
1SCIEntIFIC REPORTS |  (2018) 8:7772  | DOI:10.1038/s41598-018-24472-2

www.nature.com/scientificreports

Development and worldwide 
use of non-lethal, and minimal 
population-level impact, protocols 
for the isolation of amphibian 
chytrid fungi
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Parasitic chytrid fungi have emerged as a significant threat to amphibian species worldwide, 
necessitating the development of techniques to isolate these pathogens into culture for research 
purposes. However, early methods of isolating chytrids from their hosts relied on killing amphibians. 
We modified a pre-existing protocol for isolating chytrids from infected animals to use toe clips and 
biopsies from toe webbing rather than euthanizing hosts, and distributed the protocol to researchers 
as part of the BiodivERsA project RACE; here called the RML protocol. In tandem, we developed a lethal 
procedure for isolating chytrids from tadpole mouthparts. Reviewing a database of use a decade after 
their inception, we find that these methods have been applied across 5 continents, 23 countries and in 
62 amphibian species. Isolation of chytrids by the non-lethal RML protocol occured in 18% of attempts 
with 207 fungal isolates and three species of chytrid being recovered. Isolation of chytrids from tadpoles 
occured in 43% of attempts with 334 fungal isolates of one species (Batrachochytrium dendrobatidis) 
being recovered. Together, these methods have resulted in a significant reduction and refinement of our 
use of threatened amphibian species and have improved our ability to work with this group of emerging 
pathogens.
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A major consequence of globalisation has been the increase of invasive species owing to trade in live animals and 
plants. A further outcome of this process is the concomitant rise of novel emerging fungal pathogens (EFPs1) 
as these infections are moved within trade networks and establish in uninfected regions – an example of fungal 
‘pathogen pollution’2. Whilst EFPs can affect humans, they have also been broadly detrimental to natural popu-
lations of plants and animals, leading to worldwide losses of biodiversity. This dynamic has been most apparent 
across amphibians, where EFPs leading to population extirpation and species extinctions have contributed to 
amphibians now being the most endangered class of vertebrate3,4. In particular, emergence of parasitic fungi in 
the genus Batrachochytrium (phylum Chytridiomycota, order Rhizophydiales) have played a major role in driving 
amphibian population and species declines worldwide5,6.

While a single species, Batrachochytrium dendrobatidis (Bd), was originally thought to have caused the ongoing 
panzootic7, we now know that amphibian chytridiomycosis is caused by a much broader swathe of phylogenetic 
diversity than was previously thought8,9. Next-generation sequencing and phylogenomic analyses have shown that Bd 
sensu stricto is composed of deep genetic lineages which are emerging through international trade in amphibians10–12. 
Superimposed upon this background of trade-associated lineages of Bd has come the recent discovery of a new species 
of pathogenic chytrid, also within the Rhizophydiales, B. salamandrivorans13. This pathogen has rapidly extirpated 
European fire salamanders (Salamandra salamandra) in the Netherlands and a broad screening of urodeles has shown 
that Bsal occurs naturally in southeast Asia where it appears to asymptomatically infect salamander and newt species14.

The ability to isolate and culture both Bd and Bsal has played a key role in their discovery and by catalysing 
research into their pathogenesis and virulence15–17, phenotypic characteristics18–20 and a wealth of experimental 
studies on epidemiologically relevant parameters21–23. Longcore et al.24 first isolated Bd from infected amphib-
ians by modifying techniques used to isolate other chytrids25. Longcore cleaned small (<0.5 mm dia) pieces of 
Bd-infected leg and foot skin by wiping them through agar and then placed skin pieces onto a clean plate of nutri-
ent agar containing penicillin G and streptomycin. This method worked well for isolating from dead animals sent 
by courier from North and Central America. The method, however, requires euthanizing potentially healthy ani-
mals if their infection status was unknown. Further, it is difficult to perform these techniques in remote regions 
that lack suitable laboratory facilities, and the lethal sampling of amphibians may be contraindicated if the species 
is endangered, protected or located in protected areas.

We confronted this issue in a 2008–2014 project funded by BiodivERsA (http://www.biodiversa.org) – RACE: 
Risk Assessment of Chytridiomycosis to European amphibian biodiversity26. One of the objectives of this project 
was to adjust the original protocol of Longcore et al.24 to (i) reduce the need to kill adult amphibians, (ii) improve 
rates of chytrid isolation by allowing the use of more animals, (iii) develop protocols that enabled isolation in a 
field setting, and, (iv) integrate the data into the GPS-smartphone enabled epidemiological software application 
Epicollect27,28. Furthermore, ‘forewarned is forearmed’ and we wished to determine whether the protocol was 
able to isolate other species of chytrid that are members of the amphibian skin microbiota, and that may present 
a biosecurity risk. This need to more broadly characterise global chytrid biodiversity was met by using resources 
from RACE to train researchers worldwide in chytrid isolation techniques to provide opportunities to character-
ise novel chytrids as they were discovered.
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In addition to the non-lethal isolation protocol, a lethal method was developed in parallel to isolate chytrids 
from the mouthparts of larval amphibians. We describe this method as a refinement to the main isolation 
protocol.

Methods
Non-lethal field isolation of chytrids. Animals were captured and held in separate plastic bags or suitable 
containers until ready for processing (Supp. Info. RML Protocol 1 and Supp. Info. Swabbing Protocol 2). Using 
clean gloves and sterilized dissection scissors or scalpel blades, the terminal 1–2 mm of the phalanges of the 4th hind 
toe (counting from the proximal toe) was clipped and laid onto the surface of an mTGhL + antibiotic (200 mg/L  
penicillin-G and 400 mg/L streptomycin sulphate) agar plate. Alternatively, ~1 mm toe-webbing biopsy punches 
were taken (Sklar instruments, PA, USA) then laid on a plate. This allowed multiple animals to be processed rap-
idly in the field. Subsequently, each tissue sample was transferred to a second plate with a sterile needle or forceps 
then cleaned (as far as possible) of surface-contaminating bacteria and fungi by dragging it through the agar-me-
dium. The needle or forceps was then used to place the tissue sample into a sterile 2 ml screw-cap microtube 
containing liquid mTGhL medium with antibiotics (200 mg/L penicillin-G and 400 mg/L streptomycin sulphate), 
then stored in a cool, dry place. While 4 °C appears optimal, we have successfully used shaded regions of streams 
to cool cultures when refrigeration was not immediately available and have even held tubes and plates for several 
days at >10 °C until suitable storage conditions were available.

Once back in the laboratory, samples in tubes were visually screened for evidence of yeast or bacterial contam-
ination (when the media takes on a ‘cloudy’ appearance), or mycelial ‘balls’ around the toe that are evidence of 
non-chytrid fungal contaminants. Visibly clear samples were decanted into a single well of a sterile 12-well lidded 
culture plate then incubated at 18 °C for up to 4 weeks, topping up with extra medium to counter evaporation 
as necessary. Depending on the size of the initial tissue sample, toe clips and webbing were divided into several 
smaller samples before transferring to liquid culture media.

Isolating chytrids from tadpoles. Tadpoles often have higher burdens of infection than adults, especially 
long-lived tadpoles29, and have higher densities and encounter rates than adults. As incomplete data exists as 
to which amphibian species raise tadpoles that are susceptible to Bd, in practice tadpoles from a range of spe-
cies should be tested. Where tadpoles are large and infections heavy, tadpoles were microscopically prescreened 
with a dissecting microscope or hand lens in order to detect areas of depigmentation and hyperkeratosis within 
mouth parts, especially the jaw sheaths, that are associated with infection30–33 (Fig. 1). Tadpoles are euthanized 
using a humane method that does not affect the fungi (e.g., overdose of MS-222) before excising their mouth-
parts and these preliminary microscopic screens enabled us to use only a small number of animals to isolate 
chytrids. Additionally, uninfected and naïve tadpoles that were reared in captivity were used as live substrates to 
bait chytrids from adult amphibians with low levels of Bd infection34.

When using tadpoles to bait Bd from infected adult amphibians, tadpoles from a susceptible species such as 
Bombina orientalis34 were co-housed with an infected animal. Susceptible tadpoles were reared until gills were 
resorbed and animals were free-swimming and feeding (developmental Gosner stage 25), because at earlier stages 
they are still developing the keratinized mouthparts. Each tadpole container was then immersed within a similar 
but larger container that held at least one chytrid-infected animal. Water exchange between the infected and bait 
animal containers occurred through small holes (<0.3 mm) drilled into the bottom of the walls of the smaller 
internal containers. Animals were held in these conditions for between 2 and 4 weeks at species-appropriate con-
ditions. Tadpoles were periodically examined every fourth day for the presence of the depigmented areas in the 
jaw sheaths that have been associated with chytrid infection.

Isolating chytrids from tadpoles first required killing by immersion in a 5 g/L solution of MS-22235 or other 
approved method. Note that anaesthetics that contain ethanol, such as phenoxyethanol36, should be avoided as 
these kill chytrids while MS222 is not toxic37. We then dissected out keratinized jaw sheaths and cleaned the entire 
sheath, or sections, as above using an agar plate with antibiotics (24; Supp. Info. RML Protocol 1). Cleaned sections 
were then placed singly into sterile 12-well culture plates with 1 mL liquid media + antibiotics, or onto agar plates 
with 6–10 sections per plate, and incubated at 10–20 °C.

Figure 1. Oral deformities in tadpoles of Hylodes phyllodes caused by Batrachochytrium dendrobatidis infection. 
(a) healthy tadpole mouthparts, (b) depigmentation of jaw sheath and (c) depigmentation of tooth-rows as a 
consequence of infection.
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Because zoospore release may occur immediately, especially from tadpole mouthparts, cultures were exam-
ined with an inverted microscope for the presence of active zoospores every day for up to one week following the 
day that they were initiated. After that, checks every two days were sufficient.

Culture and diagnosis of chytrid isolates. Subsequent culture methods for Bd followed those of 
Longcore et al.24. When isolation of Bsal was anticipated an incubation temperature of 15 °C was required38 
whereas a temperature of 18–22 °C is closer to the measured growth optimum of Bd23,24. Once growth of zoo-
spores and/or zoosporangia was observed, 100–500 µL volume of the culture was transferred by pipette to a new 
12-well plate with liquid medium and no antibiotics, and incubated at 15–20 °C. All successfully cultured isolates 
were subcultured into larger volumes, then centrifuged at 1700 rpm for 10 min before cryopreservation. A por-
tion of the initial pellet was also be used for DNA extraction, while the remaining volume was resuspended in 
10% dimethyl sulfoxide (DMSO) and 10% fetal calf serum (FCS) in liquid media and transferred into six 2 mL 
cryotubes for cryopreservation at −80 °C39.

We confirmed the identity of Bd and Bsal by quantitative PCR with an MGB Taqman probe assay in either 
single-plex or multiplex40,41. We identified non-Batrachochytrium chytrids by sequencing appropriate regions of 
the ribosomal RNA gene with universal fungal primers followed by comparison against OTUs held in UNITE 
database (Unified system for DNA-based fungal species linked to classification: https://unite.ut.ee) to establish 
a species-hypothesis for the chytrid isolate in question42. If further genetic data were required, then multilocus 
analysis or whole-genome sequencing was undertaken using chytrid-specific methods1,7,16,43.

Collation of data. To track and report chytrid isolation for the RACE project, we used a generic data col-
lection tool that allows the collection and submission of geotagged data forms from field locations, Epicollect5 
(https://five.epicollect.net). This software has the advantage that it can be used on mobile devices with or with-
out internet connection, and allows the immediate sharing of data across the research community. Our data-
base at https://five.epicollect.net/project/bd-global-isolation-protocol included the following data fields: Date; 
Continent, Country, Site name; Latitude/Longitude; Wild caught or trade?; Amphibian species; Life history stage; 
Number sampled; Chytrid isolated?; Number isolated; Species of chytrid isolated; Chytrid lineage; Photograph of 
amphibian; Name of researchers.

All field-collection and application of protocols were performed in accordance with the relevant local guide-
lines, regulations and licensing. Experimental protocols were approved after ethical review by the Imperial 
College and Institute of Zoology ethical review committees and were performed under UK Home Office Project 
Licences held by MC Fisher and TWJ Garner.

Data accessibility. https://five.epicollect.net/project/bd-global-isolation-protocol.

Results
The ‘RACE modified Longcore (RML) Protocol’ for the non-lethal isolation of chytrids from amphibians is 
detailed in Supp. Info. 1. Researchers should ensure that they have the relevant licences, permits and permissions 
from ethical committees to follow the RML protocol 1, swabbing protocol 2 and isolation from larval amphibians.

Following the formalisation and distribution of the RACE protocols, our Epicollect5 project summa-
rised chytrid surveys from 2007 through to 2017 (Table 1). The Epicollect5 database can be spatially visual-
ised at https://five.epicollect.net/project/bd-global-isolation-protocol/data. Figure 2 depicts the isolation of 
amphibian-associated chytrids using the RACE protocols from 5 continents (Africa, Asia, Australia, Europe 
and South America), 23 countries, 239 sampling episodes, and from latitudes spanning −44.1 S (Batrachyla 
antartandica, Chile) through to 55.6 N (Bufo viridis, Sweden). Chytrids have been non-lethally isolated from 
1,906 animals comprising 34 amphibian species, of which 28 were anuran and 5 were caudatan species. Of the Bd 
isolated, 170 (80%) were determined to be BdGPL, 5 (2%) were BdCAPE, 34 (16%) were BdBRAZIL, 1 (>1%) was 
BdCH and 3 (1%) were hybrids. The database also contains 5 records of chytrids that were non-lethally sampled 
from the amphibian trade.

Non-lethal isolation from adult and juvenile amphibians. In total, 1,152 animals were non-lethally 
sampled, recovering 207 chytrid isolates and resulting in a recovery rate of 18% (~1 isolate per 5 animals sam-
pled). Of these chytrids, 203 (98%) were Bd, 2 were Rhizophydium sp., 2 were Kappamyces sp. and none were Bsal 
(Table 1). Of the Bd isolated, 42 (88%) were determined to be BdGPL, 5 (10%) were BdCAPE, and 1 (2%) was 
BdCH.

Isolation of chytrids from larval amphibians. In total, 784 tadpoles were sampled recovering 334 
chytrid isolates and resulting in a recovery rate of 43% (~1 isolate per 2–3 animals sampled) (Table 2). Isolates 
were recovered from 34 species of amphibian, all of which were anurans. These chytrid isolates were all Bd and, of 
the lineages recorded, 128 (78%) were BdGPL, 34 (20%) were BdBRAZIL and 3 (2%) were hybrids.

Baiting chytrid isolates from live adult animals using tadpoles was used successfully in South Korean Bombina 
orientalis as previously described34. Here, six tadpoles were co-housed with adult B. orientalis, yielding a single 
isolate of Bd for each attempt equating to a rate of success of ~20%.

Discussion
The RML protocol, based on the original suggestions of Joyce Longcore for the non-lethal isolation of chytrids 
from amphibians, has been a success with isolates of chytrids recorded from five continents. There are likely many 
other unrecorded uses of this method because this protocol has been widely dispersed during the 5-year span 
(2008–2014) of the RACE project which trained a cohort of amphibian disease researchers in these techniques.

https://unite.ut.ee
https://five.epicollect.net
https://five.epicollect.net/project/bd-global-isolation-protocol
https://five.epicollect.net/project/bd-global-isolation-protocol
https://five.epicollect.net/project/bd-global-isolation-protocol/data
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Continent Country n Speciesa n Sampledb n Chytridc Chytrid species

Africa

Madagascar 2 145 2 Kappamyces sp.

Cameroon 1 30 1 B. dendrobatidis

Ethiopia 1 5 1 B. dendrobatidis

South Africa 6 179 45 B. dendrobatidis

Asia
South Korea 2 28 10 B. dendrobatidis

Taiwan 3 103 13 B. dendrobatidis/
Kappamyces sp.

Australia Australia 1 2 2 B. dendrobatidis

Europe

Belgium 1 11 2 B. dendrobatidis

France 2 261 70 B. dendrobatidis

Hungary 1 15 3 B. dendrobatidis

Italy 1 14 4 B. dendrobatidis

Portugal 1 5 1 Rhizophydium sp.

Spain 4 198 37 B. dendrobatidis

Sweden 1 23 5 B. dendrobatidis

Switzerland 1 30 1 B. dendrobatidis

UK 4 50 8 B. dendrobatidis

South America
Chile 1 10 1 B. dendrobatidis

French Guiana 2 66 2 B. dendrobatidis

Trade n/a 4 15 5 B. dendrobatidis

Table 1. Non-lethal isolation of chytrids from adult and juvenile amphibians. aNumber of amphibian species 
sampled, btotal numbers of amphibians sampled, cnumber of chytrids isolated.

Figure 2. Worldwide distribution of sites where the RML Longcore protocol has been used to isolate chytrids. 
Numbers denote the quantity of amphibian species investigated. A browseable version of this Epicollect 
5 map can be accessed at https://five.epicollect.net/project/bd-global-isolation-protocol. Tiles © Esri — 
Source: Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, and the 
GIS User Community and OpenStreetMap © OpenStreetMap.org contributors licence CC BY-SA (https://
creativecommons.org/licenses/by-sa/2.0/).

https://five.epicollect.net/project/bd-global-isolation-protocol
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
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In some circumstances chytrids could not be recovered from toe-clips when sampling populations with persistent 
infection despite repeated attempts. This was particularly evident when the prevalence and burden of chytrid infections 
in surveys was low14,34,44 or when host species occupied habitats with high bacterial, non-target fungal contaminants, or 
both. In these situations we isolated chytrids from tadpole mouthparts as an associated method to the RML protocol. 
The value of the RML protocol in propelling forward research on amphibian chytridiomycosis has been very clear: for 
instance, of the 59 scientific papers produced by RACE, 15 directly used isolates of Bd that were generated by this proto-
col for experimental trials. Further, subsequently many more studies using these isolates have extended our knowledge 
of the genetic diversity of Bd7,8,43,45, the development of novel diagnostics46, the genetic repertoire that underpins the 
virulence of these pathogens16,17 and the biogeographic distributions of Bd diversity worldwide8,45.

Clearly some uncontrolled biases and unanswered questions in these studies need attention. First, the majority 
of Bd isolates belong to the BdGPL lineage. This could be because this lineage is more widespread (and therefore 
more readily recovered) than other lineages47. Alternatively, the intensity of BdGPL infections or its rate of zoo-
spore production may be higher than for other lineages, which would also equate to a higher rate of isolation. To 
achieve a true and unbiased understanding of the distribution of these lineages, a lineage-specific diagnostic will 
need to be developed and deployed. Second, if lineage-specific differences in the probability of successful isola-
tion exist, then mixed infections where these lineages co-occur may not be detected. This can be controlled for 
by isolating and genotyping many isolates from a single host and population, although this may not fully account 
for this bias. A related bias is that not all infectious species of chytrid will respond equally to culturing attempts. 
For instance, despite known attempts to isolate Bsal from across its endemic southeast Asian range using the 
protocol, to date no successful isolations of Bsal have been recorded. This is likely due to a combination of the 
low prevalence and burden of infection in salamanders and newts combined with the low initial growth-rate 
of Bsal13,14. With the RML protocol, however, workers have been able to isolate non-Bd species of chytrid (e.g., 
Kappamyces spp. and Rhizophydium sp. Table 1). This diversity likely represents only a fraction of the diversity of 
amphibian-associated chytrids that occur, and non-biased estimators of this diversity by, for instance, profiling 
the nuclear ribosomal RNA cistron42, are sorely needed.

In this age of the global amphibian crisis, research on the affects of chytrid infections is transitioning to 
attempts to mitigate their impacts48–50. Both of these research streams benefit from the availability of chytrid iso-
lates, but the ethics behind these research programs can be improved. To that end, our data on isolation success 
suggest that tadpoles are a better target for isolation than metamorphosed animals. This is to some degree unfor-
tunate, because isolation from tadpoles requires killing. However, we have outlined one refinement where captive 
reared tadpoles can be used to ‘bait’ infections from wild-caught amphibians to isolate chytrids without killing 
adult amphibians. Here, it is important to recognise that amphibians that have been co-housed in collections 
should not be returned to the wild owing to the danger of cross-transmission of pathogens during husbandry51. If 
it is necessary to isolate chytrids directly from wild tadpoles without using bait animals, we suggest that research-
ers focus on more fecund species with long larval periods as the focal species in aquatic amphibian communities. 
Removal of small numbers of tadpoles when clutch sizes are in the hundreds or thousands should ensure minimal 
ecological impact; for this reason sacrificing tadpoles is preferable to killing adult animals.

The extent to which toe-clipping affects the fitness of amphibians has been much debated52,53). Toe-clipping 
has been shown to decrease amphibian survival, but this effect, when present, is linearly related to the number 
of toes removed54,55. For the single toe-clip that the RML protocol requires, reduction in survival appears to be 
negligible53,56, and toe clipping is certainly preferred to killing the animal. Attention should be paid to this issue, 
however, and, where appropriate, survival estimates should be undertaken to determine the health implications 
of this procedure. Also, antiseptic and analgesic protocols can be considered to ensure that wounds where tissue 
samples are excised are at low risk of secondary infection57.

In summary, modification of Longcore’s original Bd-isolation protocol24 has enabled a broad community of 
scientists to engage with research on emerging chytrid pathogens of amphibians. This research has had an impact 
worldwide, and is contributing to the ongoing dialogue that is occurring among scientists, conservationists and 
policy-makers about how we might mitigate against these infections now and into the future58.

Continent Country Host species Larvae sampled Bd isolates

Africa

Ethiopia 1 36 1

Uganda 1 20 1

South Africa 2 88 11

Asia Taiwan 1 15 1

Australia Australia 8 54 33

Europe

Belgium 2 2 2

Netherlands 1 1 1

France 1 138 38

Germany 1 10 4

Spain 3 19 7

Switzerland 1 42 15

South America
Chile 2 28 4

Brazil 17 353 217

Table 2. Isolation of Batrachochytrium dendrobatidis from mouthparts of larval amphibians.
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