Diamond formation by carbon saturation in C-O-H fluids at Lago di Cignana UHPM unit (western Alps, Italy)

Maria Luce Frezzotti¹, Jan Marten Huizenga², Roberto Compagnoni³, Jane Selverstone⁴

- 2 Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
- 3 Department of Earth Sciences, University of Torino, via Valperga Caluso 35, 10125 Torino, Italy.
- 4 Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131-0001, USA.

Microdiamonds in garnet of graphite-free ultrahigh pressure metamorphic (UHPM) rocks from Lago di Cignana (western Alps, Italy) represent the first occurrence of diamond in a lowtemperature subduction complex of oceanic origin ($T = 600^{\circ}$ C; $P \ge 3.2$ GPa). The presence of diamonds in fluid inclusions provides evidence for carbon transport and precipitation in an oxidized H₂O-rich C-O-H crustal fluid buffered by mineral equilibria at sub-arc mantle depths. The structural state of carbon in fluid-precipitated diamonds was analyzed with 514 nm excitation source confocal Raman microspectroscopy. The first order peak of sp³-bonded carbon in crystalline diamonds lies at 1331 (±2) cm⁻¹, similar to diamonds in other UHPM terranes. The analysis of the spectra shows additional Raman features due to sp² carbon phases indicating the presence of both hydrogenated carbon (assigned to trans-polyacetylene segments) in grain boundaries, and graphite-like amorphous carbon in the bulk, i.e. showing a structural disorder much greater than that found in graphite of other UHPM rocks. In one rock sample, defective microdiamonds are recognized inside fluid inclusions by the presence of a weaker and broader Raman band downshifted from 1332 to 1328 cm⁻¹. The association of sp³- with sp²-bonded carbon indicates variable kinetics during diamond precipitation. We suggest that precipitation of disordered sp²-bonded carbon acted as a precursor for diamond formation outside the thermodynamic stability field of crystalline graphite. Diamond formation started when the H₂Orich fluid reached the excess concentration of C required for the spontaneous nucleation of diamond. The interplay of rock buffered f_{O2} and the prograde P-T path at high pressures controlled carbon saturation ($a_{C}=1$) in the fluid phase. Thermodynamic modeling confirms that the C-O-H fluids from which diamond precipitated must have been water-rich (0.992 < X_{H2O} < 0.997), assuming that f_{Ω_2} is fixed by the EMOD equilibrium.

¹ Department of Earth and Environmental Sciences, University of Milano Bicocca, P.zza della Scienza 4, 20126 Milano. maria.frezzotti@unimib.it