp (t, r))

]
p+

∂

∂r · Γp (t, r) = −µn + µp

εs
βnp− µp

εs
βntrapp, (6.66)[

∂

∂t
+ νtrap,n (1−Rn (t, r))

]
n+

∂

∂r · Γn (t, r) = −µn + µp

εs
βnp− µn

εs
βnptrap, (6.67)

∂ptrap
∂t

= νtrap,p (1−Rp (t, r)) p−
µn

εs
βnptrap, (6.68)

∂ntrap
∂t

= νtrap,n (1−Rn (t, r))n− µp

εs
βntrapp, (6.69)

∂Q

∂t
=
Vpsu (t)− U (t)

R (t)
− ic (t) , (6.70)

∂

∂r ·
[
ε (r) ∂V

∂r

]
= n− p+ ntrap − ptrap, (6.71)

Rp (t, r) =
ϕp (t) ∗

[
p (t, r) exp

(
µn

εs
β
´ t
0
dτn (τ, r)

)]
p (t, r) exp

(
µn

εs
β
´ t
0
dτn (τ, r)

) ,

(6.72)

Rn (t, r) =
ϕn (t) ∗

[
n (t, r) exp

(
µp

εs
β
´ t
0
dτp (τ, r)

)]
n (t, r) exp

(
µp

εs
β
´ t
0
dτp (τ, r)

) ,

(6.73)

Γp (t, r) = µpE (t, r) p (t, r)− µpT
∂p

∂r , (6.74)

Γn (t, r) = −µnE (t, r)n (t, r)− µnT
∂n

∂r , (6.75)

E (t, r) = −∂V
∂r , (6.76)

U (t) = Q (t)−QU=0 (t) , (6.77)

ic (t) =

‹
S
dS · [Γp (t, r)− Γn (t, r)] , (6.78)

QU=0 (t) =

‹
S
dS · ε (r)EU=0 (t, r) . (6.79)

We use the Julia programming language [142–144] to implement this model in a planar
semiconductor device simulation. To solve the charged-particle continuity equations
(6.66)–(6.69), we apply a finite volume spatial discretisation as described in Appendix
E.1. To accurately evaluate the carrier fluxes (6.74) and (6.75), we make use of a
third-order WENO method [145], detailed in Appendix E.2. Poisson’s equation (6.71)
is solved implicitly using a centred second-order finite difference scheme, outlined in
Appendix E.3. This Poisson solution is found strictly within the domain of the semi-
conductor where it is required. This is achieved using the Schur complement method,
as described in Appendix E.4. Finally, to perform the time integration, we make
use of the Julia package ecosystem for solving differential equations, DifferentialEqua-
tions.jl [146]. In the trap-free case, we perform explicit time integration using the (2, 3)
Runge-Kutta pair of Bogacki and Shampine [147], implemented as the BS3 function
in the OrdinaryDiffEq.jl package [148]. When traps are present, we first use Gauss-
Lobatto quadrature to discretise the convolution integrals in Eqs. (6.72) and (6.73)
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Figure 6.2: Considered plane-parallel device geometry. Grey denotes the semicon-
ductor, while red and cyan denote the positive and negative electrodes, respectively.
The electrodes have a thickness of d/10 and a length of 5d, where d is the inter-electrode
distance.

and then solve the resulting system of delay differential equations using the method
of steps alongside the aforementioned explicit-in-time scheme. This is achieved simply
by using the MethodOfSteps function provided by the DelayDiffEq.jl package [149] in
conjunction with the BS3 function.

6.2 Simulation benchmarks: Two-dimensional treat-
ment of a plane-parallel device geometry

In this section, we benchmark the two-dimensional simulation described in the previous
section against known results for one-dimensional plane-parallel systems. We do this
using the plane-parallel geometry illustrated in Figure 6.2.

6.2.1 Single carrier injection and extraction

To begin with, we confirm the steady-state current for single charge-carrier injection
and extraction in a one-dimensional plane-parallel system free of traps [150]:

lim
t→∞

i (t) =
9εsµAU2

ref
8d3

, (6.80)

where A is the cross-sectional area of the device. We can approximate this system using
the two-dimensional geometry illustrated in Figure 6.2. For this particular geometry,
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we apply the system of units in Table 6.1 to find the dimensionless steady state current:

lim
t→∞

i (t) =
75εsµ

136
, (6.81)

in terms of the dimensionless mobility and permittivity. We numerically determine the
dimensionless semiconductor permittivity to be

εs ≈ 2.0575. (6.82)

At first glance, this dimensionless permittivity appears to be roughly double what one
would expect from a dimensionless plane-parallel system. This is discrepancy is simply
an artefact of the system of units used (outlined in Table 6.1). In this system, the
reference permittivity is defined in terms of the total surface area S of the positive
electrode, rather than the cross-sectional area of the device A, which is conventionally
used. The factor of two thus arises from the ratio of these areas, which in this case is
S/A = 51/25 ≈ 2.

Substituting the dimensionless permittivity (6.82), in conjunction with a dimen-
sionless mobility of µ = 1, into Eq. (6.81), results in the following dimensionless
current in the steady state:

lim
t→∞

i (t) ≈ 1.1347. (6.83)

Indeed, this limiting value agrees well with the the corresponding simulated current
trace, plotted in Figure 6.3.

6.2.2 Scher-Montroll behaviour

Here, we benchmark the trapping aspect of the simulation by performing a TOF ex-
periment in the presence of long-lived traps. We consider an initial Beer-Lambert
photogeneration of charge carriers due to light shone through the positive electrode, as
depicted in Figure 6.4. To describe traps, we make use of the multiple trapping model
trapping time distribution function (1.31). By varying the trap severity α, we observe
the expected late-time Scher-Montroll power-law regime [12] with exponent − (1 + α)

in the TOF current traces plotted in Figure 6.5.

6.3 Planar time of flight experiment: Exploration of
the parameter space

In this section, we simulate TOF experiments for the planar device geometry depicted
in Figure 6.6 where charge is photogenerated initially by light masked by the electrodes,
as depicted in Figure 6.7. Our aim here is to determine the effects that each simu-
lation parameter has on the current trace in a planar-device TOF experiment, while
highlighting any features that arise that are unique to the planar geometry.
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Figure 6.3: Current transient for single carrier injection and extraction for the plane-
parallel geometry depicted in Figure 6.2. The device is initially devoid of carriers and
the carrier mobility is set equal to µ = d2/ttrUref. No traps, temperature or external
circuit resistances are considered. The numerical steady-state current agrees well with
the theoretical value, given by Eq. (6.83). The slight discrepancy is likely due to edge
effects of the two-dimensional geometry, which are not accounted for in the derivation
of the analytical current expression (6.80).

Unless stated otherwise, we consider a system with equal charge carrier mobilities
µp = µn = d2/ttrUref, a relative semiconductor permittivity of εs = 3ε0, a Langevin
recombination coefficient of β = βL, and an initial light intensity such that the initial
photogenerated charge is Qph = 103CUref. For simplicity, the temperature, T , external
resistance R and the trapping frequencies, νtrap,p and νtrap,n, will all be set equal
to zero in this section. Figure 6.8 illustrates the planar TOF experiment for the
aforementioned system by plotting the charge carrier number densities and the electric
field at five instances in time. In this figure, we see the expected separation of charge
carriers consistent with a stronger electric field closer to the electrodes. The specified
Langevin bimolecular recombination is also seen to have an effect on the carrier number
densities. The transient effect of space charge is also seen in the electric field shortly
after the carriers begin to separate.

6.3.1 Light intensity

Figure 6.9 considers light of different intensities by varying the initial amount of photo-
generated charge Qph. As expected, an increase in Qph causes a proportional increase
in the initial current. After this initial plateau, the current begins to drop according
to a power law. This only becomes obvious for large intensities, with Qph ≥ 102CUref,
and occurs an order of magnitude earlier for every order of magnitude increase in Qph.
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Figure 6.4: Intensity of light shone through the positive electrode of the plane-parallel
device depicted in Figure 6.2. Here, optical absorption is described by the Beer-
Lambert law with an absorption coefficient of αBL = 10d−1, where d is the inter-
electrode distance. The light intensity has been normalised to its peak at the semi-
conductor surface. Charge carriers are photogenerated in pairs in direct proportion to
this intensity.

These observations suggest that this drop in current is due to bimolecular recombina-
tion, which is expected to dominate in the large intensity, early time regime. Indeed,
this can be confirmed by considering the following very simple zero-dimensional model
for charge carrier number density that considers bimolecular recombination as the
dominant process:

dn
dt = −βn (t)2 , (6.84)

where we have assumed that electron and hole number densities remain equal. Assum-
ing also that the current is proportional to this number density, we find that

i (t) ∝ n (t) =
n (0)

1 + n (0)βt
. (6.85)

Figure 6.10 plots this analytical expression for the current, which agrees qualitatively
with Figure 6.9 at early times. Thus, up until the transit time t = ttr, charge is
extracted from the inter-electrode channel along the surface of the device, while also
undergoing substantial recombination. After t = ttr, the current does not drop in-
stantaneously, as there are still charge carriers that were generated deeper within the
device that are arriving later due both to their distance from the electrodes and the
weaker electric field within the device. There is, finally, a sharp drop at t ≈ 15ttr,
corresponding to the maximum transit time from the opposite end of the device.
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Figure 6.5: TOF current transients for the plane-parallel device depicted in Figure
6.2. An initial pulse of light is shone through the positive electrode and is absorbed
according to the Beer-Lambert law with an absorption coefficient αBL = 10d−1, as
shown in Figure 6.4. This results in the photogeneration of an initial Qph = CUref of
positive and negative charge carriers. Carrier mobilities are set equal to µp = µn =
d2/ttrUref. No temperature or external circuit resistance is considered. Traps are
considered with equal hole and electron trapping frequencies νtrap,p = νtrap,n = 10t−1

tr .
Transport is dispersive as traps are described by a multiple trapping model trapping
time distribution function, ϕ (t) = αν0 (ν0t)

−α−1 γ (α+ 1, ν0t) with ν0 = 10t−1
tr . As the

trap severity α is varied, the decay of the current during the late-time Scher-Montroll
power-law regime is seen to vary accordingly.

Figure 6.6: Considered planar device geometry. Grey denotes the semiconductor, while
red and cyan denote the positive and negative electrodes, respectively. The semicon-
ductor has a thickness equal to the length of the inter-electrode gap d and a width
equal to 4d. The electrodes have an equal thickness of d/10.
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Figure 6.7: Intensity of light shone between the electrodes of the planar device depicted
in Figure 6.6. Here, optical absorption is described by the Beer-Lambert law, with
absorption coefficient αBL = 10d−1, where d is the inter-electrode distance. The light
intensity has been normalised to its peak at the semiconductor surface. Charge carriers
are photogenerated in pairs in direct proportion to this intensity.

6.3.2 Bimolecular recombination coefficient

Figure 6.11 varies the bimolecular recombination coefficient β. Evidently, as less re-
combination occurs, a greater amount of charge is able to extract and contribute to
the current. In addition to this overall increase in current, a smaller β also delays the
final drop in the current. This can be attributed to the restoring field that is formed
when carriers separate, slowing further separation and delaying carrier extraction from
the device. When the recombination coefficient β is high, more carriers undergo re-
combination, weakening this delaying space charge effect and resulting in an earlier
extraction.

6.3.3 Absorption coefficient

Figure 6.12 varies the optical absorption coefficient of the semiconductor, αBL. As αBL

is increased, more charge is photogenerated near the surface of the device, adjacent to
the electrodes, resulting in an increase in the initial current, i (0). The most notable
feature of this plot, however, occurs at late times where both the rate and time of
extraction are seen to vary with αBL. These features arise due to the later arrival of
charge carriers that were photogenerated deep within the device. There are very few
such carriers when αBL is large, resulting in an earlier and sharper drop in current
after the inter-electrode channel is vacated.

6.3.4 Carrier mobility

Figure 6.13 varies the mobility ratio between charge carriers, µfast/µslow. As expected,
increasing this ratio slows the transport of carriers, resulting in a decrease in the
current initially. At intermediate times, recombination causes all current traces to
decay in unison. Finally, at late times, the total extraction of charge is dictated by the
mobility of the slower carrier, µslow, occurring at a time proportional to the mobility
ratio, µfast/µslow.
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Figure 6.8: Plots of number density and electric field at five instances in time (a)–(e) for a TOF experiment
in the planar geometry depicted in Figure 6.6. These instances are denoted on the accompanying current plot
using dashed vertical lines. Charge carriers are photogenerated as depicted in Figure 6.7 by light masked by the
electrodes that is absorbed according to the Beer-Lambert law with optical absorption coefficient αBL = 10d−1.
Here we have the charge carrier mobilities µp = µn = d2/ttrUref, a relative semiconductor permittivity of
εs = 3ε0, a Langevin recombination coefficient β = βL, and an initial light intensity such that the initial
photogenerated charge is Qph = 103CUref. For simplicity, the temperature, T , external resistance, R, and the
trapping frequencies, νtrap,p and νtrap,n, are all set equal to zero. Due to the specified Langevin bimolecular
recombination, we observe an overall decrease in number density with time that is most prominent between (a)
and (b). Also, due to the equal mobilities of the charge carriers, we observe a symmetric separation of charge
carriers that occurs quicker adjacent to the electrodes, as expected from the increased field strength there.
Transient space charge effects are seen most clearly in the electric field in (b), shortly after carrier separation
has begun.
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Figure 6.9: TOF current transients for various photogenerated charges, Qph, for the
planar geometry depicted in Figure 6.6. Charge carriers are photogenerated as depicted
in Figure 6.7 by light masked by the electrodes that is absorbed according to the Beer-
Lambert law with optical absorption coefficient αBL = 10d−1. Here we have the charge
carrier mobilities µp = µn = d2/ttrUref, a relative semiconductor permittivity of εs =
3ε0 and a Langevin recombination coefficient β = βL. For simplicity, the temperature,
T , external resistance, R, and the trapping frequencies, νtrap,p and νtrap,n, are all set
equal to zero. Increasing the total amount of photogenerated charge Qph increases the
current up until a point, after which the resulting substantial recombination limits any
further current increase.

6.4 Planar time of flight characterisation of the re-
combination coefficient

In this section, we explore a potential experimental technique for quantifying the recom-
bination coefficient β, based upon the simple zero-dimensional model (6.84) for charge
transport used in Section 6.3.1 to describe the qualitative features of the recombination-
dominant regimes of the TOF current transients in Figure 6.9:

dn
dt = −βn (t)2 . (6.86)

We assume that the current i (t) measured in a TOF experiment is proportional to the
above number density n (t). Specifically, for electrons and holes extracting due to an
effective electric field E through electrode-semiconductor interfaces of cumulative area
A, we have

i (t) = e (µn + µp)EAn (t) . (6.87)
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Figure 6.10: TOF current transients for a simple analytical model (6.85) as light intens-
ity is varied through the initial photogenerated charge, Qph. This plot is qualitatively
similar to the simulated Figure 6.9, over the same time domain.

Using this relationship, the number density solution (6.85) of Eq. (6.86) provides the
following expression for the current:

i (t) =

[
1

i (0)
+

βt

e (µn + µp)EA

]−1

, (6.88)

which, after nondimensionalisation using Table 6.1, becomes

i (t) =

[
1

i (0)
+

Sβ

EAεs
t

]−1

, (6.89)

where S is the surface area of the positive electrode and εs is the dimensionless permit-
tivity of the semiconductor. To quantify the recombination coefficient β, we consider
the time required for the current to decay to half of its initial value, t 1

2
, satisfying

i
(
t 1
2

)
= i (0) /2. This results in the following expression for the recombination coeffi-

cient in terms of the half-decay time t 1
2
:

β =
EAεs
Si (0) t 1

2

. (6.90)

This equation provides a way to determine the recombination coefficient experimentally,
given knowledge of the material geometry, permittivity, and charge carrier mobilities.
Using the planar device simulation presented in this chapter, we would like to determine
when the above equation may be a valid representation for β. Notice that, for it to
be valid, the following product must remain constant for different light intensities and
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Figure 6.11: TOF current transients for various recombination coefficients, β, for the
planar geometry depicted in Figure 6.6. Charge carriers are photogenerated as depicted
in Figure 6.7 by light masked by the electrodes that is absorbed according to the Beer-
Lambert law with optical absorption coefficient αBL = 10d−1. Here we have the
charge carrier mobilities µp = µn = d2/ttrUref, a relative semiconductor permittivity
of εs = 3ε0, and an initial light intensity such that the initial photogenerated charge
is Qph = 103CUref. For simplicity, the temperature, T , external resistance, R, and the
trapping frequencies, νtrap,p and νtrap,n, are all set equal to zero. At early times, very
little recombination has occurred and all plots coincide. For smaller recombination
coefficients β/βL(larger βL/β), a substantial amount of oppositely charged carriers
remain to be attracted to one another via space charge effects, as seen by the resulting
extraction delays.

across different materials with different recombination coefficients:

i (0)βt 1
2
=
EAεs
S

= constant. (6.91)

We plot this product in Figure 6.14 against the initial photogenerated charge Qph for a
variety of recombination coefficients β. As expected, each plot is seen to become con-
stant in the regime where recombination dominates (beyond roughly Qph = 103CUref

for the cases considered). Importantly, even as Qph becomes very large, each plot
remains constant, suggesting that space-charge effects do not compromise the validity
of the recombination coefficient expression (6.90). Unfortunately, while the product
i (0)βt 1

2
does approach a constant as Qph increases, the value of this constant changes

depending on the recombination coefficient β considered. This is contrary to what is
concluded by Eq. (6.91). This suggests that, if Eq. (6.90) is to be used in practice to
compute the recombination coefficient, then it needs to be corrected in some way to
improve its accurate in this case.
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Figure 6.12: TOF current transients for various optical absorption coefficients, αBL,
for the planar geometry depicted in Figure 6.6. Charge carriers are photogenerated as
depicted in Figure 6.7 by light masked by the electrodes that is absorbed according to
the Beer-Lambert law. Here we have the charge carrier mobilities µp = µn = d2/ttrUref,
a relative semiconductor permittivity of εs = 3ε0, a Langevin recombination coefficient
β = βL, and an initial light intensity such that the initial photogenerated charge is
Qph = 103CUref. For simplicity, the temperature, T , external resistance, R, and the
trapping frequencies, νtrap,p and νtrap,n, are all set equal to zero. At early times, a large
absorption coefficient αBL causes more carriers to photogenerate near the electrodes,
increasing the initial current. This consequently means that fewer such carriers extract
at later times. Indeed, for smaller values of αBL, where more charge is photogenerated
deeper within the device, extraction is seen to occur at a later time.

6.5 Effects of trapping in planar charge transport ex-
periments

In this section, we explore what effects traps have on the current measured in charge
transport experiments for the planar geometry in Figure 6.6, with the Beer-Lambert
initial condition as depicted in Figure 6.7. We choose a planar device geometry as its
comparatively large transit times to thin film devices provide many more opportunities
for charge carriers to become trapped within the device before extraction. Thus, po-
tentially allowing for easier experimental characterisation of disordered semiconductors
containing traps.

We begin by considering the TOF experiment, continuing the parameter explor-
ation started in Section 6.3, and then move on to also consider the Photo-CELIV
experiment, described in Section 1.2.2. Unless stated otherwise, we consider a system
with equal charge carrier mobilities µp = µn = d2/ttrUref, a relative semiconductor
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Figure 6.13: TOF current transients for various charge carrier mobility ratios,
µfast/µslow, for the planar geometry depicted in Figure 6.6. Charge carriers are photo-
generated as depicted in Figure 6.7 by light masked by the electrodes that is absorbed
according to the Beer-Lambert law with optical absorption coefficient αBL = 10d−1.
Here we have a relative semiconductor permittivity of εs = 3ε0, a Langevin recombin-
ation coefficient β = βL, and an initial light intensity such that the initial photogener-
ated charge is Qph = 103CUref. For simplicity, the temperature, T , external resistance,
R, and the trapping frequencies, νtrap,p and νtrap,n, are all set equal to zero. At early
times, large mobility ratios µfast/µslow have lower initial currents due to the introduc-
tion of slower carriers. At late times, these slower carriers are observed to extract at a
time proportional to the ratio of mobilities.

permittivity of εs = 3ε0, a Langevin recombination coefficient of β = βL, and an
initial light intensity such that the initial photogenerated charge is Qph = 103CUref.
For simplicity, the temperature, T , and the external resistance R will be set equal
to zero. In order for multiple trapping events to occur within the reference time tref,
we consider a system with νtrap,p = νtrap,n = 10t−1

ref . We again consider a multiple
trapping model trapping time distribution ϕ (t) = αν0 (ν0t)

−α−1 γ (α+ 1, ν0t), here
with α = 0.5 and ν0 = 100t−1

ref . Figure 6.15 illustrates the TOF experiment for the
aforementioned system by plotting the charge carrier number densities and the electric
field at five instances in time. This figure depicts what Figure 6.8 would look like if
it considered the presence of traps. Unlike Figure 6.8, in this figure there is no clear
separation of electrons and holes. In fact, memory of the initial condition in the form
of trapped carriers persists through later and later times. In addition, the trapping
of charge carriers is seen to extend the duration of the transient space charge effects
observed in Figure 6.8.
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Figure 6.14: Plots of the product of the initial current, i (0), the bimolecular recom-
bination coefficient, β, and the half-decay time for the current, t 1

2
, versus the initial

photogenerated charge, Qph, for different values of the recombination coefficient, β, in
a planar TOF experiment. The planar geometry considered is depicted in Figure 6.6,
with charge carriers photogenerated as depicted in Figure 6.7 by light masked by the
electrodes that decays according to the Beer-Lambert law with optical absorption coef-
ficient αBL = 10d−1. Here we have a relative semiconductor permittivity of εs = 3ε0
and for simplicity, the temperature, T , external resistance, R, and the trapping fre-
quencies, νtrap,p and νtrap,n, are all set equal to zero. According to the zero-dimensional
model (6.86) this plotted product i (0)βt 1

2
should be equal to a constant (6.91) inde-

pendent of the recombination coefficient and initial laser light intensity. If this is true,
then the recombination coefficient β can be computed from experimental measure-
ments using Eq. 6.90. Promisingly, at large light intensities (large Qph), we indeed see
i (0)βt 1

2
approach a constant. Unfortunately, the constant changes depending on the

recombination coefficient β, suggesting that the zero-dimensional model (6.86) needs
to be corrected in some fashion before Eq. 6.90 becomes a practical representation of
the recombination coefficient.
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Figure 6.15: Plots of number density and electric field at five instances in time (a)–(e) for a TOF experiment
in the planar geometry depicted in Figure 6.6. These instances are denoted on the accompanying current plot
using dashed vertical lines. Charge carriers are photogenerated as depicted in Figure 6.7 by light masked by the
electrodes that is absorbed according to the Beer-Lambert law with optical absorption coefficient αBL = 10d−1.
Here we have the charge carrier mobilities µp = µn = d2/ttrUref, a relative semiconductor permittivity of
εs = 3ε0, a Langevin recombination coefficient β = βL, and an initial light intensity such that the initial
photogenerated charge is Qph = 103CUref. For simplicity, the temperature, T , and external resistance, R,
are set equal to zero. Trapping occurs at equal frequencies for both holes and electrons, νtrap,p = νtrap,n =

10t−1
tr , and traps are described by a multiple trapping model trapping time distribution function, ϕ (t) =

αν0 (ν0t)
−α−1 γ (α+ 1, ν0t) with α = 0.5 and ν0 = 100t−1

tr . Unlike Figure 6.8, which lacks traps, there is no
clear separation of electrons and holes here. In fact, memory of the initial condition in the form of trapped
carriers persists through (a)–(e). In addition, the trapping of charge carriers is seen to extend the transient
space charge effects observed in Figure 6.8 (b), which here persist through (b)–(e).
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6.5.1 Planar TOF experiment

We consider here the effects of traps on the current measured in a TOF experiment in
planar geometry.

Figure 6.16 varies the trap severity α and compares the resulting current transients
to the case without traps. At very early times all curves coincide as very few trapping
events have yet occurred. Then, at the expected time of t ≈ ν−1

trap,p = ν−1
trap,n = 10−1ttr,

carriers begin to enter traps, causing a corresponding drop in the relevant current
traces. This drop is greater for traps of greater severity (smaller α). Finally, at late
times, the current consists entirely of previously-trapped particles. This means the
current is actually higher here in cases of more severe traps. As expected, in this
late-time regime we observe the same Scher-Montroll asymptotic power-law behaviour
that was seen with the plane-parallel system in Figure 6.5.

In addition to α, which determines how long-lived traps are, in Figure 6.17 we also
vary the frequencies at which carriers enter traps, νtrap,p and νtrap,n. As before, at
early times, very few trapping events have occurred and all curves coincide. Then, one
after another, starting with the case of most frequent trapping, we have a drop in the
current due to charge carriers entering traps. These drops in current are accompanied
by proportional increases in the current at late times due to said carriers leaving traps.
Although there are differences in the precise amount of current at late times, the power
law decay is consistent across all cases for the considered trap severity of α = 0.5.

6.5.2 Planar Photo-CELIV experiment

We consider here the effects of traps on the current measured in a Photo-CELIV
experiment in planar geometry.

Figures 6.18 and 6.19 vary the trap severity α and the trapping frequencies, νtrap,p

and νtrap,n, respectively, for plots of the CELIV current trace. As in the previous
section, we find that increasing either the duration or frequency of traps results in
a decrease in current at early times and a corresponding increase in current at late
times. This has the effect of broadening the Photo-CELIV current transient, resulting
in current traces that are qualitatively similar to those presented by Philippa [134] for
a plane-parallel system with a related multiple trapping model.

6.5.3 Planar RPV experiment

We consider here what effects traps have on the transit times determined from an RPV
experiment in planar geometry.

In order to probe transit times while minimising charge carrier recombination, we
consider low light intensities with photogenerated charge Qph ≪ CUref. Figures 6.20
and 6.21 vary the trap severity α and the trapping frequencies, νtrap,p and νtrap,n,
respectively, for plots of the RPV voltage trace. Each figure plots the trap-free case
(in black), where the transit times appear as clear “shoulders” in the voltage transient
at roughly t ≈ ttr and t ≈ 10ttr, as expected from the chosen charge carrier mobility
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Figure 6.16: TOF current transients for various trap severities, α, alongside the trap-
free case for the planar geometry depicted in Figure 6.6. Charge carriers are photo-
generated as depicted in Figure 6.7 by light masked by the electrodes that is absorbed
according to the Beer-Lambert law with optical absorption coefficient αBL = 10d−1.
Here we have the charge carrier mobilities µp = µn = d2/ttrUref, a relative semicon-
ductor permittivity of εs = 3ε0, a Langevin recombination coefficient β = βL, and an
initial light intensity such that the initial photogenerated charge is Qph = CUref. For
simplicity, the temperature, T , external resistance, R are set equal to zero. Trapping
occurs at equal frequencies for both holes and electrons, νtrap,p = νtrap,n = 1t−1

tr , and
traps are described by a multiple trapping model trapping time distribution function,
ϕ (t) = αν0 (ν0t)

−α−1 γ (α+ 1, ν0t) with ν0 = 100t−1
tr . At early times, few trapping

events have occurred and all plots coincide. At intermediate times, prior to the carrier
transit time, the case of largest trap severity α (blue curve) has the lowest current,
due to particles remaining trapped for a longer duration. At late times, these trapped
particles exit the system, resulting in the blue curve exceeding all the others. In each
case, the late time asymptotic slope of − (1 + α) is observed, indicative of dispersive
transport.
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Figure 6.17: TOF current transients for various trapping frequencies, νtrap,p and νtrap,n,
for the planar geometry depicted in Figure 6.6. Charge carriers are photogenerated
as depicted in Figure 6.7 by light masked by the electrodes that is absorbed ac-
cording to the Beer-Lambert law with optical absorption coefficient αBL = 10d−1.
Here we have the charge carrier mobilities µp = µn = d2/ttrUref, a relative semicon-
ductor permittivity of εs = 3ε0, a Langevin recombination coefficient β = βL, and
an initial light intensity such that the initial photogenerated charge is Qph = CUref.
For simplicity, the temperature, T , external resistance, R are set equal to zero.
Traps are described by a multiple trapping model trapping time distribution func-
tion, ϕ (t) = αν0 (ν0t)

−α−1 γ (α+ 1, ν0t) with α = 0.5 and ν0 = 100t−1
tr . At early times,

few trapping events have occurred and all plots coincide. At intermediate times, prior
to the carrier transit time, the case of largest trapping frequencies νtrap,p and νtrap,n
(red curve) has the lowest current, due to having more particles entering traps. At late
times, these trapped particles exit the system, resulting in the red curve exceeding all
the others. In each case, the same late time asymptotic slope of − (1 + α) = −1.5 is
observed, indicating dispersive transport.
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Figure 6.18: Photo-CELIV current transients for various trap severities, α, alongside
the trap-free case for the planar geometry depicted in Figure 6.6. Charge carriers are
photogenerated as depicted in Figure 6.7 by light masked by the electrodes that is
absorbed according to the Beer-Lambert law with optical absorption coefficient αBL =
10d−1. Here we have the charge carrier mobilities µp = µn = 20d2/tpulseUref, a relative
semiconductor permittivity of εs = 3ε0, a Langevin recombination coefficient β = βL,
and an initial light intensity such that the initial photogenerated charge is Qph =
CUref. For simplicity, the temperature, T , external resistance, R are set equal to
zero. Trapping occurs at equal frequencies for both holes and electrons, νtrap,p =
νtrap,n = 10t−1

pulse, and traps are described by a multiple trapping model trapping
time distribution function, ϕ (t) = αν0 (ν0t)

−α−1 γ (α+ 1, ν0t) with ν0 = 100t−1
pulse.

Increasing the trap severity α is seen to broaden the CELIV current transient.

ratio µfast/µslow = 10. At early times, very few trapping events have a chance to
occur and all curves in both figures coincide with this trap-free case. At later times,
the curves separate due to trapping. By increasing the frequency or severity of traps,
we find that the shoulders become less well-defined, due to the distribution of arrival
times of previously-trapped carriers. Specifically, the slower carrier shoulder is most
affected, as it occurs later in time. Overall, we find the RPV method is resilient at
characterising the carrier transit times even in many cases where traps are present. It
is only when trapping is very severe or frequent, that the shoulders are seen to vanish
completely.

6.6 Conclusion
In this chapter, we developed a model for charge carrier transport in planar organic
semiconductors that accounts for drift, diffusion, trapping, detrapping, recombina-
tion and space-charge effects. We then used this model to implement a Julia-based
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Figure 6.19: Photo-CELIV current transients for various trapping frequencies, νtrap,p
and νtrap,n, for the planar geometry depicted in Figure 6.6. Charge carriers are
photogenerated as depicted in Figure 6.7 by light masked by the electrodes that
is absorbed according to the Beer-Lambert law with optical absorption coefficient
αBL = 10d−1. Here we have the charge carrier mobilities µp = µn = 20d2/tpulseUref, a
relative semiconductor permittivity of εs = 3ε0, a Langevin recombination coefficient
β = βL, and an initial light intensity such that the initial photogenerated charge is
Qph = CUref. For simplicity, the temperature, T , external resistance, R are set equal
to zero. Traps are described by a multiple trapping model trapping time distribution
function, ϕ (t) = αν0 (ν0t)

−α−1 γ (α+ 1, ν0t) with α = 0.5 and ν0 = 100t−1
pulse. Increas-

ing the trapping frequencies νtrap,p and νtrap,n is seen to broaden the CELIV current
transient.

simulation of planar organic semiconductor devices. The simulation was successfully
benchmarked against known results for plane-parallel systems. We then proceeded to
simulate a TOF experiment in a planar device free of traps. By varying each simula-
tion parameter we were able to discern what effect each would have on the measured
current. Using the simulation, we also investigated a potential experimental technique
for the characterisation of the recombination coefficient β. We found that the resulting
expression for the recombination coefficient was most valid when recombination was
near-Langevin. Future work is required for this technique to be applied accurately
across all systems. Finally, traps were introduced into the device and their effects in
TOF, Photo-CELIV and RPV experiments in a planar geometry were explored.
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Figure 6.20: RPV current transients for various trap severities, α, alongside the trap-
free case for the planar geometry depicted in Figure 6.6. Charge carriers are photo-
generated as depicted in Figure 6.7 by light masked by the electrodes that is absorbed
according to the Beer-Lambert law with optical absorption coefficient αBL = 10d−1.
Here we have specified a charge carrier mobility ratio of µfast/µslow = 10, a relative
semiconductor permittivity of εs = 3ε0, and an initial light intensity such that the
initial photogenerated charge is Qph = 10−3CUref ≪ CUref, so as to minimise recom-
bination losses. We set the load resistance R = 105ttr/C to reveal both “shoulders”
corresponding to the transit times of each carrier. For simplicity, the temperature, T
is set equal to zero. Trapping occurs at equal frequencies for both holes and electrons,
νtrap,p = νtrap,n = t−1

tr , and traps are described by a multiple trapping model trapping
time distribution function, ϕ (t) = αν0 (ν0t)

−α−1 γ (α+ 1, ν0t) with ν0 = 100t−1
pulse. At

early times, few trapping events have occurred and all plots coincide. At later times,
trapping causes each plot to separate. Increasing the severity of traps α is seen to
decrease the definition of each transient shoulder. In fact, for the smallest value of
α considered, the slower-carrier shoulder is seen to vanish entirely. The faster carrier
shoulder is seen to be much more resilient to trapping, retaining much of its definition
even for very severe traps.
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Figure 6.21: RPV current transients for various trapping frequencies, νtrap,p and νtrap,n,
for the planar geometry depicted in Figure 6.6. Charge carriers are photogenerated as
depicted in Figure 6.7 by light masked by the electrodes that is absorbed according to
the Beer-Lambert law with optical absorption coefficient αBL = 10d−1. Here we have
specified a charge carrier mobility ratio of µfast/µslow = 10, a relative semiconductor
permittivity of εs = 3ε0, and an initial light intensity such that the initial photogener-
ated charge is Qph = 10−3CUref ≪ CUref, so as to minimise recombination losses. We
set the load resistance R = 105ttr/C to reveal both “shoulders” corresponding to the
transit times of each carrier. For simplicity, the temperature, T is set equal to zero.
Traps are described by a multiple trapping model trapping time distribution function,
ϕ (t) = αν0 (ν0t)

−α−1 γ (α+ 1, ν0t) with α = 0.5 and ν0 = 100t−1
pulse. At early times,

few trapping events have occurred and all plots coincide. At later times, trapping
causes each plot to separate. Increasing the trapping frequencies νtrap,p and νtrap,n is
seen to make this plot separation due to trapping effects occur at earlier times. In addi-
tion, an increased trapping frequency is seen to decrease the definition of the transient
shoulders. For large trapping frequencies the shoulders vanish entirely, suggesting that
other techniques should be used to characterise carrier transport in this case.
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7
Conclusion

7.1 Summary
We began by introducing the mathematics of fractional calculus and described its
application toward modelling dispersive transport due to traps using a fractional gen-
eralisation of the diffusion equation. The numerical solution of this so-called Caputo
time-fractional diffusion equation was explored using finite differences. It was noted
that the time computational complexity of this approach was observed to have quad-
ratic scaling in the number of time steps (contrary to the linear scaling observed for
the classical diffusion equation). This difference stems mathematically from the global
nature of fractional differentiation, and can be interpreted physically as accounting for
the memory of previous trapping events. By using a subordination transformation in
time (2.28), we were able to relate the solution of a fractional diffusion equation (2.1) of
order 0 < α < 1 directly to the solution of a the normal diffusion equation (2.14). This
meant that, for an N -point finite-difference time discretisation, the mapping could be
used to improve upon the O

(
N2
)
time computational complexity usually required to

solve the fractional diffusion equation, allowing for the solution to be found at any
instant in time in only O (Nα), given a precomputation of O

(
N1+α lnN

)
. We applied

this representation in Section 2.6 to perform the fitting of the fractional advection dif-
fusion model (2.1) to experimental data for the current in a time-of-flight experiment.
Here, the mapping approach was found to be exceptionally useful as the relatively
expensive precomputation only had to be performed once before it could be used to
solve the model repeatedly for each instance the current was measured. We achieved
subsequent computational speed ups in the range of one to three orders of magnitude
for this problem.
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Next, we introduced a general phase-space kinetic equation (3.1) which generalises
Boltzmann’s equation by considering charged-particle transport via both delocalised
and localised states, accounting for collisional, trapping/detrapping and recombina-
tion loss processes. Using Fourier and Laplace transforms, we determine analytical
expressions for the phase-space distribution function f (t, r,v) defined by this model,
as well as for its spatial and velocity moments. In turn, these moments provide expres-
sions for centre of mass (CM) and flux transport coefficients, which allow the effects of
trapping and detrapping on transport to be quantified. In the hydrodynamic regime,
the generalised Boltzmann equation (3.1) can be described by a generalised diffusion
equation (3.89) with a unique global time operator. This generalisation was shown to
reduce to either the classical diffusion equation (3.83) or the Caputo fractional diffusion
equation (3.102), depending on whether transport is dispersive or not. Utilising this
link to the fractional calculus literature, we show that the solution of the generalised
diffusion equation (3.89) can be written as a subordination transformation (3.109) of
the corresponding solution of a standard diffusion equation (3.107).

In what followed, we generalised Fick’s law for the aforementioned phase-space
kinetic model 3.1 by including terms up to the third-order transport coefficient of
skewness Q . We derived this rank-3 skewness tensor and confirmed that its structure
and symmetries were in agreement with previous studies. This extension to Fick’s law,
Eq. (4.1), was used to form a generalised advection-diffusion-skewness equation (4.30).
This equation was observed to exhibit a negative skewness, which we were able to
attribute to traps. We were able to relate the skewness to the mobility and temperature
through Eq. (4.43), in analogy with Einstein’s relation. In Eqs. (4.46)–(4.48), we
explored the form of the transport coefficients up to skewness in the particular case of
fractional transport.

As described thus far, the phase-space kinetic model (3.1) considered constant
process frequencies that are independent of particle energy. We proceeded to relax
this restriction by considering collision, trapping/detrapping and recombination loss
processes that all act selectively according to the energy of the free particles. This gen-
eralisation made finding a direct analytical solution for the model challenging. Instead,
we formed balance equations (5.16)–(5.18) describing the conservation and transport
of particle number, momentum and energy. These were then used to find expressions
for the particle mobility, Eqs. (5.36) and (5.46), and energy in the form of Wannier
energy relations (5.37) and (5.47). A variety of physical phenomena were shown to
arise due to the consideration of particle energy in this generalised model. For ex-
ample, the Wannier energy relations were use to show the presence of particle heating
or cooling due to collisions or trapping, Eq. (5.55), and recombination, Eqs. (5.67) and
(5.71). Additionally, transport via combined localised/delocalised states was shown to
produce negative differential conductivity under certain conditions (5.74), and the im-
pact of scattering, trapping/detrapping and recombination on the anisotropic nature
of diffusion was expressed through the development of generalised Einstein relations
(5.97) and (5.98). Lastly, fractional transport analogues of the aforementioned results
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were explored by using a trapping time distribution with a heavy tail of the form of
Eq. (3.95).

Finally, we applied our generalised phase-space kinetic model toward the develop-
ment of a model for the transport of charge carriers in planar organic semiconductors.
In addition to the processes of drift, diffusion, trapping, detrapping and recombina-
tion, we also used Poisson’s equation to account for space-charge effects and Kirchoff’s
laws to account for circuit effects due to the external measurement circuitry used in
charge transport experiments. We then used this model to implement a simulation of
planar organic semiconductor devices in the Julia programming language. We were
able to successfully benchmark this simulation against known results for plane-parallel
systems. We then proceeded to simulate a TOF experiment in a trap-free planar
device, varying each simulation parameter to discern what effect each would have on
the measured current. A potential experimental technique for the characterisation of
the recombination coefficient was presented and we used the simulation to investigate
its regime of validity. Finally, traps were introduced into the device and their effects
in TOF, Photo-CELIV and RPV experiments were explored.

7.2 Future work recommendations
There exist a number of avenues for future work.

Probing trapping using time-varying electric and magnetic fields — In Chapter 3,
we introduce a phase-space kinetic model for charged-particle transport that takes the
form of a generalised Boltzmann equation. In Chapter 5, we generalise this model
further to account for the energy-dependence of collision, trapping and recombination
loss processes. In every instance of the model, however, it is assumed simply that
charged particles undergo a constant acceleration due to a uniform time-invariant elec-
tric field. Relaxing this assumption and considering arbitrary time-varying electric
and magnetic fields may provide a way to characterise the nature of trapping within
a system. For example, oscillating applied fields should cause measurable quantities
like transport coefficients to vary with both the amplitude and frequency of oscillation.
The corresponding analytical expressions for these quantities could then be used to
shed light on the trapping process.

Kurtosis coefficient — In Chapter 4, we derive the third-order transport coefficient
of skewness for the phase-space model introduced in Chapter 3. This provides an
extension to Fick’s law for this model that ultimately results in an advection-diffusion-
skewness equation (4.30). However, it is important to note that this extension is
only useful when an electric field is present. Without an applied electric field, all
odd-ordered transport coefficients vanish, including the skewness coefficient. In this
situation, to extend Fick’s law, we must rely upon the kurtosis coefficient, the next
even-ordered transport coefficient beyond diffusion. The kurtosis can be found using
the density gradient expansion (4.2), in the same way that the drift velocity, diffusion
and skewness were found using Eqs. (4.6)–(4.8).
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Energy-dependent skewness analogue to Einstein’s relation — As the skewness coef-
ficient was derived in Chapter 4, before energy dependence was introduced into the
phase-space model in Chapter 5, it remains to be seen what consequences energy-
dependent collision, trapping and recombination frequencies have on the skewness.
This would allow for the derivation of a skewness analogue of Einstein’s relation that
would also take into account the field dependence of mobility [3]. This may also shed
light on the recent results of Petrović et al. [100], that suggest a correlation between
the energy-dependent phenomenon of negative differential conductivity and skewness.

ab initio calculation of the trapping frequency νtrap and waiting time distribution
ϕ (t) in liquids and dense gases — For the general phase-space model in Chapter 5
to be applied in practice to a particular system, both the trapping frequency νtrap

and the waiting time distribution function ϕ (t) must be specified accordingly. For
example, in organic materials it is known that the waiting time distribution can be
calculated from the density of existing trapped states [33]. In the case of liquids and
dense gases, trapped states are formed by the electron itself and the waiting time distri-
bution is dependent on the scattering, fluctuation profiles and subsequent fluid bubble
evolution [88]. Although both free-energy changes and solvation time-scales have been
investigated in the literature on light-particle solvation [93–95], none of these results
directly produce an energy-dependent trapping frequency or waiting time distribution.
It is recommended that the ab initio calculation of energy-dependent trapping frequen-
cies and waiting time distributions in liquids and dense gases be pursued. For progress
in this regard, see Ref. [88].

Consideration for device doping — In the planar semiconductor device simulation
presented in Chapter 6, the device is assumed to be free of impurities. Thus, in
its current form the simulation cannot be applied to model n-type or p-type doped
semiconductors. Accounting for doping would be a simple matter of including the
concentrations of dopants in Poisson’s equation 6.27. This proposed extension would
require additional simulation parameters to specify the concentration and distribution
of donor and acceptor ions.

Improved experimental technique for characterisation of the recombination coeffi-
cient β — In Chapter 6, we investigated an experimental technique for the characterisa-
tion of the recombination coefficient β. We found that the resulting expression for the
recombination coefficient was most valid when recombination was near-Langevin. Fu-
ture work is required for this technique to be usefully applied to systems, independent
of their recombination coefficient.

Effects of inhomogeneous permittivity — The device simulation in Chapter 6 as-
sumes the planar semiconductor is uniform with a constant permittivity εs. To account
for the dependence of the permittivity on device morphology, the simulation must be
generalised to allow for the permittivity to vary spatially. This would result in a
non-zero permittivity gradient term in Poisson’s equation. It remains to be seen what
effects an inhomogeneous permittivity would have, especially near discontinuous inter-
faces between regions of different permittivities.
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A
List of ratios, R, between particles

leaving and entering traps

Table A.1: Specific cases of the dimensionless quantity R that is defined in Eq. (3.63)
as the limiting ratio of particle detrapping and trapping rates. From its alternate
definition (3.64), it can be seen that R is a function of the difference in recombination
loss rates ∆νloss ≡ ν

(free)
loss − ν

(trap)
loss .

Trap type Trapping time distribution ϕ (t) Limiting ratio of detrapping and trapping rates R

Instantaneous δ (t) 1

Fixed delay δ
(
t− ν−1

detrap

)
νdetrap
νtrap

WLambert
[

νtrap
νdetrap

exp
(

∆νloss+νtrap
νdetrap

)]
†

Poisson process νdetrape−νdetrapt ∆νloss+νtrap−νdetrap+
√
(∆νloss+νtrap+νdetrap)

2−4νdetrap∆νloss
2νtrap

Multiple trapping model αν0 (ν0t)
−α−1 γ (α+ 1, ν0t) ‡

† The Lambert W-function is defined as satisfying

WLambert (z) eWLambert(z) ≡ z. (A.1)

‡ R is the positive solution of the transcendental equation

R = −
απ

sinαπ

(
−
∆νloss + νtrap (1−R)

ν0

)α

− αΦLerch

(
∆νloss + νtrap (1−R)

ν0
, 1,−α

)
, (A.2)

where the Lerch transcendent is defined

ΦLerch (z, s, a) ≡
∑
n≥0

zn

(n+ a)s
. (A.3)

In the event that a real solution to this equation does not exist, we have instead

R = 1 +
∆νloss
νtrap

. (A.4)
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B
List of subordination kernels, A (τ, t)

Table B.1: Specific cases of the integral kernel (3.110), A (τ, t), used in the subordin-
ation transformation (3.109) that maps from the solution of the standard diffusion
equation (3.107) to that of the generalised diffusion equation (3.89).

Trap type Trapping time distribution ϕ (t) Scaled subordination kernel e
(
ν
(free)
loss +νtrap

)
τ
A (τ, t)

Instantaneous δ (t) eνtrapτ e−ν
(trap)
loss tδ (t)

Fixed delay δ
(
t− ν−1

detrap

)
e−ν

(trap)
loss t (νtrapτ)νdetrapt

Γ(1+νdetrapt)
III

ν−1
detrap

(t) †

Poisson process νdetrape−νdetrapt δ (t) + 1
t
e−νdetrapt√νtrapτνdetraptI1

(
2
√

νtrapτνdetrapt
)
‡

Multiple trapping model αν0 (ν0t)
−α−1 γ (α+ 1, ν0t) e−ν

(trap)
loss t

[
1
tα

lα
(

t
tα

)
∗ g (t)

]
§

† The Dirac comb of period T is defined

IIIT (t) ≡
∑
n∈Z

δ (t− nT ) . (B.1)

‡ The modified Bessel function of the first kind of order ν is defined

Iν (z) ≡
∑
n≥0

(
z
2

)2n+ν

n!Γ (1 + n+ ν)
. (B.2)

§ The characteristic time tα is defined

ν0tα ≡ α

√
απ

sinαπ
νtrapτ , (B.3)

we define in Laplace space the one-sided Lévy density

lα (p) ≡ e−pα , (B.4)

and in Laplace space
g (p) ≡ exp

[
−αΦLerch

(
−

p

ν0
, 1,−α

)]
, (B.5)

where the Lerch transcendent ΦLerch (z, s, a) is given by Eq. (A.3).
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C
Approximating higher-order velocity

moments

In Sec. 5.4.1, we use first-order momentum transfer theory to obtain expressions
for the drift velocity, Eq. (5.46), and mean energy, Eq. (5.47), of charged particles
defined by the generalised Boltzmann equation (5.1). These velocity moments are each
expressed in terms of the higher-order velocity moments of energy flux ξ ≡ ⟨ϵv⟩(0) and
mean squared energy

⟨
ϵ2
⟩(0). Here, we use zeroth-order momentum transfer theory to

approximate these higher-order moments in terms of the lower-order ones.
In Sec. 3.4, we write the solution of the generalised Boltzmann equation (5.1) for

the case of constant process frequencies as a Chapman-Enskog expansion in Fourier-
transformed velocity space. Assuming process frequencies that are independent of
energy is functionally equivalent to performing zeroth-order momentum transfer theory.
By considering the first term of this expansion, we find an approximate solution that
is valid near the steady, spatially uniform state:

f (t, r,v) ≈ n (t, r) [ωcoll (ε) ŵ (αcoll,v) + ωtrap (ε) ŵ (αdetrap,v)] , (C.1)

where the convex combination weights ω (ε) are defined as relative collision and trap-
ping frequencies by Eqs. (5.32) and (5.33). Here, the separate processes of collision
scattering and detrapping have resulted in a solution containing non-Maxwellian velo-
city distributions of the form

ŵ (α,v) ≡ w (α, v)

√
π√

2αW
erfcx

(
1− αv · αW√

2αW

)
, (C.2)

140



Stokes, Peter Anomalous Transport in Organic and Soft-Condensed Matter

where w (α, v) is the Maxwellian velocity distribution defined by Eq. (5.5), W is the
drift velocity from zeroth-order momentum transfer theory, defined in Eq. (3.61), and
the scaled complementary error function is defined as erfcx (z) ≡ 2√

π
ez2
´∞
z dζ e−ζ2 .

As expected, taking velocity moments of this solution (C.1) reproduces the zeroth-
order momentum transfer theory expressions for drift velocity W, Eq. (5.36), and
mean energy ε, Eq. (5.37). In the same vein, we can find approximations for higher-
order velocity moments written in terms of these lower-order moments, W and ε. For
the energy flux we find

ξ ≈
(
5

3
ε+

4

3
mW 2

)
W, (C.3)

and for mean squared energy:

⟨
ϵ2
⟩(0) ≈ 5

3

[
ωcoll (ε) ε

2
coll + ωtrap (ε) ε

2
detrap

]
+

13

3

(
mW 2

)2
, (C.4)

which is written in terms of the separate mean energies of w̃ (αcoll,v) and w̃ (αdetrap,v),
given respectively:

εcoll ≡ 3

2
kBTcoll +mW 2, (C.5)

εdetrap ≡ 3

2
kBTdetrap +mW 2. (C.6)
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D
Detrapping given trap-based

recombination

D.1 Constant recombination frequency
Chapter 3 presents a phase-space model for charge transport that considers collisions,
trapping, detrapping and recombination. In this section, we ascertain the rate at
which particles in this model leave traps, given that some trapped particles undergo
recombination instead of detrapping.

In this model, free particles are trapped at a rate proportional to their number
density n (t, r): (

∂n

∂t

)
trap

= −νtrapn (t, r) . (D.1)

Trapped particles then undergo recombination at the constant frequency ν(trap)
loss :(

∂ntrap
∂t

)
recomb

= −ν(trap)
loss ntrap (t, r) . (D.2)

Consider initially consider traps of a fixed duration τ . Without any recombination,
particles detrap at the same rate that they initially became trapped at according to
Eq. (D.1): (

∂n

∂t

)
detrap

= νtrapn (t− τ, r) . (D.3)
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With recombination present, the detrapping rate decays alongside the number of
trapped particles according to Eq. (D.2), resulting in an exponential decrease:(

∂n

∂t

)
detrap

= νtrapn (t− τ, r) e−ν
(trap)
loss τ . (D.4)

Finally, accounting for a distribution of trapping times, ϕ (t), results in(
∂n

∂t

)
detrap

=

ˆ t

0
dτϕ (τ) νtrapn (t− τ) e−ν

(trap)
loss τ

= νtrapΦ(t) ∗ n (t, r) , (D.5)

where we have introduced the effective waiting time distribution Φ(t) ≡ ϕ (t) e−ν
(trap)
loss t.

This is the detrapping rate used in the generalised Boltzmann equation (3.1) and in
the resulting generalised diffusion equation (3.89).

D.2 Time-varying bimolecular recombination frequency
Chapter 6 develops a two-dimensional semiconductor device simulation by using, in
part, the generalised diffusion equation (3.89) derived in Chapter 3 to describe the
transport of charge carriers. In this simulation, the bimolecular recombination of
charge carriers is considered, resulting in a detrapping rate that differs from what
appears in Chapter 3 and in Eq. (D.5) above.

As this simulation makes use of the generalised diffusion equation (3.89), electrons
are trapped at a rate proportional to their number density n (t, r):(

∂n

∂t

)
trap

= −νtrapn (t, r) . (D.6)

Trapped electrons then undergo transport-limited bimolecular recombination with free
holes of number density p (t, r):(

∂ntrap
∂t

)
recomb

= − µp
µp + µn

βp (t, r)ntrap (t, r) , (D.7)

where µn and µp are electron and hole mobilities, β is the bimolecular recombination
coefficient and ntrap (t, r) is the number density of trapped electrons. As was done in
the previous section, we initially consider traps of a fixed duration τ . In this case,
trapped particles return from traps at the same rate they entered in Eq. (D.6):(

∂n

∂t

)
detrap

= νtrapn (t− τ, r) . (D.8)
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Introducing bimolecular recombination causes the number of trapped particles to decay
according to Eq. (D.7), alongside the detrapping rate:(

∂n

∂t

)
detrap

= νtrapn (t− τ, r) exp
(
− µp
µp + µn

β

ˆ τ

0
dzp (z, r)

)
, (D.9)

For a distribution of electron trapping times, ϕn (t), this becomes(
∂n

∂t

)
detrap

=

ˆ t

0
dτϕn (τ) νtrapn (t− τ, r) exp

(
− µp
µp + µn

β

ˆ τ

0
dzp (z, r)

)

=
ϕn (t) ∗

[
n (t, r) exp

(
µp

µp+µn
β
´ t
0 dτp (τ, r)

)]
exp

(
µp

µp+µn
β
´ t
0 dτp (τ, r)

) . (D.10)

A similar detrapping rate expression can be derived for holes that trap with a distri-
bution of times, ϕp (t):

(
∂p

∂t

)
detrap

=
ϕp (t) ∗

[
p (t, r) exp

(
µn

µp+µn
β
´ t
0 dτn (τ, r)

)]
exp

(
µn

µp+µn
β
´ t
0 dτn (τ, r)

) . (D.11)
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E
Numerical techniques

This appendix elaborates upon the various techniques used in the numerical solution
of the two-dimensional semiconductor device model specified by Eqs. (6.66)–(6.79).

E.1 Finite volume method
In this section, we describe the finite volume method and use it to outline a solution
to the charge carrier continuity equations (6.66)–(6.69).

Consider the one-dimensional classical continuity equation

∂n

∂t
+
∂Γ

∂x
= 0, (E.1)

for number density n (t, x) and arbitrary flux Γ (t, x). The finite volume method splits
the domain up into indexed cells x ∈ [(i− 1)∆x, i∆x] and considers the average num-
ber density within each:

n̄i (t) ≡
1

∆x

ˆ (i+ 1
2)∆x

(i− 1
2)∆x

dxn (t, x) . (E.2)

Applying this average to the above continuity equation yields the system of ordinary
differential equations

dn̄i
dt =

1

∆x

[
Γi− 1

2
(t)− Γi+ 1

2
(t)
]
. (E.3)

That is, the rate of change of the average number density in each finite volume cell is
equal to its net inward flux at its boundaries. The continuity equation (E.1) can then
be solved by time integration of this system of ODEs.
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This same approach can be extended to provide a solution to the two-dimensional
continuity equations in Chapter 6. In this case, the finite volume method splits the
problem domain into indexed rectangles x ∈ [(j − 1)∆x, j∆x], y ∈ [i∆y, (i− 1)∆y]

and considers the following average number density within each:

n̄ij (t) ≡
1

∆x∆y

ˆ (j+ 1
2)∆x

(j− 1
2)∆x

dx
ˆ (i− 1

2)∆y

(i+ 1
2)∆y

dyn (t, x, y) . (E.4)

The solution can then be found, as in one dimension, given the rectangle boundary
fluxes, Γi,j± 1

2
and Γi± 1

2
,j .

E.2 WENO method
In the previous section, we describe the finite volume method, via Eq. (E.3), describes
how the average number density within each finite volume cell changes due to the
fluxes at its boundaries.

Consider applying the finite volume method to the simple case of a one-dimensional
advective flux:

Γ (t, x) =Wn (t, x) , (E.5)

where the velocity W is taken to be positive. Evidently, evaluating this flux at cell
boundaries also requires knowledge of the number density at these boundaries:

Γi+ 1
2
=Wni+ 1

2
. (E.6)

As the finite volume method only provides information regarding the average number
densities n̄i within each cell, we need to infer the point number densities ni+ 1

2
from

these averages. This can be achieved by defining a polynomial p (x) that satisfies
adjacent cell averages and evaluating this polynomial at the cell boundary. For ex-
ample, linear polynomials can be used to provide the following second-order accurate
reconstructions of the boundary number density ni+ 1

2
:

n
(1)

i+ 1
2

= −1

2
n̄i−1 +

3

2
n̄i, (E.7)

n
(2)

i+ 1
2

=
1

2
n̄i +

1

2
n̄i+1, (E.8)

n
(3)

i+ 1
2

=
3

2
n̄i+1 −

1

2
n̄i+2. (E.9)

It is important when applying the above approximations to take into account the flow
of information in the problem. Since the velocity W is positive, there is no way for
ni+ 1

2
to be affected by the downwind averages n̄i+1 and n̄i+2, and thus using the

approximation n
(3)

i+ 1
2

results in a numerical scheme that is unconditionally unstable.

For this reason, we must choose between the upwind approximations n(1)
i+ 1

2

and n(2)
i+ 1

2

.
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Another possible approximation pitfall occurs when there are rapid changes or dis-
continuities in the number density. In such scenarios the second-order approximations
(E.7)–(E.7), and other higher-order approximations, can extrapolate to number dens-
ities outside the range of physical validity. For example, the approximations (E.7) and
(E.9) can potentially yield negative number densities. Additionally, all three approxim-
ations (E.7)–(E.7) can potentially result in large fluxes (E.6) that cause more number
density to leave a cell than is contained within it. For these reasons, approximations
beyond first order accuracy often cause spurious oscillations to occur in the solution.

The weighted essentially non-oscillatory (WENO) method of Liu et al. [151] avoids
these oscillations by performing a weighted sum of the approximations under consid-
eration and weighing trustworthy approximations higher than those that are likely to
be invalid. In this case, we have the WENO approximation

ni+ 1
2
≈ w1n

(1)

i+ 1
2

+ w2n
(2)

i+ 1
2

, (E.10)

where w1 + w2 ≡ 1. We would like the weights to be small wj ≈ 0 in the cases where
n
(j)

i+ 1
2

is reconstructed from a region containing a sharp change or discontinuity. In the
case that all regions are smooth and free from discontinuities, we would like to choose
wj = γj , where γj increases the accuracy of the approximation as much as possible. In
this case, γ1 = 1

3 and γ2 = 2
3 are optimal in that they result in an approximation that

is accurate to third order. WENO weights satisfy all of these requirements and take
the form:

wj =
ωj

ω1 + ω2
, ωj =

γj

(ε+ βj)
2 , (E.11)

where ε is a small positive number to avoid division by zero (typically taken to be
ε = 10−6) and βj are smoothness indicators for each approximation region. For these,
we use the smoothness indicators of Jiang and Shu [152], which in this case are

β0 = (n̄i+1 − n̄i)
2 , (E.12)

β1 = (n̄i − n̄i−1)
2 . (E.13)

E.3 Finite difference method
In this section, we apply finite differences to solve Poisson’s equation (6.71):

∂

∂r ·
[
ε (r) ∂

∂rV (t, r)
]
= −ρ (t, r) . (E.14)

Explicitly writing this in two dimensions, x and y, gives:

∂

∂x

[
ε (x, y)

∂

∂x
V (t, x, y)

]
+

∂

∂y

[
ε (x, y)

∂

∂y
V (t, x, y)

]
= −ρ (t, x, y) . (E.15)
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Expanding the LHS yields:

∂ε

∂x

∂V

∂x
+
∂ε

∂y

∂V

∂y
+ ε (x, y)

(
∂2V

∂x2
+
∂2V

∂y2

)
= −ρ (t, x, y) . (E.16)

Note that we can write this as

∂l

∂x

∂V

∂x
+
∂l

∂y

∂V

∂y
+
∂2V

∂x2
+
∂2V

∂y2
= f (t, x, y) , (E.17)

where, for brevity, we define

l (x, y) ≡ ln ε (x, y) , (E.18)

f (t, x, y) ≡ −ρ (t, x, y)
ε (x, y)

. (E.19)

We now make use of the following second order centred finite difference discretisations
in the x-direction:

∂

∂x
f (x, y) =

f (x+∆x, y)− f (x−∆x, y)

2∆x
+O

(
∆x2

)
, (E.20)

∂2

∂x2
f (x, y) =

f (x+∆x, y)− 2f (x, y) + f (x−∆x, y)

∆x2
+O

(
∆x2

)
, (E.21)

and similarly in the y-direction. These can be written succinctly using discrete indices
i and j for the x and y directions, respectively:(

∂f

∂x

)
ij

=
fi+1,j − fi−1,j

2∆x
+O

(
∆x2

)
, (E.22)(

∂2f

∂x2

)
ij

=
fi+1,j − 2fij + fi−1,j

∆x2
+O

(
∆x2

)
, (E.23)

Applying the above discretisations to Poisson’s equation (6.71) yields the following
system of linear equations:

aijVij + bijVi−1,j + cijVi+1,j + dijVi,j−1 + eijVi,j+1 = fij , (E.24)

with coefficients

aij ≡ 2

(
1

∆x2
+

1

∆y2

)
, (E.25)

bij ≡ − 1

∆y2

(
1 +

li−1,j − li+1,j

4

)
, (E.26)

cij ≡ − 1

∆y2

(
1− li−1,j − li+1,j

4

)
, (E.27)

dij ≡ − 1

∆x2

(
1− li,j+1 − li,j−1

4

)
, (E.28)

eij ≡ − 1

∆x2

(
1 +

li,j+1 − li,j−1

4

)
. (E.29)
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For example, for the particular case of a 3 × 3 discrete grid of potentials, the above
system of equations in matrix form is

a11 c11 0 e11 0 0 0 0 0

b21 a21 c21 0 e21 0 0 0 0

0 b31 a31 0 0 e31 0 0 0

d12 0 0 a12 c12 0 e12 0 0

0 d22 0 b22 a22 c22 0 e22 0

0 0 d32 0 b32 a32 0 0 e32

0 0 0 d13 0 0 a13 c13 0

0 0 0 0 d23 0 b23 a23 c23

0 0 0 0 0 d33 0 b33 a33





V11

V21

V31

V12

V22

V32

V13

V23

V33


=



f11

f21

f31

f12

f22

f32

f13

f23

f33


. (E.30)

In general, we have the linear system

LV = f, (E.31)

where L is a sparse block tridiagonal matrix. In practice, this system can be solved
efficiently at each time step by precomputing and utilising the LU factorisation of L.

E.4 Schur complement method
As described in Section 6.1.2, the computational domain of Poisson’s equation is
bounded by a zero-field condition radially distant from the device. Ideally, this condi-
tion should be placed as far from the device as possible to satisfy the actual boundary
condition (6.31) at infinity. This quickly becomes computationally prohibitive, how-
ever, as the size of the linear system (E.31) grows with the area of the computational
domain. In fact, any direct solution of Poisson’s equation via Eq. (E.31) is not ideal, as
the solution includes the electric potential in the air surrounding the device, while only
the electric field within the device is required to evaluate the fluxes (6.74) and (6.75).
In this section, we resolve this problem by devising a Dirichlet boundary condition
around the edges of the device that is equivalent to the distant Neumann boundary
condition (6.31).

To begin with, we write the linear system (E.31) in block matrix form: A B 0
C D E
0 F G


 Vsemi

Vedge

Vair

 =

 fsemi

fedge

0

 , (E.32)

where we have grouped electric potential elements as

• “air” — unnecessary air elements that we would like to eliminate

Appendix E. Numerical techniques 149



Stokes, Peter Anomalous Transport in Organic and Soft-Condensed Matter

• “edge” — elements on the outer edge of the semiconductor and any air elements
adjacent to electrodes, which we require to evaluate surface integrals for the
conduction current (6.78) and charge (6.79)

• “semi” refers to the remaining elements of interest within the semiconductor

Performing block Gaussian elimination on the above system results in the following
smaller system, containing only the elements of interest:[

A B
C D − EG−1F

][
Vsemi

Vedge

]
=

[
fsemi

fedge

]
. (E.33)

The block D−EG−1F is called a Schur complement and this technique of eliminating
unnecessary elements is a type of domain decomposition technique called the Schur
complement method. Figure E.1 illustrates the effect of the Schur complement method
on the size and structure of the Poisson matrix.

In practice, the Schur complement D − EG−1F can be evaluated efficiently by
first performing the LU factorisation G = LGUG and then performing forward and
backward substitution:

D −
(
EU−1

G
) (

L−1
G F

)
. (E.34)
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Figure E.1: Sparsity visualisation of the Poisson system L ordered in block form, as
in Eq. (E.32), before and after Gaussian elimination. The result after elimination is a
much smaller system, containing a dense block corresponding to the Schur complement
D − EG−1F, in Eq. (E.33).
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