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Introduction

Plant communities underpin many land management and 
policy decisions (Margules and Pressey 2000) and much sci-
entific research (De Cáceres et al. 2015). Maps showing the 
extent and distribution of plant communities across large ar-
eas of the landscape are a commonly associated management 
tool. They are used for exploration of spatial and temporal 
changes (Accad et al. 2017) and ecological patterns of spe-
cies distribution (Kent 2012, Clarke et al. 2014) and provide 
a predictive role in describing the distribution of plant com-
munities in inaccessible areas. Map development involves 
extrapolating from areas of a specific imagery pattern with 
known plant communities to areas of the same imagery pat-
tern and unknown communities (Franklin 2013). When map-

ping extensive landscapes, differences are distinguished by 
changes in the dominant species canopy cover, by vegetation 
structure and by geomorphological differences in the land-
scape (Küchler and Zonneveld 1988, Franklin 2013, Pedrotti 
2013).

The classification of plant communities is largely de-
pendent on purpose and scale (Gillison 2012).  For maps to 
be widely applicable the classification of plant communities 
needs to be commensurate with the scale of changes delin-
eated in the mapping. Plot-based inventories of species as-
semblages are often used as part of the mapping process to 
describe map units (i.e., plant communities), and may also 
be used to derive or test vegetation classifications applied 
through mapping. For a quantitative, plot-based, classifica-
tion using multivariate species data to be relevant to the map-
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ping process, it needs to incorporate the attributes used to dif-
ferentiate mapped changes. Across extensive landscapes this 
means changes in species canopy cover and vegetation height. 
These may be influenced by recurrent disturbance patterns, 
such as past land management practices. In savanna vegeta-
tion, fire history is particularly important as it can influence 
species assemblages and the structure of plant communities 
across the landscape (Miller and Murphy 2017). Therefore, 
communities need to be distinguished by species that respond 
to, and are indicative of, landscape scale changes rather than 
short-lived temporal dynamics or change driven by small 
scale phenomena such as micro-climatic differences.

Plot-based classifications using full species inventories 
will include non-dominant, occasional species in a dataset 
(here termed rare). However, the distribution of these rare 
species is difficult to predict for many possible reasons. For 
example, rarity may be because species are responding to 
localised variations in the environment below the scale of 
mapping (Kent 2012) or to past landscape disturbance history 
such as fire regimes. Species may also be rare in the dataset 
due to biases resulting from sampling designs (for example, 
seasonality). Thus, they contribute to ‘noise’ in the dataset 
from the view point of broad-scale vegetation classification, 
possibly masking the relationships of interest between veg-
etation samples at landscape levels (Kent 2012) and leading 
to plant communities defined at, and characterised by spe-
cies responding to habitat changes at, scales below that of 
the mapping. This compromises the application of both the 
map and the quantitative classification as ecologists lose 
confidence in both if the plant communities do not relate 
to plausible ecological interpretation at the mapping scale. 
Removing rare species that contribute to ‘noise’ in the dataset 
is often recommended and decisions on rarity are commonly 
based on frequency of occurrence (McCune and Grace 2002, 
Kent 2012). This, however, can be problematic in broad-scale 
mapping projects with vegetation plot locations chosen using 
a preferential sampling design. Such sampling designs are of-
ten used because plot locations may be constrained by factors 
such as accessibility and survey effort, resulting in map units, 
distinctive in terms of species and/or structure at the appro-
priate scale, being represented by single plots. As a result, 
species dominating communities represented by single plots 
may occur once or twice in the dataset, and, if rare species 
are chosen based on low frequency, these dominant species 
are removed. The consequence is losing essential information 
about plant communities in the mapping and risking misclas-
sification of their representative plots.  An alternative is to 
remove species with rarity measured as consistently low con-
tribution to cumulative abundance (Field et al. 1982, Grime 
1998, Mariotte 2014).

Mapped plant communities classified using both floristic 
and structural components have the broadest application in 
both research and planning (Küchler and Zonneveld 1988). 
Vegetation structure is a well-established feature for differ-
entiating vegetation at landscape scales and is represented 
both vertically by vegetation layers within a community and 
horizontally by change in vegetation formations across the 
landscape (Küchler and Zonneveld 1988). Height of vegeta-

tion layers is commonly used in classification schemes to rep-
resent this; for example, in Australia vegetation is classified 
using vegetation formations defined partly by layer height 
(ESCAVI 2003, Hnatiuk et al. 2009) whilst in other coun-
tries authors may weight species by transformations of layer 
height (Leathwick et al. 1988, Hall 1992).

In this study, we specifically investigate two questions: 
how does 1) removing rare species based on contribution to 
total foliage cover, and 2) weighting species cover by differ-
ent measures of vegetation layer height, influence the clas-
sification outcomes of plant communities in tropical savanna 
vegetation on Cape York Peninsula, Australia. We discuss 
the relevance of these findings to classifications identifying 
landscape-scale plant communities.

Methods

Study area

The Cape York Peninsula bioregion is a 120,000 km2 
area of the monsoon tropics of north-eastern Australia (Fig. 
1). Our study encompasses the savanna vegetation occurring 
on the landscapes of ranges, hills and lowlands formed from 
Mesozoic to Proterozoic igneous rocks – a geomorphological 
category recognised in the state-wide landscape classifica-

Figure 1. Study area location. Area of the landscapes on igneous 
rocks in Cape York Peninsula bioregion, north eastern Australia, 
with main towns and study plot locations. 
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tion scheme used in Queensland (Sattler and Williams 1999). 
These landscapes cover 5 500 km2 on the Peninsula occur-
ring from sea level to above 800 m with an annual average 
rainfall range of 1000 - 2000 mm. Eighty percent of rainfall 
occurs in the wet season between December and March (Horn 
1995). Temperature ranges from an average monthly minimum 
of 14ºC in winter (July) to an average monthly maximum of 
36ºC in summer (December) (http://www.bom.gov.au/climate/
averages/tables/ , accessed on 1st September 2016).

Data collation

We extracted vegetation plot data from the Queensland 
Government ‘CORVEG’ plot database. Data had been col-
lected as part of a comprehensive vegetation survey and map-
ping project (Neldner and Clarkson 1995) in accordance with 
the Queensland Herbarium methodology for vegetation sur-
vey (Neldner et al. 2017). This methodology requires a full 
floristic survey of a 500 m2 plot, shown to adequately capture 
plot species diversity (Neldner and Butler 2008), with per-
cent foliage cover of each species in each woody vegetation 
layer recorded along a 50 m transect using the line intercept 
method. The average height of each layer was also recorded. 
In woody plant dominated plots, we excluded the species re-
corded in the ground layer because our aim was to test and 
refine an intuitive classification developed through mapping 

which focused primarily on changes in vegetation structure 
and species changes in the canopy layer (Neldner and Howitt 
1991, Bedward et al. 1992). In plots dominated by ground 
layer species, the average percent foliage cover for each spe-
cies was calculated from 1 m2 quadrats placed at 10 m in-
tervals along the 50 m transect (five quadrats in total). Plots 
were deleted if they contained taxa identified only to family 
level which contributed >1% of TFC to a layer. This left a to-
tal of 101 plots comprising three main formations:  grasslands 
(n = 14 plots), shrublands (n = 21 plots), and woodlands (n 
= 66 plots). Grasslands refer to all ground layer communi-
ties and includes grasslands, sedgelands, and rock pavements 
with scattered herbs and forbs (Neldner et al. 2017).  Taxa 
which were inconsistently identified were amalgamated to 
genus level and non-native species were excluded.

From these plot data, we compiled two different data-
sets to test for effects on community classification. The first, 
called ‘cover’, we used to test for the effects of rare spe-
cies based on contribution to total foliage cover (TFC). Our 
‘cover’ dataset used species only from the canopy layer. In 
woodlands this was the tallest tree layer, in shrublands the 
shrub layer and in grasslands the ground layer.  This formed 
a dataset of 101 plots and 247 species with grasslands having 
137 species, shrublands 80 species and woodlands 66 spe-
cies (Table 1). The second dataset, called ‘height’, we used 

Table 1. Parameters and diversity of datasets. Subsets result from removing species based on % contribution to total foliage cover. 
NoHeight = dataset used to weight species by height of vegetation layer. α = mean number of species per plot, βw = Whitaker’s beta 
diversity (Total number of species / α) – 1), MSPm = mean Margalef’s species richness index per plot; MEp = mean Pielou’s evenness 
index per plot. Species richness values significantly different to ALL are bolded, * p < 0.001, ** p < 0.01. ^ p=0.05.

 Species α (st. dev) βw
MSPm 

(st. dev)
MEp 

(st. dev)
Grasslands
ALL 137 18 (+/-6.96) 6.5 4.3 (+/-1.9) 0.3 (+/-0.23)
C>1 49 9 (+/-3.98) 4.4 2* (+/-1.1) 0.4 (+/-0.27)
C>5 26 6 (+/-2.18) 3.3 1.3 (+/-0.64) 0.4 (+/-0.28)
C>8 16 4 (+/-1.82) 2.9 0.8* (+/-0.56) 0.5 (+/-0.32)
C>10 15 4 (+/-1.61) 2.9 0.7 (+/-0.46) 0.5 (+/-0.32)
NoHeight 123 16 (+/-8.5) 5.7 3.8 (+/-2.41) 0.4 (+/-0.24)

Shrublands
ALL 80 9 (+/-4.61) 7.9 2.4 (+/-1.39) 0.6 (+/-0.25)
C>1 60 7 (+/-3.67) 7.6 2 (+/-1.15) 0.6 (+/-0.25)
C>5 44 6 (+/-2.68) 6.3 1.7 (+/-0.86) 0.6 (+/-0.26)
C>8 35 5 (+/-2.48) 6.0 1.4 (+/-0.79) 0.6 (+/-0.27)
C>10 31 5 (+/-2.1) 5.2 1.2 (+/-0.71) 0.6 (+/-0.28)
NoHeight 104 15 (+/- 6.5) 5.9 3.7 (+/-2.28) 0.6 (+/-0.25)

Woodlands
ALL 66 4 (+/-1.81) 17.5 0.9 (+/-0.6) 0.6 (+/-0.23)
C>1 54 3 (+/-1.56) 16.9 0.8 (+/-0.53) 0.6 (+/-0.22)
C>5 42 3 (+/-1.23) 12.1 0.8 (+/-0.45) 0.6 (+/-0.22)
C>8 36 3 (+/-1.17) 10.5 0.7 (+/-0.43) 0.6 (+/-0.22)
C>10 33 3 (+/-1.14) 9.9 0.7** (+/-0.43) 0.6 (+/-0.22)
NoHeight 128 13 (+/-6.2) 10.6 2.8 (+/-1.48) 0.6 (+/-0.16)
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to test for the effect of vegetation height. This dataset was 78 
plots and 265 species (Table 1). We used the same 78 plots as 
a previous classification to allow comparisons with our final 
classification (work that was specific to another project and 
not included here). Fourteen plots were grassland, 16 were 
shrubland and 48 were woodland. This dataset included spe-
cies in the canopy layer plus all other woody dominated lay-
ers with TFC of 10% or more (Neldner et al. 2017). Species in 
the ‘height’ dataset were excluded (from each layer) based on 
our analysis of rare species contribution to TFC (grasslands 
<8% of TFC, shrublands <1%, woodlands <10% of TFC). 

Using our ‘cover’ dataset we explored the effects on clas-
sification of removing rare species (defined here as their con-
tribution to TFC) by defining four rarity thresholds; 1%, 5%, 
8% and 10% contribution to TFC. These were determined a 
priori through an expert panel of regional mapping special-
ists. We created four data subsets; C>1 = species contributing 
>1% to TFC included, C>5 = species contributing >5%, C>8 
= species contributing >8%, and C>10 = species contribut-
ing >10% to TFC included. The dataset consisting of the full 
species pool we termed ALL. Excluded species were below 
threshold levels for all plots and resulted in changes in com-
munity structure (Table 1). Following the advice of Anderson 
et al. (2011) we calculated beta diversity as variation in com-
munity structure amongst our samples using Whitaker’s beta-
diversity calculation.

To explore the effects on classifications of weighting spe-
cies by height of vegetation layer we used our ‘height’ data-
set and four commonly used height-measures. These were; 
height (Height) (Specht 1981, Hnatiuk et al. 2009); log10 (x + 

1) of height (LogHeight) (Hall 1992, Wyse et al. 2014); an ex-
pert-based ranking of height given to each layer (RankHeight) 
(Leathwick et al. 1988); and foliage cover only with no height 
measure (NoHeight). Height was the average height in meters 
of each layer in the plot. For the RankHeights the expert panel 
provided the following ranks based on their perception of the 
ecological function of each layer in the formation: woodlands 
and shrublands - canopy layer = 3, emergent, sub-canopy, 
shrub and sub-shrub layers = 2; grasslands - ground layer = 
3, emergent layer = 2. To weight species we multiplied the 
foliage cover of each species in a layer by the height-measure 
of the layer. Weighted species were summed across layers to 
give a total value per plot.  

Weighting species by different height-measures changed 
the vegetation structure within and between plots (Fig. 2) and 
it is these effects on classifications that we test in this study. 
NoHeight, LogHeight and RankHeight up-weighted the lower 
vegetation layers with respect to the canopy layer (Fig. 2). A 
NoHeight measure caused the most extreme change. Species 
in the lower layers of a plot had the same weighting as those 
in the canopy layer and structural differences between plots 
of different formations are eliminated (Fig. 2). LogHeight 
proportionally up-weighted the lower layers with respect to 
the canopy layer and reduces the structural differences be-
tween plots (Fig. 2). RankHeight weights species in different 
layers inconsistently and the outcomes are dependent on the 
value given by the expert panel. In addition, it eliminated all 
structural differences between formations (Fig. 2).  Height 

maintains vegetation structure both within a plot and between 
formations (Fig. 2). 

Data analysis

We determined classifications for datasets using agglom-
erative hierarchical clustering, and internal evaluators to de-
termine the level of cluster division (Aho et al. 2008). All 
analyses were undertaken in the software package PRIMER 
v6 (Clarke and Gorley 2006) or in the R environment (R 
Development Core Team 2014). To test the sensitivity of our 
results in removing rare species, we formed classifications 
for each dataset using two common combinations of similar-
ity measure and clustering algorithms (Appendix 2).  These 
were the Bray-Curtis similarity coefficient with Unweighted 
Pair Means Average linkage (UPGMA) (Kent 2012), and 
chord distance measure with flexible-β linkage (Knollova et 
al. 2005, Nezerkova-Hejcmanova et al. 2006, Roberts 2015). 
In the latter, we used two levels of β. Beta = –0.25 has been 
used effectively in numerous classifications (Lotter et al. 
2013, Mucina and Daniel 2013, Roberts 2015). Clarke et al. 
(2014) recommend choosing a level of β that maximises the 
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the canopy layer. Except for Height, the height-measures up-
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according to Mucina et al. (2000).
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cophenetic correlation between the distance matrix and the 
classification dendrogram, and in our datasets β was equal 
to 0.01. We therefore tested changes resulting from remov-
ing rare species with three different methods: 1) Bray-Curtis 
similarity with UPGMA, 2) chord distance with flexible-β at 
β = –0.25 and 3) chord distance with flexible-β at β = 0.01. 
To determine cluster divisions, we used a combination of the 
SIMPROF routine (p<0.05) (Clarke et al. 2008) and Indicator 
Species Analysis (ISA) (Dufrêne and Legendre 1997).  The 
SIMPROF algorithm tests for significant difference in the 
between-cluster versus within-cluster similarity at each node 
in a cluster dendrogram, providing an objective stopping rule 
for cluster division (Clarke et al. 2008) in vegetation clas-
sifications (Oliver et al. 2012). We ran ISA in the ‘labdsv’ 
R package (Roberts 2013). This also produced species sig-
nificantly associated with a cluster (p<0.05) which we used 
as Indicator Species (IS) for each classification. For the sec-
ond question investigating the effects of weighting species 
by height-measures, we used classifications resulting from 
the Bray-Curtis similarity coefficient and UPGMA linkage, 
with the SIMPROF routine to determine cluster divisions 
(Appendix 3).

We explored effects on the classification outcomes using 
three tests common to both questions and comparison to a 
baseline (Appendix 1). The baselines were the ALL species 
dataset for the first question, and the NoHeight dataset in 
the second question. Our first test was to look for changes 
in the patterns of similarity or distance between plots with 
the 2STAGE routine in the PRIMER-e. This calculates a 
Spearman’s rank correlation coefficient (rho) between the 
similarity matrices of different datasets. Our second test was 
for differences in clustering patterns between classifications. 
We tested for changes in proportions of clusters per forma-
tion and plots per cluster with Fisher’s exact test (p<0.05). 
One important function of a classification is to predict pat-
terns of floristic composition (Margules and Pressey 2000), 
and so our third test, which we also used to test the quality 
of the classifications, was to assess the ability of each clas-
sification to predict the foliage cover of all species. We did 
this using a predictive-model based approach with general-
ised linear models in a multivariate framework and Akaike’s 
Information Criterion (AIC) as an estimate of predictive per-
formance (Lyons et al. 2016). In general, classifications with 
a lower sum-of-AIC score are a better “fit” and are a way of 
illustrating the difference between several plausible solutions 
(Murtaugh 2014). This model based approach is available in 
the R package “optimus” (Lyons 2018). When testing the re-
moval of rare species, for each classification from the cover 
thresholds we summed the AIC score across the species in the 
ALL dataset thus providing a measure that can be compared 
across classifications. In both questions we used the ability to 
predict foliage cover to test the usefulness of the classifica-
tions.

Finally, we expected removing rare species would affect 
community structure within our ‘cover’ datasets. To under-
stand these, we tested for changes in species richness and 
evenness and assessed the utility of characteristic species in 
each formation. We calculated species richness per plot us-

ing Margalef’s index, and evenness of species foliage cover 
per plot using Pielou’s index. We used Margalef’s index as 
a measure of species richness as it is independent of sam-
ple size (Clarke et al. 2014). We tested for significant dif-
ferences between classifications in both indices with t-tests. 
Characteristic species are important for identifying and de-
scribing plant communities and we tested for changes in these 
by evaluating the Indicator Species produced by the ISA for 
each classification. From the IS of the ALL dataset, the expert 
panel nominated species responding to landscape level habi-
tat change and therefore useful for identifying communities at 
mapping scales. These were termed useful-IS. For each for-
mation in each classification, we tested the differences in the 
proportions of total-to-useful IS using Fisher’s exact test. We 
used this as a measure of the usefulness of the classification.

Results

Classification in the absence of rare species

Removing rare species that contributed up to 10% to TFC 
did not significantly change the patterns of similarity or dis-
tance between plots (Spearman’s rank, ρ ≥ 0.95).  There were, 
however, slight differences between formations using Bray-
Curtis similarity, with the largest apparent effect in the more 
species-rich grasslands. There were no differences between 
formations using the chord distance measure (Table 2). These 
outcomes were substantiated by our result that the species 
evenness of plots did not change with removal of rare species 
(Table 1). 

Given these results, it was unsurprising that the differ-
ence in the number of communities was not significant, either 
between any data subset, or tested methods of classification. 
Removing rare species did, however, have two important ef-
fects on classification outcomes. Firstly, it increased the de-
tection of useful-Indicator Species and secondly, provided as 

Table 2. Spearman rank correlations between the Bray-Curtis co-
efficient and chord distance matrices of the ALL dataset (the full 
species pool) and each data subset in each formation.  

Data subset Grasslands Shrublands Woodlands

Bray-Curtis 
similarity coefficient

C>1 0.98 1.00 1.00

C>5 0.96 0.99 0.99

C>8 0.94 0.98 0.98

C>10 0.93 0.97 0.97

chord distance 
measure

C>1 1.00 1.00 1.00

C>5 1.00 1.00 1.00

C>8 0.99 0.99 1.00

C>10 0.99 0.98 1.00
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good as, or better, a prediction of foliage cover of the full 
species pool. In the grasslands, the species richness declined 
significantly, firstly between the baseline dataset (ALL) and 
C>1 (t = 4.27, p<0.001) and then again between C>1 and 
C>8 (t = 4.34, p<0.001) (Table 1). These declines in species 
richness increased the proportion of useful-IS significantly, 
although for different data subsets in each method (Table 3). 
The ability of the clusters from each classification to predict 
the foliage cover of the full species pool differed between 
methods. With UPGMA the data subsets reduced the number 
of clusters identified (Appendix 2) but improved the ability 
of clusters to predict foliage cover, with C>8 subset provid-
ing the best prediction (Fig. 3). The clusters identified with 
the flexible-β method were the same in each data subset and 
so were equally as good as ALL in predictive ability. In the 
shrublands the decline in species richness between ALL and 
each subset was not significant until C>10 (t = 2.89, p<0.01) 
(Table 1). Again, the proportion of useful-IS rose, although 
these proportional changes were not significant (Table 3). The 
ability of clusters to predict species foliage cover differed be-
tween methods. Again, the flexible-β method identified the 
same clusters in all datasets, and so all subsets predicted the 
foliage cover of the full species pool equally. The UPGMA 
method reduced the number of clusters identified from seven 
to six (C>1) and then to five (C>10) (Appendix 2) resulting 
in improvements in predicting foliage cover when compared 
with ALL (Fig. 3). However, it was C>1 subset which had 
the best predictive ability (Fig. 3). The woodlands differed 
from the other two formations in that removing rare species 
changed the patterns of clustering in the same way with all 
methods (Appendix 2). There was no consistent decrease in 

the number of clusters despite declines in species richness, 
which became marginally significant at C>10 (t = 1.93, p = 
0.05) (Table 1). In contrast to the other two formations, all 
datasets had >90% useful-IS (Table 3). None of the datasets 
was better at predicting species foliage cover than any other 
(Fig. 3). 

Inspection of the original data revealed two reasons for 
the changes in proportions of useful-IS between datasets. The 
first was that members of the expert panel had nominated spe-
cies if they were useful for identifying communities across all 
landscapes in Cape York Peninsula, not just those on the igne-
ous rocks of our study. Consequently, any Indicator Species 
useful for other landscapes were eliminated by the analysis, 
due to rarity in our dataset. Secondly, consequent to the re-
moval of rare species those nominated by the expert panel as 
useful moved from being non-Indicator to Indicator Species 
in the analysis.

Classification with species weighted by vegetation layer

Weighting species by the four different height-measures 
changed the patterns of similarity between plots (Table 4). 
NoHeight was least correlated with Height reflecting the 
maintenance of full vegetation structure using Height and 
the complete elimination of structure using NoHeight (Fig. 
2). NoHeight was most strongly correlated with RankHeight 
reflecting that both treatments minimise height differences 
between formations.

Including height changed how different vegetation lay-
ers drove clustering in each classification and substantially 

Table 3. Number of Indicator Species (IS) and useful-Indicator Species (useful-IS) in each data subset from each method. Flexible-β 
linkage with β = 0.01 and chord distance were chosen to maximise the cophenetic correlation between the dendrogram and the distance 
matrix. Significant change between proportions of useful IS in ALL and subsets in bold, *p < 0.01, **p = 0.02

UPGMA and Bray-Curtis coeff.  Flexible β = -0.25 and chord distance Flexible β = 0.01 and chord distance

 IS useful-IS IS useful-IS IS useful-IS
Grasslands
ALL 45 15 23 11 16 8
C>1 25 14 11 9 8 8**
C>5 15 10 7 7** 6 6
C>8 11 9* 7 7 6 6
C>10 10 9 7 7 6 6

Shrublands
ALL 80 14 24 18 14 13
C>1 60 13 19 17 14 13
C>5 44 11 16 15 13 12
C>8 35 14 15 14 13 12
C>10 31 11 13 12 11 10

Woodlands
ALL 10 10 14 13 17 16
C>1 10 10 15 14 16 16
C>5 10 10 15 14 15 15
C>8 10 10 15 14 16 16
C>10 12 12 15 14 15 15
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improved the prediction of species foliage cover (Fig. 4). The 
influence of layer in plot clustering resulted in different com-
munities defined by the clusters (Appendix 3). The size of 
these changes differed between formations with the largest 
in the woodlands, whereas in the grasslands and shrublands 
it changed the number of clusters only slightly, if at all (Table 
5). In the woodlands, Height grouped plots emphasising 
firstly the canopy then the sub-canopy layer. NoHeight, in 
contrast, clustered plots with more emphasis on the sub-can-
opy and shrub layers while LogHeight and RankHeight both 
clustered plots with inconsistent emphasis on different layers. 
The plots which changed clusters between height-measures 
were those with high cover in multiple layers, reflecting the 
up-weighting of species in the lower vegetation layers by all 
measures except Height (Fig. 2). In the shrublands and grass-

lands LogHeight clustered plots by emphasising the emergent 
layer, while all other height-measures clustered plots empha-
sising the canopy layer. Importantly, Height best predicted fo-
liage cover, while NoHeight was worst. LogHeight was better 
at predicting foliage than RankHeight (Fig. 4).

21 

 
 

Figure 3. Predictive ability of classifications resulting from removing species based on % 

contribution to total foliage cover (TFC). Species subsets were formed by removing species 

below a % contribution to TFC. The resulting classification from each subset was used to test 

how well it predicted the foliage cover of all species using a zero-inflated beta regression 

model (Lyons et al. 2016). The lower the sum-of-AIC score the better the predicative ability. 

Species subsets: ALL = full species pool, C>1 = only species contributing >1% to TFC, C>5 

= species >5% to TFC, C>8 = species >8% to TFC, C>10 = species contributing >10% to 

TFC. Only results from clustering with Bray-Curtis and UPGMA clustering shown as there 

was no difference between datasets using flexible-β clustering. 

 

Figure 3. Predictive ability of classifications resulting from re-
moving species based on % contribution to total foliage cover 
(TFC). Species subsets were formed by removing species below 
a % contribution to TFC. The resulting classification from each 
subset was used to test how well it predicted the foliage cover of 
all species using a zero-inflated beta regression model (Lyons et 
al. 2016). The lower the sum-of-AIC score the better the predica-
tive ability. Only results from clustering with Bray-Curtis and 
UPGMA clustering shown as there was no difference between 
datasets using flexible-β clustering.

Table 4. Spearman rank correlation between similarity matrices 
of each height dataset. Similarity matrices were calculated using 
the Bray-Curtis coefficient. Height = height in meters, LogHeight 
= log10 ( x + 1) of height, RankHeight = expert weightings for lay-
ers, NoHeight = no height included, foliage cover only.

NoHeight RankHeight Height

RankHeight 0.99

Height 0.87 0.88

LogHeight 0.91 0.88 0.95

Table 5. Change in number of clusters after weighting species by 
vegetation layer height. Height = height in meters, LogHeight = 
log10 ( x + 1) of height, RankHeight = expert weightings for layers, 
NoHeight = no height included, foliage cover only.

Treatment
Total 

number of 
clusters

Grasslands Shrublands Woodlands

NoHeight 24 6 5 13

RankHeight 18 6 5 7

LogHeight 18 4 6 8

Height 15 4 4 7
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Figure 4. Predictive ability of classifications and vegetation 
layers influencing clustering from each height measure. The 
ability of classifications from each height measure to predict 
all species cover using a zero-inflated beta regression model 
(Lyons et al 2016). The lower the sum-of-AIC score the bet-
ter the predictive ability. * Height is substantially better and 
NoHeight is substantially worse than all others. Circles indi-
cate the vegetation layers influencing the clustering. Height 
emphasised the canopy and sub-canopy, NoHeight emphasised 
the sub-canopy and shrub layers. Height = height of vegetation 
layer in meters, LogHeight = log10 (x + 1) of height, RankHeight 
= expert weightings for layers, NoHeight = no height included, 
foliage cover only.
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Discussion

In tropical savanna vegetation of north-eastern Australia, 
we examined how rarity, species cover, and height influenced 
classifications and their ability to predict species foliage cov-
er. Removing rare species based on percent contribution to 
total foliage cover improved the detection of characterising 
species useful for landscape scale classifications. The clas-
sifications resulting from removing rare species consistently 
predicted foliage cover of all species in the full species pool. 
Incorporating structure with different height measures had 
two important outcomes: first, including any height measure 
substantially improved the prediction of species foliage cover 
compared to not using height; and second, different height 
measures changed how vegetation layers influenced the clus-
tering. 

The thresholds for removing rare species which resulted 
in classifications relevant to landscape and broad-scale map-
ping classification differed between the three vegetation for-
mations in our study and slightly between methods. However, 
generalised results are consistent across methods. Although 
grasslands are the more species rich formation in terms of the 
canopy layer, to classify these communities at a landscape 
scale species contributing <8% to TFC can be excluded and 
classifications based on these species can also best predict 
foliage cover of the full species pool. These results suggest 
the large majority of species in tropical savanna grasslands 
are responding to habitat changes at scales below those used 
in landscape mapping. In the woodlands, while using species 
at any cover level classified communities at landscape-scales, 
only those contributing >10% to TFC are required to both 
classify and predict species cover. The shrublands had a low-
er threshold; removing species contributing <1% to TFC pro-
duces useful landscape-scale classifications and consistently 
predicts foliage cover. Our results link two separate bodies 
of work. One demonstrates the usefulness of subsets of spe-
cies data; they can improve classifications in detecting major 
gradients (Lengyel et al. 2012) and maintain the statistical 
power of a dataset (Vellend et al. 2008), and removing uni-
dentified species continues to identify major ecological pat-
terns from datasets (Pos et al. 2014). The other body of work 
shows subsets of the structural components of a community 
detect major ecological patterns. Mucina and Daniel (2013) 
found woody vegetation and dominant grasses useful in iden-
tifying savanna plant communities in north-western Australia 
while Nezerkova-Hejcmanova et al. (2006) found those same 
structural components of plant communities informative in 
identifying savanna vegetation types in Senegal. Our findings 
link these in suggesting that species subsets, within structural 
components, can identify landscape scale ecological patterns 
and we suggest useful subsets for savanna vegetation. 

As well as demonstrating techniques useful in aligning 
plot-based classification to broad-scale vegetation maps our 
work can suggest the necessary levels of sampling intensi-
ties. For instance, in the grasslands, landscape-scale classi-
fication and prediction of species foliage cover is achieved 
with a subset of only 34% of the total species pool, in shrub-
lands 75% and in woodlands 50%. Understanding the level 

of sampling intensity required at the landscape level can in-
dicate to ecologists which species are ‘noise’ in the dataset. 
Ecologists are generally counselled to take care when decid-
ing which species to discard as they may possibly delete im-
portant characteristic species for the environmental gradients 
under consideration (McCune and Grace 2002). However, 
our results give confidence in understanding at what level of 
contribution to TFC a species may be considered noise and 
may also indicate when seasonally dependent annual species, 
often removed because they are ephemeral, might need to be 
included. Deleting noisy species from the dataset allows us to 
define a ‘subset of plants of interest’, an important attribute 
of vegetation classification (De Cáceres et al. 2015). By de-
fining this ‘subset of plants of interest’ we can produce a list 
of regionally important species for classification at landscape 
mapping levels. This is useful for field application in direct-
ing survey time and effort at a targeted list (Marignani et al. 
2008). We would suggest that a plot dominated by species not 
included in the ‘subset of plants of interest’ is indicative of a 
community new to the classification.

Variety of life-forms and species heights are impor-
tant functional characteristics of an ecosystem (Sattler and 
Williams 1999, Lindenmayer and Franklin 2002, De Cáceres 
et al. 2013) as well as being key components in differentiating 
landscape scale plant communities (Küchler and Zonneveld 
1988). For identifying landscape-scale communities, we 
found using actual height of the vegetation layer was nec-
essary as it grouped sites by canopy and sub-canopy layers 
and was substantially better than any of the other measures in 
predicting species foliage cover. This is important, as a major 
function of maps is in predicting plant communities across 
the landscape (Küchler and Zonneveld 1988) and a plot-
based classification that best predicts species cover is likely to 
increase the predictive power of the mapping. Our results dif-
fer from those found by Mucina and Tichý (2018) who found 
not including layer height was more informative for identify-
ing plant communities in subtropical forests. Our results do, 
however, substantiate their warning that their results may not 
be applicable in communities with low similarity of species 
between the canopy and understorey layers as is the case in 
savanna vegetation in north-eastern Australia.

There are necessarily subjective choices inherent in any 
classification process (Kent 2012) and these will influence 
outcomes (Aho et al. 2008, Tichý et al. 2010, Lotter et al. 
2013, Lengyel and Podani 2015). To find species which indi-
cate landscape level changes we have used species nominated 
by experts. Inherent in our results, therefore, is the assump-
tion that the experts’ choice of useful indicator species is also 
reflected in the mapping to differentiate communities.

Confidence of the end-users in the classification of the 
plant communities represented in broad-scale maps is im-
portant. A standard approach to ensuring this outcome is to 
test mapped communities against quantitative classification 
of floristic plot data. However, issues with scale, rare spe-
cies and necessary attention to canopy composition and 
vegetation height in mapping can cause confusion between 
mapped communities and quantitative classifications of plot-
based data. Our work demonstrates that incorporating spe-
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cies height and removing rare species ensures that quantita-
tive community classification is conceptually consistent with 
approaches used to identify and describe landscape patterns. 
This provides a tighter linkage between plot-based classifica-
tions and remotely sensed maps, allowing more robust map-
ping validations (Roff et al. 2016) and greater confidence of 
land managers in both the classification and maps.  
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