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Larval supply is a principal factor determining the establishment, structure, and diversity

of sessile benthic assemblages on coral reefs. Benthic reef communities in north-eastern

Arabia have been subject to recurrent disturbances in recent years, and subsequent

recovery will be, in part, driven by variation in the supply of available colonists. Using

settlement tiles deployed seasonally over 1 year at eight sites encompassing three

environmentally divergent regions (southern Arabian Gulf, the Musandam Peninsula in

the Strait of Hormuz, and the Sea of Oman) we assessed spatial and seasonal variability

in settlement of benthic reef organisms. There was strong spatial variation in composition

of new colonists among regions, mainly driven by the high abundance of coralline algae in

the Arabian Gulf, colonial ascidians on theMusandam Peninsula and barnacles in the Sea

of Oman. Seasonal differences in composition of new colonists were less important than

regional differences, with seasonal variation in settlement not consistent among regions.

The number of corals settling to the tiles was low compared to those reported for other

regions, with mean densities ranging from 0 corals m−2 year−1 in the Sea of Oman to 30

(± 0.6 SE) and 38 (± 0.5 SE) in Musandam and the Arabian Gulf, respectively. Peak coral

settlement abundance in the Gulf occurred in summer and autumn and in Musandam in

spring (averaging 82 and 70 settlers m−2 year−1, respectively, during the peak settlement

season). This work provides the first record of large-scale spatial and seasonal patterns

of settlement in north-eastern Arabia and provides valuable information on the supply of

settlers available to recolonize heavily disturbed reefs in this region. The extremely low

rates of coral settlement suggest that these marginal reefs are likely to be extremely slow

to recover from on-going and future disturbances.
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INTRODUCTION

Coral reefs provide a variety of significant socio-economic
benefits to coastal communities (Ferrario et al., 2014; Guannel
et al., 2016), however, climate change and increasing local
pressures are jeopardizing the future of reefs (Ateweberhan
et al., 2013; Bruno, 2013; Spalding and Brown, 2015). Over the
past several decades, reefs have been increasingly degraded by
overfishing, pollution, sedimentation, disease and coral predator
outbreaks (Maina et al., 2013; Riegl et al., 2013; Pollock et al.,
2014; Wear and Thurber, 2015; Mumby, 2016). These stressors
have resulted in an estimated loss of up to 50% of coral cover
from many reefs in the past several decades (De’ath et al., 2012;
Hughes et al., 2017), with a third of reef-building coral species
now considered at risk of extinction (Carpenter et al., 2008).

Disturbances such as bleaching, cyclones and crown of thorns
outbreaks that cause large-scale coral mortality are becoming
increasingly common (Spalding and Brown, 2015). Whether
reefs can recover from these disturbances will depend, in
part, on the supply of colonists available to settle to newly
opened space that appears on reefs following a disturbance
(Gilmour et al., 2013). Both stochastic processes which affect
the supply of potential colonists and deterministic processes
such as habitat availability, larval preferences, and interactions
with existing community members, can influence settlement
patterns (Lillis et al., 2016). Post-settlement processes then
further shape subsequent community development (Caley et al.,
1996). As a result, the trajectory of community recovery following
disturbance is highly dynamic, with some studies reporting a
relatively rapid return to pre-disturbance assemblage structure
(Halford et al., 2004; Adjeroud et al., 2009), while others have
observed dramatic and long-term shifts (Roff et al., 2015; Guest
et al., 2016).

Historically, studies of the role of supply in recovery dynamics
have focused on coral recruitment, and have largely overlooked
settlement by other members of the benthic community (Zhang
et al., 2014). However, algae, sponges, ascidians, and various other
sessile members of the benthos are also abundant and integral
members of reef communities that support diverse functional
roles (Mallela, 2007; Bell, 2008; Glynn and Enochs, 2011; De
Goeij et al., 2013; Enochs and Glynn, 2017), although the role
that these organisms play in recovery dynamics is not well
understood. Non-coral benthos are typically far more abundant
than coral spat in early settlement communities (Dunstan and
Johnson, 1998; Díaz-Castañeda and Almeda-Jauregui, 1999;
Glassom et al., 2004; Mangubhai et al., 2007; Stubler et al.,
2016), and initial colonization patterns by these organisms
can strongly influence the trajectory of subsequent community
development (Stubler et al., 2016). Non-coral settlement patterns
may translate into long-term shifts in reef community structure,
as variation in the early recruitment rates of non-coral benthos
can considerably influence adult abundance of these organisms
(Jackson, 1984; Caley et al., 1996; Cowen and Sponaugle, 2009;
Zabin, 2015). Further, many non-coral settlers can alternately
inhibit or facilitate subsequent colonization by corals (Dunstan
and Johnson, 1998; Mangubhai et al., 2007; Birrell et al., 2008;
Arnold et al., 2010; Diaz-Pulido et al., 2010). Thus, developing

an understanding of the settlement of non-coral benthos can
provide valuable insights into the role that recruitment across the
wider benthic community may play in affecting the trajectory of
initial community development on reefs following disturbance.

Coral reefs in north-eastern Arabia have been subject
to widespread and substantial disturbances in recent years.
Recurrent bleaching events and disease outbreaks have heavily
affected reefs in the southern Persian/Arabian Gulf (hereafter
‘the Gulf ’) while reefs in the adjacent Sea of Oman have been
impacted by a super-cyclone and a large-scale harmful algal
bloom (Bauman et al., 2010; Riegl and Purkis, 2015; Burt
et al., 2016). All of these disturbances have caused substantial
declines in coral cover and shifts in the composition of the
wider benthic community (Bento et al., 2016). Recovery of
reef communities in subsequent years has been variable, with
a return toward pre-disturbance assemblages observed in some
locations but not others (Burt et al., 2008, 2011; Bento et al.,
2016). Several studies have suggested that this divergence in
recovery patterns can largely be attributed to variation in the
abundance and composition of juvenile corals that have recruited
to these reefs (Burt et al., 2008; Pratchett et al., 2017). However,
it is unclear whether these patterns in juvenile corals (up to 5
cm diameter) were primarily shaped by larval supply or post-
settlement processes.

The purpose of this study was to investigate spatial and
seasonal variability in settlement of benthic organisms on
reefs spanning > 750 km of coastline in the north-eastern
Arabian Peninsula. Terra-cotta settlement tiles were deployed
seasonally over 1 year on reefs in the highly disturbed Gulf
and Sea of Oman, and on relatively undisturbed reefs in
the Musandam Peninsula. Comparison of seasonal dynamics
provides insights into peak settlement periods for sessile
benthic invertebrates, while large-scale spatial comparisons
provide insights into regional scale disturbance and recovery
dynamics.

MATERIALS AND METHODS

This study was performed across eight sites in three regions
spanning >750 km of coastline in the north-eastern Arabian
Peninsula: three sites in the southern Arabian Gulf (Saadiyat,
Dhabiya, and Ras Ghanada), three sites along the Musandam
Peninsula (Al Harf, Falcon Rock, and Coral Garden) and two
sites in the Sea of Oman (Dibba and Al Aqa) (Figure 1). All
sites were fringing reefs at comparable depths (2–8 m) with coral
cover varying between ca. 20–60% among reefs. Communities
were generally dominated by faviids and poritids in all regions,
with other subdominant families differing in relative abundance
among sites. A full description of the benthos in each region is
provided in Bento et al. (2016).

Settlement of benthic organisms was quantified at all sites
using unglazed terracotta settlement tiles (10 × 10 × 1.5 cm)
following methods adapted from Mundy (2000). At each site,
30 tiles were attached to the substratum at ca. 5m depth and
spaced 1–3m apart. Each tile was secured to the reef using a
stainless steel stud that was epoxied into the substratum and
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FIGURE 1 | Map of northeastern Arabian Peninsula indicating the location of study sites within each of the three regions.

passed through a 1 cm hole in the center of each tile. A 2 cm
plastic washer was placed over each stud to position the tile 2
cm above the reef substratum. The textured (i.e., corrugated)
surface of each tile was always positioned facing the substratum,
as previous studies have shown that settlement primarily occurs
on the underside of tiles and that textured materials generally
have higher settlement than smooth surfaces (Burt et al., 2009).
To assess seasonal variation in settlement, tiles were deployed
and replaced every 3 months over 1 year. Each deployment
represented a specific season: (summer: July–September 2012,
autumn: October–December 2012, winter: January–March 2013,
and spring: April–June 2013), with all tiles deployed/collected
across all sites within ca. 7–10 days at the beginning/end of each
season. These four seasons were selected based on the periods of
highest (summer) and lowest (winter) sea surface temperatures,
as well as the transitional spring and autumn periods that are
known to be important discrete spawning and/or settlement
seasons for a variety of marine fauna in this region (e.g., Bauman
et al., 2011; John, 2012; Howells et al., 2014).

Upon retrieval, the bottom of each tile was photographed with
a 10 megapixel Nikon D-80 digital camera fitted with a macro
lens. Only the bottom surfaces of tiles were analyzed as virtually
all settlement in this region occurs on the bottoms of tiles (Burt
et al., 2009; Bauman et al., 2014). Percent cover of various
benthos on each tile was calculated by image analyses using the
software CPC with Excel extension (Kohler and Gill, 2006), with
coverage tabulated from 50 random point intercepts per tile.

Substratum and benthic community type was categorized into 15
broad groups and several sub-groups: bare tile, coralline algae,
coral, ascidiacea (subgroups: colonial ascidian, solitary ascidian),
sponge, cnidaria (subgroups: anemone, hydrozoa, zoanthid),
arthropoda (subgroup: barnacle), mollusca (subgroups: bivalve,
chiton, gastropoda), annelid (subgroup: polychaeta), bryozoa,
other live (subgroups: mobile invertebrate, urchin, other), algae
(subgroups: algae, turf algae), sand/silt, non-benthos (subgroups:
gap, tape, shadow), and unknown taxa. Due to the small size of
coral recruits (age: ≤3 mo) and their relatively limited coverage,
density of coral juveniles was tabulated separately. Following
photography for community analysis, tiles were cleaned of living
tissue in bleach for 24 h, rinsed and air dried before tabulating the
number of coral recruits on each tile using an Olympus DP-70
stereo-microscope (40X magnification).

Data Analyses
Before statistical analyses, percent cover for the various
benthic groups was standardized as a proportion of the total
living benthos (i.e., relative abundance), and an arcsine-square
root transformation was applied to normalize the data, as
recommended by Zar (2010). Coral densities were log(x + 1)
transformed. Prior to multivariate analyses, benthic categories
occurring in <5% of samples were excluded from analyses to
avoid the influence of outliers (McCune et al., 2002).

To explore the overall spatial and seasonal structure of
settlement assemblages, and to identify which components of
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the benthos were driving any settlement differences, multivariate
analyses were performed using Primer, v6 (Clarke and Gorley,
2006). Non-metric multi-dimensional scaling (nMDS) analyses
based on Bray-Curtis distance matrices were used to illustrate
the influence of regions and seasons on benthic community
composition, with taxa strongly driving divergence along nMDS
axes identified using Pearson rank-correlations (r ≥ ±0.5 for
either axis). To ease interpretation, each season was manually
shaded in the resulting nMDS and the vector plot overlaid. Spatial
and seasonal differences in settlement community structure were
tested with a partially-nested permutational multivariate analysis
of variance (PERMANOVA) on the main effects of seasons and
regions with sites nested within regions. A similarity percentages
analysis (SIMPER) was used to assess which benthic components
contributed most to the observed variation in settlement
community structure (Clarke and Gorley, 2006). Spatial and
seasonal differences in settlement community structure were
tested with a partially-nested permutational multivariate analysis
of variance (PERMANOVA) on the main effects of seasons and
regions with sites nested within regions based on our a priori
hypotheses. Key benthic groups and sub-groups identified by our
multivariate analyses and coral settlement densities were then
then tested with univariate PERMANOVAs to identify significant
settlement differences.

A multiple regression was also employed to determine
whether the density of coral spat was associated with
percent cover of any other components of the settlement
community (including each live benthos category plus bare
tile). Before regression analyses, the normality of the residuals
and homogeneity of variances were confirmed by plotting
residuals against fitted values and using QQ plots (Zuur et al.,
2007).

RESULTS

Multivariate ordination of the overall settlement community
observed in this study indicated strong differences in community
structure between regions, with individual sites clustering as
region-specific groups across all seasons with no overlap among
regions (Figure 2). Vector plots indicated regional differences
were primarily driven by variation in the relative abundance
of three benthic groups: coralline algae, colonial ascidians,
and barnacles (Figure 2), although other benthos also made
strong contributions (Supplementary Table 1). SIMPER analyses
showed that settlement communities in the Gulf were primarily
characterized by the presence of coralline algae, polychaetes, and
bryozoans, which together contributed >80% to similarity in tile
assemblage structure in this region (Table 1). In the Musandam
region, over half of the similarity in settlement communities was
driven by strong contributions from both colonial ascidians and
bryozoans, with polychaetes and turf algae making more modest
contributions (Table 1). Bryozoans were also the most common
component of Sea of Oman settlement communities, where they
contributed over a third of the similarity in community structure,
followed by barnacles and turf algae also playing important
roles. The SIMPER analysis showed higher abundances of

FIGURE 2 | Three-dimensional plot of non-metric multidimensional scaling

ordination (nMDS) illustrating the spatial and seasonal variation in benthic

community structure across three Arabian water bodies. The vector overlay

shows the strength and direction of individual benthos’ Pearson rank

correlations (restricted to those with r > 0.5 for any axis).

coralline algae in the Gulf was the main driver of differences
between both Musandam and Sea of Oman communities, where
colonial ascidians, bryozoans, and turf algae were more abundant
(Table 1). Differences between Musandam and the Sea of Oman
settlement communities were largely driven by higher cover of
colonial ascidians in the Musandam vs. cover of bryozoans,
barnacles, polychaetes and turf algae in Sea of Oman sites
(Table 1).

While assemblage structure primarily grouped regionally,
there were also modest seasonal changes in the settlement
community within each region (Figure 2), although these
changes were not consistent within regions as shown by
a significant interaction between seasons and regions in
PERMANOVA (Table 2). In the Gulf the settlement community
showed considerable overlap in structure across summer,
autumn, and winter, indicating a good degree of similarity
across these seasons, with divergence in the remaining season
(spring) being primarily due to higher abundances of coralline
algae settling into a single site (Ras Ghanada; Figure 2) within
this season. In the Musandam the settlement community
composition was more similar to Gulf communities during
the warm summer season but diverged in the cooler autumn
and spring seasons, with the greatest divergence from the
Gulf occurring in the cold winter season, when all three
Musandam sites had highly convergent community structure,
with higher settlement of colonial ascidians (Figure 2). The
settlement community in the Sea of Oman varied spatio-
temporally. The community at Dibba was fairly consistent across
summer, autumn, and spring, while the community at Al Aqa was
comparable to that found within Dibba in spring, but diverged
markedly in the summer and autumn (Figure 2). In the winter
there were dramatic shifts in the settlement community at both
of the Sea of Oman sites, with the assemblages at the two sites
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TABLE 1 | Benthic groups responsible for >90% of within-regions similarities and >70% of among-regions dissimilarities based on SIMPER analysis.

Gulf Gulf vs. Musandam

Within group similarity:

46.3%

Cont. (%) Cum. (%) Between-group

dissimilarity: 62.2%

Gulf %

cover

Musandam

% cover

Cont. (%) Cum. (%)

Coralline algae 33.7 33.7 Coralline algae 28.2 1.2 18.1 18.1

Polychaeta 25.2 58.9 Colonial ascidian 12.5 30.7 17.4 35.5

Bryozoan 24.5 83.4 Bryozoan 20.7 25.3 13.5 49.0

Colonial ascidian 7.1 90.5 Polychaeta 19.2 15.4 11.8 60.9

Turf algae 5.6 9.5 10.0 70.9

Musandam Gulf vs. Sea of Oman

Within group similarity:

50.9%

Between-group

dissimilarity: 67.5%

Gulf %

cover

Sea of Oman

% cover

Bryozoan 27.6 27.6 Coralline algae 28.2 3.3 16.2 16.2

Colonial ascidian 27.4 55.0 Bryozoan 20.7 32.2 14.6 30.8

Polychaeta 19.1 74.0 Barnacle 0.2 22.2 14.4 45.3

Turf algae 12.3 86.3 Polychaeta 19.2 7.8 12.4 57.6

Barnacle 5.4 91.7 Turf algae 5.6 14.3 11.2 68.8

Colonial ascidian 12.5 8.6 10.7 79.5

Oman Musandam vs. Sea of Oman

Within group similarity:

42.7%

Between-group

dissimilarity: 59.3%

Musandam

% cover

Sea of Oman

% cover

Bryozoan 36.2 36.2 Colonial ascidian 30.7 8.6 18.8 18.8

Barnacle 23.0 59.2 Bryozoan 25.3 32.2 15.7 34.4

Turf algae 18.2 77.4 Barnacle 5.1 22.2 14.5 48.9

Polychaeta 9.0 86.4 Polychaeta 15.4 7.8 12.2 61.1

Colonial ascidian 4.4 90.9 Turf algae 9.5 14.3 11.5 72.5

Mean relative abundance (as % of live cover) in each region and individual (Cont.) and cumulative (Cum.) contribution to dissimilarity are shown.

TABLE 2 | Results of the three factor partially nested PERMANOVA analyses

assessing differences between regions, seasons and sites (within regions) in

benthic community composition.

Source Df SS MS Pseudo-F P(perm)

Region 2 3.09E5 1.54E5 7.83 0.0035

Season 3 84334 28111 4.70 0.0001

Site (Region) 5 99698 19940 17.97 0.0001

Region × Season 6 1.5E5 25599 4.26 0.0001

Site (Region) × Season 15 90840 6056 5.46 0.0001

converging with each other but diverging from the communities
observed in all other seasons in this region, due to the settlement
of barnacles in both sites. SIMPER analyses (Table 3) showed that
the major taxa driving seasonal changes largely reflected the same
groups that were associated with regional differences (above;
Figure 2), indicating that fluctuations in the relative abundance
of these key regional taxa was the primary driver of seasonal shifts
in settlement communities.

SIMPER analyses were further used to examine the main
benthos driving seasonal differences within regional settlement

communities (Table 3). The only benthic group that showed wide
seasonal variation in all three regions were the bryozoans; all
other benthos that were key drivers of seasonal change were
important in just one or two regions. In addition to bryozoans,
seasonal differences in the Gulf were mainly attributable to
variation in the amount of coralline algae, colonial ascidians, and
polychaetes, in the Musandam to colonial ascidians, and in the
Sea of Oman to barnacles. These seasonal drivers largely reflected
the same benthos associated with regional community differences
(above; Figure 2).

There was a significant interaction between the main effects of
season, region and sites (within region) in structuring settlement
of each major benthos (Figure 3), indicating that patterns
of change were not consistent among the main effects for
any of these benthic groups (PERMANOVA Pseudo- F(15, 824):
bryozoans = 11.0, polychaetes = 7.2, turf algae = 5.0, coralline
algae = 3.9, barnacles = 7.4, colonial ascidian = 2.7; p < 0.001
for each]. Bryozoans showed strong but inconsistent seasonal
fluctuations in all regions, with highest cover in the winter in
the Gulf and Musandam (Figures 3A,B), while densities peaked
in the autumn in the Sea of Oman when cover was nearly 50%
higher than peak densities in the other regions (Figure 3C).
While coralline algae cover was negligible in other regions, it
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TABLE 3 | Benthic taxa identified as important seasonal drivers of divergence in community structure in SIMPER.

Region Season comparison δ Percent contribution to dissimilarity

Coralline algae Colonial ascidian Bryozoan Polychaetes Turf algae Barnacle

Gulf Spring vs. Summer 51.1 15.1 17.0

Spring vs. Autumn 53.1 16.2 14.8 15.2 16.8

Summer vs. Autumn 51.9 17.0 15.0

Spring vs. Winter 56.6 20.9 17.6 15.5

Summer vs. Winter 59.8 16.7 15.2 16.8

Autumn vs. Winter 56.4 16.9 18.8 16.2

Musandam Spring vs. Summer 46.9 19.4

Spring vs. Autumn 49.1 19.1 15.6

Summer vs. Autumn 50.3 18.6

Spring vs. Winter 47.6 21.2 17.7

Summer vs. Winter 50.5 19.2 19.1

Autumn vs. Winter 55.4 18.5 19.0 15.2

Sea of Oman Spring vs. Summer 56.2 15.4 15.1

Spring vs. Autumn 65.4 22.0 19.1

Summer vs. Autumn 59.7 20.4 15.8

Spring vs. Winter 61.2 18.3 24.7

Summer vs. Winter 54.8 16.6 20.0

Autumn vs. Winter 69.2 23.4 26.3

Only benthic groups strongly contributing to the dissimilarity (δ >15%) in each pairwise comparison are shown.

was the most abundant benthic component on tiles in the Gulf,
and it doubled in cover from winter to summer (mean cover:
16.3% ± 2.2 SE to 31.6% ± 2.7 SE respectively; Figure 3A).
Colonial ascidians were considerably more abundant in the
Musandam than other regions, explaining its identification as
a major distinguishing taxa for tiles in this region in earlier
SIMPER analyses, and cover was generally comparable across
seasons for this group (Figure 3B). In the Sea of Oman barnacles
heavily dominated settlement in winter, when they comprised
over half of the benthos at each site and were substantially more
widespread than in other seasons; barnacles were uncommon in
Musandam and nearly non-existent in the Gulf.

Coral Recruits
In total, 216 coral recruits were observed on the 845 tiles deployed
across the 8 sites throughout the study. No coral settlers were
observed across the entire study in the Gulf of Oman, and there
was inconsistent and high variation in coral settlement among
sites and seasons within the Gulf and Musandam (Figure 4;
Table 4). In the Gulf, mean settlement was highest in autumn
but this was mainly due to a large pulse at Saadiyat reef (90% of
spat this season); a second peak in settlement also occurred in
summer, with a small number of spat recorded in spring as well.
In theMusandam, coral settlementmainly occurred in the spring,
although spat were observed in low densities in all seasons in at
least one site.

Multiple regression revealed that coral density was unrelated
to cover of other benthic components [including bare tile space;
R2 = 0.27; F(10, 96) = 0.736, p= 0.69], reflecting the considerable

variability and low incidence of coral settlement observed in this
study.

DISCUSSION

Coral reef communities in north-eastern Arabia have been
subject to various large-scale disturbances in recent years. To
date, there had been limited knowledge of the spatial and
seasonal patterns of settlement of coral and non-coral benthos,
limiting our understanding of the important role that supply may
play following disturbance. The results of this study show that
settlement of corals was extremely low and that non-coral benthic
settlement was highly variable between regions and across sites
within regions.

The most striking result of this study was the strong
regionally structured patterns of non-coral settlement, with
regional differences persisting across seasons throughout the
study. These large-scale differences in non-coral settlement
mirror the divergence of benthic community structure on reefs
across these regions (Bauman et al., 2013; Bento et al., 2016), and
is likely driven by the highly divergent environmental conditions
among these seas, which have also been subject to varying degrees
of disturbance.

The southern Gulf represents one of the most extreme
coral reef environments on earth, with sea surface temperatures
ranging >25◦C annually, daily mean maxima >34◦C for several
months during summer, and salinities that consistently exceed
44 PSU (Sheppard et al., 1992; Coles, 2003; Foster et al., 2012).
In addition, these reefs have experienced numerous large-scale
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FIGURE 3 | Seasonal changes in benthic community structure: (A) across the

Gulf and within each Gulf site, (B) across Musandam and within each

Musandam site, (C), across the Sea of Oman and within each Sea of Oman

site. Values are shown as relative abundance (percentage of benthic cover).

bleaching events over the past two decades (Riegl and Purkis,
2015), resulting in widespread shifts in benthic community
structure from which there has been only limited recovery
(George and John, 2000; Sheppard and Loughland, 2002; Burt
et al., 2008, 2011). In the wake of earlier mass bleaching events,
coralline algae dramatically increased in abundance on southern
Gulf reefs (George and John, 2000, 2002). In the current study,
coralline algae dominated the settlement community on southern
Gulf reefs (covering 28% of tile surfaces, on average), and it
was the primary differentiator in settlement community structure
from the other regions (where it covered <3.5% of tile surfaces
in both areas). Thus, the presence of coralline algae as a major
component of the settlement community in the southern Gulf
appears to be a persistent, long-term characteristic of this highly
disturbed, extreme environment.

In contrast to the Gulf, the Sea of Oman has environmental
conditions that are more benign. Due to its greater depth and
exchange with the wider Indian Ocean, SSTs in the Gulf of Oman
are less extreme (mean summer maxima <32◦C, range 10◦C
annually) and salinity is comparable to oceanic conditions (37
PSU) (Foster et al., 2012; Howells et al., 2014). Its waters are
also highly productive compared with the Gulf and Musandam
as a result of monsoon-induced upwelling (Sheppard et al., 1992).
Although reefs in the Sea of Oman have experienced widespread
disturbance in the past decade as a result of cyclone storm
damage and a hypoxic event associated with an algal bloom
(Bauman et al., 2010; Burt et al., 2016), the frequency of impacts
to coral reefs here has not been as severe as in the Gulf and there
are indications that recovery of reef communities is underway
(Bento et al., 2016; Pratchett et al., 2017). Barnacles were one
of the primary drivers of the divergence of Sea of Oman reefs
from the other regions, with barnacles here covering nearly a
quarter of settlement tiles (22%) on average, compared with low
abundance in the Musandam (5% cover) and a near absence in
the Gulf (0.2% cover). Barnacles are reported to be among the
most abundant members of settlement communities in Oman
(Wallström et al., 2011; Dobretsov et al., 2013; Polman et al.,
2013; Dobretsov, 2015), likely a reflection of their success as filter-
feeders in this high-productivity environment (Sheppard et al.,
1992), suggesting that the high barnacle abundance we observed
is a result of long-term supply dominance in the Sea of Oman.

The Musandam Peninsula sits at the interface between the
Arabian Gulf and the Sea of Oman at the Strait of Hormuz.
Environmental conditions in the Musandam are generally
comparable to the Sea of Oman, although productivity is lower
due to a lack of monsoonal upwelling in this area (Sheppard and
Salm, 1988; Sheppard et al., 1992; Reynolds, 1993). In addition to
having relatively benign environmental conditions, Musandam
reefs have also escaped the various large-scale disturbances that
affected reefs in the adjacent seas, and reef communities here
have among the highest coral cover and diversity in northeastern
Arabia and are considered among the most pristine in the
region (Sheppard et al., 2010; Bento et al., 2016; Burt et al.,
2016). Colonial ascidians were the primary driver of divergence
of Musandam reefs from those in the other regions, with
these organisms covering nearly a third of Musandam tiles
(30.7% cover), nearly triple the coverage in the other regions
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FIGURE 4 | Spatio-temporal variability in the density of coral spat (mean ±SE) on settlement tiles.

TABLE 4 | Results from PERMANOVA tests comparing mean coral recruits

densities among regions, sites and seasons.

Source df MS Pseudo-F p-value

Region 2 2.0454 0.68978 0.5171

Season 3 0.54429 0.20592 0.8917

Site (Region) 4 3.0654 24.549 0.0001

Region * Season 6 1.4905 0.55661 0.7421

Site (Region) * Season 12 2.7596 22.1 0.0001

Total 747

Values in bold are significant (p < 0.05).

(8.6–12.5% cover). Ascidians are relatively common members of
the benthic community on reefs in the Musandam (R. Bento,
unpubl. data), particularly compared to reefs in the southern
Gulf or Sea of Oman where they are virtually undetected in
benthic surveys (Burt et al., 2011; Grizzle et al., 2016). Given
their short pelagic duration and limited larval swimming ability,
ascidians generally have a relatively localized dispersal (Shanks
et al., 2003; Weersing and Toonen, 2009), suggesting that the
high abundance of colonial ascidians observed on Musandam
settlement plates likely relates to their high abundance in the
wider reef community.

While regional differences primarily structured settlement
communities, there were also modest within-region shifts in
settlement communities over the course of the year. Much of
these within-region shifts were related to fluctuations in the
abundance of bryozoans, a dominant member of the community
across all regions, as well as to fluctuations in the relative
abundance of those same key benthic categories that drove
between-region differences. In all three regions the period of
peak bryozoan settlement coincided with a reciprocal decline in
the abundance of the region-specific key taxa; peak bryozoan
abundance in the winter coincided with the lowest annual mean
cover of coralline algae in the Gulf and colonial ascidians in
the Musandam, while peak bryozoan settlement in the autumn
in the Sea of Oman and coincided with a decline of barnacle
cover on tiles. In all cases, peak coverage of bryozoans occurred

in the season with maximum chlorophyll-a concentrations for
every region (Nezlin et al., 2010; Piontkovski et al., 2011; Moradi
and Kabiri, 2015), suggesting that while bryozoans settle year
round, their success in these particular seasons may be related
to enhanced post-settlement growth due to higher planktonic
food availability. Together, these observations suggest that while
there are distinct regional settlement signatures, seasonality in
bryozoan settlement is largely responsible for modulating within-
region temporal dynamics. It should be noted, however, that
these results represent seasonal settlement data from a single
year. While this is useful information given the lack of data
available previously, benthic recruitment is highly variable from
year to year and it is unknown whether the results of this
study are representative of longer-term patterns. A multi-year
year settlement study to assess the role of recruitment in sessile
benthic population dynamics is warranted.

Coral Settlement Patterns
Coral settlement was low across all three regions in this study.
Across the full year of study, coral densities were minimal in the
Gulf and Musandam (mean: 38 and 30 coral settlers m−2 year−1,
respectively, across the year, and averaging 82 and 70 settlers m−2

year−1 even when considering only the peak settlement season),
and corals were entirely absent from settlement tiles in the Sea
of Oman throughout the study. The observed densities were
substantially lower than has commonly been reported in tropical
reef environments (Seychelles: 595 spat m−2 year−1, Chong-
Seng et al., 2014; Indonesia: 286–705 m−2 year−1, Sawall et al.,
2013; Kenya: 101–908 m−2 year−1, Mangubhai et al., 2007), and
less than half of densities reported for comparable high latitude
marginal reefs (Eilat: 190 m2 year−1, Glassom and Chadwick,
2006; Solitary Islands: 132 spat m−2 year−1, Harriott and Banks,
1995; Taiwan: 111 spat m−2 year−1, Soong et al., 2003). The
observed densities are also low compared with a recent study of
coral settlement in Dubai in the southern Gulf where densities
of 121 coral settlers m−2 year−1 were reported (Bauman et al.,
2014), although those data were mainly collected on breakwaters
that have been suggested to entrain eggs, potentially enhancing
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settlement compared with what would occur on natural reefs
(Burt et al., 2009). Overall, the low densities noted in this region
are similar to that seen in heavily degraded, highly disturbed
reef environments (Singapore: 55 m−2 year−1, Bauman et al.,
2015; Florida: 38 m−2 year−1, VanWoesik et al., 2014). Together,
the low densities observed in the Gulf and Musandam and the
complete absence of coral settlement in the Sea of Oman suggest
that there is cause for concern for the regeneration of degraded
coral reef communities within the Arabian Peninsula.

The low abundance of coral spat observed here is unlikely
to be due to interactions with other members of the settlement
community. The abundance of coral recruits was unrelated to
cover of any other benthos in our analyses, and bare space
was relatively common (ranging from 55% in the Gulf to 20%
in the Sea of Oman), suggesting ample availability of habitat
for coral settlement. Instead, the low coral settlement likely
reflects a limited supply of coral larvae. Low coral settlement
has been reported earlier in the southern Gulf (Bauman et al.,
2014), and is likely the result of depressed fecundity of corals
being exposed to recurrent bleaching events and extreme
environmental conditions (Riegl and Purkis, 2015; Howells
et al., 2016). Although coral cover is high in the Musandam
(Bento et al., 2016; Burt et al., 2016), we observed low levels
of coral settlement. This suggests that low coral recruitment
is characteristic of reefs in northeastern Arabia, and the high
coral cover in the Musandam is likely the result of the relatively
low levels of disturbance in this area rather than high larval
supply. The implication is that the relatively pristine reefs in the
Musandam may be highly vulnerable to any future disturbances
that may occur, as any recovery would be potentially limited
by low recruitment levels. The absence of coral settlement to
tiles in the Sea of Oman was surprising. Reproductive studies
occurring near these sites have shown that common coral species
were spawning during this study in April 2013 (Howells et al.,
2014), and fecundity was substantially higher than conspecifics
in the southern Gulf (Howells et al., 2016). Additionally, juvenile
surveys on these sites in 2012 showed that corals were recruiting
to these reefs, although densities were half of that observed in the
southern Gulf (Pratchett et al., 2017), suggesting that recruitment
is impaired here. Reefs in the Sea of Oman sites have low coral
cover (18%) relative to the southern Gulf and the Musandam
(56 and 58%, respectively, Bento et al., 2016), mainly as a result
of a algal bloom in 2009 when 50–90% of corals were lost from
reefs (Bauman et al., 2010; Foster et al., 2011). As a result, while
individual corals here are fecund, reef-wide reproductive output
for a variety of dominant coral species is low as a consequence of
the limited number of fecund adults in the community (Howells
et al., 2016), potentially explaining the absence of coral settlers
on tiles and the relatively low overall juvenile recruitment rates
observed by Pratchett et al. (2017). It should be noted, however,
that recovery on highly disturbed reefs typically takes 10–15 years
(Purkis and Riegl, 2005; Burt et al., 2008; Ateweberhan et al.,
2011), even in areas where larval supply remains depressed for
up to 6 years (Gilmour et al., 2013). As the current study was
performed 8 years after the catastrophic HAB event, this suggests
that there is hope that recovery may occur in the near future. It
is unclear whether the absence of coral settlement observed here

extends to other parts of the Sea of Oman. A recent survey of
coral reefs 400 km southwest around Muscat, Oman, suggested
that many coral reefs there continue to have high coral cover
despite showing indications of localized decline in some areas
over the past two decades, with available evidence suggesting that
declines were primarily due to a recent cyclone rather than the
dramic HAB induced loss that impacted the coral communities
on reefs studied here (Coles et al., 2015). An assessment of the
reproductive capacity and settlement patterns of corals on reefs
elsewhere in the Sea of Oman is highly warranted.

Coral reefs around the world are becoming increasingly
degraded as a result of climate change and localized
anthropogenic impacts (Hughes et al., 2010; Pandolfi et al.,
2011) with widespread shifts toward a dominance of non-
coral benthos (Colvard and Edmunds, 2011; Kelmo et al.,
2013, 2014). While many studies have focused efforts on
understanding the dynamics of coral settlement following
disturbance (Glassom et al., 2004; Abelson et al., 2005; Green
and Edmunds, 2011; Sawall et al., 2013; Bauman et al., 2014),
few studies have explored the role that non-coral benthos may
play in affecting early recovery dynamics on reefs (Colvard
and Edmunds, 2011; Luter et al., 2016). Non-coral benthos
are among the first colonists to settle on substrates opened by
disturbance, and typically reach an abundance and coverage
that greatly exceeds that of coral spat (Dunstan and Johnson,
1998; Díaz-Castañeda and Almeda-Jauregui, 1999; Glassom
et al., 2004; Mangubhai et al., 2007; Stubler et al., 2016). Given
that many of these non-coral benthos can alternatively facilitate
or inhibit subsequent coral recruitment in the space opened
by disturbance, their presence could dramatically impact the
trajectory of subsequent recovery on disturbed reefs. Our
results showed that the initial settlement community was highly
region-specific, with non-coral benthos being the primary
members of the settlement community in all areas. In some
regions, these initial communities were dominated by taxa
known to facilitate settlement of coral larvae (for example, over
a quarter of Gulf tile space was covered by crustose coralline
algae, a well-known inducer of larval coral settlement (Ritson-
Williams et al., 2014; Tebben et al., 2015), suggesting conditions
favorable to coral colonization following disturbance. In others,
however, early settlement communities were dominated by
fauna known to inhibit coral larval settlement (e.g., ascidians
covered a third of tiles in the Musandam, and various ascidians
are known to produce allelochemicals that can inhibit coral
settlement (Chadwick and Morrow, 2011). Our knowledge of
the types of benthic organisms and the mechanisms that they
use to interact with coral larvae is relatively under-developed
(Ritson-Williams et al., 2009), but our results here suggest that
such information is essential if we are to understand how the
initial settlement community may affect the trajectory of early
community development. Initial settlement communities will,
of course, be shaped by post-settlement processes that will likely
lead to mature assemblages that are markedly different in their
structure. But because this first stage of development provides
the foundation open which all post-settlement processes can act,
it represents a critical bottleneck that has important implications
for whether or not a disturbed reef has the capacity to recover.
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