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Abstract. Increasingly complex research questions and global challenges (e.g., climate change and biodi-
versity loss) are driving rapid development, refinement, and uses of technology in ecology. This trend is
spawning a distinct sub-discipline, here termed “technoecology.” We highlight recent ground-breaking
and transformative technological advances for studying species and environments: bio-batteries, low-
power and long-range telemetry, the Internet of things, swarm theory, 3D printing, mapping molecular
movement, and low-power computers. These technologies have the potential to revolutionize ecology by
providing “next-generation” ecological data, particularly when integrated with each other, and in doing so
could be applied to address a diverse range of requirements (e.g., pest and wildlife management, inform-
ing environmental policy and decision making). Critical to technoecology’s rate of advancement and
uptake by ecologists and environmental managers will be fostering increased interdisciplinary collabora-
tion. Ideally, such partnerships will span the conception, implementation, and enhancement phases of
ideas, bridging the university, public, and private sectors.
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INTRODUCTION

Ecosystems are complex and dynamic, and the
relationships among their many components are
often difficult to measure (Bolliger et al. 2005,
Ascough et al. 2008). Ecologists often rely on
technology to quantify ecological phenomena
(Keller et al. 2008). Technological advancements
have often been the catalyst for enhanced

understanding of ecosystem function and dynam-
ics (Fig. 1, Table 1), which in turn aids environ-
mental management. For example, the inception
of VHF telemetry to track animals in the 1960s
allowed ecologists to remotely monitor the physi-
ology, movement, resource selection, and demo-
graphics of wild animals for the first time (Tester
et al. 1964). However, advancements in GPS and
satellite communications technology have largely
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supplanted most uses for VHF tracking. As
opposed to VHF, GPS has the ability to log loca-
tions, as well as high recording frequency, greater
accuracy and precision, and less researcher inter-
ference of the animals, leading to an enhanced,
more detailed understanding of species habitat
use and interactions (Rodgers et al. 1996). This
has assisted in species management by not only
highlighting important areas to protect (Pendoley
et al. 2014), but also identifying key resources
such as individual plants instead of general areas
of vegetation.

Ecological advances to date are driven by tech-
nology primarily relating to enhanced data cap-
ture. Expanding technologies have focused on the
collection of high spatial and temporal resolution
information. For example, small, unmanned air-
craft can currently map landscapes with sub-
centimeter resolution (Anderson and Gaston
2013), while temperature, humidity, and light
sensors can be densely deployed (hundreds per
hectare) to record micro-climatic variations (Keller
et al. 2008). Such advances in data acquisition
technologies have delivered knowledge of the
natural environment unthinkable just a decade
ago. But what does the future hold?

Here, we argue that ecology could be on the
precipice of a revolution in data acquisition. It
will occur within three concepts: supersize (the
expansion of current practice), step-change (the
ability to use technology to address questions we
previously could not), and radical change (ex-
ploring questions we could not previously

imagine). Technologies, both current and emerg-
ing, have the capacity to spawn this “next-
generation” ecological data that, if harnessed
effectively, will transform our understanding of
the ecological world (Snaddon et al. 2013). What
we term “technoecology” is the hardware side of
“big data” (Howe et al. 2008), focused on the
employment of cutting edge physical technology
to acquire new volumes and forms of ecological
data. Such data can help address complex and
pressing global issues of ecological and conserva-
tion concern (Pimm et al. 2015). However, the
pace of this revolution will be determined in part
by how quickly ecologists embrace these tech-
nologies. The purpose of this article is to bring to
the attention of ecologists some examples of cur-
rent, emerging, and conceptual technologies that
will be at the forefront of this revolution, in order
to hasten the uptake of these more recent devel-
opments in technoecology.

TECHNOECOLOGY’S APPLICATION AND
POTENTIAL

Bio-loggers: recording the movement of animals
Bio-logging technology is not new to ecology,

incorporating sensors such as heart rate loggers,
as well as VHF and GPS technology. Instead, bio-
logging technology is being supersized, expand-
ing the current practices with new technology.
Accelerometers are being used to record fine-
scale animal movement in real time, something
which was only possible previously via direct

Fig. 1. Illustrative timeline of new technologies in ecology and environmental science (see Table 1 for technol-
ogy descriptions).
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Table 1. Timeline of new technologies in ecology and environmental science, to accompany information in
Fig. 1.

Technology Description

Past
Sonar Sonar first used to locate and record schools of fish
Automated sensors Automated sensors specifically used to measure and log environmental variables
Camera traps Camera traps first implemented to record wildlife presence and behavior
Sidescan sonar Sidescan sonar is used to efficiently create an image of large areas of the sea floor
Mainframe computers Computers able to undertake ecological statistical analysis of large datasets
VHF tracking Radio tracking, allowing ecologists to remotely monitor wild animals
Landsat imagery The first space-based, land-remote sensing data
Sanger sequencing The first method to sequence DNA based on the selective incorporation of chain-

terminating dideoxynucleotides by DNA polymerase during in vitro DNA
replication

LiDAR Remote sensors that measure distance by illuminating a target with a laser and
analyzing the refracted light

Multispectral Landsat Satellite imagery with different wavelength bands along the spectrum, allowing for
measurements through water and vegetation

Thermal bio-loggers Surgically implanted devices to measure animal body temperature
GPS tracking Satellite tracking of wildlife with higher recording frequency, greater accuracy and

precision, and less researcher interference than VHF
Thematic Landsat Awhisk broom scanner operating across seven wavelengths and able to measure

global warming and climate change
Infrared camera traps Able to sense animal movement in the dark and take images without a visible flash
Multibeam sonar Transmitting broad acoustic fan shaped pulses to establish a full water column profile
Video traps Video instead of still imagery, able to determine animal behavior as well as

identification
Present
Accelerometers Measures animal movement (acceleration) that is irrespective of satellite reception

(geographic position)
3D LiDAR Accurate measurement of 3D ecosystem structure
Autonomous vehicles Unmanned sensor platforms to collect ecological data automatically and remotely,

including in terrain that is difficult and/or dangerous to access for humans
3D tracking The use of inertial measurements units devices in conjunction with GPS data to create

real-time animal movement tracks
ICARUS The International Cooperation for Animal Research Using Space (ICARUS) Initiative

is to observe global migratory movements of small animals through a satellite
system

Next gen sequencing Millions of fragments of DNA from a single sample can be sequenced in unison
Long-range, low-power telemetry Low-voltage, low-amperage transfer of data over several kilometers

Future
Internet of things A network of devices that can communicate with one another, transferring

information and processing data
Low-power computers Small computers with the ability to connect an array of sensors and, in some cases,

run algorithms and statistical analyses
Swarm theory The autonomous but coordinated use of multiple unmanned sensor platforms to

complete ecological surveys or tasks without human intervention
3D printing The construction of custom equipment and constructing animal analogues for

behavioral studies
Mapping molecular movement Cameras that can display images at a sub-cellular level without the need of electron

microscopes
Biotic gaming Human players control a paramecium similar to a video game, which could aid in the

understanding of microorganism behavior
Bio-batteries Electro-biochemical devices can run on compounds such as starch, allowing sensors

and devices to be powered for extended periods in remote locations where more
traditional energy sources such as solar power may be unreliable (e.g., rainforests)

Kinetic batteries Batteries charged via movement that are able to power microcomputers
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observation (Shamoun-Baranes et al. 2012). Using
accelerometry, we can calculate an animal’s rate
of energy expenditure (Wilson et al. 2006),
allowing ecologists to attribute a “cost” to dif-
ferent activities and in relation to environmental
variation.

Bio-loggers are also causing a step-change in
the questions we can explore in animal move-
ment. Real-time three-dimensional animal move-
ment tracks can now be recreated from data
collected by inertial measurements units, which
incorporate accelerometers, gyroscopes, magne-
tometers, and barometers. This technology has
been used to examine the movements of cryptic
animals such as birds (Aldoumani et al. 2016)
and whales (Lopez et al. 2016) to determine both
how they move and how they respond to exter-
nal stimuli. The incorporation of GPS technology
would allow for the animal movement to be
placed spatially within 3D-rendered environ-
ments and allow for the examination of how
individuals respond to each other, creating a rad-
ical change to the discipline of animal movement.
Over the last 50 yr, we have gone from simply
locating animals, to reconstructing behavioral
states and estimating energy expenditure by
using these technological advancements.

Bio-batteries: plugging-in to trees to run field
equipment

Bio-batteries are new generation fuel cells that
will supersize both the volume and the scale of
data that can be collected. Bio-batteries convert
chemical energy into electricity using low-cost
biocatalyst enzymes. Also known as enzymatic
fuel cells, electro-biochemical devices can run on
compounds such as starch in plants, which is the
most widely used energy-storage compound in
nature (Zhu et al. 2014). While still in early
development, bio-batteries have huge potential
for research. Enzymatic fuel cells containing a
15% (wt/v) maltodextrin solution have an
energy-storage density of 596 Ah/kg, which is
one order of magnitude higher than that of
lithium-ion batteries. Imagine future ecologists
“plugging-in” to trees, receiving continuous
electricity supply to run long-term sampling
and monitoring equipment such as tempera-
ture probes and humidity sensors. Further, the
capabilities of bio-batteries combined with
low-power radio communication devices (see

Next-generation Ecology) could revolutionize
field-based data acquisition.
Bio-batteries could greatly aid current techno-

ecological projects such as large-scale environmen-
tal monitoring. For example, Cama et al. (2013)
are undertaking permanent monitoring of the
Napo River in the Amazon using data transfer
over the Wi-Fi network already in place. The
Wi-Fi towers are powered via solar panels, but
within the dense rainforest canopy there is not
enough light to use solar power to run electron-
ics. If sensor arrays within the rainforest could be
powered continuously via the trees, the project
could run without a need for avoiding regions
for lack of sunlight or using staff to regularly
replace batteries.

Low-power, long-range telemetry: transmitting
data from the field to the laboratory
Ecological data collection often occurs in loca-

tions difficult or hazardous to traverse, meaning
that practical methods of data retrieval often
influence sensor placement, limiting the data
collected, but what if the data could be sent
from remote sensors back to a central location
for easy collection? Ecological projects such as
monitoring the Amazon environment already
do so using Wi-Fi towers (Cama et al. 2013), but
Wi-Fi transmission range is limited (approxi-
mately 30 m). This can be extended with larger
antennas and increasing transmission power,
but in return consumes much more electricity.
Other technologies are capable of transmitting
data via either satellite (Lidgard et al. 2014) or
the cell phone network (Sundell et al. 2006), but
are likewise limited to locations with cell cover-
age or are prohibitively expensive. Low-power
networks offer great promise for data transfer
over large distances (kilometers), including the
increasingly popular LoRa system (Talla et al.
2017). Long-range telemetry is already being
used commercially for reading water meters,
where water usage data are sent to hubs, trans-
mitting data hourly, and a single battery could
last over a decade (e.g., Taggle Systems; http://
www.taggle.com.au/). Integrating such technol-
ogy into ecological research would allow sensor
deployment in remote areas where other com-
munication methods are infeasible, for example,
dense forests, high mountain ranges, swamps,
and deep canyons. Such devices could also be
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used to transmit information to a base station,
resulting in faster data collection and more con-
venient data retrieval.

The Internet of things: creating “smart”
environments

It is now possible to wirelessly connect devices
to one another so they can share information
automatically. This is known as the Internet of
things (IoT), in which a variety of “things” or
objects can interact and co-operate with their
neighbors (Gershenfeld et al. 2004). Each device
is still capable of acting independently, or it can
communicate with others to gain additional
information. Expanding on the use of low-power,
long-range telemetry, IoT could be used to set up
peer-to-peer networking to transfer data from
one device to the next until reaching a location
with Internet access or cell coverage, where more
traditional means of transmission are possible.
An attempt of such peer-to-peer transfer in ecol-
ogy is ZebraNet: a system of GPS devices
attached to animals (zebras) which transfer each
individual’s GPS data between each other when
in close proximity (Juang et al. 2002). Using this
design, retrieving a device attached to one
animal also provides the data from all other
animals.

The applications of IoT go beyond the simple
transfer of data. IoT technology effectively creates
“smart environments,” in which hundreds of net-
worked devices, such as temperature sensors,
wildlife camera traps, and acoustic monitors, are
connected wirelessly and are able to transmit data
to central nodes. Using bio-batteries, such devices
could run “indefinitely” (not literally, as compo-
nents will eventually fail due to wear and tear in
field conditions, which can be severe in some envi-
ronments, e.g., very high/low temperatures,
humidity, and/or salinity). From there, fully auto-
mated digital asset management systems can
query and analyze data. Automated processes are
increasingly pertinent with more long-term contin-
uously recording sensor networks (e.g., National
Ecological Observatory Network [NEON]). NEON
is composed of multiple sensors measuring envir-
onmental parameters such as the concentration of
CO2 and Ozone, or soil moisture, all continuously-
recording remotely with high temporal resolution,
creating ever expanding environmental datasets
(Keller et al. 2008). To make best use of such data

requires analysis at high temporal resolutions,
which is not feasible to do manually by research-
ers, but possible with machine learning algorithms
and other advanced statistical approaches.

Swarm theory for faster and safer data
acquisition, and dynamic ecological survey
Swarm theory is a prime example of the compli-

mentary nature of technology and ecology. In
essence, swarm theory refers to individuals self-
organizing to work collectively to accomplish
goals. Swarm theory relates to both natural and
artificial life, and mathematicians have studied
the organization of ant colonies (Dorigo et al.
1999) and flocking behavior of birds and insects
(Li et al. 2013), in an attempt to understand this
phenomenon. Swarm theory is already being used
with unmanned autonomous vehicles for first
response to disasters, investigating potentially
dangerous situations, search and rescue, and for
military purposes (http://bit.ly/1Pel9Qz). Exciting
applications of swarm theory include faster data
acquisition and communication over large geo-
graphic scales and dynamic ecological survey.
Swarm theory is directly applicable to the col-

lection of remotely-sensed data by multiple
unmanned vehicles, whether aerial, water sur-
face, or underwater. Unmanned aerial vehicles
(UAVs) are already being used for landscape
mapping and wildlife identification (Anderson
and Gaston 2013, Humle et al. 2014, Lucieer
et al. 2014), and the data collected can be pro-
cessed into high-resolution (<10 cm) to character-
ize the variability in terrain and vegetation
density (Friedman et al. 2013, Lucieer et al.
2014). So far, however, such vehicles are used
individually. By employing swarm theory, data
collection could be completed faster by using
several vehicles working simultaneously and col-
laboratively. Moreover, if vehicles were enabled
to communicate with each other, data transfer
would also be improved. Given the compara-
tively low costs of unmanned vehicles versus
manned vehicles, such implementation would
dramatically increase the efficiency of data col-
lection while also eliminating safety issues. This
efficiency could, in turn, allow for more repeated
and systematic surveys, improving the statistical
power and inference from time-series analyses.
Even more exciting than swarms simply being

used to advance our capabilities in data
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acquisition is the prospect of deploying them as
more active tools for quantifying biotic interac-
tions. The ability of a swarm to locate and then
track individuals of different species in real time
could revolutionize our understanding of key
ecological phenomena such as dispersal, animal
migration, competition, and predation. Swarms
could be used to initially sweep large areas, and
then, as individual drones detect the species/in-
dividuals of interest, they could then inform
other drones, refining search areas based on this
geographic information, and then detect and
track the behavior of additional animals, in real
time. An increased capacity to detect and mea-
sure species interactions, and assess marine and
terrestrial landscape change, would enhance our
understanding of fundamental ecological and
geological processes, ultimately assisting to fur-
ther ecological theory and improve biodiversity
conservation (Williams et al. 2012).

This technology will however require careful
consideration of the societal and legislative con-
text, as is the case for UAVs (see Allan et al. 2015).

3D printing for unique and precise equipment
While 3D printing has existed since the 1980s,

its use in ecology has primarily been as teaching
aids. For example, journals such as PeerJ offer the
ability to download blueprints of 3D images
(http://bit.ly/1MBPn1d). However, 3D printing
has many more applications. These include (1)
building specialized equipment cheaply and rela-
tively easily by using the design tools included
with many 3D printers or by scanning and modi-
fying products that already exist (Rangel et al.
2013); (2) building organic small molecules, mim-
icking the production of molecules in nature (Li
et al. 2015); (3D printing at the molecular level
even has the potential to create small organic
molecules in the laboratory, Service 2015); and (3)
printing realistic high-definition full-color designs
in a number of different materials (http://www.3d
systems.com/). Using such models, ecologists are
able to print specialized platforms for sensor
equipment (e.g., GPS collars) that fit better to ani-
mals. The use of 3D printing could go a step fur-
ther, however, and create true-color, structurally
complex analogues of either vegetation or other
animals for behavioral studies. For example, Dyer
et al. (2006) explored whether bee attraction was
based on color or may also be associated with

flower temperature. Flowers of intricate and exact
shape and color could be printed with heating ele-
ments embedded more easily and realistically
than trying to build them by hand.

Mapping molecular movement for non-destructive
analysis of nature
New developments in optical resolution and

image processing have led to cameras that can
display images at a sub-cellular level without the
need of electron microscopes. Originally devel-
oped to scan silicon wafers for defects, this new
technology is now being used to examine molec-
ular transport and the exchange between muscle,
cartilage, and bone in living tissue (http://bit.ly/
1DlIYkD). The development also highlights what
can be achieved by cross-disciplinary and institu-
tional collaboration, in this case optical and
industrial measurement manufacturers Zeiss,
Google, Cleveland Clinic, and Brown, Stanford,
New South Wales universities. Together, they
have also created a “zoom-able” model that can
go from the centimeter level down to nanometer-
sized molecules, creating terabytes of data.
These technology’s ecological and environmen-

tal applications are substantial, paramount of
which is the non-destructive nature of the analy-
sis, allowing for time-series analyses of molecular
transfer. For instance, Clemens et al. (2002) exam-
ined the hyper-accumulation of toxic metals by
specific plant species. Understanding how some
plants can absorb toxic metals has promise for soil
decontamination, but as stated by Clemens et al.
(2002) “molecularly, the factors governing differ-
ential metal accumulation and storage are
unknown.” The ability to not only observe the
molecular transport of heavy metals in plant tis-
sue, but also to change the observational scale,
will greatly advance our knowledge of nutrient
uptake and storage in plants.

Low-power computers for automated data
analysis
Low-power microcomputers and microcon-

trollers exist in products such as Raspberry Pi,
Arduino, and Beagleboard. In ecology, low-power
computers have been used to build custom equip-
ment such as underwater stereo-camera traps,
automated weather stations, and GPS tracking
collars (Williams et al. 2014, Greenville and Emery
2016). Notably though, following a surge in
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hobbyists embracing the adaptability of low-cost,
low-power, high-performance microcontrollers,
large companies such as Intel have also joined the
marketplace with microcontrollers like Edison
(http://intel.ly/1yekvNP). Edison is low-power,
but has a dual-core CPU, Wi-Fi, Bluetooth, data
storage, inbuilt Real Time Clock, and the ability to
connect a plethora of sensors from GPS receivers
to infrared cameras (http://bit.ly/1qHdor2; Intel
2014). Cell phones and wearable devices are
already integrating this technology. As an exam-
ple, the Samsung Galaxy S8 cellular phone
contains an eight-core processor computer with
4GB ram, cameras, GPS, accelerometers, heart rate
monitor, fingerprint, proximity, and pressure
sensors (http://bit.ly/2ni8KRD). Using microcon-
trollers such as these, it is possible to run high-
level algorithms and statistical analysis on the
device such as image recognition and machine
learning. Not all microcontrollers are capable of
running such complex data processes and other
options will be required (e.g., microprocessors)
instead, a situation that is likely to improve, how-
ever, with further development of the technology.

The ability to process data onboard has huge
potential for technology’s ecological application,
such as remote camera traps and acoustic sen-
sors. By running pattern recognition algorithms
in the equipment itself, species identification
from either images or calls could be achieved
both automatically and immediately. This infor-
mation could be processed, records tabulated,
and a decision taken as to conserve, delete, flag
the recorded data for later manual observation,
or even transmit the data back to the laboratory.
This removes the need for storing huge volumes
of raw photographs or audio files, but instead
just tabulated summary results. The equipment
could be programmed to specifically keep pho-
tographs and acoustics of species of interest (e.g.,
rare or invasive species, or species that cannot be
identified with high certainty) while deleting
those that are not, and/or to save any data with a
recognition confidence below a designated
threshold for manual inspection. In terms of
direct application to conservation, it is possible
that this technology would allow intelligent poi-
son bait stations to be built. Poison baiting is
widely used to control pest species (Buckmaster
et al. 2014), but the consumption of baits by non-
target species can have unintended consequences

ranging from incapacitation to death, limiting
the efficacy of the control program (Doherty and
Ritchie 2017). Using real-time image recognition
software built into custom designed bait dis-
pensers, we could program poison bait release
only when pest animals are present (e.g., groom-
ing traps, https://bit.ly/2IKAYAD), reducing
harm to non-target species.

TECHNOLOGICAL DEVELOPMENTS FLOWING
INTO ECOLOGY

The technological developments from outside
ecology that flow into the discipline offer great
potential for theoretical advances and environ-
mental applications. Two examples include per-
sonal satellites and neural interface research.
Personal satellites are an upcoming technology

in the world of ecology. Like UAVs before them,
miniature satellites promise transformative data
gathering and transmission opportunities. Pro-
jects such as CubeSat were created by California
Polytechnic State University, San Luis Obispo,
and Stanford University’s Space Systems Devel-
opment Lab in 1999, and focused on affordable
access to space. These satellites are designed to
achieve low Earth orbit (LEO), approximately 125
to 500 km above the Earth. Measuring only 10 cm
per side, the CubeSats can house sensors and
communications arrays that enable operators to
study the Earth from space, as well as space
around the Earth. Open-source development kits
are already available (http://www.cubesatkit.com/).
However, NASA estimates it currently costs
approximately US $10,000 to launch ~0.5 kg of
payload into LEO (NASA 2017), meaning it is
still cost prohibitive, and the capabilities of such
satellites are currently limited. Given the rapid
expansion of commercial space missions and
pace of evolving technology, however, private
satellites to examine ecosystem function and
dynamics may not be too far over the horizon.
Neural interface research aims at creating a link

between the nervous system and the outside
world, by stimulating or recording from neural
tissue (Hatsopoulos and Donoghue 2009). Cur-
rently, this technology is focused in biomedical
science, recording neural signals to decipher
movement intentions, with the aim of assisting
paralyzed people. Recent experiments have been
able to surgically implant a thumbtack-sized array
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of electrodes, able to record the electrical activity
of neurons in the brain. Using wireless technol-
ogy, scientists were able to link epidural electrical
stimulation with leg motor cortex activity in real
time to alleviate gait deficits after a spinal cord
injury in Rhesus monkeys (Macaca mulatta; Capo-
grosso et al. 2016). Restoration of volitional move-
ment may at first appear limited in its relevance
to ecology, but the recording and analysis of neu-
ral activity is not. To restore volitional movement,
mathematical algorithms are being used to inter-
pret neural coding and brain behavior to deter-
mine the intent to move. This technology may
make it possible in the future to record and
understand how animals make decisions based
on neural activity, and as affected by their sur-
rounding environment. Using such information
could greatly advance the field of movement ecol-
ogy and related theory (e.g., species niches, dis-
persal, meta-populations, trophic interactions)
and aid improved conservation planning for spe-
cies (e.g., reserve design) based on how they per-
ceive their environment and make decisions.

NEXT-GENERATION ECOLOGY

The technologies listed above clearly provide
exciting opportunities in data capture for

ecologists. However, transformation of data acqui-
sition in ecology will be most hastened by their
use in combination, through the integration of
multiple emerging technologies into next-genera-
tion ecological monitoring (Marvin et al. 2016).
For instance, imagine research stations fitted with
remote cameras and acoustic recorders equipped
with low-power computers for image and call
recognition and powered by trees via bio-bat-
teries. These devices could use low-power, long-
range telemetry both to communicate with each
other in a network, potentially tracking animal
movement from one location to the next, and to
transmit data to a central location. Swarms of
UAVs working together (swarm theory) could
then be deployed to both map the landscape and
collect the data from the central location wirelessly
without landing. The UAVs could then land in a
location with Wi-Fi and send all the data via the
Internet into cloud-based storage, accessible from
any Internet-equipped computer in the world
(Fig. 2, Table 2). While a system with this much
integration might still be theoretical, it is not out-
side the possibilities of the next 5–10 yrs.
Bioinformatics will play a large role in the use

of “next-generation” ecological data that tech-
noecology produces. Datasets will be very large
and complex, meaning that manual processing

Fig. 2. Visualization of a future “smart” research environment, integrating multiple ecological technologies.
The red lines indicate data transfer via the Internet of things (IoT), in which multiple technologies are communi-
cating with one another. The gray lines indicate more traditional data transfer. Broken lines indicate data trans-
ferred over long distances. Once initiated, this environment would require minimal researcher input. (See
Table 2 for descriptions of numbered technologies.).
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and traditional computing hardware and statisti-
cal approaches will be insufficient to process
such information. For example, the data captured
on a 1-km2 UAV survey for high-resolution
image mosaics and 3D construction is in the tens
of gigabytes, so at a landscape scale datasets can
be terabytes. Such datasets are known as “big
data” (Howe et al. 2008), and bioinformatics will
be required to develop methods for sorting, ana-
lyzing, categorizing, and storing these data, com-
bining the fields of ecology, computer science,
statistics, mathematics, and engineering.

Multi-disciplinary collaboration will also play a
major role in developing future technologies in
ecology (Joppa 2015). Ecological applications of
cutting edge technology most often develop
through multi-disciplinary collaboration between
scientists from different fields or between the pub-
lic and private sectors. For instance, the Princeton
ZebraNet project is a collaboration between
engineers and biologists (Juang et al. 2002), while
the development of the molecular microscope
involved the private sector companies Zeiss and
Google. Industries may already have technology
and knowledge to answer certain ecological ques-
tions, but might be unaware to such applications.
Ecologists should also look to collaborate on con-
vergent design; much of what we do as ecologists
and environmental scientists has applications in
agriculture, search and rescue, health, or sport
science, and vice versa, so opportunities to share
and reduce research and development costs exist.

Finally, ecologists should be given opportunities
for technology-based training and placement pro-
grams early in their careers as a way to raise
awareness of what could be done.
In the coming decades, a technology-based

revolution in ecology, akin to what has already
occurred in genetics (Elmer-DeWitt and Bjerklie
1994), seems likely. The pace of this revolution
will be dictated, in part, by the speed at which
ecologists embrace and integrate new technolo-
gies as they arise. It is worth remembering, “We
still do not know one thousandth of one percent of
what nature has revealed to us”—Albert Einstein.
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