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Abstract

In this study, the unsteady behavior of conjugate natural convection flow and heat transfer in

a differentially-heated square cavity divided by a partition with finite thickness and thermal

conductivity is studied using direct numerical simulation. A series of numerical simulation is

carried out for three values of dimensionless partition thickness (i.e., TP = 0.05, 0.1, and 0.2),

two values of dimensionless partition position (i.e., XP = 0.25 and 0.5), five values of the

thermal conductivity ratio (i.e., kr = 0.1, 1, 100, 500 and 1000) and six values of the Rayleigh

value (i.e., Ra = 103, 104, 105, 106, 107 and 108). For all these cases, the aspect ratio of the

cavity A = H/L = 1, and the Prandtl number Pr = 0.71 were used.

A computer code written in Visual C# programming language is developed in this study for

all numerical simulations. The code operates by solving the conservation equations for heat,

mass and momentum with the finite volume method. The main variables used throughout the

code are velocities and pressure, and the SIMPLE algorithm is employed to solve the velocity

and pressure fields. Each equation can be solved by TDMA (as a default algorithm) or other

methods. The developed code can solve steady/unsteady, compressible/incompressible, and

turbulent/laminar flows in a Cartesian coordinate system. The nomenclature of the TEACH

code (originated at the Imperial Collage) is mainly used in this code to increase readability.

To further improve the readability of this code, the code structure has been designed to have

separate and independent sections. Another code has been written in Visual C# to do the

post-processing of data using already produced binary files by the main code. The code is

verified and validated against the published results of partitioned (data from two studies) and

non-partitioned (data from 14 studies) cavities.

Empirical correlations are developed for the average Nusselt number by the iterative non-linear

curve fitting (i.e., the Levenberg-Marquardt algorithm) which include the effects of Ra, TP

and XP . It is found that the effect of XP is negligible. For high kr cases, the number of

isotherms in the partition is very low or is not present. The low temperature difference in the

partition leads to a negligible heat flux through the partition. In this situation, the partition

can be considered as an isothermal wall and the heat transfer characteristics are similar to

those of non-partitioned cavity cases, and consequently, the scaling relations for isothermals of

a non-partitioned cavity can be used. However, higher temperature gradients are present in the

partition in the low kr cases, compared to that in the high kr cases. Therefore, the temperature

xi



difference between the left and right sides of the partition is dependent on both kr and TP . In

this situation, the thermal behavior of the partition shifts from an isothermal wall like to isoflux

wall type. This type of partition has uniform heat flux, and the thermal resistance parameter

role becomes important and the scaling relations extracted for isoflux wall in a non-partitioned

cavity are more appropriate.

The overall behaviour of NuAve as kr varies is identified to have three distinctive regions;

thermal resistance, thermal transient and isothermal regions. The effect of TP on NuAve is

trivial for low Ra values. TP and kr have opposite effects on the thermal resistance parameter

of the partition. Therefore, there is a point where kr nullifies the effect of TP and the increased

thermal conductivity of the partition overcomes the thermal damping effect of the partition

thickness. This situation happened around kr = 100 for both the centrally positioned and

off-centre partitioned cavities.

The transient NuAve at the hot sidewall (or cold sidewall) of a centrally partitioned cavity

characterized by four regimes; conduction, quasi-steady, decaying and steady-state regimes.

For cavities with off-centre partitions (in this study partition is close to the hot sidewall)

this classification is different. The cold sidewall was characterized by the same four regimes

presented for a centrally partitioned cavity. However, for the hot sidewall, a regime identified

after decaying region and is called filling regime. Consequently, the five distinct regimes of

NuAve at the hot wall of an off-centre partitioned cavity are conduction, quasi-steady, decaying,

filling and steady-state.
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Chapter 1

Introduction

1.1 Background

Natural convection is a result of the change in the density of a fluid. Such a density difference

may be caused by a temperature difference, which is the most common case, or a concentration

or phase difference in a fluid. With the presence of gravity, the fluid possesses buoyancy, which

causes the motion of fluid without any externally applied force. It is customary for researchers

to idealize natural convection problems present in nature or industry, with simple physical

models, such as natural convection adjacent to horizontal or vertical thermal flat plates, in a

differentially heated cavity or in a differentially heated partitioned cavity. Natural convection

in a differentially heated partitioned cavity is widely present in various situations in nature

and engineering, such as solar thermal systems, electronic equipment, chemical and nuclear

reactors and buildings, to name just a few. Due to its fundamental significance and practical

application importance, natural convection in a differentially heated partitioned cavity has

attracted extensive research interest.

Electronic devices and equipment are now present in every aspect of our daily life. Electronic

computers, as an example, play a crucial role in producing modern equipment and have various

sizes, from the hand-held personal digital assistant to large-scale servers. In many cases, com-

puters are embedded within some other devices controlling their functions. New techniques and

1
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inventions lead to a trend towards higher circuit density. This increase needs further packaging

density accompanied by increasing power dissipation per a circuit which is the main reason for

the signal delay between communicating circuits. It is reported that the reliability of a silicon

chip will be decreased by about 10% for every 2 ◦C temperature rise. In fact, the major cause

of an electronic chip failure is the temperature rise (55%) and other factors have smaller effects

such as vibration (20%), humidity (19%) and dust (6%) [6]. Therefore, the importance of cool-

ing systems which enhances the module performance, and reliability is increasing. In addition,

it is important not only to keep the maximum temperature of the circuit below a certain limit

but also to maintain a uniform temperature. To meet the challenge of removing heat from the

electronic devices, several different technologies have been suggested. Figure 1.1 graphically

presents a comparison of common heat transfer modes and their performances. As figure 1.1

illustrates, natural convection is one of the cooling methods for electronic equipment. Although

it has a small working range of heat flux (up to about 5W of power can be cooled effectively by

natural convection [7]), it is desirable because of its simplicity and maintenance-free feature.

There are many cases of embedded circuits in other equipment that can be simplified to a dif-

ferentially heated partitioned cavity, as schematically illustrated in figure 1.2, as an example.

Another application is related to nuclear reactors [8–10]. The safety systems of a nuclear power

plant are designed to protect the plant in the case of accidents and to minimize the radioactivity

release. The hydrogen risk in light-water reactors can happen during severe accidents in which

hydrogen can be generated by the metal-steam reaction. As containment is the last barrier to

safety in a reactor, releasing hydrogen into the containment and forming combustible or even

detonable gas mixture can impose the danger of destroying its integrity. Three main options

considered to mitigate the hydrogen risk are inerting the containment atmosphere, mixing

the containment atmosphere to prevent high local concentrations of hydrogen and consuming

hydrogen by recombining or deliberate ignition [11–13]. The complex geometry and problem

of the hydrogen risk in a reactor containment can be reduced to a scientific heat transfer test

case of a differentially heated fully partitioned cavity. The schematic diagram of containment

and the simplified geometry are shown in figure 1.3.
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Figure 1.2: Schematic diagram of cooling electronic circuit (on the left) and its simplified
geometry (on the right).
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Figure 1.3: Schematic diagram of the reactor containment (on the left) and the simplified
geometry (on the right) [2].

Moreover, the interaction between indoor spaces and the environment is highly influenced by

the type of building materials, and a great amount of energy is consumed to compensate for the

heat loss through building walls and ceilings. To achieve internal thermal comfort conditions,

it is necessary to calculate cooling/heating load and specify the amount of heat that needs to

be removed from or added to buildings. Many thermal element’s arrangements in a building

can be simplified by a differentially heated partitioned cavity. For instance, a typical hollow

block used for walls can be a good example of a conjugate heat transfer system. The left and

right side walls may have different temperatures, and typically a block has at least one wall in

the middle (see, figure 1.4(a)) [14]. Two adjacent rooms in a building also can be considered

as a system of conjugate heat transfer, as illustrated on a larger scale. The case of the heated

left sidewall of the left room (by the sun for instance) and the cooled right sidewall of the right

room (by Air conditioner) is illustrated in figure 1.4(b). The conjugate heat transfer happens

between two neighboring rooms through the middle shared wall, which serves as a partition.

There are many other parts of a building that can be simplified to a partitioned cavity [15–19].
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Figure 1.4: Schematic diagram of a hollow block (on the left) and two adjacent rooms (on the
right) and the simplified geometry (on the bottom).
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Heat transfer in a partitioned cavity is also useful for the specific cooling studies such as the

cooling process of fuel oil in a wrecked ship. In 2002, the supertanker Prestige with more than

37, 500Tm of heavy fuel oil inside the tanks sank off the northern coast of Spain. To prevent

the oil spill from tanks, it is important to predict the fuel oil evolution inside the tanks of the

sunken ship. For the supertanker Prestige, authorities needed to know if the fuel oil would be

frozen in Atlantic Ocean (2.6 ◦C), if this was the case, how long it would take to reach this

state. To do the numerical simulation, the thermal arrangement of a sunk fuel oil tank can be

simplified to a differentially heated partitioned cavity [3]. Figure 1.5 illustrates the schematic

of a supertanker and a simplified geometry of the tank.

All these cases require a full understanding of the transient flow and heat transfer in a differen-

tially heated partitioned cavity. Although there are numerous studies on this topic, as will be

reviewed in the next chapter, such an understanding is still in its early developing stage, which

motivates this thesis.

cold wall

hot wall
partition

Figure 1.5: Schematic diagram of a supertanker [3].

1.2 Problem description and motivation

The physical system under consideration is a two-dimensional partitioned rectangular cavity

(with height H and width L and the aspect ratio A = H/L), as illustrated in Figure 1.6. The
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top and bottom walls of the cavity are adiabatic and the left and right opposing vertical side-

walls are isothermal fixed at temperatures Th and Tc (Th > Tc), respectively. A partition of

thickness Tp is placed on the location Xp from the left wall (both Tp and Xp are dimensionless,

made dimensionless by L). The working fluid is assumed to be air, which is initially quiescent

and at a temperature of (Th +Tc)/2 with a constant thermal conductivity (kf ). All the interior

walls and the partition surfaces are rigid and no-slip. The partition wall is heat conducting, with

finite thermal conductivity ks. At a specific time, by abruptly heating/cooling the left/right

vertical sidewall, a rising/falling natural convection boundary layer forms on the side walls of

the cavity. By intensifying convective heat transfer, the Rayleigh value Ra is large enough,

the sidewall natural convection boundary layer discharges heated/cooled fluid as a hot/cold

intrusion below/over the ceiling/floor as shown in figure 1.6 (a). The created intrusions move

from the sidewalls to the partition and impinge on it. Subsequently, a stratification and filling

process starts in each of the two half-cavities, as illustrated in figure 1.6 (b). This filling process

continues until it reaches a steady state and the heated/cooled fluids in the left/right half-cavity

are in contact with the partition, producing temperature differences across the partition, and

consequently, a falling/rising conjugate natural convection boundary layer discharging into a

cool/hot intrusion at the bottom/top of the half-cavity. For cavities with low convective heat

transfer, the impinging intrusions on the partition and the stratification process may not take

place. Such an interaction of cooled and heated fluids and the partition is a key phenomenon

in the cavity and the main design constraint in many industrial applications, such as building,

industrial equipment (gas turbine, electric equipment, reactors, etc.), as well as is of significant

theoretical importance [20–26].
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Figure 1.6: Schematic of flow pattern in a differentially heated partitioned cavity.
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1.3 Objectives

Early studies on conjugate heat transfer mainly focused on applying different assumptions

about the velocity distribution in the conjugate natural convection boundary layers such as the

linear velocity distribution to simplify the problem [27]. Some other investigations analytically

solved the conjugate heat transfer problem in the form of the generalized power series [28]. The

assumptions of constant partition temperature (e.g., [29, 30]), constant heat flux (e.g., [31])

and power-law temperature distributions (e.g., [32, 33]) made in these early studies helped to

simplify the problem.

The existing developed tools are mainly for chained and steady rather than coupled and tran-

sient phenomena. Therefore, the majority of the past studies have focused on the steady effect

of natural convection in a partitioned cavity with a thin partition or a partition with infinite

thermal conductivity and simplified initial thermal conditions. The objective of the present

study is to numerically analyze transient heat transfer through coupled thermal boundary lay-

ers in a partitioned cavity with more realistic assumptions; that is, with a partition which has

a finite thickness and thermal conductivity.

The computational domain and the boundary conditions for the differentially heated cavity

with a partition which has a finite thickness, and thermal conductivity are schematically shown

in figure 1.7.

The specific objectives of this investigation are:

• To develop an in-house code in Visual C# to solve the discretized governing equations

generated by the finite volume method and to post-process the data;

• To verify and validate the developed code with available numerical and experimental

results;

• To use the direct numerical simulation results to demonstrate the behavior of transient

conjugate natural convection and heat transfer in a partitioned cavity;
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Figure 1.7: Schematic of the computational domain and boundary conditions.

• To investigate the effect of partition properties (e.g., partition position, thickness and

thermal conductivity) on the flow patterns and the conjugate natural convection heat

transfer in a partitioned cavity for a wide range of the Rayleigh value; and

• To obtain empirical relations to quantify the conjugate natural convection heat transfer

in a partitioned cavity.

1.4 Thesis outline

The remaining parts of this thesis are outlined as follows:

• Chapter 2 presents the literature review on the relevant previous studies on the topics of

this work, which include natural convection over a plate, in an open cavity, and in a closed

cavity, conjugate natural convection heat transfer, and conjugate natural convection in a

closed cavity.
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• Chapter 3 presents the governing equations and the appropriate boundary and initial

conditions. In addition, the finite-volume numerical method used for direct numerical

simulation is also described.

• Chapter 4 details the developed code of current work. It includes details of how the code

is written and how the code works. It also presents the details about the post-processing

of data produced from direct numerical simulations. The details of the verification and

validation of the developed code against the available experimental and numerical results

are also presented for both the partitioned and non-partitioned cases.

• Chapter 5 presents the steady-state results of natural convection in a partitioned cavity.

The effects of different parameters on the steady-state heat transfer and flow patterns

are detailed and empirical relations are obtained with the numerical results over a wide

range of the Rayleigh value.

• Chapter 6 presents the transient results of natural convection in a partitioned cavity.

The evolution of the unsteady behavior of the flow and heat transfer is presented for both

centrally positioned and off-centred partitioned cavities. The effect of different parameters

on the heat transfer and flow pattern is studied, and several heat transfer regimes are

identified and classified, with several empirical relations developed with the obtained

numerical results.

• Chapter 7 concludes the thesis by summarizing the major findings of this thesis and

discussing some future work.



Chapter 2

Literature review

2.1 Introduction

Natural convection flow and heat transfer vary widely under various boundary conditions,

geometries, fluids and flow regimes. There have been a great number of analytical, experimental

and numerical studies on the various types of natural convection flow and heat transfer, with

some reviewed in e.g., [34–40]. In the current literature review, only the types closely related

to the current study are discussed. These include the natural convection flow and heat transfer

and conjugate natural convection flow and heat transfer under three different geometries: over

a vertical plate, in a cavity with differentially heated sidewalls, and in a partitioned cavity

with differentially heated sidewalls. It is well known that the general behaviors of natural

convection flow and heat transfer are characterized and quantified mainly by three dimensionless

parameters, i.e., the Rayleigh value (Ra) (or the Grashof number (Gr)), the Prandtl number

(Pr) and the aspect ratio of the cavity (A), defined as follows,

Ra =
βfg∆TH3

νfκf
= Gr × Pr, (2.1)

Pr =
νf
κf
, (2.2)

A =
H

L
, (2.3)

12
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although other parameters may also be important to govern the flow and heat transfer as well.

2.2 Natural convection over a vertical plate

2.2.1 In an initially thermally stratified fluid

Natural convection flow over a vertical plate in a thermally stratified medium has been ex-

tensively studied due to its application importance (e.g., the cooling of nuclear reactors) [41].

Figure 2.1 shows the basic configuration of natural convection over a plate in an initially ther-

mally stratified fluid.

g

x T

y y

Background
stratification

Plate

Figure 2.1: Schematic of natural convection over a vertical plate in an initially thermally
stratified fluid.

For the case of a mountain and valley winds in the stratified air; a seminal analytical solution

was presented by Prandtl [42] to supply the exact solution for natural convection along a slope

that is maintained with a constant temperature excess with respect to the outer air linear

stratification. As shown by Tanny and Cohen [43], a plane parallel flow was observed along the

slope.
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Many analytical methods were employed previously to solve the problem of a vertical wall

immersed in a thermally stratified environment. For instance, similarity solutions are used

to extract a set of ordinary differential equations [44]. This method has been used in many

cases such as non-isothermal vertical flat plate [45], an isothermal wall immersed in a partic-

ular polynomial profile of thermal stratification [46], fixed wall temperatures [47], prescribed

linearly increasing temperatures on both wall and the medium [48] and uniform heat flux [49].

Cheesewright [50] analytically studied natural convection heat transfer over a semi-infinite ver-

tical plate immersed in a thermally stratified medium. The existing similarity solutions were

generalized to include the effect of a non-isothermal surroundings. Scaling analysis was per-

formed by Armfield et al. [51] on the natural convection boundary layer adjacent to an evenly

heated semi-infinite plate with stratified ambient fluid. They obtained the scaling relations

for the start-up, transitional and full development and reported that at full development, the

stratified case had a region of two-dimensional flow near to the plate origin, while the remain-

der of the flow, far from the plate origin, was one-dimensional. The scaling relations were

confirmed by their numerical solutions, especially for the case of the one-dimensional region of

the start-up, transitional and the fully developed flow as well as the two- to one-dimensional

transition location.

Many numerical studies have been conducted on the laminar natural convection from an

isothermal vertical surface in a stable thermally stratified medium using different numerical

schemes [52–54]. The natural convection on a vertical plate with uniform and constant heat

flux in a thermally stable and stratified micropolar fluid was numerically studied by Chang and

Lee [55]. It was reported that an increase in the stratification parameter reduces the wall tem-

perature, the skin friction parameter, and the wall couple stress. Shapiro and Fedorovich [56]

studied unsteady laminar natural convection in a stratified flow along an infinite vertical plate.

They considered the induced flow due to an impulsive (step) change in plate temperature; a

sudden application of a plate heat flux, and arbitrary temporal variations in plate temperature

or plate heat flux. Turbulent natural convection along a vertical plate immersed in a stably

stratified fluid is investigated by Fedorovich and Shapiro [57]. It is found that the transition

from a laminar to a turbulent regime shows a quasi-stationary oscillatory phase due to the in-
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teraction between turbulence and the ambient stable stratification. The turbulent fluctuations

gradually fade out by increasing distance from the wall, while periodic laminar oscillations

persist over much larger distances before disappearing.

2.2.2 In an initially constant temperature fluid

Lin and Armfield [58] used scaling analysis to investigate the transient behavior of the natural

convection boundary-layer flow adjacent to a vertical plate heated with a uniform flux in a

quiescent homogeneous ambient fluid with the Prandtl number less than one. The induced flow

was classified as a startup stage, a short transitional stage and a steady state. The velocity

boundary layer divides to the inner region and the outer region with each having different

behavior and consequently, different scaling relations. It was found that the applicability of

the scaling is limited by both distance from the plate origin and the Boussinesq number (Bo =

Pr × Ra) as close to the origin and/or at low Boussinesq numbers the flows are no longer

self-similar. Lin et al. [59] recently also conducted a scaling analysis for the unsteady natural

convection boundary layer (NCBL) of a homogeneous Newtonian fluid with Pr > 1 adjacent

to a vertical plate evenly heated with a time-dependent sinusoidal temperature.

Hossain et al. [60] studied the effect of a fluctuating surface temperature and surface concen-

tration on surface heat flux and surface mass flux from a vertical flat plate. The linearized

theory [61–63] was used to solve the unsteady natural convection flow from a vertical plate,

and it was reported that the amplitude and phase angles of the surface heat flux as well as of

the surface mass-flux predicted by the perturbation and asymptotic methods are in good agree-

ment with the finite difference solutions. Furthermore, the effect of the streamwise temperature

and species concentration variations on a steady natural convection flow from a vertical plate

was investigated by Hossain and Roy [64]. Direct numerical simulation was used to investigate

boundary-layer instability of a natural convection flow on a uniformly heated vertical plate sub-

merged in a homogeneous quiescent environment by Aberra et al. [65]. The two-dimensional

investigation was conducted for the local Rayleigh value over the range of 0 ≤ Rax ≤ 2.4×1010

and the working fluid of air and water and the critical Rayleigh values were reported separately



16 Chapter 2. Literature review

for both the temperature and velocity signals.

Due to the wide application of natural convection over a vertical plate, various working fluids

have been studied previously. Effect of nanoparticles on natural convective boundary-layer flow

over a vertical plate for the case of actively and passively controlled nanofluid particle fraction

on the boundary was studied by Kuznetsov and Nield [66, 67] using similarity transformation.

Teymourtash et al. [68] numerically investigated laminar natural convection with uniform or

non-uniform prescribed surface heat flux over a vertical flat plate in the supercritical fluid.

It was reported that by increasing and decreasing wall heat flux, the local Nusselt number

increases and decreases, respectively.

2.3 Natural convection in an open cavity

Open cavities exist in various engineering systems, such as solar thermal receivers and collectors,

electronic chips, passive systems, etc. An open cavity can be total [69], partial [70] or partial

with screens or slots [71].

2.3.1 Numerical studies

There are numerous numerical studies on natural convection in open cavities (see, e.g., [70,

72–87]). Laminar steady natural convection in an inclined shallow cavity was numerically

studied by Polat and Bilgen [88]. The side facing the opening has a constant heat flux, the

sides perpendicular to the heated side are adiabatic and the opening is in contact with a fluid

(Pr = 1) at constant temperature and pressure. The volumetric flow rate and heat transfer

were found to increase with the increase of the aspect ratio and the Rayleigh value. Bilgen and

Oztop [89] numerically investigated laminar natural convection in an inclined partially open

square cavity in which the wall facing the opening was isothermal and in contact with air. For

103 ≤ Ra ≤ 106 it was found that the volume flow rate and the Nusselt number increase with

the Rayleigh value, the aperture size, and the general aperture position. They also reported
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that the Nusselt number was affected by the inclination angle, although the relation is not

linear. The results also showed that it is possible to maximize or minimize heat transfer by

selecting appropriate parameters (i.e., aperture size, aperture position and inclination angle) at

a given operation Rayleigh value. Airflow due to natural convection in a partially open square

two-dimensional cavity with internal heat source, adiabatic bottom and top walls, and vertical

walls maintained at different constant temperatures was numerically investigated by Fontana

et al. [90], which showed that the heat source was dominant at low Rayleigh value, but as

the Rayleigh value increases the flow becomes being dominated by the temperature difference

between the sidewalls.

2.3.2 Experimental studies

Chakroun et al. [91] and Elsayed and Chakroun [92] experimentally investigated natural con-

vection in a rectangular partially or fully open from one side tilted cavity. The wall facing the

cavity opening was heated to a constant heat flux and the other walls were adiabatic. The ex-

periments were carried out for air as a working fluid and Gr = 5.5×108, the tilt angle measured

from the vertical direction between −90 deg to +90 deg in 15 deg increments, the aspect ratio

(height-to-width of cavity) of 1, 0.5 and 0.25 and the opening ratio (opening height to cavity

height) of 1, 0.5 and 0.25. The average Nusselt number was reported for different experimental

parameters. Combined natural convection and surface radiative exchange in a solar open cubic

cavity-type receiver was theoretically and experimentally investigated by Montiel-Gonzlez [93].

It was reported that as the Rayleigh value increases over the range of 104 ≤ Ra ≤ 106, the

total average Nusselt number in the cavity increases by 331% to 411%. The experimental and

numerical results were in fairly good agreement near the top and bottom walls whereas near

the isothermal wall, there are some differences between the temperatures obtained numerically

and experimentally. Maytorena et al. [94] investigated experimentally and numerically the tur-

bulent natural convection in an open cubic cavity with the air as the heat transfer fluid and the

vertical wall opposite to the aperture was subjected to uniform heat flux, with Ra over the range

of 1.66×1011−7.1×1011, resulting in the Nusselt number over the range of 185.94−243.31 and
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the heat transfer coefficient over the range of 4.88 − 6.83 W/m2K. The maximum differences

between the experimental and numerical data for heat transfer coefficient and Nusselt number

were 10.8% and 14%, respectively.

2.4 Natural convection in a closed cavity

The two-dimensional convective motions in boundary layers of a rectangular cavity were studied

by Gill [95] and an approximate solution obtained in large Prandtl numbers was found to be

in good agreement of experimental results. Steady laminar natural convection of cold water

in a vertical annulus with a constant-heat-flux heated inner wall and an isothermally cooled

outer wall was studied by Ho and Lin [96]. Over the ranges of 0.5 ≤ aspect ratio ≤ 8, 1.2 ≤

radius ratio ≤ 10, −2 ≤ density inversion parameter ≤ 1 and 103 ≤ Ra ≤ 106), they found that

the Nusselt number increases as the radius ratio increases and in a tall annulus (aspect ratio =

8) multicellular flow behavior intensifies. The multicellular solution in natural convection in a

vertical air-filled tall cavity with differentially heated sidewalls was studied by Wakitani [97,98].

It was found that flow structure depends on the initial conditions. Kimura and Bejan [99]

analytically and numerically investigated natural convection in a rectangular cavity with a

constant uniform heat flux (heating and cooling) at the vertical sidewalls. They reported that

the boundary-layer thickness was independent of height, and the vertical wall temperature

gradient is similar to the motionless linearly stratified core region.

2.4.1 Scaling analysis

Patterson and Imberger [100] investigated unsteady natural convection in a rectangular cavity

with differentially heated and cooled side walls. With their pioneering scaling analysis, they

classified flow development through several transient flow regimes to one of three steady-state

types of flow based on the relative values of the Rayleigh value, the Prandtl number, and

the aspect ratio of the cavity. Their scaling relations were in agreement with two- and three-

dimensional numerical simulations of the transient flow in a side-heated cavity conducted by
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Schladow et al. [101]. Since then, further extensive scaling analyses have been performed by

many researchers to extend the scaling analysis by Patterson and Imberger [100] to numerous

cases with wide ranges of governing parameter values and different flow configurations (see,

e.g., [51, 58, 102–112]). For example, Lin and Armfield [58] investigated the transient behavior

of the natural convection boundary-layer flow adjacent to a vertical plate heated with a uni-

form flux in a quiescent homogeneous ambient fluid with the Prandtl number less than one by

scaling analysis and direct numerical simulation. To further extend their research, they carried

out scaling analysis for fluids with the Prandtl number larger than one under isothermal heat-

ing [112]. They reported a strong Prandtl number dependency in the characteristic quantities

for the velocity in both the developing and fully developed structures of the natural convec-

tion boundary layer. Scaling for the unsteady natural convection boundary layer (NCBL) of

a homogeneous Newtonian fluid with Pr > 1 adjacent to a finite vertical plate evenly heated

with a time-varying sinusoidal temperature was developed recently by Lin and Armfield [59].

They carried out direct numerical simulation with the similar ranges of Ra, Pr, and fn to that

for the time-varying sinusoidal heat flux case [113], and used a simple three-region structure

proposed in [104, 112] to develop the scaling relations, and found that the developed scaling

relations agree with the numerical results very well. Some of the previous studies on natural

convection using scaling analysis are summarized in Table 2.1.

2.4.2 Effect of the governing parameters and boundary conditions

The Prandtl number is one of the dimensionless parameters governing the flow patterns and

thermal behavior in natural convection flows. To compare the experimental results with the

numerical results, Viskanta et al. [114] conducted a numerical research on two- and three-

dimensional cavities filled with a low Prandtl number fluid (gallium). They found a good

agreement between the experimental and numerical results. Natural convection in an internally

heated square cavity with a low-Prandtl number fluid was studied by Arcidiacono et al. [115].

A left-right symmetry and steady flow were observed in the Grashof number up to 107. Asym-

metric steady-state flow patterns were observed in the Grashof number of 3×107 and it becomes
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Table 2.1: List of the selected studies on natural convection using scaling analysis.

Authors Steady/unsteady Configuration

Patterson and Imberger [100] Unsteady Differentially heated rectangular
cavity

Lin and Armfield [102] Unsteady Cooling of fluid (Pr < 1) in a ver-
tical cylinder

Lin et al. [103] Unsteady A linearly-stratified fluid with
Pr < 1 on an evenly heated semi-
infinite vertical plate

Patterson et al. [104] Unsteady A vertical wall following non-
instantaneous heating

Tomasz et al. [105,106] Unsteady Paramagnetic fluids with the
Prandtl number greater than one
in a square cavity

Armfield et al. [51] Unsteady An evenly heated semi-infinite
plate with stratified ambient fluid

Aberra et al. [107] Steady An evenly heated vertical plate
(Pr > 1)

Saha et al. [108] Unsteady An inclined plate with uniform
heat flux

Saha et al. [109] Unsteady An inclined plate subject to sud-
den cooling

Saha et al. [110] Unsteady A triangular cavity subject to a
non-instantaneous heating on the
inclined walls

Saha et al. [111] Unsteady Semi-infinite vertical plate heated
with a uniform ramp heat flux

Lin and Armfield [58] Unsteady A vertical plate heated with a uni-
form flux

Lin et al. [112] Unsteady A vertical plate
Lin and Armfield [59] Unsteady Time-dependent temperature on

a vertical plate

time-periodic at the Grashof number of 5×107 and finally chaotic at the Grashof number higher

than 108. The same configuration of Arcidiacono et al. [115] was used for another study for the

cavity aspect ratio of 4, and different flow regimes of steady-state, periodic and chaotic were

obtained [116]. Koca et al. [117] tested the effect of the Prandtl number on natural convection

in a triangular cavity with localized heating from below and observed that the Prandtl num-

ber, the location and the length of the heater, as well as the Rayleigh value, affect flow and

temperature fields. The Rayleigh value as another dimensionless parameter influencing natu-

ral convection has also been widely investigated (see, e.g., [118–121]). Dixit and Babu [122]
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numerically simulated high Rayleigh values (up to 1010) natural convection in a square differ-

entially heated cavity. Their results were in very good agreement with the benchmark results.

In another research, Kulacki and Emara [123] experimentally studied high Rayleigh value (up

to 2.17× 1012) natural convection with internal heat sources in a horizontal fluid layer with an

insulated lower boundary and a constant-temperature upper boundary.

Natural convection heat transfer subjected to different boundary conditions has been the topic

of many studies (see, e.g., [124–127]). Sathiyamoorthy et al. [128] numerically analyzed the

steady natural convection flow in a square cavity with a sinusoidal heated bottom wall, linearly

heated sidewalls and insulated top wall. They presented their results for the Prandtl number

from 0.01 to 10 and the Rayleigh value of 105. Natural convection in a cavity heated from

bellow was numerically and experimentally investigated by Calcagni [129], with the heat source

length varying from 1/5 to 4/5 of the height and sidewalls acting as cooling elements while the

other surfaces being adiabatic. It was revealed that at low Rayleigh values (Ra ≤ 104) heat

transfer mechanism was mainly developed conduction and convective heat transfer at Ra ∼= 105

and heat source length increase causes an increase in heat transfer especially for high Rayleigh

values. To examine the cooled ceiling application, natural convection in a rectangular enclosure

heated from one side and cooled from the ceiling was studied numerically by Aydin et al. [130].

For 103 ≤ Ra ≤ 107, the effect of the aspect ratio on the flow pattern and energy transport was

analyzed. They found that in shallow cavities, the effect of Rayleigh value on the heat transfer

is more significant, and the influence of the aspect ratio is stronger for tall cavities with high

Rayleigh values.

A partially heated cavity is an important subject in natural convection problems due to wide

applications and has been extensively investigated for different thermal conditions (see, e.g.,

[117, 131–139]). The effect of the heater size, location, aspect ratio and boundary condition

in a rectangular air-filled enclosure was studied both experimentally and numerically by Chu

et al. [140]. They reported that the heater size and location were very important parameters

on temperature fields and heat transfer as the maximum Nusselt number is obtained almost

for all Rayleigh values when the heater is located in the middle of the wall. The effects of

the heater and cooler locations on natural convection in cavities were numerically examined by
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Turkoglu and Yucel [141]. They observed that the mean Nusselt number increases as the heater

moves closer to the bottom wall for a given cooler location and as the cooler moves closer to

the top horizontal wall for a given heater location. Valencia and Frederick [142] investigated

an air-filled square cavity with partially thermally active side walls for five different heating

locations. They reported that heat transfer rate increases when the heating section is in the

middle of the hot wall.

It is well known that heat transfer coefficient for natural convection is low. Geometry optimiza-

tion is one method to enhance heat transfer performance. Another way for scaling up of heat

transfer capacity is nanofluids. Dilute suspensions of nanoparticles (such asAl2O3, CuO,Cu, SiO

and TiO2) smaller than 100 nm are nanofluids and due to their wide application, nanofluids are

the centre of attention for many researchers. For example, Hwang et al. [143] used nanofluids to

investigate natural convection in a differentially heated cavity and found that the ratio of heat

transfer coefficient of nanofluids to that of the base fluid decreases as the size of nanoparticles

increases. The heat transfer enhancement by utilizing nanofluids was also well investigated in

some of the previous studies (see, e.g., [144–147]), as summarized in Table 2.2.

Table 2.2: List of the selected experimental studies on natural convection of nanofluids.

Authors Rayleigh value Nanoparticle

Putra et al. [148] 107 − 109 Al2O3, CuO

Wen and Ding [149] 104 − 106 TiO2

Nnanna [150] 0.9× 107 − 3.0× 107 Al2O3

Li and Peterson [151] 8× 103 − 2.8× 104 Al2O3

Ho et al. [152] 6.21× 105 − 25.6× 108 Al2O3

Jahanshahi et al. [153] 105 − 107 SiO2

2.4.3 Effect of cavity shape and inclination

Flow and consequently heat transfer in a cavity strongly depend on the enclosure shape. The

main cavity shapes investigated include rectangular [154, 155], cylindrical [156, 157], triangu-

lar [158,159], spherical [160], trapezoidal [161], parallelogram [162,163], octagonal [164], hemi-
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spherical [165,166] and pentagonal [167]. Each cavity shape and boundary condition represents

a possible application in nature or industry. For instance, Hyun and Choi [168] studied the

natural convective heat transfer in a parallelogram-shaped enclosure at large Rayleigh values.

They reported that it was possible to use a parallelogram-shaped enclosure as a transient ther-

mal diode to control the tilt angle of the partition walls. Natural convection heat transfer was

studied in a trapezoidal enclosure with parallel cylindrical top and bottom walls at different

temperatures and adiabatic sidewalls by Iyican et al. [169], who presented the average and local

Nusselt numbers for Ra up to 2.7× 106 and the inclination angle from 0 to 180 degrees (mea-

sured from the vertical). Kent [170] investigated two-dimensional laminar natural convection

in an isosceles triangular enclosure for the cold base and hot inclined walls. The cavity was

filled with air and the effect of Ra and the aspect ratio on the flow pattern and heat transfer

were analyzed over the ranges 15 to 75 degree for the base angle and 103 − 105 for Ra. It

is reported that as the base angle decreases isotherms compresses towards the bottom wall

and consequently a low aspect ratio shows a higher heat transfer rate from the bottom of the

triangular cavity. Kent et al. [171] further studied natural convection in triangular cavities by

investigating a right-angled triangular cavity. For the same Ra range of [170] and the aspect

ratio from 0.1 to 4, they observed that at the higher aspect ratio, the effect of the hot bottom

wall at the upper portion of the cavity is negligible, and a single circulation cell was formed

at the middle and bottom parts of the cavity. They also found that for the various thermal

boundary conditions the mean Nusselt number of the hot wall increases with increasing Ra.

By tilting cavities, the induced natural convection behavior changes and the inclination angle

plays a key role in the heat transfer and flow pattern. Hart [172] studied the effect of inclination

angle on the flow characteristics in a differentially heated rectangular cavity and reported that

the instability types predominantly depend on the inclination angle. The study by Kuyper

et al. [173] showed that the Nusslet number has a strong dependence on the inclination angle

and its relation with Ra is in power-law fashion. Hollands and Konicek [174] studied different

flow regimes in angled cavities in terms of the critical Rayleigh value related to the stability

of air layers in the conduction regime. More studies conducted on inclined cavities to find the

effect of the aspect ratio [175] and the Nusselt number [176]. Kalendar and Oosthuizen [177]
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Table 2.3: List of the selected studies on natural convection in cavities with different shapes.

Authors Shape

Anderson and Lauriat [154] rectangle

Arpino et al. [155] rectangle

Bari [156] cylinder

Edwards and Catton [157] cylinder

Lei et al. [158] triangle

Basak et al. [159] triangle

Kent [170] triangle

Kent et al. [171] triangle

Chiu and Chen [160] sphere

Varol et al. [161] trapeze

Iyican et al. [169] trapeze

Almeida and Naylor [162] parallelogram

Aldridge and Yao [163] parallelogram

Hyun and Choi [168] parallelogram

Saleh et al. [164] octagonal

Bari and de Mara [165] hemisphere

Shiina et al. [166] hemisphere

Ridouane and Campo [167] pentagon

studied natural convection heat transfer in an isothermal inclined cylinder with a square cross-

section which was an approximate model of that which occurs in some electrical and electronic

component cooling problems. The influence of Rayleigh value, inclination angle and the ratio

of the width to the height of the heated cylinder on the Nusslet number presented. The effect

of the inclination angle on the critical Rayleigh value in an air-filled open cavity was studied

by Nateghi and Armfield [178]. They obtained the critical Rayleigh value over the range of

105 ≤ Ra ≤ 1010 and the inclination angle over the range of 0 to 90 degrees and reported

that the critical Rayleigh value decreases as the inclination angle increases. The flow structure,

stability, and heat transfer in an inclined differentially heated cavities were investigated by

Williamson et al. [179]. The attached jet/plumes formed adjacent to the adiabatic walls was
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observed in the inclined cavity and the same relation between the critical Rayleigh value and

the inclination angle as that from [178] was reported.

2.4.4 Benchmark studies

To validate numerical results, several benchmark investigations on natural convection have

been carried out (see, e.g., [180–184]). A numerical benchmark investigation was done by

Davis [185] on natural convection in an air-filled square cavity. Ampofo and Karayiannis [186]

conducted an experimental study on low-level turbulence natural convection in an air-filled

vertical square cavity. The vertical isothermal sidewalls were at 50 and 10◦C respectively

giving the Rayleigh value of 1.58 × 109. The local velocity and temperature, the local and

average Nusselt numbers, the wall shear stress as well as the turbulent kinetic energy and the

dissipation rates of the temperature variance were reported. A three-dimensional benchmark

numerical research was performed on natural convection in a differentially heated cavity by

Wakashima and Saitoh [187]. Three Rayleigh values of 104, 105 and 106 and the fixed Prandtl

number of 0.71 were chosen for the numerical study. Flow visualization was used to examine

natural convection in a rectangular inclined cavity by Linthorst et al. [188]. Different ranges

of the aspect ratio (0.25 ≤ A ≤ 7), the inclination angle (0 to 90 degree) and Ra (5 × 103

to 2.5 × 105) were selected for an air-filled cavity. They identified transition from stationary

to nonstationary flow and the transition from two-dimensional to three-dimensional flow for

the considered ranges of the parameters. The list of discussed benchmark studies with their

specification is presented in Table 2.4.

2.4.5 Transient studies

LeQuere and Alziary de Roquefort [189] numerically investigated the transient behavior of

air-filled cavities with isothermal side walls and adiabatic horizontal walls. They reported that

there were oscillations due to the internal gravity waves which were eventually damped out when

the steady state obtained. In a subsequent research, LeQuere and Alziary de Roquefort [190]
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Table 2.4: List of the selected benchmark studies on natural convection in differentially heated
cavities.

Reference Method Rayleigh value Working fluid

Leong et al. [180] Experimental 104 − 108 air

Pepper and Hollands [181] Numerical 105 − 108 air

Le Quéré et al. [182] Numerical 106 − 107 air

Cheikh et al. [184] Numerical 105 − 109 air

Davis [185] Numerical 103 − 106 air

Ampofo and Karayiannis [186] Experimental 1.58× 109 air

Wakashima and Saitoh [187] Numerical 104 − 106 air

Linthorst et al. [188] Experimental 103 − 105 air

determined the critical value of the Rayleigh value for the transition to periodic flow as a

function of the aspect ratio. The transient natural convective flow in a rectangular cavity with

a uniformly heated vertical wall was investigated by Kuhn and Oosthuizen [191]. Mohamad

and Viskanta [192] found the oscillation reported by LeQuere and Alziary de Roquefort [189] at

the critical Grashof numbers, which were dependent on the Prandtl number (Prandtl number

of 0.001, 0.005 and 0.01). Numerical and experimental results for transient two-dimensional

natural convection initiated by instantaneously heating and cooling the opposing vertical walls

of a square cavity containing a stationary and isothermal fluid were compared by Patterson

and Armfield [193]. Unsteady natural convection has also been extensively investigated for

different cavity shapes and configurations. Scaling analysis and direct numerical simulations

was used to investigate transient flows in a differently heated cavity with a fin at different

positions on the sidewall by Ma and Xu [194]. It was reported that the development of transient

flows around the fin is dependent on the fin position and the Rayleigh value. To explore the

transient behavior of isoflux side walls in a square cavity, Jiracheewanun et al. [195] conducted

a numerical simulation and revealed that transient flow features obtained for the isoflux cavity

were similar to the flow features for the isothermal case but the fully developed flow features

were very different. Rostami [196] and Hasan et al. [197] presented numerical predictions for

unsteady heat transfer and fluid flow characteristics in enclosures with vertical wavy side walls

and sinusoidal corrugated side walls, respectively. Nithyadevi et al. [198] and Kizildag et al.

[199] studied transient natural convection in a square cavity with partly thermally active side
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walls and a rectangular cavity of the 7:1 aspect ratio under transient boundary conditions,

respectively. Younis et al. [200] described a numerical analysis of the effects of thermal boundary

conditions, fluid variable viscosity and wall conduction on unsteady laminar natural convection

of a high Prandtl number fluid (Pr = 4× 104). The time evolutions of heat transfer and flow

pattern of eight different cases of cooling were presented and analyzed. Furthermore, Lin [201]

and Lin and Armfield [202–204] investigated unsteady natural convection cooling of an initially

homogeneous fluid in a vertical circular cylinder and in a rectangular container and showed

analytical and numerical features of transient heat transfer and flow pattern. The transitory

features of natural convection in a triangular enclosure have also been extensively studied in

the previous studies (e.g., [158,205–215]).

2.4.6 Experimental studies

Experimental studies on natural convection are much less than forced convection. The main

reason for this scarcity is experimental difficulties in terms of low-velocity measurements and

experimental device’s design to maintain boundary conditions. Imberger [216] performed an

experimental study on natural convection in a water filled deferentially heated rectangular cav-

ity. Temperature and velocity profiles were presented for the aspect ratio (depth to length) of

10−2 and 1.9 × 10−2 and the Rayleigh value from 1.31 × 106 to 1.11 × 108. An experimental

study of natural convection in a parallelepiped enclosure induced by a single vertical wall was

conducted by Fills and Poulikakos [217]. The upper half of the wall was hot while the lower

half was cold, and the other enclosure walls were insulated. The experiment was performed at

1010 < Ra < 5× 1010 and flow and temperature measurements were reported for water as the

working fluid. Due to a significant difference between their results from previous studies, careful

examination of temperature boundary conditions suggested. Ramesh and Venkateshan [218]

studied laminar natural convection heat transfer in a differentially heated square enclosure and

used a differential interferometer (DI) to visualize boundary conditions on the wall. A flow visu-

alization technique was introduced by Tanasawa [219] and used for flow visualization of natural

convection in a horizontal rectangular liquid layer driven by surface tension and buoyancy. The
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flow patterns were visualized by suspended fine aluminum flakes in liquid. To investigate a

problem of interest in the thermal control of electronic equipment, an experimental study was

carried out by Ramos et al. [220]. Since in the case of component failure natural convection

is the main cooling process, the effects of natural convection on the flow and heat transfer in

a cavity with two flush mounted heat sources on the left vertical wall were analyzed. Exper-

imental results showed a good agreement with the numerical data. 2D-PIV (two-dimensional

particle image velocimetry) and holographic interferometry techniques were used to examine

the natural convection heat transfer in an air-filled square cavity heated from below and cooled

by the sidewalls by Corvaro and Paroncini [221]. Those techniques were used for investigation

of velocity and temperature fields in a Hele-Shaw convection cell (HSC) by Lee and Kim [222].

Some other experiments were carried out to obtain velocity and temperature of air in an en-

closed cavity (see, e.g., [223–226]). A few experimental researches have been performed to

investigate the transient effect of natural convection in a cavity. To confirm the classification

scheme presented by Patterson and Imberger [100], a series of experiments was done by Jeevaraj

and Patterson [227] in a square cavity with initially stationary glycerol-water mixture as the

working fluid and isothermal sidewalls. They confirmed the classification as well as some as-

pects of the flow development. Transient flow characteristics in a differentially heated air-filled

tall cavity were investigated numerically and experimentally by Kolsi et al. [228]. A Rayleigh

value range of 2929− 11772 was selected for the experiment and reported that as the Rayleigh

value increases the flow becomes unstable. Ivey [229] experimentally investigated the transient

natural convection in a cavity with isothermal side walls and reported oscillations which were

due to the inertia of the flow entering the interior of the cavity induced by side walls boundary

layers. The effect of the inclination angle of a cavity on the transient natural convection in a

cavity was experimentally studied by Upton and Watt [230]. In their study, the evolution of the

flow to steady-state was investigated for a Prandtl number of 6.38, a Rayleigh value of 1.5×105

and an aspect ratio of 1.0, at angles of inclination π/4, π/2 and 3π/4. They found that the angle

of inclination has a significant effect on the flow and heat transfer in natural convection in an

enclosure. Laser Doppler velocimetry and dye flow visualizations were used to obtain velocity

profiles and flow pattern of natural convection in open cavities by Hess and Henze [231]. For
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3× 1010 ≤ Ra ≤ 2× 1011, boundary-layer transition to turbulence, flow patterns in the cavity,

and flow outside of the cavity were discussed. Yewell et al. [232] experimentally investigated

transient natural convection in enclosures at high Rayleigh values (i.e., 1.28× 109− 1.49× 109)

and low aspect ratios (i.e., 0.0625 and 0.112). Turbulent natural convection has been investi-

gated experimentally and numerically in a differentially heated cavity by Salat et al. [233]. At

the Rayleigh value of 1.5 × 109 temperature was measured by 25 m micro-thermocouples and

velocity by a Laser Doppler Anemometer. Results in the median vertical plan were presented

and compared with numerical data. Jeng et al. [234] conducted experimental and numerical

research on transient natural convection flow and transport process caused by mass transfer in

the inclined enclosures at different angles. For 1.126×108 ≤ Ra ≤ 1.157×1011, the aspect ratio

from 0.6 to 1 and the angles of inclination from 30 to 90 degrees, flow structure was visualized

by particle tracers and shadowgraph. The concentration and its fluctuations were measured

with the non-intrusive optical method and results were compared with numerical data.

The list of experimental studies mentioned in this section is presented in Table 2.5.
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Table 2.5: List of the selected experimental studies on natural convection.

Authors Rayleigh value Working fluid

Imberger [216] 1.31× 106 − 1.11× 108 water

Fills and Poulikakos [217] 1010 − 5× 1010 water

Ramesh and Venkateshan [218] 104 − 106 air

Ramos et al. [220] - air

Corvaro and Paroncini [221] 104 − 105 air

Tian and Karayiannis [223] 1.58× 109 air

Betts and Bokhari [225] 0.86× 106 − 1.43× 106 air

Saury et al. [226] up to 1.2× 1011 air

Jeevaraj and Patterson [227] 107 − 108 glycerol-water

Kolsi et al. [228] 2929− 11772 glycerol-water

Ivey [229] 108 − 109 glycerol-water & water

Upton and Watt [230] 1.5× 105 water

Hess and Henze [231] 3× 1010 ≤ Ra ≤ 2× 1011 -

Yewell et al. [232] 1.28× 109 − 1.49× 109 water

Salat et al. [233] 1.5× 109 air

Jeng et al. [234] 1.126× 108 − 1.157× 1011 CuSO4 +H2SO4

2.5 Conjugate natural convection heat transfer

Conjugate natural convection in a differentially-heated, partitioned cavity with heat-conducting

partition wall has been presented in various situations in nature and engineering, such as in

solar thermal systems, electronic equipment, chemical reactors and buildings, and has attracted

extensive research interest (see, e.g., [235–240]).

As figure 2.2 illustrates, conjugate natural convection boundary layers (CNCBLs) occurs when

a temperature difference (Th−Tc, Th > Tc) is created at sides of a vertical conducting partition.

Due to heat transfer across the partition, two areas of heated (on the right side of the partition)

and cooled (on the left side of the partition) are created. Those thermal boundary layers induce

a downward (on the left) and upward (on the right) flows at sides of the partition. The fact that
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in this arrangement, natural convection boundary layers are coupled through the conduction

in the partition and the presence of different sub-domains make this problem complicated and

interesting.

b
ou

n
d
ary

layer b
ou

n
d
ar
y
la
ye
r

Th Tc

P
artition

Figure 2.2: Schematic of the conjugate natural convection boundary layer.

A general analysis of laminar conjugate natural convection boundary layers was first conducted

by Viskanta and Abrams [241]. They obtained an exact solution for the temperature distri-

bution and the heat transfer in the case of constant properties, concurrent and inviscid flow.

They also found that the omission of the thermal interaction between the fluid streams on

both sides of the separating wall can lead to a serious inaccuracy. The local similarity con-

cept and the method of interaction were used by Lock and Ko [242] to examine the problem

of the thermal interaction through a wall between two free convective systems. The effect of

the plate resistance was taken into account in their study. In another study of this problem,

an analytical investigation was performed for laminar natural convection and the value of the

Prandtl number was assumed to approach infinity [243]. Interestingly, the results revealed that

the vertical wall can be approximated as a constant heat flux surface and the overall heat

transfer rate is almost independent of the Prandtl number. Furthermore, the authors studied

a system with two saturated porous reservoirs at different temperatures separated by a parti-

tion [244,245]. The heat transfer rate between coupled natural convections at two sides of the
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vertical conductive wall separating two infinite reservoirs at different temperatures was studied

by Chen and Chang [246]. The separating wall was assumed to have a very small thickness-to-

height aspect. The non-similarity transformation technique was used to solve the laminar form

and cast dimensionless governing equations and extracted equations were solved by using the

finite difference method. They approximated wall heat conduction by using one-dimensional

heat conduction equation and their results were in good agreement with the predicted results

of Viskanta and Lankford [247]. An analytical and numerical investigation was conducted by

Higuera and Pop [248] on conjugate natural convection heat transfer. Their system consisted of

two semi-infinite fluid-saturated porous reservoirs at different temperatures separated by a ver-

tical plate. Unlike Chen and Chang [246], they tried to apply two-dimensional wall conduction

both across and along it while the wall aspect ratio was small.

The conjugate natural convection on a vertical surface when each side of it was maintained at

a different temperature was examined by Merkin and Pop [249]. They used a finite difference

scheme to solve the governing equations for Pr of 0.7, 0.72, and 0.733. They found that the

asymptotic expansion gives trustworthy results. Solving conjugate heat transfer problems using

SIMPLE-like algorithms in an undivided computational domain (domain consisting of the both

solid and fluid region) has some difficulties. The main issue is to ensure the physical realism

of the extracted results. The methods of the ‘pseudo-density’ and the ‘pseudo-solid -specific-

heat’ were suggested by Chen and Han [250] to avoid any possible errors. The effects of heat

generation on coupling of laminar natural convection flow along conducting vertical flat plate

and plate conduction were investigated by Mamun, et al. [251]. They used a local non-similar

transformation to form dimensionless governing equations. Numerical results depicted that the

fluid velocity and skin friction at the solid-fluid interface increased by increasing heat generation

parameter and decreased by increasing Pr and conduction factor. Furthermore, when the rate

of heat transfer is decreased, heat generation and conduction parameters rise and lead to a

reduction of Pr. A numerical investigation was conducted to examine the effect of conduction

in the wall on the natural convection flow by Belazizia, et al. [252]. The studied system was

a square enclosure that had a vertical wall at the left with a finite thermal conductivity. The

numerical study was performed at Ra between 500 and 107, the thermal conductivity of wall
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to fluid between 0.1 and 10, Pr of 0.70, and the proportion of wall thickness to the height

of the wall of 0.2. Wall conduction was found to have a strong effect on natural convection

flow and when the Rayleigh value and conductivity ratio increased, fluid velocity and the heat

transfer rate go up. The effect of wall conduction on natural convection heat transfer in a

porous enclosure was the main focus of study performed by Saeid [253]. Steady conjugate

natural convection-conduction heat transfer was analyzed at the same physical model as that

of Belazizia, et al. [252]. The calculation of governing equations was in Ra between 10 and

1000, the wall to the porous thermal conductivity ratio from 0.1 to 10 and the ratio of wall

thickness to its height between 0.02 and 0.5. It was concluded that the average Nusselt number

increased by increasing Ra and the thermal conductivity ratio or decreasing the thickness of

the conducting wall.

2.6 Conjugate natural convection in closed cavity

2.6.1 Numerical studies

Many practical applications require considering a partitioned cavity as an investigation system

(see, figure 1.7). Conjugate heat transfer problem in a partitioned cavity is of great interest due

to containing two or more subdomains which heat transfer phenomena describes by different

differential equations (elliptical Laplace equation or parabolic differential equation in solid while

elliptical Navier-Stokes equation in fluid) [27].

Transient laminar natural convection in a partitioned enclosure with an adiabatic baffle has

been studies by Fu et al. [254]. Also, Fu et al. [255] numerically investigated the transient

laminar natural convection in an enclosure partitioned by an adiabatic baffle in which the

enclosure was heated by uniform heat flux from the left wall and cooled from the right wall.

They observed that the adiabatic baffle had important influences on the transient heat transfer

mechanism. Numerical simulations of unsteady natural convection in a differentially heated

cavity with a thin fin of different lengths on a sidewall at Ra = 3.8 × 109 performed by Xu
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et al. [256]. They reported that the fin length significantly influenced the transient thermal flow

around the fin and heat transfer through the finned sidewall in the early stage. Xu [257] also

investigated the transition from steady to unsteady coupled thermal boundary layers induced

by a fin on the partition of a differentially heated cavity and demonstrated that the fin may

induce a transition to unsteady coupled thermal boundary layers and the critical Rayleigh value

for the occurrence of the transition was between 3.5× 108 − 3.6× 108.

Stability characteristics of conjugate natural convection boundary layers in a differentially

heated rectangular cavity, partitioned in the middle by a very thin and infinite thermal conduc-

tivity wall were studied by Williamson and Armfield [258]. They found the critical Rayleigh

number for the flow to become oscillatory. Xu et al. [259] classified unsteady natural convec-

tion flows in a partitioned cavity (thin and infinite thermal conductivity partition) into three

distinct stages: the initial, transient and steady stages. They examined the transient start-up

characteristics of unsteady natural convection flow in both sides of the partition and found that

the temperature distribution on the partition surrounded by the coupled convection boundary

layers is like an isothermal cavity. However, due to the presence of the partition, the volumet-

ric flow rate and heat transfer are reduced by 37% and 50%, respectively. Additionally, they

reported that the partition has approximately isoflux wall behavior at the steady state. In an-

other research conducted by Saha et al. [260], the transient natural convection in a partitioned

isosceles triangular cavity has been examined. Their results supported the flow classification

and partition thermal behavior reported by Xu et al. [259]. The same thermal conditions se-

lected by Xu et al. [259] was assumed by Saha et al. [260], that is, the initial temperatures of

the left and right chests of cavities were the same as that on the left and right side walls, respec-

tively. This assumption simplifies the investigation of the thermal behavior of the partition;

however, it deviates from the actual conditions in industries or nature.

The numerical results of Ho and Yin [261] show that heat transfer in an air-filled partitioned

rectangular cavity is considerably lower than that in a non-partitioned cavity, while the numer-

ical study of Acharya and Tsang [262] shows that inclination angle also has a strong influence

on the maximum Nusselt number. Turkoglu and Yucel [263] numerically simulated the flow

and conjugate natural convection heat transfer in cavities with multiple conducting partitions
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and conducting side walls and found that the increase of the partition number results in the

decrease of heat transfer whereas on the other hand the increase of the Rayleigh value results in

increased heat transfer. However, they also found that the cavity aspect ratio has no significant

bearing on heat transfer within the range considered.

The effect of partition characteristics has been examined in some previous studies. Ghosh

et al. [264] analyzed the effect of the partition position on the flow structure and heat transfer

in a rectangular cavity with a single thin partition, and found that for Ra over 103 − 107, the

partition location does not have a significant effect on the heat transfer. Tong and Gerner [265]

investigated the effect of the position of vertical partition in an air-filled rectangular enclosure.

In the study, the partition was assumed to have negligible thermal resistance and the Rayleigh

value was in the range of 104−105. The results show that placing the partition in the middle will

result in the largest reduction in heat transfer. Kahveci [5] extended the investigation by making

more realistic assumptions on the conducting partitions and examined the effect of partition

thickness, conductivity, and position on the Nusselt number of the steady-state laminar natural

convection heat transfer at relatively low Rayleigh values, over the range of 104 − 106. It is

found that when the distance of the partition increases from the left wall towards the middle

of the cavity, the average Nusselt number decreases asymptotically towards a constant value

and the partition thickness has a negligible effect on the heat transfer. It is also found that the

variation of the thermal resistance of the partition leads to substantially different heat transfer

changes, which was also found by Kangi et al. [266], who studied the effect of the thermal

resistance of the partition in a divided tall cavity with a finite thickness partition. Additionally,

Kahveci [267] examined the effect of the aspect ratio on natural convection heat transfer in a

partitioned cavity and reported that the increase in the aspect ratio leads to an enhanced heat

transfer. The transition from the steady to the unsteady coupled thermal boundary layers

around a partition in a differentially heated partitioned cavity was investigated numerically

by Xu et al. [268]. The transition from the steady to the unsteady coupled thermal boundary

layers in the water filled cavity over a wide range of Rayleigh numbers from Ra = 109 to 1011

was reported. The dependency of Ra number and heat transfer through the partitioned cavity

on the traveling waves in the unsteady coupled thermal boundary layers was characterized and
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quantified. Table 2.6 shows some of the studies conducted on the conjugate natural convection.

Table 2.6: List of some of studies on the conjugate natural convection.

Authors Ra Pr
Number of
partitions A

Williamson and
Armfield [258]

0.6× 1010−
1.6× 1010 7.5 1 2

Xu et al. [259] 9.2× 108 6.63 1 1

Acharya and
Tsang [262]

up to 107 0.71 1 1− 2

Turkoglu and
Yucel [263]

105 − 107 0.71 0− 4 0.5− 1.5

Cuckovic-Dzodzo
et al. [269]

104 − 106 2700−7000 0− 1 1

Nishimura et al. [270] 108 − 1010 6 0− 4 4

Ghosh et al. [264] 103 − 106 1 1
1, 0.8, 0.5
and 0.4

Tong and Gerner [265] 104 − 105 0.71 1
5, 7.5, 10, 12.5

and 15

Kahveci [5] 104 − 106 0.71 1 1

Kangi et al. [266] 103 − 107 0.72 1− 5 5− 20

Kahveci [267] 104 − 106 0.71 1 0.25− 4

Hanjali et al. [271] 1010 − 1012 air & water 0− 1
0.5, 0.33
and 0.66

Nansteel and
Greif [272]

1010 − 1011 3.5− 7 0− 1 0.5

Xu et al. [268] 109 − 1011 7.8 1 1

2.6.2 Experimental studies

Anderson and Bejan [30] conducted an experimental and theoretical study of natural convection

in a differentially heated single or double partitioned cavity. The experiment was carried out

in a water-filled cavity, and the overall temperature difference between vertical sidewalls varied
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in the range of 6 − 35◦C with Ra varying in the range 109 − 1010. It is found that the heat

transfer can be reduced by inserting vertical partitions. Thermal stratification was observed

on both sides of the partition the temperature of the partition steadily increased with altitude.

The following expression was extracted for the heat transfer rate,

NuAve = 0.167Ra1/4(n+ 1)−0.61, (2.4)

Cuckovic-Dzodzo et al. [269] made a numerical and experimental study on the laminar conjugate

natural convection flow and heat transfer in a cubic enclosure with and without a heat conduct-

ing partition with glycerol as the working medium and the partition placed in the middle of the

enclosure. Their results also show that the convective heat transfer in the partitioned cavity is

reduced in comparison to that in the cavity without a partition, from 59.1% to 63.6% for the

Rayleigh value in the range of 38000 to 369000. Similarly, Nishimura et al. [270] conducted a

numerical and experimental study on the laminar conjugate natural convection in a rectangular

enclosure divided by multiple vertical partitions. In this study, the thickness of the partitions

was neglected in the numerical simulation and the partitions were equally spaced in the enclo-

sure. Their results reveal that the Nusselt number was inversely proportional to (1+N), where

N is the number of partitions, which is in agreement with their experimental results as well as

the results obtained by Cuckovic-Dzodzo et al. [269]. Nishimura et al. [273] conducted some

experimental and numerical computational studies for explaining the heat transfer mechanism

and presenting correlations for heat transfer rates in a differentially heated partitioned cavity.

They found that heat transfer rate is not sensitive to the partition position. An experiments

were carried out over 2.428 × 109 ≤ Ra ≤ 2.458 × 1010 and 5.3701 ≤ Pr ≤ 6.1697, with the

partition wall placed at the center of the cavity. The temperatures at eight locations in the

cavity were measured by Resistance Temperature Detectors (RTDs) and compared with the

numerical results [274]. The shadowgraph technique was used by Xu et al. [275] to investigate

the coupled thermal boundary layers next to a vertical partition placed in the middle of a

differentially heated cavity. Water was used as a working fluid for the Rayleigh numbers from

2.6× 109 to 1010. It was found that the transition from steady to unsteady natural convection

flow was from Ra = 7.9 × 109 and 1010 for Pr = 7.8 and A = 1 in the fully developed stage.
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The instability in the coupled thermal boundary layers adjacent to the partition was described

and quantified.



Chapter 3

Numerical method

3.1 Introduction

In this chapter, the governing equations of the natural convection problem in a partitioned

cavity with appropriate initial and boundary conditions are described. Numerical procedures

for solving the governing equations using finite volume method are also presented.

3.2 Governing equations

The physical system under consideration in this thesis is a two-dimensional partitioned rect-

angular cavity (with height H and width L and the aspect ratio A = H/L), as illustrated in

Fig. 3.1. The top and bottom walls of the cavity are adiabatic, and the left and right vertical

walls are isothermal fixed at Th and Tc respectively (Th > Tc, with the dimensionless tempera-

tures θ = 1.0 and θ = 0.0, respectively, where θ = (T −Tc)/(Th−Tc)). A partition of thickness

Tp is placed at the location Xp from the left wall (both Tp and Xp are dimensionless, made

dimensionless by L). The working fluid is assumed to be air (Pr=0.71, where Pr is the Prandtl

number as will be defined by Eq.(3.10)), which is initially quiescent and at a temperature of

(Th +Tc)/2 (i.e., at the dimensionless temperature θ = 0.5). All the interior walls and the par-

39
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tition surfaces are rigid and no-slip. The partition wall is heat conducting, with finite thermal

conductivity ks.
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Figure 3.1: Schematic of the computational domain with initial and boundary conditions.

The transient flow of fluid within the cavity is governed by the two-dimensional Navier-Stokes

equations with the Boussinesq approximation for buoyancy; that is, density can be assumed to

have a linear relation with the temperature and changes in fluid properties are negligible,

ρ(T ) = ρ(P0, T0)[1− β(T − T0)]. (3.1)

This is an appropriate assumption for the current study as the temperature difference be-

tween sidewalls of the cavity in the natural convection studies is not large. The Navier-Stokes

equations, together with the temperature equation, can be written in dimensionless forms in

Cartesian coordinates as follows,

∂U

∂X
+
∂V

∂Y
= 0, (3.2)

∂U

∂t
+
∂(UU)

∂X
+
∂(V U)

∂Y
= −1

ρ

∂P

∂X
+ ν

(
∂2U

∂X2
+
∂2U

∂Y 2

)
, (3.3)
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∂V

∂t
+
∂(UV )

∂X
+
∂(V V )

∂Y
= −1

ρ

∂P

∂Y
+ ν

(
∂2V

∂X2
+
∂2V

∂Y 2

)
+ gβ(T − T0), (3.4)

∂T

∂t
+
∂(UT )

∂X
+
∂(V T )

∂Y
= α

(
∂2T

∂X2
+
∂2T

∂Y 2

)
. (3.5)

The above governing equations can be written in the following dimensionless form,

∂u

∂x
+
∂v

∂y
= 0, (3.6)

∂u

∂τ
+
∂(uu)

∂x
+
∂(vu)

∂y
= −∂p

∂x
+

√
Pr

Ra

(
∂2u

∂x2
+
∂2u

∂y2

)
, (3.7)

∂v

∂τ
+
∂(uv)

∂x
+
∂(vv)

∂y
= −∂p

∂y
+

√
Pr

Ra

(
∂2v

∂x2
+
∂2v

∂y2

)
+ θ, (3.8)

∂θ

∂τ
+
∂(uθ)

∂x
+
∂(vθ)

∂y
=

√
1

RaPr

(
∂2θ

∂x2
+
∂2θ

∂y2

)
, (3.9)

where x and y are the dimensionless coordinates , u and v are the dimensionless velocity

components in the x and y directions, and τ , p and θ are the dimensionless time, pressure and

temperature, respectively, which are made dimensionless by their respective scales as follows,

x =
X

H
, y =

Y

H
, u =

U

Uref
, v =

V

Uref
,

τ =
Uref
H

t, p =
P

ρfU2
ref

, θ =
T − Tc
Th − Tc

,

in which the dimensional quantities X and Y are the coordinates, U and V are the velocity

components in the X and Y directions, and t, P , T and ρf are the time, pressure, temperature,

and density of fluid, respectively. Uref =
κf
H

√
PrRa is the velocity scale, where the Prandtl

number (Pr) and the Rayleigh value (Ra) are defined as follows,

Pr =
νf
κf
, Ra =

gβf (Th − Tc)H3

νfκf
, (3.10)

in which g is the acceleration due to gravity, νf , κf and βf are the kinematic viscosity, thermal

diffusivity and the coefficient of volumetric expansion of fluid, respectively. The heat transfer
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within the heat-conducting partition is governing by the following dimensionless equation,

∂θ

∂τ
=

kr√
RaPr

(
∂2θ

∂x2
+
∂2θ

∂y2

)
, (3.11)

where kr is the thermal conductivity ratio defined as follows,

kr =
ks
kf
. (3.12)

The initial conditions (when τ = 0) are u = v = 0 and θ = 0.5 everywhere within the cavity

and the partition, and for τ > 0 the boundary conditions for fluid are u = v = 0 on all solid

surfaces, ∂θ/∂y = 0 on the top and bottom walls, and θ = 1 and θ = 0 on the left and right

vertical walls, respectively, and the boundary conditions for the partition wall are,

u = v = 0, kr

(
∂θ

∂y

)
x−1

=

(
∂θ

∂y

)
x+1

, at x = x1,

u = v = 0, kr

(
∂θ

∂y

)
x−2

=

(
∂θ

∂y

)
x+2

, at x = x2,

 (3.13)

where x1 and x2 are the locations of the left and right sides of the partition wall and the asso-

ciated superscripts ‘-’ and ‘+’ denote their nearest left and right cells, respectively. Figure 3.1

shows the initial and boundary conditions in a partitioned cavity used in this study.

3.3 Heat transfer analysis

The convective heat transfer behavior can be characterized by the Nusselt number. This di-

mensionless parameter is defined as the ratio of convection heat transfer to fluid conduction

heat transfer under the same condition as follows,

NuAve =
Qconvection

Qconduction
. (3.14)
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By considering the cavity illustrated in figure 3.1, the average Nusselt number can be presented

as,

NuAve =

∫ 1

0

NuLocaldy, (3.15)

where NuLocal is local Nusselt number at the specific location x which is calculated by

NuLocal =

(
∂θ

∂x

)∣∣∣
x
. (3.16)

Figure 3.2 schematically shows the heat transfer process in a partitioned cavity. Heat transfers

from the hot wall (at Th) on the left side of the cavity through conduction (at low Ra) or

convection (at high Ra) to the left side of the partition (at x = x1). The heated left side of

the partition (Tx1) transfers energy through conduction to the right side of the partition (Tx2).

Subsequently, there is a heat transfer phenomenon between the right side of the partition and

the cold wall (at Tc).

Th Tc
Tx1

Tx2

TP

XP

PartitionHot side cavity Cold side cavity
kskf kf

Figure 3.2: Schematic presentation of heat transfer in a partitioned cavity.
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3.4 Numerical method

The governing equations (3.6) to (3.9) and (3.11) were discretized on a staggered mesh [276]

using the finite volume method and solved by the SIMPLE algorithm [277]. The location of the

staggered mesh with 7×7 grids, as an example, are illustrated in figure 3.3. The staggered mesh

concept is based on having offsetted one-half of a mesh spacing to the left and below for the

horizontal and vertical velocity points respectively. The QUICK scheme [278] and the central

difference scheme were employed for the advection and diffusion terms and the Adam-Bashforth

scheme [279] was used for time integration.

PW E

N

S

s

n

w e

Physical boundaryMain gridStaggered gridControl volume

PW E

N

S

s

n

w e

Physical boundaryMain gridStaggered gridControl volume

Figure 3.3: The staggered mesh locations as well as the control volume used to descretise the
governing equations.

3.4.1 Discretization of the governing equations

The transport equations (3.7) to (3.9) can be represented generally as,

ρ
∂φ

∂t
+ ρu

∂φ

∂x
+ ρv

∂φ

∂y
= Γ(

∂2φ

∂x2
+
∂2φ

∂y2
) + S, (3.17)
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The two-dimensional control volume illustrated in figure 3.3 is used in the discretisetion of the

general transport equation. The grid point P has east (E), west (W ), north (N) and south

(S) neighbours and cell faces of e, w, n and s are placed midway between grid points and

the corresponding neighbours. The integration is performed over the control volume and also

temporally over a time increment ∆t, as follows,

∫ t+∆t

t

(

∫
CV

ρ
∂φ

∂t
dV )dt+

∫ t+∆t

t

(

∫
CV

ρu
∂φ

∂x
dV )dt+

∫ t+∆t

t

(

∫
CV

ρv
∂φ

∂y
dV )dt =∫ t+∆t

t

(

∫
CV

Γ
∂2φ

∂x2
dV )dt+

∫ t+∆t

t

(

∫
CV

Γ
∂2φ

∂y2
dV )dt+

∫ t+∆t

t

(

∫
CV

SdV )dt.

(3.18)

By changing the order of integration for the unsteady term, this term becomes,

∫ t+∆t

t

(

∫
CV

ρ
∂φ

∂t
dV )dt =

∫
CV

(

∫ t+∆t

t

ρ
∂φ

∂t
dt)dV = ρ(φP − φ0

P )∆V, (3.19)

where φP and φ0
P are the value of transport variable at time t + ∆t and t respectively. The

unsteady term can be descretised by using higher order schemes. The Adams-Bashforth scheme

(AB2) is an explicit, second order, three-level scheme which extrapolates forward-in-time from

known values to give a mid-point value. Figure 3.4 shows the linear extrapolation from known

values to a mid-point in the time-stepping interval, which takes the following form,

φn+1 − φn = ∆t(
3

2
φn − 1

2
φn−1). (3.20)

For the diffusion term, the volume integrals are converted to surface integrals by the divergence

theorem [280] and can be presented for the x direction as,

∫ t+∆t

t

(

∫
CV

Γ
∂2φ

∂x2
dV )dt =

∫ t+∆t

t

[(ΓA
∂φ

∂x
)e − (ΓA

∂φ

∂x
)w]dt. (3.21)

By assuming the diffusion coefficient as a constant value equal surface area for the eastern and

western control surfaces, equation (3.21) becomes,

∫ t+∆t

t

(

∫
CV

Γ
∂2φ

∂x2
dV )dt = ΓA

∫ t+∆t

t

[(
∂φE − φP

∆xPE
)− (

∂φP − φW
∆xWP

)]dt. (3.22)
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tn+1tntn−1

∆t

φn+1

φn

φn−1

t

φ(t)

Figure 3.4: Illustration of the extrapolation used in the Adams-Bashforth method.

Similarly the same method is applied for the y direction. The divergence theorem is also utilized

for the convective term as follows,

∫ t+∆t

t

(

∫
CV

ρu
∂φ

∂x
dV )dt =∫ t+∆t

t

[(ρuAφ)e − (ρuAφ)w]dt =

ρueAφe∆t− ρuwAφw∆t.

(3.23)

The control surface values of φ (φe and φw) presented in equation (3.23) must be interpolated

from the grid point values by a suitable scheme. Many interpolation schemes have been devel-

oped previously, such as the central difference scheme, the upwind scheme (donor-cell method),

the hybrid difference scheme [281], the power law scheme [277], and the quadratic upstream

interpolation for convective kinetics (QUICK) scheme [282]. The simplest differencing scheme

used for the convective term is the upwind scheme. In this method, the face values are equal

to the value of the upstream grid point and can be presented as,

φe = φP
max(ue, 0)

ue
− φE

max(−ue, 0)

ue
, (3.24)
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φw = φW
max(uw, 0)

uw
− φP

max(−uw, 0)

uw
, (3.25)

where the function max(x, y) is defined to be equal to x if x > y and to y if x < y.

Finally the source term is descritised as,

∫ t+∆t

t

(

∫
CV

SdV )dt = S̄∆t∆V, (3.26)

where S̄ is the average value of S over the control volume. To avoid writing complex and long

equations, two new variables are defined as follows,

F = ρuACS,

D =
ΓACS
∆x

,
(3.27)

where ACS is the corresponding control surface area. By applying the same method for the y

direction and plugging the descretised terms into the general transport finite volume equation

and using equation (3.27), the following equation is obtained,

aPφP = aEφE + aWφW + aNφN + aSφS + b

=
∑
nb

anbφnb + b,
(3.28)

where nb stands for the neighbour cell and the coefficients of the transport variable are defined

as,

aE = max(−Fe, 0) +De, aW = max(−Fw, 0) +Dw,

aN = max(−Fn, 0) +Dn, aS = max(−Fs, 0) +Ds,

b = ρφ0
P

∆V

∆t
+ S̄∆V, a0

P = ρ
∆V

∆t
,

aP = aE + aW + aN + aS + a0
P + (Fe − Fw) + (Fn − Fs).


(3.29)

By using different interpolation schemes, the coefficients presented in the final descretised equa-

tion change. In the case of choosing hybrid differencing scheme the neighbouring nodal coeffi-
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cients are as follows,

aE = max[−Fe, (De −
Fe
2

), 0], aW = max[Fw, (Dw +
Fw
2

), 0],

aN = max[−Fn, (Dn −
Fn
2

), 0], aS = max[Fs, (Ds +
Fs
2

), 0].

 (3.30)

The QUICK method, as another method, is a three-point upstream weighted quadratic inter-

polation scheme which can be used to calculate the discrete fluxes entering or leaving a control

volume (face values). Figure 3.5 shows the control volume for the node i as well as the upstream

and downstream nodes. The subscripts FW , W , P , E, and FE refer to the far west, west,

central, east, and far east nodes. The subscripts w and e refer to the left and right faces.

uFE

uE

ue

uP

uw

uW
uFW

i+ 2i+ 1ii− 1i− 2

∆xfe∆xe∆xw∆xfw

∆xE∆xP∆xW

Figure 3.5: Control volume and nodes for QUICK method.

For uniform grids, the face values of a flow to the right can be presented as follows,

uw =
1

2
(uW + uP )− 1

8
(uFW + uP − 2uW ), (3.31)

ue =
1

2
(uP + uE)− 1

8
(uW + uE − 2uP ). (3.32)

This scheme can be simply interpreted as a combination of a linear interpolation (the fist term
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on the right hand side) and a correction obtained by the upstream-weighted curvature (the

second term on the right hand side).

For the case of non-uniform grid the face values can be estimated as,

uw =
1

2
(uW + uP )− ∆x2

w

8

1

∆xW
(
uP − uW

∆xw
− uW − uFW

∆xfw
), (3.33)

ue =
1

2
(uP + uE)− ∆x2

e

8

1

∆xP
(
uE − uP

∆xe
− uP − uW

∆xw
). (3.34)

Adding the pressure gradient term to the equation (3.28) (extracting from the source term)

changes it to the following form,

aeue =
∑
nb

anbunb + (PP − PE)Ae + be,

anun =
∑
nb

anbunb + (PP − PN)An + bn.

(3.35)

To calculate transport variables, pressure should be known. The SIMPLE algorithm indicates

that discrete continuity equation should be substituted into the momentum equations contain-

ing the pressure terms which result in an equation for discrete pressure. The SIMPLE solves

pressure correction by guessing an initial flow field and pressure distribution in the domain.

The guessed pressure (P ∗) form the previous iteration helps to solve velocities,

aeu
∗
e =

∑
nb

anbu
∗
nb + (P ∗P − P ∗E)Ae + be,

anu
∗
n =

∑
nb

anbu
∗
nb + (P ∗P − P ∗N)An + bn.

(3.36)

These guessed velocities do not satisfy the continuity due to the guessed pressure. Consequently,

pressure and velocities should be corrected as follows,

u = u∗ + u′,

v = v∗ + v′,

p = p∗ + p′,

(3.37)
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where the superscript prime is for the correction and the superscript star for the guessed

variables.

By subtracting equations (3.36) from equations (3.35), the following equation are obtained,

aeu
′
e =

∑
nb

anbu
′
nb + (P ′P − P ′E)Ae,

anu
′
n =

∑
nb

anbu
′
nb + (P ′P − P ′N)An.

(3.38)

Finally the velocity correction equations are obtained by omitting the first terms on the right

hand side of the equations (3.38) and become as follows,

u′e =
Ae
ae

(P ′P − P ′E),

u′n =
An
an

(P ′P − P ′N).

(3.39)

Using equation (3.39) in equation (3.37) leads to,

ue = u∗e +
Ae
ae

(P ′P − P ′E),

un = u∗n +
An
an

(P ′P − P ′N).

(3.40)

The pressure correction can be obtained by substituting equation (3.40) in the discrete conti-

nuity equation and can be presented as,

aPp
′
P = aEp

′
E + aWp

′
W + aNp

′
N + aSp

′
S + b, (3.41)

where

aE = ρe
Ae
ae

∆y, aW = ρw
Aw
aw

∆y,

aN = ρn
An
an

∆x, aS = ρs
As
as

∆x,

aP = aE + aW + aN + aS,

b =
(ρ0
P − ρP )∆x∆y

∆t
+ [(ρu∗)w − (ρu∗)e]∆y + [(ρv∗)s − (ρv∗)n]∆x.


(3.42)
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Using the SIMPLE algorithm, there are four partial differential equations to be solved. There

are many methods introduced for solving a linear system of equations such as matrix in-

version, Gauss elimination, Gauss-Seidel, TDMA (tridiagonal matrix algorithm), BiCgSta

(Bi-Conjugate Gradient stabilized iterative matrix solver), GpBiCg (Generalized Product Bi-

Conjugate Gradient iterative matrix solver), MlkBiCgStab (Multiple-Lanczos Bi-Conjugate

Gradient stabilized iterative matrix solver), TFQMR (Transpose Free Quasi-Minimal Residual

iterative matrix solver), as presented in (3.28). The tridiagonal matrix algorithm or Thomas

algorithm is usually the preferred method. The one-dimensional discretised equation can be

written as,

aWi
φi−1 + aPi

φi + aEi
φi+1 = bi. (3.43)

This method consists of a forward elimination and a backward substitution procedure. The

coefficients for the forward sweep are as follows,

Ai =


aE1

aP1

i = 1,

aEi

aPi
− Ai−1aWi

i = 2, 3, ..., N,

(3.44)

Bi =


b1

aP1

i = 1,

bi −Bi−1aWi

aPi
− Ai−1aWi

i = 2, 3, ..., N.

(3.45)

By the backward substitution the sweep solution can be obtained,

φi =


BN i = N,

Bi − Aiφi+1 i = N − 1, N − 2, ..., 1.

(3.46)

This method can be applied to equation (3.28) by rearranging it to the tridiagonal system of

equations and assuming N − S direction to be constant for every sweep,

−aWφW + aPφP − aEφE = aNφN + aSφS + b, (3.47)

The line by line solution procedure is illustrated in figure 3.6. To solve the equations for the
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points along each line (e.g., W − E line), the values on the neighboring lines are assumed

to be temporarily known. Therefore, the equation for each point of the line reduces to a

one-dimensional equation with three unknowns (e.g., φW , φE and φP ). The obtained set of

equations for all points are much simpler and can produce a tridiagonal matrix. The equations

of this type are easy to be solved by the TDMA method.

P EW

S

N

Line solved

Temporarily known

i

Figure 3.6: The line by line procedure.

It is essential to monitor the convergence of the solution within a time step in order to be able

to advance in time. The convergence monitoring can be achieved by checking how well the

equation (3.28) is satisfied. The residual can be obtained as follows,

Rφ = aEφE + aWφW + aNφN + aSφS + b− aPφP . (3.48)

It is expected that the residuals decay to small values. Various convergence criteria have been

selected for different studies. It is commonly acknowledged that 10−6 is suitable for most of

the natural convection studies. The SIMPLE algorithm flowchart is presented in figure 3.7.

To prevent divergence, it is necessary to restrain the speed of solution by balancing the newly

achieved result with the previous one. The generally successful practice is called under-
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Start

Initial velocities, tem-
perature and pressure

Set ∆t,
Unsteady calculation

t = t + ∆t

Guess pressure field

Find guessed velocities

Solve pressure
correction equation

Find new pressure using
pressure correction

Find new velocities
using velocity correction

Consider the new
pressure field as the

new guessed pressure.

Solve energy equation

Check convergence

t > tfinal

Stop

Yes

Yes

No

No

Figure 3.7: The SIMPLE Algorithm flowchart.
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relaxation and can be described as follows,

p = p∗ + αpp
′,

unew = αuu+ (1− αu)uold,

vnew = αvv + (1− αv)vold,

T new = αTT + (1− αT )T old.

(3.49)



Chapter 4

Numerical implementation

4.1 Introduction

The computer code written in Visual C# programming language was developed for this thesis

by implementing the numerical methods presented in the previous chapter.

The programming language Visual C# is simple, modern, general-purpose and object-oriented.

Visual C# has a strong type checking, array bounds checking, detection of attempts to use

uninitialized variables, and automatic garbage collection which increases software robustness

and durability. The code can be edited in the Microsoft Visual Studio platform or other similar

editors. To use and run the code, having the Microsoft Visual Studio is not necessary if the

inputs are entered and compiled. Users can simply run the exe file in the Release folder of the

code. Therefore, the code is easily portable and executable in any Windows operating system.

The Nomenclature of the TEACH code [283] (originated at the Imperial College), which is

similar to the TEAM (Turbulent Elliptic Algorithm of Manchester) codes [284] (developed at

the University of Manchester), is mainly adopted in the current code to increase readability.

To further improve the readability of this code, the structure of the code was designed to have

separate and independent sections (called methods in Visual C#). Each method is a code block

that contains a series of statements and can be executed in the program by calling them and

55
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designating the required arguments which are specific to that method. Consequently, methods

help code developers or users to have better understanding and control of the code and easier

editing and debugging processes.

The flowchart of the code is illustrated in figure 4.1. Prior to the main calculation section of

the code, it is necessary to define variables and their initial their values or sizes. Table 4.1 lists

the main variable types used in the code with their specifications.

Table 4.1: Variable used in the code and their specifications

Integers

Name Range

int −2, 147, 483, 648− 2, 147, 483, 647

short −32, 768− 32, 767

long
−9, 223, 372, 036, 854, 775, 808−

9, 223, 372, 036, 854, 775, 807

Floating point numbers

Name Approximate range Precision

double ±5.0× 10324 −±1.7× 10308 15-16 digits

float −3.4× 1038 −+3.4× 1038 7 digits

decimal 1.0× 10−28 − 7.9× 1028 28-29 digits

Boolean values

Name Value

bool true or false

Strings and chars

Name Value

string textual data

A variable can be defined as a local or global one. A global variable in the code has the G.

prefix and is accessible for all methods. The main global variables defined are grid variables

and main calculation variables. Tables A.1 and A.2 in the appendix section list the main global

and local variables with their types and description. Hence, before running the code, it is

needed to decide the maximum size of grids (i.e., IT and JT ) which consequently defines the
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size of all grids and main variable arrays. The code automatically generates the needed folders

and sub-folders for saving results. Depends on the selected solution platform (x32 or x64) the

OUTPUT folder is created at bin\Release or bin\x64, respectively. Figure 4.11 shows the

details regarding creating the necessary folder at the requested address.

Initialization includ-
ing variables defina-
tion & output folders

Input data including
initial condition & cavity

and flow properties

Initial calculation

Adjust output frequency

Define grid and the
position of solid and fluid

Generate grid infor-
mation in txt files

Define monitoring points

Add the initial value
for the variables

Save all variables
in binary files

Pause, if the first iter-
ation number>1 read
the results of that it-

eration and save in the
coresponding variables

Time loop for un-
steady calculations

Inner loop for applying
initial and bounday

condition and obtaining
variables. The flowchart
of calculation has been
presented in figure 3.7.

Check for convergence

Output of results

NoYes

Figure 4.1: Flowchart for explaining main procedure of the code.

At the input section of the code, all information regarding grid, partition, time step, fluid and

solid properties and solvers should be provided. For the next step, the code calculates some

necessary initial data such as converting some input data to the dimensionless or dimensional

form. The output frequency is the next section of the code which initiates an array to decide

how often output should be generated. This section has a default data but can be edited.

The grid section of the code is responsible to generate arrays for the main and staggered grid

points and sizes. As grid mapping has four options of uniform, manual non-uniform, non-



58 Chapter 4. Numerical implementation

uniform Sin function, and non-uniform linear function, users can select one of them in the

input section by variable MESH TY PE1. Figures 4.2 and 4.3 show how grid spacings are

developed by the specified functions.� �
1 // Sin function

2 for (int i = 2; i <= G.NI; i++)

3 {

4 G.XU[i] = ELBYH * ((i - 2) / ((float)NIM2) - MeshParCoef2 / (MeshParCoef1

* Math.PI) * Math.Sin(MeshParCoef1 * Math.PI * (i - 2) /

((float)NIM2)));

5 }

6 for (int j = 2; j <= G.NJ; j++)

7 {

8 G.YV[j] = ELBYH * ((j - 2) / ((float)NJM2) - MeshParCoef2 / (2 * Math.PI)

* Math.Sin(2 * Math.PI * (j - 2) / ((float)NJM2)));

9 }� �
Figure 4.2: Grid mapping using a sin function.

� �
1 // Liear function

2 // Changing sign location

3 double IXC = 0.5;

4 double JXC = 0.5;

5 // Strength of grid , Strength>0 gives concentrated points inside

cavity and strength<0 gives concentrated points at the ends.

6 double JSTRENGTH = 1.0;

7 for (int i = 2; i <= G.NI; i++)

8 {

9 G.XU[i] = ((i - 2) / ((float)NIM2)) + (IXC - ((i - 2) / ((float)NIM2)))

* (1 - ((i - 2) / ((float)NIM2))) * ((i - 2) / ((float)NIM2)) *

ISTRENGTH;

10 }

11 for (int J = 2; J <= G.NJ; J++)

12 {

13 G.YV[J] = ((J - 2) / ((float)NJM2)) + (JXC - ((J - 2) / ((float)NJM2)))

* (1 - ((J - 2) / ((float)NJM2))) * ((J - 2) / ((float)NJM2)) *

JSTRENGTH;

14 }� �
Figure 4.3: Grid mapping using a linear function.

As the grid mapping figures 4.2 and 4.3 show, the code first develops the staggered grid points

(i.e., XU and Y V ) using one of the mapping methods provided. Then, using staggered points,

the main grid points are calculated. Figure 4.4 presents the method of calculating the main
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grid points and arrays related to grid thickness.

� �
1 G.X[1] = G.XU[2]; G.X[G.NI]

= G.XU[G.NI];

2 for (int i = 2; i <= NIM1;

i++)

3 {

4 G.X[i] = 0.5 * (G.XU[i + 1]

+ G.XU[i]);

5 }

6 G.Y[1] = G.YV[2]; G.Y[G.NJ]

= G.YV[G.NJ];

7 for (int j = 2; j <= NJM1;

j++)

8 {

9 G.Y[j] = 0.5 * (G.YV[j + 1]

+ G.YV[j]);

10 }

11 G.DXPW[1] = 0.0;

G.DXEP[G.NI] = 0.0;

12 for (int i = 1; i <= NIM1;

i++)

13 {

14 G.DXEP[i] = G.X[i + 1] -

G.X[i]; G.DXPW[i + 1] =

G.DXEP[i];

15 }

16 G.DYPS[1] = 0.0;

G.DYNP[G.NJ] = 0.0;

17 for (int j = 1; j <= NJM1;

j++)

18 {

19 G.DYNP[j] = G.Y[j + 1] -

G.Y[j]; G.DYPS[j + 1] =

G.DYNP[j];

20 }

21 G.DXPWU[1] = 0.0; G.DXPWU[2]

= 0.0;

22 G.DXEPU[1] = 0.0;

G.DXEPU[G.NI] = 0.0;

23 for (int I = 2; I <= NIM1;

I++)

24 {

25 G.DXEPU[I] = G.XU[I + 1] -

G.XU[I]; G.DXPWU[I + 1] =

G.DXEPU[I];

26 }

27 G.DYPSV[1] = 0.0; G.DYPSV[2]

= 0.0;

28 G.DYNPV[1] = 0.0;

G.DYNPV[G.NJ] = 0.0;

29 for (int J = 2; J <= NJM1;

J++)

30 {

31 G.DYNPV[J] = G.YV[J + 1] -

G.YV[J]; G.DYPSV[J + 1] =

G.DYNPV[J];

32 }

33 for (int I = 1; I <= G.NI;

I++)

34 {

35 G.SEW[I] = G.DXEPU[I];

36 }

37 for (int J = 1; J <= G.NJ;

J++)

38 {

39 G.SNS[J] = G.DYNPV[J];

40 }

41 for (int I = 1; I <= G.NI;

I++)

42 {

43 G.SEWU[I] = G.DXPW[I];

44 }

45 for (int J = 1; J <= G.NJ;

J++)

46 {

47 G.SNSV[J] = G.DYPS[J];

48 }� �
Figure 4.4: Grid quantities calculations.

It is important to make sure that the grid stretching factor is not high. Consequently, the code

has a section to evaluate this factor. As figure 4.5 shows, the array stretchingF contains the

stretching factor of the cavity in the x direction.
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� �
1 // Check grid stretching factor

2 double[] stretchingF = new double[G.NI];

3 for (int i = 2; i < G.NI; i++)

4 {

5 if (G.DXEP[i] > G.DXEP[i + 1])

6 {

7 stretchingF[i] = (G.DXEP[i] / G.DXEP[i + 1]);

8 }

9 else

10 {

11 stretchingF[i] = (G.DXEP[i + 1] / G.DXEP[i]);

12 }

13 }� �
Figure 4.5: Finding stretching factor of the grid in the x direction.

The grid pattern can also be visually investigated. This option can be available by activating

the following piece of code presented in figure 4.6 in the requested output method.� �
1 // Draw mesh pattern

2 Pen transPen = new Pen(Color.FromArgb(145, 150, 150, 150), 2);

3 g.DrawRectangle(transPen, (float)centerPoint.X,

4 (float)centerPoint.Y,

5 (float)XCellDimension[i, j],

6 (float)YCellDimension[i, j]);� �
Figure 4.6: Drawing mesh pattern in the graphical outputs.

In the case of the partition presence (INPART = true declared in the input section), the

code finds the position of the partition cells based on the input specifications of the partition

(the distance from the left wall and the thickness) and the mapped grid. Figure 4.7 shows

how a partition is placed in the mapped domain. It is necessary to ensure the placing quality

by comparing the requested partition thickness (TP ) with the final partition thickness on the

mapped cavity which is presented in this figure.

Additionally, a part of the initial calculation is finding the position of the monitoring points in

the mapped cavity. Then, the initial values of all main parameters are assigned to avoid any

possible error. Figure 4.8 shows how main variables are initialized. It is worth noting that for

some variables G.SMALL = 1.0E − 20 is used to prevent division by zero.



4.1. Introduction 61

� �
1 // Partition definition

2 if (G.INPART)

3 {

4 // Find starting grid

5 double SUMMM1 = 0.0; double SUMMM2 = 0.0;

6 int IIII = 0; int MP = 0;

7 bool FIND = false;

8 for (int i = 2; i <= G.NI; i++)

9 {

10 if (G.XU[i] >= XP && FIND == false)

11 {

12 MP = i; IIII = i;

13 do

14 {

15 G.EPa = i; SUMMM1 += G.DXPWU[i]; i = i + 1;

16 } while (SUMMM1 <= TP / 2);

17 FIND = true; SUMMM2 = 0.0; i = MP;

18 do

19 {

20 G.SPa = IIII - 1; SUMMM2 += G.DXPWU[IIII - 1];

21 IIII = IIII - 1;

22 } while (SUMMM2 <= TP / 2);

23 }

24 }

25 }

26 // Check the final partition thickness on the domain

27 double THICKNESS_P = 0.0;

28 for (int I = G.SPa; I <= G.EPa; I++)

29 {

30 THICKNESS_P += G.DXPWU[I];

31 }

32 Console.WriteLine("THICKNESS DIFFERENCE : " + (TP - THICKNESS_P));� �
Figure 4.7: Allocating the partition in the mapped grid and evaluating the accuracy.

Finally, the pause section is the last preparation step before reaching the calculation loops. This

part of the code is written to be able to continue the calculation after stopping the code. Since

unsteady simulations (G.STEADY = false) usually take a long time, unexpected accidents

may interrupt the calculation process. In this case, by activating the pause section (V ALUE =

0), it monitors the current iteration number (NFTSTP in the code) and if this number is bigger

than one (the starting point), it asks code to read results of the previous calculation from the

default folder (OUTPUT\DATABANK) and copy those in their corresponding variables and

continue the calculation from the breaking point. Figure 4.9 shows a sample of the code for
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� �
1 for (int I = 1; I <= G.NI; I++)

2 {

3 for (int J = 1; J <= G.NJ; J++)

4 {

5 G.U[I, J] = G.SMALL; G.UO[I, J] = G.SMALL; G.UOO[I, J] = G.SMALL;

6 G.V[I, J] = G.SMALL; G.VO[I, J] = G.SMALL; G.VOO[I, J] = G.SMALL;

7 G.P[I, J] = G.SMALL; G.PO[I, J] = G.SMALL; G.PP[I, J] = G.SMALL;

8 G.T[I, J] = 0.5; G.TO[I, J] = 0.5; G.TOO[I, J] = 0.5;

9 G.DEN[I, J] = 1.0 + G.SMALL; G.VIS[I, J] = 1.0 + G.SMALL;

10 G.DU[I, J] = 0.0; G.DV[I, J] = 0.0;

11 }

12 }� �
Figure 4.8: Piece of the code for initializing main variables.

reading the last saved results from binary files and copies their values to the array.� �
1 if (VALUE == 0)

2 {

3 // Find the address of binary file

4 string pathTr = string.Concat(Environment.CurrentDirectory,

@"\OUTPUT\DATABANK\T\ " + "T" + NFTSTP + ".bin");

5 // Initiate file stream and binary reader

6 FileStream fstr = new FileStream(pathTr, FileMode.Open,

FileAccess.Read);

7 BinaryReader bwtr = new BinaryReader(fstr);

8 // Copy the values into the array

9 for (int i = 0; i <= G.NI; i++)

10 {

11 for (int j = 0; j <= G.NJ; j++)

12 {

13 G.T[i, j] = (bwtr.ReadDouble());

14 }

15 }

16 //Close file stream and binary reader.

17 bwtr.Close(); fstr.Close();

18 }� �
Figure 4.9: Sample of the code for the pause section.

The main calculation loop starts after the pause section and velocity, pressure and temperature

variables are solved by calling appropriate methods. Calculation methods for main variables

are separated. Those methods are CALCU for the u velocity component, CALCV for the v

velocity component, CALCT for the θ temperature and CALCP for the p pressure and are
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presented in appendix B.

Due to having separate and independent methods, the calling process is very easy and is

presented in figure 4.10.� �
1 // Calculate U

2 if (G.INCALU) { CALCU(R1, NSWPU, ITSTEP); }

3 // Calculate V

4 if (G.INCALV) { CALCV(R1, NSWPV, TREF, ITSTEP); }

5 // Calculate P

6 if (G.INCALP) { CALCP(IPREF, JPREF, NSWPP, ITSTEP); }

7 // Calculate T

8 if (G.INCALT) { CALCT(R2, NSWPT, ITSTEP); }� �
Figure 4.10: Calling main variable methods in the internal iteration.

After converging (with the convergence criteria SORMAX) the calculations, the results of the

main variables are saved in binary files according to the defined output frequency. Results have

a separate folder and are named based on the variable and its iteration. For instance, in folder

OUTPUT\DATABANK\T the file name T1200.bin represents the results of temperature

variable at the iteration number 1200. The DUMP method which is responsible for saving

binary files is presented in figure 4.11 for the case of the variable T .

In addition to binary files, data for monitoring points, the Nusselt number and other types of

results are produced to check the simulation progress. Since these results should be directly

available for the users, they are saved in txt files with appropriate format, which can be imported

to Microsoft Excel or other data processing software. Figure 4.12 shows the universal code

written for saving any type of variable in its specific address.

Furthermore, it is possible to turn on other types of outputs in the main code; however, a

separate code has been written for solely post-processing purpose. The monitoring of the code

can be done by analyzing the txt files of the monitoring points (at least 7 points) or the Nusselt

numbers. As those files are time series, the code writes on those files during the simulation

and should have access to them. Therefore, for monitoring, the users should pause the code

through the Microsoft Visual Studio and then open those files. Opening time series files during
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� �
1 static void DUMP(int ITSTEP)

2 {

3 // Create the necessary folder at the requested address

4 string path1 = @"OUTPUT\DATABANK" + "\\" + "T";

5 try

6 {

7 DirectoryInfo di = Directory.CreateDirectory(path1);

8 } catch (Exception e)

9 {

10 Console.WriteLine("The process of creating the folder failed: {0}",

e.ToString());

11 }

12 // Specify the address of binary file

13 string pathT = string.Concat(Environment.CurrentDirectory, @

"\OUTPUT\DATABANK\T\"" + "T" + ITSTEP + ".bin" );

14 FileStream fsT = new FileStream(pathT, FileMode.OpenOrCreate,

FileAccess.Write);

15 BinaryWriter bT = new BinaryWriter(fsT);

16 // Write the binary file

17 for (int i = 0; i <= G.NI; i++)

18 {

19 for (int j = 0; j <= G.NJ; j++)

20 {

21 bT.Write((G.T[i, j]));

22 }

23 }

24 // Close file streaming

25 bT.Close(); fsT.Close();

26 }� �
Figure 4.11: Saving a variable (e.g. temperature) in a binary file by an appropriate name and
address.

the simulation without pause may cause an error in the simulation and stop the process. After

finishing work with the files and closing them, the users can simply press ‘continue’ button to

carry on the rest of simulation.

It is usually preferred to generate the requested outputs after finishing simulations to save space

and time. Another code is written in visual C# to do the post-processing of data using already

produced binary files. This program needs the same preparation steps of the main program;

however in the calculation loop; it has the output generating code. This code can handle all

binary files or a range of them or just specific file of results. Therefore, users can select one of

those options based on their needs. The main flowchart of the post-processing code is presented
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� �
1 static void PRINT(List<string> PHI, string NAME, int ITSTEP)

2 {

3 // Create a folder for the requested variable inside the $OUTPUT$

folder

4 string path = @"OUTPUT\" + NAME + "\\"";

5 try

6 {

7 DirectoryInfo di = Directory.CreateDirectory(path);

8 } catch (Exception e)

9 {

10 Console.WriteLine("The process of creating the folder failed: {0}",

e.ToString());

11 }

12 // Write the results in a text file

13 string pathX = string.Concat(Environment.CurrentDirectory, @"\OUTPUT\

" + NAME + "\\" + NAME + "_" + ITSTEP + ".txt");

14 FileStream fX = new FileStream(pathX, FileMode.OpenOrCreate,

FileAccess.Write);

15 using (StreamWriter writer = new StreamWriter(fX))

16 {

17 foreach (string x in PHI)

18 {

19 writer.WriteLine(x);

20 }

21 }

22 }� �
Figure 4.12: Saving a variable (e.g. PHI, a general name for any assigned variable) in a txt
file by an appropriate name and address.

in figure 4.13.

The output section can be classified into two parts. The first part is graphical outputs which

include contour pictures of variables and the second part is numerical outputs which are saved

in txt files. The first part includes many methods, such as Line which defines lines and

LineGenerator which draws lines on a picture or ColorMap which defines colours and their

gradients. All the methods related to the graphical outputs are illustrated in figure 4.14. These

graphical presentations have several options such as adding isolines, selecting the colour range

(full colours or two colours gradients) and adapting to uniform or non-uniform grids.

The numerical outputs are mainly generated in response to the requested data for a specific

position of a condition and saved in txt files. Those results could be time dependent or for
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Initialization includ-
ing variables defina-
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Adjust output frequency
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• For all
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Read the binary files
and save the data in the
corresponding variable

Figure 4.13: Flowchart for explaining the main procedure of the code.

Graphical output
methods

Line

LineGeneratorTensor3D

Vector3D

ColorMap

Uvelocity
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Temperature

StreamFunction

Figure 4.14: Methods written for graphical representation of main variables.

particular time steps. In case of time series, there is always an extra column beside the original

data for the time in the result files and for position dependent data that an additional column is

for the distance of cells from the origin of the domain. The main methods defined are depicted

in figure 4.15.
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DUMPDUMPGRID

PRINT

NUSSELT BL
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Figure 4.15: Methods written for data saving and generating.

4.2 Code verification and validation

4.2.1 Non-partitioned cavity

A. Time and grid independence test

Accuracy and simulation time are important factors for any numerical simulations. Therefore,

obtaining the optimum grid size and time step is essential steps to get an accurate and time-

efficient result. The non-uniform grid distribution is selected for mapping the non-partitioned

cavity. The domain has finer grids near the walls and coarser grids in the middle. Figure 4.16

shows a schematic of the non-uniform mesh distribution in a non-partitioned cavity.

The grid independence test for Ra = 108 was performed for four different meshes of 100× 100,

160×160, 200×200 and 250×250 and the time step of τ = 0.005. To verify the grid independent

solution; a study was carried out on the average and time series of the Nusselt number on the

hot wall, which are presented in figure 4.17.

As figure 4.17 shows, as expected, the variation of the average Nusselt number gradually de-

creases by increasing the mesh size. Since the variation for all cases is less than 1%, the mesh of
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Figure 4.16: The grid distribution for a non-partitioned cavity with the mesh of 100× 100.

200×200 was selected as the mesh that produces results with suitable resolution. The smallest

grid size is 0.0007 whereas the largest grid size is 0.0093 in the x and y directions, and the max-

imum grid expansion ratio (or stretching factor) is 1.0524. Table 4.2 quantitatively shows the

steady-state results of the temperature at the point (0.05, 0.5) and the average Nusselt number

on the hot wall. These results also confirm the selected grid size for the non-partitioned cavity.

Table 4.2: Grid independence tests.

Grid size
Temperature at point

(0.05, 0.5)
Steady-state average Nusselt number

on the hot wall

100× 100 0.47125 30.38639
160× 160 0.47884 30.27983
200× 200 0.47913 30.25848
250× 250 0.48075 30.24565

In order to do the time step independence test, the simulations were carried out with different

time steps of dτ = 10−2, 5 × 10−3 and 10−3. It is clear from figure 4.18 that the variation of

results due to the selected time steps is negligible. Therefore, dτ = 10−2 was chosen for the

code validation tests.
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Figure 4.17: Time series of the average Nusselt number on the hot wall for the non-partitioned
cavity at different meshes.
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Figure 4.18: Time series of the average Nusselt number on the hot wall for the non-partitioned
cavity for different time steps.
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B. Validation with a two-dimensional non-partitioned cavity

The code validation was performed by benchmarking the available results for two-dimensional

natural convection in a differentially heated square cavity without partition. The thermal flow

in the two-dimensional heated square cavity filled by air (Pr = 0.71) was a numerical benchmark

problem for testing accuracy and efficiency of numerical methods for solving the incompressible

Navier-Stokes equations since the pioneering work of de Vahl Davis and Jones [185, 285]. The

cavity is closed and top and bottom walls are adiabatic. The left and right sidewalls are

isothermally heated (e.g., θ = 1.0) and cooled (e.g., θ = 0.0) respectively. The working

fluid is air and initially quiescent and at the mean temperature of sidewalls (e.g., θ = 0.5).

The dimensionless forms of the initial and boundary conditions for this cavity are presented in

figure 4.19 and the governing equations are as follows,

∂u

∂x
+
∂v

∂y
= 0, (4.1)

∂u

∂τ
+
∂(uu)

∂x
+
∂(vu)

∂y
= −∂p

∂x
+

√
Pr

Ra

(
∂2u

∂x2
+
∂2u

∂y2

)
, (4.2)

∂v

∂τ
+
∂(uv)

∂x
+
∂(vv)

∂y
= −∂p

∂y
+

√
Pr

Ra

(
∂2v

∂x2
+
∂2v

∂y2

)
+ θ, (4.3)

∂θ

∂τ
+
∂(uθ)

∂x
+
∂(vθ)
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=

√
1

RaPr

(
∂2θ

∂x2
+
∂2θ

∂y2

)
. (4.4)
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Figure 4.19: Schematic of the differentially heated cavity with the initial and boundary condi-
tions.

The comparison of temperature contours for a range of Ra (103 ≤ Ra ≤ 108) shows satisfactory

agreement with the results by Corzo et al. [4], as shown in figure 4.20.

Moreover, the predicted average Nusslet number from the present code was compared with

several numerical and experimental studies, as presented in table 4.3. As can be seen from the

table, the results of the present study agree well with those numerical data reported in the

literature up to Ra = 106. However, for higher Ra values, there is a discrepancy with some

of the presented data in the literature (e.g., by Wan et al. [286](DSC)). Nevertheless, in terms

of the experimental results (i.e., [180]), the higher Ra cases show well agreement with the

numerical ones, but a discrepancy at lower Ra cases found. This outcome is expected as lower

Ra cases are more sensitive to the experiment errors.

To validate the results presented in this study, four more additional parameters are also inves-

tigated. The quantities under study are as follows,
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(a)Ra = 103

(b)Ra = 104

(c)Ra = 105

(d)Ra = 106

(e)Ra = 107

(f)Ra = 108

Figure 4.20: Comparison of temperature contours presented by Corzo et al. [4] (left column)
and by this study (right column) for a non-partitioned cavity.
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1. umax, the maximum horizontal velocity on the vertical mid-plane of the cavity,

2. vmax, the maximum vertical velocity on the horizontal mid-plane of the cavity,

3. Numax, the maximum value of the local Nusselt number on the hot wall,

4. Numin, the minimum value of the local Nusselt number on the hot wall.

These parameters were obtained for 103 ≤ Ra ≤ 108 and compared with several other studies,

with the results presented in Tables 4.4 to 4.7.

By analysing tables 4.4 to 4.7, it can be seen that the uncertainties and complexities grow

with the increase in the Rayleigh value. Nevertheless, a good agreement is observed among the

investigations up to Ra = 106. For high Ra cases (107 ≤ Ra ≤ 108), results obtained from

the code are closer to the data calculated by Fluent and OpenFOAM software. Similar to the

average Nusselt number results, the calculated data by DSC method (Wan et al. [286]) shows

the biggest differences.
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Table 4.3: Comparison between the average Nusselt number obtained from the present code
and those available in the literature for a differentially heated square cavity at various Rayleigh
values.

Ra = 103 Ra = 104 Ra = 105 Ra = 106 Ra = 107 Ra = 108

This study 1.117 2.244 4.521 8.825 16.528 30.245

Leong et al. [180]
(experimental)

- 1.246 3.916 7.883 15.38 31.22

Choi [2] 1.117 2.243 4.519 8.820 16.504 -

Chenoweth and
Paolucci [287]

1.118 2.244 4.520 8.822 16.82 -

Dixit and
Babu [122]

1.121 2.244 4.520 8.822 16.79 30.506

Khanafer
et al. [145]

1.118 2.286 4.546 8.652 - -

De Vahl
Davis [185]

1.118 2.243 4.519 8.799 - -

Le Quéré and De
Roquefortt [288]

1.1178 2.245 4.522 8.825 16.52 -

Le Quéré [289] - - - - 16.523 30.225

Puragliesi [290] - - 4.521 8.825 16.523 -

Corzo et al. [4]
(Fluent)

1.113 2.246 4.535 8.861 16.645 28.52

Corzo et al. [4]
(OpenFOAM)

1.109 2.222 4.498 8.786 16.502 30.1425

Manzari [291] 1.074 2.084 4.3 8.743 13.99 -

Wan et al. [286]
(FEM)

1.117 2.254 4.598 8.976 16.656 31.486

Wan et al. [286]
(DSC)

1.073 2.155 4.352 8.632 13.86 23.67
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Table 4.4: Comparison of the maximum horizontal velocity at the mid-width and its location
obtained from the present code with those available in the literature for a differentially heated
square cavity at various Rayleigh values.

Ra = 103 Ra = 104 Ra = 105 Ra = 106 Ra = 107 Ra = 108

umax this study
3.648
(0.807)

16.176
(0.819)

34.736
(0.855)

64.767
(0.855)

147.029
(0.883)

313.198
(0.926)

[4]

(Fluent)
3.643
(0.817)

16.139
(0.817)

34.469
(0.855)

64.433
(0.846)

146.00
(0.888)

304.015
(0.922)

[4]

(OpenFOAM)
3.640
(0.812)

16.281
(0.822)

34.928
(0.859)

64.558
(0.851)

145.84
(0.884)

299.156
(0.921)

[185]
3.634
(0.813)

16.2
(0.823)

34.81
(0.855)

65.33
(0.851) - -

[291]
3.68

(0.817)
16.1

(0.817)
34.0

(0.857)
65.4

(0.875)
139.7
(0.919) -

[292]
3.6493
(0.8125)

16.1798
(0.8235)

34.7741
(0.8535)

64.6912
(0.8460)

145.2666
(0.8845)

283.689
(0.9455)

[286]

(FEM)
3.489
(0.813)

16.122
(0.815)

33.39
(0.835)

65.40
(0.86)

143.56
(0.922)

296.71
(0.93)

[286]

(DSC)
3.6434
(0.8167)

15.967
(0.8167)

33.51
(0.85)

65.55
(0.86)

145.06
(0.92)

295.67
(0.94)

Table 4.5: Comparison of the maximum vertical velocity at the mid-height and its location
obtained from the present code with those available in the literature for a differentially heated
square cavity at various Rayleigh values.

Ra = 103 Ra = 104 Ra = 105 Ra = 106 Ra = 107 Ra = 108

vmax this study
3.701
(0.181)

19.674
(0.122)

68.584
(0.064)

221.122
(0.036)

700.240
(0.020)

2217.47
(0.011)

[4]

(Fluent)
3.690
(0.182)

19.619
(0.119)

68.817
(0.064)

220.970
(0.0379)

695.36
(0.0196)

2199.51
(0.011)

[4]

(OpenFOAM)
3.700
(0.177)

19.547
(0.123)

68.878
(0.067)

221.572
(0.0670)

704.094
(0.0217)

2233.35
(0.012)

[185]
3.679
(0.179)

19.51
(0.12)

68.22
(0.066)

216.75
(0.0387) - -

[291]
3.73

(0.1827)
19.9

(0.1246)
70.0

(0.068)
228

(0.039)
698

(0.0235) -

[292]
3.6962
(0.1790)

19.6177
(0.1195)

68.6920
(0.0665)

220.8331
(0.0380)

703.2536
(0.0215)

2223.4424
(0.013)

[286]

(FEM)
3.686
(0.188)

19.79
(0.12)

70.63
(0.072)

227.11
(0.040)

714.48
(0.022)

2259.08
(0.012)

[286]

(DSC)
3.686
(0.183)

19.98
(0.117)

70.81
(0.070)

227.24
(0.040)

714.47
(0.021)

2290.13
(0.013)
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Table 4.6: Comparison of the maximum Nusselt number on the hot wall and its location
obtained from the present code with those available in the literature for a differentially heated
square cavity at various Rayleigh values.

Ra = 103 Ra = 104 Ra = 105 Ra = 106 Ra = 107 Ra = 108

Numax this study
1.506
(0.090)

3.532
(0.144)

7.723
(0.086)

17.571
(0.0408)

39.537
(0.018)

88.808
(0.007)

[4]

(Fluent)
1.506
(0.090)

3.539
(0.144)

7.767
(0.083)

17.717
(0.0379)

40.619
(0.015)

96.47
(0.0074)

[4]

(OpenFOAM)
1.505
(0.001)

3.538
(0.085)

7.765
(0.080)

17.708
(0.0404)

40.594
(0.017)

90.294
(0.008)

[185]
1.50

(0.092)
3.53

(0.143)
7.71
(0.08)

17.92
(0.039) - -

[291]
1.47

(0.109)
3.47

(0.125)
7.71
(0.08)

17.46
(0.039)

30.46
(0.024) -

[292]
1.5062

(0.08956)
3.5305
(0.1426)

7.7084
(0.08353)

17.5308
(0.03768)

41.0247
(0.03899)

91.2095
(0.067)

[286]

(FEM)
1.501
(0.08)

3.579
(0.13)

7.945
(0.08)

17.86
(0.03)

38.6
(0.015)

91.16
(0.010)

[286]

(DSC)
1.444

(0.0917)
3.441

(0.1333)
7.662
(0.085)

17.39
(0.04)

31.02
(0.02)

68.73
(0.010)

Table 4.7: Comparison of the minimum Nusselt number on the hot wall and its location obtained
from the present code with those available in the literature for a differentially heated square
cavity at various Rayleigh values.

Ra = 103 Ra = 104 Ra = 105 Ra = 106 Ra = 107 Ra = 108

Numin this study
0.691
(0.998)

0.586
(0.998)

0.729
(0.998)

0.981
(0.998)

1.366
(0.999)

1.916
(0.999)

[4]

(Fluent)
0.691
(1.000)

0.691
(1.000)

0.691
(1.000)

0.983
(1.000)

1.394
(0.990)

2.0536
(0.999)

[4]

(OpenFOAM)
0.691
(1.000)

0.691
(1.000)

0.726
(1.000)

0.977
(0.998)

1.365
(0.998)

1.906
(0.999)

[185]
0.692
(1.0)

0.586
(1.0)

0.729
(1.0)

0.989
(1.0) - -

[291]
0.623
(1.0)

0.497
(1.0)

0.614
(1.0)

0.716
(1.0)

0.787
(1.0) -

[292]
0.6913
(1.0)

0.5850
(1.0)

0.7282
(1.0)

0.9845
(1.0)

1.3799
(1.0)

2.044
(1.0)

[286]

(FEM)
0.691
(1.0)

0.577
(1.0)

0.698
(1.0)

0.9132
(1.0)

1.298
(1.0)

1.766
(1.0)

[286]

(DSC)
0.665
(1.0)

0.528
(1.0)

0.678
(1.0)

0.903
(1.0)

0.997
(1.0)

1.428
(1.0)
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4.2.2 Partitioned cavity

A. Time and grid independence test

The non-uniform mesh was used for mapping partitioned cavities. The domain has finer grids

near the walls and the partition and coarser grids at the core. Figure 4.21 shows a schematic

of the non-uniform mesh distribution in a partitioned cavity.

y

x

y

x

y

x

Figure 4.21: Grid distribution for a partitioned cavity with the mesh of 100× 100.

Results of the grid independence tests for several meshes from 100× 100 to 300× 300 are listed

in Table 4.8. Other parameters of the partitioned cavity are TP = 0.2, XP = 0.5, kr = 1000,

Pr = 0.71 and Ra = 108. The presented results include steady-state data for the temperature

at the point (0.05, 0.5) and the average Nusselt number on the hot wall. Since the variation

of results from meshes of 250 × 250 to 300 × 300 is less than 2% for the average Nusselt

number and less than 1% for the temperature, the 250 × 250 mesh is selected as an optimum

mesh for the partitioned cavity. The smallest grid size is ∆x = 0.000807 in the x direction
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and ∆y = 0.000806 in the y direction whereas the largest grid sizes are ∆x = 0.007256 and

∆y = 0.007255 and the maximum grid expansion ratio (or stretching factor) is 1.0697.

Table 4.8: Grid independence tests of a partitioned cavity.

Grid size
Temperature at
point (0.05, 0.5)

Steady-state average Nusselt
number on the hot wall

100× 100 0.61743 17.43051

150× 150 0.65790 15.87343

230× 230 0.69663 14.52101

250× 250 0.70103 14.38578

270× 270 0.70453 14.25898

300× 300 0.70748 14.12233

In order to have the time step independence test, the simulations were carried out with different

time steps of dτ = 10−2, 5 × 10−3 and 10−3. It is clear from figure 4.22 that the variation of

results due to the selected time steps are negligible. Therefore, dτ = 5 × 10−3 was chosen for

the code validation tests.
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θ

τ

(a) (b)

Figure 4.22: Time series of (a) the average Nusselt number on the hot wall and (b) temperature
at (0.05, 0.5) for different time steps of case the TP = 0.2, XP = 0.5, kr = 1000, Pr = 0.71 and
Ra = 108.
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B. Validation with a two-dimensional partitioned cavity

The accuracy of the code was also validated for the case of a partitioned cavity. The same

dimensionless governing equations, initial and boundary conditions presented in section 3.2

was used for this validation. The partition thickness (TP ) and position (XP ) are 0.1 and 0.5

and the thermal conductivity ratio (kr) of 1 and 100 were selected. The temperature and

stream function obtained for Ra = 106 of the code are compared against the results presented

by Kahveci [5] and Choi [2] in figures 4.23 and 4.24.
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Figure 4.23: Comparison of temperature contours for kr = 1 (top row) and kr = 100 (bottom
row) presented by Kahveci [5] (left column), Choi [2] (middle column) and the present study
(right column) for Ra = 106.

Comparing temperature and stream function contours reveal that results presented by Kahveci

[5] are almost identical to data obtained from the current code. However, the contours reported

by Choi [2] show less convective behavior.

Further investigation of the partitioned cavities over a range of Rayleigh value between 104 and

106 shows the same underestimation observed in the results reported by Choi [2]. The average
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Figure 4.24: Comparison of stream function contours for kr = 1 (top row) and kr = 100 (bottom
row) presented by Kahveci [5] (left column), Choi [2] (middle column) and the present study
(right column) for Ra = 106.

Nusselt number obtained for 104 ≤ Ra ≤ 106 and kr = 1 and 100 is presented in table 4.9.

Table 4.9: Comparison between the average Nusselt number obtained from the present code
and those available in the literature for a differentially heated partitioned cavity at various
Rayleigh values.

Ra = 104 Ra = 105 Ra = 106

kr = 1

This study 1.09 1.76 2.82

Choi [2] 1.05 1.74 2.79

Kahveci [5] 1.06 1.79 2.8

kr = 100

This study 1.17 2.11 4.03

Choi [2] 1.05 1.87 3.51

Kahveci [5] 1.19 2.14 3.93



Chapter 5

Steady-state natural convection in a

partitioned cavity

5.1 Introduction

Heat transfer and flow structures in a partitioned cavity usually depend on both the geometrical

parameters (e.g., aspect ratio, partition thickness, partition position, thermal conductivity,

etc.) and the flow control parameters (e.g., the Rayleigh value, the Prandtl number). In the

present study, natural convection in a partitioned cavity is investigated for three values of the

dimensionless partition thickness (i.e., Tp = 0.05, 0.1, and 0.2), two values of the dimensionless

partition position (i.e., Xp = 0.25 and 0.5), five values of the thermal conductivity ratio (i.e.,

kr = 0.1, 1, 100, 500 and 1000), and six values of the Rayleigh value (i.e., Ra = 103, 104, 105,

106, 107 and 108). For all these cases, A = H/L = 1 (i.e., the aspect ratio is A = 1), and

Pr = 0.71 are used.

The thermal conductivity ratio selected for this work covers a wide range of materials with

different applications in the industry. kr ≈ 0.1 represents a range of super insulating materials

such as fiber fillings or powder filled panels [293]. By selecting kr ≈ 1, the partition repre-

sents the thermal behavior of materials such as polyurethane foam, extruded polystyrene, some

gases such as nitrogen, oxygen, water vapor, redwood bark or silica aerogel. For instance, silica

81
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aerogels have a wide range of uses, mostly in high-tech science and engineering. Some of the

current applications include insulation on the Mars exploration rovers, hypervelocity particle

capture in the stardust probe, high-energy Cherenkov radiation particle counters, remediating

oil from water, and transparent window insulation [294]. Granite, sandstone, ice, fused silica,

thorium dioxide and zirconium dioxide are some of the materials that have kr ≈ 100. Alu-

minum oxide and stainless steel have kr ≈ 500 and beryllium oxide (a well known electrical

insulator), bronze, titanium, monel, constantan, solder have kr ≈ 1000. For example, beryllium

oxide, owing to its high thermal conductivity and good electrical resistivity, can be an effective

heat sink in high-power devices or high density electronic circuits for high-speed computers.

Beryllium oxide is transparent to microwaves and x-rays and can be used as windows, radomes

and antennas in microwave communication systems and microwave ovens, as an x-ray window,

particularly for severe operating conditions or in high-power laser tubes. Beryllium oxide also

has specific nuclear properties (low neutron capture cross-section and high neutron moderating

ability) which make it attractive material for nuclear-power reactors.

5.2 Centrally positioned partition

5.2.1 Qualitative analysis of flow and heat transfer behaviour

A. Isotherms and streamlines

Figures 5.1, 5.3, 5.5, 5.7 and 5.9 present the temperature contours and figures 5.2, 5.4, 5.6, 5.8

and 5.10 show the streamlines at the fully developed stage obtained numerically for Tp = 0.05,

0.1, and 0.2, and kr = 0.1, 1, 100, 500 and 1000, each at Xp = 0.5 and at Ra = 103, 104, 105,

106, 107 and 108, respectively. Isolines of the color-coded contour figures presented in this thesis

are defined in a way that the maximum and minimum values of the parameter of the interest

are assigned to the red and blue colors on the top and bottom of the plot key bar respectively

and divided to 30 equally spaced sections.

The general flow pattern for all convection dominated cases (equal to and higher than Ra = 105)
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shown is that in the left enclosure, the heated air close to the hot wall moves upward and

impinges on the top wall to form a hot intrusion which moves horizontally along the top wall

until it strikes on the top edge of the left side of the partition wall, which moves subsequently

downward along the left side of the partition wall; a similar process occurs in the right enclosure,

although there it is a cold intrusion that impinges on the bottom edge of the right side of the

partition wall and moves upward. With the continuous passing of these hot and cold intrusions

on either side of the partition wall, heat is transferred by conduction through the partition wall

from the left enclosure to the right one, resulting in the coupling of the flow and heat transfer

between the two enclosures. For the cases of conduction-dominated heat transfer phenomenon,

such a movement induced in the high Ra cases does not exist. Heat transfers from the left wall

mainly by conduction to the partition and then through conduction transfers to the other side.

By studying the temperature contours for all cases, it is clear that as Ra increases isotherms

change from being completely vertical and parallel to the side walls (i.e., the Ra = 103 case) to

angled and finally horizontal (perpendicular to the side walls) at the middle of side-cavity. This

observation implies that the heat transfer mechanism changes gradually from a conduction-

dominated form to a convective heat transfer. The next overall observation is regarding

isotherms distribution in the fluid region of the cavity. The low Ra cases show more uni-

formly spaced in the horizontal direction isotherms, indicating the temperature varies almost

linearly with distance along the x-axis. However, the high Ra cases have non-uniformly spaced

isotherms. The areas with denser isotherms are mainly close to the side walls and the partition,

indicating a steep temperature gradient and thermal boundary layers formation in the vicinity

of all walls for high Ra cases. The temperature variation within the fluid layer diminishes in-

ward from the sidewalls into the center of the enclosure which forms the circulation, indicating

that the heat transfer regime changes from conduction to convection with increases in Ra.

The stream function contours of Ra = 103 show a symmetrical oval shape flow pattern and

the eye of the vortex is located at the center of the enclosure. As Ra increases flow pattern

becomes asymmetrical and gradually transforms from an oval shape (i.e., Ra = 103) to an

egg shape (i.e.104 ≤ Ra ≤ 105) and finally an elongated shape (i.e., 106 ≤ Ra ≤ 108) with

more vortex eyes. Flow patterns in the half-cavity for Ra ≥ 104 are not symmetrical and the
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vortex eyes are mainly shifted to the sidewalls. By inspecting the streamlines for high Ra cases

(107 or 108), clearly the 180-degree rotational symmetry which exists in the flow pattern of

a non-partitioned cavity, cannot be observed in each half-cavity of a partitioned cavity. For

instance, the intensity of stream function close to the top-left corner is higher than that at the

opposite corner (bottom-right) in the left half-cavity.

To investigate how the flow structure evolves in an enclosure for increasing Ra, figure 5.11

presents a schematic of the observed typical flow pattern in the upper left corner region of

the enclosure for the range of Ra covered in this study, where figure 5.11(a), (b), (c) and (d)

represent Ra = 103, 104 ≤ Ra ≤ 106, 106 ≤ Ra ≤ 107 and 107 ≤ Ra ≤ 108, respectively.

Comparing the flow patterns illustrated in figures 5.2, 5.4, 5.6, 5.8 and 5.10 it is shown that the

partition specification affects the patterns and for low Ra cases (figure 5.11(a) and (b)) fluid is

bounded by the boundary-layer flow with a single cell in each half-cavity and flow travels around

the corner without any evidence of separation. By increasing Ra streamlines move closer to the

sidewalls. A further increase in Ra causes streamlines in the core region to be almost horizontal

and the boundary-layer type regions formed close to the horizontal and vertical walls are more

recognizable (mainly for Ra = 107 and 108). It is clear that flow from the corner moves into the

core more sharply. This sudden discharge into the interior forms a flow separation from the top

wall near the corner (i.e., figure 5.11(c)). At these high Ra cases flow, while passing the corner

area (turning process which follows by separation), is compressed (with denser streamlines),

which is similar to a jet behavior spreading to a wide area of the enclosure (almost covers

the half height of the enclosure). By further increasing Ra, the turning process gets sharper

and consequently, the separation jump increases. This observed inverse S-shape pattern (figure

5.11(d)) causes a block of fluid to trap between the upcoming boundary-layer fluid of sidewall

and the spreading fluid into the core. This block of fluid forms a re-circulation region and as

Ra increases it moves closer to the corner.
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Tp = 0.05 Tp = 0.1 Tp = 0.2

Ra = 103

(a) (b) (c)

Ra = 104

(d) (e) (f)
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(g) (h) (i)
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(j) (k) (l)
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Figure 5.1: Temperature contours at kr = 0.1 and Xp = 0.5 for different Ra values (103 ≤
Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Tp = 0.05 Tp = 0.1 Tp = 0.2

Ra = 103

(a) (b) (c)

Ra = 104

(d) (e) (f)
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Figure 5.2: Stream function contours at kr = 0.1 and Xp = 0.5 for different Ra values (103 ≤
Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Tp = 0.05 Tp = 0.1 Tp = 0.2

Ra = 103

(a) (b) (c)

Ra = 104

(d) (e) (f)

Ra = 105

(g) (h) (i)

Ra = 106

(j) (k) (l)

Ra = 107

(m) (n) (o)

Ra = 108

(p) (q) (r)

Figure 5.3: Temperature contours at kr = 1 and Xp = 0.5 for different Ra values (103 ≤ Ra ≤
108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Tp = 0.05 Tp = 0.1 Tp = 0.2

Ra = 103

(a) (b) (c)

Ra = 104

(d) (e) (f)
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(g) (h) (i)
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Ra = 108
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Figure 5.4: Stream function contours at kr = 1 and Xp = 0.5 for different Ra values (103 ≤
Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Tp = 0.05 Tp = 0.1 Tp = 0.2

Ra = 103

(a) (b) (c)

Ra = 104

(d) (e) (f)

Ra = 105

(g) (h) (i)

Ra = 106

(j) (k) (l)

Ra = 107

(m) (n) (o)

Ra = 108
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Figure 5.5: Temperature contours at kr = 100 and Xp = 0.5 for different Ra values (103 ≤
Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Tp = 0.05 Tp = 0.1 Tp = 0.2

Ra = 103

(a) (b) (c)

Ra = 104

(d) (e) (f)
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Figure 5.6: Stream function contours at kr = 100 and Xp = 0.5 for different Ra values (103 ≤
Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.7: Temperature contours at kr = 500 and Xp = 0.5 for different Ra values (103 ≤
Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.8: Stream function contours at kr = 500 and Xp = 0.5 for different Ra values (103 ≤
Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.9: Temperature contours at kr = 1000 and Xp = 0.5 for different Ra values (103 ≤
Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.10: Stream function contours at kr = 1000 and Xp = 0.5 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Flow in the half-cavity with the inverse S-shape pattern can be grouped into two streams similar

to the classification by Ravi et al. [295] for the non-partitioned cavity. One stream has flow

close to walls with the sudden expansion and the other flows around the central region without

reaching the walls. The dividing border between those two streams is a streamline where the

recirculating loop at the top-left corner region touches the recirculating loop in the central

region or lower section. Figure 5.12 schematically illustrates the dividing stream function. Due

to the asymmetrical flow pattern in the half-cavity, the corner with the stronger flow (top-left

corner) is considered for the position of dividing streamline.

(a) (b) (c) (d)

Figure 5.11: A schematic of the typical flow pattern in the upper left corner region of the
rectangular cavity.

partition

Figure 5.12: Dividing stream function in the left half-cavity.
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The effect of the partition thickness can be seen in figures of temperature contours (i.e., figures

5.1, 5.3, 5.5, 5.7 and 5.9) and stream function (i.e., figures 5.2, 5.4, 5.6, 5.8 and 5.10). The

partition thickness mainly influences temperature and stream function contours in the cavity

by altering the fluid-filled area. Cavities with thinner partitions have wider half-cavities than

the ones with thick partitions. Stronger convection in the wider half-cavities causes shifting

from a single-cell flow pattern to a multiple cell flow pattern. This behaviour can be seen in

figures 5.2(m,n and o) as the cavity with the thickest partition (i.e., 5.2(o)) has a single-cell

flow pattern and gradually by decreasing the partition thickness (i.e., 5.2(n)) new vortex eyes

appear. By further decreasing the partition thickness (i.e., 5.2(m)) the created vortex eyes are

completely separated and move to the vicinity of walls. After viewing the temperature contours

within the partition for kr > 1, it is seen that if there is a temperature difference between the

top and the bottom of the partition, the thinner partition shows a bigger temperature difference

which can be observed by the number of isotherms in that area. As the thickness increases the

isotherms in the partition decreases. For instance, the number of isotherms in the partition is

8 in figure 5.5(m), 6 in figure 5.5(n), and 4 figure 5.5(o).

Thermal conductivity ratio (kr) is the other parameter presented in the temperature contour

figures (i.e., figures 5.1, 5.3, 5.5, 5.7 and 5.9) and stream function figures (i.e., figures 5.2, 5.4,

5.6, 5.8 and 5.10). The small thermal conductivity ratio of 0.1 implies high thermal resistance of

the partition. As mentioned earlier, at the fluid-solid interface, the condition ks(
∂θ
∂x

)s = kf (
∂θ
∂x

)f

is satisfied, hence the isotherms in the vicinity of the fluid-solid interface are directly related

to the thermal conductivities, and the increase of ks pushes isotherms to become closer to a

horizontal line whereas reducing ks moves isotherm orientation to be closer to a vertical line.

Figure 5.1 shows that the heat conduction from the left half-cavity to the right half-cavity

through the partition is very low and all the heated fluids in the left half-cavity and cooled

fluid in the right half-cavity are mainly trapped in each side. Isotherms in the partition for

all cases in figure 5.1 are almost vertical. As Ra increases (from the top to the bottom in

figure 5.1) the number of isotherms in the fluid-filled section of the cavity decreases and the

isotherms in the partition increase. This implies that the main temperature gradient is in the

partition, and the temperature difference between the left and the right sides of the partition
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gets larger. Similar behavior can be seen for the Tp effect, as the partition thickness increases

(from the left to the right in figure 5.1), the number of isotherms in the fluid-filled region of the

cavity decreases. This trend continues as figure 5.1 (r) shows that only one isotherm is in each

half-cavity and the rest of 28 isotherms are in the partition. By considering an equal thermal

conductivity for the fluid and the partition, temperature contour figures drastically change. For

the conduction-dominated case (Ra = 103), isotherms are vertical and uniformly spread in the

whole cavity and no significant difference can be seen when partition thickness changes. As Ra

increases the angle of isotherms in the fluid-filled and the partition area increases (i.e., figure

5.3(d), (e) and (f)). Interestingly, by further increasing Ra isotherms in the fluid-filled area

are continuously connected to the isotherms in the partition without any breaking point. This

observation is expected due to the equal thermal conductivity of the fluid and the partition

which does not create a different temperature gradient before and after the fluid-solid interface.

Increasing thermal conductivity of the partition (kr = 100) causes a decrease in the thermal

resistance of the partition which can be seen by the equal temperature on both sides of the

partition as shown in figure 5.5 (a−c). By increasing Ra and decreasing the partition thickness,

some isotherms can be observed in the partition area. The angle of these isotherms is higher

(from the vertical sidewalls) than the ones observed for the case kr = 1. This angle gradually

increases by increasing kr to 1000. The number of partitions without any isotherms increases

by decreasing Ra and increasing kr. This behavior shows a trivial thermal resistance of the

partition which can be considered as a thermal independence of each half-cavity. In other

words, the partition can be evaluated as an isothermal wall in these cases. Eventually, it is

possible to define the equivalent non-partitioned cavity to investigate each half-cavity. The new

equivalent non-partitioned cavity has different conditions. The corresponding Ra, modified Ra

(Ra∗), is defined as Ra∗ = Ra × ∆T ∗

Th−Tc
, where ∆T ∗ is the temperature difference between the

sidewall and the partition. The height of the new equivalent non-partitioned cavity is larger

than the length and the aspect ratio is A = H

L−(Xp−
Tp
2

)
.

Studying the stream function figures reveals that as kr increases flow pattern in each half-cavity

becomes vertically stretched (e.g., Ra = 106 cases in figures 5.2, 5.4, 5.6, 5.8 and 5.10). With

vertical stretching, the core of the flow pattern becomes more centered. The reason behind
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this phenomenon can be explained by the temperature contour figures (e.g., Ra = 106 cases in

figures 5.1, 5.3, 5.5, 5.7 and 5.9). The cases with smaller kr has a hotter or cooler half-cavity

than the cases with larger kr and as kr increases temperature contour figures show less heated

or cooled half-cavity. Also, the temperature difference at the top and the bottom of half-cavities

is lower for small kr than the ones with large kr. Therefore, the horizontal discharges at the

top and the bottom of the cases with large kr are faster than that in the small kr cases.

B. Vertical and horizontal velocity distributions

Figures 5.13, 5.15, 5.17, 5.19 and 5.21 present the vertical velocity contours and figures 5.14,

5.16, 5.18, 5.20 and 5.22 show the horizontal velocity at the fully developed stage obtained

numerically for Tp = 0.05, 0.1, and 0.2, each at Xp = 0.5 and at Ra = 103, 104, 105, 106,

107 and 108, respectively. Due to different maximum and minimum values for each contour

figure, the corresponding maximum and minimum value have been presented for each figure

(i.e., maximum : minimum).

By increasing Ra the vertical velocity boundary layers close to the sidewalls and the horizontal

velocity boundary layers close to the top and bottom walls become thinner for all cases presented

in the velocity contour figures. It can also be seen that the length of walls covered by the vertical

velocity boundary layer increases as Ra increases. For the case of Ra = 103, velocity contours

show a symmetrical pattern (with horizontal line symmetry) in each half-cavity. Increasing Ra

to 104 and more causes stronger horizontal flow in the half-cavity and the symmetry becomes

rotational. Vertical velocity boundary layers on sidewalls and the partition have a strong

interaction with each other up to Ra = 106. As the partition thickness increases this interaction

increases due to the decrease of the size of the half-cavity. Smaller kr shows thicker velocity

boundary layers and consequently the boundary layer interaction for those cases is higher (e.g.,

Ra = 106 in figure 5.13(j) vs. Ra = 106 in figure 5.21(j)). Therefore, the boundary-layer

thickness extracted from the cases with boundary layer interaction may not have the same

trend of boundary-layer thickness of other cases without interaction.
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Tp = 0.05 Tp = 0.1 Tp = 0.2
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Ra = 105

(g) 0.12:-0.12 (h) 0.09:-0.09 (i) 0.06:-0.06

Ra = 106

(j) 0.1:-0.1 (k) 0.09:-0.09 (l) 0.07:-0.07

Ra = 107

(m) 0.09:-0.09 (n) 0.07:-0.07 (o) 0.05:-0.05

Ra = 108

(p) 0.07:-0.07 (q) 0.05:-0.05 (r) 0.04:-0.04

Figure 5.13: Vertical velocity contours at kr = 0.1 and Xp = 0.5 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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(p) 0.03:-0.03 (q) 0.02:-0.02 (r) 0.02:-0.02

Figure 5.14: Horizontal velocity contours at kr = 0.1 and Xp = 0.5 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.15: Vertical velocity contours at kr = 1 and Xp = 0.5 for different Ra values (103 ≤
Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.16: Horizontal velocity contours at kr = 1 and Xp = 0.5 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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(p) 0.17:-0.17 (q) 0.18:-0.18 (r) 0.19:-0.19

Figure 5.17: Vertical velocity contours at kr = 100 and Xp = 0.5 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.18: Horizontal velocity contours at kr = 100 and Xp = 0.5 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.19: Vertical velocity contours at kr = 500 and Xp = 0.5 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.20: Horizontal velocity contours at kr = 500 and Xp = 0.5 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).



5.2. Centrally positioned partition 107
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Figure 5.21: Vertical velocity contours at kr = 1000 and Xp = 0.5 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.22: Horizontal velocity contours at kr = 1000 and Xp = 0.5 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Interestingly, the flow jumping close to the corner observed in the stream function figures can

be seen in horizontal velocity contours. It can be seen that there is an area of high horizontal

velocity close to the corner. This high-velocity area becomes closer to the corner by increasing

Ra (e.g., top-left corner in figure 5.22(p)).

Figure 5.23 shows horizontal temperature profiles at the mid-height of the cavity (y = 0.5) for

different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp

(0.05, 0.1, and 0.2).

The horizontal temperature profiles presented for Ra = 103 and 104 are straight lines due to

conduction-dominated heat transfer and the stratification showed for the higher Ra (105 ≤

Ra ≤ 108) do not exist. Regarding the effect of Ra and Tp on the horizontal temperature

profile, two different behaviours can be seen for 0.1 ≤ kr ≤ 1 and 100 ≤ kr ≤ 1000. As figure

5.23(a) and (b) show, larger Ra and Tp show higher temperatures at the middle of the cavity.

kr = 100 is a turning point for the Tp effect where Tp shows decreasing effect on the temperature

of the stratified region. For this range of kr (100 ≤ kr ≤ 1000), the Ra variation shows a little

effect on the middle half-cavity temperature. kr = 100 is also the starting point for the presence

of the horizontal temperature profile inside the partition. It can also be seen that the shape of

the temperature profile in the half-cavity is completely asymmetric for low kr and as kr rises

the asymmetry diminishes. This means that thermal behavior of the sidewall and the partition

becomes similar when the symmetry is achieved. Moreover, the temperature of the stratified

region reduces with increasing kr which is apparently due to the increased thermal conductivity

of the partition.

5.2.2 Quantitative analysis of flow and heat transfer behaviour

To study the effects of the partition thickness and the thermal conductivity ratio, it is necessary

to make use of a relation which is based on the scaling analysis of heat transfer through the

partition wall. A wall function was suggested by Lock and Ko [242] to quantify the thermal

resistance of a conducting partition and have criteria for thermal behaviour of the partition by
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Figure 5.23: Horizontal temperature profiles at the mid-height (y = 0.5) for different values of
Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and 0.2).
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including Tp, Ra, kr and Pr,

χ =
Tp
kr
Ra1/4(

Pr

1 + Pr
)1/4, (5.1)

where χ is a dimensionless thermal resistance parameter for a partition.

At the steady state the heat flux passing through the partition (qp
′′) is expected to be equal to

the heat flux leaving the left half-cavity or entering right half-cavity (qf
′′).

qf
′′ = kf

∆θf
δT

= qp
′′ = ks

θD,x
Tp

, (5.2)

where ∆θf and θD,x are temperature differences between the partition temperature and the bulk

temperature of fluid and between the temperatures on the left and right sides of the partition,

respectively.

For large kr cases, the number of isotherms in the partition is very low or none (see, figure 5.9).

These cases also show an important point regarding the temperature gradient of the partition

area where the temperature of the left and right side of the partition is almost equal. This

low temperature difference leads to a negligible heat flux through the partition (see, equation

(5.2)). In other words, this situation shows the adiabatic boundary condition of almost zero

temperature gradient in the x direction at the partition. Considering Ra = gβH4q′′

ανkf
, these

observations cause a low χ (χ ' 0). The low thermal resistance parameter of the partition

due to large kr shows that the partition can be considered as an isothermal wall and the heat

transfer characteristics are similar to those of a non-partitioned cavity case and consequently

the scaling relations of an isothermal wall for a non-partitioned cavity can be used. The thermal

boundary layer and the average Nusselt number scaling relations for an isothermal wall are as

follows,

δT or Nu ∼ Ra1/4. (5.3)

This condition can also exist when the partition thickness is very small. A thinner partition

causes a lower temperature difference between the left and right sides of the partition which

intensifies isothermal behavior of the partition.

As already observed in the temperature contour figures, kr influences the temperature gradient
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in the partition. Smaller kr induces the higher temperature gradient in the partition. Therefore,

the temperature difference between the left and right side of the partition is dependent on both

kr and Tp. As a consequence, it is impossible to make a decision based on only one of these

parameters (i.e., Tp and kr).

Meyer et al. [296] studied the effect of a conducting partition on natural convection in an

inclined rectangular cavity and reported that to minimize the total heat transfer rate at 1 ≤

kr ≤ 20, the partition thickness should be less than 0.01.

By increasing the value of χ, the thermal behavior of the partition shifts from an isothermal

wall like to an isoflux wall type. In this situation the partition has uniform heat flux and the

thermal resistance parameter role becomes important. The scaling relations extracted for an

isoflux wall in a non-partitioned cavity are more appropriate for the higher χ and the thermal

boundary layer and the average Nusselt number scaling relations are as follows,

δT or Nu ∼ Ra1/5. (5.4)

The χ parameter range for this study is from 2.25 × 10−4, which is for kr = 1000, Tp = 0.05,

Pr = 0.71 and Ra = 103, to 160.54, which is for kr = 0.1, Tp = 0.2, Pr = 0.71 and Ra = 108.

To demonstrate the effect on the average Nusselt number (NuAve), figure 5.25 presents NuAve

for a range of Ra values, partition thickness (Tp) and thermal conductivity ratio (kr). As

Ra increases NuAve increases in all cases presented in the figure. Also, it can be seen that

the difference between NuAve of consecutive Ra values increases as Ra increases. The overall

trend of NuAve in this figure shows that kr increases for low Ra and attains a plateau earlier

than higher Ra. For instance, Ra = 103 and 104 cases level off at kr = 1, Ra = 105 from

kr = 100 and Ra = 106 from kr = 500. These results are in agreement with those obtained

by Kahveci [5]. Figure 5.24 shows the results presented by Kahveci [5] (data extracted by

WebP lotDigitizer [297]) and this study for 104 ≤ Ra ≤ 106 and 1 ≤ kr ≤ 1000, Tp = 0.1 and

Xp = 0.5.

The effect of the partition thickness is notable for the range of kr and Ra investigated in this
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Figure 5.24: Average Nusselt number on the hot wall for a partitioned cavity with different
partition thermal conductivity ratio (1 ≤ kr ≤ 1000), Tp = 0.1 and Xp = 0.5 for 104 ≤ Ra ≤
106.

work. The first observation is that the effect of Tp is trivial for lower Ra cases than higher cases.

As kr increases to 1, Tp shows a significant effect on NuAve for 105 ≤ Ra ≤ 108 with thinner

partition showing higher NuAve (the expansion of lines from kr = 0.1 to 1 at 105 ≤ Ra ≤ 108).

Tp has almost no effect on NuAve in the range 103 ≤ Ra ≤ 104 which can also be seen in

figures 5.3. Interestingly, at kr = 100, the increasing trend of NuAve stops, indicating the

presence of a maximum value of NuAve between 1 < kr ≤ 100. Increasing the value of kr to

100 shows another remarkable behavior regarding the effect of the partition thickness. The

influence of Tp on NuAve is almost zero at kr = 100. To explain this observation, it is necessary

to review equation (5.1). As the equation shows, Tp and kr have the opposite effects on the

thermal resistance parameter of the partition. Therefore, it is expected to reach a point where

kr nullifies the effect of Tp. In this case, at kr = 100, the increased thermal conductivity of the

partition overcomes the thermal damping effect of the partition thickness. By further increasing

kr to 500 and 1000, the effect of kr intensifies gradually (mainly for 106 ≤ Ra ≤ 108) and the

thicker partition with a larger kr has higher NuAve than the thinner partition.
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Figure 5.25: Average Nusselt number on the hot wall for a partitioned cavity with different
partition thicknesses and thermal conductivity ratios for 103 ≤ Ra ≤ 108.

Based on figure 5.25, the overall behaviour of NuAve as kr varies is illustrated schematically in

figure 5.26. This schematic representation includes three main regions. The first region covers

the low kr range and according to equation (5.1) the value of χ is relatively high. By increasing

kr (i.e., increase ks with constant kf ), NuAve rises and the horizontal temperature gradient

in the partition gradually decreases (i.e., ∂θ
∂x

). This effect can be explained by using equation

(5.2). To keep valid the constant heat flux in the cavity, the horizontal temperature gradient

in the partition must decease. Eventually, this means that θD,x should decrease. In this region,

the vertical temperature gradient in the partition is negligible. Finally this increasing trend

of NuAve reaches to a peak point and the horizontal temperature gradient in the partition

becomes almost zero (i.e., ∂θ
∂x
≈ 0 ) which means the partition wall becomes horizontally

isothermal. This region is named the thermal resistance region. Further increasing in kr

results in intensifying the vertical temperature gradient in the partition (i.e., ∂θ
∂y

). A stronger

vertical temperature gradient than the horizontal one leads to characterizing the partition by the
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vertical temperature gradient. Increasing kr causes the partition to become vertically isothermal

and eventually decreases NuAve. This means that the temperature difference between the

top and the bottom of the partition decreases which reduces heat flux in the partition and

consequently decrease NuAve. This decreasing trend of NuAve continues until the vertical

temperature gradient becomes negligible. This region is called the thermal transient region.

Finally after the thermal transient region, by further increasing kr, the vertical and horizontal

temperature gradients in the partition become negligible (i.e., ∂θ
∂x
≈ 0 and ∂θ

∂y
≈ 0). It is obvious

that in this situation the partition becomes isothermal. In other words, increasing kr dose not

alter NuAve and the heat transfer rate remains constant. By reaching this point, it can be

appropriate to consider each half-cavity as a separate cavity with constant temperature on the

sidewalls. This region is named as the isothermal region.

 isothermal

thermal transition

N
u A

ve

kr

thermal resistance

Figure 5.26: Schematic representation of NuAve behaviour as kr changes.

Figure 5.27 shows the vertical profiles of the local Nusselt number (NuLocal) along the hot

sidewall for Tp = 0.05, 0.1, and 0.2, kr = 0.1, 1, 100, 500 and 1000, each at Xp = 0.5 and

Ra = 103, 104, 105, 106, 107 and 108. Due to the symmetry in cases with Xp = 0.5, profiles just
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for one sidewall (i.e., hot sidewall) is presented. It is seen that NuLocal decreases along most

of the hot sidewall and there is a peak in the profiles which is close to the leading edge and

becomes more pronounced at higher Rayleigh values. As expected, the leading edge of the hot

sidewall is washed by the cooled fluid from the bottom side of the partition. Consequently, the

local Nusselt number around the leading edge area is higher. Also, it is clear that by increasing

the Rayleigh value, the peak point in the vertical profile of NuLocal gets closer to the end of

the wall, apparently due to a thinner boundary layer. As fluid moves up the hot sidewall, the

temperature of the fluid increases and therefore, the local Nusselt number gradually decreases.

The NuLocal is strongly dependent on Ra and as Ra increases, NuLocal rises. Also, as a result

of stronger convection of at Ra cases, the non-uniformity of NuLocal graphs increases. Figure

5.27 also shows the dependency between Tp and NuLocal. As Tp increases the overall trend

especially for the peak point shows decreasing behavior. Moreover, the effect of Tp on NuLocal

is more noticeable at higher Ra cases than the lower ones. This observed effect of the partition

thickness was also reported by others, such as Kahveci [5] and Oztop et al. [235] who observed

that partition thickness had a weak or negligible effect on the rate of heat transfer at low Ra

values.

The effect of kr on NuLocal is also presented in figure 5.27. As expected, the low Ra cases

(Ra = 103 and 104) show little variation by changing the value of kr. The main area affected

by kr variation on NuLocal is on the leading edge and the tailing edge does not show significant

changes. The reason for this difference on the leading and tailing edge is that the temperature

gradient on the leading edge is mainly affected by the cooled fluid due to the right half-cavity

on which thermal conductivity ratio has a direct impact. However, on the tailing edge, the

temperature gradient is mainly influenced by the thermal stratification and the effect of the

thermal conductivity ratio is weak.

NuLocal of the cases with kr = 0.1 (solid line) have the lowest value and as kr increases to

1 (dashed line) and 100 (dotted line), NuLocal values grows. The same thermal behaviour of

NuAve observed for kr = 100 as be seen for NuLocal of the hot sidewall where further increasing

of kr (kr = 500 dashed dote line and kr = 1000 dashed dote dote line) decreases the NuLocal.
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Figure 5.27: The vertical profiles of the local Nusselt number on the hot sidewall for different
values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1,
and 0.2).



118 Chapter 5. Steady-state natural convection in a partitioned cavity

As discussed earlier, altering the contributing parameters (Tp, Xp, kr and Ra) can change the

thermal behavior of the partition from being an isothermal wall to an isoflux wall. To investigate

this possibility, figure 5.28 presents vertical profiles of NuLocal on the left side of partition

(x = Xp− 0.5Tp) for different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500

and 1000) and Tp (0.05, 0.1, and 0.2).

As expected, Ra has a considerable increasing effect on NuLocal of the partition similar to that

of NuAve and NuLocal of the sidewall for all cases. The profiles of NuLocal in figure 5.28 can be

roughly classified into two groups of non-uniform lines with significant peak points and uniform

lines without notable peaks. The uniform lines of NuLocal clearly represent an isoflux behavior

on the partition and the non-uniform lines show more isothermal wall features. With this

arrangement, it can be seen that as Ra increases the NuLocal profiles become more non-uniform

with a sharper jump on the top side of the partition. In other words, a rise in Ra intensifies

the isothermal behavior of the partition. On the other hand, reducing Ra causes more uniform

NuLocal profiles which is a sign of uniform heat flux on the partition. The smallest value of kr

(kr = 0.1) for all cases shows the lowest NuLocal profiles in comparison with other kr values

selected in this work. Interestingly, the NuLocal profiles of kr = 0.1 shows uniform profiles

even for high Ra values which have distinctive peak points. This observation can also be seen

for kr = 1 in which the NuLocal profiles are always higher than the case of kr = 0.1 but still

the local heat transfer profiles are uniform. By further increasing kr (kr = 100), the NuLocal

profiles become more non-uniform and as Ra increases the non-uniformity increases. It can be

noticed that the NuLocal profiles rise from kr = 0.1 to 100 and decrease from kr = 100 to 1000

specifically on the lower half of the partition. However, on the upper side of the partition (in

the vicinity of peak points), the effect of kr on the NuLocal profiles is different. The NuLocal

profiles on the top shows that kr has a direct increasing effect on them. This outcome reveals

that higher temperature gradient intensifies the effect of kr on the upper side of the partition

and by gradually decreasing the temperature gradient the influence of kr weakens. Because

the area of the low temperature gradient on the lower side of the partition is large (around

two-thirds), the overall heat transfer rate (NuAve) is dominated by the kr behaviour of this

section which is shown in figure 5.25.
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Figure 5.28: The vertical profiles of the local Nusselt number on the left side of partition
(x = Xp− 0.5Tp) for different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500
and 1000) and Tp (0.05, 0.1, and 0.2).
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Comparing figures 5.27 and 5.28 identifies interesting thermal specification of the partition.

Although the peak point for NuLocal of the hot sidewall is observed at the bottom of the sidewall,

for the left side of the partition, a peak can be found at the top side of the partition. Therefore,

partition plays a similar role of the cold sidewall for the cases with non-uniform profiles. As

kr increases this similarity increases. Observing this thermal behavior on the partition leads

to a conclusion that it is possible to separate each half-cavity and find an equivalent non-

partitioned cavity with the same temperature and flow pattern. This assumption has also been

made by Anderson and Bejan [298]. Studying the peak points in those figures illuminates

another interesting aspect, that is the effect of Tp on the partition is opposite to that on the

sidewalls. As Tp increases, the value of NuLocal at the peak points increases. This thermal

aspect also observed in figure 5.25.

Figure 5.29 shows the vertical temperature distribution on the left side of the partition (x =

Xp − 0.5Tp) (left column) and the horizontal temperature drop of the left (x = Xp − 0.5Tp) to

the right (x = Xp + 0.5Tp) sides of the partition (θD,x) (right column) for various Ra (103, 104,

105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and 0.2) at Xp = 0.5.

As temperature contour figures show, the upper part is in contact with the heated fluid from the

hot sidewall, while the lower section receives cooled fluid from the right sidewall. Therefore, for

all cases of the vertical temperature profiles, the upper part has a higher temperature than the

lower section. The profiles of Ra = 103 show almost horizontal lines which imply there is not

any convection heat transfer phenomenon to cause a temperature gradient. As Ra increases

the value of the temperature profiles increases. This difference is larger when kr reduces.

Small thermal conductivity ratio is a sign of low thermal conductivity of the partition and the

consequence of this trapping heat by the partition which causes high overall temperature and

can be seen in figure 5.29. As Kr increases (increasing thermal conductivity of the partition),

the partition allows more heat generated on the left half-cavity to pass to the right one and

the temperature of the partition gradually decreases. The gradual decreasing trend of the

vertical temperature profile is to mid-temperature of the cavity (θ = 0.5). The higher kr is,

the closer the vertical temperature profile of the partition to θ = 0.5. Although the profiles

presented for kr = 0.1 and 1 are away from the θ = 0.5 line, for 100 ≤ kr, profiles have a
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Figure 5.29: Vertical temperature profiles on the left side of partition (x = Xp − 0.5Tp) and
horizontal temperature drops (θD,x) for different values of Ra (103, 104, 105, 106, 107 and 108),
kr (0.1, 1, 100, 500 and 1000), Xp = 0.5 and Tp (0.05, 0.1, and 0.2).
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point of intersection with θ = 0.5 line at almost the mid-height of the partition (y = 0.5).

Figure 5.29 also shows the effect of partition thickness on the vertical temperature profiles of

the partition. As Tp increases, the heat resistance aspect of the partition increases. Therefore,

the temperature of trapped heated fluid on the left half-cavity should be higher, leading to

higher vertical temperature profiles of the partition for thicker partitions. Interestingly, the

temperature difference between the top and the bottom of the vertical temperature profiles of

the partition for thicker partitions is lower than thinner ones. This means that the vertical

temperature profiles of the partition become closer to the horizontal line. This tendency shows

that the cavities with thicker partitions have weaker convection which can be explained by the

decreased area filled with fluid.

The second parameter presented in figure 5.29 is the horizontal temperature drop on the par-

tition (θD,x) which is defined as the temperature difference between the left and the right sides

of the partition. The overall shape of θD,x graphs show mainly the horizontal line except at the

two ends (probably due to the impingement of intrusion on the partition wall). This implies

the symmetry of the vertical temperature profiles on the left and right sides of the partition for

Xp = 0.5. Also, it can be seen that as Ra increases θD,x rises and the horizontal area of profiles

becomes wider. The case of kr = 0.1 has the highest θD,x and as kr increases θD,x becomes

smaller as for 100 ≤ kr, θD,x is very close to zero. Regarding the effect of Tp, it is clear that Tp

has an increasing effect on θD,x and the horizontal area of θD,x graphs get wider as Tp increases.

As figure 5.29 illustrates, θD,x for large kr, θD,x is very low and the profile cannot be identified

by using a linear scale on the y axis. Therefore, the graphs for θD,x of figure 5.29(b), (d) and

(f) are represented in figure 5.30 in log scale for y axis.

Figure 5.30 shows that for all cases of Tp by decreasing Ra and increasing kr, θD,x reduces.

Also, as Tp increases θD,x rises. This behavior is clear for the lowest θD,x profile for instance

(i.e., the case at kr = 1000 and Ra = 103 ) as at Tp = 0.05 the value of θD,x is 5 × 10−5, at

Tp = 0.1, θD,x = 1.2 × 10−4, and at Tp = 0.2, θD,x = 2.5 × 10−4. An interesting observation

regarding the θD,x profile is that for all Tp values the θD,x profiles of the cases kr = 1 and 500

has the most non-uniform profiles with fewer flat areas. There is not any clear relation between
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Figure 5.30: Horizontal temperature drop (θD,x) for different values of Ra (103, 104, 105, 106,
107 and 108), kr (0.1, 1, 100, 500 and 1000), Xp = 0.5 and Tp (0.05, 0.1, and 0.2).
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the profile shape of θD,x and Ra as generally low and high Ra cases show a more uniform shape.

The observed effect of kr on θD,x or the temperature profiles can also be extracted from the

equations (5.1) and (5.2). As it is explained earlier, the heat flux of the partition and the

fluid-filled area of the cavity is equal at the steady state. Increasing kr means that for the

constant kf , ks should be increased. By considering equation (5.2), to keep the equality of heat

flux, ∆Tp
Tp

should decrease. In essence, increasing kr leads to a reduction in θD,x which is found

in figure 5.29. This dropping of θD,x value (by increasing kr) can finally reach to a point where

the temperature of the left and right side of the partition becomes almost equal. The equality

of the temperatures of the left and right side of the partition (θD,x ∼= 0) indicates that the

partition is horizontally isothermal. Moreover, due to the adiabatic condition on the top and

bottom walls (∂θ
∂y

= 0) and the fact that H >> Tp, the horizontal heat flux of the partition

should be much higher than the vertical heat flux and can be expressed as follows,

ks
∂θ

∂x
>> ks

∂θ

∂y
. (5.5)

This outcome reveals that for the cases with high kr, the one-dimensional conduction in the

partition (horizontal) could be an appropriate assumption to simplify the analytical studies

and may cause a small error in the final calculations.

After investigating the sides of the partition in contact with the fluid, it is necessary to study the

thermal behavior inside the partition. Figure 5.31 illustrates the vertical temperature profiles

at the middle of the partition (x = Xp) for different values of Ra (103, 104, 105, 106, 107 and

108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and 0.2). Surprisingly, the vertical profiles

at the middle of the partition do not show the same trends observed for the vertical profiles of

the left or right sides of the partition. There is not any clear increasing or decreasing trend for

various Ra or kr values. The profile of the case kr = 1 and Ra = 105 shows the highest slop

and consequently the highest temperature at the upper side or the lowest at the bottom of the

partition. The profiles for Ra = 103 shows the closest to the horizontal line. As Tp increases

the overall slop of the temperature profiles decreases. Clearly to have a better understanding
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of the vertical thermal behavior of the partition, it is essential to define a new parameter. To

satisfy this need the vertical temperature drop (θD,y) is defined as the temperature difference

between the top and bottom of partition at x = Xp. Figure 5.32 presents the steady state value

of θD,y for different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000)

and Tp (0.05, 0.1, and 0.2).
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Figure 5.31: Vertical temperature profiles on the middle of the centrally positioned partition
for different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and
Tp (0.05, 0.1, and 0.2).

The lines presented in figure 5.32 can be categorized into two types. Type one is the lines with
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Figure 5.32: Vertical temperature drop (θD,y) at the middle of the partition for different values
of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and
0.2).
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an increase and decrease trend and a subsequent peak point (kr ≤ 1) and type two includes

the lines with just increasing trend (100 ≤ kr ≤ 1000). The cases of kr = 1 show the highest

θD,y for 103 ≤ Ra ≤ 107. At Ra = 108, θD,y of the case kr = 1 is affected by the partition

thickness and as Tp rises the value of θD,y decreases even to less than the case kr = 100 (i.e.,

figure 5.32(c)). The vertical temperature drop lines (θD,y) of type one show a sharp increase

up to Ra = 105 and then a gradual decrease except for the case of kr = 1 with Tp = 0.05

in which θD,y is almost a plateau over the range of 105 ≤ Ra ≤ 107 and after that steadily

decreases when Ra is increased to Ra = 108. Type two includes the cases of θD,y with high kr

(100 ≤ kr ≤ 1000) and shows a gradual and steady increase in θD,y as Ra increase. As kr and

Tp increases the value of θD,y reduces.

5.3 Off-centre partition

5.3.1 Qualitative analysis of flow and heat transfer behaviour

A. Isotherms and streamlines

Figures 5.33, 5.35, 5.37, 5.39 and 5.41 present the temperature contours and figures 5.34, 5.36,

5.38, 5.40 and 5.42 show streamlines at the fully developed stage obtained numerically for

Tp = 0.05, 0.1, and 0.2, kr = 0.1, 1, 100, 500 and 1000, each at Xp = 0.25 and at Ra = 103,

104, 105, 106, 107 and 108, respectively.

By placing the partition off-centre the symmetry existed in the half-cavities of the cavities with

the centrally positioned partition losses. As a consequence, the flow patterns in the left and

right half-cavities are different.



128 Chapter 5. Steady-state natural convection in a partitioned cavity

Tp = 0.05 Tp = 0.1 Tp = 0.2

Ra = 103

(a) (b) (c)

Ra = 104

(d) (e) (f)

Ra = 105

(g) (h) (i)

Ra = 106

(j) (k) (l)

Ra = 107

(m) (n) (o)

Ra = 108

(p) (q) (r)

Figure 5.33: Temperature contours at kr = 0.1 and Xp = 0.25 for different Ra values (103 ≤
Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.34: Stream function contours at kr = 0.1 and Xp = 0.25 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.35: Temperature contours at kr = 1 and Xp = 0.25 for different Ra values (103 ≤
Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.36: Stream function contours at kr = 1 and Xp = 0.25 for different Ra values (103 ≤
Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.37: Temperature contours at kr = 100 and Xp = 0.25 for different Ra values (103 ≤
Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.38: Stream function contours at kr = 100 and Xp = 0.25 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.39: Temperature contours at kr = 500 and Xp = 0.25 for different Ra values (103 ≤
Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.40: Stream function contours at kr = 500 and Xp = 0.25 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.41: Temperature contours at kr = 1000 and Xp = 0.25 for different Ra values (103 ≤
Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.42: Stream function contours at kr = 1000 and Xp = 0.25 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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The general flow mechanism in the off-centre partitioned cavity is similar to the centrally-

placed case, as described above, but with some distinct differences. Fluid close to the sidewall

is heated/cooled and rises/falls along the sidewalls, eventually creating horizontal intrusions

which carry heated/cooled fluid across the horizontal top/bottom walls to the partition. The

impingement of the hot/cold intrusion to the partition results in the heat transfer, via conduc-

tion, from the left side of the partition to the right side.

For the case of the off-centre partition considered here (i.e., a partition close to the hot side-

wall), the conduction heat transfer in the left half-cavity is stronger than the right side, which is

different from the centrally-placed partition case. This feature is clearly shown in the tempera-

ture and stream function as the left half-cavity has less angled isotherms or weaker circulation

than that in the right half-cavity. For instance, figure 5.33(g) (at Ra = 105 and Tp = 0.05)

shows that the left half cavity has almost vertical (or slightly angled) isotherms while in the

right half-cavity isotherms in the middle of the half-cavity are almost horizontal which is an

indication of stronger convection and the presence of a thermal stratification process. The

stream function contours of the same case (figure 5.34(g)) also reveal that the circulation in

the left half-cavity is much weaker than that in the right one. The reason is that by moving

the partition to the left side, the area occupied by the fluid in the right half-cavity is increased.

Therefore, it is expected that there is stronger convection in the wider cavity (i.e., the right

half-cavity) than the narrow one. A comparison between the results for the Xp = 0.25 case and

the Xp = 0.5 case confirms this different flow and heat transfer behavior.

Investigation of cavities with low Ra values shows that for Xp = 0.5 generally Ra = 103 and

104 cases have slightly angled or almost vertical and uniformly spaced isotherms which are a

sign of conduction domination. This type of isotherms for the case of Xp = 0.25 is observed

at different Ra values for each half-cavities. For the left half-cavity in the Xp = 0.25 case,

conduction domination can be identified at Ra = 103, 104 and 105 while for the right half-

cavity it is only at Ra = 103.

The isotherms for the case of Ra = 103 show that the conduction in the left half-cavity is

followed by conduction in the partition, and both regions have vertical isotherms. However,
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the number of isotherms in those regions are dependent on Tp and kr. As kr increases the

number of isotherms in the partition decreases and figure 5.33 shows denser isotherms in the

partition for kr = 1 with the isotherms’ density equal to the fluid-filled area. By further

increasing kr (kr ≥ 100), the number of isotherms decreases. Tp also controls the number of

isotherms through changing the width of the left half-cavity. A thicker partition shows a larger

number of isotherm in the partition.

Another interesting observation regarding the temperature gradient in the partition is that for

the cases of Ra = 103 and 104, the overall temperature in the partition is closer to the hot side,

while for the higher Ra cases this temperature gradient is around the mid-temperature of the

cavity. As an example, the comparison of temperatures in the partition of figure 5.37(c) and

(o) shows such a difference.

The lack of circulation in the left half-cavity (lack of stream function contours) can be seen for

almost all cases of Ra = 103 and 104 as shown in figures 5.34 to 5.42(a− f). As Ra increases,

convection intensifies and circulation gradually forms in the left half-cavity.

From the stream function contours in the right half-cavity (i.e., the wide half-cavity), it can

be seen that the flow pattern is very similar to the pattern observed in the centrally positioned

partitioned cavities. The thinner half-cavity, due to the dominance of conduction, has less

stream function contours in comparison with the right half-cavity. This weak convection flow

in the left half-cavity is more clear for 103 ≤ Ra ≤ 104. As Ra increases, the convective

flow becomes strong enough and the flow pattern can be seen in the left half-cavity. Another

difference between the centrally positioned and off-centre partition cases is at the occurring

stage of multiple vortex eyes. Off-centre partition cases show that the multiple vortex eyes

formation in the right half-cavity happens at lower Ra values than the cases of the centrally

placed partition case because of the wider half-cavity which intensifies convective heat transfer

phenomenon. For instance, by comparing figures 5.34(j) and 5.2(j), it can be seen that the

multiple vortex eyes formation happens at Ra = 106 and 107, respectively.

As discussed earlier, the partition thickness alters the size of the half-cavities which leads

to change in the temperature and stream function contours in the cavity. The influence of
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partition thickness in the cavity can be seen qualitatively in figures of temperature contours

(i.e., figures 5.33, 5.35, 5.37, 5.39 and 5.41) and stream function contours (i.e., figures 5.34,

5.36, 5.38, 5.40 and 5.42).

Cavities with thinner partitions have wider half-cavities. Therefore, for the cases of the off-

center partition, increasing partition thickness applies further restriction for the fluid in the left

half cavity and leads to a weaker flow circulation. This can be seen in figure 5.42(g) to (i). For

instance, for the case of Tp = 0.2, there is one streamline in the left half-cavity and this number

increases as the partition thickness decreases. Stronger convection in the wider half-cavities

causes shifting from a single-cell flow pattern to a multiple cell one. This behavior can be seen

in figures 5.34(j, k and l) as the cavity with the thickest partition (i.e., figure 5.34(l)) has a

single-cell flow pattern and gradually by decreasing the partition thickness (i.e., figure 5.34(k))

new vortex eyes are gradually formed. By further decreasing the partition thickness (i.e.,

figure 5.34(j)) the formed vortex eyes gradually move into the vicinity of walls.

Comparing figures 5.1 and 5.33 depicts an interesting difference in temperature contours be-

tween the centrally-positioned and the off-centre partitioned cavities. The temperature range

of the partition is generally around the mid-temperature (i.e., θ = 0.5). The only exception

can be observed for the low Ra cases of the off-centre partitioned cavities. For example, the

overall temperature of the partition of the case of Ra = 103, kr = 100, Xp = 0.25 and Tp = 0.05

is θ = 0.74. This observation is attributed to the presence of a thick thermal boundary layer

at the hot sidewall which includes the area partition is placed. Therefore, the temperature of

the partition at low Ra cases is highly influenced by the sidewall thermal boundary-layer. As

the thickness of partition increases to Tp = 0.1 and 0.2 the overall temperature increases to

θ = 0.80 and 0.83, respectively. By increasing Ra, convection in the left half-cavity intensi-

fies and consequently, the thermal boundary layer thickness on the hot sidewall reduces. The

thickness of the thermal boundary layer becomes smaller than the width of the left half-cavity

(i.e., Xp− Tp
2

) and the direct thermal effect on the partition is no longer exists. This condition

can be seen in higher Ra cases where the temperature of the partition is about θ = 0.5.

Another interesting point is the difference in stratification. Comparing the temperature con-
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tours of the centre and off-centre partitioned cavities shows that the formation of the horizontal

isotherm in the centre of the half-cavities generally happens at Ra = 107 for the centrally-

positioned cavity. However, those type of isotherms in the left and right half-cavities in the

off-centre partitioned cavity forms at Ra = 108 and Ra = 106, respectively. This means that

a wider half-cavity (i.e., the right half-cavity) has the stratification at lower Ra values and a

narrower half-cavity has it at higher Ra cases. This can clearly be seen in figures 5.5 and 5.37.

For the case of Ra = 103 and kr = 1, due to the equal thermal conductivity of the partition

and the fluid, no significant difference should be seen between different partition thickness. By

comparing such cases in off-centre and centrally placed partitioned cavities, it can be found that

isotherms on the left side of cavities are very similar and there is a small difference (slightly

more angled) for the right side which is due to slightly stronger convective flow in the right

half-cavity for the off-centre partition case.

As kr increases the thermal conductivity of the partition rises and the angle of isotherms in

the partition becomes closer to zero (the horizontal line). This behavior can be seen in the

off-centre placed partitioned cavity. Interestingly as Ra increases the temperature gradient in

the partition for the off-centre and centre partitioned cavities becomes more similar. A good

example of this similarity can be found in figures 5.5 and 5.37 for the cases of Ra = 108 (i.e., the

sub-figures p, q and r). It is clear that the number and angle of isotherms present in the partition

area are similar in both figures. For the highest kr, the temperature of the partition on both

sides is constant (isothermal wall). This character is also observed in the centrally-positioned

partitioned cavities. Therefore, it is possible to draw the same conclusion and separate each

half-cavities and define an equivalent non-partitioned cavity for each half-cavity.

B. Vertical and horizontal velocity distributions

Figures 5.43, 5.45, 5.47, 5.49 and 5.51 present the vertical velocity contours and figures 5.44,

5.46, 5.48, 5.50 and 5.52 show the horizontal velocity at the fully developed stage obtained

numerically for Tp = 0.05, 0.1, and 0.2, each at Xp = 0.5 and at Ra = 103, 104, 105, 106, 107

and 108, respectively.
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Figure 5.43: Vertical velocity contours at kr = 0.1 and Xp = 0.25 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.44: Horizontal velocity contours at kr = 0.1 and Xp = 0.25 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.45: Vertical velocity contours at kr = 1 and Xp = 0.25 for different Ra values (103 ≤
Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.46: Horizontal velocity contours at kr = 1 and Xp = 0.25 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.47: Vertical velocity contours at kr = 100 and Xp = 0.25 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.48: Horizontal velocity contours at kr = 100 and Xp = 0.25 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.49: Vertical velocity contours at kr = 500 and Xp = 0.25 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.50: Horizontal velocity contours at kr = 500 and Xp = 0.5 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.51: Vertical velocity contours at kr = 1000 and Xp = 0.25 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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Figure 5.52: Horizontal velocity contours at kr = 1000 and Xp = 0.25 for different Ra values
(103 ≤ Ra ≤ 108) and Tp (Tp = 0.05, 0.1 and 0.2).
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As expected, to move the partition to the left side (Xp = 0.25) has a significant effect on the

vertical and horizontal velocities. Flow motion in the thinner left half-cavity is much less than

the thicker right half-cavity up to Ra = 105. However, as Ra increases the difference between

the maximum and minimum velocities of both sides become smaller. The thinner half-cavity

shows very small or no vertical and horizontal velocities at low Ra cases due to the dominance

of conduction which can be seen by the vertical isotherms in the temperature contour figures.

By increasing Ra the vertical and horizontal boundary layers become thinner for all cases

presented in the velocity contour figures. This observation is not applicable for low Ra cases

as their velocity boundary layers are so thick and the inner area of the half-cavity does not

provide enough room for the full growth of a boundary layer. The horizontal velocity contour

figures show that the side vertical boundary layers of the right half-cavity have no interaction

at 106 ≤ Ra ≤ 108 and this condition for the left half-cavity is identified at Ra = 108. Due

to the presence of a vertical partition in the cavity, the distance between the top and bottom

walls has not altered, therefore the horizontal velocity boundary layers in the left and right

half-cavities have an almost same point (i.e., Ra = 107) for losing the interaction between the

boundary layers.

Figure 5.53 shows the horizontal temperature profiles at the mid-height of the cavity (y = 0.5)

of the case Xp = 0.25 for different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100,

500 and 1000) and Tp (0.05, 0.1, and 0.2).

The horizontal temperature profiles presented for 103 ≤ Ra ≤ 105 are straight lines in the

left half-cavity due to the conduction-dominated heat transfer. Therefore, the reason for the

uniform isotherm distribution for those low Ra cases in the left half-cavity is obvious from this

figure. At this range of Ra values, the angle of the horizontal temperature profile in the left

half-cavity gradually changes and becomes steeper as Ra increases. For the case of kr = 0.1, as

Tp increases the horizontal temperature profile rises, indicating a hotter left half cavity. Results

for kr = 1 illustrates an interesting behavior, as Tp shows no significant effect on the horizontal

temperature profile of Ra = 103. As Ra increases the effect of Tp becomes stronger and a thicker

partition cause a higher horizontal temperature profile. Further increasing kr has a remarkable

effect on the horizontal temperature profile. As figures 5.53(c − e) depicts, the growth in the
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Figure 5.53: Horizontal temperature profiles at the mid-height (y = 0.5) of the case Xp = 0.25
for different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and
Tp (0.05, 0.1, and 0.2).
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partition thickness causes the reduction in the horizontal temperature profile and eventually a

cooler left half-cavity.

By studying the right half-cavity it is found that the case of Ra = 103 has a straight line

of the horizontal temperature profile for the whole half-cavity and the rest of the horizontal

temperature profiles are showing signs of convection heat transfer and finally stratification

process at the high Ra cases. The horizontal temperature profiles of kr = 0.1 shows that unlike

the left half-cavity, Tp has a decreasing effect on the horizontal temperature profile and lead to

cooler right half-cavity for all Ra values. Increasing Ra at this kr causes the reduction in the

horizontal temperature profiles. The case kr = 1 is interesting as for 104 ≤ Ra ≤ 106, the effect

of increasing Tp is not clear and close to the partition it is shown that the horizontal temperature

profile increases and close to the cold sidewall it decreases. Again increasing Ra decreases the

horizontal temperature profile. For higher kr, any increase in Tp results in a hotter right half-

cavity and the increase of Ra decreases the horizontal temperature profile up to Ra = 106

and then increases (e.g., figures 5.53(c − e)). Moreover, the temperature distribution in the

partition shows that over 103 ≤ Ra ≤ 106 with the increase of Ra the temperature of the

partition decreases. However, the horizontal temperature profile becomes almost invariant for

106 ≤ Ra ≤ 108 in the partition.

It can also be seen that the shape of the temperature profile in the half-cavity is completely

asymmetric for low kr and as kr increases the asymmetry diminishes. This symmetry means

that the thermal behavior of the sidewalls and the partition becomes similar. Moreover, the

temperature of the stratified region reduces with increasing kr which is clearly due to the

increased thermal conductivity of the partition.

5.3.2 Quantitative analysis of flow and heat transfer behaviour

The effect of Ra, Tp and kr on the average Nusselt number (NuAve) is shown in figure 5.54 for

a range of these parameters. It can be seen that as Ra increases NuAve increases in all cases

and the difference between NuAve of the consecutive Ra values increases as well. The overall

trend of NuAve in this figure shows that by increasing kr, NuAve increases and reaches a peak
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point and then stays invariant. These are also observed for the centrally-positioned partition

case, as illustrated in figure 5.26.
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Figure 5.54: Average Nusselt number on the hot wall for an off-centre partitioned cavity with
different partition thicknesses and thermal conductivity ratios for 103 ≤ Ra ≤ 108.

The effect of the partition thickness on NuAve for low Ra values is less than that for high

Ra values. By increasing kr from 0.1 to 1, the effect of Tp on NuAve escalates and a thicker

partition has a smaller value of NuAve. Further increasing kr alters the effect of Tp and as can

be seen in the figure at high kr values thicker partitions have larger NuAve. However, unlike

the centrally-placed partition cases, the value of kr with such changes happening is different

for different Ra values. This value for Ra = 103, 104 and 105 is 1 ≤ kr ≤ 10, for Ra = 106 and

107 is kr = 100 and for Ra = 108 is 10 ≤ kr ≤ 100. Interestingly, the peak point of NuAve at

kr = 100 is similar to that in the case of Xp = 0.5.

Over the range of 103 ≤ Ra ≤ 105, as kr increases from 10 to 1000, the effect of Tp gradually

becomes significant especially for the case of Tp = 0.2. The reason for this is that for those

Ra values, convection in the left half-cavity is not strong enough and increasing the partition
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thickness basically converts a partitioned cavity with two half-cavities to one cavity with a

heat conducting left side. Decreasing the partition thickness for those cases results in forming

stronger convective heat transfer in the left half-cavity in which it can decrease NuAve in

comparison with the thicker partition with high thermal conductivity (see, figures 5.41, 5.42,

5.51 and 5.52(a− i)).

Figure 5.55 shows the vertical distribution of the local Nusselt number (NuLocal) along the

sidewalls for Tp = 0.05, 0.1, and 0.2, kr = 0.1, 1, 100, 500 and 1000, each at Xp = 0.25 and at

Ra = 103, 104, 105, 106, 107 and 108. Due to the asymmetry caused by placing the partition

off-centre (Xp = 0.25), the profiles for both sidewalls are presented. It is seen that NuLocal

decreases along most of the hot sidewall but on the contrary, increases along most of the cold

sidewall. Similar to the centrally-positioned partition cases there is a peak in the profile near

the leading edges on both sidewalls. The effect of Ra, Tp and kr on NuLocal is the same as that

in the centrally placed partition case.

Comparing NuLocal profiles for the left and right sidewalls shows that the symmetry observed

in the cases of Xp = 0.5 does not exist. The main area of non-similarity between the profiles of

the sidewalls is in the vicinity of the leading edges. For example on the hot sidewall the peak

point of NuLocal of case Ra = 108, Tp = 0.05 and kr = 100 (at the peak point of NuLocal = 55) is

higher than the point on the cold sidewall (at the peak point of NuLocal = 51). This difference

for various Ra values and Tp is different as on the hot sidewall the peak point of NuLocal of the

case Ra = 108, Tp = 0.2 and kr = 100 (at the peak point of NuLocal = 45) is lower than the

point on the cold sidewall (at the peak point of NuLocal = 48). There are some cases of NuLocal

profiles in which the difference between the hot sidewall and cold side wall is negligible. An

example in this case can be seen in figure 5.55 for Ra = 108, Tp = 0.05 and kr = 1 in which the

value of the maximum NuLocal for both hot and cold sidewalls is 29. A closer look at NuLocal

profiles of a centrally positioned and off-centre partitioned cavity (i.e., figures 5.55 and 5.28)

shows that the profiles presented for the cold sidewall are very similar (or even identical in some

cases) to the ones illustrated for the centrally-positioned partitioned cavity. This is expected

as the temperature and flow pattern in the wider half-cavity is much closer to the half-cavities

of the centrally placed partition case than the thin half-cavity which has less convective flow.
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Figure 5.55: The vertical profiles of the local Nusselt number on the hot and cold sidewalls of
the case Xp = 0.25 for different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100,
500 and 1000) and Tp (0.05, 0.1, and 0.2).
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To investigate the heat transfer rate on the partition, figure 5.56 presents the vertical profiles

of NuLocal on the left and right sides of partition (i.e., x = Xp − 0.5Tp and x = Xp + 0.5Tp) of

the case Xp = 0.25 for different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100,

500 and 1000) and Tp (0.05, 0.1, and 0.2).
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Figure 5.56: The vertical profiles of the local Nusselt number on the both sides of the partition
of the case Xp = 0.25 for different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100,
500 and 1000) and Tp (0.05, 0.1, and 0.2).

NuLocal of the partition, similar to NuAve and NuLocal of the sidewalls, is strongly affected by

Ra. As Ra increases NuLocal rises. The profiles of NuLocal in the centrally-positioned cavity
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is roughly classified into two groups of non-uniform lines with a significant peak point and

uniform lines without a notable peak. The same classification can be used for profiles of the

off-centre case illustrated in figure 5.56.

As uniform lines of NuLocal represent an isoflux wall like behavior on the partition and the

non-uniform lines shows more isothermal wall features, the NuLocal profiles at high Ra cases

(i.e., Ra = 106, 107 and 108) which are non-uniform with a sharp jump on the leading edge

can be considered to have the isothermal wall like behavior. On the other hand, low Ra cases

which have more uniform NuLocal profiles can be identified to become isoflux (i.e., Ra = 103,

104 and 105). The effects of investigated parameters (i.e., Tp, kr and Ra) are similar to those

discussed in the centrally-positioned partitioned cavity.

Comparing figures 5.55 and 5.56 identifies interesting thermal specification of the partition.

Although the peak point for NuLocal of the hot sidewall is observed at the bottom of the sidewall,

for the left side of the partition, the peak can be found at the top side of the partition. Therefore,

partition plays a similar role of the cold sidewall for the cases with non-uniform profiles. As kr

increases this similarity increases. Observing this thermal behavior on the partition is another

sign which leads to a conclusion that it is possible to separate each half-cavity and find an

equivalent non-partitioned cavity with the same temperature and flow pattern.

Studying the peak points in those figures illuminates another interesting aspect which is the

effect of Tp on the partition and is the opposite of the sidewalls. As Tp increases, the value of

NuLocal at the peak points increases. This feature is also observed in figure 5.55. Moreover, it

can be seen that unlike that in figures 5.55, the maximum NuLocal in figure 5.56 increases as

kr increases. This observation is due to the direct effect of kr on the temperature gradient of

the partition which can also be seen in temperature contours figures.

From the profiles of NuLocal on the left and right sides of the partition can be seen that the same

asymmetry observed for the NuAve profiles exists. The main area of the difference between the

profiles is in the vicinity of the leading edge before NuLocal reaches the peak point. Due to

the thin half-cavity, the temperature gradient in the left half-cavity is different from that in

the right half-cavity. For the case of Ra = 108, as Tp increases this difference increases and



160 Chapter 5. Steady-state natural convection in a partitioned cavity

the distinct peak points becomes less pronounced. Comparing figures 5.56 and 5.28 shows that

there is a trend similarity between NuLocal profiles of the centrally-positioned partitioned cavity

and those from the right side of the partition (i.e., x = Xp + 0.5Tp). The value of NuLocal of

those compared cases should be different as the place of data gathering line is totally different.

The value of NuLocal at the peak point of figure 5.56 for the case Ra = 108, Tp = 0.05 and

kr = 1000 is 42; however, this value for the same case of the centrally-positioned cavity is about

37.

Figure 5.57 shows the vertical temperature distribution on the left (left column) and right (right

column) sides of the partition (i.e., x = Xp − 0.5Tp and x = Xp + 0.5Tp) of the case Xp = 0.25

for various Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05 , 0.1,

and 0.2) at Xp = 0.5. From these figures, it is found that, similar to the case of Xp = 0.5, the

upper part of the left side of the partition is in contact with the heat fluid from the hot sidewall,

while the lower section receives cooled fluid of the right sidewall. Therefore, for all cases of the

vertical temperature profiles, the upper part has a higher temperature than the lower section

at x = Xp − 0.5Tp. On the other hand, it is the opposite for the vertical temperature profiles

at x = Xp + 0.5Tp.

A significant difference can be seen between the vertical temperature profiles of the left and

right sides of the partition. The profiles at x = Xp−0.5Tp covers a thinner range of temperature

than that at x = Xp+0.5Tp. For example, the temperature range covered by the profiles for the

case Tp = 0.05 at x = Xp− 0.5Tp (i.e., figure 5.57(a)) is almost 0.3− 0.9, however, for the same

situation on the right side of the partition (i.e., figure 5.57(b)) this range is wider, from almost

0.1 to 0.8. Another interesting observation is the effect of Tp for the profiles of both sides of the

partition. As Tp increases the temperature range covered by the profiles on the left side of the

partition reduces but on the contrary increase of Tp for the right side has an increasing effect.

Moreover, studying of the temperature profiles at x = Xp − 0.5Tp and x = Xp + 0.5Tp reveals

that there is a symmetry for high Ra cases and as Ra decreases this symmetry decreases. For

example, the profile of the case of Ra = 108, Tp = 0.05 and kr = 0.1 for the left and right sides

of the partition have the same trend (rotational symmetry) and range (for left side of partition

0.8 ≤ θ ≤ 0.92 and for the right side of the partition 0.08 ≤ θ ≤ 0.2). The reason for this
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Figure 5.57: Vertical temperature profiles on both sides of the partition of the case Xp = 0.25
for different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and
Tp (0.05, 0.1, and 0.2).
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symmetry is establishing convective flow in the thin half-cavity which decreases the thickness

of the sidewall thermal boundary layer. By comparing figures 5.57 and 5.29 it can be seen that

the profiles extracted for low Ra cases (i.e., 103 ≤ Ra ≤ 105) is higher than those depicted in

figure 5.29 and increasing Tp increases its value. This observation is a sign for a hotter partition

in the off-centre partition.

Figure 5.58 shows the horizontal temperature drop on the partition (θD,x) of the case Xp = 0.25

for various Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05,

0.1, and 0.2) at Xp = 0.5. In this figure θD,x is represented in two different scales of y axis in

order to illustrate the profile shapes (figure 5.58(a), (c) and (e)) and the values for the high kr

cases (figure 5.58(b), (d) and (f)). As expected, due to the asymmetry existing in the cavity,

θD,x profiles for low Ra (i.e., 103 ≤ Ra ≤ 105) is angled. However, for the centrally-positioned

partition case, those profiles are completely symmetrical. Interestingly, as Ra increases over

the range of 106 ≤ Ra ≤ 108 and the convection in the left half-cavity intensifies, θD,x profiles

become more symmetrical and horizontal. By increasing Ra, θD,x increases for all cases of Tp

and kr and higher Ra values have wider horizontal sections.

The kr = 0.1 case has the highest θD,x and as kr increases θD,x reduces and, similar to the

centrally-positioned case the profiles of θD,x for kr ≥ 100 is very close to zero and can be seen

as one line in the left column figures. The logarithmic scale y axis figures (right column figures)

show that clearly as kr further increases θD,x becomes smaller and closer to zero. The same

increasing effect of Tp on θD,x found in the centrally positioned partition case occurs here as

well. As Tp increases the flat section of the θD,x profiles also increases.

After investigating the sides of partition in contact of the fluid, it is necessary to study the

thermal behaviour inside the partition. Figure 5.59 illustrates the vertical temperature profiles

at the middle of the partition (x = Xp) of the case Xp = 0.25 for different values of Ra (103,

104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and 0.2). It can be

seen that the vertical temperature profiles at the middle of the partition have different shapes

and can be divided into two separate groups. The first group is the profiles of the low Ra values

(103 ≤ Ra ≤ 105) which have small convection heat transfer in the left half-cavity. Those cases
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Figure 5.58: Horizontal temperature drop on the partition of the case Xp = 0.25 for different
values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1,
and 0.2).
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show high temperature profiles above the mid-temperature of the cavity (i.e., θ = 0.5) at the

middle of the partition. The profiles of this group rise by increasing kr and Tp. The second

group is the cases with large convection formed in the left half-cavity. The profiles of the second

group are centered at θ = 0.5 and y = 0.5, similar to the cases of Xp = 0.5. Increasing kr

from 0.1 to 1 increases the profiles’ slopes. Further increasing kr (kr ≥ 100) reduces the slopes

and profiles become very close to horizontal lines. As Tp increases the overall slopes of the

temperature profiles decrease.
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Figure 5.59: Vertical temperature profiles at the middle of the partition (x = Xp) of the case
Xp = 0.25 for different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and
1000) and Tp (0.05, 0.1, and 0.2).
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Figure 5.60 presents the steady-state value of θD,y of the case Xp = 0.25 for different values

of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and

0.2). The same two types of graphs observed for the case Xp = 0.5 can be seen in this figure.

The graphs of kr = 0.1 and 1 have a peak point for all Tp cases. Unlike the centrally-placed

partition cases, the peak points for those graphs happen at higher Ra values (Ra = 106). For

the case of Tp = 0.2 this peak point is at Ra = 107.
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Figure 5.60: Vertical temperature drop at the middle of partition of the case Xp = 0.25 for
different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp
(0.05, 0.1, and 0.2).

The cases of kr = 1 show the highest θD,y for 103 ≤ Ra ≤ 107. At Ra = 108, θD,y of the case

kr = 1 is affected by the partition thickness and as Tp increases the value of θD,y decreases,
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even to less than the case of kr = 100 (i.e., figure 5.60(c)).

The second type of graphs includes the cases of θD,y with high kr (100 ≤ kr ≤ 1000) and shows

gradual and steady increase in θD,y as Ra increase. As kr and Tp increases the value of θD,y

reduces.

5.4 Empirical correlations for the average Nusselt num-

ber

A number of empirical correlations were developed for the average Nusselt number in a par-

titioned cavity with air as working fluid, as reported in previous studies. By assuming an

isothermal partition, Duxbury [299] proposed the following correlation for a partitioned cavity,

NuAve = 0.339A−0.25Ra0.25(N + 1)−1.25, (5.6)

where N is the number of partitions inside the cavity and A = H/L is the aspect ratio of the

cavity. A similar correlation was proposed by Nishimura et al. [270], as shown below, but by

assuming a thin partition,

NuAve = 0.297A−0.25Ra0.25(N + 1)−1 for A ≥ 1, (5.7)

while Cuckovic-Dzodzo et al. [269] gave the following correlation based on their experimental

results over the range of 38000 < Ra < 369000 but with glycerol as the working medium,

NuAve = 0.201Ra0.276(N + 1)−1.4. (5.8)

Similarly, Anderson and Bejan [298] obtained the following correlation from their experimental

and numerical study using water as the working medium,

NuAve = 0.167Ra0.25(N + 1)−0.61, (5.9)
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while more recently, Kahveci [5] developed the following correlation which incorporates the

effects of some partition parameters with air as the working medium,

NuAve = (0.115 + 0.006rk − 0.023r2
k)Ra

0.25X−0.044
p , (5.10)

where rk = kf/ks (= 1/kr) is the ratio of the thermal conductivity of fluid with respect to that

of partition.

These empirical correlations are summarized in Table 5.1. It can be seen that the partition

parameters have only been included in the correlation of Kahveci [5], which includes the effects

of the partition position and the thermal conductivity ratio, but only considered low Rayleigh

values.

Table 5.1: Characteristics of the correlations presented in some previous studies.

Study Parameters Ra range Assumptions Fluid

Duxbury [299] Ra, A and N less than 106 Isothermal partition air

Nishimura et al. [270] Ra, A and N 106 - 108 Thin partition air and water

Cuckovic-Dzodzo et al. [269] Ra and N 38000 - 369000 - glycerol

Kahveci [5] rk, Ra and Xp 104 - 106 - air

Anderson and Bejan [298] Ra and N 109 - 1010 - water

With the numerically obtained results presented in figure 5.61, the following general correlation

formula was selected for the curve fitting in this study,

NuAve = aRabT cPk
d
rX

e
P , (5.11)

where a, b, c, d and e are the parameters to be found which give the best correlation for-

mula fitting. The initial curve fitting attempts showed that the Xp is a statistically insignif-

icant parameter and including or excluding of this parameter does not have any effect on

the final fitted curve. Therefore, Xp was removed from the general correlation formula. The

non-linear curve fitting is obtained using the iterative procedure of the Levenberg-Marquardt

algorithm [300,301]. The following correlation shows the best fit for the numerical data for the
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Figure 5.61: Average Nusselt number for three values of Tp (Tp = 0.05, 0.1, and 0.2), two values
of Xp (Xp = 0.25 and 0.5), five values of kr (kr = 0.1, 1, 100, 500 and 1000) and six values of
Ra (Ra = 103, 104, 105, 106, 107 and 108).
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whole range of Ra studied for this work,

NuAve = 0.0456Ra0.2637T−0.0054
P k0.1454

r , for 103 ≤ Ra ≤ 108. (5.12)

The presented correlation (equation (5.12)) obtained after performing 43 iterations with reduced

Chi − square value of 1.57 and R − square value of 0.91. The comparison of the empirical

correlations developed by the current study for the average Nusselt number with some other

available correlations with different working fluids is depicted in figure 5.62 for the case Xp =

0.5, rk = 0.01 (i.e., kr = 100), N = 1 and Tp = 0.05.
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Figure 5.62: Comparison of the correlations for the average Nusselt number obtained in the
current study with some others available over the Rayleigh number range considered for the
case of Xp = 0.5, rk = 0.01(i.e., kr = 100), N = 1 and Tp = 0.05.



Chapter 6

Transient natural convection heat

transfer in a partitioned cavity

6.1 Centrally positioned partition

The transient NuAve at the hot wall can be characterized by four regimes, as illustrated in

figure 6.1. This figure illustrates transient NuAve at the hot wall for the case of Xp = 0.5,Ra =

108, kr = 1000 and Tp = 0.2 as an example. At the conduction regime, the fluid is isothermal

and motionless as the cavity undergoes the increasing temperature step and the heat transfer

mode is pure conduction. At this regime, τ ≤ 5, the conduction heat transfer starts to establish

thermal boundary layers around the sidewalls and grow with time. NuAve reaches a local

minimum value, NuAve = 20, and then begins to increase up to NuAve = 22 before reaching a

value that is almost maintained during a quasi-steady period. At the identified local minimum

NuAve, the thermal boundary-layer thickness is the maximum and decreases when the major

fluid motion begins. As expected, at the conduction regime, NuAve at the partition is zero and

convective heat transfer has not started to thermally active the partition and its temperature

is still in the initial condition (i.e., θ = 0.5). By developing fluid motion, NuAve increases to

its quasi-steady value (i.e. 20 ≤ NuAve ≤ 22 at 5 ≤ τ < 11) and thermal and viscous boundary

layers are fully developed. At this regime, intrusions create a temperature difference in the

170
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partition and gradually NuAve of the partition increases to NuAve = 5. By comparing the

quasi-steady regime of the NuAve graph for the sidewall and the partition, it can be seen that

fluctuations on the partition case are much more than the sidewall one which is the indication

of unsteadiness created by the striking intrusion on the partition. Interestingly, the conduction

and the quasi-steady regimes show similar length for the case presented in the figure 6.1.

As time elapses, the bulk temperature in the cavity significantly rises. The increasing bulk

temperature causes a reduction in the temperature difference and the driving force for heat

transfer, which result in decaying NuAve. This regime takes longer period of time than the

two previous introduced regimes as the stratification process is gradual and time consuming

phenomenon. The decaying regime starts from τ = 11 and ends at τ = 150 which is about

23 time longer period than the previous regimes. While the overall temperature difference

of the fluid occupied area decreases, due to the presence of pure conduction in the partition,

the process of forming temperature gradient continues and penetrates more in the partition.

Therefore, at the decaying regime, NuAve of the partition shows an increasing trend. Some

fluctuations still can be observed in this regime for the partition which gradually decay by

increasing NuAve and intensifying the stratification process. Both NuAve graphs of the sidewall

and the partition at the end of decaying regime reach the same value of NuAve ≈ 14. The final

regime is steady-state where the value of NuAve reaches a constant value after the decaying

regime of the hot wall and increasing trend at the partition. Therefore, the four distinct regimes

of NuAve at the hot wall are conduction, quasi-steady, decaying and steady-state.

As the total rate of heat transfer across the cavity is of significant importance for numerous

industrial applications, the transient responses of the average Nusselt number at the heated

sidewall and the left side of the partition (x = Xp − 0.5Tp) of the case Xp = 0.5 for different

values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1,

and 0.2) are illustrated in figure 6.2. NuAve value of the hot wall is large at the beginning of the

process due to high temperature gradients near the isothermal hot wall (i.e., the conduction

regime). This value decreases and reaches the quasi-steady value. Higher Ra values have more

distinct regimes than lower Ra cases in which the difference between NuAve of different regimes

are smaller and consequently, there is a smoother transition between regimes. NuAve for the
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Figure 6.1: Regimes of transient NuAve at the hot wall for the case of Xp = 0.5,Ra = 108,
kr = 1000 and Tp = 0.2.

partition is zero for all cases at the early stages (i.e., the conduction regime) and gradually

increases by reaching intrusion to the partition in the cavity (i.e., the quasi-steady regime)

and this increasing trend continues until the steady-state where NuAve of the side wall and the

partition becomes equal. All higher Ra value cases have larger NuAve than the lower Ra cases

and the time to reach the steady-state increases as Ra increases.

NuAve of the hot wall for all cases of Tp are equal at the conduction regime. Over the quasi-

steady regime, as partition becomes thermally active, the effect of Tp intensifies and it is

observed that NuAve curves of each Tp gradually change. As kr increases NuAve increases.

As observed earlier, the effect of Tp on NuAve for low and high kr is different. For kr ≤ 1, Tp

has a decreasing effect on NuAve and for 1 < kr, rising Tp causes an increase in NuAve.

Typical temperature contours at different time steps ranging from τ = 3 to τ = 550 are shown

in figures 6.3 and 6.4 for the case of kr = 0.1 and 1000, Tp = 0.1, Ra = 108 and Xp = 0.5.

Initially, the fluid in the cavity is at a uniform temperature (i.e., θ = 0.5) and motionless (i.e.,
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Figure 6.2: Time series of average Nusselt number on the hot sidewall and the partition (x =
Xp − 0.5Tp) of the case Xp = 0.5 for different values of Ra (103, 104, 105, 106, 107 and 108), kr
(0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and 0.2).
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u = v = 0.0). The sidewalls are suddenly deferentially heated at τ ≥ 0. Consequently, a sharp

temperature gradient is created in the proximity of the isothermal sidewalls. The fluid in the

central region of each half-cavity and the partition are still at the initial uniform temperature.

Therefore, due to the initial development, the fluid close to the left/right sidewall starts to

heat up/cool down. For τ = 3 (i.e., the conduction regime), the isotherms are mainly adjacent

to sidewalls and at the tailing edge, the heated/cooled intrusion forms and starts to move

horizontally due to the presence of the top adiabatic wall and the remaining portion of the

fluid inside the half-cavities is stagnant. As the fluid moves horizontally, a horizontal boundary

layer is established. Further increasing to τ = 5 (i.e., the quasi-steady regime) the intrusion

develops more and reaches to the vicinity of the partition. There is not any difference between

temperature contours of the cases kr = 0.1 and 1000 as the partition is not completely active

and does not have any influence on the heat transfer in the cavity up to this stage. When τ = 8

(i.e., quasi-steady regime), the intrusion reaches the partition and it is reflected back toward

the half-cavity center. Temperature contours of the cases kr = 0.1 and 1000 are different at

this time. Due to the presence of the partition, the heated intrusion in the left half-cavity

flows downward along the partition and the cooled intrusion in the right half-cavity moves

upward attached to the right side of the partition. At the end of the quasi-steady period,

the bulk temperature in the cavity is beginning to rise significantly. The local temperature

difference across the half-cavity is beginning to decrease from the top down. The reduction in

the driving force coincides with the start of heat transfer to decay at the hot wall. Owing to the

intensified convective motions, the temperature field in the cores of both half-cavities begins to

be stratified. The effect of thermal conductivity of the partition is clearer as time passes. For

instance, at τ = 70 (i.e., decaying regime) for the case with low thermal conductivity partition

(i.e., kr = 0.1), isotherms in the partition are almost vertical showing high thermal resistance

of the partition which leads to trapping all the heated and cooled fluids on the left and right

half-cavities and can be seen in figure 6.3(h). As a result of this high thermal resistance, the

main temperature gradient happens in the partition area and this character can be identified

by the presence of the majority of isotherms in the partition. On the other hand, the cavity

with high thermal conductivity partition (i.e., kr = 1000) shows almost horizontal isotherms
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in the partition which is a sign of low thermal resistance.

(a) τ = 3 (b) τ = 5

(d) τ = 8 (e) τ = 25

(g) τ = 70 (h) τ = 550

Figure 6.3: Temperature contours of the case kr = 0.1, Tp = 0.1, Ra = 108 and Xp = 0.5 at
different times.

The time series of θ of the case Xp = 0.5 at x = 0.05 and y = 0.5 for different values of Ra

(103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and 0.2)

are illustrated in figure 6.5. It can be seen that low Ra cases have a higher local temperature
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(a) τ = 3 (b) τ = 5

(d) τ = 8 (e) τ = 25

(g) τ = 70 (h) τ = 550

Figure 6.4: Temperature contours of the case kr = 1000, Tp = 0.1, Ra = 108 and Xp = 0.5 at
different times.

at the selected point than high Ra cases which have thinner thermal boundary layers at the

walls. Therefore, the temperature difference is mainly applied by the stratified fluid in the half-

cavity rather than the sidewall boundary layers and consequently; longer time is necessary to

form the thermal stratification in the half-cavities. By increasing Ra to 107 and 108, the time
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series of temperature show fluctuations which gradually decay as reaching the steady state.

Interestingly, the characterized regimes for NuAve can be justified as in the case presented in

figure 6.1. For instance, the cavity bulk temperature only begins to rise significantly at the

end of the quasi-steady period and continues to increase during the decay period. For kr ≤ 1,

increasing Tp increases the local temperature and for 1 < kr, increasing Tp causes a reduction

in the temperature value and this Tp effect starts at the quasi-steady regime.

Some assumptions, like constant partition temperature (e.g., [29,30]), constant heat flux (e.g.,

[31]), and a power-law temperature distribution (e.g., [32]), can help to overcome the difficulty

of this problem. To investigate the constant partition temperature assumption (lumped conduc-

tion analysis), the horizontal temperature drop parameter (θD,x) is defined as the temperature

difference between the left and right side of the partition. Time series of θD,x at y = 0.5 of

the case Xp = 0.5 for different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100,

500 and 1000) and Tp (0.05, 0.1, and 0.2) are illustrated in figure 6.6. This figure shows that

the time parameter is an important variable for θD,x as in spite of steady-state values, at some

stages, horizontal temperature drop of higher Ra values are lower than the lower Ra cases

(e.g., figure 6.6, τ = 30). The transient θD,x graph mainly shows an increasing trend in all Ra

cases and the maximum θD,x is the steady-state value. Increasing Ra increases θD,x of the same

partition thickness. Partition thickness has a considerable effect on θD,x as a thicker partition

shows higher θD,x for all cases of Ra and kr values. The effect of Tp on θD,x can be seen in

figure 6.6(e) as θD,x of Ra = 107 and Tp = 0.2 is higher than that of the case of Ra = 108 and

Tp = 0.1. kr also has a significant effect on θD,x. For the case kr = 0.1, the overall steady-state

value of θD,x is between 0.3 and 0.9. At kr = 1, the θD,x range decreases to 0.05 − 0.7 and

beyond kr = 1, this range decreases to 0− 0.03, 0− 0.005 and 0− 0.0022 for kr = 100, kr = 500

and kr = 1000, respectively. Therefore, increasing kr dramatically reduces θD,x.

To get more insights into the transient heat transfer behavior inside the partition wall, the total

vertical temperature drop, θD,y, is introduced, which is defined as the temperature difference

between the top and bottom of the partition wall at a specific horizontal location (x) within

the partition wall. The time series of θD,y at the middle of the partition wall (i.e., at x = 0.5)

are presented in figure 6.7 for different Ra, kr and Tp values.
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Figure 6.5: Time series of θ of the case Xp = 0.5 at x = 0.05 and y = 0.5 for different values of
Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and 0.2).



6.1. Centrally positioned partition 179

100 101 102 103
0.0

0.2

0.4

0.6

0.8

1.0

100 101 102 103
0.0

0.2

0.4

0.6

0.8

100 101 102 103
0.000

0.005

0.010

0.015

0.020

0.025

0.030

100 101 102 103
0.000

0.001

0.002

0.003

0.004

0.005

0.006

100 101 102 103
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

 

 
D
,x

(e) kr= 1000

(d) kr= 500

(c) kr= 100

(b) kr= 1

 T
P
= 0.05   Ra= 103     Ra= 106

 T
P
= 0.1     Ra= 104     Ra= 10 7

 T
P
= 0.2     Ra= 105     Ra= 10 8

 D
,x

(a) kr= 0.1

 D
,x

 D
,x

 D
,x

Figure 6.6: Time series of θD,x at y = 0.5 of the case Xp = 0.5 for different values of Ra (103,
104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and 0.2).
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It is seen that θD,y at Ra = 103 is much lower than the initial temperature difference between

the two cavity sidewalls as well as than those at other Ra values, demonstrating the essentially

pure conduction heat transfer nature of this case.

For other Ra values, the θD,y curves are highly kr dependent. For kr = 0.1, for all Ra cases

(except Ra = 103), θD,y increases until attains the maximum value and then decreases to reach

a constant steady-state value. The lower the Ra value, the earlier the maximum value and

steady-state value can be reached.

For kr = 1, for low Ra values (no more than 106), θD,y has a steady and smooth increase

from the initial value of θD,y = 0 to a constant value at the steady state, which increases

monotonically with Ra, and the rate of increase increases substantially when Ra increases.

When Ra is beyond 106, there are fluctuations present throughout the time series, which are

apparently caused by traveling waves. For these high Ra cases, θD,y increases until it attains a

maximum value, but gradually decreases subsequently, before it reaches a constant steady-state

value, which decreases with Ra.

For kr > 1, θD,y has a steady and smooth increase from the initial value of θD,y = 0 to a

constant value at the steady state, which increases monotonically with Ra, and the rate of

increase increases substantially when Ra increases.

To investigate further the flow properties in a partitioned cavity, the position of umax at the

top half of the left half-cavity (0 ≤ x ≤ Xp and 0.5 ≤ y ≤ 1) and vmax at the left half of the left

half-cavity (0 ≤ x ≤ 0.25 and 0 ≤ y ≤ 1) by passing time for different values of Ra (103, 104,

105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and 0.2) are illustrated

in figure 6.8. The sweeping direction to find position is from the left to the right and from

the bottom to the top. Therefore, the corresponding position of an area with the maximum

amount will be the first swept position from the left and the bottom. In all cases, the position

of umax in the cavity moves from the vicinity of the left corner in the left half-cavity towards the

partition sloping inward. As Ra increases the position of umax becomes closer to the top wall

and their slopes become closer to the horizontal line. When the cavity approximately reaches

the steady state, it can be seen more repeated points around the steady region.
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Figure 6.7: Time series of θD,y of the case Xp = 0.5 for different values of Ra (103, 104, 105,
106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and 0.2).
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For the vmax cases (i.e., figure 6.8(b), (d), (f), (h) and (j)), low Ra cases (i.e., Ra = 103

and 104) show almost straight lines from the left side to the right side. However, as Ra value

increases (i.e., Ra > 104), the position of vmax gradually rises from the mid-height towards the

top wall and then sharply moves downward. The lower Ra is, the farther the position of vmax

moves from the left sidewall. The initial rise of the position of vmax is sharper and higher as

Ra increases. Therefore, the steady-state position for vmax is closer to the left sidewall for the

high Ra values than the low cases. Tp and kr do not show a significant effect on the position

of umax and vmax.

The position of the maximum stream function at the left half-cavity by passing time for different

values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1,

and 0.2) is presented in figure 6.9. For Ra = 103, the position of the maximum stream function

starts at the mid-height and moves to the centre of the half-cavity. The distribution of those

points is an almost horizontal line like. As Ra increases, the trace of the maximum stream

function shows a gradual upward and then downward move trend. Higher Ra values have

sharper upward movements and gradually the position becomes closer to the top wall. The

trace of the maximum stream function for different Tp is identical, especially at early stages;

however, as time passes, the difference between those graphs enlarges.
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Figure 6.8: Position of umax at the top half of the left half-cavity (0 ≤ x ≤ Xp and 0.5 ≤ y ≤ 1)
and vmax at the left half of the left half-cavity (0 ≤ x ≤ 0.25 and 0 ≤ y ≤ 1) by passing time for
different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1(a, b), 1(c, d), 100(e, f), 500(g, h)
and 1000(i, j)) and Tp (0.05, 0.1, and 0.2).
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Figure 6.9: Position of the maximum stream function at the left half-cavity by passing time
for different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and
Tp (0.05, 0.1, and 0.2).
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6.2 Off-centre partition

The main regimes of transient NuAve at the hot and cold sidewalls for a cavity with an off-

centre partition are illustrated in figure 6.10. The figure presents the time series of NuAve

for the case of Xp = 0.25, Ra = 108, kr = 1000 and Tp = 0.2 at the hot and cold sidewalls

as well as the partition which is similar to the case selected for figure 6.1. To simplify the

characterized regimes, the main regimes of the cold and hot sidewalls are named in blue and

red colors, respectively (i.e., R1 − R4 for the cold sidewall and R1 − R5 for the hot sidewall).

At the conduction regime (i.e., R1 and R1) the fluid is isothermal and motionless as the cavity

undergoes the increasing temperature step and the heat transfer mode is pure conduction. At

this regime, the conduction heat transfer starts to establish thermal boundary layers around

the sidewalls which grow with time. NuAve reaches a local minimum value and then begins

to increase before reaching a value that is almost maintained during a quasi-steady period.

The conduction regime of the cold and hot sidewalls are identical, similar to the centrally-

positioned partition case. The reason for this similarity is that during the conduction regime

sidewalls are thermally active and fluid in the vicinity of the sidewalls experience temperature

change and the partition (either at the center or off-centre) is inactive. Therefore, this regime

duration is directly affected by the position of the partition and closer the partition is to the

sidewall, shorter the conduction regime is. At the identified local minimum NuAve, the thermal

boundary-layer thickness maximum decreases when the major fluid motion begins. As expected,

at the conduction regime, NuAve at the partition is zero and convective heat transfer has not

started to thermally active the partition and its temperature is still at the initial one (i.e.,

θ = 0.5). By developing fluid motion, NuAve increases to its quasi-steady value and thermal

and viscous boundary layers are fully developed (i.e., R2 and R2). It can be seen that the

quasi-steady regime for the sidewall next to the wider half-cavity (i.e., cold sidewall) is much

longer than the other sidewall. This observation is expected as thermal and viscous boundary

layers develop much faster at the thinner half-cavity (i.e., left half-cavity) than the wider one

(i.e., right half-cavity).
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Intrusions create a temperature difference on the partition and gradually NuAve of the partition

increases. As time passes, the bulk temperature in the cavity significantly rises. The increasing

bulk temperature causes a reduction in the temperature difference and the driving force for

heat transfer, which results in decaying NuAve. The decaying regime for the hot sidewall (i.e.,

R3) starts earlier than the cold sidewall after a short quasi-steady regime (i.e., R2). While

the overall temperature difference of the fluid occupied area decreases, due to the presence of

pure conduction in the partition, the process of forming a temperature gradient continues and

penetrates more in the partition. The stratification and filling process in the left half-cavity

progress to a point that the temperature gradient of the partition and the left sidewall becomes

equal and is directly affected by the hot isothermal wall. Consequently, a regime of identical

NuAve is identified after the decaying regime for the hot sidewall case (i.e., R4). This regime

is called the filling regime. The final regime is the steady state (i.e., R4 and R5) at which

the value of NuAve reaches a constant value after the decaying regime of the cold wall and

increasing trend at the partition and the hot sidewall. Therefore, the five distinct regimes of

NuAve at the hot sidewall are conduction, quasi-steady, decaying, filling and steady state while

the cold sidewall showed four regimes of conduction, quasi-steady, decaying and steady-state.

For observing quantitatively natural convection flows and to describe heat transfer through the

cavity, the average Nusselt number at the heated and cooled sidewalls and the left side of the

partition (x = Xp − 0.5Tp) of the case Xp = 0.25 for different values of Ra (103, 104, 105,

106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and 0.2) is illustrated in

figures 6.11-6.13.

As presented in figure 6.10, the general trend for the time series of the average Nusselt number

starts with the conduction regime. By increasing Ra, the duration of this regime increases.

The end of this regime also can be identified by the initiation of NuAve of the partition. The

value of NuAve decreases to reach the quasi-steady regime (i.e., R2). Higher Ra cases show

longer quasi-steady regimes and comparing the line in the cold and hot sidewalls shows that

this regime at the hot sidewall is very short. The duration of the quasi-steady regime in the

case of Ra = 108, Tp = 0.05 and kr = 100 of the hot and cold sidewalls are τ = 1 and τ = 7,

respectively. The quasi-steady regime ends with starting the decaying regime (i.e., R3 or R3).
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Figure 6.10: Regimes of transient NuAve at the hot and cold sidewalls for the case Xp =
0.25,Ra = 108, kr = 1000 and Tp = 0.2.

For the cold sidewall, NuAve gradually falls during this period till reaching the steady-state

(i.e., R4). Similar to the centrally-positioned partitioned case, the line for the cold sidewall

shows some oscillations at high Ra values which gradually damp as reaching the steady-state.

On the other hand, the line for the hot sidewall is smooth or the fluctuations are trivial. The

decreasing trends of NuAve at the decaying regime for the hot and cold sidewalls are different.

For all cases investigated, decreasing rate of this regime at the hot sidewall is higher than that

at the cold sidewall. This sharp decrease at the hot sidewall necessitates an extra regime (i.e.,

R4) at which NuAve increases to reach the steady-state value (i.e., R5). Higher Ra values have

more distinct regimes than lower Ra cases at which the difference between NuAve of different

regimes are smaller and consequently, have a smoother transition between regimes.

NuAve of the hot sidewall for all cases of Tp are equal at the conduction regime. Over the

quasi-steady regime, as the partition becomes thermally active, the effect of Tp intensifies and

it can be observed that NuAve curves of each Tp gradually changes. As kr increases NuAve

increases. Increasing kr also weakens the fluctuations of decaying regimes as can be seen by
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comparing figures 6.11(b) and (e). As observed earlier, the effects of Tp on NuAve for low and

high kr are different. For kr ≤ 1, Tp has decreasing effect on NuAve and for 1 < kr, rising Tp

causes increase in NuAve.

Figure 6.11: Time series of the average Nusselt number on the cold and hot sidewalls and the
partition (x = Xp − 0.5Tp) for the case of Xp = 0.25 and Tp = 0.05 for different values of Ra
(103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000).

To provide a direct perception of the transient evolving process of the conjugate natural con-



6.2. Off-centre partition 189

Figure 6.12: Time series of the average Nusselt number on the cold and hot sidewalls and the
partition (x = Xp − 0.5Tp) for the case of Xp = 0.25 and Tp = 0.1 for different values of Ra
(103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000).
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Figure 6.13: Time series of the average Nusselt number on the cold and hot sidewalls and the
partition (x = Xp − 0.5Tp) for the case of Xp = 0.25 and Tp = 0.2 for different values of Ra
(103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000).
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vection flow, the snapshot of the transient temperature contours for the natural convection in

a cavity with an off-centre partition (i.e., Xp = 0.25) is presented in figures 6.14 and 6.15 for

the case of Tp = 0.1, Ra = 108, kr = 0.1 and kr = 1000, as a sample. These figures present

the temperature contours at six different times for the left and right half of the cavity. At

the initial stage, a rising natural convection boundary layer forms on the left/right side wall,

discharging heated/cooled fluid as an intrusion below/above the top/bottom wall. At this

time (i.e., τ = 3) intrusions have not reached to the partition and no difference can be seen

between figure 6.14(a) and 6.15(a). The fluid in the remainder of the domain is still at the

initial temperature θ = 0.5. At τ = 5, the heated intrusions discharged by the rising natural

convection boundary layers have impinged on the partition and are in the process of filling the

left half-cavity with hotter fluid. The cooled intrusions discharged by the cold sidewall are at

the mid-way and have not reached to the partition. At τ = 8, the cooled intrusions reach the

partition and the left half-cavity is already in the filling process started from τ = 5. As the

partition becomes thermally active, its properties become important. It is clear that there is a

substantial difference at τ = 25 between figure 6.14(e) and 6.15(e). The case with a low ther-

mal conductivity partition (i.e., figure 6.14(e)) shows that the temperature difference has small

penetration inside the partition while the case with high thermal conductivity partition depicts

several isothermal lines completely passed across the partition and the discharge of the heated

intrusion at the top-left corner of the right half-cavity is noticeable. Figure 6.15(e) shows that

two natural convection phenomena on both sides of the partition have coupled through the con-

duction inside the partition, and though three phenomena are tightly connected to each other

and any change in one of them will affect the rest of them. The boundary layers created due to

this coupling, the conjugate natural convection boundary layers (CNCBLs), at the mid-height

will be asymmetrical for this case as the left and right half-cavities are at different stages of the

filling process which is because of the off-centre partition. As time elapses, the filling process

inside both half-cavities develops further and CNCBLs covers all length of the partition. It is

worth mentioning that since the temperature difference across the partition is dependent on

time and position, CNCBLs are time and position dependent too. At τ = 70, figure 6.14(g)

shows almost vertical isotherms inside the partition which is clear indication of the high ther-



192 Chapter 6. Transient natural convection heat transfer in a partitioned cavity

mal resistance of the partition and little temperature exchange between two half-cavities. At

this stage, the left half-cavity is about 90% filled with hot fluid while the right half-cavity is

about 50% filled with cold fluid. On the other hand, figure 6.15(g) shows a totally different

situation. The stratification level for both half-cavities is very similar as expected which is due

to the very high thermal conductivity of the partition. Finally, by passing enough time, the

cavity fully develops and reaches to the steady state. The steady-state case of the cavity with

kr = 0.1 shows that the half-cavities are filled with intrusions and the majority of isotherms are

presented inside the partition. The partition plays the role of insulation wall and the hot and

cold fluids are trapped in their half-cavities. However, for the case showing in figure 6.15(h)

thermal interaction between both half-cavities is very significant and the effect of the left and

right half-cavities on each other is clear as for both sides stratification range starts with θ = 0.5.

The time series of θ of the case Xp = 0.25 at x = 0.05 and y = 0.5 for different values of Ra

(103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and 0.2) are

illustrated in figure 6.16. By comparing the temperature time series presented for the centrally

positioned case (i.e., figure 6.5) and the off-centre positioned case (i.e., figure 6.16), it is seen

that the general trends are very similar; however, the time series show a delay in the case

Xp = 0.5. This delay can be evidently seen from the main temperature jump of Ra = 108

case which is around τ = 10 while this point for the Xp = 0.5 is about τ = 11. This delay

clearly due to a wider right half-cavity which makes the stratification process longer. Another

observed difference is the effect of Tp on the temperature time series. At the early stages the

time series of the lower Ra cases (i.e., 103 ≤ Ra ≤ 104) show distinct separate lines; however,

the time series presented in figure 6.5 do not show any significant effect of Tp. By increasing

Ra to 107 and 108, the time series of temperature shows fluctuations in the case Xp = 0.5

which gradually decay when reaching the steady state. Those fluctuations are very smooth or

not present in figure 6.16. This indicates that the thinner half-cavity has fewer instabilities

than a wide half cavity. Interestingly, the characterized regimes for NuAve can be justified as

in the case presented in figure 6.10; for instance, the cavity bulk temperature only begins to

rise significantly at the end of the quasi-steady period and continues to increase during the

decay period. For kr ≤ 1, increasing Tp increases the local temperature and for 1 < kr, rising
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(a) τ = 3 (b) τ = 5

(d) τ = 8 (e) τ = 25

(g) τ = 70 (h) τ = 550

Figure 6.14: Temperature contours of the case kr = 0.1, Tp = 0.1, Ra = 108 and Xp = 0.25 at
different times.

Tp causes a reduction to the temperature value and this Tp effect starts at the quasi-steady

regime.

Figure 6.17 presents the time series of θD,x at height y = 0.5 of the case Xp = 0.25 for different
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(a) τ = 3 (b) τ = 5

(d) τ = 8 (e) τ = 25

(g) τ = 70 (h) τ = 550

Figure 6.15: Temperature contours of the case kr = 1000, Tp = 0.1, Ra = 108 and Xp = 0.25
at different times.

values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1,

and 0.2). The transient θD,x graph shows a general increasing trend for all Ra, kr and Tp cases.

Similar to the centrally-positioned partition case the value of θD,x at the steady state increases

as Ra and Tp increases and decreases as kr increases. The comparison of figures 6.17 and 6.6
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Figure 6.16: Time series of θ of the case Xp = 0.25 at x = 0.05 and y = 0.5 for different values
of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and
0.2).
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identifies a delay at the first increasing point of θD,x. The first increasing point of the case

Ra = 108 and kr = 0.1 is τ = 10 for the off-centre partition case; however, this point for the

centrally-positioned partition case has a delay and occurs at τ = 11.

For the case kr = 0.1, the overall steady-state value of θD,x is between 0.3 and 0.95. At kr = 1,

the θD,x range decreases to 0.05 − 0.7 and beyond kr = 1 (i.e., kr > 1), this range decreases

to 0 − 0.03, 0 − 0.005 and 0 − 0.0022 for kr = 100, kr = 500 and kr = 1000, respectively.

These ranges are very similar to the case of the centrally-positioned partition (i.e., figure 6.6).

Therefore, increasing kr dramatically reduces θD,x.

The time series of θD,y at the middle of the partition wall are presented in figure 6.18 for

different Ra, kr and Tp values. For the case of kr = 0.1, figures 6.18 and 6.7 show a difference

at the steady-values of θD,y. The steady-state value of θD,y in a centrally-positioned partitioned

cavity increases from Ra = 103 to 105 and decreases from 105 to 108. However, for the off-

centre case, Ra = 106 shows the maximum steady-state value for θD,y. The maximum θD,y

of Ra = 105 is less pronounced and is slightly higher than its steady-state value as shown in

figure 6.18 in comparison with the figure 6.7. For kr = 1, just Ra = 107 and 108 cases have

a maximum value higher than the steady-state result. For low Ra values (106 ≤ Ra), θD,y

has a steady and smooth increase from the initial value (θD,y = 0) to a constant value at the

steady state. Similar to the centrally-positioned partition case, at kr > 1, θD,y has a steady

and smooth increase from the initial value of θD,y = 0 to a constant value at the steady state,

which increases monotonically with Ra, and the rate of increase increases substantially with

Ra.

To investigate further the flow behavior in an off-centre partitioned cavity, the position of umax

at the top half of both half-cavities (0 ≤ x ≤ 1 and 0.5 ≤ y ≤ 1) and vmax at the left half

of the left half-cavity (0 ≤ x ≤ 0.5(Xp − 0.5Tp)) and the left half of the right half-cavity

(Xp ≤ y ≤ 0.5 + Xp − 0.25Tp) by passing time for different values of Ra (103, 104, 105, 106,

107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and 0.2) are illustrated in figures

6.19 and 6.20. The sweeping direction to find position is from the left to the right and from the

bottom to the top. Therefore, the corresponding position of an area with the maximum amount



6.2. Off-centre partition 197

100 101 102 103
0.0

0.2

0.4

0.6

0.8

1.0

100 101 102 103
0.0

0.2

0.4

0.6

0.8

100 101 102 103
0.000

0.005

0.010

0.015

0.020

0.025

0.030

100 101 102 103
0.000

0.001

0.002

0.003

0.004

0.005

0.006

100 101 102 103
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

 

 
D
,x

(e) kr= 1000

(d) kr= 500

(c) kr= 100

(b) kr= 1

 T
P
= 0.05   Ra= 103     Ra= 106

 T
P
= 0.1     Ra= 104     Ra= 10 7

 T
P
= 0.2     Ra= 105     Ra= 10 8

 D
,x

(a) kr= 0.1

 D
,x

 D
,x

 D
,x

Figure 6.17: Time series of θD,x at y = 0.5 of the case Xp = 0.25 for different values of Ra (103,
104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and 0.2).
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Figure 6.18: Time series of θD,y of the case Xp = 0.25 for different values of Ra (103, 104, 105,
106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp (0.05, 0.1, and 0.2).
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will be the first swept position from the left and the bottom. In all cases, the position of umax

in the left half-cavity moves from the vicinity of the left corner of left half-cavity towards the

partition sloping inward. This pattern is similar to the one observed in the centrally positioned

partitioned case, but in this case as the half-cavity is thin, the captured points extended up to

x = 0.15. With regard to the right half-cavity, this position starts from the right top corner

and moves toward the partition. As Ra increases the position of umax becomes closer to the

top wall and their slopes get closer to a horizontal line. When the cavity approximately reaches

the steady state, it can be seen more repeated points around the steady-state region. The umax

points occupy a wider area in the right half-cavity. As figure 6.19 shows, these points cover

0.3 < x ≤ 1.0 and 0.8 < y ≤ 1.0, respectively. Figure 6.19 also shows some points about the

mid-height of the right half-cavity which are due to waves created in the transitional period.

As kr increases those momentary captured points appear just for high Ra values. Because of

the sweeping range (i.e., 0 ≤ x ≤ 1 and 0.5 ≤ y ≤ 1), the pattern of those points is not clear.

For the vmax cases (i.e., figure 6.20), the results for low Ra values (i.e., Ra = 103 and 104)

show almost straight lines from the left side to the right at the right half-cavity. However, as

Ra increases (i.e., Ra > 104), the position of vmax starts from lower height and gradually rises

until reach the vicinity of the partition and then sharply moves downward along the partition.

At low kr (i.e., kr = 0.1), the position of vmax for high Ra values (106 ≤ Ra ≤ 108) directly

starts from the vicinity of the partition and the gradual process of moving from the sidewall

to the partition does not exist. As kr increases the horizontal transition from the right side

to the left gradually appears. The higher Ra value is, the closer the position of vmax is to the

partition. The effect of Tp can be seen mainly for higher Ra values.

The position of vmax inside the left half-cavity is different from that in the right half-cavity. For

all values of Ra, kr and Tp this position moves vertically upward along the sidewall. The results

in higher Ra cases show closer points to the left sidewall and Tp does not show a significant

effect on the position of vmax as they all overlap each other.

Comparing the position of vmax figures for the case of the centrally-positioned and off-centre

cases shows that the patterns in the right half-cavity of the case Xp = 0.25 and Xp = 0.5 have
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Figure 6.19: Position of umax at the top half of cavity (0 ≤ x ≤ 1 and 0.5 ≤ y ≤ 1) by passing
time for different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000)
and Tp (0.05, 0.1, and 0.2).
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the movement from the sidewall toward the partition but the rest of patterns are different. In

regard to the pattern observed in the left half-cavity, the pattern is totally different from the

case of Xp = 0.5.

Figure 6.20: Position of vmax at the left half of the left half-cavity (0 ≤ x ≤ 0.5(Xp − 0.5Tp))
and the left half of the right half-cavity (Xp ≤ y ≤ 0.5 + Xp − 0.25Tp) by passing time for
different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000) and Tp
(0.05, 0.1, and 0.2).

The position of the maximum stream function at the left and right half-cavities by passing
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time for different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and 1000)

and Tp (0.05, 0.1, and 0.2) is presented in figure 6.21. For the left half-cavity, the position of

the maximum stream function starts at the mid-height of the cavity and then moves upward

along the left sidewall to the vicinity of the left-top corner. The concentration of captured

points close to the top-left corner is higher which indicates that the maximum stream function

position stays in that area for a longer period of time. Also, the results for higher Ra values

show higher jump and closer points to the top horizontal wall. Then gradually this position

moves downward to the lower half of the left half-cavity. At this half-cavity, it is difficult to

differentiate the effect of the partition thickness.

The position of the maximum stream function at the right half-cavity shows a similar behavior.

For all cases, this position starts at the mid-height. As time passes the captured points move

toward the middle of the half cavity. For low Ra value cases (i.e., Ra = 103 and 104) this

inward movement is almost horizontal. By increasing Ra the shape of the captured points

becomes the shape of a sickle. The higher the Ra value is, the bigger the sickle shape is.
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Figure 6.21: Position of the maximum stream function at the left and right half-cavities by
passing time for different values of Ra (103, 104, 105, 106, 107 and 108), kr (0.1, 1, 100, 500 and
1000) and Tp (0.05, 0.1, and 0.2).
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Conclusion

7.1 Summary of Thesis Outcomes

This study presents unsteady and laminar heat transfer characteristics of natural convection

in a two-dimensional partitioned cavity. The fluid is considered through the incompressible

fluid model under Boussinesq approximation. The governing equations for the flow (i.e., the

Navier-Stokes and temperature equations) were discretized using the finite volume method and

solved by the SIMPLE algorithm. The QUICK scheme and the Adams-Bashforth scheme were

employed for the advection and time integration and the second-order central difference scheme

was used for all other terms. An in-house direct numerical simulation (DNS) code written in

Visual C# was developed and used to solve the discretized governing equations. A non-unifom

rectangular mesh was used, with coarser grids in the core regions and finer grids concentrated

in the proximity of the partition and boundary walls of the cavity.

The major findings from this thesis may be summarized as follows:

• A computer code was written in Visual C# programming language. The code operates

by solving the relevant conservation equations for heat, mass and momentum by means

of a finite volume method. The main variables used throughout the code are velocities

204
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and pressure and the SIMPLE algorithm is employed to solve for the velocity and pres-

sure fields. Each equation can be solved by TDMA (as a default algorithm) or other

methods. The developed code presented for steady/unsteady, compressible/incompress-

ible and, turbulent/laminar flows in a Cartesian coordinate system. Nomenclature of the

TEACH code (originated at the Imperial College) is mainly used in this code to increase

readability. To improve further the readability of this code, the structure of code was

designed to have separate and independent sections. Another code is written in visual

C# to do the post-processing of data using already produced binary files by the main

code. The code was verified and validated against the published results of partitioned

(data from 2 studies) and non-partitioned (data from 14 studies) cavities.

• Empirical correlations (i.e., NuAve = 0.0456 Ra0.2637 T−0.0054
P k0.1454

r , for 103 ≤ Ra ≤

108) have been developed for the average Nusselt number, which include the effects of Ra

and partition thickness. The results show that the partition position parameter (i.e., XP )

is a statistically insignificant parameter and including and excluding it does not have any

effect on the final fitted curve.

• For high kr cases, the number of isotherms in the partition is very low or do not exist.

The low temperature difference in the partition leads to a negligible heat flux through

the partition. This situation shows the adiabatic boundary condition of almost zero

temperature gradient in the x direction at the partition. Considering Ra = gβH4q′′

ανkf
,

these observations cause a low χ (χ ' 0). The low thermal resistance parameter of the

partition due to high kr shows the partition can be considered as an isothermal wall and

the heat transfer characteristics are similar to those of the non-partitioned cavity case

and consequently, the scaling relations of isothermal of a non-partitioned cavity can be

used. For this situation, the thermal boundary layer and average Nusselt number scaling

relations for an isothermal wall can be used (i.e., δT or Nu ∼ Ra1/4). This condition can

also exist when the partition thickness is very small. Thinner partition causes a lower

temperature difference between the left and right side of the partition which intensifies

isothermal behavior of the partition.
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• Low kr cases induce a higher temperature gradient in the partition than the high kr cases.

Therefore, the temperature difference between the left and right side of the partition is

dependent on both kr and TP . As a consequence, it is impossible to decide based on

only one of these parameters (i.e. TP and kr) and both influence thermal characteristics

of the cavity. By increasing the value of χ, the thermal behavior of the partition shifts

from an isothermal wall like to an isoflux wall type. In this situation, the partition has

uniform heat flux and the thermal resistance parameter role becomes important. The

scaling relations extracted for isoflux wall (i.e., δT or Nu ∼ Ra1/5) in a non-partitioned

cavity are more appropriate for the higher χ.

• The overall behaviour of NuAve as kr varies was identified to have three distinctive regions.

The first region covers low kr range and the value of χ is relatively high. By increasing kr

(i.e., increase kP and constant kf ), NuAve rises and the horizontal temperature gradient

in the partition gradually decreases (i.e., ∂θ
∂x

). In this region, the vertical temperature

gradient in the partition is negligible. The increasing trend of NuAve reaches a peak

point and the horizontal temperature gradient in the partition becomes almost zero (i.e.,

∂θ
∂x
≈ 0) which means the partition wall becomes horizontally isothermal. This region is

named the thermal resistance region. Further increasing in kr results in intensifying the

vertical temperature gradient in the partition (i.e., ∂θ
∂y

). A larger vertical temperature

gradient than the horizontal one leads to characterizing the partition by the vertical

temperature gradient. Increasing kr causes the partition to become vertically isothermal

and eventually decreasesNuAve. This region is called the thermal transient region. Finally

after the thermal transient region, by further increasing kr, the vertical and horizontal

temperature gradients in the partition become negligible (i.e., ∂θ
∂x
≈ 0 and ∂θ

∂y
≈ 0). It is

obvious that in this situation the partition becomes isothermal. By reaching this point,

it can be appropriate to consider each half-cavity as a separate cavity with constant

temperature on the sidewalls. This region is named the isothermal region.

• The effect of TP on NuAve is trivial for lower Ra values than higher Ra value cases. TP and

kr have opposite effects on the thermal resistance parameter of the partition. Therefore,

there is a point where kr nullifies the effect of TP and the increased thermal conduc-
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tivity of the partition overcomes the thermal damping effect of the partition thickness.

This situation happens around kr = 100 for both the centrally-positioned and off-centre

partitioned cavities.

• The vertical thermal behavior of the partition was investigated by defining the θD,y pa-

rameter and is categorized into two types. Type one is the lines with an increase and

decrease trend and a subsequent peak point (kr ≤ 1) and type two includes the lines with

just increasing trend (100 ≤ kr ≤ 1000).

• The transient NuAve at the hot wall of a centrally-partitioned cavity is characterized by

four regimes. At the conduction regime, the fluid is isothermal and motionless as the

cavity undergoes the increasing temperature step and the heat transfer mode is pure

conduction. NuAve reaches a local minimum value and then begins to increase before

reaching a value that is almost maintained during a quasi-steady period. As expected,

at the conduction regime, NuAve at the partition is zero and convective heat transfer has

not started to thermally active the partition and its temperature is still at the initial

condition (i.e., θ = 0.5). By developing fluid motion, NuAve increases to its quasi-steady

value and thermal and viscous boundary layers are fully developed. The increasing bulk

temperature causes a reduction in the temperature difference and the driving force for

heat transfer which result in decaying NuAve. While the overall temperature difference of

fluid occupied area decreases, due to the presence of pure conduction in the partition, the

process of forming temperature gradient continues and penetrates more in the partition.

The final regime is the steady state. Therefore, the four distinct regimes of NuAve at the

hot wall are conduction, quasi-steady, decaying and steady-state. For cavities with the

off-centre partitions (in this study partition is close to the hot sidewall) this classification

is different. The cold sidewall is characterized by the same four regimes presented for

a centrally-partitioned cavity. For the hot sidewall, an extra regime, called the filling

regime, is identified after the decaying region. Consequently, the five distinct regimes of

NuAve at the hot wall of an off-centre partitioned cavity are conduction, quasi-steady,

decaying, filling and steady state.
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7.2 Future Work

Important areas for further work are suggested by the results of this thesis:

• Implementing the Multigrid (MG) method in the numerical analysis and the program to

decrease the computing time.

• Implementing the adaptive mesh refinement, or AMR, a method to obtain an accurate

solution within certain sensitive regions.

• Investigation of turbulent flow in a partitioned cavity which should include Ra values

beyond 109.

• Investigation of fluid properties (i.e., Pr) in the whole partitioned cavity or inside each

half-cavity. This variation of Pr can increase the range of industrial application of this

study.

• Considering the effect of multi-layer partitions in a cavity. The thickness of partition,

number of partitions, position of partition and fluid trapped inside partition layers are

the parameters to study.

• Investigation of the cavity aspect ratio will be very useful. Adding this parameter will

increase the range of application for this study.

• As one of the main applications of this study is electronic devices, it is suggested to add

the effect of radiation heat transfer mode to increase the accuracy.

• This study can be very useful for pollution or sediment investigations by adding particle

motion equations in the partitioned cavity.

• Due to the lack of experimental data, the experimental studying of flow and thermal

characteristics of a partitioned cavity is essential.
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[1] Ó. Andrjesdóttir. Experimental characterization and optimization of a compact ther-

mosyphon with enhanced boiling surface for power electronics cooling. PhD thesis, De-

partment of Mechanical and Process Engineering, 2012.

[2] Y. J. Choi. A numerical study on a lumped-parameter model and a CFD code coupling for

the analysis of the loss of coolant accident in a reactor containment. PhD thesis, Thermal

and Energy Systems, 2005.

[3] J. M. F. Oro, C. S. Morros, K. M. A. Dı́az, and P. L. G. Ybarra. Numerical simulation

of the fuel oil cooling process in a wrecked ship. Journal of Fluids Engineering, 128:

1390–1393, 2006.

[4] S. F. Corzo, S. Márquez Damián, D. Ramajo, and N. M. Nigro. Numerical simulation of

natural convection phenomena. Mecánica Computacional, 30: 277–96, 2011.

[5] K. Kahveci. Numerical simulation of natural convection in a partitioned enclosure using

pdq method. International Journal of Numerical Methods for Heat & Fluid Flow, 17:

439–456, 2007.

[6] S. K. Patra. CFD analysis of electronics chip cooling. PhD thesis, National Institute of

Technology Rourkela, 2007.

[7] A. C. Yunus. Heat transfer: a practical approach. MacGraw Hill, New York, 2003.

209



210 BIBLIOGRAPHY

[8] J. W. Park, J. H. Bae, and H. J. Song. Conjugate heat transfer analysis for in-vessel

retention with external reactor vessel cooling. Annals of Nuclear Energy, 88: 57–67,

2016.

[9] A. K. Sharma, K. Velusamy, and C. Balaji. Conjugate transient natural convection in a

cylindrical enclosure with internal volumetric heat generation. Annals of Nuclear Energy,

35: 1502–1514, 2008.

[10] A. Liaqat and A. C. Baytas. Numerical comparison of conjugate and non-conjugate

natural convection for internally heated semi-circular pools. International Journal of

Heat and Fluid Flow, 22: 650–656, 2001.

[11] A. Bentaib, N. Meynet, and A. Bleyer. Overview on hydrogen risk research and develop-

ment activities: Methodology and open issues. Nuclear Engineering and Technology, 47:

26–32, 2015.

[12] J. Xiong, Y. Yang, and X. Cheng. CFD application to hydrogen risk analysis and par

qualification. Science and Technology of Nuclear Installations, 2009, 2009.

[13] B. R. Sehgal. Nuclear Safety in Light Water Reactors: Severe Accident Phenomenology.

Elsevier Science, 2011.

[14] M. A. Antar and H. Baig. Conjugate conduction-natural convection heat transfer in a

hollow building block. Applied Thermal Engineering, 29: 3716–3720, 2009.

[15] A. Missoum, M. Elmir, A. Belkacem, M. Nabou, and B. Draoui. Numerical simulation of

heat transfer through a double-walled facade building in arid zone. Energy Procedia, 36:

834–843, 2013.

[16] M. Gijón-Rivera, J. Serrano-Arellano, J. Xamán, and G. Álvarez. Effect of different
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Appendix A

Variables in the code

Table A.1: Global variables in the code with their description.

Variable name Variable type Description

GREAT/ SMALL double a large number/ a small number (preventing di-

vision by zero)

INCALU, INCALV, IN-

CALP, INCALT, IN-

CALB

bool activate the corresponding method which are

horizontal velocity, vertical velocity, pressure,

temperature and buoyancy term methods, re-

spectively.

NI, NJ, NIM1, NJM1 int total number of grids and total number of grids

minus one in the x and y direction.

INPART bool activate partition in the cavity

IT,JT int the maximum values of NI and NJ

SPa, EPa int the cell number of left and right side of a vertical

partition, respectively.
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Variable name Variable type Description

AN, ANN, AS, ASS,

AE, AEE, AW, AWW

double the main coefficients of descretized formula at

north, far north, south, far south, east, far east,

west and far west, respectively.

SP, SU double coefficients of linearized source term.

APO, AP double Coefficient for old time step, summation of the

main coefficients and APO and SP.

U, UO, UOO, V, VO,

VOO, T, TO, TOO

double horizontal velocity, vertical velocity and tem-

perature values at current, previous and two

time steps ago.

X, XU, Y, YV double x coordinate of main grid, x coordinate at stor-

age location of u, y coordinate of main grid, y

coordinate at storage location of v, respectively.

P, PP, PO double pressure, pressure correction and pressure value

at previous time step.

DU, DV double coefficients of velocity correction term for u and

v.

DEN, DENO, VIS double density of fluid at current and previous time

step and viscosity of fluid.

INHY, INCEN, INQUK bool activate the hybrid, central and QUICK

schemes respectively.

INDPRI int output frequency

TSTEP double time step

SF double stream function

STEADY bool activate steady or unsteady solution.
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Variable name Variable type Description

DXEP, DXPW double consecutive main grid distances in x direction

from X(1) to X(NIM1) and from X(2) to

X(NI)

DYNP, DYPS double consecutive main grid distances in y direction

from Y (1) to Y (NJM1) and from Y (2) to

Y (NJ)

DXEPU, DXPWU double consecutive staggered grid distances in x di-

rection from XU(2) to XU(NIM1) and from

XU(3) to XU(NI)

DYNPV, DYPSV double consecutive staggered grid distances in y di-

rection from Y V (2) to Y V (NJM1) and from

Y V (3) to Y V (NJ)

SEW, SNS double area of main grid control volume in x and y

direction respectively.

SEWU, SNSV double area of staggered grid control volume in x and

y direction respectively.

URFU, URFV, URFT,

URFP;

double under-relaxation factor for u, v, θ and p.

Kr double thermal conductivity ratio of partition to fluid

Table A.2: Main local variables in the code with their description.

Variable name Variable type Description

NFTSTP, NLTSTP int the first and last iteration step

ELBYH double aspect ratio of the cavity
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Variable name Variable type Description

NIM2, NJM2 int the total number of grids minus two in the x

and y direction.

MeshParCoef1 int grid stretching frequency for sin function map-

ping

MeshParCoef2 double controlling the grid stretching value for sin func-

tion mapping

MESH TYPE1 int grid mapping method selection. 1: sin function

mapping, 2: linear function mapping 3: uniform

grid and 4: manually defined mapping

IXC, JXC int location of sign changing at the linear function

grid mapping in the x and y direction.

ISTRENGTH,

JSTRENGTH

double grid strength for linear function grid mapping

XP, TP double partition distance from left and partition thick-

ness

RALI, PRANDL double Rayleigh and Prandtl number respectively.

IPREF, JPREF int grid number where pressure is fixed in x and y

directions respectively.

SORMAX double the convergence criterion

VALUE int 0: activate pause ability, 1: inactivate pause

ability

K fluid, K solid double thermal conductivity of fluid and solid
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Code

B.1 Horizontal velocity method (u)

� �
1 // CALCULATE U

2 static void CALCU(double[] R1, double NSWPU, int ITSTEP)

3 {

4 int NIM1, NJM1;

5 double AREANS, AREAEW, VOL;

6 double GN, GNW, GS, GSW, GE, GP, GW;

7 double CN, CS, CE, CW;

8 double DN, DS, DE, DW;

9 double VISN, VISS;

10 double SMP, CP, CPO;

11 double GAMP, GAMM, RESOR, SORVOL;

12 double DUDXP, DUDXM, DVDXM, DVDXP;

13 NIM1 = G.NI - 1;

14 NJM1 = G.NJ - 1;

15 for (int I = 3; I <= NIM1; I++)

16 {

17 for (int J = 2; J <= NJM1; J++)
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18 {

19 //COMPUTE AREAS AND VOLUME

20 AREANS = G.SEWU[I];

21 AREAEW = G.SNS[J];

22 VOL = G.SEWU[I] * G.SNS[J];

23 // CONVECTION COEFFICIENT

24 GN = 0.5 * (G.DEN[I, J + 1] + G.DEN[I, J]) * G.V[I, J + 1];

25 GNW = 0.5 * (G.DEN[I - 1, J] + G.DEN[I - 1, J + 1]) * G.V[I

- 1, J + 1];

26 GS = 0.5 * (G.DEN[I, J - 1] + G.DEN[I, J]) * G.V[I, J];

27 GSW = 0.5 * (G.DEN[I - 1, J] + G.DEN[I - 1, J - 1]) * G.V[I

- 1, J];

28 GE = 0.5 * (G.DEN[I + 1, J] + G.DEN[I, J]) * G.U[I + 1, J];

29 GP = 0.5 * (G.DEN[I, J] + G.DEN[I - 1, J]) * G.U[I, J];

30 GW = 0.5 * (G.DEN[I - 1, J] + G.DEN[I - 2, J]) * G.U[I - 1,

J];

31 CN = (0.5 * (GN + GNW) * AREANS) ;

32 CS = (0.5 * (GS + GSW) * AREANS) ;

33 CE = (0.5 * (GE + GP) * AREAEW) ;

34 CW = (0.5 * (GP + GW) * AREAEW) ;

35 // DIFFUSION COEFFICIENT

36 VISN = 0.25 * (G.VIS[I, J] + G.VIS[I, J + 1] + G.VIS[I - 1,

J] + G.VIS[I - 1, J + 1]);

37 VISS = 0.25 * (G.VIS[I, J] + G.VIS[I, J - 1] + G.VIS[I - 1,

J] + G.VIS[I - 1, J - 1]);

38 DN = R1[I] * VISN * AREANS / G.DYNP[J];

39 DS = R1[I] * VISS * AREANS / G.DYPS[J];

40 DE = R1[I] * G.VIS[I, J] * AREAEW / G.DXEPU[I];

41 DW = R1[I] * G.VIS[I - 1, J] * AREAEW / G.DXPWU[I];

42 // SOURCE TERMS

43 SMP = CN - CS + CE - CW;
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44 // BLOCKED-OFF REGION (partition)

45 if (G.INPART)

46 {

47 if (I >= G.SPa && I <= G.EPa)

48 {

49 SMP = G.GREAT;

50 }

51

52 }

53 CP = Math.Max(0.0, SMP);

54 CPO = CP;

55 // ASSEMBLE

56 // HYBRID

57 if (G.INHY)

58 {

59 G.AN[I, J] = DN * Math.Max(0.0, 1 - 0.5 * Math.Abs(CN /

DN)) + Math.Max(-CN, 0.0);

60 G.AS[I, J] = DS * Math.Max(0.0, 1 - 0.5 * Math.Abs(CS /

DS)) + Math.Max(CS, 0.0);

61 G.AE[I, J] = DE * Math.Max(0.0, 1 - 0.5 * Math.Abs(CE /

DE)) + Math.Max(-CE, 0.0);

62 G.AW[I, J] = DW * Math.Max(0.0, 1 - 0.5 * Math.Abs(CW /

DW)) + Math.Max(CW, 0.0);

63 G.AWW[I, J] = G.AEE[I, J] = G.ASS[I, J] = G.ANN[I, J] =

0.0;

64 }

65 // CENTRAL

66 if (G.INCEN)

67 {

68 G.AN[I, J] = Math.Max(-CN, 0.0) + DN - 0.5 *

Math.Abs(CN);
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69 G.AS[I, J] = Math.Max(CS, 0.0) + DS - 0.5 *

Math.Abs(CS);

70 G.AE[I, J] = Math.Max(-CE, 0.0) + DE - 0.5 *

Math.Abs(CE);

71 G.AW[I, J] = Math.Max(CW, 0.0) + DW - 0.5 *

Math.Abs(CW);

72 G.AWW[I, J] = G.AEE[I, J] = G.ASS[I, J] = G.ANN[I, J] =

0.0;

73 }

74 // QUICK

75 if (G.INQUK)

76 {

77 // FOR BOUNDARYS HYBRID SCHEME AND FOR THE REST OF

DOMAIN QUICK SCHEME

78 if (I <= 5 || J <= 4 || I <= NIM1 - 2 || J <= NIM1 - 2)

79 {

80 G.AN[I, J] = Math.Max(-CN, 0.0) + DN - 0.5 *

Math.Abs(CN);

81 G.AS[I, J] = Math.Max(CS, 0.0) + DS - 0.5 *

Math.Abs(CS);

82 G.AE[I, J] = Math.Max(-CE, 0.0) + DE - 0.5 *

Math.Abs(CE);

83 G.AW[I, J] = Math.Max(CW, 0.0) + DW - 0.5 *

Math.Abs(CW);

84 G.AWW[I, J] = G.AEE[I, J] = G.ASS[I, J] = G.ANN[I,

J] = 0.0;

85 }

86 else

87 {

88 if (CE > 0 && CW > 0)

89 {
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90 G.AE[I, J] = DE - CE * (0.5 - (G.DXPWU[I] / (8 *

G.DXPW[I])));

91 G.AW[I, J] = DW + CW * (0.5 + (G.DXPWU[I - 1] /

(8 * G.DXPW[I - 1])) + (G.DXPWU[I - 1] *

G.DXPWU[I - 1] / (8 * G.DXPW[I - 1] *

G.DXPWU[I - 2]))) + CE * ((G.DXPWU[I] *

G.DXPWU[I] / (8 * G.DXPW[I] * G.DXPWU[I -

1])));

92 G.AWW[I, J] = -CW * (G.DXPWU[I - 1] * G.DXPWU[I

- 1] / (8 * G.DXPW[I - 1] * G.DXPWU[I - 2]));

93 }

94 else

95 {

96 G.AE[I, J] = DE - CE * (0.5 + (G.DXPWU[I] / (8 *

G.DXPW[I + 1])) + (G.DXPWU[I] * G.DXPWU[I] /

(8 * G.DXPW[I + 1]) * G.DXPWU[I + 1]));

97 G.AW[I, J] = DW + CW * (0.5 - (G.DXPWU[I - 1] /

(8 * G.DXPW[I])));

98 G.AEE[I, J] = (G.DXPWU[I] * G.DXPWU[I] / (8 *

G.DXPW[I + 1]) * G.DXPWU[I + 1]);

99 }

100 if (CN > 0 && CS > 0)

101 {

102 G.AN[I, J] = DN - CN * (0.5 - (G.DYPSV[J] / (8 *

G.DYPS[J])));

103 G.AS[I, J] = DS + CS * (0.5 + (G.DYPSV[J - 1] /

(8 * G.DYPS[J - 1])) + (G.DYPSV[J - 1] *

G.DYPSV[J - 1] / (8 * G.DYPS[I - 1] *

G.DYPSV[J - 2]))) + CN * ((G.DYPSV[J] *

G.DYPSV[J] / (8 * G.DYPS[J] * G.DYPSV[J -

1])));
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104 G.ASS[I, J] = -CS * (G.DYPSV[J - 1] * G.DYPSV[J

- 1] / (8 * G.DYPS[J - 1] * G.DYPSV[J - 2]));

105 }

106 else

107 {

108 G.AN[I, J] = DN - CN * (0.5 + (G.DYPSV[J] / (8 *

G.DYPS[J + 1])) + (G.DYPSV[J] * G.DYPSV[J] /

(8 * G.DYPS[J + 1]) * G.DYPSV[J + 1]));

109 G.AS[I, J] = DS + CS * (0.5 - (G.DYPSV[J - 1] /

(8 * G.DYPS[J])));

110 G.ANN[I, J] = (G.DYPSV[I] * G.DYPSV[J] / (8 *

G.DYPS[J + 1]) * G.DYPSV[J + 1]);

111 }

112 }

113 }

114 if (G.STEADY)

115 {

116 G.APO[I, J] = 0.0;

117 }

118 else

119 {

120 G.APO[I, J] = G.DEN[I, J] * VOL / G.DT[ITSTEP];

121 }

122 G.DU[I, J] = AREAEW;

123

124 G.SU[I, J] = CPO * G.U[I, J] + G.DU[I, J] * (G.P[I - 1, J]

- G.P[I, J]) + 1.5 * (G.APO[I, J] * G.UO[I, J]) - 0.5 *

(G.APO[I, J] * G.UOO[I, J]) + G.ANN[I, J] * G.U[I, J +

2] + G.ASS[I, J] * G.U[I, J - 2] + G.AWW[I, J] * G.U[I

- 2, J] + G.AEE[I, J] * G.U[I + 2, J];

125 G.SP[I, J] = -CP;
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126 DUDXP = (G.U[I + 1, J] - G.U[I, J]) / G.DXEPU[I];

127 DUDXM = (G.U[I, J] - G.U[I - 1, J]) / G.DXPWU[I];

128 DVDXP = (G.V[I, J + 1] - G.V[I - 1, J + 1]) / G.DXPW[I];

129 DVDXM = (G.V[I, J] - G.V[I - 1, J]) / G.DXPW[I];

130 G.SU[I, J] = R1[I] * (G.VIS[I, J] * DUDXP - G.VIS[I - 1, J]

* DUDXM) / G.SEWU[I] * VOL + G.SU[I, J];

131 GAMP = 0.25 * (G.VIS[I, J] + G.VIS[I - 1, J] + G.VIS[I, J +

1] + G.VIS[I - 1, J + 1]);

132 GAMM = 0.25 * (G.VIS[I, J] + G.VIS[I - 1, J] + G.VIS[I, J -

1] + G.VIS[I - 1, J - 1]);

133 G.SU[I, J] = R1[I] * (GAMP * DVDXP - GAMM * DVDXM) /

G.SNS[J] * VOL + G.SU[I, J];

134 }

135

136 }

137 // MODIFICATION U

138 // TOP WALL

139 for (int I = 3; I <= NIM1; I++)

140 {

141 G.U[I, G.NJ] = 0.0;

142 }

143 // WEST WALL

144 for (int J = 2; J <= NJM1; J++)

145 {

146 G.U[2, J] = 0.0;

147 }

148 //BOTTOM WALL

149 for (int I = 3; I <= NIM1; I++)

150 {

151 G.U[I, 1] = 0.0;

152 }



252 Appendix B. Code

153 //EAST WALL

154 for (int J = 2; J <= NJM1; J++)

155 {

156 G.U[G.NI, J] = 0.0;

157 }

158 // RESIDUAL

159 G.RESORU = 0.0;

160 for (int I = 3; I <= NIM1; I++)

161 {

162 for (int J = 2; J <= NJM1; J++)

163 {

164 G.AP[I, J] = G.AN[I, J] + G.AS[I, J] + G.AE[I, J] + G.AW[I,

J] + G.APO[I, J] + G.ANN[I, J] + G.ASS[I, J] + G.AEE[I,

J] + G.AWW[I, J] - G.SP[I, J];

165 G.DU[I, J] = G.DU[I, J] / G.AP[I, J];

166 RESOR = G.AN[I, J] * G.U[I, J + 1] + G.AS[I, J] * G.U[I, J

- 1] + G.AE[I, J] * G.U[I + 1, J] + G.AW[I, J] * G.U[I

- 1, J] - G.AP[I, J] * G.U[I, J] + G.SU[I, J];

167 VOL = G.SEW[I] * G.SNS[J];

168 SORVOL = G.GREAT * VOL;

169 if (Math.Abs(G.SP[I, J]) > 0.5 * SORVOL)

170 {

171 RESOR = RESOR / SORVOL;

172 }

173 G.RESORU = G.RESORU + Math.Abs(RESOR);

174

175 G.AP[I, J] = G.AP[I, J] / G.URFU;

176 G.SU[I, J] = G.SU[I, J] + (1.0 - G.URFU) * G.AP[I, J] *

G.U[I, J];

177 G.DU[I, J] = G.DU[I, J] * G.URFU;

178 }
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179 }

180 // USE THOMAS ALGORITHM FOR PRESSURE EQUATION

181 for (int N = 1; N <= NSWPU; N++)

182 {

183 LISOLV(3, 2, G.U);

184 }

185 }� �

B.2 Vertical velocity method (v)

� �
1 // CALCULATE V

2 static void CALCV(double[] R1, double NSWPV, double TREF, int ITSTEP)

3 {

4 int NIM1, NJM1;

5 double AREANS, AREAEW, VOL;

6 double GN, GS, GSW, GE, GP, GW, GSE;

7 double CN, CS, CE, CW;

8 double DN, DS, DE, DW;

9 double VISE, VISW;

10 double SMP, CP, CPO;

11 double RGAMP, RGAMM, GAMP, GAMM, RESOR, SORVOL;

12 double DUDYP, DUDYM, DVDYP, DVDYM;

13 double BUOYA;

14 NIM1 = G.NI - 1;

15 NJM1 = G.NJ - 1;

16 for (int I = 2; I <= NIM1; I++)

17 {

18 for (int J = 3; J <= NJM1; J++)

19 {

20 //COMPUTE AREAS AND VOLUME
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21 AREANS = G.SEW[I];

22 AREAEW = G.SNSV[J];

23 VOL = G.SEW[I] * G.SNSV[J];

24 // CONVECTION COEFFICIENT

25 GN = 0.5 * (G.DEN[I, J + 1] + G.DEN[I, J]) * G.V[I, J + 1];

26 GP = 0.5 * (G.DEN[I, J] + G.DEN[I, J - 1]) * G.V[I, J];

27 GS = 0.5 * (G.DEN[I, J - 1] + G.DEN[I, J - 2]) * G.V[I, J -

1];

28 GE = 0.5 * (G.DEN[I + 1, J] + G.DEN[I, J]) * G.U[I + 1, J];

29 GSE = 0.5 * (G.DEN[I, J - 1] + G.DEN[I + 1, J - 1]) * G.U[I

+ 1, J - 1];

30 GW = 0.5 * (G.DEN[I, J] + G.DEN[I - 1, J]) * G.U[I, J];

31 GSW = 0.5 * (G.DEN[I, J - 1] + G.DEN[I - 1, J - 1]) *

G.U[I, J - 1];

32 CN = (0.5 * (GN + GP) * AREANS) ;

33 CS = (0.5 * (GS + GP) * AREANS) ;

34 CE = (0.5 * (GE + GSE) * AREAEW) ;

35 CW = (0.5 * (GSW + GW) * AREAEW) ;

36 // DIFFUSION COEFFICIENT

37 VISE = 0.25 * (G.VIS[I, J] + G.VIS[I + 1, J] + G.VIS[I, J -

1] + G.VIS[I + 1, J - 1]);

38 VISW = 0.25 * (G.VIS[I, J] + G.VIS[I - 1, J] + G.VIS[I, J -

1] + G.VIS[I - 1, J - 1]);

39 DN = R1[I] * G.VIS[I, J] * AREANS / G.DYNPV[J];

40 DS = R1[I] * G.VIS[I, J - 1] * AREANS / G.DYPSV[J];

41 DE = R1[I] * VISE * AREAEW / G.DXEP[I];

42 DW = R1[I] * VISW * AREAEW / G.DXPW[I];

43 // SOURCE TERMS

44 SMP = CN - CS + CE - CW;

45 // BLOCKED-OFF REGION (PARTITION DIFINATION)

46 if (G.INPART)



B.2. Vertical velocity method (v) 255

47 {

48 if (I >= G.SPa && I <= G.EPa)

49 {

50 SMP = G.GREAT;

51 }

52

53 }

54 CP = Math.Max(0.0, SMP);

55 CPO = CP;

56 // ASSEMBLE

57 //HYBRID

58 if (G.INHY)

59 {

60 G.AN[I, J] = DN * Math.Max(0.0, 1 - 0.5 * Math.Abs(CN /

DN)) + Math.Max(-CN, 0.0);

61 G.AS[I, J] = DS * Math.Max(0.0, 1 - 0.5 * Math.Abs(CS /

DS)) + Math.Max(CS, 0.0);

62 G.AE[I, J] = DE * Math.Max(0.0, 1 - 0.5 * Math.Abs(CE /

DE)) + Math.Max(-CE, 0.0);

63 G.AW[I, J] = DW * Math.Max(0.0, 1 - 0.5 * Math.Abs(CW /

DW)) + Math.Max(CW, 0.0);

64 G.AWW[I, J] = G.AEE[I, J] = G.ASS[I, J] = G.ANN[I, J] =

0.0;

65

66 }

67 // CENTRAL

68 if (G.INCEN)

69 {

70 G.AN[I, J] = Math.Max(-CN, 0.0) + DN - 0.5 *

Math.Abs(CN);
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71 G.AS[I, J] = Math.Max(CS, 0.0) + DS - 0.5 *

Math.Abs(CS);

72 G.AE[I, J] = Math.Max(-CE, 0.0) + DE - 0.5 *

Math.Abs(CE);

73 G.AW[I, J] = Math.Max(CW, 0.0) + DW - 0.5 *

Math.Abs(CW);

74 G.AWW[I, J] = G.AEE[I, J] = G.ASS[I, J] = G.ANN[I, J] =

0.0;

75

76 }

77 // QUICK

78 if (G.INQUK)

79 {

80 // FOR BOUNDARYS HYBRID SCHEME AND FOR THE REST OF

DOMAIN QUICK SCHEME

81 if (I <= 5 || J <= 4 || I <= NIM1 - 2 || J <= NIM1 - 2)

82 {

83 G.AN[I, J] = Math.Max(-CN, 0.0) + DN - 0.5 *

Math.Abs(CN);

84 G.AS[I, J] = Math.Max(CS, 0.0) + DS - 0.5 *

Math.Abs(CS);

85 G.AE[I, J] = Math.Max(-CE, 0.0) + DE - 0.5 *

Math.Abs(CE);

86 G.AW[I, J] = Math.Max(CW, 0.0) + DW - 0.5 *

Math.Abs(CW);

87 G.AWW[I, J] = G.AEE[I, J] = G.ASS[I, J] = G.ANN[I,

J] = 0.0;

88 }

89 else

90 {

91 if (CE > 0 && CW > 0)
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92 {

93 G.AE[I, J] = DE - CE * (0.5 - (G.DXPWU[I] / (8 *

G.DXPW[I])));

94 G.AW[I, J] = DW + CW * (0.5 + (G.DXPWU[I - 1] /

(8 * G.DXPW[I - 1])) + (G.DXPWU[I - 1] *

G.DXPWU[I - 1] / (8 * G.DXPW[I - 1] *

G.DXPWU[I - 2]))) + CE * ((G.DXPWU[I] *

G.DXPWU[I] / (8 * G.DXPW[I] * G.DXPWU[I -

1])));

95 G.AWW[I, J] = -CW * (G.DXPWU[I - 1] * G.DXPWU[I

- 1] / (8 * G.DXPW[I - 1] * G.DXPWU[I - 2]));

96 }

97 else

98 {

99 G.AE[I, J] = DE - CE * (0.5 + (G.DXPWU[I] / (8 *

G.DXPW[I + 1])) + (G.DXPWU[I] * G.DXPWU[I] /

(8 * G.DXPW[I + 1]) * G.DXPWU[I + 1]));

100 G.AW[I, J] = DW + CW * (0.5 - (G.DXPWU[I - 1] /

(8 * G.DXPW[I])));

101 G.AEE[I, J] = (G.DXPWU[I] * G.DXPWU[I] / (8 *

G.DXPW[I + 1]) * G.DXPWU[I + 1]);

102 }

103 if (CN > 0 && CS > 0)

104 {

105 G.AN[I, J] = DN - CN * (0.5 - (G.DYPSV[J] / (8 *

G.DYPS[J])));

106 G.AS[I, J] = DS + CS * (0.5 + (G.DYPSV[J - 1] /

(8 * G.DYPS[J - 1])) + (G.DYPSV[J - 1] *

G.DYPSV[J - 1] / (8 * G.DYPS[I - 1] *

G.DYPSV[J - 2]))) + CN * ((G.DYPSV[J] *

G.DYPSV[J] / (8 * G.DYPS[J] * G.DYPSV[J -
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1])));

107 G.ASS[I, J] = -CS * (G.DYPSV[J - 1] * G.DYPSV[J

- 1] / (8 * G.DYPS[J - 1] * G.DYPSV[J - 2]));

108 }

109 else

110 {

111 G.AN[I, J] = DN - CN * (0.5 + (G.DYPSV[J] / (8 *

G.DYPS[J + 1])) + (G.DYPSV[J] * G.DYPSV[J] /

(8 * G.DYPS[J + 1]) * G.DYPSV[J + 1]));

112 G.AS[I, J] = DS + CS * (0.5 - (G.DYPSV[J - 1] /

(8 * G.DYPS[J])));

113 G.ANN[I, J] = (G.DYPSV[I] * G.DYPSV[J] / (8 *

G.DYPS[J + 1]) * G.DYPSV[J + 1]);

114 }

115 }

116 }

117 if (G.STEADY)

118 {

119 G.APO[I, J] = 0.0;

120 }

121 else

122 {

123 G.APO[I, J] = G.DEN[I, J] * VOL / G.DT[ITSTEP];

124 }

125 G.DV[I, J] = AREANS;

126 G.SU[I, J] = CPO * G.V[I, J] + G.DV[I, J] * (G.P[I, J - 1]

- G.P[I, J]) + 1.5 * (G.APO[I, J] * G.VO[I, J]) - 0.5 *

(G.APO[I, J] * G.VOO[I, J]) + G.ANN[I, J] * G.V[I, J +

2] + G.ASS[I, J] * G.V[I, J - 2] + G.AWW[I, J] * G.V[I

- 2, J] + G.AEE[I, J] * G.V[I + 2, J];

127 // BUOYANCY TERM
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128 TREF = 0.0;

129 if (G.INCALB)

130 {

131 BUOYA = (0.5 * (G.T[I, J] + G.T[I, J - 1]) - TREF);

132 G.SU[I, J] = G.SU[I, J] + BUOYA * VOL;

133 }

134 G.SP[I, J] = -CP;

135 DUDYP = (G.U[I + 1, J] - G.U[I + 1, J - 1]) / G.DYPS[J];

136 GAMP = 0.25 * (G.VIS[I, J] + G.VIS[I + 1, J] + G.VIS[I, J -

1] + G.VIS[I + 1, J - 1]);

137 GAMM = 0.25 * (G.VIS[I, J] + G.VIS[I - 1, J] + G.VIS[I, J -

1] + G.VIS[I - 1, J - 1]);

138 DUDYM = (G.U[I, J] - G.U[I, J - 1]) / G.DYPS[J];

139 DVDYP = (G.V[I, J + 1] - G.V[I, J]) / G.DYNPV[J];

140 DVDYM = (G.V[I, J] - G.V[I, J - 1]) / G.DYPSV[J];

141 G.SU[I, J] = R1[I] * (GAMP * DUDYP - GAMM * DUDYM) /

G.SEW[I] * VOL + G.SU[I, J];

142 RGAMP = G.VIS[I, J]; RGAMM = G.VIS[I, J - 1];

143 G.SU[I, J] = R1[I] * (RGAMP * DVDYP - RGAMM * DVDYM) /

G.SNSV[J] * VOL + G.SU[I, J];

144 }

145

146 }

147 // MODIFICATION V

148 // WEST WALL

149 for (int J = 3; J <= NJM1; J++)

150 {

151 G.V[1, J] = 0.0;

152 }

153 // TOP WALL

154 for (int I = 2; I <= NIM1; I++)
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155 {

156 G.V[I, G.NJ] = 0.0;

157 }

158 //EAST WALL

159 for (int J = 3; J <= NJM1; J++)

160 {

161 G.V[G.NI, J] = 0.0;

162 }

163 //BOTTOM WALL

164 for (int I = 2; I <= NIM1; I++)

165 {

166 G.V[I, 2] = 0.0;

167 }

168 // RESIDUAL

169 G.RESORV = 0.0;

170 for (int I = 2; I <= NIM1; I++)

171 {

172 for (int J = 3; J <= NJM1; J++)

173 {

174 G.AP[I, J] = G.AN[I, J] + G.AS[I, J] + G.AE[I, J] + G.AW[I,

J] + G.APO[I, J] + G.ANN[I, J] + G.ASS[I, J] + G.AEE[I,

J] + G.AWW[I, J] - G.SP[I, J];

175 G.DV[I, J] = G.DV[I, J] / G.AP[I, J];

176 RESOR = G.AN[I, J] * G.V[I, J + 1] + G.AS[I, J] * G.V[I, J

- 1] + G.AE[I, J] * G.V[I + 1, J] + G.AW[I, J] * G.V[I

- 1, J] - G.AP[I, J] * G.V[I, J] + G.SU[I, J];

177 VOL = G.SEW[I] * G.SNS[J];

178 SORVOL = G.GREAT * VOL;

179 if (Math.Abs(G.SP[I, J]) > 0.5 * SORVOL)

180 {

181 RESOR = RESOR / SORVOL;
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182 }

183 G.RESORV = G.RESORV + Math.Abs(RESOR);

184

185 G.AP[I, J] = G.AP[I, J] / G.URFV;

186 G.SU[I, J] = G.SU[I, J] + (1.0 - G.URFV) * G.AP[I, J] *

G.V[I, J];

187 G.DV[I, J] = G.DV[I, J] * G.URFV;

188 }

189 }

190 // USE THOMAS ALGORITHM FOR PRESSURE EQUATION

191 for (int N = 1; N <= NSWPV; N++)

192 {

193 LISOLV(2, 3, G.V);

194 }

195 }� �

B.3 Pressure method (p)

� �
1 // CALCULATE P

2 static void CALCP(int IPREF, int JPREF, int NSWPP, int ITSTEP)

3 {

4 int NIM1, NJM1;

5 double AREANS, AREAEW, VOL;

6 double CN, CS, CE, CW;

7 double DENN, DENS, DENE, DENW;

8 double SMP;

9 double PPREF;

10 NIM1 = G.NI - 1;

11 NJM1 = G.NJ - 1;

12 G.RESORM = 0.0;
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13 for (int I = 2; I <= NIM1; I++)

14 {

15 for (int J = 2; J <= NJM1; J++)

16 {

17 //COMPUTE AREAS AND VOLUME

18 AREANS = G.SEW[I];

19 AREAEW = G.SNS[J];

20 VOL = G.SEW[I] * G.SNS[J];

21 // CONVECTION COEFFICIENT

22 DENN = 0.5 * (G.DEN[I, J + 1] + G.DEN[I, J]);

23 DENS = 0.5 * (G.DEN[I - 1, J] + G.DEN[I, J]);

24 DENE = 0.5 * (G.DEN[I, J] + G.DEN[I + 1, J]);

25 DENW = 0.5 * (G.DEN[I, J] + G.DEN[I - 1, J]);

26 G.AN[I, J] = DENN * AREANS * G.DV[I, J + 1];

27 G.AS[I, J] = DENS * AREANS * G.DV[I, J];

28 G.AE[I, J] = DENE * AREAEW * G.DU[I + 1, J];

29 G.AW[I, J] = DENW * AREAEW * G.DU[I, J];

30 CN = DENN * G.V[I, J + 1] * AREANS;

31 CS = DENS * G.V[I, J] * AREANS;

32 CE = DENE * G.U[I + 1, J] * AREAEW;

33 CW = DENW * G.U[I, J] * AREAEW;

34

35 SMP = CN - CS + CE - CW;

36 G.SP[I, J] = 0.0;

37 if (G.STEADY)

38 {

39 G.SU[I, J] = -SMP;

40 }

41 else

42 {
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43 G.SU[I, J] = -SMP + (G.DENO[I, J] - G.DEN[I, J]) * VOL

/ G.DT[ITSTEP];

44 }

45 }

46 }

47 for (int I = 2; I <= NIM1; I++)

48 {

49 for (int J = 2; J <= NJM1; J++)

50 {

51 G.AP[I, J] = G.AN[I, J] + G.AS[I, J] + G.AE[I, J] + G.AW[I,

J] - G.SP[I, J];

52 G.RESORM = G.RESORM + Math.Abs(G.SU[I, J]); // campute sum

of absolute mass sources

53

54 }

55 }

56 // USE THOMAS ALGORITHM FOR PRESSURE EQUATION

57 for (int N = 1; N <= NSWPP; N++)

58 {

59 LISOLV(2, 2, G.PP);

60

61 }

62 for (int I = 2; I <= NIM1; I++)

63 {

64 for (int J = 2; J <= NJM1; J++)

65 {

66 if (I != 2)

67 {

68 G.DU[I, J] = G.DU[I, J] * (G.PP[I - 1, J] - G.PP[I, J]);

69 G.U[I, J] = G.U[I, J] + G.DU[I, J];

70 }
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71 if (J != 2)

72 {

73 G.DV[I, J] = G.DV[I, J] * (G.PP[I, J - 1] - G.PP[I, J]);

74 G.V[I, J] = G.V[I, J] + G.DV[I, J];

75 }

76 }

77 }

78 if (IPREF > 0.0 && JPREF > 0.0)

79 {

80 PPREF = G.PP[IPREF, JPREF];

81 for (int I = 2; I <= NIM1; I++)

82 {

83 for (int J = 2; J <= NJM1; J++)

84 {

85 G.P[I, J] = G.P[I, J] + G.URFP * (G.PP[I, J] - PPREF);

86 G.PP[I, J] = 0.0;

87 }

88 }

89 }

90 else

91 {

92 for (int I = 2; I <= NIM1; I++)

93 {

94 for (int J = 2; J <= NJM1; J++)

95 {

96 G.P[I, J] = G.P[I, J] + G.URFP * (G.PP[I, J]);

97 G.PP[I, J] = 0.0;

98 }

99 }

100 }

101 }� �
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B.4 Temperature method (θ)

� �
1 // CALCULATE T

2 static void CALCT(double R2, double NSWPT, int ITSTEP)

3 {

4 int NIM1, NJM1;

5 double AREANS, AREAEW, VOL;

6 double CN, CS, CE, CW;

7 double GN, GS, GE, GW;

8 double DN, DS, DE, DW;

9 double SMP, CP, CPO;

10 double GAMN, GAMS, GAME, GAMW;

11 double RESOR, SORVOL;

12 NIM1 = G.NI - 1;

13 NJM1 = G.NJ - 1;

14 for (int I = 2; I <= NIM1; I++)

15 {

16 for (int J = 2; J <= NJM1; J++)

17 {

18 //COMPUTE AREAS AND VOLUME

19 AREANS = G.SEW[I];

20 AREAEW = G.SNS[J];

21 VOL = G.SEW[I] * G.SNS[J];

22 // CONVECTION COEFFICIENT

23 GN = 0.5 * (G.DEN[I, J + 1] + G.DEN[I, J]) * G.V[I, J + 1];

24 GS = 0.5 * (G.DEN[I, J - 1] + G.DEN[I, J]) * G.V[I, J];

25 GE = 0.5 * (G.DEN[I + 1, J] + G.DEN[I, J]) * G.U[I + 1, J];

26 GW = 0.5 * (G.DEN[I - 1, J] + G.DEN[I, J]) * G.U[I, J];

27 CN = (GN * AREANS);

28 CS = (GS * AREANS);

29 CE = (GE * AREAEW);
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30 CW = (GW * AREAEW) ;

31 GAMN = 0.5 * (G.GAMH[I, J] + G.GAMH[I, J + 1]);

32 GAMS = 0.5 * (G.GAMH[I, J] + G.GAMH[I, J - 1]);

33 GAME = 0.5 * (G.GAMH[I, J] + G.GAMH[I + 1, J]);

34 GAMW = 0.5 * (G.GAMH[I, J] + G.GAMH[I - 1, J]);

35 DN = GAMN * AREANS / G.DYNP[J];

36 DS = GAMS * AREANS / G.DYPS[J];

37 DE = GAME * AREAEW / G.DXEP[I];

38 DW = GAMW * AREAEW / G.DXPW[I];

39 // SOURCE TERMS

40 SMP = CN - CS + CE - CW;

41 CP = Math.Max(0.0, SMP);

42 CPO = CP;

43 // ASSEMBLE

44 //HYBRID

45 if (G.INHY)

46 {

47 G.AN[I, J] = DN * Math.Max(0.0, 1 - 0.5 * Math.Abs(CN /

DN)) + Math.Max(-CN, 0.0);

48 G.AS[I, J] = DS * Math.Max(0.0, 1 - 0.5 * Math.Abs(CS /

DS)) + Math.Max(CS, 0.0);

49 G.AE[I, J] = DE * Math.Max(0.0, 1 - 0.5 * Math.Abs(CE /

DE)) + Math.Max(-CE, 0.0);

50 G.AW[I, J] = DW * Math.Max(0.0, 1 - 0.5 * Math.Abs(CW /

DW)) + Math.Max(CW, 0.0);

51 }

52 // CENTRAL

53 if (G.INCEN)

54 {

55 G.AN[I, J] = Math.Max(-CN, 0.0) + DN - 0.5 *

Math.Abs(CN);
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56 G.AS[I, J] = Math.Max(CS, 0.0) + DS - 0.5 *

Math.Abs(CS);

57 G.AE[I, J] = Math.Max(-CE, 0.0) + DE - 0.5 *

Math.Abs(CE);

58 G.AW[I, J] = Math.Max(CW, 0.0) + DW - 0.5 *

Math.Abs(CW);

59 }

60 // QUICK

61 if (G.INQUK)

62 {

63 // FOR BOUNDARYS HYBRID SCHEME AND FOR THE REST OF

DOMAIN QUICK SCHEME

64 if (I <= 5 || J <= 4 || I <= NIM1 - 2 || J <= NIM1 - 2)

65 {

66 G.AN[I, J] = Math.Max(-CN, 0.0) + DN - 0.5 *

Math.Abs(CN);

67 G.AS[I, J] = Math.Max(CS, 0.0) + DS - 0.5 *

Math.Abs(CS);

68 G.AE[I, J] = Math.Max(-CE, 0.0) + DE - 0.5 *

Math.Abs(CE);

69 G.AW[I, J] = Math.Max(CW, 0.0) + DW - 0.5 *

Math.Abs(CW);

70 G.AWW[I, J] = G.AEE[I, J] = G.ASS[I, J] = G.ANN[I,

J] = 0.0;

71 }

72 else

73 {

74 if (CE > 0 && CW > 0)

75 {

76 G.AE[I, J] = DE - CE * (0.5 - (G.DXPWU[I] / (8 *

G.DXPW[I])));
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77 G.AW[I, J] = DW + CW * (0.5 + (G.DXPWU[I - 1] /

(8 * G.DXPW[I - 1])) + (G.DXPWU[I - 1] *

G.DXPWU[I - 1] / (8 * G.DXPW[I - 1] *

G.DXPWU[I - 2]))) + CE * ((G.DXPWU[I] *

G.DXPWU[I] / (8 * G.DXPW[I] * G.DXPWU[I -

1])));

78 G.AWW[I, J] = -CW * (G.DXPWU[I - 1] * G.DXPWU[I

- 1] / (8 * G.DXPW[I - 1] * G.DXPWU[I - 2]));

79 }

80 else

81 {

82 G.AE[I, J] = DE - CE * (0.5 + (G.DXPWU[I] / (8 *

G.DXPW[I + 1])) + (G.DXPWU[I] * G.DXPWU[I] /

(8 * G.DXPW[I + 1]) * G.DXPWU[I + 1]));

83 G.AW[I, J] = DW + CW * (0.5 - (G.DXPWU[I - 1] /

(8 * G.DXPW[I])));

84 G.AEE[I, J] = (G.DXPWU[I] * G.DXPWU[I] / (8 *

G.DXPW[I + 1]) * G.DXPWU[I + 1]);

85 }

86 if (CN > 0 && CS > 0)

87 {

88 G.AN[I, J] = DN - CN * (0.5 - (G.DYPSV[J] / (8 *

G.DYPS[J])));

89 G.AS[I, J] = DS + CS * (0.5 + (G.DYPSV[J - 1] /

(8 * G.DYPS[J - 1])) + (G.DYPSV[J - 1] *

G.DYPSV[J - 1] / (8 * G.DYPS[I - 1] *

G.DYPSV[J - 2]))) + CN * ((G.DYPSV[J] *

G.DYPSV[J] / (8 * G.DYPS[J] * G.DYPSV[J -

1])));

90 G.ASS[I, J] = -CS * (G.DYPSV[J - 1] * G.DYPSV[J

- 1] / (8 * G.DYPS[J - 1] * G.DYPSV[J - 2]));
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91 }

92 else

93 {

94 G.AN[I, J] = DN - CN * (0.5 + (G.DYPSV[J] / (8 *

G.DYPS[J + 1])) + (G.DYPSV[J] * G.DYPSV[J] /

(8 * G.DYPS[J + 1]) * G.DYPSV[J + 1]));

95 G.AS[I, J] = DS + CS * (0.5 - (G.DYPSV[J - 1] /

(8 * G.DYPS[J])));

96 G.ANN[I, J] = (G.DYPSV[I] * G.DYPSV[J] / (8 *

G.DYPS[J + 1]) * G.DYPSV[J + 1]);

97 }

98 }

99 }

100 if (G.STEADY)

101 {

102 G.APO[I, J] = 0.0;

103 }

104 else

105 {

106 G.APO[I, J] = G.DEN[I, J] * VOL / G.DT[ITSTEP];

107 }

108 G.SU[I, J] = CPO * G.T[I, J] + 1.5 * (G.APO[I, J] * G.TO[I,

J]) - 0.5 * (G.APO[I, J] * G.TOO[I, J]) + G.ANN[I, J] *

G.T[I, J + 2] + G.ASS[I, J] * G.T[I, J - 2] + G.AWW[I,

J] * G.T[I - 2, J] + G.AEE[I, J] * G.T[I + 2, J];

109 G.SP[I, J] = -CP;

110 }

111 }

112 // MODIFICATION T

113 //TOP WALL

114 for (int I = 2; I <= NIM1; I++)
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115 {

116 G.T[I, G.NJ] = G.T[I, NJM1];

117 G.AN[I, NJM1] = 0.0;

118 }

119 // WEST WALL

120 for (int J = 2; J <= NJM1; J++)

121 {

122 G.T[1, J] = 1.0;

123 }

124 //BOTTOM WALL

125 for (int I = 2; I <= NIM1; I++)

126 {

127 G.T[I, 1] = G.T[I, 2];

128 G.AS[I, 2] = 0.0;

129 }

130 //EAST WALL

131 for (int J = 2; J <= NJM1; J++)

132 {

133 G.T[G.NI, J] = 0.0;

134 }

135 // RESIDUAL

136 G.RESORT = 0.0;

137 for (int I = 2; I <= NIM1; I++)

138 {

139 for (int J = 2; J <= NJM1; J++)

140 {

141 G.AP[I, J] = G.AN[I, J] + G.AS[I, J] + G.AE[I, J] + G.AW[I,

J] + G.APO[I, J] + G.ANN[I, J] + G.ASS[I, J] + G.AEE[I,

J] + G.AWW[I, J] - G.SP[I, J];

142 RESOR = G.AN[I, J] * G.T[I, J + 1] + G.AS[I, J] * G.T[I, J

- 1] + G.AE[I, J] * G.T[I + 1, J] + G.AW[I, J] * G.T[I
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- 1, J] - G.AP[I, J] * G.T[I, J] + G.SU[I, J];

143 VOL = G.SEW[I] * G.SNS[J];

144 SORVOL = G.GREAT * VOL;

145 if (Math.Abs(G.SP[I, J]) > 0.5 * SORVOL)

146 {

147 RESOR = RESOR / SORVOL;

148 }

149 G.RESORT = G.RESORT + Math.Abs(RESOR);

150 G.AP[I, J] = G.AP[I, J] / G.URFT;

151 G.SU[I, J] = G.SU[I, J] + (1.0 - G.URFT) * G.AP[I, J] *

G.T[I, J];

152 }

153 }

154 for (int N = 1; N <= NSWPT; N++)

155 {

156 LISOLV(2, 2, G.T);

157 }

158 }� �
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TDMA method

� �
1 static void LISOLV(int ISTART, int JSTART, double[,] PHI)

2 {

3 int NIM1, NJM1;

4 double[] A = new double[G.IT];

5 double[] B = new double[G.IT];

6 double[] C = new double[G.IT];

7 double[] D = new double[G.IT];

8 double TERM;

9 NIM1 = G.NI - 1;

10 NJM1 = G.NJ - 1;

11 int JSTM1 = JSTART - 1;

12 int ISTM1 = ISTART - 1;

13 A[JSTM1] = 0.0;

14 // W-E SWEEP

15 for (int I = ISTART; I <= NIM1; I++)

16 {

17 C[JSTM1] = PHI[I, JSTM1];

18 // S-N TRAVERSE

19 for (int J = JSTART; J <= NJM1; J++)

20 {

272
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21 A[J] = G.AN[I, J];

22 B[J] = G.AS[I, J];

23 C[J] = G.AE[I, J] * PHI[I + 1, J] + G.AW[I, J] * PHI[I - 1,

J] + G.SU[I, J];

24 D[J] = G.AP[I, J];

25 TERM = 1.0 / (D[J] - B[J] * A[J - 1]);

26 A[J] = A[J] * TERM;

27 C[J] = (C[J] + B[J] * C[J - 1]) * TERM;

28 }

29 // NEW PHI

30 for (int JJ = JSTART; JJ <= NJM1; JJ++)

31 {

32 int J = G.NJ + JSTM1 - JJ;

33 PHI[I, J] = A[J] * PHI[I, J + 1] + C[J];

34 }

35 }

36 A[ISTM1] = 0.0;

37 // S-N SWEEP

38 for (int J = JSTART; J <= NJM1; J++)

39 {

40 C[ISTM1] = PHI[ISTM1, J];

41 // W-E TRAVERSE

42 for (int I = ISTART; I <= NIM1; I++)

43 {

44 A[I] = G.AE[I, J];

45 B[I] = G.AW[I, J];

46 C[I] = G.AN[I, J] * PHI[I, J + 1] + G.AS[I, J] * PHI[I, J -

1] + G.SU[I, J];

47 D[I] = G.AP[I, J];

48 TERM = 1.0 / (D[I] - B[I] * A[I - 1]);

49 A[I] = A[I] * TERM;
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50 C[I] = (C[I] + B[I] * C[I - 1]) * TERM;

51 }

52 // NEW PHI

53 for (int II = ISTART; II <= NIM1; II++)

54 {

55 int I = G.NI + ISTM1 - II;

56 PHI[I, J] = A[I] * PHI[I + 1, J] + C[I];

57 }

58 }

59 }� �
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