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Abstract 

Recent developments in rechargeable battery technology have seen a shift from the well- 

established Li-ion technology to new chemistries to achieve the high energy density required 

for extended range electric vehicles and other portable applications, as well as low-cost 

alternatives for stationary storage.  These chemistries include Li-air, Li-S and multivalent ion 

technologies including Mg2+, Zn2+, Ca2+ and Al3+.  While Mg2+ battery systems have been 

increasingly investigated in the last several years, Ca-ion technology has recently been 

recognized as a viable option.   

 

In this first comprehensive Ca-ion technology review , the use of Ca metal anodes, alternative 

alloy anodes, electrolytes suitable for this system, and cathode material development are 

discussed.  The advantages and disadvantages of Ca-ion batteries including prospective 

achievable energy density, cost reduction due to high natural abundance, low ion mobility, 

the effect of ion size and the need for elevated temperature operation are reviewed.   The use 

of DFT modeling to predict the properties of Ca-ion battery materials is discussed and the 

extent to which this approach is successful in directing research into areas of promise is 

evaluated.  The review concludes with a summary of recent achievements and evaluates areas 

for future research efforts.   
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1. Introduction  

High energy density rechargeable lithium-ion batteries (LIBs) currently dominate the 

portable electronics market and the electric vehicle market.   This technology has been 

successful due to the relatively high energy density of these batteries and their good 

cycle life and reliable performance characteristics.  However, growth in the electric 

vehicle (EV) market has been tempered by the limited driving range achievable with 

lithium-ion technology and there is constant pressure to increase the range by 

increasing the cell’s energy density .[1]  Simultaneously there is a drive to reduce costs 

to increase the competitiveness with the internal combustion engine.  Several 

countries including China are considering a ban on petrol or diesel powered vehicles 

in the medium term because of environmental concerns, increasing the urgency for 

low-cost and high-performance alternatives.[2] 

 

In addition, large scale energy storage to support the intermittent renewable energy 

production from solar and wind power is needed to provide the World with reliable 

and sustainable Green energy.  Cost-effective storage is needed to stabilize the energy 

supply and prevent the variability of the renewable energy from affecting the quality 

of the power supply from the electricity grid.[3] 

 

It is widely conceded that lithium-ion technology is reaching the limits of its energy 

density capabilities and that new “beyond lithium-ion” technologies are required to 

fill the gap.[4]  This consideration, as well as the drive to reduce costs, has prompted a 

flurry of research activity in alternative chemistries, for example, Li-air,[5] Li-S,[5a, 6]  

Na-ion and multivalent ion technologies.[7]  
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 One strategy to enhance the energy density of Li-ion batteries is to replace the 

graphitic anodes currently employed in commercial cells, with metallic lithium 

anodes.[8]  However, lithium metal does not plate evenly when deposited from 

electrolytic solution and forms finger-like, dendritic growths on the anode surface.[9] 

This results in a rapidly increasing anodic surface area, increased interaction with the 

electrolyte and may lead to short-circuit and thermal runaway of cells.[9b] Despite 

promising recent advances in this area, no commercial cells with lithium metal anodes 

are currently produced.[10] 

  

Li-S cells offer a very high theoretical energy density (potentially 5 times higher than 

that of lithium ion cells) and require low cost raw materials.  There is currently 

investment in commercial development of these cells by Oxis Energy with the initial 

commercial offering due in 2019/2020.  If they are found to meet practical 

performance targets, these cells offer a cost effective way to achieve the range targets 

for EV’s in the long term.[5a, 11] 

 

Li-air cells are at a relatively early stage of development and are attractive for their 

promised high energy densities, 5-10 times that of Li-ion cells (LICs) and comparable 

to the specific energy of gasoline.[12]  Although they are being heavily investigated,[13] 

there are still major obstacles to their commercialization including problems with 

cycle life and charging rate.  The consensus in the industry is that they are at least 10 
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years from commercial application.  It should be noted that both Li-S and Li-air cells 

are affected by the tendency of metallic lithium to form dendritic deposits. 

 

In terms of cells based on insertion reactions of alkali metal cations, Na ion 

technology has developed rapidly.  This is largely because sodium ion batteries (SIBs) 

operate with the same mechanism as LIBs and utilize similar classes of cathode 

materials, similar electrolytes and similar manufacturing technology, resulting in 

rapid progress towards commercialization.  Na-ion technology however, has an 

intrinsically lower energy density compared to Li-ion technology due to the larger 

size and greater mass of Na ions, and is thus better suited to stationary storage 

applications.[14]  Nevertheless, the abundance and low cost of Na compared to Li 

makes this technology attractive. 

 

 

Figure 1. Characterization of deposits obtained in 0.3 M Ca(BF4)2 EC:PC at 1.5 

V versus Ca2+/Capassivated. a–c, SEM micrographs at 75 ◦C for 200 h (a), at 

100 ◦C for 200 h (b), and at 100 ◦C for 72 h (c). The Ca/F ratios determined by 

EDX are indicated. Reproduced with permission.[15]  Copyright 2016, Nature 

Publishing Group. 
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Several different multivalent ions have been suggested as alternatives to Li+ and these 

include divalent[16] Ca2+,[15, 17] Mg2+,[18] and Zn2+[19] and trivalent Al3+ . [5b]  Early work 

has indicated that, in contrast to lithium, multivalent metals (e.g. Mg and Ca) may be 

deposited uniformly from appropriate electrolyte solutions, with little or no dendritic 

growth (Figure 1).[15, 20]  This finding makes it feasible to use multivalent metallic 

anodes in place of the graphite anodes used in lithium-ion batteries, resulting in a 

significant increase in the anode gravimetric and volumetric capacity.  This promises 

increased energy density for these multivalent battery systems compared to lithium-

ion batteries [3, 16b, 18b] (Figure 2).  The use of multivalent ions also leads to a possible 

increase in the electrochemical capacity of intercalation electrodes and hence to a 

significant increase in the energy density of cells utilizing these electrodes compared 

to Li-ion cells.  For example, if divalent ions are used (e.g. Mg2+, Ca2+), then only half 

the number of divalent ions need to be inserted to obtain the same number of electrons 

transferred, compared to the equivalent monovalent ion intercalation.  If a host 

structure is able to accommodate these divalent ions, then this can theoretically lead to 

a doubling of the electrode electrochemical capacity compared to that of the same 

intercalation host with a monovalent intercalating species (e.g. Li+ or Na+).[21] 

 

Figure 2. Capacities and reductive potentials for various metal anodes. Reproduced 
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with permission.[18b]  Copyright 2014, American Chemical Society.  

 

Most of the attention in multivalent ion battery development has focused on Mg-ion 

batteries (MIBs), despite the fact that Mg metal cannot be plated and stripped in 

conventional electrolyte solutions due to the formation of passivating surface 

layers.[5b, 18]  A great deal of research effort has been devoted to developing alternative 

electrolyte systems that do not passivate the Mg metal surface.[22]  The similarity of 

the size of Mg2+ (0.72 Å) and Li+ (0.76 Å) means that many of the intercalation hosts 

used successfully for LIBs are also potential hosts for Mg2+.   Although these battery 

systems have been intensively investigated in the last 5 years, there are many issues 

that still need to be overcome before MIBs are commercially viable.  The most 

significant challenge is the compatibility of high voltage cathodes with advanced 

electrolytes.[22a]  Current state-of-the-art full-cell MIBs[18d] still fall short of the energy 

density of LIBs and significant research effort is required for these systems to fully 

achieve their potential. 

 

Aluminum ion batteries (AIBs) have also attracted attention as Al is the most earth 

abundant metal and has a very high volumetric capacity of (8040 mAhcm-3).  

Research in this system is still in the early stages.  The major limitation to progress is 

the lack of suitable electrolytes that are easy to handle and yet allow the reversible 

plating and stripping of Al metal.  Current electrode materials have low voltages (0.6 

– 2 V vs Al/Al3+), limiting the energy density of cells. However, if high capacity 

conversion electrodes such as sulphur are used then this system can still deliver high 

theoretical energy densities of 1200 Whkg-1 suitable for electric vehicle applications. 
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[23]  To date these systems remain impractical due to solubility of polysulphide species 

in the electrolytes.[23] 

 

Calcium is the 5th most abundant element in the earth’s crust, more abundant than 

both sodium and magnesium, and 2500 times more abundant than lithium. The ready 

availability of calcium would translate into low materials cost for battery production.  

Ca is also non-toxic and therefore would not pose an environmental hazard if used in 

bulk battery manufacture.   

 

In addition, the deposition potential of calcium is only 0.17 V higher than that of 

lithium and 0.5 V lower than that of magnesium (Figure 2), potentially leading to 

higher cell voltages (determined by the difference between the anode and cathode 

potentials) and thus higher energy densities compared to MIBs, for example.  Even 

though calcium is a relatively large element, if we consider the mass on a per electron 

basis then calcium is actually lighter than sodium. The ionic size of Ca2+ ions is 1.00 

Å which is very similar to that of Na+ (1.02 Å) but significantly larger than Li+ (0.76 

Å) and Mg2+ (0.72 Å).  Ca2+ is therefore an attractive ion to consider for multivalent 

ion technology.  Research into calcium-ion batteries (CIBs) is still in its infancy since 

the reversible deposition and stripping of calcium in conventional electrolytes was 

first demonstrated in 2016.[15]  However, parallels with other multivalent ion systems, 

particularly MIBs, which are relatively well-researched in comparison, should lead to 

a rapid increase in developments in this area.  
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In this first review of CIB technology, specific anode and cathode material 

developments for CIBs are discussed with a focus on the utility of DFT modelling to 

guide and direct research into areas of promise. The current state of development of 

electrolytes for CIBs is then evaluated.  The review is concluded with a summary of  

the state of the art developments in this area highlighting areas for future 

investigation. 

 

2. Anodes for Ca-ion Batteries  

2.1 Metallic Calcium Anodes 

Metallic calcium anodes are attractive as they offer significantly higher volumetric 

and gravimetric electrochemical capacities (2072 mAhmL-1 and 1337 mAhg-1, 

respectively) than the graphitic anodes used in commercial Li-ion battery 

technology (300-430 mAhmL-1 and 372 mAhg-1) (Figure 2).  Pioneering work by 

Aurbach et al.[24] using common electrolyte solutions including tetrahydrofuran 

(THF), γ-butyrolactone (BF), acetonitrile (ACN) and propylene carbonate (PC) 

with calcium, lithium and tetrabutyl ammonium salts (mainly BF4
- and ClO4

- 

anions),  initially indicated that it was impossible to deposit calcium metal from 

nonaqueous solutions of Ca-ions. They concluded that the electrochemistry of 

calcium in these solutions was controlled by the surface chemistry of calcium.  

Passivating films built up on the surface of the calcium electrodes and, in contrast 

to the case of lithium (but analogous to the case of magnesium), these films did 

not conduct Ca-ions and effectively prevented the deposition of calcium metal.   

 

In MIBs the limitation of non-conducting surface films in conventional 

electrolytes has been overcome by the painstaking development of electrolytes 



10 
 

that do not form any passivating films on Mg electrode surfaces.  This, however, 

has resulted in very complex electrolyte systems with limited anodic stability.[7, 

22d, 25]   

 

Figure 3. (a) Cyclic voltammograms (100 °C, 0.2 mVs-1) of a calcium deposit 

(grown by potentiostatic electrodeposition at -1.2V versus Ca2+/Capassivated, 5 h, 

100 °C) in 0.45 M Ca(BF4)2 EC:PC electrolytes. (b) CVs (0.1 mV/s) obtained in 

three-electrode Swagelok cells with 0.45 M Ca(BF4)2 in EC0.5:PC0.5 using Ca. 

Adapted with permission from a)[15]  and b)[3].  Copyright a) 2016, Nature 

Publishing Group and b) Copyright 2017, Electrochemical Society. 

 

In the case of CIBs, Ponrouch et al.[15] investigated more conventional electrolyte 

systems based on mixed carbonate solvents (mixtures of propylene carbonate and 

ethylene carbonate), commonly used for Li- and Na-ion batteries, with Ca(ClO4)2, 

Ca(BF4)2 and Ca(TFSI)2 salts.  No redox processes were observed for any of the 

systems at room temperature, in agreement with the findings of Aurbach et al.[24] 

At elevated temperatures (50-100 ᴼC), however, Ca(ClO4)2 and Ca(BF4)2 solutions 

showed reversible redox processes (Figure 3a).  The most reversible process was 

found for 0.45 M Ca(BF4)2 solutions at 100 ᴼC.  Analysis of the electrode deposits 

confirmed that the redox process occurring was due to the plating and stripping of 
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calcium metal and that this process was stable over many cycles (Figure 3b).  

Both the salt concentration and the temperature were critically important to the 

effectiveness of the process.  This study aroused great interest as it was the first 

demonstration of  calcium plating and stripping in conventional electrolyte, and 

even at 100 ᴼC this electrolyte displayed a large electrochemical window (-0.5 V 

to 3.5 V) vs Ca/Ca2+. These findings were recently confirmed by Tchitchekova et 

al.[3] in Ca(BF4)2 solutions with low voltage hysteresis and good efficiency after 

the 1st cycle ranging from 40-85% depending on the lower cut-off voltage.  These 

findings introduced a multivalent ion system, relatively free of the metal-

electrolyte woes that plagued MIBs, that could operate in the conventional 

electrolytes developed for LIBs.  This finding by Ponrouch et al.[15] stimulated 

investigations into compatible high-voltage cathodes for high energy density CIB 

systems.  The need for high temperatures for Ca metal cycling in conventional 

electrolytes is, however, a practical limitation for commercial application, as high 

temperature operation is expensive, increases the speed of cell degradation and 

also increases the likelihood and rate of parasitic side reactions.   

 

Caution is also required in the use of Ca metal (or Mg metal) anodes as they 

display a significant potential shift and variation in potential over time in non-

aqueous electrolytes [3, 15, 17].  While there are well established protocols for Li-ion 

cell testing, similar standard methods are still lacking for multivalent-ion cell 

testing, especially at elevated temperatures.  At present the recommendation is 

that a 3-electrode system be used for all experimental measurements along with an 

alternative reference electrode, e.g. Ag/AgCl or an internal redox couple, to 

monitor the shift of the Ca potentials.[3] 
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This finding also has implications for the use of Ca metal as anode in full-cell 

configurations, as a shifting electrode potential will affect the cell voltage in an 

unpredictable manner.  The origin of the voltage shift and voltage instability is not 

yet well understood.  It has been postulated that several processes may contribute 

to the voltage shift including a small activity coefficient in the Nernst equation, a 

junction potential at the cathode surface, an additional redox reaction occurring in 

the solution or the high electrode impedance.  The last mechanism seems likely to 

be the major contributor.[3]  This implies that surface interactions between the Ca 

metal and the electrolyte are significant and that some degree of passivation 

indeed occurs and contributes to the observed high impedance. 

 

2.2 Alloy Anodes  

Although the feasibility of metallic calcium anodes has been demonstrated,  

attractive electrochemical capacities may also be possible using alloy-based anode 

materials.  Ponrouch et al.[26] investigated the feasibility of using Ca-Si 

intermetallic alloys as anodes for CIBs with an attractive maximum theoretical 

capacity of 991 mAhg-1 for the reaction of 1 mol fcc-Si with 2 mol of Ca-ions.  As 

a first step in the examination of the feasibility of Ca-Si alloy anodes, they 

investigated the commercially available Ca-Si alloy CaSi2. It was predicted that 

there would be a 306 % volume change in going from fcc-Si to CaSi2 at an 

average voltage of 0.37 V with a theoretical capacity of 557 mAhg-1.   

Experimental investigations confirmed the electrochemical extraction of Ca2+ 

from CaSi2 but the resulting product was amorphous (probably due to the very 
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large volume change) and re-insertion of Ca2+ only occurred with a very large 

overpotential, likely due to the collapse of the structure.  

 

Despite attractive voltages and high theoretical capacities, the very high volume 

changes associated with Ca2+ insertion and extraction from Ca-Si alloys will likely 

make commercial implementation of Ca-Si alloy anodes difficult.  Similar 

challenges with Li-Si alloys have been studied for many years resulting in 

complex nanomaterial architectures to mitigate the negative effects of the large 

volume variations.  However, no commercial cells with Li-Si alloy anodes have 

yet been produced.[27] 

 

Lipson et al.[17] reported the use of a Ca-Sn alloy anode in full cell testing of 

Prussian blue analogue cathodes with non-aqueous electrolytes.  Thermodynamic 

calculations predicted a voltage of 0.8 V vs Ca/Ca2+ for the reaction of Ca and Sn 

but no details of the alloy were given in this study.  Capacity loss in the full cells 

tested by Lipson et al. were speculatively attributed to possible delamination of 

the anode and dissolution of the Sn.[17] 

 

Alloy anodes offer an attractive area for the development of practical full cell 

CIBs as they avoid the issues of surface passivation associated with Ca metal 

anodes. Further studies of Ca-alloy anodes are required to fully evaluate their 

potential. 
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2.3 Defective Graphene Anodes 

The anode of choice for LIBs is graphite but it has a very low capacity for Ca-ion 

insertion.[28]  Lower dimensional materials such as graphene have been shown to 

have a higher Li-ion capacity than graphite.  First-principle calculations 

performed by Datta et al.[29] have demonstrated that pristine graphene cannot 

adsorb Ca-ions but defective graphene can and the capacity increases with the 

increase in defect density.  For example, for divacancy defects (i.e. the absence of 

a C-C dimer) at 6.25 % defect density, the capacity is 297 mAhg-1, compared with 

2900 mAhg-1 for a 25% defect density.  Cations are adsorbed preferentially in the 

region of a defect due to charge transfer from the ion to the graphene sheet. 

 

2.4 Practical anodes for half-cell testing 

 

Even though Ca metal anodes are attractive for high energy density full-cells, the 

voltage instability and high impedance of Ca metal anodes discussed in 2.2, makes 

it important to define alternative anodes that can be used easily to evaluate 

potential Ca-ion cathode materials. Several options have been used to date.  

 

Amatucci et al.[30] used a Ag/Ag+ quasi-reference electrode in the evaluation of 

vanadium oxide cathode materials for calcium insertion.  They reported a stable 

potential for this quasi reference of 0 V vs S.H.E. ± 100 mV.  This was 

incorporated into an asymmetrical cell using an activated carbon capacitive 

electrode as the counter and the V2O5 as negative electrode. Ca-ion insertion into 

the working electrode was accompanied by the simultaneous formation of an 
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electrochemical double layer at the counter electrode by adsorption of anions.  On 

discharge the Ca-ions were removed from the lattice and the anions desorbed from 

the double layer.  All the Ca- ions for intercalation originated from the cell 

electrolyte.  Although electrolyte oxidation on the surface of the electrode led to a 

small voltage drift, this proved to be an effective way to quickly evaluate 

polyvalent cation insertion.   A similar approach was described by Bervas et al.[21] 

using a capacitive carbon cloth electrode with a very high surface area (2000 m2g-

1) as the counter electrode.  Capacitive counter electrodes have also been applied 

in Mg2+ intercalation research[31] and in the work of Lipson et al. in CIB 

studies.[32] 

 

Possibilities also exist for the development of Ca-ion insertion anodes that exhibit 

a low constant potential over a wide compositional range, analogous to Li4Ti5O12 

for LIBs.[3, 33]  

 

Problems with current collector corrosion in Ca-ion electrolytes have been 

described by Lipson et al.[32]  For stainless steel 304 current collectors, spurious 

peaks in cyclic voltammograms for C-coated current collectors are observed 

which could easily be misinterpreted as redox peaks resulting from insertion or 

extraction of Ca-ions from an insertion electrode.  The use of graphite foil current 

collectors is recommended as an alternative free of side reactions. 

 

In summary, there are several possibilities for half-cell testing for CIBs.  The most 

commonly used is a three electrode system with a capacitive carbon counter 

electrode coupled with the working electrode of the material under test and a 
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separate reference electrode.  While calcium metal can be used as a quasi-

reference electrode, it should be recognized that its potential may not be stable and 

should be calibrated against Ag/AgCl or an internal redox couple such as 

ferrocene/ferrocinium.  In these systems, flooded cells with large electrolyte 

volumes are typically used with the electrolyte as the source of the Ca-ions for 

insertion, distinct from commercial cells where the electrolyte volume is 

minimized. 

 

3. Cathodes for Calcium-Ion Batteries 

3.1. Density Functional Theory (DFT) Modelling: Predictions for Ca2+ ion 

Cathodes 

DFT modelling has recently proved to be a powerful tool in predicting the likely 

success of multivalent intercalation in a variety of materials and in directing research to 

explore novel materials as multivalent ion hosts.[32, 34]  In this section we will discuss 

the general predictions of DFT modelling for multivalent ion intercalation with 

particular relevance for CIB technology.  

 

3.1.1  General Ionic Mobility Considerations 

 

Despite the potential advantages, multivalent ion batteries have their own challenges. 

The most critical is the relatively sluggish kinetics resulting from the slow diffusion of 

multivalent ions in intercalation host structures due to their increased charge which 

increases the strength of the cation-cation repulsions and the cation-anion attractions as 

the ions diffuse through the host structure.  DFT modelling has been applied, in 
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particular, to investigate the limitations in multivalent ion mobility in insertion 

electrodes, as sufficient ionic mobility is a essential for the application of electrodes in 

battery systems.  

 

Decreasing the ionicity (charge localization) in the host decreases the coulombic 

interactions with the diffusing species.  For example, in transition metal sulphides, the 

M-X bonds are less ionic than in oxides and the diffusion of multivalent ions is 

facilitated[22a].  However, although the use of transition metal sulphides has been 

successful in improving the kinetics of multivalent ion diffusion compared to that in 

oxide hosts, the voltage obtainable with sulphides is lower than that of their oxide 

analogues which compromises the energy density of cells with sulphide electrodes. 

 

Liu et al.[35]  estimated the effect of the calculated migration energy barriers on ionic 

diffusion in insertion compounds and found that, if the migration barrier was 525 meV, 

this corresponded to an ionic diffusivity of 10-12 cm2 s-1 at room temperature.  This 

allowed a discharge time of 2 h for micron sized active particles, representing a 

practical lower limit.  In the case of nanoparticles, a lower diffusivity can be tolerated 

with an estimated upper limit of the diffusion barrier of 645 meV for 100 nm particles.  

Although the ionic diffusivity can be predicted and used to direct research efforts 

towards the most promising materials, there remains the possibility of other 

mechanisms not accounted for in the modelling that may limit the practical charge and 

discharge rate of the material, e.g. instability of the chosen phase or poor electronic 

conductivity.   
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3.1.2 Predictions of Ionic Mobility in Host Materials 

 

Rong et al.[36]  used multivalent ion mobility predictions to develop general guidelines 

for the selection of potential multivalent ion intercalation hosts by investigating four 

structures widely used for Li ion batteries: spinel Mn2O4, olivine FePO4, layered NiO2, 

and orthorhombic δ-V2O5. Multivalent ion mobility in these hosts was lower than that 

of Li-ions, as expected.  However, the most significant finding was that particular hosts 

were better suited to one multivalent ion compared to another and a structure well-

suited to one could perform very poorly for another.   Contrary to previously held 

opinions, the ionic size or the “openness” of the structure was not the determining 

factors in the ionic mobility.  Instead, the multivalent ion mobility was predicted to be 

best for structures in which the intercalating ions were initially inserted into sites that 

were not of the preferred co-ordination for that ion. The ions were then more inclined to 

migrate from these initial “unstable” sites into the neighboring more favored positions, 

enhancing ion mobility.  Ion diffusion pathways with small changes in ion coordination 

number were favored.  Ca2+ in the Mn2O4 spinel lattice was given as an example of this 

with a predicted migration barrier near to the 525-650 meV quantitative limit for 

successful battery operation (Figure 4a). 
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Figure 4. Li and multivalent ion migration energies plotted along the diffusion paths in 

a) spinel Mn2O4 and b) δ-V2O5 in the empty lattice (solid) and dilute vacancy (dashed) 

concentration limits. Reproduced with permission.[36]  Copyright 2015, American 

Chemical Society. 

 

The preparation of phases without the intercalating ion initially present, was proposed 

as likely the best strategy for preparing materials with high ionic mobility, as ions could 

then be inserted into meta-stable positions electrochemically or by soft-chemistry 

routes.  δ-V2O5 was identified as an example for the application of this strategy, with 

migration energies below the threshold for several of the multivalent ions considered, 

including Ca2+ (Figure 4b). This was a result of the flexibility of the structure which 

results in minimal coordination changes for the migrating ions along the diffusion path. 

 

Two ways of improving the mobility of multivalent ions in insertion electrodes are the 

use of nanostructured materials to reduce the diffusion length from the electrode 

surface into the bulk and the elevation of the cell operating temperature. The use of 

elevated temperature cycling proved essential to the demonstration of reversible 

magnesium cycling in TiS2 [26] and thiospinels[22a] and also in the demonstration of 

reversible Ca plating in conventional electrolytes[15].  However, the increased 
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temperature of cell operation unfortunately also increases the kinetic of parasitic side 

reactions such as current collector corrosion and electrolyte breakdown [37]. 

 

3.2 Specific Cathode Materials: DFT Modelling and Experimental Results 

3.2.1 Layered compounds 

V2O5 

V2O5 has a corrugated layered structure and therefore has scope for expansion and 

contraction to accommodate the intercalation of large multivalent cations such as Ca2+ 

(Figure 5 a, b).  The rhombohedral structure undergoes several transitions to other 

phases with cation intercalation resulting in steps in the cell voltage.  

 

 Recently the stability of different V2O5 polymorphs and their barriers to Ca- and Na- 

ion diffusion have been investigated in detail by DFT simulations [38].  The authors 

found that while α-V2O5 and α-CaV2O5 are more stable than δ-V2O5 and δ-CaV2O5, 

significantly lower barriers for Ca-ion diffusion exist in bulk δ-CaV2O5 compared to 

α-CaV2O5.  This was ascribed to the smaller changes in ion coordination number 

along the diffusion paths implying that a better rate performance may be achieved by 

cycling Ca-ions in δ-CaV2O5 than in α-CaV2O5. 

 

 



21 
 

Figure 5. a) Displays the structure of orthorhombic V2O5, with the red pyramids 

indicating VO5 polyhedra and the yellow spheres corresponding to the intercalant 

atoms. b) Illustrates the difference between the alpha and delta polymorphs of 

orthorhombic V2O5.  Reproduced with permission.[39] Copyright 2015, Royal Society 

of Chemistry. c) Reversible electrochemical insertion of Ca2+ into nano-crystalline 

V2O5. Reproduced with permission.[40] Copyright 2001, Elsevier. 

 

The authors also compared the surface and bulk diffusion of Ca-ions in the two V2O5 

polymorphs and found significantly lower barriers to Ca-ion diffusion at the (010) 

surface compared to the bulk.  This surface dominates the equilibrium morphology of 

this compound and this finding explains the significantly improved performance of 

nanostructured V2O5 cathodes compared to bulk structures for Na+ and Mg2+ 

intercalation and implies that the same improvement may be expected for Ca2+ 

insertion in nano-crystalline electrodes.  

 

Amatucci et al.[30] were the first to experimentally investigate the intercalation of 

multivalent cations into V2O5.  They used nano-crystalline α-V2O5 in a 0.5 M 

Ca(ClO4)2 in propylene carbonate (PC) non-aqueous electrolyte in an asymmetrical 

cell with activated carbon as counter electrode and a Ag/Ag+ quasi-reference 

electrode. The nano-crystalline nature of the material reduced the diffusion lengths 

and improved the performance of the material. They reported reversible Ca2+ insertion 

for 3 cycles with a capacity of 200 mAhg-1 at ambient temperatures (Figure 5 c), but 

the large polarization between charge and discharge curves indicates the sluggish 

movement of the Ca-ions in the lattice. Extended cycling in this material has not yet 

been reported.  Although there was limited evidence of intercalation, they checked 
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carefully for the presence of proton insertion as the source of some of the increased 

capacity, compared to their experiments with Li+ intercalation in the same material. 

They concluded that the contribution of proton insertion was negligible.  However, Sa 

et al.[41] investigated Mg2+ insertion into α-V2O5 in wet (2600 ppm H2O) and dry (15 

ppm H2O) electrolytes and found clear evidence for proton intercalation in the wet 

electrolytes from solid state NMR, which resulted in increased capacity. Although 

there was evidence for Mg2+ intercalation in the dry electrolyte (XAS and EDX), the 

capacity was significantly reduced.  Caution is therefore required in assuming that the 

observed Ca2+ capacity in V2O5 is all due to Ca2+ intercalation and further 

investigation is required to exclude proton intercalation as a contributor to the 

measured capacity. 

 

Figure 6.  a) Bright Field Transmission Electron Microscope of the (VOx,PC) 

nano-composite annealed half an hour at 150 °C, b) The 3rd cycle in Ca(ClO4)2 

electrolyte of  a) the (VOx,PC) nanocomposite and of the pure vanadium oxide 

xerogel dried three weeks at RT and 1 week at 70 °C in vacuum. c) the (VOx,PC) 

nano-composite annealed 2 h at 150, 200 and 250 °C. The three-electrode cells were 

cycled at RT in a dry room at a current density of 7.58 mAg-1. Reproduced with 

permission.[21]  Copyright 2005, Elsevier. 
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Solvent co-intercalation has been flagged as a possible means of improving the 

mobility of multivalent ions in insertion electrodes.  The use of hydrated host 

structures partially shields the coulombic interaction between the multivalent cations 

and the host structure and improves the kinetics of ion migration.[42]  While this 

strategy is important in understanding the kinetic limitations, it should be noted that 

hydrated cathodes are incompatible with alkaline earth metal anodes such as Mg and 

Ca in full cell configurations.  However there is scope to explore solvent co-

intercalation effects with anhydrous solvents[5b]. 

 

Bervas et al.[21] formed V2O5 xerogels from alkoxide precursors which yielded a 

typical 2-dimensional structure.  They then prepared nanocomposites of crystalline 

V2O5 and propylene carbonate (PC) by prolonged soaking of the xerogel in PC and 

then heat-treated the composites at various temperatures to decompose or partially 

remove the PC.  The resulting product was an aerogel mesoporous network of 

amorphous or poorly crystallized vanadium pentoxide particles with the mesopores 

filled with PC (Figure 6a). The (VOx,PC) nanocomposites gave specific capacities in 

excess of 270 mAhg-1 when Ca-ions were intercalated and in excess of 350 mAhg-1 

when the composites were heat-treated to less than 200 °C (Figure 6 b and c) . A 

dried xerogel without any PC gave capacities of only 20 mAhg-1 by comparison, 

indicating that the PC insertion dramatically changed the Ca2+ insertion properties of 

the material, possibly by partially shielding the Ca-ions’ electrostatic interactions with 

the crystal lattice.  The presence of structural water may have also contributed to the 

good electrochemical performance in a similar way. 
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Hewettite, CaV6O16ꞏxH2O 

 

A recent abstract detailing reversible Ca2+ insertion and extraction in hewettite has 

been published.  Hewettite has a 2-dimensional layered structure of V3O8 layers with 

hydrated Ca-ions inserted between the layers and was prepared electrochemically by 

ion exchange with the sodium analogue.[23]  Reversible intercalation was found by CV 

and galvanostatic cycling.  Full details of this investigation have yet to be published. 

 

3.2.2 3-Dimensional Tunnel Structures 

Spinels  

Liu et al.[35] performed an ab initio study of a series of spinel structures as potential 

multivalent ion electrodes.   In the case of Ca-ion electrodes, reasonably high voltages 

for Ca2+ intercalation were predicted although the voltages were lower than those for 

the analogous Li compounds.  For example, CaMn2O4 was predicted to be a potential 

Ca2+ electrode based on the calculated stability of the charged and discharged forms of 

the electrode, with a predicted voltage of approximately 3.1 V vs Li/Li+, a potential 

energy density of 1000 AhL-1 and a gravimetric capacity of 250 mAhg-1.  However, 

there was also a large calculated volume change with Ca2+ intercalation of >25% which 

is an indication of instability in the lattice during insertion and extraction of the Ca-ion.  

Calculated Ca-ion mobilities were also predicted to be favorable in these compounds.  

However, CaMn2O4 normal spinels, have never been reported experimentally probably 

due to the fact that Ca-cations prefer to occupy high coordination sites rather than the 

tetrahedral sites in normal spinels.  In fact, no structures with Ca-ions in tetrahedral 

sites have ever been reported[43].  The possibility of forming the normal CaMn2O4 phase 
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has been investigated theoretically by Dompablo et al.[34b] and found to be impractical 

from solid state routes involving the heat treatment of post-spinel phases, requiring 

temperatures > 3000 K.  The preparation of normal spinel CaMn2O4 by soft chemistry 

routes is, however, not excluded.  However, the instability of Ca2+ in tetrahedral 

coordination is likely to result in inverse spinels with manganese in the tetrahedral sites, 

blocking the potential Ca-ion migration pathways. 

 

Arroyo et al.[44] also investigated theoretically the stable marokite CaMn2O4 structure as 

a potential Ca-ion electrode.  They found high barriers to diffusion of the Ca-ions from 

the initial stable 8-coordinate sites compared to the favorable ion mobility predicted for 

the normal spinel with low-coordinate site occupation initially.  This is in agreement 

with the findings of Rong et al.[36] Experimental results showed no electrochemical 

activity of Ca2+ in marokite, in agreement with the theoretical predictions. 

 

Perovskites 

DFT modelling of perovskite CaMO3 (M = Mo, Cr, Mn, Fe, Co, and Ni) compounds as 

Ca2+ electrodes has been reported by Arroyo et al.[44]   Results showed large volume 

changes > 20% for calcium perovskites with Ca2+ insertion and de-insertion, too large 

for practical battery applications.  The exception here was the case of Mo where the 

predicted volume changes were close to 10% with an average predicted voltage of 2.5 

V, good electronic conductivity, and several stable phases with intermediate calcium 

content.   However, the predicted barriers to Ca2+  mobility in this structure were found 

to be high (2 eV) and intrinsic to the structure, such that they could not be reduced by 
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changes in composition.   This prediction was confirmed experimentally as no 

electrochemical extraction of Ca2+ from CaMoO3 was observed.[44] 

3.2.3 Chevral Phases 

Smeu et al.[34c, 34d] investigated the use of CaMo6X8 (X= S, Se, Te) Chevral phases as 

possible Ca2+ ion electrodes.  A favorable voltage of 1.4 V was predicted for X=S vs 

Ca/Ca2+.  The barriers to the ionic mobility of Ca-ions were found to be significantly 

higher than those for Mg-ions indicating that Ca2+ diffusion would be slower than 

Mg2+ diffusion in these compounds.  The selenides gave lower diffusion barriers than 

the sulphides for both Mg- and Ca-ions.  Barriers for Ca2+ diffusion in Mo6S8 were 

780 meV and in Mo6Se8 520 meV compared with 270 and 180 meV for Mg-ions in 

the same two compounds.  This should be compared with the 525-650 meV 

quantitative limit for successful battery operation.  However, no experimental 

investigations of Ca-ion insertion in Chevral phases have been reported to date. 
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Figure 7.  a) Framework of PB analogues, Normalized b) Mn K-edge and c) Fe K-

edge ex situ XANES for MFCN after different stages of electrochemical cycling, d) 

Charge and discharge curves for the galvanostatic cycling of a cell with de-sodiated 

MFCN as the cathode, calciated tin as the anode, and 0.2 M Ca(PF6)2 in a 3:7 EC:PC 

electrolyte e)  Ex-situ XRD patterns of MFCN after different stages of 

electrochemical cycling. The 2θ values have been converted to what they would be if 

measured using Cu Kα X-rays. a) Reproduced with permission.[45] Copyright 2012, 

Royal Society of Chemistry. b)- d) Reproduced with permission.[17] Copyright 2015, 

American Chemical Society. 

 

3.2.4 Prussian Blue (PB) Analogues 

PB analogues are an example of Metal Organic Framework structures and have been 

investigated widely recently as insertion electrodes for batteries. [17, 46]  These 
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materials have the general formula AxMFe(CN)6.yH2O where A=Li,Na,Mg,Ca etc. 

and M=Ba,Ti,Mn,Fe,Co or Ni. They have a cubic framework (space group: Fm-3m) 

with M(II) and Fe(III) on alternate corners of a cube of corner-shared octahedra 

bridged by linear cyanide anions which expand the faces of the cubes (Figure 7a). PB  

analogues have recently been explored as electrodes for monovalent ion batteries (Li+, 

Na+, and K+) and have shown excellent cycling rates with good capacity retention and 

cycle life for K+ and Na+ using nickel and copper hexacyanoferrate[43, 45, 47] and in 

both aqueous and non-aqueous electrolytes.  They can be synthesized in bulk from 

aqueous solutions of metal salts and hexacyanometallate precursors by co-

precipitation.  This synthesis can be performed at room temperature and in aqueous 

solution so the production of these materials is potentially cheaper than the 

conventional oxide insertion hosts used for batteries.[47] 

 

Following the success with monovalent cation insertion, Lipson et al.[17] explored the 

possibility of Ca- ion insertion in the PB analogue NaMnFe(CN)6.  The material was 

initially desodiated electrochemically and then cycled in a non-aqueous Ca2+ 

electrolyte.  A capacity of 75 mAhg-1 was recorded for 3 cycles in 0.2 M Ca(PF6)2 in a 

3:7 EC:PC electrolyte using a BP2000 carbon anode and a rate of 10 mVs-1.  They 

demonstrated unequivocally the insertion and extraction of Ca-ions using EDX 

spectra and ex-situ XRD at different states of charge (Figure 7 e).  XANES spectra of 

the Mn K-edge clearly show a shift of the oxidation state of manganese with charge 

and discharge confirming Ca2+ insertion and extraction.  However similar shifts in the 

Fe K-edge were not observed indicating that only the Mn2+/3+ couple is active during 

the cycling (Figure 7 b and c).  

 



29 
 

Pairing the PB analogue cathode with a calciated Sn anode Lipson et al.[17] 

demonstrated the first full-cell CIB with an initial capacity of approximately 80 

mAhg-1 (Figure 7 d).   Initial coulombic efficiency was poor but stabilized after 3 

cycles due to the formation of a passivating surface layer.  Capacity retention after 35 

cycles was only 50%, however, due to possible delamination of the anode, dissolution 

of the Sn and an increase in cell resistance caused by surface film formation (Figure 7 

d).[17]  Despite this promising proof of concept demonstration, there is clearly much 

work to be done to achieve a practical, reversible CIB. 

 

In a follow-up study with nickel hexacyanoferrate Lipson et al.[46a] found that this 

material could also reversibly intercalate Ca-ions electrochemically from nonaqueous 

electrolytes although the initial capacity was only 60 mAhg-1 at a voltage of 2.6 V vs 

Ca/Ca2+ and capacity retention with cycling was poor.  These capacities are still too 

low for practical battery applications. 

 

Padigi et al.[48] investigated potassium barium hexacyanoferrate as a Ca-ion electrode.  

The inclusion of the large Ba cations in the lattice further expanded the lattice of the 

PB analogue to allow easy inclusion of the large Ca-ions.  Interestingly they found no 

electrochemical activity in dry acetonitrile electrolytes but, with the addition of 17% 

water in the Ca(ClO4)2 electrolyte, reversible peaks appeared in the CV. They 

reported a charge capacity of 62.2 mAhg-1 and a discharge capacity of 55.8 mAhg-1 

after 30 cycles (80% of the theoretical capacity of K2BaFe(CN)6) although no direct 

evidence of intercalation was given.  The charge transfer resistance was shown to 

decrease with increasing water content in the electrolyte.  The enhancement of 

polyvalent ion intercalation with water addition has been reported previously. 
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Kuperman et al.[49] investigated potassium iron hexacyanoferrate in non-aqueous CIBs 

and reported reversible capacities of 150 mAhg-1 at 23 mAg-1 current density.  

However the charge/discharge curves lack well-defined plateaus and instead are 

typical of the triangular curves that indicate capacitive behavior.  Thus, despite the 

apparent good performance, there is no concrete evidence of Ca-ion intercalation in 

this case. 

 

4. Electrolytes 

4.1 Non-aqueous electrolytes 

The development of electrolytes for Ca-ion batteries is in the very early stages. As 

discussed in 2.1, it was only in 2016 that the reversible deposition of calcium was 

demonstrated in non-aqueous electrolytes[15].   However, the fact that this is only 

possible at elevated temperatures limits the practical application of this system.  Prior 

to this, detailed studies by Aurbach et al. [24] had indicated that the formation of 

passivating surface layers in tetrahydrofuran (THF), γ-butyrolactone (BF), acetonitrile 

(ACN) and propylene carbonate (PC) with calcium salts (mainly BF4
- and ClO4

- 

anions) showed that deposition of calcium metal from nonaqueous solutions of Ca- 

ions was not possible at ambient temperatures.  

  

A thorough evaluation of non-aqueous Ca-ion electrolytes by Tchitchekova et al.[3] 

concluded that mass transport in these electrolytes is compromised by significant ion-

pairing (particularly at high salt concentrations) as well as stronger interactions 

between the ions and the solvent molecules compared to similar monovalent ion 
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(Li+/Na+) electrolytes (Figure 8). This difference becomes less marked at high 

temperatures, becoming insignificant at 100 °C. Ca-based electrolytes also have 

higher viscosities at ambient temperature than the corresponding lithium and sodium 

analogues; ion mobility varies inversely with viscosity.  For example, for electrolytes 

based on Ca(ClO4)2,  viscosities vary from 3 cP at ambient temperature for a 0.1 M 

solution to 70 cP for the 1 M analogues. Viscosity decreases with increasing 

temperature. 

 

 

Figure 8. Arrhenius plot of the electrolyte ionic conductivities. Reproduced with 

permission[3].  Copyright 2017, Electrochemical Society. 

 

Tchitchekova et al.[3] concluded that the kinetics of CIBs is limited, not only by the 

limited mobility of the Ca-ions in the solid state lattice, but also on the slow ion mobility 

in the non-aqueous electrolytes and issues associated with breaking the cation-electrolyte 

bonds at the electrode/electrolyte interface (desolvation effects), evidenced by the high 

impedance of calcium electrodes. This implies that development of electrolytes for Ca-

ion systems needs to focus on increasing cation mobility and limiting ion-electrolyte 

interactions.   The use of anion encapsulation and complexation of cations was suggested 

as a possible avenue to improve the mass transport of Ca-ions in solution.[3] 
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4.2 Aqueous Electrolytes 

Super-concentrated electrolytes have recently emerged for lithium ion batteries as they 

have been shown to have significantly different properties compared to the 1 M 

solutions used traditionally.[50]   Lee et al.[51] demonstrated that Prussian Blue analogue 

cathodes (CuHCF) gave different electrochemical performance in super-concentrated 

aqueous solutions of Ca(NO3)2 compared to dilute solutions.  Electrochemical capacities 

were increased slightly but, most remarkably, the capacity retention with 

electrochemical cycling was enhanced significantly.  When cycled for 150 cycles at a 2 

C rate, the cell using dilute electrolyte retained only 58% of its original capacity 

compared with 97% in the super-concentrated electrolyte.  The origin of this improved  

 

Figure 9:  Charge/discharge and cycling performance curves in (a), (c) 1 and (b), (d) 

8.37 mol dm−3 Ca(NO3)2 dissolved aqueous electrolyte during 150 cycles at 2 °C. 

Reproduced with permission.[51]  Copyright 2016, Chemical Society of Japan. 

 

performance is not yet well understood but XRD data showed that the CuHCF cathode 

retained its crystallinity in the super-concentrated electrolyte whereas the dilute 

electrolyte cathode showed a reduced crystallinity after cycling.  It was suggested that 

lower availability of water molecules may have reduced the extent of hydration of the 
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Ca-ions and thus reduced their ionic radius in the concentrated solution, facilitating 

insertion and extraction from the lattice.  This is, however, yet to be firmly elucidated.  

Super-concentrated aqueous electrolytes therefore offer a new avenue for exploration for 

CIBs with potentially improved performance compared with dilute electrolyte cells. 

 

5. Summary and Future Outlook  

 

The recent demonstration of the cycling of Ca metal in conventional non-aqueous 

electrolytes at elevated temperatures initiated research into CIBs.  However, the use of Ca 

metal anodes remains problematic.  Significant capacity drift and high electrode 

impedance complicate their application. Alternative, stable, easy to use anodes for Ca- 

ion studies, for example, alloy anodes or Ca2+ insertion anodes with low stable potentials, 

are required for cathode screening. Preliminary reports of Ca-Sn anodes are interesting 

and suggest the possibility of similar systems using other metals that are used for Na-ion 

battery anodes e.g. Bi and Sb. 

 

Ion-pairing and de-solvation issues have been highlighted as problematic for non-aqueous 

Ca-ion electrolytes at ambient temperatures and electrolyte development is required to 

address these issues and lower the temperature of cell operation. Suggested strategies 

include anion encapsulation and cation complexation. 

 

First principle modelling studies have revealed that reasonable Ca-ion mobility can be 

expected in layered materials such as V2O5 where the cations have a high coordination 
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number which varies only slightly along the diffusion paths. The diffusion rate can be 

optimized by appropriate selection of host structure, elevated temperatures, co-

intercalation of solvents, e.g. PC, or partial hydration of the host to reduce the 

electrostatic interactions.  The investigation of co-intercalated hosts using non-aqueous 

solvents is an area for possible exploration. The advantages of the presence of the solvent 

in the host can be obtained without the negatives of, for example, water which would 

preclude the use of calcium metal anodes.  The exploration of other layered host 

structures such as birnessite and hewettite is also suggested. 

 

Despite indications from DFT modelling suggesting high mobility for Ca-ions in close-

packed structure such as the Mn2O4 spinel network, no practical demonstration of this has 

been possible due to the difficulty of synthesizing compounds with Ca-ions in low 

coordination tetrahedral sites.  Soft chemistry routes to form calcium-containing 

manganese oxides remain to be explored. 

 

To date the best performing cathodes for CIBs are the molecular organic framework 

structures of Prussian Blue analogues.  However, in the studies reported so far, they have 

low capacities and poor capacity retention in non-aqueous electrolytes.  The best reported 

reversible Ca-ion insertion has been for CuHCF cathodes in super-concentrated aqueous 

electrolytes with excellent capacity retention at 2 °C and a capacity of 65 mAhg-1.  This 

capacity is, however, still too low for practical application. 

 

Multivalent ion batteries are undoubtedly an attractive prospect for increasing battery 

energy density.  The relatively new field of CIB development can be expected to benefit 
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from the knowledge base accumulated both in the investigation of other multivalent ion 

batteries such as Mg2+ batteries, and also in the development of Na-ion batteries since the 

ionic sizes of Na+ and Ca2+ are very similar.  There is a need for investigation across all 

major components of cell design: anodes, cathodes and electrolytes.  This represents an 

opportunity for researchers to initiate studies to increase the pace of development in this 

important technological area. 
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