

ResearchOnline@JCU

This file is part of the following work:

Bermingham, Luke Leslie (2018) From spatio-temporal trajectories

to succinct and semantically meaningful patterns. PhD thesis, James

Cook University.

Access to this file is available from:

https://doi.org/10.4225/28/5afa1141b90e5

Copyright © 2018 Luke Leslie Bermingham.

The author has certified to JCU that they have made a reasonable effort to gain permission and

acknowledge the owner of any third party copyright material included in this document. If you

believe that this is not the case, please email researchonline@jcu.edu.au

https://doi.org/10.4225/28/5afa1141b90e5
mailto:researchonline@jcu.edu.au

JAMES COOK UNIVERSITY

DOCTORAL THESIS

From Spatio-Temporal Trajectories To
Succinct And Semantically Meaningful

Patterns

Author: Luke Leslie BERMINGHAM
BIT (Hons)

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy (Information Technology)

in the

College of Business, Law and Governance

April 6, 2018

iii

Declaration of Authorship

I, Luke Leslie BERMINGHAM, declare that this thesis titled, “From Spatio-Temporal
Trajectories To Succinct And Semantically Meaningful Patterns” and the work
presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

Signed:

Date:

v

Acknowledgements

This thesis represents my journey through the world of research and academia,
guided every step of the way by my friendly and excellent supervisor, Professor
Ickjai (Jai) Lee. I first met Jai in the second year of my undergraduate degree and he
taught me about data-structures and algorithms. That subject, and the way Jai
taught it, ignited a strong interest in me for computer science. Jai noticed this and
helped me go from strength-to-strength over the course of the following seven
years. Jai has always been exceptionally accommodating, responding to hundreds
of emails and phone calls and, more generally, keeping me on track with my work.
Over the duration of the PhD, especially, Jai has been a constant source of help and
mentorship. Jai also challenged me to reach for higher goals and constantly
encouraged me to be better than I thought I could ever be. Because of this, I have
learnt many new skills and brought old skills to new levels: these I will take with
me forever. For all this, I owe Jai a huge debt of gratitude and thank him
wholeheartedly.

The other major source of support I need to acknowledge is my family. My
parents, Matthew and Diana, have been extremely patient and generous
throughout my studies; for this I am eternally grateful to them. I would also like to
thank my brother, Blake, for his helpful and patient advice, teaching me some tips
and tricks about formal writing. To my sisters, Nikki and Anna, I thank them for
their joshing and support.

Also, I would like to thank Adam Rehn and Aidan Possemiers, my fellow PhD
students, for swapping PhD stories and allowing me to distract them when I needed
a break. Special thanks go to my long-time friend Nicholas Pace who was checking
up on me and encouraging me in last six months of intense thesis writing, review,
and compilation.

Lastly, I would like to acknowledge the great work of the paid external
proofreader I enlisted: Briana Possemiers. After all drafting was completed, Briana
proofread the thesis, checking spelling, grammar, punctuation, sentence structure,
style, and language usage. I declare that I have read the “Guidelines for the Editing
of Research Theses by Professional Editors” and believe Briana’s editorial work on
this thesis complies.

vii

Statement of the Contribution of
Others

Nature of Assistance Contribution Names

Supervision support Primary, secondary, and secondary,
supervision, respectively.

Professor Ickjai Lee, Dr
Joanne Lee, and Dr Jason
Holdsworth.

Research support Drafting, paper/thesis design, data
analysis, statistics support, math
support, review, and correctness
checks.

Professor Ickjai Lee.

Proofreading support Grammar, spelling, punctuation,
sentence structure, and language
usage.

Professor Ickjai Lee and
Briana Possemiers (paid
external proofreader).

Financial support Australian Postgraduate Award
(APA) Research Scholarship
stipend 3.5 years

James Cook University.

ix

Abstract

Luke Leslie BERMINGHAM

From Spatio-Temporal Trajectories To Succinct And
Semantically Meaningful Patterns

It is now possible to track moving entities such as humans, animals, or vehicles at
relatively high sampling-rates, over long durations of time. This produces large,
detailed spatio-temporal trajectories that contain millions of geographic positions
and timestamps. These large spatio-temporal trajectories capture the
potentially-interesting behaviours of individual entities; they are prime candidates
for data mining and knowledge discovery. However, within the trajectory data
mining and knowledge discovery process I have identified four challenges that
hinder the discovery of succinct and semantically meaningful trajectory patterns:
spatial uncertainty, trajectory complexity, pattern complexity, and semantic
meaning.

The first challenge, spatial uncertainty, is present in many GPS trajectories. As
the global positioning technology used to record trajectories is not entirely accurate,
it produces noisy recordings for various reasons: antenna quality, satellite
availability, and multi-path errors, inclusively. This extra noisiness in the data
makes trajectories more difficult to efficiently mine; it increases the likelihood of
discovering false patterns, also, potentially, masking real patterns.

The second challenge, trajectory complexity, refers to the large size and
redundancy that is now typical due to the high sampling-rate and long-duration of
real-world trajectory data collection. High sampling-rates and long durations are
both effective techniques to increase the likelihood of capturing more patterns. I
expect that trajectories will be sampled at increasingly higher rates, over longer
durations, especially due to the low cost of storage and advances in battery
technology. Decreasing the sampling-rate or duration is not an ideal solution
because it arbitrarily reduces the amount of information captured. Unsimplified,
however, these large trajectories do significantly slow down and complicate the
mining process; as we mine increasingly larger trajectory datasets a solution is
increasingly important.

Pattern complexity is the third challenge, and occurs because many existing
trajectory data mining approaches produce pattern outputs that are not succinct or
easily interpretable. In fact, the pattern outputs are sometimes so large they can
overload the user and make knowledge discovery overly time consuming.
Typically, to make sense of such trajectory patterns a human operator is required to
use their expertise to further filter the results or manually select key patterns to
represent supposed general trends. Ideally, mined trajectory patterns should be
succinct enough that any post-processing by a human operator would needlessly
discard information: if additional processing is required to aid pattern
interpretation, that processing is far better suited as a step in the mining process.

Semantic meaning refers to the inherent absence of any contextual information
present in raw spatio-temporal trajectories; it is the fourth challenge. Typically, raw

x

spatio-temporal trajectories only record the geographic location with a time-stamp.
Mining these raw spatio-temporal trajectories alone, limits the type of discoverable
patterns. To uncover knowledge beyond pure movement patterns, extra contextual
information that is semantically meaningful, in the application domain, is required.
Each type of semantic information that could be inferred or combined with
trajectories, presents a unique challenge.

Overall, the aim of this thesis is to investigate solutions to these four challenges
to ultimately produce succinct and semantically meaningful trajectory patterns. To
do so I divided the thesis into four parts and in each part I addressed some
combination of these four challenges at various stages in the trajectory data mining
and knowledge discovery process. In the first, I investigated a pre-processing
solution that addresses the challenge of trajectory complexity. Specifically, I
introduced a framework to create spatio-temporal trajectory simplification
approaches. Using this framework I created several spatio-temporal simplification
algorithms based on well-known poly-line simplification techniques, evaluating
them using multiple real-world trajectory datasets. The results indicated that a
number of the simplification algorithms produced were both efficient and effective
at reducing the trajectory complexity of the tested real-world trajectories.

Second, I investigated a sequential pattern mining approach that addresses all
four challenges in the context of vehicle trajectories. They were chosen for this
section because they are simpler to process: they are constrained, in that they only
travel underlying road networks. In this approach, I map-matched several
real-world vehicle trajectory datasets onto road networks, thus removing their
spatial uncertainty, reducing their complexity, and transforming them into a series
of semantically meaningful street names. When using traditional sequential pattern
mining approaches, mining these large, yet highly redundant sequences produced
far too many patterns; meaningful interpretation became impossible. Thus, to
overcome the challenge of pattern complexity I mined the sequences using an
algorithm I created called DC-SPAN. DC-SPAN mines a highly succinct, but lossy,
set of contiguous patterns where the user can control the sub-sequence redundancy
of the pattern output. Experiment results on real-world bus trajectories showed
that compared to existing contiguous sequential pattern mining approaches
DC-SPAN was able to achieve as much a 98% compression in its pattern output
while trading off only a 20% increase in lossiness. The results of this section were
promising, but ultimately, largely specific to the vehicle trajectory domain.

In the third part I introduced a pre-processing approach called POSMIT.
POSMIT annotates each spatio-temporal entry, in a trajectory, with a semantic label
indicating whether the entity was stopping or moving within that recording. This
semantic stop/move label is a step towards the challenge of enriching raw
trajectories with semantic meaning because it can be used to infer further semantic
information later in the trajectory data mining process. For example, an extended
subsequence of stopping entries occurring inside a restaurant may indicate that the
tracked entity was dining. Existing stop/move classification approaches are based
on geographic and clustering-based concepts. These approaches definitively label
each entry as a stop or a move, meaning that the accuracy of the resulting
classification is strongly linked to the user’s ability to estimate the required
parameters. Conversely, POSMIT computes the probability that a given entry is
stopping; then, stopping entries with probabilities below a user-specified threshold
are filtered out and become moves. Unlike existing approaches, this feature of
POSMIT allows users to tend the result towards having less false-positive stop
classifications, which is important in applications like data mining where

xi

false-positives can lead to false patterns. The experiment results on real-world
ground-truth stop/move annotated trajectories revealed that, compared to the
existing approaches that were tested, POSMIT achieved a higher classification
accuracy while also being more robust in parameter selection.

Finally, I used several concepts from the previous sections, both directly and
indirectly, and introduced STOSEM: an overall semantic trajectory data mining
approach that addresses all four of the identified challenges. STOSEM begins by
using POSMIT to enrich each trajectory with stop/move information. Then,
STOSEM proceeds to cluster these stop/move annotated trajectories into sequences
of extended stop episodes. Clustering the individual recordings into stop episodes
greatly reduces the raw trajectory complexity, neatly handling the problem of
spatial uncertainty by representing many stopping entries within a single stop
radius. After the stop episode formulation STOSEM then incorporates a repository
of real-world places. This addresses the challenge of semantic meaning: all nearby
real-world places are associated with relevant stop episodes to build a list of
candidate places where the stop may have actually occurred. STOSEM, then,
proceeds to match each sequence of stop episodes to its likely sequence of visited
real-world places, using a probabilistic place-matching algorithm. In general,
STOSEM’s steps, as described thus far, essentially transform each raw trajectory
into a discrete, succinct, and human readable series of place visitations that
describe the journey of each tracked individual. This transformation makes data
mining simple because this sequence of places is an ideal input for traditional
frequent itemset and sequential pattern mining algorithms while remaining
succinct enough to avoid the issue of pattern complexity.

To evaluate the efficiency and effectiveness of STOSEM I performed
quantitative experiments using real-world and synthetic datasets. Some key
findings from the quantitative experiments include: that the stop episode clustering
is an effective simplification technique that preserves semantic meaning; that the
proposed probabilistic place-matching approach was more accurate than the
non-probabilistic approaches I tested. Additionally, to empirically test the
applicability of STOSEM I performed a case study using a real-world human
trajectory dataset called Geolife. The case study revealed that mining these place
visitations, using traditional frequent itemset and sequential pattern mining
algorithms, produced succinct and semantic trajectory pattern output. A key
finding from the patterns was the existence of certain kinds of participants, such as
University attendees and Microsoft employees: both specific participant
demographics reported by the original Geolife researchers. Another key finding
was the observed behaviours of certain kinds of participants, based on their
visitations. For example, some participants seemingly revealed their University
attendance timetables through their collected trajectories. These kinds of results,
extracted neatly from raw spatio-temporal trajectories are very encouraging and
motivate us to extend this approach to future works. This technique could also
uncover move episodes between extended stops; they could then be classified into
the likely mode of transport being used (i.e. car, bus, walking etc.).

Overall, this study produced several approaches that addressed the challenges
of spatial uncertainty, trajectory complexity, pattern complexity, and semantic
meaning across multiple real-world trajectory data mining problems. In particular,
my cumulative work on STOSEM addresses all challenges, producing succinct and
semantically meaningful patterns for real-world human trajectory datasets.

xiii

Contents

Declaration of Authorship iii

Acknowledgements v

Abstract ix

1 Introduction 1
1.1 Preliminaries . 1

1.1.1 Spatial Trajectories . 2
1.1.2 Spatio-temporal Trajectories . 2
1.1.3 Semantic Trajectories . 3
1.1.4 Semantic Episodes . 4
1.1.5 Choice of Wording . 5

1.2 Background . 5
1.2.1 The First Generation . 5
1.2.2 The Second Generation . 6

1.3 Future Influences . 7
1.3.1 Outdoor Positional Accuracy . 7
1.3.2 Device Sensors . 8
1.3.3 Active Trajectory Recording . 8
1.3.4 Passive Trajectory Recording . 9

1.4 Motivating Challenges . 9
1.4.1 Challenge One: Spatial Uncertainty 9
1.4.2 Challenge Two: Trajectory Complexity 11
1.4.3 Challenge Three: Pattern Complexity 11
1.4.4 Challenge Four: Semantic Meaning 12
1.4.5 Summary of Trajectory Data Mining and Knowledge

Discovery Challenges . 13
1.5 Aims . 13
1.6 Thesis Outline . 14

2 Literature Review 17
2.1 Breadth Analysis of Trajectory Data Mining 17

2.1.1 Trajectory Preprocessing . 17
Simplification . 18
Stop/Move Detection . 19

2.1.2 Trajectory Transformation . 21
Map-matching . 21
Place-matching . 22

2.1.3 Trajectory Mining . 24
Trajectory Region-of-Interest Mining 24
Sequential Pattern Mining . 26

2.2 Depth Analysis of Trajectory Simplification Approaches 29

xiv

2.2.1 Overview . 30
2.2.2 Critical Review . 36
2.2.3 Literature Gaps . 38

2.3 Depth Analysis of Mining Sequential Patterns From Vehicle Trajectories 38
2.3.1 Overview . 39
2.3.2 Critical Review . 41
2.3.3 Literature Gaps . 42

2.4 Depth Analysis of Stop/Move Detection Approaches 42
2.4.1 Overview . 43
2.4.2 Critical Review . 47
2.4.3 Literature Gaps . 50

2.5 Depth Analysis of Place-matching Approaches 51
2.5.1 Overview . 52
2.5.2 Critical Review . 57
2.5.3 Literature Gaps . 58

2.6 Research Hypotheses . 58

3 A Framework of Spatio-temporal Trajectory Simplification Methods 61
3.1 Introduction . 63
3.2 Framework . 64

3.2.1 Normalising Trajectory Entries 66
3.2.2 Ranking Trajectory Entries . 67
3.2.3 Processing Strategies . 67

Dead Reckoning Strategy (DR) 68
Split-based Strategy (SPL) . 68
Greedy Strategy (GR) . 69
Exhaustive Strategy (EX) . 69

3.2.4 Computing Significance . 71
Perpendicular Distance (PD) Scoring Function 71
Triangular Area (TA) Scoring Function 71
Perpendicular, Parallel, and Angular (PPA) Distances Scoring

Function . 73
Angular (ANG) Scoring Function 74
Speed (SP) Scoring Function . 74

3.2.5 Creating Trajectory Simplification Methods 74
3.2.6 Reducing Trajectory Entries . 75
3.2.7 Benchmarking Trajectory Simplification Methods 76

Synchronised Euclidean Distance 76
Synchronised Area . 77
Region-of-Interest Discovery . 78

3.3 Experiment Results . 79
3.3.1 Simplification Running Time Efficiency 80
3.3.2 Geometry-based Simplification Effectiveness 82
3.3.3 RoI-Based Simplification Effectiveness 83
3.3.4 Simplification Overall Ranking 84

3.4 Conclusion . 84

xv

4 Mining Distinct and Contiguous Sequential Patterns From Large Vehicle
Trajectories 87
4.1 Introduction . 89
4.2 Problem Statement . 90

4.2.1 Preliminaries . 90
4.2.2 Problem Definition . 92

4.3 Methodology . 92
4.4 Experiment Results . 96

4.4.1 Experiment Datasets . 96
4.4.2 Running Time . 97
4.4.3 Compression . 97
4.4.4 Lossiness . 100
4.4.5 Redundancy . 102
4.4.6 Visualisation . 104

4.5 Conclusion . 104

5 A Probabilistic Stop and Move Classifier for Noisy GPS Trajectories 107
5.1 Introduction . 109
5.2 My Stop/Move Classification Approach 110

5.2.1 POSMIT Algorithm . 111
5.2.2 Stop Probabilities . 112
5.2.3 Spatial Stop Variance Parameter 114
5.2.4 Index Search Bandwidth Parameter 115
5.2.5 Minimum Stop Probability Parameter 116

5.3 Experiments and Results . 117
5.3.1 GPS Trajectory Datasets . 118
5.3.2 Varying Spatial Parameters . 119
5.3.3 Effects of POSMIT’s Search Bandwidth 120
5.3.4 Effects of POSMIT’s Minimum Stop Probability 122
5.3.5 Varying Sampling-Rate . 125
5.3.6 Running Time Efficiency . 126

5.4 Conclusion . 127

6 Mining Semantic Patterns From Spatio-temporal Trajectories Using
Complex Real-World Places 129
6.1 Introduction . 131
6.2 Method . 133

6.2.1 Spatio-temporal Trajectories . 133
6.2.2 Stop/Move Classification and Stop/Move Annotated

Trajectories . 133
6.2.3 Stop Episode Clustering . 133
6.2.4 Open Street Maps Extract and Place Candidate Search 136
6.2.5 Place-Matching and Place Visitation Trajectories 137

Initial State Probabilities . 138
State Transition Probability . 138
Emission Probability . 139
Matching places . 139

6.2.6 Home Detection . 140
6.2.7 Data Mining Place Visitations . 140

6.3 Experiments . 141
6.3.1 Datasets . 141

xvi

Geolife dataset . 141
Synthetic dataset . 142

6.3.2 Experiment Constants . 142
6.3.3 Running Time . 143
6.3.4 Accuracy . 144
6.3.5 Compression . 146

6.4 Case Study . 147
6.4.1 Itemset Mining . 147
6.4.2 Sequential Pattern Mining . 149

6.5 Conclusion . 151

7 Conclusion 153
7.1 Chapter Summaries . 153
7.2 Evaluation of Research Hypotheses . 155

7.2.1 Trajectory Simplification Hypothesis 155
7.2.2 Vehicle Trajectory Pattern Mining Hypothesis 155
7.2.3 Probabilistic Stop/Move Classification Hypothesis 155
7.2.4 Probabilistic Place-matching Hypothesis 156

7.3 Theoretical and Empirical Contributions 156
7.4 Real-world Contributions . 158
7.5 Concluding Remarks . 159
7.6 Limitations and Future Directions . 159

7.6.1 Trajectory Simplification . 160
7.6.2 Vehicle Trajectory Pattern Mining 161
7.6.3 Trajectory Stop/Move Classification 161
7.6.4 Trajectory Place-matching . 162

Bibliography 163

xvii

List of Figures

1.1 An overview of the trajectory data mining and knowledge discovery
process. 1

1.2 The distinction between an entity’s true movements and its recorded
trajectory. GPS inaccuracy causes the two stops to appear noisy. 2

1.3 A spatial trajectory. 2
1.4 A spatio-temporal trajectory. 3
1.5 A semantic trajectory. 3
1.6 A sequence of semantic episodes formulated from the semantic

trajectory shown in Figure 1.5. 4

2.1 Overview of the trajectory data mining and knowledge discovery
stages and the specific topics (the rectangles) covered in this thesis. . . 18

2.2 Example of trajectory simplification using perpendicular distance
between an entry and its neighbours as the entry significance criteria. . 19

2.3 Example of trajectory stop/detection using TrajDBSCAN by Tran et
al. (2011). 20

2.4 Example of trajectory map-matching using an approach similar to that
of Newson and Krumm (2009). 22

2.5 Example of trajectory place-matching using a probabilistic approach. . 25
2.6 Example of a trajectory RoI mining approach. 27

3.1 Overview of the trajectory data mining and knowledge discovery
stages and the specific topics (the bold rectangles) covered in this
chapter. 62

3.2 My framework for trajectory simplification, with each major stage in
bold. 64

3.3 Visualisation of each trajectory significance scoring functions. The top
half of each shows the inner workings, whilst the bottom-half shows
the simplifications. 72

3.4 SED calculation between the raw trajectory {A,B,C,D,E, F} and its
simplfiied counterpart {A′, F ′}. Note: how the removed entries
{B,C,D,E} are projected back onto the simplified trajectory,
{Bt, Ct, Dt, Et}, using a linear interpolation between the temporal
component of the preserved entries {A′, F ′}. 77

3.5 The enclosed area metric compared to SA. 77
3.6 The cellular distances between the raw trajectory’s RoI cells and the

simplified trajectory’s RoI cells. 79
3.7 Running time of my trajectory simplification methods when applied

to multiple dataset types and sizes. The series with the dashed lines
are for the growing synthetic trajectory dataset, and the vertical lines
are each of the real-world datasets. 81

3.8 SED displacement of each simplification method at varying strengths
and applied to multiple datasets (a lower score is better). 82

xviii

3.9 SA displacement of each simplification method at varying strengths
and applied to multiple datasets (a lower score is better). 83

3.10 Total RoI displacement score for each of my trajectory simplification
methods across multiple datasets (lower scores are better). 83

4.1 Overview of the trajectory data mining and knowledge discovery
stages and the specific topics (the bold rectangles) covered in this
chapter. 88

4.2 An example of simplified vehicle trajectories scenario. 89
4.3 My framework for mining distinct contiguous sequential patterns

from vehicle trajectories. 93
4.4 Running time analysis (lower is better). 98
4.5 The pattern output compression achieved by each algorithm (higher

is better). DC-SPAN was tested at varying maximum redundancies. . . 99
4.6 The percentage of all sequential patterns lost by each algorithm (lower

is better). DC-SPAN was tested at varying maximum redundancies. . . 101
4.7 The percentage of redundant pairs produced by each algorithm

(lower is better). DC-SPAN was tested at varying maximum
redundancies. 103

4.8 The raw trajectory datasets (left) and the distinct contiguous patterns
mined from them (right). 105

5.1 Overview of the trajectory data mining and knowledge discovery
stages and the specific topics (the bold rectangles) covered in this
chapter. 108

5.2 Spatial displacement between trajectory entries and the resulting
elbow point for a trajectory of a short stop/move walk (x: trajectory
nodes; y displacement (m)). 114

5.3 Stop probabilities for a trajectory of a short walk. POSMIT calculated
these stop probabilities using hi = 4 and hd = 0.6m. 116

5.4 The Android application I made to collect GPS trajectories, the main
functions of the application are as follows: a) the user can toggle
whether they are moving or stopping; b) setting the target sampling
interval, i.e. how often to try to record an entry; and c) beginning or
ending a recording. 119

5.5 POSMIT’s, CB-SMoT’s, and GB-SMoT’s classification effectiveness
(MCC) computed for several real world trajectories as their
respective spatial parameters (hd, Eps,R) are varied (a higher MCC
is better). 121

5.6 POSMIT’s classification effectiveness (MCC) computed for several
real world trajectories while its hi parameter is varied (a higher MCC
is better). 123

5.7 A comparison of each quadrant in the confusion matrix as POSMIT’s
minimum stop probability parameter, ε, is varied. Note, the dashed
vertical line indicates the ε value estimated by the heuristic from
Section 5.2.5. 124

5.8 A comparison of each algorithm’s classification effectiveness as the
sampling-rate was made increasingly sparse (a higher MCC is
better). Trend lines are overlaid on the raw results to indicate the
general tendency of each algorithm. 126

xix

5.9 POSMIT, CB-SMoT, and GB-SMoT’s running times for classifying
stops/moves in real and synthetic GPS trajectories (a lower running
time is better). Note, the y-axis in Figure 5.9a is measuring
milliseconds, whereas Figure 5.9b is in seconds. 127

6.1 Overview of the trajectory data mining and knowledge discovery
stages and the specific topics (the bold rectangles) covered in this
chapter. 130

6.2 An ambiguous place-matching scenario where the stop is both
encompassed by and overlapping with multiple places. 132

6.3 STOSEM: my approach for mining semantic pattern from raw spatio-
temporal GPS trajectories. 134

6.4 Algorithm running times for the various trajectory simplification and
transformation approaches I tested. 144

6.5 Accuracy of various approaches at preserving true stops (in a
synthetic ground-truth) under varying spatial noise levels. 145

6.6 Accuracy of my place-matching algorithm and a naive
place-matching algorithm at finding the true visited places (in a
synthetic ground-truth) under varying spatial noise levels. Note, the
7.8 metres is from the latest GPS specification (Defence, 2008). 146

6.7 Compression achieved by STOSEM and TPM on the synthetic and
Geolife datasets. 147

xxi

List of Tables

1.1 Breakdown of intellectual contribution of relevant authors by thesis
chapter. 16

2.1 Overview of relevant trajectory simplification literature. Parameter
legend: S = spatial, T = temporal, D = directional, SP = speed. 32

2.2 Overview of relevant stop/move literature. Parameter legend: S =
spatial threshold, T = temporal threshold, D = directional threshold,
G = geographic places, P = minimum number of points, N = non-
attribute related threshold. 44

2.3 Overview of relevant place-matching literature. 53

3.1 Combinations of processing strategies and significance scoring
functions investigated. Italic combinations are inspired from the
literature. † = O(n), ‡ = O(n log n) . 75

3.2 Trajectory datasets used for experiments. Note, the numbers for
TDrive are for subset #13 only. 80

3.3 Trajectory simplification method z-scores and their overall weighted
ranking (a lower score is better). 85

4.1 The maximal contiguous sequential patterns present in Figure 4.2. . . . 90
4.2 Transformed Trajectory Datasets . 97

5.1 Parameters (besides input trajectories) for the algorithms used in the
experiments. 117

5.2 Trajectories I used in the experiments. The format of stops and
moves columns are #observations (#episodes) and the Mo column is
the modal sampling-rate of each trajectory. 119

6.1 Descriptiveness scores for the OSM key-value tags I used in this
study (a higher value indicates a more descriptive key-value tag).
The asterisk indicates a wild-card for the key or value. 137

6.2 Statistics for the pre-processed Geolife trajectories dataset. 142
6.3 Mappings I used for the Geolife dataset to transform time-stamps to

times of the day. 142
6.4 Statistics of Geolife place visitation sequences. 143
6.5 Top 20 itemsets of places and places with times discovered for the

Geolife dataset. TU stands for Tsinghua University. 148
6.6 Top 20 itemsets of places types and place types with times discovered

for the Geolife dataset. Uni is an abbreviation for university. 149
6.7 Top 20 length ≥ 2 place sequences (max sequential patterns) extracted

from the Geolife dataset (TU ×3 means TU, TU, TU). TU stands for
Tsinghua University. 150

xxii

6.8 Top 20 length ≥ 2 place type sequences (max sequential patterns)
extracted from the Geolife dataset (amenity=uni ×3 means
amenity=uni, amenity=uni, amenity=uni). Uni is an abbreviation for
university. 151

xxiii

List of Abbreviations

GPS Global Positioning System
GNSS Global Navigation Satellite System
RoI Region of Interest
PoI Point of Interest
SPM Sequential Pattern Mining
SED Synchronised Euclidean Distance

1

Chapter 1

Introduction

In this thesis I investigate the extraction of valuable information from GPS trails,
generated by moving entities. This is otherwise known as trajectory data mining and
knowledge discovery. Contextually, a trajectory is a sequence describing the
movements of an entity; data mining is the process that extracts patterns from these
trajectories, while knowledge discovery occurs when a human operator gains
valuable information from patterns uncovered. I illustrate an overview of the
trajectory data mining and knowledge discovery process in Figure 1.1.

FIGURE 1.1: An overview of the trajectory data mining and knowledge discovery process.

Before proceeding further there are some required concepts in Section 1.1 that
the reader should familiarise themselves with as they are referred to throughout this
thesis.

1.1 Preliminaries

I refer to the trails of a moving entity as a trajectory. To create a trajectory, the
movements of a target entity must be recorded as an ordered sequence. Typically,
trajectory data collection methods include: smart phones, GPS trackers, WiFi
networks, cellular towers, geo-tagged media, and video surveillance. In this thesis I
limit the study of trajectories to those recorded by GPS. The interval between
recordings varies between technologies; this is often a factor for consideration with
portable devices, as there exists a trade-off between the regularity of the recording
interval and battery consumption. I highlight that, due to the lack of continuous
real-time sampling a recorded trajectory does not perfectly capture the actual
movements of the tracked entity. In fact, a recorded trajectory represents a record of
an entity’s location history captured at a specific resolution. To illustrate this I
present Figure 1.2 which demonstrates the distinction between an entity’s true
movements and the actual recorded trajectory. Notice two strange artefacts emerge
when comparing the true movement to the recorded GPS trajectory. This is because
the entity stopped moving at each of these locations but GPS inherently jitters due
to inaccuracy (this is discussed more in Section 1.4.1).

2 Chapter 1. Introduction

FIGURE 1.2: The distinction between an entity’s true movements and its recorded trajectory.
GPS inaccuracy causes the two stops to appear noisy.

1.1.1 Spatial Trajectories

All trajectories are sequences —this is an important distinct; not all sequences are
trajectories, however. At the absolute minimum a trajectory must always represent
the movement of an entity. I call this kind of minimum trajectory a spatial trajectory,
and provide a formal definition in Definition 1; a visual illustration can be found in
Figure 1.3.

Definition 1. Spatial trajectory. A spatial trajectory, Ts, is a list of spatial entries,
(〈x1, y1〉, 〈x2, y2〉, . . . , 〈xn, yn〉), where xi, yi ∈ R2 for i = {1, 2, . . . , n}.

FIGURE 1.3: A spatial trajectory.

Due to this thesis focusing on trajectories collected using GPS, x and y are
latitude/longitude pairs unless otherwise stated.

1.1.2 Spatio-temporal Trajectories

Spatial trajectories represent the minimal amount of information possible for a
sequence to be considered a trajectory; in practice, however, many other attributes
are typically recorded alongside this spatial information. A common and useful
attribute found in many recordings is a time-stamp. I call trajectories that
incorporate spatial and temporal information spatio-temporal trajectories, and
provide a formal definition in Definition 2; a visual illustration can be found in
Figure 1.4.

1.1. Preliminaries 3

Definition 2. Spatio-temporal trajectory. A spatio-temporal trajectory, Tst, is a list
of spatio-temporal entries, (〈x1, y1, t1〉, 〈x2, y2, t2〉, . . . , 〈xn, yn, tn〉), where xi, yi ∈ R2

and ti ∈ R+ for i = {1, 2, . . . , n} and t1 < t2 < . . . < tn.

FIGURE 1.4: A spatio-temporal trajectory.

1.1.3 Semantic Trajectories

Broadly, semantic trajectories are trajectories that are enriched with an extra
dimension (or set of dimensions) that provides some sort of human interpretable
context. This extra contextual information is not strictly defined; common examples
include: whether the entity is stopping or moving; the place an entity is visiting; the
mode of transport an entity is using; or, the activity an entity is doing. I provide a
formal definition for a semantic trajectory in Definition 3; a visual illustration can
be found in Figure 1.5.

Definition 3. Semantic trajectory. A semantic trajectory, Tsem, is a list of
spatio-temporal, semantically annotated entries, (〈x1, y1, t1, a1〉,
〈x2, y2, t2, a2〉, . . . , 〈xn, yn, tn, an〉), where xi, yi ∈ R2, ti ∈ R+, and ai ∈ A, for
i = {1, 2, . . . , n} and t1 < t2 < . . . < tn.

FIGURE 1.5: A semantic trajectory.

In Definition 3, A is a finite set of semantic labels, any of which could be used to
annotate a trajectory entry. The set of labels is context-specific based on the user’s
data mining and knowledge discovery goals. For example, to indicate whether the
entity was stopping or moving one could use a set of labels such as {Stop,Move}.

4 Chapter 1. Introduction

Other examples include using: {Car,Bus,Bike,Walking} to indicate the transport
mode, or {Commuting,Working,Exercising,Resting} to indicate the activity
likely being performed. I highlight that trajectory entries can also be annotated
with semantic labels from multiple sets to further enrich their meaning, such as:
{16.9186, 145.778, 09 : 15, 14/08/17,Move,Bus,Commuting}.

1.1.4 Semantic Episodes

Often the same semantic label is applied to a number of contiguous entries, as the
semantic event being annotated occurs over an extended duration. For example, a
stopping entity may stop for multiple minutes or hours, which would mean many
contiguous entries are labelled with {Stop}. Thus, a common processing step, after
semantic enrichment is episode formulation: contiguous entries with the same labels
are combined together into a single entry that I call a semantic episode. I provide a
formal definition of a semantic episode in Definition 4; a visual illustration can be
found Figure 1.6. Note, how the semantic trajectory shown in Figure 1.5 is greatly
simplified when it is transformed into a sequence of semantic episodes: shown in
Figure 1.6. This is useful because compressed, but still semantically meaningful,
sequences are far simpler and more efficient to mine than the large trajectories that
they are derived from.

Definition 4. Semantic episode. A semantic episode, Ej,k, is a single vector that
represents a portion of movement from a semantic trajectory, Tsem. The portion of
movement starts from the trajectory’s j-th index and ends at its k-th index
(inclusive), where j ≤ k. Note that a semantic episode always maximises the
number of contiguous entries in Tsem with the same semantic label, which means
that Tsem.aj = Tsem.aj+1 = . . . = Tsem.ak ∧Tsem.aj−1 �= Tsem.aj
∧Tsem.ak+1 �= Tsem.ak. The actual vector of the semantic episode Ej,k contains a
geometry, g, which represents a portion of an entity’s movement from indices j to
k; a start and end time; ts and te respectively; and a semantic label, a. Specifically,
Ej,k = 〈g, ts, te, a〉, where g is constructed using
{Tsem.xyj , Tsem.xyj+1, . . . , Tsem.xyk}, ts = Tsem.tj , te = Tsem.tk, and a = Tsem.aj
= Tsem.aj+1 = . . . = Tsem.ak.

FIGURE 1.6: A sequence of semantic episodes formulated from the semantic trajectory
shown in Figure 1.5.

The geometry, g, of a semantic episode is often used to infer additional semantic
information. For example, the geometry of a semantic episode with the semantic
label {Stop} (a stop episode), is useful to discover the real-world place where the
stop occurred. There are many types of semantic episodes though: how g is,
therefore, constructed, varies. In Figure 1.6 stop episode geometries are constructed

1.2. Background 5

as circles (to account for GPS noise, see: Section 1.4.1) and the move episode
geometries are constructed as poly-lines that capture the underlying footpaths and
railways.

1.1.5 Choice of Wording

I highlight that definitions, 1, 2, 3, and 4, are used and built upon throughout this
thesis: they will, however, not repeat again in any other section or chapter. I
encourage readers to refer back to this section as frequently as needed.
Additionally, it should be noted that, from this point forward, the word “trajectory"
will be used to refer to the general sequence of tracked entity movements; where
more specificity is required, the terms “spatial trajectory", “spatio-temporal
trajectory", or “semantic trajectory" will be used. Additionally, it is important to
recognise such distinctions: a sequence of semantic episodes no longer conforms to
the minimum trajectory outlined in Definition 1. Thus, sequences of semantic
episodes are not called trajectories in this thesis; when I refer to them, I qualify
them with specific names such as “stop/move episodes".

With the preliminaries defined, I present the background of the field in
Section 1.2.

1.2 Background

On the morning of May 1st, 2000, the White House issued a statement from U.S.
president Bill Clinton:

“Today, I am pleased to announce that the United States will stop the
intentional degradation of the Global Positioning System (GPS) signals
available to the public beginning at midnight tonight. We call this
degradation feature Selective Availability (SA). This will mean that
civilian users of GPS will be able to pinpoint locations up to ten times
more accurately than they do now. [. . .] This increase in accuracy will
allow new GPS applications to emerge and continue to enhance the
lives of people around the world." (The White House, 2000)

Once SA was deactivated civilian GPS accuracy did vastly improve:
measurements taken by the U.S. Air Force Space Command, using a dual frequency
receiver, a few hours after SA was disabled, showed civilian GPS error decreasing
from approximately 100 metres to 4.6 metres (GPS.gov, 2000). This improved
accuracy, paired with increased affordability, encouraged the widespread adoption
of GPS technology into the civilian, industrial, and scientific sectors as we recognize
it today. Specifically, the removal of SA, coupled with the general improvement of
GPS receivers and satellites made a wide variety of tasks much more viable,
including: navigation, geo-locating, recommendation, and tracking.

The literal overnight emergence of reasonably accurate, large-scale, positional
tracking for public use, meant that, quite suddenly, all kinds of moving entity data
was being collected. Thus, it is no coincidence that research interest and techniques
for pre-processing, storing, querying, and mining trajectory data surged in the 2000s.

1.2.1 The First Generation

Various researchers (Laube, 2015; Amato et al., 2018) chronicle the early 2000s as a
time where there was an abundance of movement data and many unexplored

6 Chapter 1. Introduction

challenges towards processing it. Laube (2015) finds these conditions as responsible
for a “gold-rush" amongst researchers. Laube (2015) suggests that “in the
beginning, the field of movement analysis was so wide open, there were so many
open and interesting problems". I refer to that decade, 2000 to 2010, as the first
generation of trajectory data mining and knowledge discovery. Briefly, I characterise
the first generation as a time when many core concepts and techniques were
defined, allowing users to extract knowledge from raw trajectories for the first time.
Analysis of relevant surveys (Zheng and Zhou, 2011; Andrienko and Andrienko,
2013; Amato et al., 2018) combined with my own knowledge, leads me to this
conclusion: during the first generation, a great deal of research was done
translating and extending relevant concepts and techniques from the fields of data
mining and database engineering. Pre-processing, indexing, querying, clustering,
classification, outlier detection, pattern mining, and visualisation, are all techniques
that experienced huge advances in this time. In general, I classify the first
generation as being largely focused on discovering knowledge directly from the raw
trajectories: that is, discovering patterns related to the pure spatial or
spatio-temporal movements of the entities.

During this first generation, however, various researchers (Alvares et al., 2007;
Spaccapietra et al., 2008; Palma et al., 2008) presented concepts and techniques to
transform trajectories from pure movement sequences into contextually meaningful
sequences. This formed the basis for what is now referred to as a semantic trajectory
(Parent et al., 2013). A semantic trajectory is produced by enriching a raw trajectory
with extra data that describes the movements of the entity in a way that is more
contextually meaningful in some application areas (a more formal definition is
given in Section 1.1.3). For example, for urban planning purposes, a raw trajectory
of person moving around a city may be transformed into a sequence of
visited-places using a database of known-places. Fortunately, late in the first
generation (some sources record activities around 2007 (Tauberer, 2014)) there was
a general shift in industry and government towards open-data. Some of this
open-data, such as land usage regions and property boundaries, has been directly
relevant for formulating semantic trajectories. This boost in relevant data sources,
alongside large community volunteered repositories of geographic data such as
OpenStreetMap 1, further motivated research interest in semantic trajectories.
Ultimately, this had led to the second generation of trajectory data mining and
knowledge discovery, from 2010 to current times (2017).

1.2.2 The Second Generation

Survey analysis (Parent et al., 2013; Bao et al., 2015; Zheng, 2015; Feng and Zhu,
2016), and my own knowledge of the field, leads me to classify the second
generation as moving away from processing raw trajectories and shifting,
generally, towards uncovering contextual patterns and building real-world
applications from semantic trajectories. For example, in the second generation we
have seen approaches that: construct location-based social networks to recommend
user-specific locations, travel sequences, and friends (Zheng et al., 2010); find the
different functions of various geographic regions in a city based on human
movements (Yuan et al., 2012); and give personalised driving directions based on
weather, traffic conditions, and personal preference (Yuan et al., 2013). These kind
of works are a clear step beyond purely movement-based patterns characterised by

1https://www.openstreetmap.org

1.3. Future Influences 7

the first generation. Though there are many proposed techniques for semantic
trajectory applications, I argue that the semantic gap between raw trajectories and
human interpretation is still flourishing, with much-room left for research
contribution. I argue that each type of contextual information is a unique challenge
to combine with trajectories during semantic enrichment; thus, the field as a whole
will close the semantic gap incrementally, solving one contextual data source at a
time.

Additionally, I highlight that while the notion of semantic trajectories have
certainly expanded the field, the second generation is by no means
wholly-characterised by them. Effectively formulating semantic trajectories and
real-world applications from raw trajectories requires one to lean heavily on many
of the foundations established in the first generation. Many
first-generation-techniques, fundamental as they are, do not stand as absolute
solutions to the varied and complex scenarios encountered when processing
real-world trajectories. Thus, much work has also been conducted in the
second-generation to refine and specialise many of the approaches from the first
generation. For example, if we consider trajectory pre-processing approaches: the
first generation introduced approaches to remove input complexity and mitigate
GPS inaccuracy, such as (Meratnia and By, 2004; Hightower and Borriello, 2004)
(respectively); the second generation introduced newer approaches such as (Richter
et al., 2012), which handle complexity and inaccuracy while also retaining
trajectory recordings that are relevant during semantic enrichment.

1.3 Future Influences

It should be clear, following Section 1.2, that the field of trajectory data mining and
knowledge discovery is well established. Within the field this thesis is situated
toward the latter-end of a decade of work in the so-called ‘second generation’. The
aim of this thesis is to build upon work done before; however, to specifically
determine the direction of this thesis we, as a researchers aware of the current
state-of-the-art, must consider where we think the field is heading. Reflecting on
the first and second generations, I argue that the major influences were: the
new-found availability and affordability of technology (i.e. GPS receivers and
computers); the subsequent abundance of movement data; and, the possibility to
combine contextual data sources with trajectories, to discover patterns that are
more meaningful in their domain. In the subsequent sections I consider various
technological forecasts with regards to the current trends in the field and present
my own speculations on the future influences of the field.

1.3.1 Outdoor Positional Accuracy

Global navigation satellite system (GNSS) availability is increasingly becoming a
non-issue due to number of satellites being launched by different global powers (i.e
USA’s GPS, Russia’s GLONASS, Europe’s Galileo, Japan’s ZQSS, China’s BeiDou-2)
(Alexander, 2014). Studies have shown that using these multiple GNSSs provides
continuous positioning up to 99.5% of the time, even in challenging environments
like city centres (Li et al., 2015). Thus, the major remaining problem hindering
outdoor GNSS accuracy is multipath. Multipath occurs when the path to the
receiver is blocked and reflected by some object, causing the satellite signal to take
an unnecessarily long path that introduces positional error (Misra and Enge, 2011,

8 Chapter 1. Introduction

pp.175). In order to mitigate the impact of multipath, some works have shown the
viability of a real-time kinematic precise point positioning (PPP-RTK) system that
would use a network of terrestrial reference stations to provide real-time
corrections to nearby consumer devices. Ultimately, they would produce
centimetre-accurate outdoor positioning (Teunissen and Khodabandeh, 2015).
Centimetre-accurate trajectories would greatly increase the effectiveness of existing
data mining approaches across the board and would likely motivate more research
towards complex inference tasks, like uncovering accurate human behaviour
profiles.

1.3.2 Device Sensors

Smart phones have become pervasive; as a result, they have been a popular tool for
collecting trajectory data. Many trajectories generated through smart phones are
collected in much the same way as trajectories from pure GPS receivers: only
collecting the geographic position and the time-stamp. In the future of the field, as
we tend more towards semantic trajectories, smart phone sensor data could play an
increasingly important role in providing additional context inferring semantic
information. In an early study it was shown that by collecting raw data from over
twenty different sensors attached to a person various daily activities such as
walking, running, or sitting could be inferred automatically (Parkka et al., 2006). It
is by no means a leap to say that such inferences could be made by combining raw
trajectories and future smart phone sensor data, too. For example, we have already
seen the inference of transport mode from spatio-temporal trajectories recorded
with accelerometer data (Xia et al., 2014). In addition to the sensors we have today,
future smart phones may have sensors that measure other dimensions such as air
quality or body temperature. Furthermore, considering the increasing adoption of
wearables, paired with smart phones, extra dimensions such as heart rate and
blood pressure may potentially be recorded at scale as part of the trajectory data
collection process. Extra dimensions such as heart rate, blood pressure, body
temperature, and air quality will most certainly further increase the accuracy and
robustness of semantic trajectory inference tasks, like activity detection (i.e.
identifying that the user was working out at a gym, as opposed to sleeping at
home, or walking through the inner city).

1.3.3 Active Trajectory Recording

Active trajectory recording is when the entity’s movements are directly tracked
(Zheng, 2015, pp.4), typically using a device like a smart phone or GPS receiver.
However, active-recording of trajectories using such devices has always been
constrained by device limitations. For example, smart phones and GPS receivers
have limited battery life, which is drained more quickly if the position is recorded
more-frequently. Due to battery limitations, devices recording trajectories are either
set to record locations infrequently or the total collection duration is made
relatively small. Both compromises limit the potential knowledge discoverable if
the entities were recorded frequently over large durations. However, large-scale,
high-frequency recording may become a possibility in the future, particularly with
the promise of technologies like ultrasonic charging (Ashdown et al., 2013;
Radziemski and Makin, 2016) and rapidly charging batteries (Lin et al., 2015; Tang
et al., 2017). We have already seen some research towards mining knowledge from
streaming (transmitted) trajectory data sources (Yang et al., 2013; Zheng et al.,

1.4. Motivating Challenges 9

2014a; Silva et al., 2016). However, if device batteries were continuously being
charged, or being charged rapidly, then near real-time continuous trajectory data
streaming would become far more viable: this would undoubtedly motivate even
more research towards mining streaming-trajectory data.

1.3.4 Passive Trajectory Recording

Passive trajectory recording occurs when an entity’s movements are not directly
tracked (Zheng, 2015, pp.4), yet the entity’s movements are still able to be
approximately recovered. Passive recording techniques are typically made possible
because the tracked entity interacts with a series of objects that have known
locations. Passive recording, through cellular towers, has been of particular-interest
within the second generation, most likely because of the huge number of
recoverable human movements. This style of passive tracking is possible because
telecommunication companies store call detail records (CDRs) for billing purposes:
these contain a record of each cellular tower the customer connected-to and used.
Then, using a reference of known cellular tower locations, it is possible to recover
the movements of customers. Already, we have seen researchers use passively
recorded trajectories from CDRs to mine patterns of popular trips throughout city
regions (Jiang et al., 2017), construct origin-destination trip timetables (Alexander
et al., 2015), and even estimate road network usage (Toole et al., 2015). However,
existing passive recording techniques, CDRs especially, generate trajectories that
are sparse in both space and time. This means, these passively generated
trajectories are based on extremely simplified versions of the tracked entity’s true
movements; ultimately, the discoverable patterns are limited. However, in the
future, if the unified urban ICT infrastructure promised by smart-cities is realised
(Hernández-Muñoz et al., 2011) there will likely be a network of devices installed
throughout the city that could double as passive trackers. For example, consider
unifying tolls, public transport turn-styles, parking meters, ticketing machines, and
public Wi-Fi access points, into one smart-city passive-tracking system: that system
alone could generate huge and accurate trajectory datasets. Such datasets would be
particularly useful for urban planning and real-time congestion forecasting.

1.4 Motivating Challenges

It is difficult to directly act on many of the potential influences presented in
Section 1.3 because they rely on technology that is not yet widely available.
However, if we imagine a future where some, or all, of these influencing factors
come to fruition, there are some persistent challenges, existing now, that will be
further-exacerbated in the future. Specifically, I have identified four challenges that
the field faces both now, and moving forward. They are: spatial uncertainty, input
complexity, pattern complexity, and semantic meaning.

1.4.1 Challenge One: Spatial Uncertainty

With trajectory data, spatial uncertainty typically refers to two separate issues:
sampling rate and measurement inaccuracy (Pfoser and Jensen, 1999). The
sampling rate is the rate at which recordings are added to a trajectory; because the
sampling rate is not continuous, a real-world trajectory only captures a certain
resolution snapshot of an entity’s true movements (recall Figure 1.2). For example,
consider two consecutive spatio-temporal trajectory recordings: it is a commonly

10 Chapter 1. Introduction

held assumption that any travel between those two points in space and time can be
treated as a linear interpolation from one to the other (Parent et al., 2013, pp.4); that
is, it is assumed that the entity travelled in a straight line at a constant speed
between those points. However, that assumption may not hold if the duration
between recordings or the speed of the entity is sufficiently large. In such cases, we
cannot know the true movements of the tracked entity: we are left referring to its
trajectory as spatially uncertain. Spatial uncertainty caused by low sampling rates
has been an issue throughout much of the first generation, and we have seen many
various solutions proposed to handle sparse trajectories (Pelekis et al., 2009;
Trajcevski et al., 2004; Lou et al., 2009). However, in the second generation, storage
and transmission costs have decreased, which has ultimately afforded users the
ability to record using increased trajectory sampling rates. Increasing the trajectory
sampling rate solves the issue of spatial uncertainty due to sparseness. Thus, as
Long et al. (2013) says, we have seen a general trend “to oversample initially, and
then to simplify". However, collecting large and complex trajectories does
introduce other issues, which I will elaborate on in Section 1.4.2.

The second spatial uncertainty issue, measurement inaccuracy, is the actual
challenge I am referring to when I use the term spatial uncertainty throughout the
rest of this thesis. In contrast to sampling rate, spatial uncertainty caused by
measurement inaccuracy has been a persistent challenge throughout the first
(Diggelen, 2007; Defence, 2008) and second generations (Diggelen and Enge, 2015;
Lee et al., 2016); it appears it will remain so, for some time yet. One reason
measurement error is so pervasive in trajectory data, is because mass market GPS
receivers, like the single frequency receivers commonly found in smart phones, are
highly subject to varying accuracy levels (Pesyna et al., 2014). This measurement
inaccuracy directly introduces error into the recorded trajectory, thus, perturbing
and masking the tracked entity’s true movements. Even with SA disabled (see
Section 1.2) and current clock, orbit, and atmospheric models producing
signal-in-space (SIS) transmission accuracies of approximately one meter
(Alexander, 2014), GPS receivers are still subject to large accuracy fluctuations
under certain common conditions like multipath (as I mentioned in Section 1.3.1).
Worse still, single frequency GPS receivers are likely to remain the most common
solution used by the mass market due to their low cost; however, it is these devices
that are particularly impacted by multipath due to their low quality antennas
(Pesyna et al., 2014). As I mentioned in Section 1.3.1, this inaccuracy may be
mitigated by PPP-RTK systems; however, unlike the existing GNSSs used today, a
PPP-RTK approach is not a global system and relies on various geographic
stakeholders for roll-out. Thus, if PPP-RTK is introduced in the future, it may have
a similar roll-out to the internet: suffering coverage and various other issues in
some locales, at first. Regardless of PPP-RTK’s roll-out, for now, GPS trajectories are
somewhat spatially uncertain, which masks both the true patterns in the data, and
potentially, introduces errors that can lead to discovering false trajectory patterns.
Thus, spatial uncertainty is a real challenge in accurately discovering knowledge
from GPS trajectories now and into the future.

One technique to address the issue of spatial uncertainty in trajectories is to
transform them from raw spatio-temporal coordinates into discrete entries. For
example, transforming raw trajectories into a series of roads travelled, stops made,
or places visited. How this is done and accuracy of the result are the two main
topics explored in the current state-of-the-art. In this thesis I also explore removing
spatial uncertainty by discretising trajectories. Specifically, in Chapter 5 I build
upon existing stop and move detection algorithms (Alvares et al., 2007; Palma et al.,

1.4. Motivating Challenges 11

2008) to introduce a new, more parameter-robust, probabilistic algorithm to
transform raw trajectories into a series of stops and moves. Additionally, in
Chapter 6 I extend my work from Chapter 5, building upon existing
approaches (Yan et al., 2013; Lv et al., 2016) for matching stops with places, I
introduce a new algorithm to convert a raw spatio-temporal trajectory into a series
of discrete place visitations.

1.4.2 Challenge Two: Trajectory Complexity

Trajectory complexity is the term I use to describe the increasing redundancy and
size of trajectories that result from long data collection periods, increased recording
features, or high sampling rates. Sufficiently large and complex trajectories can
cause a number of issues: storage limitations, transmission throttling, processing
inefficiency, and visualisation overload, inclusively (Parent et al., 2013, pp.11).
Much like spatial uncertainty, trajectory complexity has been a persistent issue
throughout the first and second generations, resulting in a number of mitigating
approaches (Meratnia and By, 2004; Richter et al., 2012; Vrotsou et al., 2015).
However, if any of my forecasts from Section 1.3 are realised —especially
continuous trajectory streaming (see Section 1.3.3) or large-scale passive tracking
(see Section 1.3.4) —the complexity of trajectories will likely increase an order of
magnitude. To illustrate the scale of the potential data, consider, for example, that
recording a single entity every second for a month will produce approximately 2.6
million recordings. If we assume each spatio-temporal recording contains
approximately 40 bytes of raw data this results in 104 megabytes of raw data
produced for a single entity. If city-scale tracking scenarios like those I discussed in
Section 1.3.4 are realised trajectory data will likely be generated from thousands, if
not millions, of entities. This could equate to terabytes of raw data generated for a
single month of tracking. Storage for this amount of data is trivial; however, the
time taken to extract patterns from it is, arguably, less so. Using a less frequent
sampling rate is one solution to reduce the data size; in many contexts it is not ideal
because it arbitrarily lowers the resolution of the recorded movements, and
potentially introduces spatial uncertainty through sparseness (recall Section 1.4.1).
Alternate solutions involve detecting insignificant or redundant recordings and
removing those; however, the significance of individual recordings vary depending
on the type of knowledge discovery being conducted and, as we move towards
more semantic trajectory data mining, simplification approaches will have to
become context considerate, too. Thus, removing complexity from large trajectory
datasets is another challenge going forward.

In this thesis I specifically investigate addressing the issue of trajectory
complexity by using the aforementioned approach of detecting insignificant entries
and removing them from the raw trajectory. In Chapter 3 I generalise the problem
of spatio-temporal trajectory simplification and extend several existing poly-line
and spatial-only trajectory simplification algorithms (Douglas and Peucker, 1973;
Visvalingam and Whyatt, 1993; Lee et al., 2007) to the problem. The result is a
general trajectory simplification framework, which I used to create eight, easily
tunable, new spatio-temporal trajectory simplification algorithms.

1.4.3 Challenge Three: Pattern Complexity

Pattern complexity is the term I use to refer to the over-abundance of output
produced by the trajectory data mining process. In an ideal scenario the data

12 Chapter 1. Introduction

mining approach would produce a succinct and useful set of patterns for a human
operator to interpret. However, if the input trajectories are sufficiently large and
homogeneous some trajectory data mining approaches will produce too many
patterns to meaningfully interpret. As Yin et al. (2011) say, when there are too many
trajectory patterns “it is difficult for users to go through all the patterns in the list to
discover the interesting ones. As a result, the interesting trajectory patterns are
buried in the massive result set". I argue that pattern complexity is generally tied to
trajectory complexity: as trajectory dataset sizes increase generally so will the
number of patterns produced. Thus, much the same as Section 1.4.2, if any of my
trajectory complexity forecasts, like continuous trajectory streaming (see
Section 1.3.3) or large-scale passive tracking (see Section 1.3.4), are realised, then
overly large pattern outputs may become a problem. A particularly challenging
trait of pattern complexity is that it is implicitly driven by underlying trends in the
raw data. Thus, even though simplification may reduce the input complexity of a
trajectory dataset it will not (or at least should not) modify or remove the
underlying trends in the data; pattern complexity is still potentially present even
after pre-processing. Therefore, I argue that the challenge of pattern complexity
requires a unique solution, different than that of trajectory complexity.

One solution is to mine trajectory patterns in such a way that the output does
not surpass a certain size or redundancy constraint. Doing so allows the pattern
complexity to remain bounded during the mining step, which is where the problem
of pattern complexity usually appears. This is the approach I take in Chapter 4
where I transform trajectories into a series of visited road segments (each with a
unique id) and then introduce new redundancy controlled sequential pattern mining
approach. Borrowing concepts from both the fields of map-matching and traditional
sequential pattern mining, my approach directly extends a number of existing works
from those fields (Newson and Krumm, 2009; Song et al., 2014; Wang et al., 2014;
Zhang et al., 2015).

1.4.4 Challenge Four: Semantic Meaning

Collections of raw trajectories track the location histories of many moving entities.
In turn, this can reveal knowledge such as similarly moving entities (Buchin et al.,
2011), frequently visited regions (Giannotti et al., 2007), or clusters of co-located
sub-trajectories (Lee et al., 2007). Such findings are interesting, but drawing and
discovering contextually meaningful knowledge typically requires combination
with additional semantic data sources relevant to the domain (Parent et al., 2013,
pp.5). For example, consider analysing raw movement patterns and trying to
discover: people visiting sequences of places; people performing sequences of
activities; or, vehicles travelling along specific roads. Raw trajectories do not
contain any information required to make these associations, and manually
inferring it is time consuming and tedious for a human operator. Thus, this task is
typically deferred to the semantic enrichment process —where trajectories are
associated with all kinds of data sources, such as place repositories, road networks,
or land usage maps. This semantic enrichment of raw trajectories is hugely
important in the extraction of human interpretable knowledge because, “the
integration of trajectory data with semantic geographical information is the main
step for trajectory data analysis in real applications" (Alvares et al., 2007). Of
course, much work has already been done in the first (Alvares et al., 2007;
Spaccapietra et al., 2008; Monreale et al., 2009) and second generations (Bogorny
et al., 2014; Furletti et al., 2013; Renso et al., 2013) towards bridging the semantic

1.5. Aims 13

gap between raw trajectories and real-world applications. However, we must keep
in mind that there is no single, "one size fits all", semantic trajectory enrichment
process for all types of contextual data. In other words, even though each type of
semantic information we wish to enrich trajectories with adds potential value to the
knowledge discovery step, incorporating each type of semantic information is also
a unique challenge.

In this thesis the issue of adding semantic meaning to raw trajectories is
investigated in Chapter 6 where I first transform trajectories into a series of stops
and then introduce a new probabilistic matching scheme to associate each stop with
a likely place from OpenStreetMap. As I mentioned in Section 1.4.1, the
place-matching algorithm I introduce in Chapter 6 directly extends a number of
existing semantic trajectory data mining works (Yan et al., 2013; Lv et al., 2016).

1.4.5 Summary of Trajectory Data Mining and Knowledge Discovery
Challenges

To summarise, the challenges faced when mining and discovering knowledge from
GPS trajectories are:

1. Spatial uncertainty - GPS trajectories are commonly inaccurate due to
positional error introduced from the recording devices. This positional error
masks the true movements of the tracked entity and introduces error during
the mining step.

2. Trajectory complexity - Trajectory datasets are often large and redundant,
which makes storing, processing, and visualisation in their raw format
inefficient.

3. Pattern complexity - Mined trajectory patterns are sometimes too numerous
and redundant, which makes interpretation a difficult and time consuming
task for a human operator.

4. Semantic meaning - Raw trajectories do not inherently contain any
semantically meaningful context. Without context much of the meaning
behind an entity’s journey is hidden, and, by extension the variety of
potential knowledge discovered is limited.

1.5 Aims

Given the four challenges introduced in Section 1.4, I have formulated several
research aims that are tied to specific topics in the trajectory data mining and
knowledge discovery process. Each of the aims focuses on addressing at least one
of the four challenges. The aims are as follows:

1. Investigate trajectory simplification to reduce input trajectory complexity for
general trajectory data mining.

2. Investigate mining succinct sets of sequential patterns from trajectories to
reduce pattern complexity.

3. Investigate classifying raw trajectories as stops and moves to semantically
enrich them while mitigating spatial uncertainty.

14 Chapter 1. Introduction

4. Investigate transforming stopping and moving trajectories into episodes and
matching those stop episodes to real-world places to increase semantic
meaning, reduce trajectory complexity, and ultimately facilitate a semantic
trajectory data mining case-study.

Readers: please note that these aims are further refined into testable research
hypotheses in Section 2.6, after the relevant literature in each of the topics has been
reviewed and the research gaps identified.

1.6 Thesis Outline

Following this introductory chapter is the literature review in Chapter 2. In
Chapter 2 I review a collection of relevant existing approaches and their relation to
the four identified challenges of trajectory data mining and knowledge discovery.
From this review, I identify several research gaps that form the basis of my choice
of topics in the following data chapters: simplification (Chapter 3), distinct pattern
mining (Chapter 4), stop/move detection (Chapter 5), and place-matching
(Chapter 6).

In Chapter 3, I present a framework for constructing spatio-temporal trajectory
simplification approaches; I create several of these approaches using this
framework, then evaluate their efficiency and effectiveness against existing
spatial-only simplification approaches. The results indicate that the approaches
constructed, using this framework were more effective at reducing the complexity
of spatio-temporal trajectories than the existing spatial-only approaches that were
compared against.

In Chapter 4, I transform a set of vehicle trajectories into a sequence of road
network visitations. Additionally, I introduce a new concept called distinct pattern
mining that mines lossy, but redundancy controllable, sequential patterns. I then
mine the set of distinct patterns from these vehicle trajectories, which succinctly
reveals the most frequently travelled roads.

In Chapter 5, I present a probabilistic approach to detect stops and moves in
noisy GPS trajectories. I evaluate the accuracy and efficiency of the approach and
several existing approaches using various ground-truth, real-world GPS trajectories.
The results indicate that the approach achieves higher accuracies and is more robust
to parameter selection than the approaches that were compared against.

In the final data chapter, Chapter 6, I introduce the problem of place ambiguity
when matching trajectory stops to real-world places; I then present a probabilistic
place-matching algorithm to overcome this problem. I quantitatively evaluate the
efficiency and effectiveness of the place-matching algorithm by comparing it to
similar approaches that do not consider the place ambiguity problem. The results
indicate my place-matching algorithm is more accurate than a benchmark
approach, that did not consider place ambiguity. Additionally, to evaluate the
real-world applicability of my place-matching algorithm, I conduct a case-study
where I use my place-matching algorithm to transform a large dataset of real-world
human trajectories into sequences of place visitations. I use existing itemset and
sequential mining algorithms to mine these place visitations to reveal popular
places and popular sequences of places travelled in the dataset. Analysis of these
patterns reveals several seemingly real patterns, which hints at the validity of the
overall process.

1.6. Thesis Outline 15

Lastly, in Chapter 7, I present a summary of each chapter, highlighting the key
findings and contributions. I also conclude by addressing some limitations,
recommendations, and future research directions based on this thesis.

The following is a breakdown of intellectual contributions by relevant authors
for each chapter in this thesis:

16 Chapter 1. Introduction

Ch. Publication Arising Intellectual contributions

1 None
Entirely the work of
Bermingham.

2 None
Entirely the work of
Bermingham.

3

[Published] Bermingham, L. and Lee,
I. (2017). A framework of
spatio-temporal trajectory
simplification methods. International
Journal of Geographical Information
Science, 31(6), pp.1128-1153.

Bermingham designed the
approach, wrote the code,
conducted the experiments,
and wrote the paper. Lee
directed the paper design,
edited the draft, and helped
design some of the formal
definitions.

4 Under review.

Bermingham designed the
approach, wrote the code,
conducted the experiments,
and wrote the paper. Lee
directed the paper design
and edited the draft.

5

[Accepted] Bermingham, L. and Lee, I.
(2017). A Probabilistic Stop and Move
Classifier for Noisy GPS Trajectories.
Data Mining and Knowledge Discovery.

Bermingham designed the
approach, wrote the code,
conducted the experiments,
and wrote the paper. Lee
directed the paper design,
edited the draft, and
suggested models for
parameter estimation and
significance testing.

6 Under review.

Bermingham designed the
approach, wrote the code,
conducted the experiments,
and wrote the paper. Lee
directed the paper design,
edited the draft, and
suggested some results
interpretation in the case
study.

7 None
Entirely the work of
Bermingham.

TABLE 1.1: Breakdown of intellectual contribution of relevant authors by thesis chapter.

17

Chapter 2

Literature Review

In this literature review I do not attempt to cover the entirety of trajectory data
mining and knowledge discovery; such a task could easily fill a book. Instead, I
divide my review of the literature into two parts: a broad overview of some
relevant topics in Section 2.1; and, a detailed review of specific approaches in
Sections 2.2, 2.4, 2.5, and 2.3. In Section 2.1, I introduce the following topics used
throughout this thesis: simplification, stop/move detection, map-matching,
place-matching, region-of-interest mining, item-set mining, and sequential pattern
mining. In Sections 2.2, 2.4, 2.5, and 2.3, I present a more detailed review of the four
topics that I have made contributions to in this thesis: simplification, stop/move
detection, place-matching, and sequential pattern mining. I highlight that I do not
make any contribution to map-matching or region-of-interest mining in this thesis;
I do, however, refer to those approaches in later chapters, so, I provide a brief
introduction in Section 2.1: they are then omitted from my more detailed reviews in
Sections 2.2, 2.4, 2.5, and 2.3. Additionally, I highlight that I do not provide a
background or brief history of the overall field in this section: for that, please refer
back to Chapter 1, Section 1.2.

2.1 Breadth Analysis of Trajectory Data Mining

I present Figure 2.1 as an overview for this chapter. Figure 2.1 illustrates a set of
topics relevant to this thesis, each categorised under the appropriate steps within
the trajectory data mining and knowledge discovery process. Additionally, I repeat
this figure at the start of each data-chapter with the relevant topics outlined in bold
to visually illustrate their use within that chapter. Again, readers, please note that
the topics that are shown in each step of Figure 2.1 are not an exhaustive summary
from the field, but rather, a collection of those most relevant to this thesis.

2.1.1 Trajectory Preprocessing

Trajectory preprocessing is the task of modifying, removing, or cleaning raw
trajectories to make them more appropriate for later data mining tasks. Common
examples include removing noisy entries or projecting coordinates into a suitable
coordinate system for mining. Generally, I consider any modification that is applied
to raw trajectories prior to mining, a preprocessing task. In this section I introduce
and briefly explain two trajectory preprocessing tasks relevant to this thesis:
trajectory simplification and trajectory stop/move detection.

18 Chapter 2. Literature Review

FIGURE 2.1: Overview of the trajectory data mining and knowledge discovery stages and
the specific topics (the rectangles) covered in this thesis.

Simplification

Trajectory simplification is the process of reducing the complexity of an input
trajectory. Typically, simplification is realised by passing the trajectory into an
algorithm that removes specific entries with the goal of preserving the general
motion of the tracked entity. Given that it is a practice to capture as much
movement detail as possible by oversampling when initially recording trajectories
(Long et al., 2013) it follows that simplification is often necessary. Even
disregarding overly sampled trajectories, simplification is still useful, in the general
cases, for removing redundant entries: doing so directly decreases the processing
requirement in the subsequent data mining and knowledge discovery steps.

To simplify a trajectory, a simplification algorithm must utilise some criteria to
determine which entries to keep and which to discard. A common criteria used in a
number of approaches (Cao et al., 2006; Gudmundsson et al., 2009; Muckell et al.,
2011) is the perpendicular distance between the current entry and its neighbours
(or trajectory start/end points). A large perpendicular distance not caused by GPS
error indicates a large movement, which means that the entry likely defines some
motion in the trajectory; a small perpendicular distance indicates little or straight
movement, which can be simplified away. Specifically, using this perpendicular
distance criteria, a trajectory simplification algorithm can compute the
perpendicular distance at each entry, then remove a certain percentage, or all those
below a perpendicular distance threshold. To further illustrate trajectory
simplification and this example, see Figure 2.2.

In Figure 2.2, entries that form straight segments are removed. This is desirable
if the goal is to minimise redundant entries that could be represented by assuming
a straight path between two other entries. However, if the goal is to reduce the
spatial uncertainty (i.e the noisiness) of the recorded trajectory, then this

2.1. Breadth Analysis of Trajectory Data Mining 19

FIGURE 2.2: Example of trajectory simplification using perpendicular distance between an
entry and its neighbours as the entry significance criteria.

perpendicular approach is of little use. This highlights an important lesson: there is
no such thing as the correct or optimal simplification of trajectory; rather, there are
only simplifications that tend towards a certain criteria which may be more-or-less
suitable to achieve certain user goals (like reducing redundancy or dampening
spatial uncertainty). For example, if the goal is to reduce spatial uncertainty, there
are more appropriate simplifications, such as, pruning illogically high speed
recordings that could only be explained by GPS inaccuracy (Newson and Krumm,
2009; Atev et al., 2010; Lv et al., 2016).

Stop/Move Detection

Stop/move detection is the process of finding and labelling entries in a trajectory
that are either stopping or moving. Stopping entries, particularly those that form a
contiguously stopping subsequence for an extended duration, can indicate that the
tracked entity was doing some activity or waiting at some specific place. Of course,
an extended stop itself is not evidence enough to indicate such things, but when it
is paired with context, such as geography, more reasonable inferences can be made.
For example, a stop, approximately, in a restaurant for one hour may imply dining.
Likewise, moves can also be paired with additional data sources and used to infer
meaning. Consider, for example, inferring that a tracked entity caught a train by
combining a series of entries labelled as moves with the geometry of a railway
network. Moves can also be used more-generally to indicate the activity of
transiting from one place to another, which is useful in many applications such as
traffic modelling and urban planning applications (Yuan et al., 2015). Thus,
trajectory entries labelled as stopping or moving denote some semantic information
about the recorded entity and, when paired with contextual information, are a
useful step towards knowledge inference.

20 Chapter 2. Literature Review

FIGURE 2.3: Example of trajectory stop/detection using TrajDBSCAN by Tran et al. (2011).

To find stops and moves in trajectories, a common approach, adopted by a
number of existing works, is to treat it as a binary problem: that is, find the stops
first then label everything else as a move (Parent et al., 2013). Thus, the task is then
reduced to finding stops in the trajectory. The notion of a stop is defined in multiple
different ways in existing works; however, I will attempt to provide a
generalisation of a trajectory stop in Definition 5.

Definition 5. Trajectory Stop. A trajectory stop is a contiguous subsequence of
entries in a trajectory that are spatially collocated and have a total change in
displacement that tends toward zero.

A common notion in existing works is to use density-based concepts to find a
cluster of spatially-nearby contiguous entries; if that cluster’s total duration
surpasses some user-specified minimum duration, then, those entries are labelled
as stopping. One such approach is TrajDBSCAN (Tran et al., 2011), which is based
on the DBSCAN (Ester et al., 1996) algorithm. In lieu of DBSCAN’s MinPts and
spatial Eps parameters, TrajDBSCAN has a temporal MinTime and a spatial Eps
parameter to find a cluster of contiguous trajectory entries that form a stop cluster.
To illustrate the process of stop/move detection, and better explain TrajDBSCAN’s
algorithm, I present Figure 2.3.

The last step in Figure 2.3 is labelling the entries as stopping or moving. In
practice there is often another step, where contiguous subsequences of stops or
moves are combined into one stop or move episode (recall, this was demonstrated

2.1. Breadth Analysis of Trajectory Data Mining 21

in Section 1.1.4). This is done because it is a more efficient representation of the
trajectory, and because it is a more-ideal representation to add contextual
information to one discrete episode as opposed to many individual entries.
However, this highlights an important conceptual distinction I make in this thesis:
specifically, trajectory transformation (such as episode formulation) is a
pre-processing task, but it is a specialisation that merits its own conceptual step in
my version of the trajectory data mining and knowledge discovery process (recall
Figure 2.1).

2.1.2 Trajectory Transformation

Transformation is a special category of preprocessing tasks that can be performed
on trajectories. I separate transformation from other preprocessing tasks by:
defining transformation tasks as those that alter the trajectory data in such a way
that it no longer conforms to its original point representation (i.e Definition 1 does
not hold). To illustrate, I consider the task of enriching trajectories with stop/move
labels a pure pre-processing task because the result is still a sequence of points.
However, I do not consider formulating contiguous stop/move entries into an
episode with some geometry a pre-processing task. That is a transformation task
because the result is no longer a sequence of points, as we can recall from
Figure 1.6. Other transformation tasks include converting a trajectory from a
sequence of spatio-temporal coordinates into a sequence of roads travelled
(map-matching) or places visited (place-matching). Such transformations are useful
because, typically, they compress many numerical spatio-temporal coordinates into
single, nominal labels: they are far more efficient to mine, and far more
semantically meaningful for a human operator to interpret. Map-matching and
place-matching are used in the later chapters of this thesis; I provide further
explanation below.

Map-matching

Map-matching is the process of fitting raw trajectory recordings onto an underlying
structure. The typical use-case of trajectory map-matching is to constrain recorded
vehicles to a road network. The first stage of map-matching is strictly a
preprocessing task, as the spatio-temporal coordinates of the original trajectory are
fitted onto some known structure (i.e a road network). However, due to these
underlying structures, themselves, often being semantically meaningful these
map-matched trajectories can additionally be transformed into a sequence of
semantic labels (i.e a sequence of street names that were driven by the recorded
vehicle). Much like episode formulation, map-matching transforms the trajectory
into a more succinct format that is more efficient to mine and more semantically
meaningful to interpret.

As with many tasks in trajectory data mining and knowledge discovery,
map-matching would be trivial if not for varied sampling-rates, the presence of
spatial uncertainty, and general inconsistencies in the recorded trajectory. To
mitigate these, trajectory map-matching approaches arrive at their result either by:
probabilistically considering many potential routes (Newson and Krumm, 2009;
Wei et al., 2012); incrementally looking ahead and snapping to road segments based
on a geometric measure such as Fréchet distance (Brakatsoulas et al., 2005); or,
building a graph of candidate routes based on spatial, temporal, historical, and
topological factors, and selecting the best scoring path (Lou et al., 2009; Zheng

22 Chapter 2. Literature Review

FIGURE 2.4: Example of trajectory map-matching using an approach similar to that of
Newson and Krumm (2009).

et al., 2012). My intention is not to compare all existing map-matching approaches
as I have no contribution in this area; I do wish, however, to present Figure 2.4 to
visually illustrate the probabilistic trajectory map-matching approach by Newson
and Krumm (2009) (comprehension of this approach is useful as I refer to it in
Chapter 4).

Map-matching does have its limitations. For example, if a recorded entity does
not travel along any known structure, map-matching cannot be used. In such cases,
episode formulation and place-matching may be more suitable.

Place-matching

Place-matching is the process of associating a trajectory with a series of visited
places. As Hightower (2003) says, “manually labelling places does not scale so the
research challenge is to automate the process". Automating the process does not
mean reverse geo-coding though; as Lv et al. (2016) suggests, “for reverse
geo-coding, the obtained semantics is always represented as postal address (e.g., x
Road, y City), which is often as challenging to interpret as raw locations". Thus, I

2.1. Breadth Analysis of Trajectory Data Mining 23

define place-matching as an automatic semantic enrichment task that transforms
the journey of the tracked entity into a more human interpretable format of visited
places.

Typically, a trajectory is not simply segmented into portions that pass through,
or nearby to geographic places; instead, the trajectory is first transformed into a
series of stops and moves, and those episodes are matched to underlying places or
transport networks (Yan et al., 2013; Furletti et al., 2013). A bonus, is that numerous
raw coordinates are transformed into a series of stops, and then, places, which
effectively compresses the trajectory while maintaining semantics (Richter et al.,
2012). The ultimate result of place-matching is a sequence of visited places and visit
times; that output, however, is often further enriched in semantic data mining
approaches. For example, place-matching and transport mode inference are both
often used as previous steps to infer the types of activities, and overall behaviour
profile, of a tracked entity (Beber et al., 2016; Alencar et al., 2015). Consider a
trajectory where a person goes to a shopping centre, then to a cultural attraction,
and then to an airport. An activity recognition approach may infer shopping, then
sightseeing, and then travelling; when put together, might imply that the tracked
person was a tourist. Activity inference approaches and automatic behaviour
profiling are not areas I make contributions to in this thesis; highlighting that
place-matching is, however, often used as input by these approaches, hopefully
enforces the importance of accurate place-matching. Put plainly, inaccurate
place-matching will lead to inaccurate semantic patterns.

As I mentioned in the map-matching section, semantic enrichment tasks, such
as map-matching and place-matching, would be straightforward if not due to
varied sampling-rates, the presence of spatial uncertainty, and general
inconsistencies in the recorded trajectory. Though, compared to map-matching, the
problem of spatial uncertainty and sampling gaps, are perhaps, even more
exaggerated when place-matching. This is largely because GPS suffers heavy
accuracy degradation when indoors (Mautz, 2009), which is where one can find
most visited places. Even more so than map-matching, place-matching approaches
must draw on other factors to determine which place was likely visited. One
approach, used by some existing works in the literature is to probabilistically
model the problem matching a trajectory to likely visited places. Specifically, the
model treats a sequence of trajectory stops as observations and nearby candidate
places for each stop as states that may have caused these stops (Yan et al., 2013; Lv
et al., 2016). The occurrence of each place, with respect to the stop, is given an
emission probability; then, the transition between possible places is also given a
probability. By taking this approach, one can model the probability of every
possible sequence of visited places, and output the most likely sequence as the final
place-matching result. To avoid the spatial uncertainty of the raw trajectory/stops,
existing approaches have calculated these probabilities using extra information,
such as the type of place (Spinsanti et al., 2010); place opening hours, with regard to
the stop time (Furletti et al., 2013); and, the likelihood of certain types of
place-to-place transitions (Yan et al., 2013). In this way, these probabilistic
place-matching approaches determine the likely sequences of visited places
without dealing with unreliable spatial information, and, instead, use the more
reliable semantic, temporal, and sequential information to infer a likely sequence of
visited places. Additionally, the probabilistic models naturally incorporate the
sequential aspect of the trajectory data when calculating the result; many other
approaches simply perform matching one stop at a time, which does not
incorporate the decision making or routine behaviour of the tracked person who

24 Chapter 2. Literature Review

goes from one place to another. In other words, people do not arbitrarily go from
place-to-place; therefore, during place-matching, we should assume that certain
types of place-to-place visitations are more likely than others.

To conclude this brief explanation of place-matching, I present Figure 2.5 which
illustrates the general procedure of a probabilistic place-matching approach, such
as those presented by Yan et al. (2013) and Lv et al. (2016). The details of how the
stop/place probabilities and the place-to-place transition probabilities are
calculated, in Figure 2.5, or any place-matching approach, are specific to each
approach and are broadly the main differentiating factors between approaches. In
fact, disregarding the emission and transition probability calculations, I consider
Figure 2.5 to serve as a representation of a general probabilistic place-matching
approach. Additionally, note that in Figure 2.5, the emission probabilities are
notated as using the stops and actual places (i.e. P(A|S1)), whereas the transition
probabilities are notated using the place types (i.e. P(Bank|Shop)). This is done
purposefully to illustrate that probabilistic place-matching approaches may
calculate probabilities based on the actual places, their types, or some combination
of both (as seen in the example). Lastly, the reason I choose to illustrate a
probabilistic approach, as opposed to some other paradigm, is because I use a
probabilistic approach in my place-matching approach in Chapter 6.

2.1.3 Trajectory Mining

Broadly, I consider trajectory mining as any task that operates on trajectory data
and produces patterns or results that can lead to knowledge discovery. A few
common trajectory data mining tasks include: clustering, outlier detection,
classification, identifying moving group patterns, and inferring origin-destination
networks (Zheng, 2015). However, in this review section, I limit myself to two
approaches relevant to the later chapters, specifically: trajectory region-of-interest
mining and sequential pattern mining.

Trajectory Region-of-Interest Mining

First, I highlight that the spatial boundary that encompasses a trajectory dataset is
called the study region. Given the study region, the task of trajectory region-of-
interest (RoI) mining is to find all frequently visited sub-regions, within the study
region. The definition and criteria to formulate these RoIs is what differentiates one
trajectory RoI mining approach from another. For example, Giannotti et al. (2007)
presents an approach that partitions the study region into uniform grid cells, traces
the trajectory through each cell to determine the cell density, then, expands the cells
to form RoIs, in a rectangular way, until the average RoI density would fall below a
user-specified threshold if any further expansion occurred. Other examples include
my previous works: where arbitrary shaped RoIs are produced by partitioning the
study region using a delaunay triangulation (Bermingham et al., 2014); and another,
that divides the dataset into spatio-temporal 3d grid cells and finds spatio-temporal
volumes of interest (Bermingham and Lee, 2014).

In general, discovering visited RoIs in trajectory data is useful because it
highlights popular areas based purely on the original data; there is no need for any
external data sources to find patterns. Additionally, transforming a raw trajectory,
which is simply a sequence of spatio-temporal coordinates, into a sequence of
visited RoIs, is also an effective way to discretise the trajectory so that it can be used
in further mining tasks, such as sequential pattern mining (Giannotti et al., 2007)

2.1. Breadth Analysis of Trajectory Data Mining 25

FIGURE 2.5: Example of trajectory place-matching using a probabilistic approach.

26 Chapter 2. Literature Review

and place-matching (Yan et al., 2013). To further illustrate the process of RoI
mining, I present Figure 2.6, which demonstrates a RoI mining approach
introduced by Giannotti et al. (2007).

Sequential Pattern Mining

Given a sequence database, sequential pattern mining is the task of discovering all
sub-sequences with occurrences greater-than or equal-to some user-specified
threshold. Trajectories are sequential in nature; it follows that sequential pattern
mining may reveal interesting trends about popularly visited routes, or even reveal
distinct user groups within a trajectory dataset. However, trajectories are not
naturally suited to sequential pattern mining, as the sequences used in sequential
pattern mining must consist of discrete items (geographic coordinates are far to
granular to make such comparisons). Fortunately, various authors have proposed
different techniques for discretising trajectories for sequential pattern mining. For
example, Song et al. (2014) transformed trajectories into a sequences of visited road
nodes using map-matching; Giannotti et al. (2007) transformed trajectories into
sequences of region visitations. Thus, following some form of discretisation,
trajectories can be mined using sequential pattern mining algorithms and
potentially reveal previously unknown movement patterns present in the dataset. I
now present a series of definitions to explain the various types of sequential pattern
mining —all of which are referred to and used in Chapter 4.

Definition 6 (Items). Let I = {a1, a2, . . . , an} be a set of items. An item is
represented as an integer or character.

Definition 7 (Sequence). A sequence S is an ordered list of items, 〈ai, aj , . . . , am〉,
where ak is an item in I for i ≤ k ≤ m and i < j < m.

This broad definition of a sequence means that many different types of data are
candidates for sequential pattern mining. Some examples within the field include
retail transactions (Srikant and Agrawal, 1996), nucleic acid sequences (Exarchos
et al., 2008), and, in this case, discretised trajectories. For readers familiar with
sequential pattern mining, you may note a sequence is often defined as a list of item
sets. This is useful for some datasets where multiple items can occur in a sequence
simultaneously. For example, in retail transactions a customer can buy
{bread,milk, apple} in one transaction, then later, {juice, chocolate}. However, in
the context of mining trajectories, one can assume no entity can be in two places at
once and therefore define sequences as ordered lists of single items.

Definition 8 (Sequence Containment). A sequence Sa = 〈a1, a2, . . . , an〉, is said to
be contained in a sequence Sb = 〈b1, b2, . . . , bm〉 iff there exist integers 1 ≤ i1 < i2 <
. . . in ≤ m such that a1 = bi1 , a2 = bi2 , . . . , an = bin (denoted as Sa 	 Sb).

Additionally, I highlight that if Sa is contained in Sb, then Sa is a sub-sequence of
Sb, and, by extension, Sb is a super-sequence of Sa.

Definition 9 (Sequence Database). A sequence database is a list of sequences,
SDB = 〈S1, S2, . . . , Sn〉.

Typically a sequence database is simply a plain-text file where there is one
sequence per line and each item in the sequence is consistently delimited.

2.1. Breadth Analysis of Trajectory Data Mining 27

FIGURE 2.6: Example of a trajectory RoI mining approach.

28 Chapter 2. Literature Review

Definition 10 (Sequence Support). Given a sequence Sa its support is the number
of sequences in a sequence database SDB that contain Sa. Finding the support of
a sequence Sa is denoted as sup(Sa, SDB) and for a sequential pattern that has its
support stored it is denoted sup(Sa).

Support is typically used to find frequently occurring sequences within the
sequence database, or, in other words, frequent sequential patterns.

Definition 11 (Sequential Pattern). Given a user specified minimum support
threshold minSup and a sequence database SDB, a sequence Sa is considered a
sequential pattern if sup(Sa, SDB) ≥ minSup.

A sequential pattern is usually output as a sequence with its support value, like
so, {a, b, c} [SUP:10]. A sequential pattern represents a frequently occurring trend
within a sequence database. Automatically identifying such trends through
sequential pattern mining is useful because it can lead to knowledge discoveries
which would be extremely time consuming and tedious for a human to identify
manually. Examples of algorithms that mine sequential patterns are GSP (Srikant
and Agrawal, 1996), SPADE (Zaki, 2001), SPAM (Ayres et al., 2002), PrefixSpan (Pei
et al., 2004), LAPIN (Yang et al., 2007), and CM-SPAM (Fournier-Viger et al., 2014a).

In large sequence databases that contain many long sequences, it is common
to uncover a truly massive number of sequential patterns. This is because a large
sequential pattern contains a combinatorial number of smaller sub-patterns. The
example given by Pei et al. (2000) clearly illustrates the problem with discovering all
sequential patterns. Consider, a sequential pattern of length 100, {a1, a2, . . . , a100},
it contains

(
100
1

)
= 100 length 1 sub-patterns: {a1}, {a2}, . . . , {a100};

(
100
2

)
length 2

sub-patterns: {a1, a2}, {a1, a3}, . . . , {a99, a100}; and so on. The total number of sub-
patterns the length 100 sequential pattern contains is:(

100

1

)
+

(
100

2

)
+ · · ·+

(
100

100

)
= 2100 − 1 ≈ 1.27× 1030. (2.1)

This is a truly huge number of sequential patterns — far too many to compute,
let alone meaningfully interpret. A common solution that one may employ to
reduce the pattern output, is to increase the minSup parameter. This will require
candidate sequences to occur in more sequences from the database to become
patterns. Increasing minSup does, however, also increase the likelihood that
important sequential patterns will be missed during mining.

Another approach for reducing the pattern output is to use a mining approach
that mines a concise representation of the sequential patterns. “A concise
representation is a subset of all sequential patterns that is meaningful and
summarizes the whole set of sequential patterns" (Fournier-Viger et al., 2017).
Concise representations come in two varieties, lossless and lossy. The pattern output
is lossless if the set of all sequential patterns (with their support scores) can be
recovered without scanning the sequence database; the pattern output is lossy if the
set of all sequential patterns cannot be recovered without scanning the database.
Two common concise representations are closed patterns and max patterns.

Definition 12 (Closed pattern). Given a set of all sequential patterns AS, a
sequential pattern Sa is closed iff Sa ∈ AS ∧ �Sb ∈ AS such that
Sa � Sb ∧ sup(Sa) = sup(Sb).

The set of all closed patterns is denoted CS and CS ⊆ AS. Closed patterns
considerably reduce the pattern output by ensuring that for every sequential

2.2. Depth Analysis of Trajectory Simplification Approaches 29

pattern in the output there exists no sub-pattern in the output with the same
support. Additionally, because of this rule closed patterns are lossless
(Fournier-Viger et al., 2017). Examples of algorithms that mine closed sequential
patterns are CloSpan (Yan et al., 2003), BIDE (Wang and Han, 2004), and
ClaSP (Gomariz et al., 2013).

Definition 13 (Max pattern). Given a set of all sequential patterns AS, a sequential
pattern Sa is maximal iff Sa ∈ AS ∧ �Sb ∈ AS such that Sa � Sb.

The set of all max patterns is denoted MS and MS ⊆ CS ⊆ AS. The set of all
max patterns is generally even more concise than the set of all closed patterns. This
is because max patterns discard many redundant sequential patterns by ensuring
that no pattern in the output is a sub-pattern of any other. The trade-off for reducing
redundancy in this way, is that max patterns are lossy (Fournier-Viger et al., 2017).
Examples of algorithms that mine maximal sequential patterns are SPEED (Raissi
et al., 2006), FMMSP (Lin et al., 2007), and VMSP (Fournier-Viger et al., 2014c).

Definition 14 (Contiguously Contained). A sequence Sa = 〈a1, a2, . . . , an〉, is said
to be contiguously contained in a sequence Sb = 〈b1, b2, . . . , bm〉 iff there exist integers
1 ≤ i, i + 1, i + 2, . . . , i + n − 1 such that a1 = bi, a2 = bi+1, a3 = bi+2, . . ., and
an = bi+n−1.

Contiguous containment is an additional constraint that is applied to sequential
pattern mining to reduce the pattern output. Additionally, it is also used to
discover specific patterns that appear in contiguous chunks in the underlying
sequence database. Sequential patterns that are discovered using the contiguous
constraint are called contiguous sequential patterns. Contiguous sequential pattern
mining algorithms are, basically, also a special case of gap-constrained sequential
pattern mining, where the size of the allowed gap between items is set to one.
Examples of algorithms that can mine contiguous sequential patterns include
GenPrefixSpan (Antunes and Oliveira, 2003a), CCSM (Orlando et al., 2004),
Gap-BIDE (Li and Wang, 2008), and CC-SPAN (Zhang et al., 2015).

Readers, please note, that for brevity I will not define the contiguous version of
all the different types of sequential patterns (Definitions 11, 12, and 13) and instead,
when I refer to the contiguous versions of these patterns, I ask the reader to keep in
mind a small change to Definition 10 (calculating the support of a sequence): replace
“contained" (Definition 8) with “contiguously contained" (Definition 14). Making this
change, the definitions for the different types of sequential patterns (Definitions 11,
12, and 13) all hold, and now define, their respective contiguous versions.

2.2 Depth Analysis of Trajectory Simplification Approaches

In this section I review trajectory simplification approaches, which are also called
trajectory data reduction, trajectory sampling, or trajectory compression
approaches in the field (Zheng, 2015). To begin my review of trajectory
simplification approaches, I define the limits of the review. Most importantly, I am
only interested in works that reduce trajectory complexity by discarding some
redundant, or less significant, entries. Therefore, I will not consider smoothing
approaches like Kalman filters (Lee and Krumm, 2011) or spline fitting
approaches (Marino and Manic, 2016) that modify the trajectory coordinates; I will
not consider map-matching-based approaches (recall Section 2.1.2) that snap the
coordinates to some underlying structure and simplify the journey as a path

30 Chapter 2. Literature Review

between nodes. Furthermore, I will not consider domain-specific trajectory
simplification approaches, such as those that specifically require vehicle
trajectories (Kellaris et al., 2009; Richter et al., 2012; Liu et al., 2014; Song et al.,
2014).

2.2.1 Overview

With the scope of the trajectory simplification review now defined I present the
features that I use to compare each approach.

Attributes. In general, I assume that trajectories being simplified are
spatio-temporal. This means that there are, at the very least, spatial and temporal
attributes to consider; additional attributes, however, such as speed and direction,
are also commonly inferred and considered. Due to varied sampling-rates,
recording gaps, and general inconsistency of spatio-temporal trajectories, an
effective trajectory simplification approach should consider the temporal
dimension in some way. In fact, there is already a whole class of algorithms used in
cartography, GIS, and computational geometry that only consider simplifying
poly-lines using spatial attributes (Shi and Cheung, 2006); however, many
authors (Cao et al., 2006; Lange et al., 2008; Potamias et al., 2006) consider these to
be not entirely suitable for simplifying spatio-temporal trajectories, as they ignore
the temporal dimension. Thus, to differentiate themselves from poly-line
simplification approaches, trajectory simplification approaches should, ideally, use
some combination of features beyond the purely spatial. Ultimately, the way
attributes are considered by each simplification approach is what determines the
simplification result; thus, I consider comparing the attributes used an effective
feature to differentiate various approaches.

Entry Significance. Simplifying trajectories requires reducing the size of the
original trajectory by somehow removing entries. Thus, each simplification
approach must have some function or criteria to determine which entries to keep
and which to discard. In other words, the significance of each entry, with regard to
some simplification goal, must somehow be calculated by each simplification
approach. For example, the significance of an entry may be calculated as the change
in speed and heading it caused, compared to the previous entry, with greater scores
being considered more significant. Overall, each approach is largely defined by the
significance scoring function it uses, and this makes the type of significance scoring
function an effective feature for comparing different approaches.

Processing Strategy. I define the processing strategy of a simplification
approach as: how it processes entries, when entry significance is calculated, how
many other entries will be considered when calculating a single entry’s
significance, and what is done when an entry is simplified out of the trajectory.
Thus, it follows that the processing strategy is also what defines the type of
use-cases each simplification approach is suited to. Some use-cases call for fast
processing times and little memory overhead because the algorithm is required to
run online (i.e in real-time), often on a constrained device. In online cases, a
common processing strategy is to maintain a small buffer of recent entries and
calculate entry significance as new data arrives, discarding entries that are too
insignificant, and storing tail entries that are significant enough. In other use-cases
the whole trajectory is already available, and processing time is less important than
low-error simplifications, so simplification approaches can run offline (i.e on a PC
with the whole dataset passed as input). In offline cases, the processing strategy
used can be far more inefficient: sometimes performing a full scan of the trajectory

2.2. Depth Analysis of Trajectory Simplification Approaches 31

to find the most significant entry, storing that, then repeating the process to find the
next most significant entry. Thus, I consider the processing strategy another
effective feature to compare simplification approaches.

I present my overview of relevant trajectory simplification approaches in
Table 2.1, which is then followed by a discussion of the unique contributions of
each reviewed approach.

1. Meratnia and By (2004) present one of the earliest works directly focusing on
simplification of spatio-temporal trajectories, and, as such, they are possibly
the first to establish the similarity between this problem and the problem of
poly-line simplification that has been tackled in cartography by Douglas and
Peucker (1973). Meratnia and By (2004) introduce the notion of synchronised
time-ratio distance, which is a distance function considering space and time.
Meratnia and By (2004) explain how this measure is important for
spatio-temporal trajectory simplification because it considers both space and
time dimensions of the problem; traditional poly-line simplification
approaches, such as Douglas and Peucker’s 1973, and Visvalingam and
Whyatt’s 1993, only consider spatial/geometric features. In general, I argue
that synchronised time-ratio distance is an important early foundation for the
field because it is later independently introduced by several authors (Cao
et al., 2006; Potamias et al., 2006); ultimately synchronised time-ratio distance
ends up becoming a common trajectory simplification error metric, under the
name synchronised Euclidean distance. Meratnia and By (2004) also
introduce the notion of preserving derived speed during compression, as this
naturally incorporates space and time, too. Following this, Meratnia and By
(2004) present a taxonomy of strategies for simplification: they introduce,
specifically, two essentially split-based approaches (called top-down and
bottom-up), and two single-pass approaches (called fixed window and
opening window). They combine the top-down and opening window
strategies with synchronised time-ratio distance and derived speed to create a
number of approaches that they quantitatively compare against the so-called
Douglas-Peucker poly-line simplification algorithm (Douglas and Peucker,
1973). Despite being an early work, I highlight that this is still one of the only
works to generalise the problem of trajectory simplification and make several
simplification algorithms by combining various entry significance functions
(i.e. synchronised time-ratio and speed) and processing strategies (i.e.
top-down, opening window etc.).

2. Cao et al. (2006) present an approach, that at a high-level, conceptual view, is
quite similar to that of Meratnia and By (2004): both approaches borrow the
Douglas-Peucker poly-line simplification algorithm (Douglas and Peucker,
1973) and apply it to the problem of trajectory simplification. Additionally,
Cao et al. (2006) also introduce four distance functions (two spatio-temporal)
that they use to measure trajectory simplification error. Similarly to Meratnia
and By (2004), Cao et al. (2006) combine these various distance functions with
the Douglas-Peucker algorithm, to make several algorithms. Notably, it
appears that one of the distance functions Cao et al. (2006) introduces time
uniform distance, which is equivalent to the synchronised time-ratio distance
from (Meratnia and By, 2004), which, as I mentioned above, is later popularly
used by the field as an error metric under the name synchronised Euclidean
distance. I argue that the most novel contribution of Cao et al. (2006) is that
they extensively investigate the soundness of various queries after trajectory

32
C

hapter
2.

Literature
R

eview

Approach Attributes Entry Significance Processing Strategy

1. Meratnia and By (2004) S,T,SP SED and Speed Split-based/Single-pass (online)

2. Cao et al. (2006) S,T Perpendicular distance Split-based

3. Potamias et al. (2006) S,T SED Single-pass (online)

4. Lee et al. (2007) S Distance, Angle, Perpendicular
distance

Single-pass

5. Lange et al. (2008) S Distance Single-pass (online)

6. Chen et al. (2009) S,D Distance, Angle Split-based

7. Gudmundsson et al. (2009) S,T Distance Split-based

8. Muckell et al. (2011) S,T SED Single-pass (online)

9. Liu et al. (2013) S Area Split-based (online)

10. Long et al. (2013) D Angle Single-pass

11. Liu et al. (2015) S Distance Single-pass (online)

12. Lin et al. (2016) S,T Perpendicular distance Split-based

TABLE 2.1: Overview of relevant trajectory simplification literature. Parameter legend: S = spatial, T = temporal, D = directional, SP = speed.

2.2. Depth Analysis of Trajectory Simplification Approaches 33

simplification using their various distance functions. I speculate that perhaps
it was their investigation and conclusions about the various distance
functions that led to the popularity of synchronised Euclidean distance in the
field today.

3. Potamias et al. (2006) present “STTrace", which is one of the earliest online
trajectory simplification approaches. Additionally, Potamias et al. (2006)
introduce a spatio-temporal distance function for simplification approaches:
an entry under consideration is projected back onto the simplified trajectory
by linearly interpolating along the relevant line segment using the entry’s
temporal component. Finally, the distance is calculated as the Euclidean
distance between the entry under consideration and its projected counterpart.
This is the same distance function introduced independently by both
Meratnia and By (2004) and Cao et al. (2006); however, in this work it is called
synchronised Euclidean distance (SED): that is the name that ends up being
used in the field. STTrace functions, by storing a small buffer of recent entries,
which are used to calculate the SED of new incoming entries. This SED
calculation determines whether or not the incoming entry should be added to
the buffer or whether some entry already in the buffer should be discarded in
its place. STTrace’s main contribution, is that it is an online approach that
guarantees a user-specified trajectory size requirement will not be exceeded
during simplification; this is useful for memory constrained devices running
in the field.

4. Lee et al. (2007) introduce a novel simplification approach to aid in their goal
of trajectory clustering. Their simplification approach is based on the
minimum description length principle (Rissanen, 1978) 1, where the length in
bits, of a hypothesis is calculated L(H), the length, in bits, of applying that
hypothesis to the data is calculated L(D|H), and then, the hypothesis that is
chosen, is the one that minimises L(H) + L(D|H). In this case, Lee et al.
(2007) process the data incrementally starting from the first entry and
modelling the hypothesis as the log of the distance between the start, Cj , and
end, Cj+1, entries of a currently processed trajectory data. Then, L(D|H) is
calculated as the sum of the log of the perpendicular distance, and the log of
the angular distance between each line segment and the line segment formed
by Cj , Cj+1. I highlight that this approach simplifies the trajectory, based
purely on the data, which is in contrast to other approaches, where the user
must input an error tolerance parameter, or a number of points to preserve.
While data-driven, this is not necessarily ideal because often a user wishes to
achieve a certain level of compression, or, at least, to maintain a certain
error-bound. Although it is possible to tune this approach by introducing a
parameter that offsets the L(D|H) sum, I highlight that this sum, and hence
the offset, is in bits, which makes setting such an offset non-intuitive for a
user. However, I do find the fusion of different distance measures
(perpendicular and angular distance), by a log function, to be a novel
approach that is not further-explored in later approaches.

5. Lange et al. (2008) introduce two online trajectory simplification algorithms,
“CDR" and “CDRM ", that are both based on the concept of dead-reckoning.
Dead-reckoning is typically used for navigation to determine one’s current

1For more details on MDL and its formulation I refer readers to the tutorial by Grünwald (2005).

34 Chapter 2. Literature Review

position using a previously determined position. In this context, it is adapted
by Lange et al. (2008) to determine the simplification of a trajectory based on
previous positions and estimated headings. Basically, a small buffer of
previously received locations is kept and used to calculate an approximate
direction of the next position update. When the position update arrives, it is
compared against the approximated direction to calculate the deviation: if
that deviation surpasses a user-specified threshold then the update is added
to the buffer. The CDR algorithm ensures that the a user-specified
error-bound is not surpassed, and CDRM ensures that the error-bound is
kept as low as possible without the buffer surpassing a user-specified size
constraint. In later works (Lange et al., 2009) these authors extend this online
trajectory simplification scheme to use metrics from existing line
simplification approaches, such as the Douglas-Peucker algorithm (Douglas
and Peucker, 1973). I consider the main contribution of this work to be the
formulation of both an error-bounded online method and a size-bounded
method, whereas most approaches can only achieve one or the other.

6. Chen et al. (2009) present one of the earliest works to consider simplifying
trajectories to preserve some semantic aspects of the data. In this case, the
author’s goal is to preserve interactions and visitations within a location-based
social network. Specifically, the algorithm presented divides the trajectory into
a series of walk and non-walk segments, based on velocity. Then, each segment
is simplified using a combination of direction change and speed; the authors
claim that bigger distances between entries, and bigger changes in heading, are
more semantically meaningful for their purpose. I argue that these attributes
are not as semantically meaningful as preserving visited places or even stops;
however, this approach is interesting nonetheless, simply because it is one of
the earliest to introduce this alternate trajectory simplification goal of semantic
preservation.

7. Gudmundsson et al. (2009) present an approach that is entirely focused on
examining and extending the four distance measured introduced by Cao et al.
(2006) for trajectory simplification. Gudmundsson et al. (2009) present a
formulation of their own distance measure, where time units are mapped to
space units using a conversion parameter. Using this model they demonstrate
that Euclidean distance and SED are two extremes of their function and they
can therefore exploit trade-offs in favouring one dimension or another.
Similarly to (Cao et al., 2006), after they have introduced their distance
measure, they apply it to propose a modified version of the Douglas-Peucker
line simplification algorithm (Douglas and Peucker, 1973) (however
experimental results are lacking). I consider this work distinct from others, as
it provides a straightforward approach for extending other geometric
simplification approaches to the problem of trajectory simplification,
although, the authors do not capitalise on this opportunity in this work.

8. Muckell et al. (2011) introduce an online trajectory simplification algorithm
called “SQUISH". SQUISH incrementally receives entries into a buffer of
user-specified size. When the buffer is full, SQUISH calculates which entry
would introduce the least SED between the buffered trajectory and the
streamed trajectory, if removed. Initially each entry has an attached score
associated with it, describing how much SED would be introduced if it were
removed from the buffer. However, in subsequent removals following this

2.2. Depth Analysis of Trajectory Simplification Approaches 35

initial calculation, only the entries neighbouring the removed entry need to
have their SED updated (as other entry’s SED scores will not be impacted). To
efficiently facilitate this sort of updating, entries are stored in a heap
alongside their SED scores. In contrast to most online trajectory simplification
approaches, SQUISH’s final result tends towards a user-specified size;
however, the size of stream cannot be known ahead of time. Therefore, to
avoid an oversimplification, many other online approaches prefer to have an
unbounded buffer and instead maintain a user-specified maximum allowable
error. I argue that most of the concepts introduced in this approach are the
same as those introduced by Meratnia and By (2004) and Potamias et al.
(2006); thus, I would expect a performance comparison to identify the unique
contribution of the work. However, such a comparison is lacking.
Fortunately, SQUISH is extended to “SQUISH-E" in an additional work by the
same authors, such that the SED error is bounded (Muckell et al., 2014) and a
performance comparison is provided. The results demonstrate that at the
same compression rates, “SQUISH-E" achieves faster running times and less
error than similar approaches.

9. Liu et al. (2013) introduce an online simplification approach that uses a novel
entry significance metric: area. The approach begins by first partitioning the
trajectory into a series of sub-trajectories using minimum bounding rectangles
(MBRs) containing every n-entries. The MBRs are then split and merged
using a set of five heuristics, so that MBRs all tend towards having equal
areas. Then, each sub-trajectory is simplified by using these heuristics to
determine which entries in each MBR should be preserved. These heuristics
are not necessarily justified by any distribution or trend in the data; thus, I
question their effectiveness. In some sense they are justified by the
experimental results, because the results demonstrate the approach
outperforms the Douglas-Peucker line simplification algorithm in terms of
error; however, comparisons to similar online trajectory simplification
approaches are lacking: the justification is limited. Overall, other than the
area-based significance scoring technique, this approach seems similar to
other online trajectory simplification algorithms.

10. Long et al. (2013) introduce “DPTS", which is the first specifically
direction-preserving trajectory simplification approach. DPTS is bounded to
ensure no more than a user-specified amount of directional error is
introduced during simplification of the trajectory. The authors also claim this
approach reduces positional error, while preserving directionality, which,
they say, is a feature purely positional-error reducing approaches (like the
Douglas-Peucker approach) do not have. In their experiments the authors
also demonstrate this claim; however, the effectiveness of the approach is
only compared against the Douglas-Peucker line simplification algorithm and
not more equivalent contemporary trajectory simplification approaches. I
highlight that, in an extension of their work (Long et al., 2014), the authors
introduce an approach that does not bound error because the direction
tolerance parameter is difficult to know ahead of time. Instead, they ask the
user to specify the amount of compression (i.e. the number of entries to
preserve) and then their approach simplifies the trajectory accordingly while
minimising direction error. Unfortunately, the extended work also lacks a
comparison to contemporary trajectory simplification approaches; however, I

36 Chapter 2. Literature Review

still consider their formulation for scoring entries based on direction a unique
contribution.

11. Liu et al. (2015) introduce an online trajectory simplification approach that
use a tolerance parameter to ensure a bounded amount of error. This
approach is unique because it is able to process newly received entries in O(1)
time. Briefly, the algorithm builds up a buffer of entries, and the error of the
current buffer is the maximum distance between any entry in the buffer and
the line segment formed by the start-and-end entries of the buffer. When a
new entry is received, it redefines the line segment and the error of the buffer
must be recalculated. If the error exceeds the user-specified tolerance, that
line segment is stored as part of the simplification, and the in-between entries
are discarded. This error recalculation occurs as each new entry is received;
however, the authors introduce a novel technique to reduce this calculation to
O(1) by dividing the space of the buffered entries into quadrants and using
some convex hull calculations. I consider this approach a unique contribution
to online trajectory simplification approaches that must run on highly
constrained platforms.

12. Lin et al. (2016) introduce a split-based approach that performs two stages of
splitting. In the first stage, the whole trajectory is divided into partitions
based on velocity. This is to ensure local velocity information is preserved for
tasks such as transport mode inference. Then, each of these partitions is
simplified using an estimated error tolerance parameter, passed into the
Douglas-Peucker line simplification algorithm. Lastly, the simplified
sub-trajectories are combined together to form the overall simplified
trajectory. The aim of this process is to simplify the trajectory adaptively by
considering the local (partitioned) variances in position and velocity. I
highlight this approach as unique from many others because it makes this
consideration part of its processing strategy, as opposed to its entry scoring
function. Additionally, it is one of the only approaches to estimate the error
tolerance variable for the Douglas-Peucker algorithm. Ultimately, this means
that unlike other approaches, that give the user an error tolerance variable to
tune, the simplification in this approach has, arguably, an even more
unintuitive parameter: an abstract threshold for partitioning.

2.2.2 Critical Review

From Table 2.1, and the subsequent explanation of approaches, I identify three
overarching topics that constitute my review of trajectory simplification
approaches. The first topic is extending poly-line simplification approaches to
handle spatio-temporal trajectories. In the survey by Shi and Cheung (2006), it is
apparent that there are many existing algorithms for effective poly-line
simplification; however, overwhelmingly, the existing trajectory simplification
approaches have focussed on one in particular: the Douglas-Peucker
algorithm (Douglas and Peucker, 1973). Most existing trajectory simplification
approaches that compare against, or extend, the Douglas-Peucker algorithm justify
their choice by stating that the Douglas-Peucker method is “popular" and
“well-known" (Meratnia and By, 2004; Cao et al., 2006; Gudmundsson et al., 2009;
Muckell et al., 2011; Long et al., 2013; Lin et al., 2016). While this is undoubtedly
true, I argue that this does not necessarily make it the only poly-line simplification
approach worth extending or comparing against. Furthermore, while the

2.2. Depth Analysis of Trajectory Simplification Approaches 37

Douglas-Peucker algorithm may be effective in its own domain, the plethora of
trajectory simplification works that use it as a comparison certainly demonstrate
the error and ineffectiveness of the original algorithm for trajectory simplification.
Thus, it seems contradictory that it is one of the only poly-line simplification
approaches being extended to the problem of trajectory simplification.

In general, simplification approaches always tend toward optimising some
criteria. What the criteria is, should be selected based on the use-case and
characteristics of the data. The Douglas-Peucker approach scores the significance of
each entry based on perpendicular distance, which, as the literature has shown,
preserves the shape of the poly-line well. However, shape is just one metric; in
trajectory simplification one may also wish to preserve local speed, density, or even
stops when simplifying. Thus, it appears to me that the field has wrongly ignored
many other existing poly-line simplification concepts simply because the
Douglas-Peucker approach is the most well-known to them. I argue that many
existing poly-line simplification concepts have unique significance scoring
functions that are worth investigating as they may yield novel trajectory
simplification approaches useful for preserving some specific criteria.

My second review topic is the constraint various approaches use to produce
their simplifications. There appears to me to be two distinct methods for trajectory
simplification, each a result of a specific use-case; these methods are error-bounded
and size-bounded. Error-bounded approaches only retain entries that do not
introduce more than a user-specified amount of error into the final simplification.
In this context, the term “error" is approach specific; for example, in some
algorithms, this is the amount of heading change, and in others, it is a
spatio-temporal distance measure such as SED. Error-bounded approaches are
particularly useful in online use-cases where the size of the whole trajectory is not
available or known ahead of time (i.e. see Meratnia and By (2004), Lange et al.
(2008), Muckell et al. (2014), Liu et al. (2013), and Liu et al. (2015)). The trade-off
error-bounded approaches make, is that they require the user to set a
domain-specific and algorithm-specific error tolerance parameter. While an error
tolerance parameter does give the user tuning control over the algorithm, it is also
sensitive, and enforces the implicit assumption that the user has an understanding
of the underlying significance scoring function of the algorithm; it also assumes
that the user can successfully select a reasonable parameter without analysing the
data (i.e. the data may not be available).

Conversely, size-bounded approaches (see Long et al. (2013)) do not require any
domain or algorithm specific parameters. Simply, they reduce the simplified
trajectory to a certain size, or percentage, of the original trajectory, by discarding
the most insignificant entries first. The trade-off is that error is unbounded, and
that such approaches are largely unsuitable for online use-cases. However, in an
offline setting size-bounded approaches provide a straightforward generalisation of
the problem. Specifically, size-bounded approaches allow a user to simply specify
the amount of reduction desired (i.e an 80% reduction) regardless of the algorithm
chosen: the user is afforded a concrete parameter to tune, while also relieving them
of the need to deeply understand each algorithm’s inner workings. This brings me
to the final and key topic in this part of the review: generalising the trajectory
simplification problem.

From Table 2.1, and the subsequent explanation of approaches it seems
apparent to me that all the reviewed trajectory simplification approaches can,
effectively, be described as a combination of some significance scoring function,
executed using some processing strategy. In fact, in nearly all the reviewed

38 Chapter 2. Literature Review

trajectory simplification approaches, there is a clear separation between the
significance scoring functions and processing strategies used. Thus, there is an
opportunity to generalise the problem of trajectory simplification as simply
combining various scoring functions and processing strategies. Specifically, a user
could easily iterate on various combinations of significance scoring functions and
processing strategies to create new and customised trajectory simplification
algorithms that are more suitable for their requirements. The closest existing work,
that attempts something like this, is that of Meratnia and By (2004). In their work,
they combine two scoring functions, one using SED and the other using speed, with
two processing strategies they call opening-window and top-down. These
combinations are performed manually and the authors provide no generalisation in
regard to creating further approaches in this manner.

The most straightforward generalisation to begin with, seems to be a
framework that creates offline approaches using a size-bounded design. This is
because, as I mentioned above, a size-bounded approach eliminates the
requirement for various algorithm-specific parameters for each approach, and
replaces them with a single user-specified simplification percentage parameter. As
per my first review topic, such a framework could also trivially incorporate many
significance scoring functions from existing poly-line simplification approaches.
Lastly, I highlight that any such generalisation of the trajectory simplification
problem has not been explored in existing works despite surely being a boon to
many trajectory data mining pipelines.

2.2.3 Literature Gaps

Each of the review topics I covered in Section 2.2.2 has revealed a gap in the
trajectory simplification literature. Firstly, existing trajectory simplification has
focused mainly on extending the Douglas-Peucker poly-line simplification
algorithm, when many other potentially effective poly-line simplification
approaches exist that can also be extended to the problem of trajectory
simplification. Secondly, the size-bounded criteria for trajectory simplification
seems to provide a generalisation of the problem under a single parameter
interface, yet, no existing works have exploited this. Thirdly, there is an
opportunity to generalise trajectory simplification approaches as a combination of
scoring function and processing strategy; however, no existing approach has done
so. Therefore, I propose investigating a generic, trajectory simplification
framework, that can combine various significance scoring functions (some from
existing poly-line approaches) and processing strategies, together, to produce
size-bounded, offline, trajectory simplification algorithms. I conduct an
investigation into this framework in Chapter 3.

2.3 Depth Analysis of Mining Sequential Patterns From
Vehicle Trajectories

Unlike the other sections of this literature review, this topic finds itself at the
intersection of two fields: sequential pattern mining and vehicle trajectory data
mining. Both fields are well established, with much research activity having taken
place; however, at the intersection of the two (i.e. approaches that mine sequential
patterns from vehicle trajectories), research is limited. Thus, I do not present a
tabular overview of the field, like I do for the other review topics but, rather an

2.3. Depth Analysis of Mining Sequential Patterns From Vehicle Trajectories 39

textual discussion of key developments that have led to the current few approaches
that are closest to the problem of sequential pattern mining of map-matched vehicle
trajectories.

2.3.1 Overview

Since the late 1990s there has been a growing number of increasingly efficient
sequential pattern mining algorithms that find frequently occurring subsequences
from a set of input sequences (Srikant and Agrawal, 1996; Zaki, 2001; Ayres et al.,
2002; Pei et al., 2004; Yang et al., 2007; Fournier-Viger et al., 2014a). Trajectories are
essentially sequences, and it is desirable to know which sub-trajectories are
frequently occurring: it is useful for identifying traffic congestion, finding popular
routes, making travel predictions and recommendations, and generally
understanding the movements trends of the tracked entities. Thus, as trajectories
are sequential in nature, it intuitively follows one could mine sequential patterns
from trajectories. However, all sequential pattern mining approaches require
sequences of discrete items as input (i.e. sequences of strings or integers), which is a
mismatch with trajectories that are typically a series of geographic coordinates.
Despite this conceptual incompatibility between trajectories and sequential pattern
mining, a number of approaches have been presented over the years that mine
sequential patterns from trajectories (Cao et al., 2005; Yang and Hu, 2006; Giannotti
et al., 2007; Morzy, 2007; Lee et al., 2009; Gidófalvi and Pedersen, 2009; Savage
et al., 2010; Shaw and Gopalan, 2014). Broadly speaking, the technique that such
works employ, is to transform the trajectory into a series of discrete items, and then
perform sequential pattern mining on those discrete sequences. To convey how a
trajectory dataset can be discretised, I present the general process that two
existing-approaches use to mine sequential patterns from trajectory datasets.

Firstly, Cao et al. (2005) transforms raw geographic trajectories into discrete
items by using line simplification to find key segments within their dataset. Each
segment is given a unique id, then, every trajectory entry within a user-specified
distance of these segments is associated with the corresponding segment id. Once
all the trajectory entries are associated with segments, sequential pattern mining is
performed on the sequences of visited segments. Secondly, Giannotti et al. (2007)
partition the bounding box of the trajectory dataset into a spatial grid of uniform
cells and then count how many trajectories pass through these grid cells. These grid
cells are then iteratively expanded to include their neighbours, as long as a
minimum overall trajectory count is maintained across the cells. These expanded
groups of cells become RoIs (recall Section 2.1.3). Once all RoIs are formulated the
original trajectory dataset is transformed into a series of RoI visitations, which
makes it discrete and suitable for sequential pattern mining.

In contrast to approaches such as Cao et al. (2005) and Giannotti et al. (2007),
that can mine sequential patterns from trajectories moving around in free space, I
focus on a more specific version of the problem: mining sequential patterns from
vehicle trajectories. With vehicle trajectories, one can assume they are constrained
to an underlying road network and, therefore, they should be treated differently
than other types of trajectories that are free to move around in space. This
assumption of constrained movement means that even under heavy spatial
uncertainty one can use map-matching techniques (recall Section 2.1.2) to estimate,
with some confidence, the true route that vehicle travelled. Additionally,
map-matching vehicle trajectories to an underlying road network effectively
discretises trajectory coordinates into a series of visited road nodes; thus, making

40 Chapter 2. Literature Review

the trajectories suitable for sequential pattern mining. This exact process is
described by Zheng (2015, p.21) who says, “[w]hen the sequential pattern mining
problem is applied to a road network setting, we can first map each trajectory onto
a road network by using map-matching algorithms. A trajectory is then
represented by a sequence of road segment IDs".

However, I argue that even after vehicle trajectories are discretised using
map-matching, there still exists some unsuitability with general sequential pattern
mining algorithms. Since vehicle trajectories are implicitly contiguous, driving
from one road to the next without suddenly skipping around, one should try to
mine sequential patterns that reflect the exact routes they travel. General sequential
pattern mining algorithms such as GSP (Srikant and Agrawal, 1996), SPADE (Zaki,
2001), SPAM (Ayres et al., 2002), PrefixSpan (Pei et al., 2004), LAPIN (Yang et al.,
2007), and CMSPAM (Fournier-Viger et al., 2014a) offer no such guarantees about
the contiguous nature of the mined patterns. For example, such approaches may
find a pattern such as, regionA → regionB. This kind of high-level pattern tells one
nothing of the actual roads the vehicles travelled along; such information would be
extremely valuable in domains such as urban planning, route planning, and traffic
management (Yuan et al., 2010; Herrera et al., 2010).

Fortunately, this constraint of mining patterns that consist of contiguous items
in the underlying sequence database is fairly common, particularly in domains like
biology (Exarchos et al., 2008) and geography (Atev et al., 2010) where patterns,
consisting of nearby items, are more meaningful. In fact, there is a whole class of
algorithms that do, so-called, gap-constrained sequential pattern mining, that can be
used to mine contiguous sequential patterns (Antunes and Oliveira, 2003b; Zhu
and Wu, 2007; Li et al., 2012; Zhang et al., 2015). Specifically, these gap-constrained
approached mine sequential patterns such that the underlying items that constitute
a given pattern must be within at least some user-specified max-gap of one another
in the input sequences. Thus, if one wanted to mine contiguous sequential patterns
from vehicle trajectories, assuming that vehicles always move from one road node
to the next, the max-gap parameter of gap-constrained algorithm would simply be
set to one. However, max-gap constrained or otherwise, there is a problem with
sequential pattern mining approaches that generally makes them unsuitable for
mining long and homogeneous input sequences, such as map-matched vehicle
trajectories.

Vreeken et al. (2011) calls the problem: “pattern explosion". As Vreeken et al.
(2011) explains, when the input sequences are sufficiently homogeneous, a huge
number of patterns are produced as a result of pattern mining: pattern outputs
become so large that they are orders of magnitude larger than the size of the input.
Datasets such as vehicle trajectories which are long and mostly similar (i.e. driving
many similar roads between sequences) are ideal candidates to exacerbate such
pattern explosions. The simplistic solution to mitigate pattern explosion, is to
increase the minimum support parameter used to formulate patterns; however, the
trade-off is that only a small number of well-known patterns are found. The
problem of pattern explosion is that each pattern is stored in the pattern mining
output regardless of the already discovered patterns. Thus, as Vreeken et al. (2011)
highlights, “we end up with a rather redundant set of patterns, in which many
patterns essentially describe the same part of the database". A highly redundant
pattern output is difficult for a user to interpret; thus, tasks like visualisation offer
little value. I highlight that another technique to reduce the number of patterns is to
apply additional constraints to the pattern mining process, such as finding only the
set of all closed or maximal patterns (recall Section 2.1.3). While closed and

2.3. Depth Analysis of Mining Sequential Patterns From Vehicle Trajectories 41

maximal constraints do reduce the number of patterns discovered they do not
necessarily tend towards a less redundant set of patterns; thus, as Vreeken et al.
(2011) notes “redundancy remains an issue".

Vreeken et al. (2011) propose an algorithm called “KRIMP", in the related
problem of frequent itemset mining. KRIMP reduces the output redundancy by
finding the set of patterns that best compresses the input dataset, with respect to
the Minimum Descriptive Length (MDL) principle. The concept of KRIMP is then
extended by Lam et al. (2014) who propose “GOKRIMP" for the top-k sequential
patterns that best compress the input dataset. Unfortunately, GOKRIMP is
unsuitable for use on vehicle trajectories because it does not support mining
contiguous sequential patterns. Overall, it seems that existing general,
gap-constrained (contiguous), concise (closed and maximal), and compressing
sequential pattern mining algorithms are all unsuitable for handling map-matched
sequences of vehicle trajectories for one reason or another. Despite this, some
approaches in the literature have used gap-constrained approaches for tasks related
to vehicle trajectories.

For example, Song et al. (2014) and Wang et al. (2014) both use map-matching to
discretise vehicle trajectories in order to mine sequential patterns from them.
Specifically, Song et al. (2014) mines contiguous sequential patterns from vehicle
trajectories using a Suffix Tree, transforms them into Huffman codes, and then
presents a compression format for vehicle trajectories based on the codes. Wang
et al. (2014) borrows this same Suffix-Tree-based approach, and mines contiguous
sequential patterns, to use as travel time estimates between road nodes. However,
both approaches mention they limit the depth of their tree to twenty road nodes,
which, I assume is a setting to limit the impacts of pattern explosion and increase
mining efficiency. Additionally, limiting the maximum pattern length does nothing
towards reducing the redundancy of the pattern output. Thus, an approach that
mines contiguous sequential patterns from vehicle trajectories without producing a
huge and redundant output seems non-existent.

2.3.2 Critical Review

While an approach for my purpose does not appear to exist, map-matching, vehicle
sequential pattern mining, and the combination of the two, have all been explored
in the literature before. Thus, for my review, in this section I pose and speculate on
two questions, in regards to why vehicle trajectories have not been mined in this
way before.

Are succinct, or less redundant, contiguous sequential patterns of vehicle trajectories
that useful? Such a set of patterns would ideally describe the popular routes of the
tracked vehicles in a way where there is little or no overlap between patterns. Thus,
each pattern would represent a mostly-unique route, that a number of different
vehicles from the input dataset had driven. In this way, the pattern output may
serve as a sort-of overview of the general trends of the tracked vehicles. Intuitively,
such information seems useful for domains such as urban planning, traffic
management, and personalised navigation. Specifically, less redundant contiguous
sequential patterns of vehicles would be far more useful than the full set, simply
because they would be easier to use and interpret (for both humans and machines).
For example, a lack of redundancy opens up the potential to visualise the popular
routes, which, if done before using the full set of contiguous sequential patterns,
would be a visual mess.

42 Chapter 2. Literature Review

In what ways can the problem of redundancy in the pattern output be solved? What
compromises are there? There appears to me to be at least two viable approaches for
reducing the redundancy in the pattern output of the contiguous sequential pattern
mining process. The first, is to extend algorithms such as KRIMP (Vreeken et al.,
2011) and GOKRIMP (Lam et al., 2014), and invent a contiguous sequential pattern
mining algorithm that finds the top-k patterns and compress the input sequence
with regard to some criteria. However, if the goal is to mine a pattern output that
presents an overall view of the popular routes driven by vehicles, a top-k approach
seems somewhat problematic for the user. Specifically, the user cannot know how
many routes is reasonable to obtain an overview of the dataset.

The second approach, is to mine the set of contiguous sequential patterns in a
lossy way: iteratively keeping the most representative patterns and discarding all
patterns that exceed some redundancy criteria. In this way, the user can control the
level of redundancy they wish to allow in the pattern output. However, the
trade-off is, that some patterns will be discarded in favour of others, and ultimately
those patterns may not be fully represented in the output. In the context of vehicle
trajectories, this will likely lead to the popular, long, routes receiving more
representation that smaller routes simply because the longer routes represent a
greater portion of the input sequences. This option seems to err towards providing
an overview of the vehicle movements, as opposed to a highly detailed list of all
route variations that a contiguous or gap-constrained sequential pattern mining
approach would produce.

Overall, I argue contiguous sequential patterns of vehicle trajectories are useful,
but the problem of pattern explosion and output redundancy have hampered the
combination of the map-matched vehicle trajectories and contiguous sequential
pattern mining approaches, so far.

2.3.3 Literature Gaps

I identify only a single, but important, gap in the literature in this section.
Specifically, there is no existing approach to mine contiguous sequential patterns,
from map-matched vehicle trajectories in a way that does not produce a huge or
highly redundant pattern output. Thus, I investigate such an algorithm in
Chapter 4 where I introduce a new type of sequential pattern called a “distinct
pattern".

2.4 Depth Analysis of Stop/Move Detection Approaches

Late in the first generation of trajectory data mining, Spaccapietra et al. (2008)
introduced a model for representing a moving entity’s journey as a series of stop
episodes with move episodes in-between. This stop/move model semantically
enriches the trajectory, and turns out to be a useful representation for a number of
problems. Specifically, since it was introduced, the stop/move model has been used
to semantically enrich trajectories for: semantic trajectory data mining (Cao et al.,
2010; Khetarpaul et al., 2011; Zheng et al., 2009), location recommendation (Leung
et al., 2011; Takeuchi and Sugimoto, 2006; Ying et al., 2014), and activity recognition
(Boukhechba et al., 2015; Huang et al., 2010; Spinsanti et al., 2010; Xie et al., 2009).
However, to facilitate any of the use-cases I just listed, there is, of course, the actual
task of, first, finding the trajectory stops and moves. Typically, trajectories only
contain spatio-temporal information so it is a classic unsupervised classification

2.4. Depth Analysis of Stop/Move Detection Approaches 43

problem to determine the correct stop or move label for each trajectory entry. Over
the last decade there have been many stop/move trajectory detection approaches,
even more trajectory applications that use stops/moves in some way, and a number
of approaches for all of the steps in-between; however, I wish to clarify that in this
review I limit the scope solely to the problem of stop/move detection.

2.4.1 Overview

I present an overview of the relevant stop/move approaches I review in Table 2.2,
followed by a brief explanation of the unique contributions of each approach.

1. Alvares et al. (2007) present SMoT, which is one of the foundational works for
detecting stops and moves, and also the first approach I know of to introduce
the concept of geographic stop/move detection. Additionally, one could also
argue that SMoT was the approach that popularised the application of the
stop/move model as presented by Spaccapietra et al. (2008). Lastly, I
highlight that SMoT is one of the few stop/move approaches that, at the time
of writing, has publicly available source code 2.

2. Palma et al. (2008) present a density-based clustering approach called
“CB-SMoT". CB-SMoT is a direct extension of SMoT (Alvares et al., 2007) and
is heavily based on DBSCAN (Ester et al., 1996), with some modifications to
handle temporal and sequential data. I highlight that CB-SMoT is one of the
earliest stop/move approaches to extend DBSCAN and also the first
approach that can find stops with or without a collection of known places.
Similarly to SMoT, CB-SMoT also has publicly available source code at the
time of writing 3.

3. Zimmermann et al. (2009) present “StopFinder", which is an extension of
OPTICS (Ankerst et al., 1999). I highlight that StopFinder is one of few
approaches to extend OPTICS, where, most clustering-based, stop/move
approaches extend DBSCAN. Unfortunately, the authors do not provide
comparisons against any DBSCAN-based stop/move approaches, so it is
difficult to evaluate whether their choice of algorithm improves the accuracy
of stop/move detection or not. Another, aspect that I highlight is that, unlike
the majority of other works, Zimmermann et al. (2009) provide estimation
techniques for some of their algorithm’s parameters. Specifically, the spatial
and temporal parameters are estimated by calculating the average entry
displacement and recording gap. There is no quantitative experiments
demonstrating parameter sensitivity or parameter estimation effectiveness for
StopFinder; thus, I am left to speculate that, while better than nothing, these
parameter estimations are most likely too simple to be useful because they
capture moving entries too.

4. Zheng et al. (2009) present a simple stop detection algorithm. This algorithm
formulates stops by finding sub-trajectories where the distance between
entries does not surpass a user-specified spatial threshold and the whole
sub-trajectory has a duration that is at least as long as a user-specified
temporal threshold. This requires the user set an optimal spatial parameter,
that is not so large that stops grow too much, and not so small that actual

2https://github.com/yipeng/WEKA-STPM
3See footnote 2

44
C

hapter
2.

Literature
R

eview

Approach Type Parameters Estimate All
Parameters?

Ground-truth
available?

Source Code?

1. Alvares et al. (2007) Geographic. G, T. � � �

2. Palma et al. (2008) Clustering-based. S, T, G. � � �

3. Zimmermann et al. (2009) Clustering-based. S, T, N. � � �

4. Zheng et al. (2009) Clustering-based. S, T. � � �

5. Rocha et al. (2010) Clustering-based. D, T, N. � � �

6. Tran et al. (2011) Clustering-based. S, T � � �

7. Thierry et al. (2013) Clustering-based. S. � � �

8. Gong et al. (2015) Clustering-based. S, P, D, N � � �

9. Fu et al. (2016) Clustering-based. S, T. � � �

10. Xiang et al. (2016) Clustering-based. S, T, T, T, N, N. � � �

11. Hwang et al. (2017). Clustering-based. S, T, P. � � �

12. Luo et al. (2017) Clustering-based. S, P, N. � � �

TABLE 2.2: Overview of relevant stop/move literature. Parameter legend: S = spatial threshold, T = temporal threshold, D = directional threshold, G =
geographic places, P = minimum number of points, N = non-attribute related threshold.

2.4. Depth Analysis of Stop/Move Detection Approaches 45

stops are split into a series of smaller stops. Unfortunately, no parameter
estimation techniques, effectiveness experiments, parameter sensitivity
analysis, or general comparison to other stop/move approaches are presented
in this work. This is somewhat expected though, as the stop detection
algorithm in this approach is part of a much larger semantic trajectory data
mining application for mining interesting locations and travel sequences from
human trajectory datasets (i.e. the main focus of the work is not stop
detection).

5. Rocha et al. (2010) present an approach called “DB-SMoT", which is a direct
extension of CB-SMoT (Palma et al., 2008). I highlight that DB-SMoT is one of
the first and only approaches to incorporate the directionality of trajectory
entries when calculating if the tracked entity is stopping. Rocha et al. (2010)
evaluate the effectiveness of DB-SMoT and CB-SMoT in the domain of fishing
vessel trajectories. Their experiment results indicate that DB-SMoT is more
effective in this domain because their approach is built to handle the case
where stops drift around; however, no claim is made, nor experiments
performed, to measure whether DB-SMoT is suitable, or more effective, in
other cases, such as human trajectories.

6. Tran et al. (2011) present “TrajDBSCAN", which is another extension of
DBSCAN (Ester et al., 1996). I highlight that Tran et al. (2011) are one of the
few authors who use publicly available datasets: this makes their experiments
fully reproducible. However, the datasets used are of raw trajectories with no
indication of the true stops or moves that the entity made. Due to this, the
authors are forced to evaluate their approach by visualising stops on map and
discussing their validity. The authors also perform some quantitative tests,
measuring the number of stops as they vary algorithm parameters and input
trajectory sampling-rates. I argue that simply counting the number of stops is
a poor metric, because there is no indication whether these are true or false
stops. Another aspect I highlight is that Tran et al. (2011) introduce several
concepts beyond pure stop/move discovery. Specifically, they propose
techniques to form a hierarchy of stop types, such as: concrete stops (at
specific places); generic stops (at large regions like shopping centres);
personalised stops (where only a single entity stops); and, shared stops
(where many entities stop). These additional stop types are formulated by
splitting and merging stop clusters, and they are likely useful for semantic
pattern mining; however, the authors do not investigate this research
direction.

7. Thierry et al. (2013) present a density-based approach that uses kernel density
surfaces to formulate stop clusters. I highlight that this approach only requires
a single spatial parameter, which, while simpler to tune, is used in a way that
does not consider the sequential nature of the trajectory data being processed.
Experiments are performed using a synthetic ground-truth; however, there is
no comparison to other approaches. Additionally, at the time of writing, a
publicly available implementation of their algorithm is available for ArcGIS
users 4.

8. Gong et al. (2015) present “C-DBSCAN", which, as the name implies, is
another extension of DBSCAN (Ester et al., 1996). I highlight a unique feature

4http://www.spherelab.org/tools

46 Chapter 2. Literature Review

of C-DBSCAN: it calculates the distribution of per-entry direction changes to
further refine whether a cluster is a stop or move. Specifically, the authors
introduce an assumption that a small distribution of direction changes is
likely a move and a larger, more erratic, distribution of direction changes is
likely a stop, caused by GPS spatial uncertainty. This extra step introduces
two new parameters that are required by their approach. To ease the task of
parameter selection, Gong et al. (2015) introduce a cumulative frequency
technique to estimate all of C-DBSCAN’s parameters. However, their
parameter estimation approach is largely impractical because it requires
samples from a labelled ground-truth dataset. Lastly, the authors introduce a
post-processing step to improve classification accuracy. Specifically, the
authors use labelled ground-truth trajectories to train a support vector
machine (Cortes and Vapnik, 1995) to further refine stop/move classifications.
The results indicate that the SVM is an effective technique in a supervised
setting; however, I highlight that it is entirely unhelpful when there is no
labelled ground-truth.

9. Fu et al. (2016) present “TDBC", which is a two-step approach to find stop
clusters and their centres. In the first step the authors present a simple
threshold-based clustering algorithm that handles three specific stop cases:
stops indicated by a recording gap, a single uninterrupted stop at some place,
and a stop where a person begins or ends their tracking. Once these stop
clusters have been formulated they use a modified point clustering approach
based on “CFSFDP" (Rodriguez and Laio, 2014) to find the centres of each
cluster using local density. This is one of the only approaches that attempts to
find the actual, physical location of the entity stops: most approaches present
the stop as a polygon formulated by the convex hull of the stop cluster, or by
the average coordinate of the stop cluster with a radius. Fu et al. (2016)
quantitatively compare the efficiency and effectiveness of their approach to
some others using several ground-truth datasets. The results indicate that
compared to other approaches TDBC demonstrates some improvement in
accuracy; the major improvement, however, is efficiency, with TDBC
achieving running times nearly an order of magnitude faster than the other
clustering-based approaches (though the algorithm implementations are not
provided).

10. Xiang et al. (2016) present “SOC", which is based on both DBSCAN (Ester
et al., 1996) and OPTICS (Ankerst et al., 1999). Similarly to Fu et al. (2016),
SOC is designed to handle stops indicated by a large temporal gap.
Furthermore, similarly to Tran et al. (2011), SOC can merge nearby stop
clusters that may have been separated due to spatial uncertainty.
Additionally, similarly to Gong et al. (2015), SOC uses an additional criteria to
filter out likely false-positive stop clusters. In SOC, the cluster straightness,
duration, direction change, and centre-distance are calculated, and if some
combination of these metrics exceed their respective user-specified
thresholds, the cluster is considered a move and not a stop. While this
assumption seems reasonable, it introduces the same problem as in
C-DBSCAN (Gong et al., 2015), because the user now has to estimate a
number of additional parameters when using SOC. Unlike, Gong et al. (2015)
though, Xiang et al. (2016) provide no techniques to set the parameters in the
supervised or unsupervised case. Instead, they simply provide some default
values that work for their test datasets. Experiment results indicate that SOC

2.4. Depth Analysis of Stop/Move Detection Approaches 47

outperforms some existing density-based stop/move detection algorithms;
however, ultimately the number of hand-tuned parameters cannot be
overlooked when using this approach in an unsupervised setting.

11. Hwang et al. (2017) present some pre-processing and post-processing
techniques that are used in combination with an unmodified version of
DBSCAN (Ester et al., 1996). The first pre-processing technique is to remove
some outliers based on unreasonably high-speed entries. The second
pre-processing step is to handle recording gaps in the trajectory data, creating
new trajectory recordings at a constant time-step, by linearly interpolating
between the recording gaps in the trajectory. Lastly, the post-processing
technique they introduce is to run an odd-numbered, fixed-size sliding
window over the final labelled entries, and homogenize all entry labels
within the window based on the majority label. While the actual stop/move
approach presented is simply DBSCAN, the pre-processing and
post-processing techniques presented are likely applicable to nearly all
existing stop/move approaches.

12. Luo et al. (2017) present “DF-DBSCAN", which is a combination of both
DBSCAN (Ester et al., 1996) and kernel density concepts. Luo et al. (2017)
introduce a novel concept called “move ability", which, when given a
sub-trajectory, is calculated as the distance between the start and end point,
divided by the distance along the actual sub-trajectory trail. The assumption
is, that a stopping sub-trajectory may have quite a lot of movement, due to
spatial uncertainty, but doesn’t actually displace itself very far overall; a
move, however, is expected to have a distance between the start and end
point that is fairly similar to the distance of the path travelled. Move ability is
calculated at each trajectory entry by sampling a user-specified number of
entries on either side of the current entry. Each entry’s move ability is then
passed into a kernel density function that has weightings for the move ability
and the impact of surrounding entries. The result is a density score calculated
at each entry, which is then, ultimately, used in a slightly modified sequential
DBSCAN to formulate stop clusters. Unlike other authors, Luo et al. (2017)
provide a data-driven technique to estimate a reasonable value for the
minimum density parameter used in DF-DBSCAN. Unfortunately, the user is
still left to manually set three other parameters, two of which are abstract
weighting parameters. Fortunately, Luo et al. (2017) do provide a set of
experiments demonstrating some of the effects of varying these parameters
for their datasets. Some of their observations, likely, hold for their algorithm
in the general case; however, I argue that others are specific to their data (such
as the setting for the number of points parameter). Additionally, Luo et al.
(2017) perform two quantitative experiments using real-world, ground-truth
trajectories, and both experiments indicate DF-DBSCAN achieves a higher
accuracy than the compared approaches.

2.4.2 Critical Review

Table 2.2 indicates that two main stop/move paradigms are used throughout all the
approaches I considered: geometric containment and clustering. Geometric
containment, simply, intersects some known place with the trajectory, and all the
contiguous sub-trajectories that stay within the place, for some user-specified
duration, are labelled as stops. Conversely, clustering-based approaches build up

48 Chapter 2. Literature Review

groups of nearby (and typically sequential) entries, and if the group conforms to
some user-specified density (number of entries) or time (stop duration) constraint,
then it becomes a cluster and is labelled as a stop. Geographic containment and
clustering-based stop move detection were both presented relatively-early-on by
Alvares et al. (2007) and Palma et al. (2008) respectively, and I argue that
subsequent approaches have only made fairly minor changes to the overall process
since then.

To illustrate this argument, I refer the reader back to Table 2.2, and highlight
that since Palma et al. (2008) introduced “CB-SMoT", their clustering-based
stop/move detection algorithm based on DBSCAN (Ester et al., 1996), all
subsequent approaches I reviewed also used a clustering-based approach. One
might say my clustering-based grouping is too general and does not indicate the
similarity of these approaches. However, I argue that many of them are indeed
similar; specifically, I have found that 66% of the reviewed approaches introduced
after CB-SMoT follow the same general algorithm design and directly extended
DBSCAN to find stop clusters. Hwang et al. (2017) even uses the original DBSCAN
algorithm, which does not consider the sequential nature of trajectories, and adds
an additional minimum stop time constraint. Of course, the approaches I reviewed
are not entirely the same as each other: some consider extra dimensions in the
trajectory data, such as DB-SMoT considering direction (Rocha et al., 2010), while
others extend the original stop/move detection task in problem-specific ways (i.e.
Tran et al. (2011) introduced a hierarchy of stop types, like shared stops and
personalised stops). However, there certainly appears to be a reasonable amount of
similarity in terms of pure stop/move detection processes. Thus, if the user’s goal
is to find only stops and moves in the trajectory, the job of selecting the single most
suitable approach from the existing works is somewhat unclear. For example, if I
consider one of the use-cases in this thesis —to incorporate some stop/move
approach as part of a semantic trajectory data mining application —then it is not
immediately clear from algorithm features alone which approach from the
literature would be the most suitable. Therefore, I formulated the following
questions to evaluate the suitability of existing approaches for my purpose:

1. What is the stop/move classification accuracy of the approach?

2. Will the approach find stops/moves from a raw trajectory, purely based on the data; or,
does it require parameter setting? If user-specified parameters are required, how is the
user to set them?

3. Given that a trajectory has a degree of spatial uncertainty, is there any degree of
confidence attached to the stop/move labels produced (i.e. I would prefer not to have
false stops causing false patterns)?

In regard to the first question, the accuracy of existing approaches, I observed
that the task of labelling trajectory entries as either stop or moves appears to be a
typical unsupervised classification problem. Thus, I would expect existing
approaches to quantitatively test their accuracy like other binary classifiers: that is,
using ground-truth datasets. However, some of the approaches I reviewed did not:
they simply discussed measurements like the number or location of stops (Alvares
et al., 2007; Palma et al., 2008; Tran et al., 2011). Such measurements do little to
indicate the quantitative accuracy of a stop/move approach. Those aside, however,
the other approaches I reviewed did use ground-truth datasets to measure the
effectiveness of their algorithms; I highlight, however, that the techniques they

2.4. Depth Analysis of Stop/Move Detection Approaches 49

used to make their ground-truth datasets were of varying quality. For example,
some approaches took existing trajectories and labelled them, after recording, by
using mapping applications, and carefully examining the distance and temporal
gap between recordings (Xiang et al., 2016; Hwang et al., 2017; Luo et al., 2017);
however, this is not ideal, as this introduces some bias and potential for
confirmatory results. Other researchers generated synthetic ground-truth datasets
by simulating stopping and moving entities (Thierry et al., 2013); however, these
synthetic datasets surely lack the true nuances and errors of real GPS trajectories.
Lastly, some existing works used GPS trajectories of people in the real-world, and
those people provided a ground-truth by manually annotating whether they were
stopping or moving in the moment, using an application on the GPS receiver or
some other means (Zimmermann et al., 2009; Rocha et al., 2010; Gong et al., 2015;
Fu et al., 2016).

The problem is, that even after a decade of research, not a single author has
shared their ground-truth stop/move trajectories. I am reminded of a similar
problem early in the field of map-matching that Newson and Krumm (2009)
observed: “all the work on map-matching used private data sets for testing, making
it impossible to objectively compare results from different algorithms". This is
exactly the case here, too; due to the lack of a public ground-truth dataset, there is
no way to objectively reproduce and compare the quantitative accuracy
demonstrated in the experiments of existing approaches. This problem of
reproducibility and comparability between approaches is further exacerbated by
the distinct lack of public source code for the majority stop/move algorithms in the
field (see Table 2.2). The result is that the user who wishes to implement some
existing stop/move approach has to make a judgement as to which set of
incomparable experiments might best represent the algorithm’s suitability for their
use-case. Thus, answering my first question, regarding the accuracy of existing
stop/move approaches, appears to require creating a ground-truth dataset,
implementing each approach, and then comparing them. This is surely out of scope
for most users and certainly out of scope for this thesis.

This brings me to the second question: the requirement for parameters and how
to select them. Table 2.2 reveals that all the reviewed approaches require at least
one parameter, other than the input trajectory, with the majority requiring three.
These parameters are used to define a stop considering some combination of
features (i.e. space, time, speed, direction etc.). However, because spatial
uncertainty varies as a GPS receiver moves around, selecting the optimal
parameters to correctly label noisy stops across the whole dataset is a non-trivial
task. In fact, without a ground-truth dataset to verify against, the task can devolve
into guesswork with no indication of correctness. From my review of the literature,
there does not appear to be a clear indication of which approach has the least
sensitive parameters, and very little indication of how to select parameters for any
of the approaches in an unsupervised setting. Some approaches introduce
estimation functions for some, but not all, of their algorithm parameters
(Zimmermann et al., 2009); however, even one user-specified parameter still
requires the user to, effectively, guess when tuning the algorithm. Specifically, after
reviewing the literature, I have concluded that using any of the existing approaches
and tuning their parameters on a raw trajectory, by guesswork, would be fairly
useless; the only indicator would be finding, more or less stops —which is hardly
an effective metric to judge accuracy. As I have highlighted in Table 2.2, there is an
overall lack of parameter estimation in the existing works, which is unreasonable,
as the data is noisy and the parameters numerous. Thus, in answering to my

50 Chapter 2. Literature Review

second question: all existing approaches require parameters and a user to manually
(and blindly) set at least one, if not all, of those parameters.

Now, onto my third question, regarding the confidence of any given stop/move
classification. All the stop/move approaches I reviewed only classify trajectory
entries definitively. That is, an entry is either labelled as a stop, a move, or some
other type the author was interested in. By definitively labelling entries (or clusters
of entries), existing approaches do not provide any indication that some
classifications may be more or less ambiguous than others, due to some factors such
as spatial uncertainty. In my case, where I wish to use a stop/move approach as a
step in a semantic data mining application, this is not ideal. Ideally, I would prefer
each stop/move classification to have an associated confidence value; I could use
this value to filter out potentially false-positive stop classifications, thereby, filtering
out false patterns that may occur later in the data mining process. Thus, in answer
to my third question, there is no indication of classification confidence in any
existing stop/move approaches.

2.4.3 Literature Gaps

Summarising the review in Section 2.4.2 I can answer the three questions raised as
follows:

1. What is the stop/move classification accuracy of the approach? Likely, due to a lack
of publicly available implementations and a labelled ground-truth stop/move
trajectory dataset, there is no objective way to compare the accuracy of the
reviewed approaches without implementing each one and collecting a
ground-truth dataset ourselves. In short, very few of the reviewed stop/move
approaches share their source code, nor is there any ground-truth shared for
evaluating approaches.

2. Will the approach find stops/moves from a raw trajectory, purely based on the data; or,
does it require parameter setting? If user-specified parameters are required, how is the
user to set them? There was no reviewed approach that can estimate all its own
parameters effectively; of the reviewed approaches that provide guidance on
parameter setting, that guidance is limited in an unsupervised setting.

3. Given that a trajectory has a degree of spatial uncertainty, is there any degree of
confidence attached to the stop/move labels produced (i.e. I would prefer not to have
false stops causing false patterns)? All reviewed approaches do not consider the
possibility that some stop/move classifications may be more uncertain than
others.

Overall, the reviewed stop/move approaches seem, in some way or another,
unideal in regard to the posed questions. Thus, I propose to investigate a
probabilistic stop/move approach that detects stops and moves in trajectories, and
associates a value with each entry that indicates the probability that the entry was
stopping. In this way, I will be able to fulfil my use-case, of filtering out ambiguous
stops before I perform further data mining. Additionally, I will make the
implementation and ground-truth datasets used in my quantitative experiments
available to the public, as it is evident from my review that the field as whole is
sorely lacking such a resource. My hope is that future researchers will be able to use
the dataset to quantitatively and objectively compare the effectiveness of my
approach to theirs, with no additional burden to themselves. This investigation into
a probabilistic stop/move approach is detailed in Chapter 5.

2.5. Depth Analysis of Place-matching Approaches 51

2.5 Depth Analysis of Place-matching Approaches

To review the existing place-matching literature, I have identified five features that
the existing place-matching approaches introduce and build upon. Considering each
feature, I am able to compare the differences between existing approaches, and also
identify gaps in the literature as a whole. I introduce each feature as follows:

1. Points/Polygon Places. When matching places to trajectories it is common
that these places come from some database of known places, such as
OpenStreetMap or Google Places. OpenStreetMap stores place geometries as
polygons, or points, depending on the type of place; whereas, Google Places
and Foursquare stores places strictly as a single point. Supporting only one
geometry type or the other limits the usability of a place-matching approach;
thus, ideally, both should be supported. Furthermore, perhaps even line
geometry should be supported, too, for stops that occur on a street or
walkway (such line geometries are also available through services like
OpenStreetMap).

2. Stop/Place Disambiguation. Many place-matching approaches begin by
extracting trajectory stops; they, then proceed, matching each stop with a
single known place. However, the task of matching a stop to a single place
becomes ambiguous when the stop itself is surrounded by, or intersecting,
several potential places. This is a relatively common occurrence when
real-world place databases are used, especially when the region being studied
is dense with places. Thus, the new task becomes one of stop/place
disambiguation. Some approaches ignore this problem, which simply lowers
their accuracy, whilst others simply match the stop to the closest place.
However, matching to the nearest place is, typically, entirely unreliable, at the
scale of stops and places, because the stop geometry/location should be
considered somewhat spatially uncertain; the distance measurement cannot
be trusted absolutely. Other factors, such as place type, the duration of the
stop, the opening hours of the candidate place, and the potential sequence of
visited places, form a far more well-rounded solution to the stop/place
disambiguation problem.

3. Order of Visited Places. Considering that the purpose of place-matching is to
transform a trajectory into a sequence of visited places, one should not forget
that the tracked entity does not visit places entirely randomly but, instead,
visits them in some reasonable order. Assuming this, one may enforce rules
that prune away seemingly unlikely visitation sequences from consideration.
For example, one may invent a weighting, where it is extremely unlikely for a
person to go to a restaurant and then go to another restaurant one hour later.
Such rules are somewhat arbitrary and require a good understanding of the
tracked entities. A far less arbitrary approach from the literature is to
construct a network of all possible place visitation sequences caused by a
sequence of trajectory stops (Yan et al., 2013; Lv et al., 2016). Each of these
potential visitation sequences has a probability of occurring; thus, the task is
simply to select the most likely sequence, and that becomes the final
place-matching result. However, building such a probabilistic network
introduces a new problem: inferring the probabilities of travelling from one
place to another. The simple solution is to use ground-truth data to determine

52 Chapter 2. Literature Review

such probabilities; however, the requirement for ground-truth datasets limits
the usability of the approach.

4. Place Topology. When place geometries are represented as polygons (like in
OpenStreetMap) it is not uncommon for some places to be fully contained by,
or intersecting, with some other places. Consider the scenario where there is a
University place polygon that fully contains a smaller café place polygon, and
the geometry of the stop intersects the café and, thereby, is also contained in
the University. This once again introduces the problem of stop/place
disambiguation, but, this time, in a more nuanced way. The University is
certainly not an incorrect match for the stop, but the café may be more specific
and therefore more semantically meaningful. Thus, the task is to develop a
procedure that somehow selects a single place in a logical and consistent way
when presented with these topologically complicated places.

5. Supervised or Unsupervised. Place-matching is essentially a machine
learning task. Thus, like most machine learning tasks it can be performed in a
supervised or unsupervised manner, with the use of labelled data to initialise
or train the model. However, an unsupervised approach is highly preferable
for place-matching because ground-truth trajectories, labelled with the places
the entities visited, are time-consuming and often times not possible to
acquire (i.e. for privacy reasons).

2.5.1 Overview

Considering each of the aforementioned features, I present a feature comparison of
some relevant existing place-matching approaches from the literature in Table 2.3,
which is then followed by a brief explanation of each approach.

1. Liao et al. (2007) present an early work for extracting places from people’s
raw trajectories. Out of all the works I reviewed in this section, this work is
the one that is most different from the others. Specifically, Liao et al.’s work
infers activities, then places (whereas later approaches typically do the
opposite); it does not find all places, but only those it considers significant.
However, the places it finds are not semantically enriched: they are simply
clusters. It is far more similar to its foundational predecessors such as
Ashbrook and Starner (2003), Kang et al. (2004), and Hightower et al. (2005):
all of which found visited locations (coordinates or clusters) as opposed to
fully qualified semantic places (i.e. places that have names or place types).
However, the main reason I include (Liao et al., 2007) in my review, is that it is
one of the first approaches that probabilistically models the problem of
matching semantics (activities not places in this case) to a trajectory as a
whole. Particularly, it makes the important consideration that the potential
order of visited places (or activities performed in this case) makes some
visitation sequences more or less likely. Specifically, Liao et al. (2007) present
an approach where a trajectory is spatially segmented by clustering it onto
nearby street edges (a sort of clustering-based map-matching). Then, using
contextual, temporal, velocity-based, and sequential feature functions, they
train a conditional random field (CRF) on ground-truth GPS traces that are
labelled with visited places and the activities performed at each place. The
CRF is a probabilistic model that computes the likelihood of certain sequences
of activities based on the aforementioned feature functions. Using their

2.5.
D

epth
A

nalysis
ofPlace-m

atching
A

pproaches
53

Approach Handles point/
polygon places:

Handles stop/
place

disambiguation?

Considers order
of visited place?

Considers place
topology?

Unsupervised?

1. Liao et al. (2007) � � � � �

2. Alvares et al. (2007) � � � � �

3. Xie et al. (2009) � � � � �

4. Spinsanti et al. (2010) � � � � �

5. Richter et al. (2012) � � � � �

6. Furletti et al. (2013) � � � � �

7. Yan et al. (2013) � � � � �

8. Moreno et al. (2014) � � � � �

9. Boukhechba et al. (2015) � � � � �

10. Lv et al. (2016) � � � � �

11. Gu et al. (2017) � � � � �

TABLE 2.3: Overview of relevant place-matching literature.

54 Chapter 2. Literature Review

trained model, they demonstrate that it can estimate the most likely sequence
of activities given a raw GPS trajectory. Then, using the sequence of activities
and segments, their approach finds the most frequent weekly activities and
clusters those segments to formulate significant places.

2. Alvares et al. (2007) present “Stops and Moves of Trajectories" (SMoT), which
is one of the first approaches to directly apply the model presented by
Spaccapietra et al. (2008) where trajectories are represented as a series of stops
and moves. Unlike later approaches that first find stop and move episodes
and then associate them with places, SMoT constructs geographically
enriched trajectory stops at any sub-trajectory that is contained in a candidate
geographical region, for at least a user-specified duration. In this way, SMoT
finds both stops and places in a single step; however, SMoT’s place-matching
procedure does not handle places represented as points, nor spatially
overlapping places, or trajectories that stop nearby (but not inside) a place
(which may be caused by device inaccuracy). I highlight that SMoT is directly
extended in a later work called CB-SMoT (Palma et al., 2008). The main
change going from SMoT to CB-SMoT is that the algorithm is divided into
two separate steps, which allows it to find stops at places with no place
geometry. In CB-SMoT the first step is to discover stops by using a
clustering-based procedure similar to DB-SCAN (Ester et al., 1996). Then, in
the second step, the same geometry intersection from SMoT is used to match
the stops to any candidate places they may be contained by. If a stop is not
contained in any known place geometry, the stop is simply labelled as an
unknown stop. Thus, because the place matching procedure is the same I
omit CB-SMoT from the comparison in Table 2.3.

3. Xie et al. (2009) present a version of the place-matching problem, where only
a point representation of places is given (a PoI dataset). Using these points
they construct a Voronoi diagram where each Voronoi cell represents a single
place. Place-matching is performed by associating subsequences of the
trajectory with the relevant Voronoi cells that they passed through. Then,
using a user-specified set of rules the duration spent in each Voronoi
cell/place is used to determine the type of activity that occurred there. I
highlight that because the approach presented in (Xie et al., 2009) uses a
Voronoi diagram for place-matching, every entry in the trajectory will be
associated with some Voronoi cell/place. One can imagine that some local
sparseness in the PoI dataset may result in a sub-trajectory being associated
with a PoI that is relatively distant from itself. Such issues are non-existent in
later place-matching approaches that do not partition the study region.

4. Spinsanti et al. (2010) present the first approach after CB-SMoT (Palma et al.,
2008) that place-matches by finding a series of trajectory stops, and matches
each stop to a single geographic place. However, unlike SMoT (Alvares et al.,
2007) and CB-SMoT (Palma et al., 2008) their approach handled the problem
of a stop being nearby to many geographic places. Of note, is that Spinsanti
et al. (2010), seemingly independent of the work of Liao et al. (2007),
introduce a technique to handle this stop/place disambiguation problem
using a probabilistic model based on spatial and temporal proximity.
Additionally, Spinsanti et al. (2010) present a somewhat heuristic technique to
incrementally update the probability of previously visited places based on
newly matched places. Later approaches consider the probability of certain

2.5. Depth Analysis of Place-matching Approaches 55

place visitations as a whole sequence, rather than incrementally, as shown in
this approach.

5. Richter et al. (2012) introduces the notion of reference points, which are
semantic points associated with both detected trajectory stops and moves, to
describe the journey of a tracked entity in a highly compressed way. In their
work Richter et al. (2012) explain that reference points include junctions in the
road network and places nearby to trajectory stops. In their approach places
are matched to trajectory stops by simply querying an underlying contextual
database (OpenStreetMap in this case) for the entity nearest to the stop. Of
course, this entirely ignores the problem of stop/place disambiguation and
place topology; however, if the goal is simply to compress the entity’s journey,
then some semantic inaccuracy may be acceptable.

6. Furletti et al. (2013), sharing some of the same authors as Spinsanti et al.
(2010), present an extension of (Spinsanti et al., 2010) with an approach that
probabilistically matches trajectory stops to geographic places. For each stop,
candidate places are found in a contextual database (OpenStreetMap and
Google Places, in this case) that are within a given search distance of the stop
and have opening hours that are relevant for the time the stop occurred. Once
the candidate places are found for each stop, the probability of observing each
place at that stop is calculated using a so-called “gravity model". Specifically,
the probability is calculated by counting the total number of places in some
category and dividing that total by the squared distance between the current
stop and the closest candidate place, from that category. This approach does
handle the problem of stop/place disambiguation using a probabilistic
model; however, it does not consider place topology or the order of visited
places in its probability calculation.

7. Yan et al. (2013) present a so-called “holistic" approach where they enrich raw
GPS trajectories using the stop and move model (Spaccapietra et al., 2008),
and then further enrich the trajectory stops and moves using points, lines,
and regions. Specifically, the stop episodes are enriched using geographic
regions and points of interest, while the moves are enriched by map-matching
them to an underlying road network. The step where they match stop
episodes to points of interest is particularly notable, because they use a
Hidden Markov Model (HMM) to probabilistically model the most likely
sequence of visited points, based on place types, spatial proximity, and the
order of points visited. The usability of the HMM, they propose, is somewhat
limited, because they do not provide any way to estimate the transition
matrix (i.e the probability between different types of places). In their work the
setting of the transition matrix is done by hand and the authors state,
“learning dynamic and personalized transition matrix [sic] is interesting but
not the focus of this article". Additionally, by spatially intersecting regions
with trajectory stop episodes they ignore the problem of place topology (i.e.
what to do with overlapping places).

8. Moreno et al. (2014) present an extension of SMoT (Alvares et al., 2007) called
“SMoT+", which matches stops to geometric places, even when the places are
contained within one-another (i.e topologically nested). Specifically, SMoT+
finds the most-nested place each stop could have occurred. I highlight, that as
far as I know, SMoT+ is the first place-matching approach to introduce the

56 Chapter 2. Literature Review

problem of matching stops to places when the places are topologically nested
(i.e shopping centres with shops inside). I consider the handling of
topologically ambiguous places an important step for future approaches;
however, SMoT+ only handles the simplest cases, where one place is entirely
nested within another place. In real-world place datasets, such as
OpenStreetMap, far more pathological scenarios are commonplace. For
example, SMoT+ makes no specification as to how to handle a stop that
occurs in the region where two place geometries intersect, but neither
contains the other. Similarly, much like SMoT, SMoT+ does not logically
handle matching a place to a stop when the trajectory stops, and intersects,
with several places at the same time (SMoT/SMoT+ would produce several
stops, switching between places if the duration was long enough in each, or
simply no stop at all, if the durations were too short).

9. Boukhechba et al. (2015) present one of the only place-matching approaches
that does place-matching using streaming trajectory data. The first part of
their approach is a novel technique to classify trajectory subsequences as
stopping, moving, or moving-with-activity (i.e walking on foot in a shopping
centre). They perform this classification using a modified K-means clustering,
that considers trajectory orientation and velocity. Once the trajectory is
transformed into a series of stop/move/move-with-activity clusters, each
cluster is associated with the nearest OpenStreetMap entity. This simple
distance-based, nearest-entity matching is similar to the work of Richter et al.
(2012) and therefore this approach, similarly, ignores the problem of
stop/place disambiguation and matching to topologically complex places.

10. Lv et al. (2016) present a probabilistic approach for matching people’s
trajectories to the types of places they visited. Their approach begins by
constructing a HMM that models the probability of observing a particular
sequence of visited places, being caused by some sequence of trajectory stops.
Specifically, their HMM specification considers the spatial, place-type,
temporal, and sequential attributes of the input stop/places pairings.
However, I highlight that the usability of this approach is somewhat limited
because both the temporal and sequential modelling proposed by Lv et al.
(2016) require ground-truth trajectories labelled with visited places. However,
one particular advantage of their approach, is that it neatly avoids the
problem of matching stops to places with complicated topologies. Basically,
stop and place geometry are only considered during an initial intersection test
to generate candidate places for each stop. All the other probabilistic
modelling in this approach simply does not consider the spatial features of
stops or places; thus, by extension, the issue of place topology is moot. I
highlight that this design choice contrasts with nearly all previous works that
heavily make use of spatial proximity to perform place-matching.

11. Gu et al. (2017) present an approach to fuse people’s trajectory data with
Foursquare check-in data, to create stop/move, matched ground-truth data.
They do this by matching a check-in to a stop that is within both a spatial and
temporal threshold (multiple candidates are resolved down to the one with
the closest temporal similarity). Then, using this ground-truth data, they
construct a probabilistic model based on the “general choice model" (Kumar
et al., 2015) that calculates the probability of observing each place as a result
of the input stop. In their approach, the general choice model is realised, as

2.5. Depth Analysis of Place-matching Approaches 57

calculating the place probability by considering both the distance to the place
and the number of closer candidate places. I highlight that such a model is
more limited than some previous approaches, as it does not consider the
order of visited places, nor the place topology. Furthermore, their approach is
generally more limited than some others because it requires sufficient
Foursquare check-ins in some locale in order to initially construct the
ground-truth data required to function effectively.

2.5.2 Critical Review

My first observation is that compared to the stop/move detection literature I
reviewed in Section 2.4, the reviewed place-matching literature is fairly varied, and
certainly does not tend towards extending a single approach like the reviewed
stop/move approaches do. The explanation for this is likely that the problem of
place-matching can be solved in many ways, so no existing approach has yet
emerged as the clear choice. I speculate that this may be because, in general, the
place-matching problem, unlike the stop/move detection problem, relies on
additional data sources (i.e. the place databases) and, therefore, each approach is
somewhat specific to the type of contextual data used. For instance, recall in
Section 2.5: I highlighted that OpenStreetMap supports polygon, point, and line
geometries for places, whereas Google Places and Foursquare only support points.
Thus, it seems likely the problem of place-matching will evolve as additional useful
sources of information become available to the public. For example, recently Zhu
et al. (2016) demonstrated an approach for learning activities from tweets, and
Beber et al. (2016) use that approach with geo-referenced tweets, Foursquare places,
and trajectory data to classify trajectory stops into certain activities based on
temporal features of the stop. Although, the place-matching is strictly done by
associating the stop to the nearest Foursquare place; in this case, this example
demonstrates how an additional data source can be combined with feature of the
trajectory (i.e the temporal features of a stop) to make further inferences. Another
example of this sort of data mash-up is presented by Gu et al. (2017), who introduce
an approach for fusing Foursquare check-ins with people’s stops for the purpose of
place-matching. The disadvantage of many of these contextual data sources, such
as Google Places, Foursquare, and Twitter, is that they impose rate limits on the
number of queries a user can perform in some time-frame. This, ultimately, means
that approaches based on these sources may have some issues scaling to handle
truly large datasets.

My second observation is that a number of approaches have proposed
probabilistic models to solve the problem of place-matching (Liao et al., 2007;
Spinsanti et al., 2010; Furletti et al., 2013; Yan et al., 2013; Lv et al., 2016; Gu et al.,
2017). A probabilistic model seems naturally suited to the problem because each
stop is somewhat spatially uncertain; thus, any nearby places could be the cause of
the stop, so each place should be given a probability that it was the true stop place
(i.e. considering perhaps the spatial, temporal, or place-type features). Although
some approaches (Furletti et al., 2013; Gu et al., 2017) only consider calculating the
probability between a stop and its candidate places, there is also another aspect of
the problem that can be modelled probabilistically. Specifically, if one stop has
candidate places with associated likelihoods, and the next stop has candidate
places with associated likelihoods, then there is also an opportunity to model the
probability of transitioning between any place at the first stop to any place at the
second stop. It seems reasonable to assume that people visit certain types of places

58 Chapter 2. Literature Review

in order, due to personal routines, task-specific reasons, or convenience; thus, both
Yan et al. (2013) and Lv et al. (2016) incorporate a so-called transition probability
between places into their models. I consider this a step in the right direction for two
reasons: the first is that it naturally incorporates the sequential nature of the
trajectory into the problem, as opposed to considering each stop/place match in
isolation; the second is that it utilises an extra source of data (the sequence of
places) that was not used before, and all extra data is useful in such an uncertain
problem.

My third observation is that while some of the more recent place-matching
approaches address stop/move disambiguation, place topology, and the order of
visited places, they still have some limitations that impact their usability for my
scenario of semantic trajectory data mining. Specifically, they either require
difficult-to-set, user-specified parameters (i.e. Yan et al. (2013) require a
user-specified transition matrix), or require a ground-truth training dataset for their
model that is often infeasible to generate (i.e (Lv et al., 2016)).

2.5.3 Literature Gaps

Analysing Table 2.3, it is apparent that none of the reviewed place-matching
approaches meet all five of reviewed features. As I discussed above, even the most
well rounded approaches (Yan et al., 2013; Lv et al., 2016) have some limitations.
Despite those limitations, I do consider a probabilistic place-matching approach,
similar to the works of Yan et al. (2013) and Lv et al. (2016), to be the most suitable
in terms of considering stop/place disambiguation and the order of visited places.
Thus, I propose to investigate a probabilistic place-matching approach that handles:
points and polygon place geometries; stop/place disambiguation; the order of
visited places; and, place topology —all in an unsupervised setting without the
need for expert-level parameter setting. This investigation into a probabilistic
place-matching approach is detailed in Chapter 6.

2.6 Research Hypotheses

From my literature reviews of each topic I have formulated the following research
hypotheses to guide each chapter:

• Trajectory simplification hypothesis. A framework that generalises the problem
of trajectory simplification into a combination of significance scoring functions and
processing strategies, will be able to extend existing poly-line simplification
algorithms to trajectory simplification approaches. These new simplification
approaches will outperform their original counterparts in regard to spatio-temporal
error metrics such as SED.

• Vehicle trajectory pattern mining hypothesis. Mining map-matched vehicle
trajectories, using a contiguous sequential pattern mining approach that prunes the
pattern output, will result in a set of roads-driven that are unique (non-overlapping)
and less redundant than the output from existing contiguous-closed or
max-sequential pattern mining approaches.

• Probabilistic stop/move hypothesis. A probabilistic stop/move detection
algorithm with a minimum stop probability threshold parameter will allow low
probability (i.e. ambiguous) stop classifications to be filtered out by the user; this will

2.6. Research Hypotheses 59

ultimately result in a more controllable false-positive rate and a higher overall
classification accuracy than existing approaches.

• Probabilistic place-matching hypothesis. A probabilistic place-matching
algorithm that considers stop/place disambiguation, place topology, and the sequence
of visited places will be more accurate than place-matching approaches that form
matches by using spatial intersections.

61

Chapter 3

A Framework of Spatio-temporal
Trajectory Simplification Methods

In this chapter I focused on the challenge of data complexity and combating it by
pre-processing free-space trajectories. Specifically, I investigated reducing data complexity
through simplification of trajectories in free-space. From my review of existing trajectory
simplification approaches in Section 2.2, it seemed apparent that the task of trajectory
simplification can be generalised as the combination of two concepts: an entry significance
scoring function and a processing strategy; such a generalisation has not been explored in
existing works. Thus, in this chapter I explored this generalisation and introduced a
framework to create size-bounded, offline, trajectory simplification approaches by combining
significance scoring functions with processing strategies. Specifically, using my framework
I created and evaluated a number of trajectory simplification approaches in terms of running
time, synchronised Euclidean distance, synchronised area, and preserving visitation
through detected regions-of-interest. Experiment results demonstrated that using my
proposed framework I was able to create a number of efficient and effective spatio-temporal
trajectory simplification methods that outperformed their original spatial-only counterparts.
The topics covered in this chapter are illustrated in bold in Figure 3.1.

62 Chapter 3. A Framework of Spatio-temporal Trajectory Simplification Methods

FIGURE 3.1: Overview of the trajectory data mining and knowledge discovery stages and
the specific topics (the bold rectangles) covered in this chapter.

As a full disclosure, readers should be aware that the work in this chapter went
on to be published as: Bermingham, L. and Lee, I. (2017). A framework of
spatio-temporal trajectory simplification methods. In the: International Journal of
Geographical Information Science, 31(6), pp.1128-1153.

3.1. Introduction 63

3.1 Introduction

Due to the adoption and growth of sensor-enabled mobile phones and GPS
tracking technology, there exists huge amounts of trajectory data (Kang and Yong,
2010). Such large trajectory datasets can be mined to uncover patterns and trends
that can lead to new knowledge discoveries. However, due to being collected from
sensors, this trajectory data is often complex, redundant, and noisy. Thus, in
data-rich environments it is highly beneficial to pre-process trajectories to remove
the unnecessary details and noise before data mining, whilst still preserving the
underlying structures and patterns of the tracked entities. In this chapter I refer to
this process as trajectory simplification.

Trajectory simplification is useful to deal with growing dataset sizes, but when
one considers the ways in which trajectory data is typically gathered, trajectory
simplification becomes a requirement. Specifically, common data generation
platforms such as mobile phones and GPS systems are imperfect; it is an accepted
pitfall that these devices suffer from spatial uncertainty. One of the common ways
to combat this spatial uncertainty is to redundantly oversample in the hope that
some less noisy entries will also be recorded (Long et al., 2013). The next step after
this redundant oversampling, is to remove the redundancy and preserve the
underlying movements as effectively as possible: this is where trajectory
simplification is useful.

Recalling my findings from the trajectory simplification literature review in
Section 2.2 I identified the following gaps in the state-of-the-art that motivate this
chapter:

1. There are other poly-line simplification approaches, besides the
Douglas-Peucker approach, that may contain unique concepts that can be
extended to the problem of trajectory simplification.

2. The concept of size-bounded trajectory simplification naturally generalises the
overall problem by replacing algorithm-specific parameters with a concrete
simplification percentage, yet this generalisation has not been widely explored.

3. It appears that trajectory simplification approaches can neatly be generalised
by two concepts: an entry significance scoring function, and a processing
strategy. Yet, such a generalisation has not been exploited to quickly create
various combinations of trajectory simplification algorithms.

Thus, considering these motivations I use this chapter to investigate a
generalised trajectory simplification framework that can create size-bounded,
offline, trajectory simplification algorithms, consisting of an entry significance
scoring function that is executed by some processing strategy. Specifically, I aim to
present a general framework that can combine scoring functions and processing
strategies together, to quickly make new and tailored trajectory simplification
approaches. Some of these scoring strategies and processing strategies come from
existing poly-line simplification approaches, and others, from existing trajectory
simplification approaches. Overall, in this chapter, I present the following
contributions:

1. a general trajectory simplification framework that I use to create eight different
spatio-temporal trajectory simplification methods;

2. four new O(n) spatio-temporal trajectory simplification methods;

64 Chapter 3. A Framework of Spatio-temporal Trajectory Simplification Methods

FIGURE 3.2: My framework for trajectory simplification, with each major stage in bold.

3. an empirical comparison of efficiency and effectiveness between twelve
trajectory simplification methods; and

4. two novel trajectory similarity benchmarking metrics, one called synchronised
area and the other a RoI visitation technique.

The rest of this chapter is organised as follows: Section 3.2 introduces my
generic framework for creating spatio-temporal trajectory simplification methods,
and also provides details about each stage of the framework; Section 3.3 provides
various experimental results including running time efficiency and quantitative
effectiveness benchmarking metrics; and lastly, Section 3.4 summarises the
contribution of my framework and highlights its use-cases.

3.2 Framework

In this section I present my framework for creating and evaluating size-bounded,
offline, trajectory simplification algorithms. Figure 3.2 illustrates the modules and
four major stages that define the framework: (1) normalising; (2) ranking; (3) reducing;
and (4) benchmarking.

In the first stage, normalising, a raw spatio-temporal trajectory is transformed
into the unit cube [0, 1]3 so that Euclidean calculations can be performed (see
Section 3.2.1 for more details). In the second stage, ranking, a processing strategy
and an entry significance scoring function are combined to calculate the
significance of each entry in the normalised trajectory, with respect to some criteria.
This is a crucial stage in my framework because this combination of processing
strategy and significance scoring function is what defines each simplification
algorithm. The purpose of a significance scoring function is to calculate a score for a

3.2. Framework 65

given entry, and, thus, quantitatively indicate that entry’s significance in the
trajectory. Significance scoring functions calculate scores using a given entry and
some combination of other entries in the trajectory. For example, the Triangular
Area function calculates the area of the triangle formed by a given entry and its two
neighbours (see Section 3.2.4 for more details). The purpose of a processing
strategy is to decide the order in which entries are processed. For example, the
Dead Reckoning strategy processes entries from beginning to end, not removing
any previously processed entries as it progresses; the Exhaustive processing
strategy, however, processes entries by finding the most significant entry, storing
and removing it, then repeating this process until all entries are processed (see
Section 3.2.3 for more details).

The reason that the processing order of entries (i.e. the processing strategy)
makes any difference to the results is because of the significance scoring functions.
Recall, each significance scoring function calculates the significance of a given entry
by using that entry and some other entries. Thus, when one considers that some
processing strategies such as the Dead Reckoning do not remove entries, whilst
others such as the Exhaustive strategy do, it becomes apparent that the pool of
entries available during significance scoring will change throughout the ranking
process.

In the third stage, reducing, the trajectory is simplified by removing a specified
percentage of entries. The simplification occurs by removing entries in ascending
order of significance. I highlight that if trajectory simplification is required at
varying percentages, my framework is quite efficient: as long as the significance
scores for each entry are stored, no additional processing time needs to be spent on
re-normalising or re-ranking. In the final stage, benchmarking, the efficiency and
effectiveness of trajectory simplification methods are tested. The efficiency is tested
by measuring the simplification method’s running time on various real world and
synthetic trajectories, whilst the effectiveness is tested by measuring the
Synchronised Euclidean Distance, Synchronised Area, and RoI variance. Briefly,
Synchronised Euclidean Distance and Synchronised Area measure the sum of
Euclidean distances and areas, respectively, between the raw entries and their
projected (i.e temporally synchronised) counterparts on the simplified trajectory
(see Section 3.2.7 and Section 3.2.7 for more details). These metrics measure the
amount of spatio-temporal variance between the raw and simplified trajectories.
However, these metrics in no way guarantee that the underlying visitations (and
hence the meaning) of the trajectory are preserved after trajectory simplification
occurs.

In tasks such as data mining where pre-processing via simplification is often
required, it is essential the underlying meaning of the trajectory does not change.
Therefore, to quantify the change in visitations between the raw and simplified
trajectories I measure the RoI variance. The RoI variance partitions the study area
into cells, records the density of each cell by recording the number of trajectory
visitations, and then finds the RoIs by merging neighbouring cells that are above a
certain visitation threshold (see Section 2.1.3 for a recap). This process occurs for
both the raw and simplified trajectories, and the cellular distance between the
resulting raw and simplified RoIs is the variance score that I record (see
Section 3.2.7 for more details).

Overall, together, stages 1-3 represent a general methodology of trajectory
simplification. I highlight that because scoring functions and processing strategies
are effectively modules, this means that adding a new processing strategy or
significance scoring techniques into my framework will result in a number of new

66 Chapter 3. A Framework of Spatio-temporal Trajectory Simplification Methods

trajectory simplification combinations, available for use. One advantage of creating
trajectory simplification methods in this way, is that different combinations of
processing strategies and significance scoring functions can easily be combined to
produce new trajectory simplification methods. Another advantage is that it is
simple to recreate existing simplification methods using my framework (assuming
one can identify the processing strategy and significance scoring function). In
Section 3.2.3 and Section 3.2.4, I demonstrate the process of recreating some existing
simplification methods by Douglas and Peucker (1973), Visvalingam and Whyatt
(1993), and Lee et al. (2007), using my framework.

In the following subsections, I provide more details explaining the purpose and
process for each stage in my framework.

3.2.1 Normalising Trajectory Entries

In my framework trajectory sequences are simplified by removing insignificant
entries. This requires determining the significance of each entry; however,
computing significance often requires calculations such as area, angle and distance
between entries. These calculations operate in Euclidean space, yet my aim is to
score the significance of spatio-temporal trajectory entries in the format
{spatial, spatial, temporal} (non-Euclidean). Clearly, space and time values are
semantically different and cannot be treated as analogous. One way to perform
Euclidean operations is to normalise the spatio-temporal data into Euclidean space.

One such example is the trajectory simplification work of Gudmundsson et al.
(2009), who use a mapping parameter, μ, “that transforms time units into space
units". They then use this mapping parameter for the temporal dimension, which
allows them to perform Euclidean distance calculations. Equation 3.1 is the
mapping approach by Gudmundsson et al. (2009).

Pxyz = {x, μ · t, z}, (3.1)

where, Pxyz is a transformed trajectory entry (a point in Euclidean space); x, z, t are
the spatial coordinates (x, z) and the time-stamp (t) of the trajectory entry; and μ is
the mapping parameter between time and space (i.e. 1 time unit is μ space units).

Another example is the work of Oliveira et al. (2013), who use similar spatio-
temporal mapping to perform shared nearest-neighbour clustering. Their method
uses a spatio-temporal distance function that normalises, separately, both space and
time into the range [0,1].

Dst(Ws,Wt, x1, x2, z1, z2, t1, t2) = Ws · Ds(x1, x2, z1, z2)

Smax
+Wt · Dt(t1, t2)

Tmax
, (3.2)

where, Dst is the spatio-temporal distance; Ds, Dt are the spatial and temporal
distance functions, respectively; Ws,Wt are the spatial and temporal weightings,
respectively (a zero weighting fully discounts a dimension); Smax and Tmax are
data-driven maximum values to normalise space and time, respectively;
x1, x2, z1, z2 are the spatial coordinates; and t1, t2 are the timestamps.

Normalising of spatio-temporal data is a common technique to maintain
validity of Euclidean operations. Euclidean operations are a requirement of my
framework and therefore I, too, opt to normalise the data before simplification. The
normalisation I adopt is inspired by Kang and Yong (2010), who use min-max
normalisation to normalise the spatial and temporal dimensions of their data into

3.2. Framework 67

unit space [0, 1]3 before clustering. In the context of trajectory simplification,
min-max normalisation normalises a spatio-temporal point in a given trajectory
into unit space [0, 1]3 by using the upper and lower spatio-temporal bounds of that
trajectory.

I present my equation for spatio-temporal min-max normalisation in Equation
3.3. Using min-max normalisation to transform a spatio-temporal trajectory into the
unit cube is useful because it automatically applies a data-defined, but heuristic,
mapping between the spatial and temporal dimensions. I use the following example
to illustrate the implicit mapping between space and time units that occurs by using
min-max normalisation in this way. Consider, a trajectory with a duration of 100
seconds that travels 500 meters in a straight line. Using the min-max normalisation
I have outlined in Equation 3.3, it implies that 1 second equals 5 meters for this
example. The parameters Wt and Ws can skew this mapping but, in general, I use
a Wt and Ws of 1 and rely on this data-defined normalisation to compare spatial
and temporal dimensions. The only exception I make to this is to use a Wt of zero
to discount the temporal dimension when performing comparisons (i.e. comparing
the spatio-temporal Douglas-Peucker to the original spatial-only method).

ΔS = max(xmax, zmax)−min(xmin, zmin),

Ei = {Ws · xi − xmin

ΔS
,Wt · ti − tmin

tmax − tmin
,Ws · zi − zmin

ΔS
}, (3.3)

where, xi, ti, zi are the coordinates of a spatio-temporal trajectory T , such that
T = {〈x1, t1, z1〉, . . . , 〈xn, tn, zn〉}; Ei is a normalised trajectory entry (a point in the
unit cube [0, 1]3) in the normalised trajectory N , such that N = {E1, . . . , En}; ΔS is
the spatial range of the trajectory (bounding rectangle of the trajectory
[xmin, xmax][ymin, ymax]); Ws is the weighting parameter on the spatial dimension;
and Wt is the weighting parameter on the temporal dimension.

3.2.2 Ranking Trajectory Entries

One commonality I observe between many simplification algorithms is that, at their
core, they identify significant entries and preserve them. The difference in results
between various simplification algorithms is mostly driven by two factors: the first
is how entry significance is determined —the significance scoring function; and the
second is how the entries are processed —the processing strategy. I use this
observation as a foundation of my framework, specifically at its second. Stage 2
takes a normalised trajectory and ranks each of its entries using a processing
strategy and significance scoring function. As mentioned in Section 3.2, in my
framework processing strategies and scoring functions can easily be added and
combined to create new trajectory simplification methods. In the following sections
I introduce the details for a number of processing strategies and scoring functions.

3.2.3 Processing Strategies

Processing strategies, effectively, determine the number of passes performed over
the trajectory entries, and also whether entries are removed, grouped, or left alone
during significance scoring. Different processing strategies directly affect which
entries are available to score the significance of a specific entry. Consider, a scoring
function that computes the significance of a given entry as the perpendicular
distance between that entry, and the line segment between the first and last entries
in the trajectory. If one applies a single-pass processing strategy where each entry is

68 Chapter 3. A Framework of Spatio-temporal Trajectory Simplification Methods

processed one-by-one, and no entries are removed, this perpendicular scoring
function may score entries that are collinear to the first-and-last entries as
insignificant, even if they are a large distance away from their neighbouring entries.

However, if one applies a split-based strategy that divides the entries into
groups, and performs many passes over the entries, then this scenario is less likely.
In the first pass, a split-based strategy finds the entry that has the largest
perpendicular distance between itself and the line-segment formed by the first and
last entries. Next, this entry and its score are stored. Following this, the entry is
removed from the trajectory, thus dividing the trajectory into two groups. The first
and last entries in both groups then define two new line segments that are used for
scoring the significance of entries in those groups. Once again, this allows the most
significant entry in both groups to be stored and removed, which, in turn, creates
further subdivided groups. This process continues until the groups can be divided
no further. Due to how the split-based strategy controls the grouping of entries, the
significance scoring and, thus, the overall simplification result too, are both vastly
different to the incremental, single-pass approach. However, I highlight that the
single-pass strategy is not without merit; it is computationally far faster than the
split-based strategy. Overall, the selection of a processing strategy can often be
viewed as a trade-off between simplification efficiency and effectiveness.

Understandably, there are many processing strategies that already exist; I choose
to implement a few of the most popular. Based on the works of Meratnia and By
(2004) and Long et al. (2013), I adopt these three in my framework: dead reckoning,
split, and greedy. I also incorporate an approach that has not yet been formalised,
which I call exhaustive. I now present a description of each.

Dead Reckoning Strategy (DR)

The name “dead reckoning" comes from a navigation technique where the current
position is computed using only the previously known position. Inspired by that
navigation technique, Lange et al. (2008) and Lange et al. (2009) proposed a trajectory
simplification processing strategy that they also call dead reckoning. In the context
of trajectory simplification dead reckoning is an incremental processing strategy that
performs a single pass over the trajectory entries. It computes the significance score
of each entry, one by one, and does not remove any previously processed entries.
The advantage of the dead reckoning processing strategy is efficiency: it has O(n)
time complexity. I prefix the dead reckoning trajectory simplification methods with
the naming convention “DR".

Split-based Strategy (SPL)

The split-based processing strategy, or “top-down" as it is called by Meratnia and
By (2004), is a divide-and-conquer approach. A number of existing trajectory
simplification algorithms (Cao et al., 2006; Gudmundsson et al., 2009) are
split-based because they are built on the popular split-based algorithm by Douglas
and Peucker (1973). The concept of the split-based processing strategy is to perform
a pass over the data and find the most significant entry, the split point. Using the
split point, the sequence is divided and additional passes are performed on the
divided subsets to find their split points. The process of dividing and locating split
points is repeated until all the recordings are processed. As each split point is found
it is stored and, thus, when all entries are processed, this collection of split points
forms the ranked trajectory sequence. Split-based trajectory simplification

3.2. Framework 69

algorithms generally have a time complexity of O(n2). However, in comparison to
dead reckoning-based algorithms, they typically produce a simplification that
represents the original data more accurately. I prefix the split-based trajectory
simplification methods with the naming convention “SPL".

Greedy Strategy (GR)

The greedy processing strategy is based on the notion of accumulating insignificant
entries until an entry surpasses a significance threshold, and has to be preserved.
Examples of greedy trajectory simplification in the literature include the works of
Meratnia and By (2004), Lee et al. (2007), and Kolesnikov (2011). For example, Lee
et al. (2007) introduce their greedy trajectory simplification algorithm that stores
recordings based on a trade-off between “preciseness and conciseness". They define
preciseness as the sum of the log2 value of the perpendicular, parallel, and angular
distance between the previously stored entry (or the first entry if one is yet to be
stored) and the current entry. Additionally, they define conciseness as the sum of
the log2 value of Euclidean distances between each of the entries between the
previously stored entry and the current entry. When preciseness, plus a
user-specified threshold, is greater than conciseness the current entry is considered
significant and is stored. However, this threshold does not map simply to a
percentage of entries to preserve and this, therefore, makes it difficult to select a
threshold because it is context and case dependent. Thus, I make a modification to
their approach in order to automate the threshold selection. I achieve this by
initialising the significance threshold to its maximum value, performing a pass over
the sequence, removing and storing significant entries, decreasing the significance
threshold and, then, repeating the process until the required number of entries
remain. The trade-off for this parameter automation is that the time complexity
becomes O(n2). I prefix greedy-based simplification methods with the naming
convention “GR".

Exhaustive Strategy (EX)

The exhaustive processing strategy finds the most significant entry in the trajectory,
removes and stores it along with its score, and, then, repeats this process until all
entries have been removed and stored. Note, when an entry is removed and stored,
only its neighbouring entries, that have not yet been stored, need to have their
significance scores updated. To the best of my knowledge, this processing strategy
has not yet been formalised in the field of trajectory simplification. The only
approach I discovered in the literature that implemented this strategy was the line
simplification algorithm introduced by Visvalingam and Whyatt (1993). In their
approach, Visvalingam and Whyatt (1993) use the triangular area formed by an
entry and its neighbours to calculate significance. As significant entries are
preserved and removed, their algorithm then recalculates the triangular areas of the
neighbouring entries. This process is repeated until every recording has been
stored. The time complexity of this process is O(n log n). I prefix the exhaustive
trajectory simplification methods with the naming convention “EX". As mentioned,
the Exhaustive processing strategy has not yet been formalised in trajectory
simplification literature, therefore, in Algorithm 1 I introduce it.

Readers, please note that the other processing strategies I discuss in this paper,
SPL, GR, and DR, all have the same input and output formats as Algorithm 1; that
is, they also take a normalised trajectory and significance scoring function as input

70 Chapter 3. A Framework of Spatio-temporal Trajectory Simplification Methods

Algorithm 1 EX

1: Input: N , a normalised trajectory, {E1, · · · , En}, Significance(N,I,E), a scoring
function.

2: Output: I , a list of trajectory entries inserted in ascending order of significance.
3: Assign I to ∅. //List of entries ordered by significance.
4: Assign R to ∅. //Map sorted in ascending order of entry

significance, stored as {Entry, Score}.
5: Assign T ′ to N{E2, · · · , En−1}. //Entries to process, all but the start and end.
6: while T ′ �= {NULL,NULL} do
7: for Entry E in T ′ do
8: if E �= NULL then
9: Assign S to SIGNIFICANCE(N ,I ,E).

//Find the significance of the current entry using
one of the significance functions.

10: Put entry-score, {E,S}, into R.
11: end if
12: end for
13: if R �= ∅ then //If there is still entries to transfer to I .
14: Assign Emin by removing head of R.

//Remove least significant entry.
15: Put entry Emin into I .
16: //Get the next subsequent entries, Enext and

Eprev , affected by removing Emin, so long as
the neighbours have not been processed already
and are not the trajectory’s start or end entry.

17: Assign Enext to entry � Emin ∈ T |Enext /∈ I .
18: Assign Eprev to entry ≺ Emin ∈ T |Eprev /∈ I .
19: if Enext = En then
20: Assign Enext to NULL
21: end if
22: if Eprev = E1 then
23: Assign Eprev to NULL
24: end if
25: Assign T ′ to {Eprev, Enext}. //Neighbour entries need their scores

recalculated.
26: else
27: Assign T ′ to {NULL,NULL}
28: end if
29: end while
30: Put E1 and En into I . //Preserve the start and end entries last, they are

the most significant.
31: return I .

3.2. Framework 71

and output. However, as their general formulation has already been presented in
the literature, please refer to Meratnia and By (2004), Lee et al. (2007), and Long et
al. (2013) for more details.

3.2.4 Computing Significance

At some stage in their algorithm, all of the processing strategies used in my
framework require the ability to determine the significance of the current trajectory
entry (for example, see Algorithm 1, Line 9). I now introduce a number of entry
significance scoring functions that I incorporate into my framework —some from
the literature, and others new. All of the scoring functions I introduce are illustrated
in Figure 3.3.

Specifically I present three significance scoring functions from the literature:
Perpendicular Distance (PD) (Douglas and Peucker, 1973), Triangular Area (TA)
(Visvalingam and Whyatt, 1993), and Perpendicular-Parallel-Angular (PPA) (Lee
et al., 2007). In addition to those, I also present two scoring functions that, to my
knowledge, have not yet been formalised: ANGular (ANG) and SPeed (SP).

Perpendicular Distance (PD) Scoring Function

The PD scoring function was popularised by the 2d poly-line simplification
algorithm created by Douglas and Peucker (1973). In their algorithm, Douglas and
Peucker (1973) compute the significance of a given entry as the perpendicular
distance between the current entry and the line formed by connecting the
poly-line’s first and last entries. I make two modifications to their scoring function
for my purposes. First, because my data is spatio-temporal, I compute
perpendicular distance in 3d space. Second, to facilitate the dead reckoning
processing strategy, my version is passed a boolean flag. When the flag is true,
significance calculation is performed using the perpendicular distance between the
current entry and the line formed by connecting that entry’s two neighbours (rather
than the line formed by the trajectory’s first and last entries). I present my modified
version in Equation 3.4, and a visual illustration in Figure 3.3(a). All of my
trajectory simplification methods that use this significance scoring function are
suffixed with “PD".

PD(Ei) = d⊥(Es, Ee, Ei) (3.4)

Borrowing the terms defined in Equation 3.3, the remaining terms in Equation
3.4 are as follows:

• d⊥(Es, Ee, Ei), the perpendicular distance between the line
−−−−→
Es, Ee and the

point Ei.

• Es, either Ei−1 or E1 (the former case is used for dead-reckoning).

• Ee, either Ei+1 or En (the former case is used for dead-reckoning).

Triangular Area (TA) Scoring Function

The TA scoring function originates from the work of Visvalingam and Whyatt
(1993), who use it in their poly-line simplification algorithm. The concept of this
function is to score the significance of a given entry as the area of the triangle
formed by the current entry and its two neighbours. The underlying reasoning is

72 Chapter 3. A Framework of Spatio-temporal Trajectory Simplification Methods

(A) PD (B) TA

(C) PPA (D) ANG

(E) SP

FIGURE 3.3: Visualisation of each trajectory significance scoring functions. The top half of
each shows the inner workings, whilst the bottom-half shows the simplifications.

3.2. Framework 73

that larger areas represent larger changes in the sequence and should be preserved,
whereas a small triangular area, such as that formed by an entry with two collinear
neighbours, will be regarded as insignificant. The only change I make to the
function presented by Visvalingam and Whyatt (1993) is that I calculate triangular
area in 3d space. I present my modified version in Equation 3.5 and a visual
illustration in Figure 3.3(b). All of my trajectory simplification methods that use
this significance scoring function are suffixed with “TA".

TA(Ei) = �(Ei−1, Ei+1, Ei) (3.5)

Borrowing the terms defined in Equation 3.3, the remaining term in Equation
3.5, �(Ei−1, Ei+1, Ei), is the area of the triangle formed by the normalised points
Ei−1, Ei+1, and Ei.

Perpendicular, Parallel, and Angular (PPA) Distances Scoring Function

PPA is a multi-metric significance scoring function: it uses perpendicular, parallel,
and angular distances to score entries. This function is introduced by Lee et al.
(2007) in a simplification algorithm in their trajectory clustering framework,
TraClus. Their algorithm computes the significance of entries as a trade-off between
“preciseness and conciseness". Preciseness is represented by the accumulated PPA
distance between sequential entries, processed thus far. Whereas conciseness is
represented as the accumulated total of the log2 value of the Euclidean distances
between each sequential entry processed thus far. Once the accumulated total of
preciseness, plus the current entry’s conciseness, outweighs the accumulated
conciseness, that entry is considered significant and the accumulations are reset for
continued processing. The only modification I make to their preciseness and
conciseness measures, is that I extend any distance calculations to 3d space. As
their significance scoring function contains two parts, for brevity’s sake, I formally
show only the details for the more complex part: preciseness (i.e. the PPA distance
measure). I present the PPA distance measure in Equation 3.6, and an illustration in
Figure 3.3(c)

PPA(Ei) = log2 |d(Ei, Pi)|+ log2 |d(E1, Pi)|+ log2 |�(
−−−−→
En, E1,

−−−−→
Ei+1Ei)| (3.6)

Borrowing the terms defined in Equation 3.3, the remaining terms in Equation
3.6 are as follows:

• Pi, the perpendicular projection of Ei onto
−−−→
E1En.

• d(Ei, Pi), the Euclidean distance between Ei and Pi.

• d(E1, Pi), the Euclidean distance between E1 and Pi.

• �(−−−−→En, E1,
−−−−→
Ei+1Ei) the angle between the two vectors.

Readers, please note that in my implementation of Lee et al.’s 2007 algorithm, I
also use the conciseness measure which, as mentioned, is the accumulated total of
the log2 value of the Euclidean distances between entries. My methods that use the
PPA scoring function are suffixed with “PPA".

74 Chapter 3. A Framework of Spatio-temporal Trajectory Simplification Methods

Angular (ANG) Scoring Function

ANG is the first of my own scoring functions; however, it is quite similar to the
scoring functions presented by Chen et al. (2009) and Long et al. (2013). The
concept of ANG is that large directional changes in trajectory movement should be
preserved. After normalisation, my data is in 3d space, therefore, I must compute
the directional changes against each dimension, X,Y, and Z. I present the inner
workings of ANG in Equation 3.7 and an illustration in Figure 3.3(d). All of my
trajectory simplification methods that use this scoring function are suffixed with
“ANG".

ANG(Ei) = 180− θxy + 180− θyz + 180− θxz (3.7)

Borrowing the terms defined in Equation 3.3, the remaining terms in Equation
3.7 are as follows:

• θxy, the change in angle in the x,y dimensions around Ei, specifically,
�(−−−−−→Ei−1, Ei × {1, 1, 0},−−−−−→Ei+1, Ei × {1, 1, 0}) mod 180.

• θyz , the change in angle in the y,z dimensions around Ei, specifically,
�(−−−−−→Ei−1, Ei × {0, 1, 1},−−−−−→Ei+1, Ei × {0, 1, 1}) mod 180.

• θxz , the change in angle in the x,z dimensions around Ei, specifically,
�(−−−−−→Ei−1, Ei × {1, 0, 1},−−−−−→Ei+1, Ei × {1, 0, 1}) mod 180.

Speed (SP) Scoring Function

The concept of the SP scoring function is that large changes in speed, between
trajectory entries, indicate a significant movement and should, therefore, be
preserved. Entry speed is an attractive heuristic because it naturally incorporates
the spatio-temporal properties of trajectory data. Speed, however, does not
consider changes in direction to be significant; therefore, I also augment the
speed-score based on the magnitude of the directional variance. I present the
speed-based scoring function in Equation 3.8, and an illustration in Figure 3.3(e).
All of my trajectory simplification methods that use this scoring function are
suffixed with “SP".

SP (Ei) =
d(Ei, Ei+1)

Δtime
× Δθ

180
(3.8)

Borrowing the terms defined in Equation 3.3, the remaining terms in Equation
3.8 are as follows:

• d(Ei, Ei+1) the Euclidean distance between the two points.

• Δtime, the change in time around Ei, specifically, |Ei+1.y − Ei.y|.
• Δθ, the change in x, z direction around Ei, specifically,

|�(−−−−−→Ei−1, Ei × {1, 0, 1}), {1, 0, 1})− �(−−−−−→Ei+1, Ei × {1, 0, 1}), {1, 0, 1})| mod 180.

3.2.5 Creating Trajectory Simplification Methods

Processing strategies and significance scoring functions have now been introduced,
so, in this section I move onto combining them to create trajectory simplification
methods. As mentioned previously, the naming convention for the created

3.2. Framework 75

simplification methods is to use the processing strategy as a prefix and the scoring
function as a suffix. For brevity’s sake, I try only a selection of possible
processing-scoring combinations. The trajectory simplification methods I
investigate are shown in Table 3.1.

Three of the processing-scoring approaches from Table 3.1 were chosen because
they represent a spatio-temporal version of a method from the literature. First,
SPLDP is the spatio-temporal version of the Douglas and Peucker (1973) algorithm.
Second, EXTA is the spatio-temporal version of the Visvalingam and Whyatt (1993)
algorithm. Last, GRPPA is the spatio-temporal version of the Lee et al. (2007)
algorithm (with minor modifications to allow parameter tuning as discussed in
Section 3.2.3). Readers, note that, during my testing I created 2d (spatial-only)
versions of these algorithms (suffixed with “(2d)") so I could perform as close a
comparison as possible to the original simplification methods. The 2d algorithms
were created by assigning a temporal weighting of zero during the normalisation
stage of my framework (see Section 3.2.1 for details).

All the additional combinations I investigated were either chosen because they
may exhibit interesting properties, or because they provide a comparison against
another combination. For example, the TA and PD significance scoring functions
are only paired with non-linear processing strategies in the literature. However,
these functions may prove to be effective when paired with a linear processing
strategy such as dead reckoning, hence I chose to investigate DRDP and DRTA.
Likewise for PPA, it is only paired with a greedy processing strategy in the
literature, thus, to evaluate whether PPA is a more effective metric than just plain
PD, I chose to investigate SPLPPA. Additionally, DRANG and DRSP are introduced
for comparison and experimentation purposes against the other DR approaches,
even though their experiment results are not promising, as is shown in Table 3.3.

3.2.6 Reducing Trajectory Entries

I now introduce the third stage of my framework, reducing, where the trajectory is
simplified. Given that the trajectory entries have been ranked in order of
significance in the previous stage, it is now straightforward to remove a
user-specified percentage of the entries. Specifically, I simplify the trajectory by
removing entries one by one in ascending order of significance. In other words, the
the most insignificant entry is removed first, and then the next most insignificant
entry, and so on until the specified percentage of entries has been removed.

Simplifying trajectories in this size-bounded way has several advantages over
traditional error-bounded approaches. Instead of relying on user-supplied threshold
parameters, such as in the work of Douglas and Peucker (1973), one now have full

DR SPL GR EX

PD DRPD† SPLPD‡
TA DRTA† EXTA‡

PPA SPLPPA‡ GRPPA‡
ANG DRANG†

SP DRSP†

TABLE 3.1: Combinations of processing strategies and significance scoring functions
investigated. Italic combinations are inspired from the literature. † = O(n), ‡ = O(n log n)

76 Chapter 3. A Framework of Spatio-temporal Trajectory Simplification Methods

control of how many entries will be removed. Furthermore, if the significance scores
of each entry are stored, one can perform simplification on the trajectory at varying
percentages without spending any additional computation on significance scoring.
However, the obvious drawback of requiring each trajectory entry to be ranked, is
that unlike traditional approaches, such as that of Douglas and Peucker (1973), there
is no opportunity to short-circuit computation without processing every entry at
least once. In other words, all algorithms produced by my framework are bounded
to never have a running time better than O(n).

3.2.7 Benchmarking Trajectory Simplification Methods

In this section I introduce the final stage of my framework, the ability to evaluate
trajectory simplification methods using benchmarking metrics. The purpose of
these benchmarking metrics is to quantify the total error between the raw trajectory
and its simplification. Generally, as simplification increases more error is
introduced. Likewise, as simplification is reduced, error decreases. Thus, it is
valuable to benchmark simplification methods to determine if they have a
favourable simplification-error trade-off. Therefore, I perform benchmarking using
three different simplification benchmarking metrics: Synchronised Euclidean
Distance (SED), Synchronised Area (SA), and density-based RoIs. The reason for
using three different benchmarking metrics to measure the effectiveness, is that
certain simplification approaches can have a favourable trade-off in one
benchmarking metric, but not another. For example, simplification approaches that
use the PD scoring functions are expected to perform better in the SED metric, and,
likewise, approaches that use the TA scoring function are expected to perform
better in the SA metric.

Synchronised Euclidean Distance

In the literature, SED has been widely used for the purpose of calculating
spatio-temporal trajectory displacement (Meratnia and By, 2004; Muckell et al.,
2011; Chen et al., 2012; Liu et al., 2013). The concept is to calculate the sum of
Euclidean distances between entries in the raw and simplified trajectories.
However, the raw trajectory will inherently have multiple entries that are no longer
in the simplified trajectory; the problem arises as to how one might measure the
Euclidean distance between the simplified trajectory and the entries in the raw
trajectory that have been removed. The solution is to project these removed entries
back onto the simplified trajectory using their temporal dimension to linearly
interpolate them to the correct position along the relevant line segment. An
illustration of this process is given in Figure 3.4.

Formally, I define a raw trajectory as T , and a simplified trajectory as T ′, both
consisting of a list of spatio-temporal entries, {E1〈x1, z1, t1〉, . . . , En〈xn, zn, tn〉}
where Ei is an entry and x, z are its spatial coordinates and t is its temporal value
such as a time-stamp. Note that, T ′ ⊆ T . Therefore, if there exists an entry,
Ea ∈ T ∧ Ea /∈ T ′, then such an entry must be sychronised back onto T ′ in order to
calculate its contribution to the SED. Given Ea, I define
Ep = E ≺ Ea|E ∈ T ∧ E ∈ T ′ and Es = E � Ea|E ∈ T ∧ E ∈ T ′. I define
L =

Ea.t−Ep.t
Es.t−Ep.t

, and thus, the synchronisation of Ea onto T ′ as,
E′

a = 〈Ep.x + L(Es.x − Ep.x), Ep.z + L(Es.z − Ep.z), Ea.t〉. Given Ea and its
synchronised E′

a, I formally define SED in Equation 3.9. Readers, please note that
d() is the Euclidean distance between the spatial coordinates of the two entries.

3.2. Framework 77

A

B

C D

E

F

A' F'Bt Ct Dt Et

d(B)
d(C)

d(D)

d(E)

A

B

C D

E

F

A' F'Bt Ct Dt Et

d(B)
d(C)

d(D)

d(E)

FIGURE 3.4: SED calculation between the raw trajectory {A,B,C,D,E, F} and its simplfiied
counterpart {A′, F ′}. Note: how the removed entries {B,C,D,E} are projected back onto
the simplified trajectory, {Bt, Ct, Dt, Et}, using a linear interpolation between the temporal

component of the preserved entries {A′, F ′}.

A

B

C D

E F

� ABC

� CDE

� DEF

(A) The enclosed area of the raw trajectory
{A,B,C,D,E, F}.

A

B

C D

E F

� ABD

� DEF

(B) The enclosed area of the simplified trajectory
{A,B,D,E, F}.

A

B

C D

E F

C’C
� BC’C

� C’DC

(C) The SA between trajectory {A,B,D,E, F}
and the raw trajectory.

A

B

C D

E F

�C’D’DC

C’ D’

� BC’C � D’ED

(D) The SA between trajectory {A,B,E, F} and
the raw trajectory.

FIGURE 3.5: The enclosed area metric compared to SA.

SED =
n∑

a=1

d(Ea, E
′
a)|Ea ∈ T ∧ Ea /∈ T ′. (3.9)

Synchronised Area

Similarly to SED, SA measures the total spatio-temporal displacement between raw
and simplified trajectories. However, unlike SED, SA uses the synchronised area
between entries as its metric to measure displacement. To the best of my
knowledge, SA has not been introduced before. Similar approaches have been
formalised by Ekdemir (2011) and Liu et al. (2013), who both use a metric where the
difference between the enclosed area of the raw and simplified trajectories are
compared. However, a flaw of the enclosed area metric is that the raw trajectory
and its simplified counterpart can have the same enclosed area, which would
incorrectly indicate no displacement. This flaw is visually illustrated using a raw
trajectory and its simplified counterpart in Figures 3.5a and 3.5b. These figures
demonstrate that even after simplification the enclosed area metric reports the same
area. This is in contrast to Figure 3.5c that shows SA being computed between the
same simplified trajectory and its original trajectory —one can see the change in
area is represented more accurately. Figure 3.5d illustrates that, as the trajectory is
simplified further, SA still computes an accurate change in area.

78 Chapter 3. A Framework of Spatio-temporal Trajectory Simplification Methods

Recall, in Section 3.2.7 I showed the process to synchronise an entry back onto
the simplified trajectory T ′ using its two surrounding entries, Ep and Es. I now
define an entry Er ∈ T and Er−1 = E ≺ Er|E ∈ T (note, this is potentially different
to Ep which I defined in Section 3.2.7). Additionally, I define E′

r−1 as the result of
synchronising Er−1 onto T ′. Given Er, E

′
r, Er−1, and E′

r−1, I formally define SA in
Equation 3.10. Readers, please note that A() is the area between the spatial
coordinates of the four entries.

SA =

n∑
r=1

A(Er, E
′
r, Er−1, E

′
r−1)|Er ∈ T. (3.10)

Region-of-Interest Discovery

Both SED and SA calculate displacement geometrically. I now introduce my final
simplification benchmarking metric, which calculates displacement using a
different metric, RoI discovery. RoI discovery is a useful metric to evaluate
trajectory simplification because it identifies whether or not the simplification
preserves the underlying visitations originally made by the entity. Preserving
underlying meaning during simplification is essential for some tasks, such as data
mining. For example, in data mining, simplification is a common preprocessor, but,
if the underlying meaning of a trajectory is changed during simplification, the
mining result may be incorrect.

The specific RoI discovery algorithm I choose is one of my previous works
(Bermingham and Lee, 2014). The first stage of this approach is to define a study
region, G, which is a three dimensional space that contains the normalised
trajectory, T = E1, . . . , En. G is divided into a user-specified number of partitions in
each dimension. The number of partitions in each dimension is controlled by the
parameters j, k, and l. The result is a grid of cells, A, which I describe using matrix
notation, like so, Aj×k×l. I define C as a cell in A, where I refer to each as Ci when
dealing sequentially with cells, and also Cj,k,l when accessing them using the index
of each dimension. Note, that each cell’s visitation count, C.V = 0 when it is
initialised. The next step in the algorithm is to trace the trajectory, T , through A.

I define �Ea,a+1 as the line segment formed by each pair of subsequent entries in
T . Each cell, Ci, that contains or intersects �Ea,a+1 has its value incremented by one,
Ci.V + 1. Note, a cell cannot have its value incremented more than once until the
trajectory is traced through a different cell (this prevents saturation, but preserves
visitation). Once the whole trajectory has been processed, all cells are put into a list,
L, and sorted in descending order of their values.

Now the algorithm begins forming a set of RoIs, R = {O1, . . . , On}, where
Oi = {C1, . . . , Cn}. Note, that all cells are checked and added to RoIs if they meet
the candidate criteria, that is, C /∈ O ∧ C.V ≥ Dmin, where Dmin is a user-specified
minimum value, a cell must have to be considered part of a RoI. The process begins
by repeatedly popping the head off L until a cell Cj,k,l, meeting the candidate
criteria is found. This cell Cj,k,l is added to an empty RoI, Ocur. All neighbouring
cells of Cj,k,l, that is, Cj−1,k,l, Cj+1,k,l, Cj,k−1,l, Cj,k+1,l, Cj,k,l−1, and Cj,k,l+1, are also
added to Ocur if they meet the candidate criteria. This process of adding the
neighbouring cells of newly added cells continues are until there is no
neighbouring cell that satisfies the candidate criteria. When Ocur cannot be
expanded any further it is considered a finished RoI and is added to the set R. This
process of RoI formulation continues until L is exhausted. It is important to note
that any cell can only be a member of a single RoI.

3.3. Experiment Results 79

RoIs from original RoIs from simplified

1

2

3

1

22

3

4

5

2

3

4

2

3

4

5

Cellular distance between RoIs

FIGURE 3.6: The cellular distances between the raw trajectory’s RoI cells and the simplified
trajectory’s RoI cells.

The reason I use this RoI discovery approach to benchmark my simplification
methods is that its results rely on preserving the underlying visitation. The
simplification approaches I have created will likely remove much of the noise (and
hence density) from the trajectory, but an ideal simplification would still preserve
the trajectory visitations. Thus, to determine if my simplification algorithms
preserve visitation, I perform RoI discovery on the both the raw, and simplified
trajectories. The result is two sets of RoIs, which I use to compute the total
displacement between the raw trajectory’s RoIs and the simplified trajectory’s RoIs.

Given two cells, Cr and Cs, recall, that Cr can also be accessed through the
indices j, k, l. Additionally, to allow for a more convenient definition of distance
between cells, assume Cs can be accessed through its equivalent indices a, b, c.
Therefore, the cellular distance between any two cells is given in Equation 3.11.

Dcell(Cr, Cs) = |j − a|+ |k − b|+ |l − c|. (3.11)

A visual illustration of measuring the cellular distance between two RoIs is given
in Figure 3.6.

In order to measure the total displacement between the raw and simplified
trajectories I formalise my notion of total cellular variance. Let the set of RoIs from
the raw trajectory be Rr, and the set of RoIs from the simplified trajectory be Rs.
Given an RoI from Rr, there is an RoI in Rs that minimises the sum of cellular
distance between the cells of the two RoIs. I call such a pair of RoIs, a minimum
distance RoI pair. Additionally, I call the sum of cellular distances between a
minimum distance RoI pair the minimum cellular distance. Finally, the total cellular
variance is defined as the sum of minimum cellular distances between all minimum
distance RoI pairs.

3.3 Experiment Results

In order to quantitatively evaluate my simplification methods, I conducted a range
of efficiency and effectiveness experiments. To measure the efficiency I recorded the
running time of each simplification method, and to measure effectiveness I
conducted each of benchmarks outlined in Section 3.2.7. I performed all of the
experiments over a range of simplification strengths (i.e. removing
50%, 70%, 90%, 95% of points from the trajectories).

All experiments were performed using my various simplification methods and
their 2d counterparts from the literature: SPLDP(2d) (Douglas and Peucker, 1973),

80 Chapter 3. A Framework of Spatio-temporal Trajectory Simplification Methods

Name Entries
(millions)

Trajectories Range
(km)

Span
(days)

Notes

Trucks 0.112 50 49 40 Constrained.
TDrive 0.814 1275 758 7 Constrained.
Imis 3.097 928 651 3 Unconstrained.
Synthetic 0.35-3.5 1 10 1 Generated.

TABLE 3.2: Trajectory datasets used for experiments. Note, the numbers for TDrive are for
subset #13 only.

EXTA(2d) (Visvalingam and Whyatt, 1993), and GRPPA(2d) (Lee et al., 2007). In
Table 3.2 I introduce the three real-world datasets I used for the experiments:
Trucks (Pelekis et al., 2009), TDrive (Yuan et al., 2010; Yuan et al., 2011), and Imis
(Patroumpas, 2013). Additionally, I also used a single, large, synthetic trajectory,
generated to test the running time of the simplification methods at scale.

The synthetic trajectory was generated by selecting a random starting location
and heading, then subsequent entries were added travelling at varying speeds
along the random heading. The trajectory was confined to a certain geographic
study region and, if it intersected the boundary, the heading was randomly
adjusted to keep it inside the perimeter. Additionally, each entry was perturbed by
an amount of spatial noise normally distributed between zero and a user-specified
value (20 meters in this case).

3.3.1 Simplification Running Time Efficiency

The first experiment I performed was to measure the running time of each
simplification methods while I varied the dataset types and sizes. In addition to the
real world datasets specified above, I also gradually simplified a single, large and
noisy synthetic trajectory. I started by generating a synthetic trajectory with 350,000
entries and gradually increased its size up to 3.5 million entries. Because my test
suite is written in Java, the JVM was warmed up, prior to testing each method, by
running training sets. Additionally, previous results were cleared from memory to
ensure garbage collection did not skew the results. In this experiment, I ran each
simplification method five times, and averaged the running times to obtain the final
time used in the results. The results of this experiment are shown in Figure 3.7.
Please note, that Figure 3.7 depicts the running time achieved by combining
various processing strategies and significance scoring functions; thus, it does not
necessarily reflect the time complexity of processing strategies discussed in
Section 3.2.3.

In general, I expect that the separation in running time between the
simplification methodologies, shown in Figure 3.7, will become more exaggerated
as dataset size increases. However, I also predict that the ordering of fast and slow
simplification methodologies, shown in the results, will remain roughly the same.
The reason for this prediction is that simplification running time is ultimately
governed by the processing strategy used. To clarify: I expect that simplification
methods using the O(n) dead reckoning processing strategy will always
outperform simplification methods using the more expensive split-based and
exhaustive processing strategies.

I observe from the results that all the simplification approaches achieved
reasonable running times on both the synthetic and real datasets sizes of 3 million

3.3. Experiment Results 81

1.0e+4

2.0e+4

3.0e+4

4.0e+4

5.0e+4

6.0e+4

0.0

(A) Methods using DR and GR processing strategies.

(B) Methods using SPL and EX processing strategies.

FIGURE 3.7: Running time of my trajectory simplification methods when applied to multiple
dataset types and sizes. The series with the dashed lines are for the growing synthetic

trajectory dataset, and the vertical lines are each of the real-world datasets.

82 Chapter 3. A Framework of Spatio-temporal Trajectory Simplification Methods

FIGURE 3.8: SED displacement of each simplification method at varying strengths and
applied to multiple datasets (a lower score is better).

entries and greater. Particularly, the simplification methods DRTA and DRDP,
which both achieved running times of less than 10 seconds on the Imis dataset.
Another observation is that the spatio-temporal simplification methods that were
extended versions of traditional approaches - SPLDP, EXTA, and GRPPA - only
incurred a marginal increase in running time compared to their traditional,
spatial-only, counterparts. In general, I expect the traditional 2d simplification
approaches to be faster than the spatio-temporal approaches produced by my
framework because they do not have to compute significance scores or rank entries.
However, by gaining this running time advantage the traditional approaches lose
the ability to re-simplify the trajectory at varying strengths without processing the
entries again.

The final observation I make is that, as the dataset size increases, there is a
reasonable time difference between some methods for the synthetic and real
datasets. This is particularly evident for all the methods that use the greedy and
exhaustive processing strategies, as they all run much faster on the synthetic
trajectory compared to real-world Imis dataset. Investigation reveals that this result
is caused by the nature of the noise in the synthetic trajectory. The trajectory is
dense with noisy sections, then continues relatively unperturbed. This results in
quite long runs of entries appearing in nearly sorted significance order, which
results in the sorted map of 〈entry, score〉 having very low cost add operations
(recall as shown in Algorithm 1 the exhaustive processing strategy builds a sorted
map of entries). However, in real trajectory data, such as Imis, the opportunity for
such fortunate ordering of entries is not necessarily present.

3.3.2 Geometry-based Simplification Effectiveness

The aim of this experiment was to demonstrate how effective each of the
simplification methods is at minimising SED and SA displacement as the
simplification strength was increased. The results of this experiment are illustrated
in Figures 3.8 and 3.9.

The results indicate that simplification strengths play a strong role in SED and
SA displacement. I note that the strongest performers, at the extreme simplification
strength of 95%, tend to be strongest performers in that metric overall. This is the
case for GRPPA in SED and DRTA in SA. This is noteworthy because both methods
outperform the much more thorough simplification methods that use the split-based
and exhaustive processing strategies. Another observation I highlight is that both
GRPPA and DRTA do not fair as well in the other synchronised metric; GRPPA, in

3.3. Experiment Results 83

FIGURE 3.9: SA displacement of each simplification method at varying strengths and
applied to multiple datasets (a lower score is better).

FIGURE 3.10: Total RoI displacement score for each of my trajectory simplification methods
across multiple datasets (lower scores are better).

particular, scores poorly in the SA metric. I speculate this is because these methods
favour a certain scoring function too heavily (i.e. perpendicular distance or area).
Lastly, I observe that the spatio-temporal versions of the traditional simplification
algorithms consistently achieve better SED and SA scores than their 2d counterparts.

3.3.3 RoI-Based Simplification Effectiveness

The aim of this experiment was to gauge how effective each simplification method
was at preserving region visitation as trajectory simplification strength was
increased. The trajectory RoI mining method I used in this experiment is one of my
previous works (Bermingham and Lee, 2014), and it takes two parameters: nCells
and minDensity. The specific parameters I used for the Trucks, TDrive, and Imis
datasets, respectively, are as follows {30, 12}, {20, 50}, {30, 50}. The results of this
experiment are illustrated in Figure 3.10.

Figure 3.10, illustrates that compared to the other approaches, the split-based
and exhaustive methods are less effective at preserving region visitation. I suggest
this is because the split-based and exhaustive processing strategies enforce their
geometric significance scoring more thoroughly, thus, pruning away geometrically
uninteresting region visits, more often. The other observation I make is that,
irrespective of simplification strength, the RoI visitation effectiveness remains
approximately unchanged. This is because RoIs are formed through trajectory
visitation. That is, as long as the simplified trajectory retains certain entries that

84 Chapter 3. A Framework of Spatio-temporal Trajectory Simplification Methods

define its major movements, then removing collinear entries, and entries with small
movements, will have little to no effect on the RoI cells visited in the study region.
In other words, if the significant entries are preserved, then approximately the same
RoI cells in the study region will be visited. Ultimately, this is a seemingly
significant result because this means that even at very high simplification levels (in
this case up to 95% reduction) my simplification methods managed to
approximately preserve the underlying visitations of the trajectory.

3.3.4 Simplification Overall Ranking

In this section I present a summary of the overall performance of each of the
simplification methods across the various experiments. To do this I used a
combined score that highlights which methods performed best in terms of both
efficiency and effectiveness. Specifically, I took the actual values obtained in each of
the experiments and used z-score normalisation to transform the raw results of
each experiment into a comparable range. Having comparable values for each
experiment, a combined score was then calculated to indicate how well a particular
algorithm did overall in terms of both efficiency and effectiveness. However, due to
the uneven number of efficiency and effectiveness experiments, I weighted the
z-scores from each experiment when calculating the combined score. The equation
I used for calculating the combined score of each algorithm is shown in Equation
3.12. It is a linear combination of results from each experiment and their respective
weightings.

S = Wt ∗ T +Wr ∗R+We ∗ E +Wa ∗A, (3.12)

Where, S is the overall score for the simplification method; T,R,E, and A are the
z-scores that the simplification method received in the running time, RoI visitation,
SED, and SA respectively; and Wt,Wr,We, and Wa are weightings for each of the
experiments.

The goal of the overall score is to rank each method in terms of both efficiency
and effectiveness. Given that I conducted one efficiency experiment, one RoI
visitation effectiveness experiment, and two geometric effectiveness experiments, I
use the following weightings when calculating the combined score:
{Wt = 0.5,Wr = 0.25,We = 0.125,Wa = 0.125}. Note, that, I allocated the same
weight to efficiency (running time) and effectiveness (SED, SA, and RoI variance).
Furthermore, for the effectiveness weightings, I allocated equal weightings to
measuring geometric displacement (SED and SA) and topological displacement
(RoI variance). The z-scores and the overall rankings for each of the simplification
methods are shown in Table 3.3.

3.4 Conclusion

Overall, I have quantitatively evaluated each of my trajectory simplification
methods using a variety of efficiency and effectiveness benchmarks. The results
from the experiments have indicated the methods I extended from 2d, to simplify
spatio-temporal trajectories, have improved both SA and SED displacement and
only suffer a marginal increase in running time.

Additionally, I used my framework to combine several processing strategies
and scoring functions together to create new trajectory simplification methods.
Results have shown that several of the new O(n) trajectory simplification methods

3.4. Conclusion 85

Time RoIs SED SA Overall

DRTA -0.86 -2.09 1.94 -4.00 -1.21
DRPD -0.84 -1.50 3.15 -2.43 -0.70
GRPPA -1.03 -0.78 -2.77 3.40 -0.63
GRPPA(2d) -1.12 -0.89 -2.71 4.30 -0.58
ExTA 1.33 -3.29 -1.35 -1.92 -0.57
SPLPD -0.09 0.46 -1.96 -1.23 -0.33
SPLPD(2d) -0.12 1.33 -1.19 -1.17 -0.02
DRSP -0.71 -0.65 4.72 0.73 0.17
SPLPPA(2d) 1.13 1.10 -1.44 -0.24 0.63
DRANG -0.35 1.30 1.85 4.66 0.97
SPLPPA 1.22 2.90 -1.87 -0.60 1.03
ExTA(2d) 1.43 2.10 1.64 -1.52 1.25

TABLE 3.3: Trajectory simplification method z-scores and their overall weighted ranking (a
lower score is better).

(particularly DRTA) have efficient running times whilst maintaining reasonable
SED and SA displacement scores. Furthermore, results from the region visitation
experiment indicate that my simplification methods approximately preserve the
regions a trajectory visits —even after heavy simplification.

Overall, I argue that my framework is simplistic enough to be incorporated into
many problem spaces requiring tunable, spatio-temporal trajectory simplification.
One problem-space I plan to investigate is the incorporation of my framework as
pre-processor into existing trajectory data mining approaches. In addition to the
eight simplification methods I have created using my framework, I suggest my
framework is a useful foundational tool-kit for others to explore new and
application-specific trajectory simplification methods.

87

Chapter 4

Mining Distinct and Contiguous
Sequential Patterns From Large
Vehicle Trajectories

In this chapter I focused on the challenge of trajectory pattern complexity in network-space,
and combating it through reducing the pattern output of sequential pattern mining.
Specifically, I investigated reducing pattern complexity by mining a so-called distinct set of
contiguous sequential patterns from highly redundant map-matched vehicle trajectories.
From the review in Section 2.3 of existing sequential pattern mining approaches and
relevant pattern mining approaches for vehicle trajectories, it seemed to me that there does
not exist any specific approach that can mine a redundancy controlled set of patterns from
large and redundant sequence databases, such as map-matched vehicle trajectories. Thus, in
this chapter I introduced an approach that allows the user to specify a
maximum-redundancy parameter and, then, mine a set of redundancy controlled
contiguous sequential patterns. I evaluated the redundancy, compression, lossiness, and
running time of my new approach and compared it to relevant closed- and max-contiguous
pattern mining algorithms. Experiment results demonstrated that my proposed
distinct-contiguous pattern mining algorithm is able to achieve user-controllable
redundancy levels with negligible running time increases over existing approaches.
Additionally, I demonstrated that due to my approach, the pattern output of the once highly
redundant vehicle trajectories is now succinct enough it can visualised on a map for a user
to interpret —a task that would previously have been meaningless using traditional,
pattern-dense, sequential pattern mining outputs of map-matched vehicle trajectories. The
topics covered in this chapter are illustrated in bold in Figure 4.1.

88
Chapter 4. Mining Distinct and Contiguous Sequential Patterns From Large

Vehicle Trajectories

FIGURE 4.1: Overview of the trajectory data mining and knowledge discovery stages and
the specific topics (the bold rectangles) covered in this chapter.

4.1. Introduction 89

4.1 Introduction

Due to the affordability and widespread availability of GPS technology, the
generation and collection of vehicle trajectories is relatively straightforward and
cost effective. These vehicle trajectories present a valuable opportunity to extract
knowledge in domains such as urban planning (Zheng et al., 2014b), route planning
(Chen et al., 2011), and traffic congestion (Kong et al., 2016). In this chapter I focus
on extracting this knowledge by mining sequential patterns from these vehicle
trajectories. However, sequential pattern mining of vehicle trajectories is difficult
for two reasons: (1) it requires sequences of discrete items, however, trajectory
coordinates are too granular to be easily comparable; (2) vehicle trajectories
commonly contain hundreds of thousands, if not millions, of recordings —which
cause many existing SPM approaches to have massive, redundant and, therefore,
incomprehensible pattern outputs (Atev et al., 2010; Chen et al., 2011).

The first problem can be easily solved by map-matching the vehicle trajectories
to the appropriate road network as a pre-processing step (Song et al., 2014; Wang
et al., 2014). Doing so removes spatial uncertainty and converts the trajectories into
discrete sequences of road-node visitations suitable for sequential pattern mining.
However, the second problem of mining a smaller, less redundant, set of sequential
patterns from the vehicle trajectories still remains. Of course there is the so-called
maximal (max) patterns (recall Section 2.1.3 Definition 13), which mine a set of
patterns such that no pattern in the output is permitted to be a direct sub-pattern of
another. This will reduce the size of pattern output by reducing the number of
patterns; however, it will not necessarily control the redundancy (i.e partially
overlapping subsequences are still permitted). Additionally, there is also the
contiguous constraint (recall Section 2.1.3 Definition 14) that requires the items in
the candidate patterns to exist contiguously in the underlying sequence database.
Once again, this will reduce the size of the output because there will be less
patterns; it is also well suited to vehicle trajectories because it guarantees that the
resulting vehicle patterns will always travel along real-world routes without gaps;
it will not, however, necessarily control the redundancy of the pattern output.

A
B

C

D

E

F

FIGURE 4.2: An example of simplified vehicle trajectories scenario.

In fact, even applying both maximal and contiguous constraints can still result
in a highly redundant pattern output if the input sequences are sufficiently
homogeneous. To illustrate this problem I present an example in Figure 4.2, which

90
Chapter 4. Mining Distinct and Contiguous Sequential Patterns From Large

Vehicle Trajectories

is a simplified scenario containing six vehicles moving through an intersection. In
Table 4.1, I present the result of mining the set contiguous max patterns from this
example using a support of two (i.e minSup = 2).

TABLE 4.1: The maximal contiguous sequential patterns present in Figure 4.2.

Sequences Max Contiguous Patterns

〈A,B,C,D〉 〈A,B,C,D〉[SUP : 2]〈A,B,C,D〉
〈A,B,C,E〉 〈A,B,C,E〉[SUP : 2]〈A,B,C,E〉
〈A,B,C, F 〉 〈A,B,C, F 〉[SUP : 2]〈A,B,C, F 〉

From Table 4.1, observe that even the max contiguous sequential patterns can
become quite redundant. For example, the sequence 〈A,B,C〉 is found in every
discovered pattern. Specifically, this means that 75% of the pattern output is
repeated redundantly. I highlight that this scenario is not an exceptional or
contrived case; rather, it demonstrates an issue that is even further exacerbated
when mining sequential patterns from large real-world vehicle trajectories.
Recalling Section 2.3, it appears there is no existing approach that can mine a
redundancy-controlled set of contiguous sequential patterns. Therefore, to solve
this problem, I present the key contribution of this chapter: an algorithm to mine a
set of Distinct Contiguous Sequential PAtterNs (DC-SPAN).

The remainder of the chapter is organised as follows: Section 4.2 introduces
several formal definitions for key data-structures, and the concepts required to
formally define the problem of distinct contiguous sequential pattern mining;
Section 4.3 introduces the specific process of my algorithm DC-SPAN; Section 4.4
introduces the running time, compression, lossiness, and redundancy experiments,
presents the results, and provides a discussion and visualisation of the experiment
results; and, lastly, Section 4.5 is my conclusion, where I discuss the overall
applicability of DC-SPAN to map-matched vehicle trajectories and, also, the
trade-offs between redundancy and lossiness that are present.

4.2 Problem Statement

In this section I introduce some key concepts and data-structures used throughout.
Then, I formally define the problem of mining distinct contiguous sequential
patterns.

4.2.1 Preliminaries

All of definitions below are preliminaries to formally establish the problem of
distinct pattern mining, and, also to aid in explaining DC-SPAN. Readers please
note that the definitions directly extend the sequential pattern mining definitions
outlined in Section 2.1.3 of Chapter 2; I encourage a recap of that section as
necessary before proceeding to read the below definitions.

Definition 15 (Pair). Given a sequence Sa = 〈a1, a2, . . . , an〉, a pair p is a tuple of any
two adjacent items in Sa. That is, p = 〈ai, ai+1〉 for 1 ≤ i < n.

4.2. Problem Statement 91

A pair is the next unit up from an item,; unlike an item, a pair conveys the
underlying sequential nature of the data. In other words, a pair represents
sequential information, whereas an item cannot, which is of importance in
spatio-temporal trajectory data mining.

Definition 16 (Pair Set). Given a sequence database, SDB = {S1, S2, . . . , Sm}, a pair
set PS, is the set of all possible pairs that occur within it. That is, PS = {p | p is a
pair in Sk for ∀ Sk ∈ SDB}.

Notations for a pair set are PS(S) and PS(SDB) for a sequence S and a sequence
database SDB, respectively. Additionally, the number of pairs within the pair set is
denoted as |PS|.
Definition 17 (Cover Map). Given a sequence database, SDB, a cover map, CM , is
a key-value map where each key is a pair in PS(SDB) and each associated value is
the frequency that the pair occurs in SDB. Note, creating a cover map is denoted
CM(SDB).

I call the frequency associated with each pair the cover of the pair. This is
because it represents how much of the original sequence database is covered by
that particular pair. Additionally, please note that in practice this and all the other
maps I define in this section are implemented as hash-maps so that they have O(1)
lookup and all the standard map operations, such as get(p), contains(p),
put(p,frequency), and remove(p) for a pair p.

Definition 18 (Sequence Cover). Given a cover map, CM , and the pair set of a
sequence, PS(S) = {p1, p2, . . . , pn}, the cover of the sequence is

∑n
i=1CM.get(pi).

Computing the cover of a sequence is denoted as cover(S,CM), and for a sequential
pattern that already has its cover stored, it is denoted as cover(S).

By breaking a given sequence into its pair set, one can determine how much of
the sequence database is covered by that sequence. The support value computed
by existing approaches does not provide this kind of representative information. I
provide a small example to illustrate the extra information provided by computing
the sequence cover. Consider two patterns found by a traditional SPM approach,
{a, b, c} [SUP:10] and {b, a, c} [SUP:10]. With only the support information available,
one is left to assume these two patterns represent equal portions of the underlying
sequence database. However, if one computes the cover for these two sequential
patterns the result may become, {a, b, c} [SUP:10 COVER:50] and {b, a, c} [SUP:10
COVER:150]. Although, both of these patterns are found in 10 sequences, the cover
reveals that the second pattern has sub-sequences that occur in three times more of
the sequence database. In other words, cover provides one with a quantitative metric
to judge how representative a sequence is with regard to the underlying sequence
database.

Definition 19 (Sequence Map). Given a set of sequences, S, a sequence map, SM ,
is a key-value map where each key is a unique id and each value is a sequence in S.
Creating a sequence map is denoted by SM(S).

The sequence map is used for fast lookup of sequences (or sequential patterns)
by their id.

Definition 20 (Pair to Sequence Ids Map). Given a sequence map, SM , a pair to
sequence ids map, P2SID, is a key-value map where each key is a pair in

92
Chapter 4. Mining Distinct and Contiguous Sequential Patterns From Large

Vehicle Trajectories

PS(SM.values) and each associated value is a set of sequences ids indicating
which sequences contain that pair. Notation for creating a pair to sequence id map
is P2SID(SM).

The pair to sequence ids map is a data-structure I use to track which pairs have
appeared in the distinct sequential pattern mining output. Once a pair appears in
the pattern output, it is removed from the map to indicate it has been marked as
redundant. Controlling the pair redundancy within the pattern output is one of the
unique features of DC-SPAN.

Definition 21 (Sequence Redundancy). Given a pair to sequence map, P2SID, and
the pair set of a sequence, PS(S) = {p1, p2, . . . , pn}, the redundancy of the sequence
is

n∑
i=1

{
0, if P2SID.contains(pi),

1, otherwise.

n

Computing the redundancy of a sequence is denoted redund(S, P2SID).

I highlight that the redundancy of all sub-sequences and sequential patterns
found in a sequence database will initially be zero, because P2SID contains every
relevant pair to begin with. However, as pairs in the map are removed, sequences
that contain those pairs will have their redundancy increased.

Definition 22 (Distinct Pattern). Given the set of all sequential patterns for a
database AS, a user-specified maximum-redundancy threshold, maxRedund, and a
pair to sequence ids map, P2SID, a sequential pattern Sa is distinct iff
Sa ∈ AS ∧ redund(Sa, P2SID) ≤ maxRedund ∧ �Sb ∈ AS such that
cover(Sb) > cover(Sa). Note, the set of all distinct patterns is denoted DS.

This definition implies that there can only be one distinct pattern in the set of
all sequential patterns, however; as I explain in more detail in Section 4.3 once a
distinct pattern has been found, it is removed from AS, and its relevant pairs are
also removed from the P2SID. This allows one to find a set of distinct patterns each
with maximal cover w.r.t the already found distinct patterns.

Additionally, by repeatedly finding the distinct pattern with the maximum
cover, I produce a concise redundancy-controlled set of sequential patterns that is
representative of as large a portion of the underlying sequential database as
possible.

4.2.2 Problem Definition

Based on the definitions in Section 4.2.1, I now introduce the problem that I aim to
solve in this chapter.

Definition 23 (Distinct Contiguous Sequential Pattern Mining). Given a sequence
database, SDB, a user-specified minimum-support threshold, minSup, and a user-
specified maximum-redundancy, maxRedund, find a set of all distinct contiguous
sequential patterns.

4.3 Methodology

In Figure 4.3, I present my framework for mining distinct contiguous sequential
patterns from vehicle trajectories. Briefly, each stage in Figure 4.3 of my framework
is as follows:

4.3. Methodology 93

FIGURE 4.3: My framework for mining distinct contiguous sequential patterns from vehicle
trajectories.

1. Raw vehicle trajectories. The purpose of my framework is to extract a set of
patterns that represent frequent routes that vehicles have taken within their
relevant road networks. The vehicle trajectories I consider in this chapter are
all recorded using GPS and are stored as plain-text files as sequences of
timestamped geographic coordinates. More details on the specific datasets I
used are provided in Section 4.4.1.

2. Road network. In order to mine the vehicle trajectories using sequential
pattern mining, I assume that the vehicles are constrained to travelling along
road networks. I obtained the relevant road networks for each of the datasets
from MapZen’s Open Street Maps metro extracts repository 1.

3. Map-matching. It is well established that GPS recordings can be noisy and
inaccurate. Thus, it is not an easy task to match each recording in the vehicle’s
trajectory with the correct road segment from the underlying road network.
For this task of map-matching the vehicle trajectories, I used the Hidden
Markov Model based approach proposed by Newson and Krumm (2009)
(recall Section 2.1.2). For my purposes, I find that it yields logical matches for
all of the tested datasets.

4. Road node visitation sequences. Using the trajectories and relevant road
network as input, the map-matching produces a plain-text file containing the
sequence of road nodes that each trajectory visited. This is the input sequence
database that is used for sequential pattern mining.

1https://mapzen.com/data/metro-extracts/

94
Chapter 4. Mining Distinct and Contiguous Sequential Patterns From Large

Vehicle Trajectories

5. Contiguous sequential pattern mining. The sequence database produced in
the previous stage is now mined for contiguous sequential patterns. However,
as discussed in Section 1.4.3 of Chapter 1 the set of patterns produced is often
quite redundant and in the case of vehicle trajectories, overlapping patterns,
basically, show the same section of road being visited with minor detours. To
refine these redundant patterns later, I store them as a sequence database.

6. Contiguous sequential patterns. This is a plain-text database of contiguous
sequential patterns mined from the previous stage.

7. Distinct sequential pattern mining. I run my algorithm on the sequence
database of contiguous sequential patterns and refine it down to a set of
patterns that does not surpass a user-specified maximum-redundancy
parameter. This so-called distinct set of patterns is, once again, stored as a
sequence database.

8. Distinct contiguous sequential patterns. This is the output of my algorithm,
and I use it in the experiments to measure pattern output lossiness,
compression, and redundancy. Additionally, this output is what I use to
interpret the vehicle patterns, as it is much more succinct than the output
from stage 5. Additionally, this increased succinctness allows for visualisation
of the uncovered vehicle patterns, which I demonstrate in Section 4.4.6.

The main contribution of this chapter is DC-SPAN: an algorithm for discovering
distinct contiguous sequential patterns. I present the details of DC-SPAN in
Algorithm 2.

Firstly, I highlight that DC-SPAN does not compute contiguous sequential
patterns itself and, instead, refines the output of an existing contiguous sequential
pattern mining algorithm. Thus, DC-SPAN inherits the performance characteristics
and bottlenecks of whichever algorithm is chosen. For example, in my
implementation, the function call to ‘MineACSP(SDB,minSup)’ on Line 2, is
replaced with a call to a modified CC-SPAN (Zhang et al., 2015) algorithm that
mines the set of all contiguous sequential patterns. My explanation of this choice,
and the resulting performance characteristics, are reported in Section 4.3. I
highlight that, in practice, there is no explicit need to compute the set of all
contiguous patterns inside the algorithm, and if desired, these patterns can be
precomputed by other means and passed in as a parameter.

After obtaining the set of all contiguous patterns, DC-SPAN initialises all the
required data-structures that are used to refine the patterns down to the set of
so-called distinct patterns (see Definition 22). Inside DC-SPAN’s main loop, Line 10,
the most covered pattern is found and stored in the set of distinct patterns (see
Definition 18 for an explanation of sequence/pattern cover). Then, all the pairs
from the distinct pattern are removed from the pair to sequence ids map, effectively
marking them redundant, because they will now appear in the distinct pattern
output. Finally, to ensure the user-specified maximum-redundancy is not
surpassed, all patterns in the set of all contiguous sequential patterns that contain
too many redundant pairs are removed. This whole process repeats, until there are
no remaining patterns to refine.

4.3. Methodology 95

Algorithm 2 DC-SPAN algorithm.

Input:
(1) SDB, a sequence database;
(2) maxRedund, the maximum allowed redundancy;
(3) minSup, the minimum allowed support;
Output: DS, the set of all distinct contiguous sequential patterns;

1: function DCSPAN(SDB,maxRedund,minSup)
// Use a relevant contiguous SPM algorithm.

2: Assign AS to MineACSP(SDB,minSup);
3: Assign DS to ∅;

// Make a cover map, see Definition 17.
4: Assign CM to CM(SDB);

// Make a sequence map of patterns, see Definition 19.
5: Assign SM to SM(AS);

// Make a pair to sequence id map, see Definition 20.
6: Assign P2SID to P2SID(SM);

// Find the cover of each sequence.
7: for (Sequential pattern S in SM) do
8: Assign S.cover to cover(S,CM);
9: end for

10: while SM is not empty do
// Find pattern with max cover.

11: Assign Smax to argmax
{S∈SM}

cover(S);

12: Remove Smax from SM ;
// Write pattern into memory or disk.

13: Save Smax to DS;
// Remove the relevant pairs.

14: Assign PSmax to PS(Smax);
15: Assign IDs to ∅;
16: for (Each pair p in PSmax) do
17: Add all ids from P2SID.get(p) to IDs;
18: Remove p from P2SID;
19: end for

// Remove patterns that have become redundant.
20: for (Sequence id i in IDs) do
21: if redund(SM.get(i), P2SID) ≥ maxRedund then
22: Remove i from SM ;
23: end if
24: end for
25: end while
26: return DS;
27: end function

96
Chapter 4. Mining Distinct and Contiguous Sequential Patterns From Large

Vehicle Trajectories

4.4 Experiment Results

To gauge the efficiency and effectiveness of DC-SPAN at mining
distinct-contiguous sequential patterns from large vehicle trajectories, I conducted
experiments measuring running time, compression, lossiness, and redundancy.
Where appropriate, I compared DC-SPAN against other contiguous sequential
pattern mining algorithms that mined all-, closed-, and max-patterns. One problem
I faced is that I planned to use CM-SPAM (Fournier-Viger et al., 2014a) to mine the
set of all contiguous patterns, and VMSP (Fournier-Viger et al., 2014c) to mine the
set of all max-contiguous patterns. However, both of these algorithms ran out of
memory mining the large trajectory datasets, thus, they turned out to be unsuitable
for this study. Fortunately, I was able to mine the set of all closed-contiguous
sequential patterns using CC-SPAN (Zhang et al., 2015). Using CC-SPAN as a base,
I slightly modified the source code to produce two algorithms: one to mine the set
of all contiguous sequential patterns (AC-SPAN), and the other, to mine the set of
all max-contiguous sequential patterns (MC-SPAN). Thus, for most of the
experiments I compared the output produced by DC-SPAN against AC-SPAN,
CC-SPAN, and MC-SPAN.

Additionally, I highlight that all of the experiments were run on a machine with
an i5-520M processor and 5GB of unallocated memory. Furthermore, all of the
algorithms were implemented in Java and an adequate JVM warm-up was used
before all experiments.

4.4.1 Experiment Datasets

Across all of the experiments, I used the same three vehicular trajectory datasets as
input. I highlight that prior to experimentation, these vehicular trajectory datasets
were transformed from a series of geographic coordinates and timestamps, into
sequences of visited road network nodes (see Section 4.3 for an explanation of this
process). “TDrive" is the first and biggest dataset I used and is publicly available 2

from Microsoft Research Asia. The TDrive dataset contains six day’s worth of taxi
trajectories in the Beijing area (Yuan et al., 2010; Yuan et al., 2011).

“Buses" is the second dataset I used, and is publicly available 3 from the Dublin
city council’s “Insight" project. The Buses dataset contains approximately a month of
bus trajectories moving around Dublin. The entire dataset is too large to fit into the
test machine’s memory, so I used just a subset which, itself, contains 7,806 tracked
buses.

“Trucks" is the last and smallest dataset I used and is a well researched
trajectory dataset (Pelekis et al., 2009; Pelekis et al., 2011; Abul et al., 2008; Herrera
et al., 2010; Panagiotakis et al., 2012) that is publicly available from the
Chorochronos archive 4. The trucks dataset is so-called because it contains various
cement trucks making daily deliveries around the Athens region. In Table 4.2, I
present some specific information about each of the datasets after they underwent
map-matching.

2https://www.microsoft.com/en-us/research/publication/
t-drive-trajectory-data-sample/

3https://data.dublinked.ie/dataset/dublin-bus-gps-sample-data-from-dublin-city-council-i
4http://chorochronos.datastories.org/

4.4. Experiment Results 97

TABLE 4.2: Transformed Trajectory Datasets

Name Sequences Items Avg Seq Length Distinct Items

TDrive 7,806 5,400,239 692 50,933
Buses 782 702,384 898 14,329
Trucks 50 204,662 4,093 13,279

4.4.2 Running Time

The aim of this experiment was to quantitatively measure the efficiency of
DC-SPAN against the existing all- (AC-SPAN), closed- (CC-SPAN), and max-
(MC-SPAN) contiguous sequential pattern mining algorithms, when mining large
real-world vehicular sequence databases. The results of this experiment are shown
in Figure 4.4.

Analysing Figure 4.4, I observe that DC-SPAN has a negligible running time
compared to the other approaches I measured; though, it is misleading not to
restate that DC-SPAN requires the computation of the set of all contiguous
sequential patterns during its routine (i.e it runs AC-SPAN internally). Therefore,
the overall running time for DC-SPAN to produce a result, can be thought of as
DC-SPAN + AC-SPAN. Therefore, the running time of DC-SPAN is always tied to
whichever algorithm is used to mine the set of all contiguous sequential patterns
(AC-SPAN in this case). Additionally, it follows that the overall running time of
DC-SPAN is longer than mining the set of closed or max contiguous sequential
patterns. Another observation I make is that the running time of DC-SPAN appears
to be mostly insensitive to the changing support levels, which cannot be said for the
other algorithms. Overall, these results suggest to me that mining the set of
distinct-contiguous sequential patterns imposes little performance overhead if the
set of all contiguous sequential patterns is already computed.

4.4.3 Compression

The aim of this experiment was to measure the relative compression achieved by
each algorithm’s pattern output. The compression value I computed is the size of the
pattern output relative to the set of all contiguous sequential patterns. Specifically, I
computed compression in this experiment using Equation 4.1.

Compression = 1− IXS

IAS
, (4.1)

where each term is as follows:

• IXS : the total number of items in a given algorithm’s contiguous sequential
pattern output;

• IAS : the total number of items in the set of all contiguous sequential patterns.

I clarify that computing the compression produced by a specific algorithm at
a given minimum support requires computing the set of all contiguous sequential
patterns at that same support level. With the preliminaries defined, I present the
results from this experiment in Figure 4.5.

The results in Figure 4.5 indicate to me, that for all the tested datasets,
DC-SPAN produces a smaller pattern output than the approaches that mined the
set of closed- or max-contiguous sequential patterns. Figures 4.5b and 4.5c indicate

98
Chapter 4. Mining Distinct and Contiguous Sequential Patterns From Large

Vehicle Trajectories

0.06 0.10 0.14 0.18

0
50

0
10

00
15

00

Relative Support

R
un

ni
ng

 T
im

e
(s

)

●
●

●●
●

●

AC−SPAN
CC−SPAN
MC−SPAN
DC−SPAN

(A) TDrive

0.06 0.10 0.14 0.18

0
20

0
40

0
60

0
80

0

Relative Support

R
un

ni
ng

 T
im

e
(s

)

●●

●

●

●
●

AC−SPAN
CC−SPAN
MC−SPAN
DC−SPAN

(B) Buses

0.06 0.10 0.14 0.18

0
50

0
10

00
15

00

Relative Support

R
un

ni
ng

 T
im

e
(s

)

●
●

●

●

●
●

AC−SPAN
CC−SPAN
MC−SPAN
DC−SPAN

(C) Trucks

FIGURE 4.4: Running time analysis (lower is better).

4.4. Experiment Results 99

●●●●

0.06 0.08 0.10 0.12 0.14

0
20

40
60

80
10

0

Relative Support

C
om

pr
es

si
on

 (%
)

● CC−SPAN
MC−SPAN
DC−SPAN (0.0)

DC−SPAN (0.25)
DC−SPAN (0.5)
DC−SPAN (0.75)

(A) TDrive.

●

●

●

●

●

0.06 0.10 0.14 0.18

50
60

70
80

90
10

0

Relative Support

C
om

pr
es

si
on

 (%
)

● CC−SPAN
MC−SPAN
DC−SPAN (0.0)

DC−SPAN (0.25)
DC−SPAN (0.5)
DC−SPAN (0.75)

(B) Buses.

●
●

●

●

●

0.06 0.10 0.14 0.18

96
97

98
99

10
0

Relative Support

C
om

pr
es

si
on

 (%
)

● CC−SPAN
MC−SPAN
DC−SPAN (0.0)

DC−SPAN (0.25)
DC−SPAN (0.5)
DC−SPAN (0.75)

(C) Trucks.

FIGURE 4.5: The pattern output compression achieved by each algorithm (higher is better).
DC-SPAN was tested at varying maximum redundancies.

100
Chapter 4. Mining Distinct and Contiguous Sequential Patterns From Large

Vehicle Trajectories

DC-SPAN achieves approximately a 99% compression for the respective datasets. I
highlight that for these datasets the set of all closed- and max-patterns also achieves
very high compressions, around 98%-99%. This result is explained by the fact that
the set of all contiguous patterns for these datasets is huge, containing many
redundant sub-patterns. Thus, when these sub-patterns are removed huge portions
of the patterns are compressed away. Due to the pattern output being far smaller,
the results from Figure 4.5a are perhaps more telling of the overall compression
abilities of each algorithm. Specifically, I highlight that in Figure 4.5a it is more
clearly indicated that DC-SPAN achieves a better overall compression than the
other algorithms. Additionally, I also observe that increasing the
maximum-redundancy of DC-SPAN shifts its compression closer towards the set of
all max-contiguous sequential patterns.

4.4.4 Lossiness

The aim of this experiment was to measure the percentage of patterns that were lost
by DC-SPAN. In this experiment, I calculated the lossiness of an algorithm at a given
support by counting the number of patterns, from the set of all contiguous sequential
patterns, that are not contiguously contained (See Definition 14) in the given pattern
output. Specifically, I calculated the lossiness of a given pattern output by using
Equation 4.2.

Lossiness = 1−

∑
S∈AS

{
1, if S 	 XS,

0, otherwise.

|AS| (4.2)

where each term is as follows:

• S is ∈ SP

• XS: the set of contiguous sequential patterns produced by a given algorithm

• AS: the set of all contiguous sequential patterns.

I highlight that this definition for lossiness gives all-, closed-, and
max-contiguous sequential pattern mining algorithms a perfect lossiness of zero,
because by their very definitions (See Definitions 12 and 13), every pattern from the
set of all contiguous sequential patterns will be contiguously contained by some
pattern in their output. This is not the case for DC-SPAN, which discards sequential
patterns based on their redundancy. Therefore, in this experiment I do not test
AC-SPAN, CC-SPAN, or MC-SPAN, but instead, test DC-SPAN at varying
maximum redundancy levels of 0%, 25%, 50%, and 75%. The results of this
experiment are provided in Figure 4.6.

Figure 4.6 shows some varied results in terms of the lossiness DC-SPAN
achieves for each of the three datasets. Specifically, for the Tdrive dataset, the
output gets more lossy as support is increased, whilst for the Buses dataset the
lossiness is mostly steady, and finally for the Trucks dataset the lossiness gradually
declines as the support is increased. My investigation into these results reveals that
for each case, the result is explained by the homogeneity or heterogeneity of the
pattern output, produced by mining the set of all contiguous sequential patterns. In
this context, I say that the pattern output is homogeneous if the sequential patterns
discovered have a high number of pairs shared among them; heterogeneity occurs
in the opposite case.

4.4. Experiment Results 101

0.06 0.10 0.14 0.18

0
20

40
60

80

Relative Support

Lo
ss

in
es

s
(%

)

DC−SPAN (0.0)
DC−SPAN (0.25)

DC−SPAN (0.5)
DC−SPAN (0.75)

(A) TDrive.

0.06 0.10 0.14 0.18

0
20

40
60

80
10

0

Relative Support

Lo
ss

in
es

s
(%

)

DC−SPAN (0.0)
DC−SPAN (0.25)

DC−SPAN (0.5)
DC−SPAN (0.75)

(B) Buses.

0.06 0.10 0.14 0.18

0
20

40
60

80
10

0

Relative Support

Lo
ss

in
es

s
(%

)

DC−SPAN (0.0)
DC−SPAN (0.25)

DC−SPAN (0.5)
DC−SPAN (0.75)

(C) Trucks.

FIGURE 4.6: The percentage of all sequential patterns lost by each algorithm (lower is better).
DC-SPAN was tested at varying maximum redundancies.

102
Chapter 4. Mining Distinct and Contiguous Sequential Patterns From Large

Vehicle Trajectories

In the results for the TDrive dataset, the set of all contiguous patterns becomes
increasingly homogeneous because the total number of patterns discovered is so
small. At a relative support of 0.18 (i.e minimum absolute support of 1,405
sequences), only 48 sequences are found, with 4 pairs among them. Many of the
sequences consist only of single items and are therefore discarded by DC-SPAN, as
they have a pair cover of zero. DC-SPAN is designed for mining long sequences
and setting the support close to its maximum, for the dataset will produce small
patterns that it readily discards.

For the Trucks dataset, the set of all contiguous sequential patterns is very
homogeneous. For example, at a relative support of 0.06, the output contains
1,008,755 sequences, with a total of 58,003,641 items. This indicates that a huge
number of sub-patterns makes up the pattern output, meaning it is very
homogeneous. With so many patterns sharing pairs, huge chunks of the output
become redundant as the distinct patterns are mined. Thus, in this case, the main
reason lossiness decreases, as support is raised, is simply because the set of all
sequential patterns is pruned and becomes more heterogeneous.

For the Buses dataset, the lossiness scores are fairly consistent across varying
support levels. My investigation into the results revealed that the pattern output for
the Buses dataset is the most heterogeneous, of the three datasets tested. Specifically,
I found that the number of distinct pairs in the pattern output was very close to the
total number of pairs. This means that most of the patterns in the output already
have quite a low number of shared pairs and, therefore, mining the set of distinct
contiguous patterns causes less patterns to become redundant.

From Figure 4.6 I observe, that for all of the datasets I tested, an increase in the
maximum redundancy parameter correlates with a decrease in lossiness. In other
words, the higher the maximum redundancy parameter, the closer the output
becomes to the set of all max contiguous patterns.

4.4.5 Redundancy

The aim of this experiment was to measure the number of redundant pairs in the
pattern output of each algorithm tested. I ask readers to refer to Definition 20 and
Definition 21 for an explanation of pair redundancy. The redundancy score I
computed in this experiment is the number of redundant pairs divided by the total
number of pairs, giving a percentage to describe the overall pattern output
redundancy. The results of this experiment are provided in Figure 4.7.

From Figure 4.7, I observe that DC-SPAN achieves its intended purpose of
controlling the redundancy of the pattern output. Specifically, when DC-SPAN’s
maximum redundancy is set to 0%, a redundancy of 0% is obtained, and as the
maximum redundancy is increased, the pattern output, as expected, becomes more
redundant. I highlight that when DC-SPAN’s maximum redundancy was set to 0%,
the redundancy of the pattern output was approximately 30 to 60% less redundant
compared to MC-SPAN, and appropriately 60 to 95% less redundant compared to
CC-SPAN, at the same support levels. Additionally, even at the highest maximum
redundancy tested, of 75%, DC-SPAN achieves an overall redundancy that is at
least equal to, if not substantially lower than, both the closed- and max-pattern
outputs across all datasets and support levels.

4.4. Experiment Results 103

●

●

●
●

0.06 0.08 0.10 0.12 0.14

0
20

40
60

80
10

0

Relative Support

R
ed

un
da

nc
y

(%
)

● CC−SPAN
MC−SPAN
DC−SPAN (0.0)

DC−SPAN (0.25)
DC−SPAN (0.5)
DC−SPAN (0.75)

(A) TDrive.

●●●●●

0.06 0.10 0.14 0.18

0
20

40
60

80
10

0

Relative Support

R
ed

un
da

nc
y

(%
)

● CC−SPAN
MC−SPAN
DC−SPAN (0.0)

DC−SPAN (0.25)
DC−SPAN (0.5)
DC−SPAN (0.75)

(B) Buses.

●●
●

●●

0.06 0.10 0.14 0.18

0
20

40
60

80
10

0

Relative Support

R
ed

un
da

nc
y

(%
)

● CC−SPAN
MC−SPAN
DC−SPAN (0.0)

DC−SPAN (0.25)
DC−SPAN (0.5)
DC−SPAN (0.75)

(C) Trucks.

FIGURE 4.7: The percentage of redundant pairs produced by each algorithm (lower is better).
DC-SPAN was tested at varying maximum redundancies.

104
Chapter 4. Mining Distinct and Contiguous Sequential Patterns From Large

Vehicle Trajectories

4.4.6 Visualisation

Large vehicle trajectory datasets are often huge and repetitive, making them
difficult to visually inspect, but ideal to mine. In my experience, using traditional
sequential pattern mining approaches on vehicle trajectory datasets often produces
pattern outputs that are still too dense to visually interpret because of the large
number of repeated and redundant patterns. However, by using DC-SPAN the
redundancy can be controlled thus, meaning, visualisation now becomes a relevant
process for interpreting the pattern output. In Figure 4.8 I present visualisations for
each of the raw trajectory datasets I used in the experiments, and an accompanying
pattern output mined by DC-SPAN.

Noisiness of GPS technology is a well known difficulty and is frequent in these
vehicular datasets, particularly the TDrive and Buses datasets (see Figure 4.8a and
4.8c). Despite this, my combination of map-matching and distinct contiguous
sequential pattern mining has uncovered a succinct and clean set of sequential
patterns which map very accurately to the underlying road network topology.
Analysis of the results in Figure 4.8 reveals that many of the sequential patterns
found are highways and major roadways, which hints at the validity of the
uncovered patterns. To the best of my knowledge, this combination of
map-matching and contiguous sequential pattern mining has not been used in this
way before. I speculate that, previously, sequential pattern mining output was too
large and redundant to visualise meaningfully.

4.5 Conclusion

Although there exist many efficient and effective sequential pattern mining
algorithms, none of them is particularly well suited for mining large vehicle
trajectories where the pattern should be, ideally, contiguous and
redundancy-controlled. In this work, I have presented my approach, DC-SPAN, to
solve this problem. Through quantitative experiments I have shown that DC-SPAN
is able to mine distinct, redundancy-controllable, contiguous sequential patterns
from large and varied real-world vehicle trajectories, with very little additional
overhead, compared to existing approaches. Additionally, the experiment results
also revealed that the set of distinct patterns mined by DC-SPAN is more succinct
than traditional approaches, but, at the cost of pattern lossiness. Specifically, the
experiment results indicated there exists a trade-off between increased redundancy
and decreased compression and lossiness. The more skewed this trade-off is
towards decreased compression and lossiness, the more DC-SPAN resembles a
max-contiguous sequential pattern mining algorithm. Overall, I conclude that the
main usefulness of DC-SPAN is the tunable redundancy of the pattern output and,
therefore, in cases like vehicular datasets, where a redundancy-controlled pattern
output makes sense, DC-SPAN is an effective solution.

4.5. Conclusion 105

(A) TDrive trajectories. (B) TDrive distinct patterns (MinSup =
0.185, MaxRedund = 0).

(C) Buses trajectories. (D) Buses distinct patterns (MinSup = 0.025,
MaxRedund = 0).

(E) Trucks trajectories. (F) Trucks distinct patterns (MinSup = 0.2,
MaxRedund = 0).

FIGURE 4.8: The raw trajectory datasets (left) and the distinct contiguous patterns mined
from them (right).

107

Chapter 5

A Probabilistic Stop and Move
Classifier for Noisy GPS
Trajectories

In this chapter I focused on addressing the challenges of spatial uncertainty and adding
semantic meaning to free-space trajectories. Specifically, I investigated semantically
enriching free-space trajectory entries by classifying them as either stopping or moving.
However, from my review of existing free-space stop/move detection approaches in
Section 2.4, it seemed to me there is no existing approach that can detect stops/moves and
attach a degree of confidence to the classification (i.e. the classification may be relatively
uncertain if many of the points were spatially noisy). Additionally, there does not appear to
be any existing approach that can perform its stop/move detection in a unsupervised way,
and estimate all its own parameters. Thus, in this chapter, I introduced an unsupervised,
probabilistic, stop/move classification algorithm that attaches a probability to each
classification and allows the user to easily filter out stop and move classifications that are
not probable enough for their use-case. Additionally, I also provided estimation schemes for
all of my algorithm’s parameters, provided source code for my algorithm, and supplied
several real-world, ground-truth, stop/move annotated trajectories for evaluation of
classification effectiveness.

In the experiments I used these ground-truth trajectories alongside some synthetic
trajectories to compare the classification effectiveness, parameter sensitivity, and running
time of my approach to two well-known existing approaches: SMoT and CB-SMoT.
Experiment results demonstrated the efficiency, effectiveness, sampling-rate robustness, and
spatial parameter insensitivity of my approach compared to the existing approaches.
Specifically, I conducted experiments using ground-truth data and was able to demonstrate
that a user tweaking my algorithm can increase the minimum stop probability parameter to
reduce the number of false-positive stop classifications. Furthermore, the results
demonstrated that even when all of my algorithm’s parameters were estimated, the
classification effectiveness of my algorithm was higher than existing approaches across a
range of sampling-rates. The topics covered in this chapter are illustrated in bold in
Figure 5.1.

108 Chapter 5. A Probabilistic Stop and Move Classifier for Noisy GPS Trajectories

FIGURE 5.1: Overview of the trajectory data mining and knowledge discovery stages and
the specific topics (the bold rectangles) covered in this chapter.

As a full disclosure readers should be aware that the work in this chapter went
on to be accepted as: Bermingham, L. and Lee, I. (2017). A Probabilistic Stop and
Move Classifier for Noisy GPS Trajectories. Data Mining and Knowledge Discovery.

5.1. Introduction 109

5.1 Introduction

Without semantic enrichment, raw trajectories lack the necessary contextual
information required to infer useful higher-level knowledge such as: what the
entity was doing; what kind of place the entity was travelling to; or, what activity
the entity might do next. A common technique, to add some context to these raw
trajectories, is to semantically enrich them with an additional extra dimension
describing if the entity is stopping or moving (Alvares et al., 2007; Gong et al., 2015;
Tran et al., 2011; Xiang et al., 2016). The assumption is that when an entity stops it is
performing some activity (Xiang et al., 2016), such as a person eating lunch or a bird
roosting. The raw stops and moves are not inherently contextual, but when paired
with additional contextual data sources, such as the underlying geography, they
can become meaningful. Thus, semantically enriching a GPS trajectory with stops
and moves is an effective way to add context. Though, it has become a fundamental
technique in many semantic knowledge discovery approaches (Gong et al., 2015;
Tran et al., 2011), the problem remains in accurately and efficiently obtaining these
stops and moves. One approach is getting the entity to keep a travel diary, but this
is time-consuming and not applicable to non-human entities. Another approach is
using a fusion of device sensors (i.e accelerometer, gyroscope, camera, and GPS) to
detect moves and stops; however, for long-term installations, such as animal
tracking, this extra battery drain is not feasible. Therefore, the most commonly used
approach is to use the data that is already available, the spatio-temporal recordings,
and infer, from them, whether the entity is stopping or moving. The advantage of
this approach is that it is applicable to all spatio-temporal GPS trajectories and does
not require any special external data-sources or data pre-processing steps.

It is not necessarily straightforward to detect stops and moves using only the
spatio-temporal recordings. The main challenge faced is due to the noisiness,
uncertainties, and unreliability of the recorded locations. Even standing still under
clear skies, the recorded location will vary somewhat, and the problem is only
worsened when large buildings, weather conditions, and other various sources of
interference are introduced (Trajcevski, 2011). Thus, the task of separating stops
from moves, using only noisy GPS recordings as input, is a challenging task, which
I call stop/move detection. Recalling Section 2.4, I identified the following gaps
present in the state-of-the-art stop/move approaches that motivate this chapter:

1. It is difficult to objectively compare the reviewed stop/move algorithms, in
terms of effectiveness, because there is no public ground-truth dataset
available to the field. This difficulty in comparing approaches is further
exacerbated given that very few approaches share their source code.

2. In the case of unsupervised stop/move detection algorithms, all those I
reviewed require at least one, if not multiple, user-specified parameters.
Thus, the user is either required to have detailed knowledge of the
dataset/algorithm or blindly conduct trial and error to select algorithm
specific parameters.

3. All reviewed approaches make no consideration in their results that some
stop/move classifications may be more uncertain than others (i.e due to
spatial uncertainty and recording errors). That is, all entries are classified as
either definitely-stops or definitely-moves, with no indication in the result
that some classifications can be made with more certainty than others.

110 Chapter 5. A Probabilistic Stop and Move Classifier for Noisy GPS Trajectories

These literature gaps motivates me to develop an unsupervised stop/move
classification algorithm with the following design considerations: (1) accounts for
spatial uncertainty and error in the result by calculating the probability of a stop
classification at a given entry; (2) has estimation schemes for all user-specified
parameters, that the user can use if desired; and, (3) provides some means for the
user to filter the stop/move classifications that are of an unacceptable probability
for their use-case. Summarising, I propose an algorithm that calculates the stop
probability of each entry in the trajectory, and, then, lets the user decide on some
threshold stop probability that is acceptable for their purposes. Entries with stop
probabilities below the threshold are classified as moves, while those equal-to or
above the threshold are classified as stops. Additionally, I also present estimation
schemes for all my algorithm’s user-specified parameters.

The contributions of this work as follows:

1. A novel stop/move classifier that calculates the probability of each entry being
a stop. This probabilistic approach to stop/move classification allows the user
to set a threshold probability for stopping entries; thus, giving the user direct
control over filtering out classified stops that are of an unacceptable likelihood
for the user’s purpose;

2. Heuristic schemes for estimating the parameters of my stop/move classifier.
Additionally, experiments testing the parameter sensitivity of my classifier and
the effectiveness of the parameter estimation heuristics;

3. Experiments that quantitatively compare the running time and classification
effectiveness of my approach to the popular SMoT (Alvares et al., 2007) and
CB-SMoT (Palma et al., 2008) approaches; and

4. A means for others to quantitatively compare algorithm effectiveness by
sharing my real-world, ground-truth, stop/move annotated trajectory
datasets; my data collection application; my synthetic data generation source
code; and my algorithm source code.

The subsequent sections in this chapter are as follows: in Section 5.2 I present
my stop/move classification algorithm, then, in Section 5.3 I present experiment
results that quantitatively compare the efficiency and effectiveness of my stop/move
classifier against two existing approaches. Lastly, in Section 5.4, I provide some
discussion and concluding remarks about my approach and the field, overall.

5.2 My Stop/Move Classification Approach

In this section I present the details of my stop/move classification methodology
which, specifically, includes: my stop/move classification algorithm, parameter
explanations, and parameter estimation approaches. Before defining my
algorithm’s pseudo-code I must first formally define the concept a stop/move
annotated trajectory, which is the data-structure I aim to produce from my
stop/move classification. Thus, I present Definition 24 below.

Definition 24. A stop/move annotated trajectory, Tsm, is a list of spatio-temporal,
stop/move annotated entries, (〈x1, y1, t1, a1〉, 〈x2, y2, t2, a2〉, . . . , 〈xn, yn, tn, an〉),
where xi, yi ∈ R2, ti ∈ R+, and ai ∈ {STOP,MOV E}, for i = {1, 2, . . . , n} and
t1 < t2 < . . . < tn.

5.2. My Stop/Move Classification Approach 111

5.2.1 POSMIT Algorithm

Unlike many of the reviewed stop/move approaches that use density, or time spent
in geographic regions, to definitively label each entry in the trajectory as either a
stop or a move, my algorithm, “Probability of Stops and Moves in Trajectories"
(POSMIT), calculates the probability that a given entry is truly stopping. Given the
stop probability of each entry, the user then specifies a minimum stop probability
parameter, ε, and, using this parameter all entries with stop probabilities equal-to
or above ε are classified as stops; all other entries are classified as moves. This
parameter directly gives the user control over how strict they wish to be during
stop classification, or, in other words, it allows the user to filter out entries whose
classification labels are too ambiguous for the application. Filtering ambiguous
classifications is particularly useful in domains such as data mining, where
misclassified stops lead to false patterns. I highlight that the ability for the user to
filter out ambiguous stops is not a possibility directly afforded by existing
stop/move detection algorithms. In general, existing stop/move detection
algorithms offer no indication in the result regarding the goodness-of-classification
for produced stop/move labels. This means, that without a ground-truth, the user
is left to manually inspect the validity of produced stops/moves, for example,
visually, overlaying them on a map and analysing them by eye. This is both
time-consuming and highly subjective. Thus, I argue that some indication of the
goodness-of-classification in the result would be most useful, but is unfortunately
lacking in the reviewed approaches.

Algorithm 3 POSMIT algorithm.

Input:
(1) T , a trajectory of entries 〈xi, yi, ti〉.
(2) hi, index search bandwidth.
(3) hd, stop variance.
(4) ε, minimum stop probability.
Output: Tsm, a trajectory of entries 〈xi, yi, ti, ai〉.

1: function POSMIT(T, hi, hd, ε)
Tsm = ()

// Find stop probability of each entry.
2: for (i = 0; j < T.length; i++) do
3: ai = MOV E
4: if CALCSTOPPR(T, i, hi, hd) ≥ ε then
5: ai = STOP
6: end if
7: Add entry 〈xi, yi, ti, ai〉 to Tsm

8: end for
9: return Tsm

10: end function

Thus, I now present POSMIT in Algorithm 3 and also highlight that POSMIT’s
Java source code is publicly available for interested readers 1. Briefly, the algorithm
iterates each entry and calculates the stop probability. How this calculation is made
is explained in Section 5.2.2.

1https://github.com/lukehb/137-stopmove

112 Chapter 5. A Probabilistic Stop and Move Classifier for Noisy GPS Trajectories

5.2.2 Stop Probabilities

In order to calculate an entry’s stop probability, POSMIT samples the spatial
displacement of surrounding entries. An entry with a high stop probability will
have surrounding entries that don’t move very far (low spatial displacement).
Many approaches from the literature also define a stop as occurring for some
minimum duration (Alvares et al., 2007; Tran et al., 2011; Gong et al., 2015; Xiang
et al., 2016). POSMIT does not make such assumptions when classifying
stop/moves and can therefore find very granular stops.2

In Algorithm 3, line 4, CalcStopPr(T, i, hi, hd) is called to calculate the stop
probability of the entry at index i. This is equivalent to the formal definition,
Pr(Stop|xi, yi) (based on the Gaussian kernel smoothing function (Hastie et al.,
2001; Nadaraya, 1964)), which I present in Equation 5.1.

Pr(Stop|xi, yi) =
∑u

j=l{K(ωi,j)K(Δi,j)}∑u
j=l K(Δi,j)

. (5.1)

Each term in Equation 5.1 is as follows:

• K(z), a Gaussian function, see Equation 5.2.

• Δi,j , the normalised index displacement between the entries i and j, see
Equation 5.3.

• l, u, the lower and upper bounds of the search window, Equations 5.4 and 5.5.

• ωi,j , the normalised spatial displacement between the coordinates of entries i
and j, see Equation 5.6.

The function K(z), shown in Equation 5.2, is a kernel function (recall POSMIT is
based on kernel smoothing). It is a Gaussian function with a mean of zero, a height
of one, and a standard deviation of one. It serves two purposes: firstly, it provides
a mapping, z ↪→ [0, 1], meaning the result is in the range [0, 1]; secondly, because
it is a zero-mean Gaussian function, values decay as they move further away from
zero. This is ideal for my purposes, because a small displacement between entries
will produce a high stop probability, whilst a large displacement will produce a low
stop probability.

K(z) = e−0.5z2 . (5.2)

The normalised index displacement, shown in Equation 5.3, ensures that the
closer entries are to i, the more they contribute to the stop probability calculation
(similar to the distance decay effect in spatial analysis (M. J. Smith, 2015)).
Therefore, entries that are many indices away from i have a negligible effect on its
stop probability calculation. It is important to understand that because Δi,j is
passed into the Gaussian function K(Δi,j) the hi parameter effectively controls the
width of that Gaussian function, much like a bandwidth parameter in Gaussian
kernel density estimation. In the context of POSMIT, this means that hi directly
controls the weighting of surrounding entries that are sampled during an entry’s
stop probability calculation, which, as readers will see in Equations 5.4 and 5.5,

2In the case where stops must occur for some minimum amount of time it is straightforward to
enforce this constraint on POSMIT’s stop/move classification result. Firstly, all contiguous entries that
are classified as stops are merged into groups, each of these groups then has their combined durations
calculated, and finally groups whose durations are too low become moves.

5.2. My Stop/Move Classification Approach 113

decides how large the sampling window is when performing stop probability
calculation.

Δi,j =
|i− j|
hi

. (5.3)

The lower and upper index search-bounds, l and u (respectively), define the
sampling window of indices that are considered during the stop probability
calculation of the entry at index i. Calculation of these bounds is shown in
Equations 5.4 and 5.5. The concept behind these bounds is to ensure that when the
normalised index displacement, Δi,j , reaches a small enough value its contribution
to the stop probability calculation is disregarded. Given the Gaussian function K()
has a mean of zero and a height of one, the value where I deem the contribution
low enough is K(±3) ≈ 0.01. This choice is reflected in Equations 5.4 and 5.5,
where the sampling window indices are defined. The reason hi is used as
multiplier in those equations is that, as mentioned above, it effectively controls the
width of Gaussian K(Δi,j) that determines neighbouring entry weights. Note, I
could set the lower and upper bounds to the start and end of the trajectory for a
comprehensive search; however, this would result in POSMIT having a quadratic
running time. The fact I wish to avoid this should highlight that hi largely dictates
POSMIT’s running time by controlling the size of the sampling window for each
stop probability calculation. Additionally, note that in practice, the lower and
upper bounds are clamped between 0 and n to avoid index out of bounds issues
(where n is the maximum index in the trajectory).

l = max(0, i− 3 ∗ hi). (5.4)

u = min(n, i+ 3 ∗ hi). (5.5)

The normalised spatial displacement, ωi,j (Equation 5.6), is the Euclidean
distance3 between the coordinates of entry i and its nearby entry j, divided by the
user specified stop variance parameter, hd. Much like hi, it is a bandwidth
parameter to control the width the Gaussian function K(ωi,j). Equation 5.6 is the
key step in the stop probability calculation because it spatially defines the notion of
a stop. That is, if the nearby entries, j, are spatially close to the entry i, then i is
more likely to be a stop. Note, Equation 5.2, Equation 5.3, and Equation 5.6 model
spatial dependence and spatial autocorrelation that are consistent with the Tobler’s
First Law of Geography (TFLG): “[e]verything is related to everything else, but
near things are more related than distant things" (Haining, 2003; Tobler, 1970).
Note, Equation 5.1 is based on the Gaussian kernel smoothing function (Hastie
et al., 2001; Nadaraya, 1964), and Equation 5.3 reflects the distance decay effect in
spatial analysis (M. J. Smith, 2015); thus, Equation 5.1 and Equation 5.3 are coherent
with the TFLG (M. M. Fischer, 2010).

ωi,j =

√
(xi − xj)2 + (yi − yj)2

hd
. (5.6)

3Entries with spatial coordinates in a non-Cartesian geographic projection will need to be
unprojected to calculate a suitable Euclidean distance. Also, Euclidean distance was chosen over great-
circle distance for this problem because it is most widely used in spatial analysis (M. J. Smith, 2015),
and it is faster to compute and intra-point distance between points in a candidate stop are intrinsically
small; thus, factoring in the curvature of Earth in this case would be negligible.

114 Chapter 5. A Probabilistic Stop and Move Classifier for Noisy GPS Trajectories

0
1

2
3

4
5

6
7

D
is

pl
ac

em
en

t (
m

)

Elbow point, i.e. estimated hd

FIGURE 5.2: Spatial displacement between trajectory entries and the resulting elbow point
for a trajectory of a short stop/move walk (x: trajectory nodes; y displacement (m)).

If GPS noise was not a factor, finding stops would be trivial. It would simply be
a matter of finding contiguous entries with no spatial displacement between them.
However, due to the noisiness and unreliability of GPS technology in reporting the
same position when a user is truly stopped, the stop variance parameter, hd, is
required so that the user can control how strict they wish to be when calculating
stop probabilities. For example, a hd value close to zero means that a high stop
probability could only occur if the GPS reported nearly identical geographic
positions in contiguous entries, which, in practice, is unlikely.

5.2.3 Spatial Stop Variance Parameter

Selecting the ideal hd parameter involves analysing the noise that is present in the
dataset. One approach, to isolate the noisiness of a GPS recording, is to compare the
recorded positions to the true, known positions. However, the true trajectory is not
always known, and for such cases I use a heuristic that calculates a starting value for
the parameter —from there the user can adjust it accordingly.

In the case of estimating hd, I want to find the amount of spatial variance (or
movement) that is acceptable within a true stop, but not so large that I start
classifying small moves as stops. The first step towards estimating hd is to measure
the spatial displacement between each contiguous entry in the trajectory. I then sort
the spatial displacements in ascending order. Using this spatial displacement data,
I assume that, if there are stops and moves within the data, there exists some point
of change where the value of displacement between entries differentiates stops
from moves. To find this point of change, I use the concept of finding elbow points
within the data. To illustrate this concept of measuring displacements and
identifying elbow points I present Figure 5.2.

The elbow point is the point of maximum curvature in a function. In their work
on detecting elbow and knee points in data, Satopaa et al. (2011) state that for a
continuous function f , the curvature is given by the closed-form, Kf (x), which
defines the curvature of f at any point, x, as a function of its first (f ′(x)) and second
derivative (f ′′(x)) (see Equation 5.7).

Kf (x) =
f ′′(x)

(1 + f ′(x)2)1.5
. (5.7)

In this case, the displacement data is not a continuous function, and fitting a
curve to it is not an ideal solution, as the displacements can be very noisy.
Therefore, I adapt the approach described by Satopaa et al. (2011) called “Kneedle".
Kneedle is suitable for this case because it is able to find elbow points in discrete

5.2. My Stop/Move Classification Approach 115

and noisy datasets. It begins by smoothing the data to prune out misleading jitter
that could cause a false-positive elbow point. In my implementation, this
smoothing is performed using a Gaussian kernel smoother. Kneedle’s next step is
to normalise the data into the unit-square [0, 1]2 using min-max normalisation.
Then, the data is transformed into the set of differences between x and y values by
performing (x, y − x) on each pair of values. The purpose of this difference
transformation is to highlight when the data transitions from horizontal to rapidly
changing (as this is likely an elbow point). From this transformed data one can
extract the elbow point as the x value with the maximum absolute y value.

One can also reduce processing time and prune out unlikely hd values by
specifying a maximum reasonable displacement cut-off. The assumption here is
that some displacement values between entries are so large that one can be certain
they could never be true stops; thus, they can easily be pruned away. In the
experiments, I set the displacement cut-off to 20 metres, thereby, pruning all
displacements above 20 metres for consideration during hd estimation. The
effectiveness of this hd estimation is evaluated in Section 5.3.2.

5.2.4 Index Search Bandwidth Parameter

Recall, from Section 5.2.2, that the greater the number of indices between the
current entry and some neighbour entry, the less weighting it has on the stop
probability calculation; likewise, the smaller the number of indices away, the more
weighting the entry has. In POSMIT this range of considered values is directly
controlled by the index search bandwidth parameter, hi (see Equation 5.4 and
Equation 5.5). I highlight that it is by design that the sampling neighbourhood is
defined by an index-based parameter, and not by a user-specified duration. Even
though a temporal bandwidth parameter would be more intuitive for the user to
select, it does not translate well to POSMIT. This is due to the varying
sampling-rates of recorded entries caused by device errors, device battery life
conservation, and GPS signal unavailability.

Consider a modification to POSMIT, where a temporal bandwidth, say, ht, did
define the sampling neighbourhood, and entry weighting was based on the time
difference between subsequent entries. In some cases, this modification may
perform well; but I speculate, however, that such a modification would make
POSMIT largely ineffective on real-world trajectories. This is because real-world
trajectories are often recorded with varying sampling-rates (as mentioned above),
which would mean that sparsely sampled entries may be missed if ht were too
small. Additionally, using ht would require the user to have some knowledge
regarding the average or modal sampling-rate of the input trajectory.
Comparatively, using the hi version of POSMIT, where the sampling
neighbourhood and neighbour entry weightings are based on the number of
indices between entries, the issue of sampling-rate between entries is mitigated; by
extension this means that the user is not required to know anything about the
sampling-rate of the trajectory. Additionally, in practice, I assume trajectories are
recorded as time-ordered sequences of entries: this means that the index search
bandwidth, hi, still indirectly incorporates the important temporal dimension of the
data too. Lastly, I remind the reader that for applications where a minimum stop
duration is required, this can be applied as a post-processing step after POSMIT has
labelled each entry as a stop or a move (recall the footnote from Section 5.2.2).

The issue with hi, is that unlike a temporal parameter the user may have no
intuition about how many entries would be a reasonable amount to sample for stop

116 Chapter 5. A Probabilistic Stop and Move Classifier for Noisy GPS Trajectories

probability calculation. Thus, I propose a heuristic to estimate hi for the user. The
design behind this heuristic is to find groups of easily identifiable stops (i.e
stopping entries that are not perturbed by much spatial noise) and find a sampling
size that captures most of those groups. The heuristic begins by iterating the input
trajectory and constructing a subsequence of contiguous entries such that each
entry in the subsequence is ≤ hd metres away from the previous entry. When this
condition no longer holds, the size of the subsequence is stored (if it is ≥ 2) and the
process begins again at the index that failed the condition. Once the whole
trajectory has been processed, the stored sizes are used to calculate the median
stored subsequence size. The estimated hi value is then assigned to half the median
subsequence size (half, because hi establishes a sampling neighbourhood in both
directions). The limitations of this hi estimation heuristic are: (1) that the hd
parameter must be supplied or estimated; and (2) the input trajectory must have
subsequences of entries that satisfy this simple, distance-based heuristic (which
may not be the case if the whole trajectory is more spatially noisy than the specified
hd). I evaluate the effectiveness of this heuristic in Section 5.3.3.

5.2.5 Minimum Stop Probability Parameter

The minimum stop probability parameter controls which entries are classified as
stops. However, without knowing the noisiness of the recorded trajectory, it can
take some trial and error to determine a suitable ε value, that provides a reasonable
separation between the stop and move classification labels. One approach is to
calculate the stop probability for each entry, then visualise the result. For example,
in Figure 5.3 I show the calculated stop probabilities for a short walk, whose
ground-truth is: moving(0 − 28s) → stopping(29 − 43s) → moving(44 − 75s) →
stopping(76− 97s) → moving(98− 122s).

0 20 40 60 80 100 120

0
20

40
60

80
10

0

Time (s)

St
op

 P
ro

ba
bi

lit
y

(%
)

Stops
Moves

Minimum stop probability (ε)

FIGURE 5.3: Stop probabilities for a trajectory of a short walk. POSMIT calculated these stop
probabilities using hi = 4 and hd = 0.6m.

Inspecting the stop probabilities in Figure 5.3, I observe that the two ground-
truth stops (29-43s and 76-97s) align well with the two spikes in stop probabilities.
Visually, one can see that a minimum stop probability of 20% (ε = 0.2) horizontally
bisects the entries into two distinct groups; that is, the entries in the two spikes are
classified as stops, and the jitter below that becomes moves. Specifically, ε = 0.2
produces the following stop classifications: 37 true-positives, 79 true-negatives, 4
false-positives, and 0 false-negatives.

The visual selection of ε is quite effective, but somewhat subjective and time
consuming; I provide a heuristic to estimate ε from the calculated stop probabilities.

5.3. Experiments and Results 117

The heuristic begins by computing the stop probabilities for each entry in a
trajectory by using Equation 5.1. I then use k-means (MacQueen, 1967) (k = 2) to
cluster these entry stop probabilities into two groups. I set k = 2 because I wish to
find two distinct groups within the entry’s stop probabilities (i.e. stops and moves).
Once I have the two clusters, I take the maximum stop probability in the stop
cluster, and minimum stop probability in the move cluster, and then find the value
in-between these two boundary probabilities. This in-between probability value
becomes an initial estimated minimum stop probability parameter (ε) value for
POSMIT. Applying this heuristic to the short walk example, shown in Figure 5.3,
yields ε = 0.39, which produces 33 true-positives, 81 true-negatives, 2
false-positives, and 4 false-negatives. I evaluate the effectiveness of this heuristic in
Section 5.3.4.

5.3 Experiments and Results

In the experiments I compared the classification effectiveness (Section 5.3.2, 5.3.3,
5.3.4, and 5.3.5) and running time efficiency (Section 5.3.6) of POSMIT against the
clustering-based CB-SMoT (Palma et al., 2008) and a modified version of the
geography-based SMoT (Alvares et al., 2007). CB-SMoT was chosen because I deem
it to be a good representation of the many other density-based stop/move
approaches; in no meaningful way is it superseded by these other approaches,
either (recall my overview in Section 2.4.1). Similarly, SMoT was chosen because it
represents a different paradigm for detecting stops/moves: using geography
intersections. Recall, that in the original SMoT algorithm (Alvares et al., 2007),
stops are found when a series of contiguous entries stay within a pre-defined
geographic region for a minimum duration; however, in this work I assume stop
regions are not known a priori. I provide the candidate stops to SMoT by
partitioning the bounding-box of the study area into uniform grid cells of size R. In
order to reduce redundant processing, I then remove any grid cells that the
trajectory never passes through. To differentiate my modification from the original
SMoT algorithm, I call this approach GB-SMoT (i.e grid-based SMoT). The effect of
this modification is that GB-SMoT has a spatial parameter, like POSMIT and
CB-SMoT, that I can vary in the experiments. In general, all of the experiments are
directly designed to vary algorithm parameters and measure the results; thus, I
present Table 5.1 —it may be useful to prepare readers for the following sections,
where I refer to each algorithm’s parameters frequently.

Algorithm Parameter Description

POSMIT hd The stop variance (see Section 5.2.3).
hi The index search bandwidth (see Section 5.2.4).
ε The minimum stop probability threshold (see Section 5.2.5).

CB-SMoT Eps The maximum sequential distance allowed in a stop cluster.
tmin The minimum duration of a stop cluster.

GB-SMoT R The grid-cell size used for candidate stop regions.
tmin The minimum duration of a stop visitation in a stop region.

TABLE 5.1: Parameters (besides input trajectories) for the algorithms used in the
experiments.

118 Chapter 5. A Probabilistic Stop and Move Classifier for Noisy GPS Trajectories

In the following Sections, 5.3.2, 5.3.3, 5.3.4, and 5.3.5, I varied parameters and
measured the resulting classification effectiveness of the tested algorithms. The
classification effectiveness was calculated by using ground-truth input trajectories
that already had their entries labelled as stops or moves (I discuss how these
ground-truth trajectories were obtained in Section 5.3.1). These input trajectories
were first passed into a stop/move classification algorithm that ignored the known
labels and performed stop/move classification. Then, by comparing the computed
stop/move labels to the known ground-truth labels, a series of true-positive,
true-negative, false-positive, and false-negative observations were recorded.
Finally, using these true and false observations, a binary classification effectiveness
was calculated. The specific metric I calculated to measure the binary classification
accuracy was Matthew’s correlation coefficient (MCC). MCC was chosen because it
represents the overall quality of a binary classification in a single value (unlike
precision and recall) and captures all quadrants of the confusion matrix (unlike the
various F-measures). Computation of MCC is shown in Equation 5.8, where the
variables TP (True-Positive), TN (True-Negative), FP (False-Positive), and FN
(False-Negative) are the quadrants of the confusion matrix.

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (5.8)

5.3.1 GPS Trajectory Datasets

In the experiments, I used several real-world GPS trajectories with varying
characteristics. Half of the real-world datasets I tested were stop/move annotated
bus trajectories provided by Dublin city council’s open data “Insight"
project (DATA.GOV.IE, 2013). The other half of the real-world stop/move
annotated trajectories I used were collected myself, for the experiments.
Specifically, I recorded myself moving and stopping on foot and in vehicles using a
custom built Android application 4. The user interface of the Android application is
shown in Figure 5.4. Unlike a typical GPS recorder, this application allowed me to
manually annotate whether I was stopping or moving, thus, allowing me to create a
ground-truth sequence of stop/move annotated spatio-temporal entries.

In addition to the real-world GPS trajectories, I also implemented a synthetic
GPS trajectory generator to create sequences with vastly more entries than I was
able to record. The synthetic trajectory generator begins by selecting a random
starting location and heading; entries are, then, recorded travelling at a varying
speed along the random heading until a quota of moving entries has been met. The
generator then toggles and begins recording the entry at a stopped position until a
quota of stopping entries has been met. This process continues until a specified
number of entries has been recorded. Note, that each recording, moving or
stopping, is displaced by an amount of spatial noise normally distributed between
zero and a user-specified value. Real trajectories are far more nuanced and
irregular with respect to when they stop or move; thus, the synthetic trajectories
were not an ideal candidate to test the classification effectiveness of the algorithms.
Therefore, in this work I only used the synthetic trajectories to gauge the running
time of the algorithms tested.

In Table 5.2, I present the characteristics of each real-world trajectory I used in
the experiments. I highlight that the trajectories I collected myself 5 and the bus

4https://github.com/lukehb/137-GPS-Tracker
5http://doi.org/10.13140/RG.2.2.29896.01281

5.3. Experiments and Results 119

FIGURE 5.4: The Android application I made to collect GPS trajectories, the main functions
of the application are as follows: a) the user can toggle whether they are moving or stopping;
b) setting the target sampling interval, i.e. how often to try to record an entry; and c)

beginning or ending a recording.

Name Duration (s) Mo (s) Stops Moves Mode

Shopping 4211 1 195(11) 1773(11) Foot, car
Hike 9531 1 932(10) 8592(9) Foot, car
Ferry 638018 1 2651(44) 4961(43) Foot, ferry
Bus A 42262 20 302(86) 742(86) Bus
Bus B 42246 20 337(58) 801(58) Bus
Bus C 42262 20 553(40) 601(40) Bus

TABLE 5.2: Trajectories I used in the experiments. The format of stops and moves
columns are #observations (#episodes) and the Mo column is the modal sampling-rate of

each trajectory.

trajectories (DATA.GOV.IE, 2013) are publicly available. Additionally, the generator
I used to create the synthetic trajectories is hosted in the same repository as my
POSMIT algorithm 6. Lastly, please note that the Ferry trajectory described in Table
5.2 was recorded over several days, making daily trips on a river ferry and then
turning the tracking application off after walking to a nearby destination.

5.3.2 Varying Spatial Parameters

In this experiment, I compared the classification effectiveness and spatial parameter
sensitivity of POSMIT algorithm against CB-SMoT and GB-SMoT. Additionally, I
tested the effectiveness of the heuristic, presented in Section 5.2.3, at estimating
POSMIT’s hd parameter. To effectively isolate the spatial parameters of each
algorithm (hd for POSMIT, Eps for CB-SMoT, R for SMoT) I had to set each
algorithm’s other parameters to reasonable constants. For example, POSMIT’s
search bandwidth, hi, was set to a constant by using the estimation heuristic
presented in Section 5.2.4 (note that estimating hi in this way requires an input hd
value, which was itself estimated by the heuristic presented in Section 5.2.3).
Likewise, CB-SMoT and GB-SMoT also required their tmin parameters to be set to
reasonable constants. Recalling that the hi value represents the range of values on

6https://github.com/lukehb/137-stopmove

120 Chapter 5. A Probabilistic Stop and Move Classifier for Noisy GPS Trajectories

either side of an entry, I realised I could use this as an approximate estimator for
tmin. Specifically, I set the tmin value used for each trajectory to the calculated hi
value, multiplied by the modal sampling-rate of that trajectory (i.e hi ∗ Mo, where
Mo is taken from Table 5.2). POSMIT’s minimum stop probability parameter, ε, was
set to multiple fixed values (0.25, 0.5, and 0.75) and also estimated by the heuristic
in Section 5.2.5. Overall, these parameter settings allowed me to vary each
algorithm’s spatial parameter as an independent variable, while recording MCC as
the dependent variable. The results from this experiment are shown in Figure 5.5.

Analysis of Figure 5.5 reveals a number of observations that merit discussion.
My first observation is that POSMIT achieves a higher maximum MCC than
CB-SMoT and GB-SMoT for all of the tested trajectories. However, this result is not
found across every POSMIT ε value used in the experiment. In general, this
suggests that POSMIT may be more effective than CB-SMoT and GB-SMoT, but
only when a suitable ε value is chosen. My second observation is that the range of
spatial parameters that produce high MCC values is larger in POSMIT than it is in
CB-SMoT and GB-SMoT. For the range of values I tested in Figure 5.5, I can
determine that the best performing version of POSMIT has a spatial parameter
range larger than CB-SMoT’s and GB-SMoT’s (respectively) by: 105% and 3% in
Figure 5.5a; 373% and 35% in Figure 5.5b; 337% and 10% in Figure 5.5c; 12% and
16% in Figure 5.5d; 5% and 17% in Figure 5.5e; and, 8% and 27% in Figure 5.5f. This
observation suggests to me that when POSMIT’s ε is set to a suitable value,
POSMIT is less sensitive than both CB-SMoT and GB-SMoT in regards to selecting
the respective spatial parameter.

My third observation, from Figure 5.5, is that the estimated hd produces a
classification result, in the best performing version of POSMIT, that is above the
best classifications produced by CB-SMoT and GB-SMoT. This, empirically,
demonstrates the effectiveness and robustness of my estimation approach (recall
Section 5.2.3) at selecting a reasonable hd value for classifying real-world
trajectories. My final observation is in regards to POSMIT’s minimum stop
probability parameter, ε. Specifically, in Figures 5.5a, 5.5b, and 5.5c, a higher ε value
of 0.75 produces better MCC results; in Figures 5.5d, 5.5e, 5.5f, a lower ε value of
0.25 produces better MCC results. This is explained by the fact that the trajectories
in Figures 5.5a, 5.5b, and 5.5c are more regularly sampled than those in
Figures 5.5d, 5.5e, 5.5f (1s compared to 20s); thus, I would expect higher
probability stop classifications from them. However, this does highlight that the
manual selection of ε by the user should likely take the sampling-rate and noisiness
(if possible) of the recorded trajectory into account. However, in the case, where
making such assessments beforehand is not viable, the results show that the
version of POSMIT that used the estimated ε values is a reasonable baseline:
outperforming the poorly scoring ε values across all the tested trajectories.

For the statistical significance test, I use one-tail pared t-test for average MCC
values for the six datasets under study. POSMIT significantly improves CB-SMoT
with 95% confidence, whilst POSMIT significantly improves GB-SMoT with 99%
confidence.

5.3.3 Effects of POSMIT’s Search Bandwidth

In this experiment I measured the classification effectiveness of POSMIT while its
search bandwidth parameter, hi, was varied. Additionally, I measured the
classification effectiveness achieved when setting POSMIT’s hi value according to
the estimation heuristic presented in Section 5.2.4. Furthermore, I also measured

5.3. Experiments and Results 121

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spatial parameter (hd ,Eps,R)

M
C

C

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

Estimated hd

●

●

POSMIT (ε=Estimated)
POSMIT (ε=0.25)
POSMIT (ε=0.5)

POSMIT (ε=0.75)
CB−SMoT
GB−SMoT

(A) Shopping (hi = 6, tmin = 6s).

5 10 15 20

Spatial parameter (hd ,Eps,R)
M

C
C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

● ● ● ● ● ●
●

●

●

●

●

●
●

● ●

● ●
●

Estimated hd

●

●

POSMIT (ε=Estimated)
POSMIT (ε=0.25)
POSMIT (ε=0.5)

POSMIT (ε=0.75)
CB−SMoT
GB−SMoT

(B) Hike (hi = 20, tmin = 20s).

5 10 15 20

Spatial parameter (hd ,Eps,R)

M
C

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

● ●
●

● ●
● ●

●

●
●

●
●

● ● ● ●

●

Estimated hd

●

●

POSMIT (ε=Estimated)
POSMIT (ε=0.25)
POSMIT (ε=0.5)

POSMIT (ε=0.75)
CB−SMoT
GB−SMoT

(C) Ferry (hi = 15, tmin = 15s).

5 10 15 20

Spatial parameter (hd ,Eps,R)

M
C

C

0.
3

0.
4

0.
5

0.
6

0.
7

●

● ● ● ● ● ● ● ● ●

●

●

● ●

●

●

●
● ● ●

Estimated hd

●

●

POSMIT (ε=Estimated)
POSMIT (ε=0.25)
POSMIT (ε=0.5)

POSMIT (ε=0.75)
CB−SMoT
GB−SMoT

(D) Bus A (hi = 2, tmin = 40s).

5 10 15 20

Spatial parameter (hd ,Eps,R)

M
C

C

0.
4

0.
6

0.
8

1.
0

●

● ● ● ● ● ● ●
● ●

●

●

● ●

●

●
●

●

●

●

Estimated hd

●

●

POSMIT (ε=Estimated)
POSMIT (ε=0.25)
POSMIT (ε=0.5)

POSMIT (ε=0.75)
CB−SMoT
GB−SMoT

(E) Bus B (hi = 3, tmin = 60s).

5 10 15 20

Spatial parameter (hd ,Eps,R)

M
C

C

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

● ● ● ● ● ● ● ●

●

●

●
●

●

●
●

●

●
●

Estimated hd

●

●

POSMIT (ε=Estimated)
POSMIT (ε=0.25)
POSMIT (ε=0.5)

POSMIT (ε=0.75)
CB−SMoT
GB−SMoT

(F) Bus C (hi = 5, tmin = 100s).

FIGURE 5.5: POSMIT’s, CB-SMoT’s, and GB-SMoT’s classification effectiveness (MCC)
computed for several real world trajectories as their respective spatial parameters

(hd, Eps,R) are varied (a higher MCC is better).

122 Chapter 5. A Probabilistic Stop and Move Classifier for Noisy GPS Trajectories

the relationship between hi and ε by testing POSMIT using multiple fixed ε values
(0.25, 0.5, and 0.75) and also by setting ε to estimated values using the heuristic
presented in Section 5.2.5. In addition to setting POSMIT’s ε to constant values, I
also set hd to a constant, estimated by the heuristic from Section 5.2.3. These
parameter settings allowed me to make hi the independent variable, and MCC the
dependent variable. The results of this experiment are presented in Figure 5.6.
Readers, please note that CB-SMoT’s and GB-SMoT’s tmin are not analogous to
POSMIT’s hi; therefore, CB-SMoT and GB-SMoT were not included in this
experiment.

The first observation I make from Figure 5.6 is that, for each tested trajectory,
there appears to exist an optimal range of hi values that produce high MCC values.
Additionally, hi values outside that range produce worse MCC values the further
away they are. The ideal, then, is to select hi values that fall within this optimal
range. The results indicate that the estimator I proposed for selecting such a hi
value (recall Section 5.2.4) did produce near optimal MCC values across all the
tested trajectories. However, much like the hd estimator I evaluated in the previous
experiment, the hi estimator was only able to achieve these results if POSMIT’s ε
parameter was set to a suitable value. Another observation I make, that has parity
with the previous experiment, is that a higher ε value is more effective for the more
frequently sampled trajectories, and a lower ε is more effective for the more
sparsely sampled trajectories. In general, I observe that across all the test
trajectories the version of POSMIT that used estimated ε values was more robust to
hi variances than its fixed-ε counterparts. Specifically, if one considers the results
across all tested trajectories, the POSMIT version that used estimated ε values has a
greater sum of MCC values than ε = 0.25 by 13%, ε = 0.5 by 59%, and ε = 0.75 by
161%. This suggests to me that if the user is unsure of the minimum stop
probability threshold, appropriate for their application, the ε estimator (see
Section 5.2.5) provides a value for them that is consistently far from the worst
manually selected value.

5.3.4 Effects of POSMIT’s Minimum Stop Probability

In this experiment I measured POSMIT’s classification accuracy while varying its
minimum stop probability parameter, ε. Additionally, I measured the classification
effectiveness achieved when setting POSMIT’s ε value according to the estimation
heuristic presented in Section 5.2.5. To isolate ε, POSMIT’s other parameters, hd and
hi, were set to constants using their respective estimation heuristics (recall
Section 5.2.3 and 5.2.4). In contrast to the previous experiments, I chose to measure
the raw values from the confusion matrix in this experiment because they reflect
the variance in classification quality more granularly. Overall, these parameter
settings allowed me to make POSMIT’s minimum stop probability parameter, ε, the
independent variable, and the quadrants of the confusion matrix
(TP, TN, FP, FN), the dependent variables. Readers, note that CB-SMoT and
GB-SMoT have no equivalent probability parameter to adjust; therefore, they were
excluded from this experiment. The results of this experiment are shown in Figure
5.7.

Analysis of Figure 5.7 reveals that as ε increases the false-positives become
true-negatives, and likewise, as ε approaches the extreme values around one, the
true-positives become false-negatives. This trend is consistent throughout all the
tested datasets and provides valuable insight into tuning ε. For example, I observe
that in all tested trajectories there exists an optimal range of ε values where the total

5.3. Experiments and Results 123

0 20 40 60 80 100

Search bandwidth (hi)

M
C

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated hi

POSMIT (ε=Estimated)
POSMIT (ε=0.25)

POSMIT (ε=0.5)
POSMIT (ε=0.75)

(A) Shopping (hd = 3.5m).

0 20 40 60 80 100

Search bandwidth (hi)
M

C
C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated hi

POSMIT (ε=Estimated)
POSMIT (ε=0.25)

POSMIT (ε=0.5)
POSMIT (ε=0.75)

(B) Hike (hd = 3.25m).

0 20 40 60 80 100

Search bandwidth (hi)

M
C

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated hi

POSMIT (ε=Estimated)
POSMIT (ε=0.25)

POSMIT (ε=0.5)
POSMIT (ε=0.75)

(C) Ferry (hd = 4.13m).

0 20 40 60 80 100

Search bandwidth (hi)

M
C

C

0.
0

0.
2

0.
4

0.
6

0.
8

Estimated hi

POSMIT (ε=Estimated)
POSMIT (ε=0.25)

POSMIT (ε=0.5)
POSMIT (ε=0.75)

(D) Bus A (hd = 2.76m).

0 20 40 60 80 100

Search bandwidth (hi)

M
C

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated hi

POSMIT (ε=Estimated)
POSMIT (ε=0.25)

POSMIT (ε=0.5)
POSMIT (ε=0.75)

(E) Bus B (hd = 2.83m).

0 20 40 60 80 100

Search bandwidth (hi)

M
C

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated hi

POSMIT (ε=Estimated)
POSMIT (ε=0.25)

POSMIT (ε=0.5)
POSMIT (ε=0.75)

(F) Bus C (hd = 2.92m).

FIGURE 5.6: POSMIT’s classification effectiveness (MCC) computed for several real world
trajectories while its hi parameter is varied (a higher MCC is better).

124 Chapter 5. A Probabilistic Stop and Move Classifier for Noisy GPS Trajectories

0.0 0.2 0.4 0.6 0.8 1.0

Minimum stop probability (ε)

C
la

ss
ifi

ca
tio

n
R

at
e

(%
)

0
20

40
60

80
10

0 Estimated ε

TP TN FP FN

(A) Shopping (hi = 6, hd = 3.5m).

0.0 0.2 0.4 0.6 0.8 1.0

Minimum stop probability (ε)

C
la

ss
ifi

ca
tio

n
R

at
e

(%
)

0
20

40
60

80
10

0 Estimated ε

TP TN FP FN

(B) Hike (hi = 20, hd = 3.25m).

0.0 0.2 0.4 0.6 0.8 1.0

Minimum stop probability (ε)

C
la

ss
ifi

ca
tio

n
R

at
e

(%
)

0
20

40
60

80
10

0 Estimated ε

TP TN FP FN

(C) Ferry (hi = 15, hd = 4.13m).

0.0 0.2 0.4 0.6 0.8 1.0

Minimum stop probability (ε)

C
la

ss
ifi

ca
tio

n
R

at
e

(%
)

0
20

40
60

80
10

0 Estimated ε

TP TN FP FN

(D) Bus A (hi = 2, hd = 2.76m).

0.0 0.2 0.4 0.6 0.8 1.0

Minimum stop probability (ε)

C
la

ss
ifi

ca
tio

n
R

at
e

(%
)

0
20

40
60

80
10

0 Estimated ε

TP TN FP FN

(E) Bus B (hi = 3, hd = 2.84m).

0.0 0.2 0.4 0.6 0.8 1.0

Minimum stop probability (ε)

C
la

ss
ifi

ca
tio

n
R

at
e

(%
)

0
20

40
60

80
10

0 Estimated ε

TP TN FP FN

(F) Bus C (hi = 5, hd = 2.92m).

FIGURE 5.7: A comparison of each quadrant in the confusion matrix as POSMIT’s minimum
stop probability parameter, ε, is varied. Note, the dashed vertical line indicates the ε value

estimated by the heuristic from Section 5.2.5.

5.3. Experiments and Results 125

number of false classifications (false-positives and false-negatives) is minimised
and the total number of true classifications (true-positive and true-negatives) is
maximised. This is an important finding because it shows that, even with noisy,
real-world GPS trajectories, if a user controls the ε parameter it is possible to
achieve accurate stop/move classifications. The challenge is selecting an ε within
this optimal parameter range. One can see from the results that my heuristic for
estimating ε is quite effective across all the tested trajectories. In fact, Figures 5.7b
and 5.7c show the estimated ε is extremely close the optimal value. Even the worst
performers, shown in Figures 5.7a and 5.7d, select ε values quite close to optimal
range and are, certainly, far from selecting the poorly performing parameter values
(i.e. extremely high or low ε values).

The last finding I highlight is that increasing the ε parameter very effectively
reduces the occurrence of false-positive classifications. In fact, the results
consistently show that sufficiently increasing the ε parameter reduces the number
of false-positives to zero. Of course, the results also show that increasing the ε
parameter too high reduces the number of true-positives. However, in an
application where only finding the most likely stops (at the cost of losing some
ambiguous stops) is preferred the results indicate that raising the ε value is an
effective technique to do this.

5.3.5 Varying Sampling-Rate

In real trajectories, the sampling-rate, often, cannot be guaranteed or frequent
because of battery life and GPS availability limitations. Thus, to gauge the
performance of POSMIT, CB-SMoT, and GB-SMoT under such conditions, I
measured the classification accuracy of each algorithm, while varying the
sampling-rate of the input trajectories. All POSMIT’s parameters were estimated by
the various estimators I have discussed. Likewise, CB-SMoT and GB-SMoT had
their parameters set to their best performing values from the experiments in
Section 5.3.2. These parameter settings allowed me to make the sampling-rate the
independent variable and MCC the dependent variable.

Regarding the sampling-rate, I varied it from one second to 150 seconds. This
was achieved by taking the raw trajectory and storing its first entry in a new
trajectory. Then, I iterated over the original entries, in order, until the total duration
between the previously stored entry and the current entry was greater-than or
equal-to the sampling-rate. Once this condition was reached, I stored the current
entry and repeated the process until all the original trajectory entries were
processed. The result was a new trajectory with, approximately, the desired
sampling-rate. The limitation of this approach is the original trajectories had to be
sufficiently large and frequently sampled. The only trajectories I had that met these
conditions were the Hike and Ferry trajectories; thus, this experiment is limited to
only those trajectories. The results of this experiment are shown in Figure 5.8.

Analysis of the results in Figure 5.8 confirms my expectation: that as the
sampling-rate increases, the classification effectiveness of all the tested algorithms
decreases. However, the gradient of each algorithm’s performance is different,
which suggests that some of the tested approaches are more sensitive to
sampling-rate variances than others. Specifically, the overlaid trend lines show that,
in general, POSMIT outperforms GB-SMoT and CB-SMoT across all sampling-rates;
generalising, this suggests POSMIT may be more robust than CB-SMoT and
GB-SMoT under various sampling-rates. Additionally, if one considers that all of
POSMIT’s numeric parameters are estimated in this experiment, then the results in

126 Chapter 5. A Probabilistic Stop and Move Classifier for Noisy GPS Trajectories

0 50000 100000 150000

Sampling Rate (s)

M
C

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 POSMIT CB−SMoT GB−SMoT

(A) Hike.

0 50000 100000 150000

Sampling Rate (s)

M
C

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 POSMIT CB−SMoT GB−SMoT

(B) Ferry.

FIGURE 5.8: A comparison of each algorithm’s classification effectiveness as the sampling-
rate was made increasingly sparse (a higher MCC is better). Trend lines are overlaid on the

raw results to indicate the general tendency of each algorithm.

Figure 5.8 also indicate to me that fully automating POSMIT’s parameter selection
produces effective classifications, even under varying sampling-rates.

5.3.6 Running Time Efficiency

In this experiment, I measured the performance characteristics of CB-SMoT,
GB-SMoT, and POSMIT by measuring their running time when processing various
GPS trajectories. Each algorithm had all of its parameter set to the best performing
values used in Section 5.3.2. The only exception to this was POSMIT’s hi parameter,
which I set to multiple fixed values (specifically: 1, 5, 10, 15, and 20) to demonstrate
its impact on running time. The first set of trajectories I used as input was the six
real-world, noisy GPS trajectories I used in the previous experiments. In addition to
these, I also used a second set of much larger trajectories that I generated using the
generator described in Section 5.3.1. All the algorithms were implemented in Java;
thus, the experiments underwent sufficient JVM warm-up runs and had an
adequate maximum memory pool specified beforehand. Additionally, all timings
from the experiments were averaged over the course of 10 runs. Finally, the test
machine had an i5-M520 CPU and 5gb of freed working memory available prior to
all tests.

Readers, please note that because my implementation of GB-SMoT partitions
the study-space into a number of uniformly sized regions, its running time grows
exponentially as either the user-specified region-size decreases or the study-space
increases. The running time for my implementation of GB-SMoT was so large for
the synthetic datasets tested in Figure 5.9b that, including it alongside the results
for CB-SMoT and POSMIT would have eclipsed the difference between the two
algorithms. Thus, for clarity, I have decided to exclude GB-SMoT’s running time
from Figure 5.9b.

Analysis of Figure 5.9a reveals that all three of the algorithms classified the six
real-world datasets very efficiently: they all finished in less than one second, on all
the real world trajectories. Additionally, the results in Figure 5.9a indicate that
POSMIT’s running time is mostly controlled by its hi parameter. However, the
results shown in Figure 5.9a, alone, are not sufficient to gauge the performance

5.4. Conclusion 127

Shopping Hike Ferry Bus A Bus B Bus C

R
un

ni
ng

 T
im

e
(m

s)

0
50

10
0

15
0

20
0

25
0

30
0

POSMIT (hi =1)
POSMIT (hi =5)
POSMIT (hi =10)
POSMIT (hi =15)

POSMIT (hi =20)
CB−SMoT
GB−SMoT

(A) Real trajectories.

0 1 2 3 4 5

0
20

40
60

80
10

0
12

0

Entries (millions)

R
un

ni
ng

 T
im

e
(s

)

POSMIT (hi=1)
POSMIT (hi=5)
POSMIT (hi=10)

POSMIT (hi=15)
POSMIT (hi=20)
CB−SMoT

(B) Synthetic trajectories.

FIGURE 5.9: POSMIT, CB-SMoT, and GB-SMoT’s running times for classifying stops/moves
in real and synthetic GPS trajectories (a lower running time is better). Note, the y-axis in

Figure 5.9a is measuring milliseconds, whereas Figure 5.9b is in seconds.

characteristics of each algorithm as the input size increases. Therefore, to
adequately test the performance characteristics of each algorithm, I generated
much larger trajectories (millions of entries, as opposed to thousands) and
benchmarked the running time of each algorithm (see Figure 5.9b for details).

The results shown in Figure 5.9b indicate that when hi = 1 or hi = 5, POSMIT’s
running time is superior to CB-SMoT’s; however, once hi ≥ 10, POSMIT’s running
time exceeds CB-SMoT’s. From Figure 5.9b, I observe that POSMIT’s running time,
with respect to input size, is linear (regardless of the selected hi value); however hi is
a strong constant factor that governs the actual performance. Thus, I conclude that
POSMIT’s computational complexity is O(nhi); whereas CB-SMoT’s is simply O(n)
as it does not have any parameter that impacts its running time.

5.4 Conclusion

Automatic classification of purely spatio-temporal GPS entries is certainly a
challenging problem, especially when considering the varied and noisy recordings
present in real-world trajectories. In this work, I have quantitatively shown, in
Sections 5.3.2, 5.3.3, 5.3.4, and 5.3.5, that my solution to this problem, POSMIT, can
achieve accurate stop/move classifications for real-world trajectories. Additionally,
in Section 5.3.2, the results demonstrated that POSMIT is less sensitive to changes
in its spatial parameter, hd, than GB-SMoT’s and CB-SMoT’s are to their respective
spatial parameters, R and Eps. On top of that, the experiments in Sections 5.3.2,
5.3.3, and 5.3.4 demonstrated that my parameter estimation heuristics for hd, hi,
and ε performed reasonably on real-world trajectories —at times producing near
optimal values. However, the experiments in Sections 5.3.2 and 5.3.3 also revealed
that the hd and hi parameter estimation heuristics for POSMIT had their
effectiveness strongly governed by how well POSMIT’s ε was chosen. One of the
design choices of the POSMIT algorithm is to allow the user to tune the minimum
stop probability parameter, ε, to a threshold value that is suitable for their
application (i.e some ambiguous true-stops may be classified as moves in exchange
for a smaller result set of more likely stops). However, in cases where there is no

128 Chapter 5. A Probabilistic Stop and Move Classifier for Noisy GPS Trajectories

such application requirement, ε can also be estimated to try and maximise
classification effectiveness. In Section 5.3.5, when all POSMIT’s parameters were
estimated, on two real trajectories, with varying sampling-rates, the combination of
estimated parameters proved effective, as POSMIT’s overall classification
effectiveness was better than both CB-SMoT and GB-SMoT. This empirically
demonstrated both: (1) the usability of POSMIT under fully automated numerical
parameter estimation and (2) POSMIT’s greater robustness to a range of trajectory
sampling-rates. Though, as an aside, the experiments have also demonstrated that,
if possible, trajectories should be recorded with the highest sampling-rate possible
to increase stop/move classification accuracy.

In addition to parameter estimation, the experiments in Section 5.3.4 also
demonstrated that the user can easily reduce the number of false-positives by
simply steadily increasing the minimum stop probability, ε. However, I must clarify
that it is not possible for the user to know whether increasing POSMIT’s ε will
decrease the number of false-positive classifications for their dataset in an
unsupervised setting (i.e when there is no ground-truth). Regardless, I do argue
that, at the very least, my goal from Section 5.1 was realised through POSMIT.
Specifically, the results from Section 5.3.4 indicate that by using POSMIT’s
minimum stop probability parameter, ε, the user can filter out low probability stops
that are unacceptable for their application. Last of all, in Section 5.3.6, I observed
that POSMIT’s performance remains linear to the size of the input trajectories and,
at scale, can outperform CB-SMoT when hi ≤ 5. Overall, POSMIT’s sampling-rate
robustness, less sensitive spatial parameter, parameter estimation heuristics, stop
filtering mechanism, and general classification effectiveness lead me to conclude
that POSMIT is a useful addition to any location recommendation, trajectory data
mining, or activity recognition application.

129

Chapter 6

Mining Semantic Patterns From
Spatio-temporal Trajectories Using
Complex Real-World Places

In this chapter I focused on addressing all four of the challenges I identified for trajectory
data mining: spatial uncertainty, trajectory complexity, pattern complexity, and semantic
meaning. I did this by bringing together several approaches and topics, introduced in the
previous chapters, to create an overarching semantic trajectory data mining approach to
mine semantic patterns from raw, free-space, spatio-temporal trajectories. Specifically, in
this chapter, I introduced an approach called STOSEM, that mines semantic patterns from
raw, free-space, spatio-temporal GPS trajectories using real-world places from
OpenStreetMap. STOSEM begins by using POSMIT to annotate raw trajectory recordings
as either stopping or moving. STOSEM then groups contiguously stopping entries into
so-called stop episodes, each of which is then associated with a number of potential stop
place candidates from the real-world place repository OpenStreetMap. Though, doing this
then raised the issue of how to effectively match a single place to each stop when there are
many nearby places. From my review of existing place-matching approaches, in Section 2.5,
it seemed to me that none of the reviewed approaches handled all of the following in an
unsupervised fashion: stop/move disambiguation; place topology; matching to point or
polygon places; and considering the sequence of visited places during calculation. Thus, in
this chapter I introduced a new, unsupervised place-matching approach that addresses each
of the aforementioned issues.

The result of this stop episode formulation and place-matching is that the original
trajectories are transformed into a discrete, greatly simplified, and more semantically
meaningful sequence of place visitations. This format enables the last step of STOSEM,
where frequent item-sets and sequential patterns are extracted using traditional approaches.
Experiment results, with real and synthetic datasets, demonstrated STOSEM’s
running-time performance, robustness to GPS noise, dataset compression, and matching
accuracy. Additionally, a case study, using human trajectories from the real-world Geolife
dataset, revealed many interesting and seemingly real patterns. These findings suggested
the general validity and applicability of STOSEM as a semantic trajectory data mining
approach. The topics covered in this chapter are illustrated in bold in Figure 6.1.

130
Chapter 6. Mining Semantic Patterns From Spatio-temporal Trajectories Using

Complex Real-World Places

FIGURE 6.1: Overview of the trajectory data mining and knowledge discovery stages and
the specific topics (the bold rectangles) covered in this chapter.

6.1. Introduction 131

6.1 Introduction

Many trajectory patterns from first generation approaches are sequences of
coordinates, spatial clusters, or spatial regions, which usually require visualisation
on a map, or domain expertise by a human operator, to infer underlying semantic
meaning (Cao et al., 2005; Nanni and Pedreschi, 2006; Giannotti et al., 2007; Lee
et al., 2007). Put plainly, these types of trajectory patterns are not intrinsically
human readable, or semantically meaningful, without using additional sources of
information to add more context. Thus, as I mentioned in Section 1.2.2, the second
generation of trajectory data mining approaches has shown much interest toward
adding semantic information to raw spatio-temporal trajectories to semantically
enrich them before data mining (Renso et al., 2013; Yan et al., 2013; Lv et al., 2016;
Ghosh and Ghosh, 2017). As I discussed in the previous chapter, a common
technique to semantically enrich trajectories is to detect when a tracked entity is
stopping or moving (Spaccapietra et al., 2008). The assumption is that if an entity is
stopping, especially for an extended period, that entity must be doing something at
a particular place and, therefore, the stop itself is meaningful. That said, a series of
stops is not very meaningful without additional context; it is context that provides
meaning to a human operator when they interpret the results.

Fortunately, there now exists massive public repositories containing a useful
type of contextual data: geographical places. Specifically, at the time of writing, the
public has free access to Google Places, FourSquare, OpenStreetMap (OSM), and
many government websites. These place repositories provide a wealth of context to
associate with the detected stops. Thus, the task of place-matching emerges: given
a series of trajectory stops, and a dataset of nearby places, each stop is matched to
the most likely place that was visited. The result is a succinct and human readable
set of place visitations that can easily be mined or queried to extract semantically
meaningful patterns and knowledge. Readers, please note that I am not the first to
investigate the problem of place-matching; thus, to serve as the motivation for this
chapter I briefly recap the literature gaps I identified when reviewing existing
place-matching approaches in Section 2.5.1.

I found there was no existing place-matching approach that could handle:
points and polygon place geometries; stop/place disambiguation; the order of
visited places; and place topology, all in an unsupervised setting without the need
for expert-level parameter setting. Thus, in this chapter, I investigate such an
approach. Before I proceed, I elaborate on the issue of stop/move disambiguation
and place topology, from Section 2.5, using a diagram of an accentuating scenario.

Recall from the literature review that there is a number of place-matching
approaches that simply match a stop with any intersecting place geometry (Liao
et al., 2007; Alvares et al., 2007; Richter et al., 2012; Moreno et al., 2014; Boukhechba
et al., 2015). However, assuming that a stop only intersects with a single place
geometry is a highly idealised scenario which, in my experience, is rarely
applicable to real-world spatio-temporal trajectories or complex real-world place
repositories. Put plainly, this assumption does not hold in the scenario where
multiple places intersect a given stop. However, one must select a single place to
match with a stop; thus, the problem of stop/place disambiguation becomes
apparent. I visually illustrate a stop/place disambiguation scenario containing
topologically nested places in Figure 6.2.

Figure 6.2 presents a scenario where a stop occurs in a university that contains
several topological nested places within it. In this scenario, it is ambiguous if the
entity was truly visiting the coffee shop, college quad, lecture hall, toilets, or just

132
Chapter 6. Mining Semantic Patterns From Spatio-temporal Trajectories Using

Complex Real-World Places

FIGURE 6.2: An ambiguous place-matching scenario where the stop is both encompassed by
and overlapping with multiple places.

the university in general. I highlight, that such scenarios are not exceptional and,
in fact, are common throughout real-world place repositories (especially OSM), as
these repositories frequently store complex topological relationships between places.
Thus, without addressing the issue of stop/place disambiguation or place topology,
I assume that existing approaches must impose one of the following: (1) all places
sampled for place-matching are spatially distinct (i.e non-overlapping) and distant
from each other; or (2) stop/place disambiguation is handled by arbitrarily matching
a given stop to one of the nearby places. Both of these options compromise the
validity of any semantic patterns mined under these conditions. The first option
effectively eliminates the usage of topologically complex real-world place databases
such as OSM and the second option calls into question the accuracy of any places
matched to stops in this manner. Therefore, it should now be clear why any such
place-matching approach must address both of these issues.

The main contributions of this work are as follows:

1. I propose the combination of a stop/move classification algorithm with a stop
episode clustering algorithm in order to identify stop episodes (Section 6.2.3);

2. I introduce a pre-processing step that selects and refines relevant real-world
places from OSM for place-matching (Section 6.2.4);

3. I introduce an unsupervised place-matching algorithm that addresses the issue
of stop/place disambiguation and place topology, while considering the order
of visited places and achieving a high matching accuracy (see Section 6.2.5);

4. I introduce a semantic trajectory data mining approach that combines all of
the above approaches with some traditional data mining approaches to
transform raw spatio-temporal trajectories and OSM places into a succinct,
human readable, and semantic set of place visitation patterns (Section 6.2);

5. I provide experiment results that demonstrate the effectiveness and efficiency
of STOSEM (Section 6.3); and

6. I provide a case-study demonstrating the validity and applicability of my
proposed approach (Section 6.4).

6.2. Method 133

6.2 Method

Figure 6.3 introduces my approach for mining semantic patterns from raw
spatio-temporal GPS trajectories. Throughout this work, I refer to my approach as
STOSEM, which stands for “Spatio-temporal Trajectories To Semantic Patterns".
STOSEM begins by annotating raw spatio-temporal trajectories as either stopping
or moving using a stop/move classification algorithm. Next, each stop/move
annotated trajectory is transformed into a sequence of stop episodes by clustering
contiguous groups of stopping entries together. Each stop episode in the stop
episode trajectories is then associated with nearby real-world places from Open
Street Map that may have been visited. These candidate places are then modelled
using a Hidden Markov Model and the most likely sequence of place visitations is
matched to each stop episode trajectory. Given this sequence of place visitations,
further semantic enrichment is also attempted by applying a heuristic that tries to
detect likely entity homes. Lastly, these place-visitation sequences are mined to
uncover semantic item-sets and semantic sequential patterns. Algorithm 4 shows
STOSEM’s specific steps, which I elaborate on in the following subsections.

6.2.1 Spatio-temporal Trajectories

In STOSEM spatio-temporal trajectories (recall Definition 2) are the input. Many
previous trajectory data mining approaches, especially those in the first generation,
attempt to perform data mining and knowledge discovery using raw
spatio-temporal trajectories; in STOSEM, these raw trajectories are greatly
simplified and semantically enriched before any data mining occurs.

6.2.2 Stop/Move Classification and Stop/Move Annotated Trajectories

STOSEM’s first step is to annotate each raw spatio-temporal trajectory by adding an
extra dimension to each recorded entry that indicates whether it is moving or
stopping. The purpose of this extra stop/move dimension is to allow STOSEM to
simplify raw trajectories into a sequence of extended stops; the assumption being,
that extended stops occur at places that are semantically meaningful to the tracked
entity and are, therefore, prime candidates for data mining. To produce these
stop/move annotated trajectories, I use POSMIT from Chapter 5.

6.2.3 Stop Episode Clustering

The purpose of this stop and move information is to allow me to find extended
sub-sequences of stopping entries and condense them into single discrete stop
objects, which I call stop episodes (recall Definition 4). Converting stop/move
annotated trajectories to sequences of stop episodes serves two purposes. Firstly, it
greatly reduces the input size of the trajectories, and secondly, the discrete nature of
the stop episodes allows them to be matched to a single real-world place.

The algorithm to form stop episodes is a one dimensional clustering algorithm
that I call “SeCluster" (see Algorithm 4 line 5 for where SeCluster is called).
SeCluster forms stop episodes by combining contiguous sub-sequences of stopping
entries together into a single episode. I highlight that SeCluster also does this for
moving entries to form move episodes. SeCluster has two parameters ts and tm
that allow the user to filter out short stop and move episodes respectively. Note, a
move episode that is filtered out by tm becomes a part of the stop episodes that
surround it.

134
Chapter 6. Mining Semantic Patterns From Spatio-temporal Trajectories Using

Complex Real-World Places

FIGURE 6.3: STOSEM: my approach for mining semantic pattern from raw spatio-temporal
GPS trajectories.

6.2. Method 135

Algorithm 4 STOSEM algorithm.
Input:
(1) DT , a list of spatio-temporal trajectories (T1, T2, . . . , Tn).
Stop/Move classification (POSMIT) Input:
(2) hi, index search bandwidth.
(3) hd, stop variance.
(4) ε, minimum stop probability.
Stop Episode Clustering (SeCluster) Input:
(5) ts, the minimum stop episode duration.
(6) tm, the minimum move episode duration.
Place candidates search Input:
(7) r, the place candidate search radius.
(8) O, an OSM dataset extract.
Itemset/Sequential Pattern Mining Input:
(9) σ, the minimum support to make a pattern.
Output: A list of semantic patterns.

1: function STOSEM(DT , hi, hd, ε, ts, tm, r, O, σ)
// 1 & 2. Classification and clustering.
// An empty list of stop episode trajectories.

2: DTe
= ().

3: for all (Ti ∈ DT) do
// Annotate with stops/moves.

4: Tsm = POSMIT(Ti, hi, hd, ε).
// Transform into stop episodes.

5: Te = SECLUSTER(Tsm, ts, tm).
6: Add Te to DTe

.
7: end for

// 3. Place candidate search.
// Make an R-Tree, Re from the stop episodes.

8: Make Re from DTe
.

// Read each place, P , from O.
9: for all (P ∈ O) do

// Query for stop episodes near this place.
10: E = Re.query(P, r).

// Assign place candidate to stop episodes.
11: for all (Stop episode e ∈ E) do
12: Add P to e.
13: end for
14: end for

// 4 & 5. Place-matching and home detection.
// An empty list of place visitation sequences.

15: DTp
= ().

16: λ = LEARNPRS(DTe
);

// Find most likely sequence of visited places.
17: for all Te ∈ DTe do
18: Tp = PLACEMATCHING(λ, Te);
19: Add Tp to DTp

.
20: HOMEDETECTION(Tp)
21: end for

// 6. Itemset and sequential pattern mining.
22: return MINING(Dp, σ) .
23: end function

136
Chapter 6. Mining Semantic Patterns From Spatio-temporal Trajectories Using

Complex Real-World Places

Stop episodes contain a stop centroid, a stop radius, a starting time, and a
duration, which are all inferred from the stop entries that constitute the episode.
Specifically, the stop centroid is calculated as the average spatial coordinate of all
the stop entries in the episode. Once the stop centroid is known, the stop radius is
calculated as the distance from the centroid to the most distant entry in the stop
episode. Similarly, the starting time and duration are derived from the entries
comprising the stop episode. The circular representation of stop is chosen because
it inherently models the spatial uncertainty that is present due to GPS noise. As a
small aside, I highlight that in this version of STOSEM, once stop episode clustering
is complete, all move episodes are discarded as they are not used; however, in
future works these move episodes could potentially be used to infer the mode of
transport between stops.

6.2.4 Open Street Maps Extract and Place Candidate Search

OSM is a collaborative project where volunteers work together to create a free and
editable map of the world. It is widely used in spatial analysis and spatial data
mining, and I utilise OSM for STOSEM because it offers free downloads of its data
in the form of binary files called extracts 1. These extracts can be easily queried
for places on disk, which is highly preferable in comparison to other similar data
holders, like Google Places and FourSquare, that prefer users to query for places
through Web interfaces.

In the OSM format, places have a unique id, some geometry, and a map of
key-value description tags. I highlight that all the OSM extracts I used in this
chapter are of whole cities. However, I assume that it is unlikely the tracked entities
travelled to every place in the entire city; therefore, to reduce processing time,
STOSEM only considers candidate stop places that are within a user-specified
search radius, r, of the stop episode circles. In order to efficiently determine which
stop episodes were within the search radius of a given place geometry STOSEM
stores all the stop episodes in an R-Tree. This process is detailed in Algorithm 4
lines 8-14.

Once a place is assigned as a candidate for a stop episode, it is transformed, so
that it becomes easier to work with during place-matching and mining. Specifically,
recall the map of key-value tags that describes an OSM place, that map of tags is
simplified to a single primary tag and a name (if present). For example, consider a
tag map for a place called “Mars University": “name=Mars University",
“amenity=university", “building=yes". In STOSEM, the place name is always
extracted because it is the most semantically meaningful and human readable tag;
however, the name does not necessarily describe the type of the place. Therefore, in
addition to extracting the name in the “Mars University" example, I would
generally consider “amenity=university" to be more descriptive than
“building=yes"; thus, I would extract it as the primary tag. However, extraction of
the primary tag is not always so clear. In fact, if there are many potentially
descriptive tags, the task of selecting a single primary tag quickly becomes
ambiguous.

My solution to this issue of tag ambiguity is to allow the user to provide a set of
rules to score common OSM tags. Inventing some sort of descriptiveness-ranking
between all OSM tags is not necessarily feasible because, in its entirety, OSM has
thousands of active tags used to describe places 2. Fortunately, for the purpose of

1https://mapzen.com/data/metro-extracts/
2A full repository of OSM tags can be explored at https://taginfo.openstreetmap.org/.

6.2. Method 137

sport=* (0.8) military=* (0.8)
club=* (0.8) aerialway=* (0.6)
aeroway=* (0.6) amenity=* (0.6)
tourism=* (0.6) highway=bus_stop (0.6)
building=* (0.6) leisure=* (0.6)
craft=* (0.6) cuisine=* (0.6)
shop=* (0.6) harbour=* (0.6)
healthcare=* (0.6) social_facility=* (0.6)
mooring=* (0.6) office=* (0.6)
railway=* (0.6) public_transport=* (0.6)
repair=* (0.6) historic=* (0.4)
industrial=* (0.4) man_made=* (0.4)
place=* (0.4) room=* (0.4)
natural=* (0.2) power=* (0.2)
route=* (0.2) foot=* (0.2)
highway=* (0.2) landuse=* (0.2)
bridge=* (0.2) bicycle=* (0.2)
building=yes (0.2) temporary_amenity=* (0.2)
tunnel=* (0.2) water=* (0.2)
waterway=* (0.2) *=no (0)

TABLE 6.1: Descriptiveness scores for the OSM key-value tags I used in this study (a higher
value indicates a more descriptive key-value tag). The asterisk indicates a wild-card for the

key or value.

mining human trajectories, I have found there is a set of common OSM tags that
effectively describes most places visited by humans in cities and urban
environments. When an OSM tag is evaluated against this set of rules it is assigned
the descriptiveness score associated with any rules it happens to match and, if no
rules are matched, the tag is considered non-descriptive (except for the name tag
which is extracted specially). In the event of a descriptiveness tie between two tags,
the first tag in the list of tied tags associated with the place is chosen as the primary
tag. I highlight that these descriptiveness scores worked well for discovering
primary tags in my case; readers wishing to use STOSEM can easily adjust tags,
accordingly, to suit their own purposes. The set of OSM tag rules are presented in
Table 6.1.

6.2.5 Place-Matching and Place Visitation Trajectories

At this stage in STOSEM, I now have sequences of stop episodes that have nearby
candidate places associated with each stop episode. However, the problem of
stop/place disambiguation and place topology remains unaddressed; thus, I
propose a HMM-based place-matching algorithm, where each sequence of stop
episodes is used to probabilistically uncover the most likely sequence of visited
candidate places.

As I discussed in Section 2.5.1, existing works (Yan et al., 2013; Lv et al., 2016)
have already presented solutions to similar problems, where sequences of stops are
matched to nearby PoIs using HMMs. However, I remind readers, that Yan et al.
(2013) do not provide an automatic way to fully construct their HMM, stating that,
“learning dynamic and personalized transition matrix [sic] is interesting but not the
focus of this article". Additionally, Lv et al. (2016) require a sequence of visited

138
Chapter 6. Mining Semantic Patterns From Spatio-temporal Trajectories Using

Complex Real-World Places

places as training data to construct their HMM. In contrast to these two approaches,
I present a HMM for place-matching that is unsupervised and does not require any
training data or expert initialisation.

Briefly, a HMM describes sequences of observable symbols that depend on
hidden (unobservable) states. In this context, the observable sequence is the
sequence of stop episodes, Te = {e1, e2, . . . , en}, and the hidden states are the
candidate places associated with each stop episode that the entity may have
stopped at. The candidate places associated with each stop episode are denoted as,
m(et) = {pt1 , pt2 , . . . ptm}. With the observations and states outlined, I introduce the
general formulation for a HMM:

λ = (π,A,B) (6.1)

where π is a set of initial state probabilities; A is a matrix containing all state to state
transition probabilities; and B is the probability distribution for emitting a certain
symbol. To define the terms in Equation 6.1, I must further define the hidden states
in my model: the candidate places. Thus, let there be a total of q candidate places
across all the stop episode sequences that one wishes to match: this results in a set
of all place instances, P = {p1, p2, . . . , pq}. In general there are usually too many
places to model the initial probabilities and transition probabilities of all of places;
however, there is a comparatively small set of distinct place types - therefore, to
calculate the initial (π) and transition probabilities (A), I use the place types instead
of the individual places themselves. Thus, let there be a total of g unique place types,
resulting in the set of all place types, C = {c1, c2, . . . , cg}. Additionally, I denote
deriving the place type from a place instance like so, c = c(p). I now proceed to
define each of the HMM terms: π, A, and B.

Initial State Probabilities

In my HMM, an initial state probability is the likelihood for a given place type to
occur given no observation data. I approximate the initial state probability for each
place type as the number of instances of that place type over the total number of
place instances. More formally,

π =

{ |{x : c(pi) = c1}|
q

, . . . ,
|{x : c(pi) = cn}|

q

}
(6.2)

State Transition Probability

The transition probability is the part of my place-matching algorithm where the
sequence of visited places is taken into consideration. Specifically, in my HMM, the
state transition probability, A, is modelled as a matrix of probabilities describing
the likelihood of moving from one type of place to another. Specifically,
A = Pr(ca|cb)g×g. I assume that entities in the same trajectory dataset have
somewhat homogeneous behaviours and, as a result, may generally visit the same
types of places. Therefore, I construct the transition matrix of my HMM based on
the potential visitations of the trajectory dataset as a group (as opposed to
constructing A using a single sequence of stop episodes). I calculate the probability
of transitioning from one place to another as follows:

Pr(ca|cb) = |{x : c(pti) = ca} ∪ {y : c(pt+1i) = cb}|
|{z : c(pti) = ca}| (6.3)

6.2. Method 139

where pti ∈ m(et), pt+1i ∈ m(et+1), {et, et+1} ⊂ Te, and Te ∈ DTe .
I highlight that the initial state probabilities and transition matrix are calculated

only once (see Algorithm 4 line 16) and remain the same throughout place-matching.

Emission Probability

The emission probability is the part of my place-matching algorithm where the
place topology, point/polygon places, and, to some extent, the issue of stop/place
disambiguation is handled. Specifically, in my HMM the probability of emitting a
given symbol is modelled as the likelihood of observing a stop episode, et, at a
given candidate place, pti . That is, Bt = Pr(et|pti). Yan et al. (2013) calculate the
emission probability between a stop and a type of PoI by modelling each PoI centre
as a two-dimensional Gaussian function, where nearby PoIs, effectively, influence
the stop. Ignoring the issue of how to select reasonable values for the Gaussian
functions, this model does not translate well to my problem because I match stops
to place geometries (as opposed to PoIs). In this problem, I assume visiting inside
the boundary of a place should be no less likely than visiting inside the centre of
that place. Thus, I calculate Pr(et|pti) using the following set of cases that model
the geometric relationship between a stop episode et, and one of its candidate
places pti :

1. Disjoint: When the place geometry and stop episode circle are completely
disjoint, Pr(et|pti) = 0.5 × d(et,pti)

r where d(et, pti) is the smallest Euclidean
distance between the stop episode centre and the place geometry; r is the user-
specified search radius (recall the search radius from Section 6.2.4).

2. Intersect: When the place geometry intersects the stop episode circle,
Pr(et|pti) = 0.5 + 0.5 × A(et)∩A(pti)

A(pti)
where A(et) ∩ A(pti) is the intersection of

areas between the stop episode circle and place geometry and, likewise,
A(pti) is the area of the candidate place.

3. Contain: When the stop episode circle contains the place geometry (or vice-
versa), Pr(et|pti) = 1.

Note, that the weightings applied to each of the three cases are designed to
favour places that overlap or contain stop episodes, which is similar to the concept
used in “area-stealing” interpolation (Gold, 1989). I highlight that calculating the
emission probability directly addresses the issue of stop/place disambiguation,
because each candidate is given a probability, rather than simply selecting the
closest one. Additionally, calculating the emission probability, in this way (using
intersection area), handles place topology, too, because the place that is most
covered by the stop becomes more likely (even if two topologically nested places
both intersect the stop this metric holds). Lastly, by calculating emission probability
based on intersection and area, my place-matching can handle both points or
polygons.

Matching places

Once the initial state probabilities and transition matrix are calculated, STOSEM
begins place-matching (see Algorithm 4 line 18). Place-matching begins by
constructing a HMM for the given sequence of stop episodes. The constructed
HMM is a trellis that represents all possible place visitation sequences that the

140
Chapter 6. Mining Semantic Patterns From Spatio-temporal Trajectories Using

Complex Real-World Places

sequence of stop episodes could reasonably be caused by. To extract the most likely
place visitation sequence, I use the Viterbi algorithm (Viterbi, 1967). After the
Viterbi algorithm is finished, a sequence of place visitations is returned, which
STOSEM uses in the later mining steps.

6.2.6 Home Detection

In my preliminary tests on human trajectory datasets, I found that many patterns
were produced, describing entities moving between generic, unnamed buildings.
Further investigation revealed these generic buildings were recurring frequently,
specific to each person, and mostly staying overnight, making them likely
candidates as the person’s home. Patterns describing movements between a
person’s home and some other place are obviously much more semantically
meaningful than transitions to or from some generic building. Therefore, I
developed a simple heuristic to detect the place that is most likely the person’s
home. The approach begins by finding all the likely home candidates that match
any of the following types: “building=house", “building=residential",
“building=apartments", or “landuse=residential". The next step is to count the
number of times each of these likely home candidates is visited. Knowing the
number of times each of these home candidates is visited, my heuristic is to label
the most visited place (assuming it is visited more than once) as the person’s likely
home. The result of labelling a place as a home is that its place name becomes
“home" and its place type becomes “building=house". Note, that I use this home
detection step in all of the experiments below; however, it is optional. If home
detection is not used in STOSEM it can be commented out in line 20 of Algorithm 4.

6.2.7 Data Mining Place Visitations

After the place-matching algorithm has uncovered the likely place visitation
sequences, I begin mining those sequences to extract semantic patterns regarding
the tracked entities. The place visitation sequences consist of a series of discrete
places, which makes them suitable for both frequent itemset mining and sequential
pattern mining. I can treat places visitation sequences either as a series of place
names or a series of place types. Place names are more specific, and, thus reduce
the pattern output: they are also more semantically meaningful to a human
operator, as they identify a specific place; conversely, place types are more general
because they group many real-world places under the same key-value tag, which
results in more pattern output.

The difference between frequent itemset mining and sequential pattern mining is
that frequent itemset mining will uncover the places in the dataset that are frequently
visited in any order; sequential pattern mining will uncover the sequences of places
that are frequently visited in a specific order. Additionally, each place visitation has
a stop episode timestamp associated with it, which when discretised (i.e. into a time
of day such as “afternoon") can be paired with the place to provide more specific
and semantically meaningful frequent items and sequential patterns. In the mining
step of STOSEM, Algorithm 4 line 22, I utilise the free and open source “Sequential
Pattern Mining Framework" (SPMF) written in Java (Fournier-Viger et al., 2014b).

6.3. Experiments 141

6.3 Experiments

To evaluate the efficiency and effectiveness of STOSEM, I conducted multiple
quantitative experiments measuring the running time, accuracy, and compression
compared to other approaches. Many components of STOSEM are found
elsewhere, such as the stop/move classification and mining algorithms. Therefore,
in the experiments I chose to quantitatively evaluate only the components of
STOSEM that are unique to this chapter: the stop episode clustering and the
place-matching. For the sake of comparison, I compare against a range of different
trajectory simplification and transformation approaches. Specifically, I chose to
compare SeClust against two simplification algorithms, DP and DRTA (from
Chapter 3), and my place-matching algorithm against three transformation
algorithms TPM (Giannotti et al., 2007), RMM Newson and Krumm, 2009, and a
place-matching algorithm I implemented called Naive Place-matching. In addition
to the quantitative experiments, I also empirically evaluated the applicability and
overall validity of the results produced by STOSEM by performing a case study
where I mined semantic patterns from a large real-world dataset of human
trajectories.

In terms of the approaches I compared against, DP and DRTA are
spatio-temporal trajectory simplification algorithms from Chapter 3. TPM is an
algorithm that partitions the trajectory dataset into uniform grid cells and connects
frequently visited cells together to form so-called regions of interest (RoIs). These
RoIs are then used to transform a raw spatio-temporal trajectory into a sequence of
RoI visitations (recall Section 2.1.3). RMM, which stands for road map-matching, is
the name I give to the approach presented by Newson and Krumm (2009) that uses
a Hidden Markov Model to transform raw spatio-temporal vehicle trajectories into
a sequence roads driven (recall Section 2.1.2). Lastly, I compare my place-matching
algorithm against another approach I implemented called Naive Place-matching.
Naive place-matching matches each stop episode to the nearest place. The naive
approach ignores the problems of stop/place disambiguation and place topology
(recall Figure 6.2) and, thus, it serves as a representative for the existing approaches
from the literature that do not consider these challenges (Renso et al., 2013; Yan
et al., 2013; Lv et al., 2016; Ghosh and Ghosh, 2017).

6.3.1 Datasets

I conducted the experiments of this chapter using two datasets. The first was a large,
real-world trajectory dataset tracking humans; the other was a synthetic dataset I
generated, that roughly simulates human movement.

Geolife dataset

The real-world dataset I chose to study was the Geolife dataset (Zheng et al., 2008;
Zheng et al., 2009; Zheng et al., 2010) collected by Microsoft Research Asia. The
Geolife dataset contains human users moving around Beijing, and the greater area,
over the course of five years (2007 to 2012). The users recorded their positions using
various types of GPS loggers and phones. Additionally, the frequency of the
recordings varies substantially between users —with some tracking every day and
others tracking only very occasionally. This variance in tracking technology and
frequency makes this dataset a good candidate to test the robustness, practicality,
and, ultimately, the effectiveness, of my approach at handling real-world data.

142
Chapter 6. Mining Semantic Patterns From Spatio-temporal Trajectories Using

Complex Real-World Places

Total participants: 179
Total entries: 20272567
Average trajectory size: 113254
Total duration (days): 33734
Average duration (days): 188.46

TABLE 6.2: Statistics for the pre-processed Geolife trajectories dataset.

00:00 to 06:00 → “small hours"
06:00 to 09:00 → “morning"
09:00 to 12:00 → “before noon"
12:00 to 18:00 → “afternoon"
18:00 to 00:00 → “evening"

TABLE 6.3: Mappings I used for the Geolife dataset to transform time-stamps to times of the
day.

Table 6.2 details the characteristics of the Geolife dataset after it was trimmed
within the bounding box of Beijing.

Synthetic dataset

The synthetic dataset I used was generated by selecting 100 random places from the
Beijing city OSM extract and simulating travel between them. In order to simulate a
human trajectory, I simulated stopping at one of these random places for a set
duration and, then, moving to another random place. This process was repeated
until the required number of spatio-temporal recordings was generated. I highlight
that, during each of these stop and move episodes, normally distributed spatial
jitter (averaging 3 metres) was used to perturb the spatial coordinates.
Furthermore, both stop and move episodes contained exactly 20 simulated
spatio-temporal recordings that occurred over duration of 30 minutes. Finally, to
control the total number of entries I varied both the total number of trajectories and
number of stop/move episodes per trajectory.

6.3.2 Experiment Constants

Parameter tuning is a difficult, but it is essential in most data mining tasks (Han
et al., 2011); it is data-dependent, and also allows users to have a control over the
dataset under study. To reduce the number of experiment variables, and make the
results simpler to compare, I assigned parameters in my framework to what I
consider to be reasonable constants. Firstly, for POSMIT, I am, fortunately able to
use to estimation schemes, introduced in Chapter 5. Conversely, the stop episode
clustering, SeCluster, has two parameters, ts and tm, that I set to constants. Firstly, I
set the minimum move duration, tm, to 10 seconds, meaning move episodes shorter
than that are merged with their neighbouring stop episodes to form a larger stop
episode. Additionally, I set the minimum stop episode duration, ts, to 10 minutes,
meaning any stop episodes shorter than 10 minutes are disregarded. These
parameters are motivated by the goal of finding meaningful stops: that is, I assume
a 10 minute stop may indicate stopping at an important place, but a stop any
shorter than 10 minutes may be caused by an uninteresting activity such as waiting
in traffic.

6.3. Experiments 143

Total participants: 101
Total visited places: 4134
Average sequences size: 41

TABLE 6.4: Statistics of Geolife place visitation sequences.

Furthermore, the place candidate searching step also has a single parameter: the
search-radius r, that dictates which places are considered nearby and are eligible
to become potential stop places. I set r to 200 metres, which is well outside the
bounds of normal GPS noise (Defence, 2008) but still adequately large enough to
encapsulate most nearby places. Additionally, as mentioned in Section 6.2.7, the
temporal dimension of each stop episode can be discretised, appended as a suffix to
the place names, and used during itemset and sequential pattern mining. Based on
the datasets, I decided to convert all time-stamps in the stop episodes into times of
the day. Table 6.3 contains the specific mappings I used to transform the time-stamps
to times of the day.

In Table 6.4, I present the statistics for the place visitation sequences that were
produced using the defined constants. I highlight that, when I compare Table 6.2
and Table 6.4, the number of represented participants has decreased from 179 to 101:
some participants either did not have any likely extended stop episodes or did not
stop at any place known in the Beijing OSM extract. Additionally, I highlight that
the number of entries has also dropped significantly. This is because stop episode
clustering greatly reduces the complexity of the raw spatio-temporal trajectories.

I highlight that all experiments were conducted on a machine with an i5-520M
processor and 5gb of unallocated memory. The experiments were all implemented
in Java and were given adequate JVM warm-up runs. Lastly, for the experiments in
Section 6.3.3,6.3.5, and 6.3.4 I varied the dataset size. This was achieved by
truncating equal portions of individual trajectories until the desired total dataset
size was reached.

6.3.3 Running Time

To measure the efficiency of each approach I recorded the time taken during by each
of the approaches I tested (see Section 6.3 for a recap).

The results for the synthetic data are shown in Figure 6.4a. I observe, from
Figure 6.4a, that my stop episode clustering algorithm, SeCluster, is quite efficient:
processing up to 30 million entries under 10 seconds, which is similar to the other
tested simplification algorithms DRTA and DP. Additionally, my place-matching
algorithm outperforms some of the other trajectory transformation techniques,
TPM and RMM, as the total dataset size increases. Additionally, I observe that my
place-matching approach is only marginally slower than the naive place-matching
approach, which is an acceptable trade-off for the increased accuracy shown in
Section 6.3.4. In general, these results demonstrate the usability of my approach, in
the context of other existing trajectory simplification and transformation
approaches. Specifically, I observe that both SeCluster and my place-matching
algorithm have running times that scale linearly with input size, and are able to
process large datasets with millions of entries in a reasonable amount of time. In
addition to the synthetic dataset, I also measured the algorithm running times on
the Geolife dataset. The results are presented in Figure 6.4b.

144
Chapter 6. Mining Semantic Patterns From Spatio-temporal Trajectories Using

Complex Real-World Places

5 10 15 20 25 30

0
10

0
20

0
30

0
40

0
50

0

Number of entries (millions)

R
un

ni
ng

 T
im

e
(s

)

●
●

●
●

● ● ● ●
●

●
● ● ●

●
●

●

SeCluster
Place−matching
Naive Place−matching
DRTA
DP
TPM
RMM

(A) Synthetic dataset.

5 10 15 20

0
10

0
20

0
30

0
40

0
50

0

Number of entries (millions)

R
un

ni
ng

 T
im

e
(s

)

●
●

●

●

●●

●

●●

●

●

SeCluster
Place−matching
Naive place−matching
DRTA
DP
TPM

(B) Geolife dataset.

FIGURE 6.4: Algorithm running times for the various trajectory simplification and
transformation approaches I tested.

The main observation I make from Figure 6.4b is that, compared to Figure 6.4a,
the place-matching algorithm takes far longer to process less entries. The difference
in the place-matching running time occurs because the synthetic dataset has a fixed
number of stop episodes for each of its 100 trajectories. Whereas, the Geolife
dataset contains 179 trajectories and some trajectories have a large amount of stop
episodes. Analysis reveals that, as the HMM trellis of potential place visitation
sequences is built, the number of potential sequences grows with each potential
state (stop episode candidate place) modelled. These results suggest to me, that the
main factor controlling the running time of my place-matching algorithm, is the
number of stop episodes per trajectory. One option to decrease this running time
growth is to prune the HMM to only keep a certain selection of likely paths;
though, the potential trade-off is a reduction in place-matching accuracy. I do not
investigate this option in this chapter and instead leave it as a future direction.

6.3.4 Accuracy

In this section, I conducted two experiments. In the first experiment, I tested the
effectiveness (f-measure) of SeCluster, DP, DRTA, and TPM at preserving stopping
entries. I did this by measuring the number of true stops, false stops, and missed
stops that were produced after each algorithm’s simplification. In the second
experiment, I measured the effectiveness (f-measure) of my place-matching
algorithm at producing the true sequence of visited places taken by a given
trajectory. In the place-matching experiment I compared my place-matching
algorithm against a naive approach that matches each stop episode to the nearest
place.

I highlight that both experiments required me to formulate a ground-truth of
visited places for each trajectory. Unfortunately, there was no ground-truth of
places provided in the original Geolife study. Due to presence of spatial noise and
the problem of stop/place disambiguation, a manually created ground-truth for the
Geolife dataset would also be of questionable validity; therefore, this test was only
able to be conducted using synthetic trajectories. However, this had some
advantages in terms of experiment design. Firstly, it allowed me to generate
synthetic trajectories that only stopped at places that were ambiguous to correctly

6.3. Experiments 145

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spatial Noise (metres)

F−
M

ea
su

re

POSMIT + SeCluster
DRTA
DP
TPM

FIGURE 6.5: Accuracy of various approaches at preserving true stops (in a synthetic ground-
truth) under varying spatial noise levels.

match against. That is, the places were either extremely close together or were
topological nested in other places. Additionally, using synthetic trajectories enabled
me to use the level of spatial noise present in the input trajectories as the
independent variable. The noise was generated by a Gaussian function, with the
mean set to the specified noise level and, then, each spatial coordinate of each
trajectory entry was perturbed by a value generated by that function.

Additionally, I highlight that, according to the latest GPS specification (Defence,
2008), there is a 95% likelihood that spatial noise will be ≤ 7.8m when using
modern GPS receivers under normal operating conditions (see (Defence, 2008) for a
proper definition of normal operating conditions). Therefore, I conducted the
place-matching classification effectiveness experiment using a range of spatial
noise, from 1 to 10 metres, to encapsulate a normal operating range. The results of
the stop preservation experiment are shown in Figure 6.5, whilst the results of the
place-matching accuracy experiment are shown in Figure 6.6.

Figure 6.5 illustrates that DP, DRTA, and TPM poorly preserve the stops in the
trajectory data: at best achieving approximately 50% accuracy. This result is
expected though, as none of these approaches directly consider semantic
information like moving or stopping. Conversely, SeCluster, which does consider
stop and move information, perfectly preserves every stop, across all noise levels.
However, I do highlight that the synthetic dataset is an ideal case for SeCluster
because, in the prior stop/move classifications step, POSMIT can perfectly classify
the stops and moves of the synthetic data; a real-world trajectory is far more
complicated and nuanced, which means that perfect stop/move classifications are
rarely achievable by POSMIT, and by extension, SeCluster.

Figure 6.6 illustrates that my place-matching algorithm achieved accuracies
above 98% when the spatial noise was ≤ 2 metres, which is up to 28% more
accurate than the naive approach, at some points within that range. Furthermore,
under heavier noise, between 2 to 5 metres, my algorithm maintained accuracies
above 70%, which when compared to the naive approach is approximately 13%
better over that range. However, beyond 5 metres of noise, my place-matching
algorithm’s accuracy did drop quite quickly, approaching a similar accuracy to the
naive approach at the noise levels beyond the specified normal noise range (i.e
≥ 7.8 metres). Investigation reveals that under heavier noise levels the stop
episodes inherit much of the noise and are, often, perturbed away from their true

146
Chapter 6. Mining Semantic Patterns From Spatio-temporal Trajectories Using

Complex Real-World Places

2 4 6 8 10
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Spatial Noise (metres)

F−
M

ea
su

re
< 7.8m

 (95% likelihood)
> 7.8m

 (5% likelihood)

Place−matching
Naive Place−matching

FIGURE 6.6: Accuracy of my place-matching algorithm and a naive place-matching
algorithm at finding the true visited places (in a synthetic ground-truth) under varying
spatial noise levels. Note, the 7.8 metres is from the latest GPS specification (Defence, 2008).

stop location, so much that the list of candidate places suggested for the stop, does
not even contain the true place. Overall, I summarise from these results that my
place-matching algorithm is accurate under low noise conditions. Additionally, my
place-matching approach consistently outperformed the naive place-matching
algorithm at all noise levels, which is a validation that my approach effectively
addresses the problem of stop/move disambiguation and place topology.

6.3.5 Compression

In this experiment, the compression abilities of STOSEM and TPM were tested on
both the synthetic and Geolife datasets. DRTA and DP were omitted because their
output sizes are completely tunable. I formally define the compression value
measured in this experiment in Equation 6.4. The results are shown in Figure 6.7.

Compression = 1− |DPT |
|DST | (6.4)

Where,

• |DPT | is the total number of entries in the output after the algorithm runs (but
before mining).

• |DST | is the total number of spatio-temporal entries in the trajectory dataset
before any processing.

Figure 6.7 demonstrates that STOSEM and TPM both achieved consistently high
compressions across all datasets, at all sizes: both compressing up to 98% in some
cases. I highlight, that even though the compression scores are high, the experiments
in Section 6.3.4 demonstrate that STOSEM accurately preserves much of the semantic
stop information —the same cannot be said for the TPM, DRTA, or DP algorithms.
Therefore, Figure 6.7 is an interesting result because it suggests that my approach
is an effective simplification technique for spatio-temporal trajectories that manages
to retain semantic meaning in the output —something the traditional approaches I
tested are ineffective at.

6.4. Case Study 147

5 10 15 20 25 30

80
85

90
95

10
0

Number of entries (millions)

C
om

pr
es

si
on

 (%
)

●

●

● ●
●

●
●

●

●

● ●

●

●

● ●

● ● ● ● ● ● ● ● ● ●

●

●

STOSEM (Synthetic)
STOSEM (Geolife)
TPM (Synthetic)
TPM (Geolife)

FIGURE 6.7: Compression achieved by STOSEM and TPM on the synthetic and Geolife
datasets.

6.4 Case Study

To empirically evaluate the applicability and validity of STOSEM, I conducted a case
study where I used STOSEM to mine semantic patterns from the real-world Geolife
trajectory dataset.

6.4.1 Itemset Mining

The first mining task I performed on the Geolife dataset was to extract the top 20
frequent place and place-time itemsets. The results are presented in Table 6.5.
Broadly, these results represent the popular places that were visited and, also, the
combination of popular places and times of day that these visitations occurred at. I
highlight that the results in Table 6.5 are frequent itemsets; therefore, any itemsets
that contain more than one place or place-time are counting the visitation of those
places in no particular order. That aside, there are a number of notable results to
discuss.

First of all, the recurring presence of universities throughout the top 20 places
and place-times is noteworthy. Specifically, 45% of the top 20 frequent place itemsets
in Table 6.5 contain a university. Tsinghua University alone, constitutes 25% of the
places and 35% of place-times in Table 6.5. In general, the results indicate quite a
number of the participants made at least one visit to a university. In fact, Table 6.5
indicates that at least 26 of the participants from the Geolife study have some contact,
specifically, with Tsinghua University. These results suggest to me that a number
of the participants from the Geolife study were perhaps students or academics in
Beijing.

Furthermore, analysing the place-time itemsets, I observe that some of the
patterns with two items are between the same place at different times, such as, “TU
(before noon), TU (small hours)". The presence of this result and other similar
frequent item-sets indicate to me that these participants were likely attending
classes scheduled at different times. This further reinforces my speculation that
some of the participants were students or academics.

Another interesting observation I make from Table 6.5, is the presence of the
Sigma Building. Investigation reveals that the Sigma Building is one of the buildings
used by Microsoft Research Asia and is, in fact, the address listed by the authors of

148
Chapter 6. Mining Semantic Patterns From Spatio-temporal Trajectories Using

Complex Real-World Places

Places Support Place-Times Support

TU 26 TU (small hours) 20
Shanghai Metro Line 2 24 Beijing Metro Line 2 (small hours) 16
Home 23 Home (small hours) 14
Peking University 16 TU (before noon) 13
Beihang University 15 TU (before noon), TU (small hours) 11
Happiness Valley 11 TU (afternoon) 11
Renmin University of China 11 Peking University (small hours) 11
Summer Palace 10 TU (morning) 10
Old Summer Palace 10 Happiness Valley (small hours) 9
Qing River 10 Peking University (morning) 9
Peking University, TU 9 TU (small hours), TU (morning) 9
Sigma Building 9 TU (afternoon), TU (small hours) 8
Shanghai Metro Line 2, Home 9 Home (morning) 8
TU, Renmin University of China 8 Beijing Metro Line 2 (morning) 8
Home, TU 8 Renmin University of China (small hours) 8
Shanghai Metro Line 2, TU 8 Home (afternoon) 7
TU, Old Summer Palace 7 Home (before noon) 7
Zhichunlu Station 7 Summer Palace (morning) 7
Temple of Heaven 7 Beijing Metro Line 2 (before noon) 7
Beijing Capital International Airport 7 Happiness Valley (morning) 7

TABLE 6.5: Top 20 itemsets of places and places with times discovered for the Geolife dataset.
TU stands for Tsinghua University.

the Geolife publications (Zheng et al., 2008; Zheng et al., 2009; Zheng et al., 2010).
Additionally, in their works, Zheng et al. (2009) and Zheng and Xie (2011) state that
18% of the Geolife participants are Microsoft employees. The finding of the Sigma
Building indicates to me that my approach has found a real pattern. Therefore, this
finding is a minor validation of STOSEM, overall.

The next part of the case study was to extract the frequent itemsets of visited
place types, both with, and without, the time of the day information (note: place
types describe a place, whereas the top 20 places above name a place). The results
from this experiment are shown in Table 6.6. Mining the place types as opposed to
the actual places is more general and, as such, I did find a number of itemsets not
present in Table 6.5.

My first observation is that 52 of the participants in the Geolife study visited a
university at least once. Given the number of place visitation sequences in Table 6.4,
this equates to a relative support of approximately 51%. This high support value
further reinforces my speculation that a number of the participants in the Geolife
study were students or academics. Investigation reveals that in their works, Zheng
et al. (2009) and Zheng and Xie (2011) state that at least 62 of the participants in the
Geolife study were college students. This parity between this finding and the actual
participant demographics, again, indicates that the discovered results are real and,
additionally, reinforces the validity of my approach.

Additional analysis of Table 6.6 reveals that 31 participants who went to a
university also rode a bus. This is an interesting finding, as it further refines the
university participants into a subgroup that catches buses. Habitual use of public
transport may suggest that this subgroup of participants do not own personal
vehicles. Another interesting observation is uncovered by comparing Table 6.5
against Table 6.6, and examining which places or types of places are only present in
one table. Specifically, 35% of the place type itemsets contain bus stops; however,
not a single bus stop is found in the top 20 place itemsets. This difference indicates
to me, that whilst a number of participants caught buses, not many of them got on
or off at the same bus stops. A similar explanation can explain the presence of a
bank in Table 6.6 but not in Table 6.5.

6.4. Case Study 149

Place Types Sup Place-Types-Times Sup

amenity=uni 52 amenity=uni (small hours) 38
highway=bus stop 48 leisure=park (small hours) 34
leisure=park 45 amenity=uni (before noon) 30
building=yes 44 highway=bus stop (small hours) 28
amenity=uni, highway=bus
stop 31 amenity=uni (before noon), amenity=uni (small hours) 27

leisure=park, highway=bus
stop 29 leisure=park (morning) 27

amenity=uni, leisure=park 28 building=yes (small hours) 26
amenity=uni, building=yes 27 amenity=uni (morning) 26
amenity=restaurant 27 highway=bus stop (before noon) 24
waterway=riverbank 27 amenity=uni (afternoon) 23
building=yes, highway=bus
stop 26 amenity=uni (morning), amenity=uni (small hours) 22

railway=subway 24 building=yes (before noon) 21
leisure=park, building=yes 23 building=yes (morning) 20
building=house 23 leisure=park (small hours), leisure=park (morning) 20
amenity=parking 23 amenity=uni (before noon), amenity=uni (morning) 19
amenity=uni, building=yes,
highway=bus stop 21 amenity=uni (small hours), leisure=park (small hours) 19

waterway=riverbank,
highway=bus stop 20 amenity=uni (evening) 19

amenity=uni, leisure=park,
highway=bus stop 20 amenity=uni (small hours), amenity=uni (afternoon) 18

railway=station 20 amenity=uni (before noon), amenity=uni (morning),
amenity=uni (small hours) 18

amenity=bank 19 highway=bus stop (morning) 17

TABLE 6.6: Top 20 itemsets of places types and place types with times discovered for the
Geolife dataset. Uni is an abbreviation for university.

6.4.2 Sequential Pattern Mining

The second part of the case study was mining place and place-type sequential
patterns from the Geolife dataset. Table 6.7 contains the top 20 most supported
sequential patterns between both places and place-times. I highlight that, unlike
frequent itemsets, sequential patterns capture the sequential nature of the data
because they demonstrate the order in which place and place-time visitations
frequently occurred. Additionally, unlike frequent itemsets, sequential patterns
permit repeated visitations to the same place or place-time in a single pattern.

The major observation I draw from Table 6.7, is that some of the participants
have tracked their habitual routines. These habitual routines reveal a great deal of
information about the participants and allow me to begin making personalised
profiles of certain participants or groups of participants. An example of this is
found in Table 6.7, where a number of participants habitually and frequently went
to Tsinghua University. Specifically, the results show that at least five of the
participants went to Tsinghua University up to 32 times over the course of the
study. This indicates to me that perhaps these participants were full-time students
or employed at Tsinghua University. Additional analysis of Table 6.7 reveals that
there exists subgroups of these Tsinghua University attendees who take different
modes of transportation, beyond the buses observed in Table 6.6. Specifically, five
participants came from a nearby car-park to Tsinghua University, whilst another
five participants caught the Beijing Metro, Line 2.

These findings suggest to me that, in addition to those that catch the bus, there
are at least two other types of participants from Tsinghua University: those who
drive cars and those who catch the subway. I highlight that these subgroups of
participants are not necessarily mutually exclusive. Another notable example that
demonstrates the habitual behaviour of the participants is found in the bottom half

150
Chapter 6. Mining Semantic Patterns From Spatio-temporal Trajectories Using

Complex Real-World Places

Place Sequence Sup Place-Times Sequence Sup

Home, Beijing Metro Line 2 7 Renmin University of China (small hours) ×2 6

Home ×8 5 Renmin University of China (small hours), TU
(small hours) 6

Home, Chinese Academy of Sciences
×2

5 Summer Palace (morning) ×2 5

Chinese Academy of Sciences ×3 5 Beijing Metro Line 2 (morning), Beijing Metro
Line 2 (before noon) 5

Peking University, TU ×3 5 Beijing Metro Line 2 (small hours), Beijing
Metro Line 2 (morning) 5

Peking University ×6 5 Beijing Metro Line 2 (small hours) ×3 5
Beihang University ×6 5 Beihang University (before noon) ×2 5

Old Summer Palace ×2 5 Happiness Valley (small hours), Happiness
Valley (morning) 5

Old Summer Palace, TU ×9 5 Peking University (morning) ×2 5
Summer Palace ×4 5 Happiness Valley (small hours) ×7 5
Beijing Metro Line 2 ×5 5 Happiness Valley (morning) ×3 5
Sigma Building ×6 5 TU (small hours) ×9 5

TU ×10, Beijing Metro Line 2 ×2 5 TU (before noon) ×6, TU (afternoon), TU
(before noon) 5

Happiness Valley ×8 5 TU (small hours) ×7, TU (afternoon) 5
Renmin University of China, Home 5 TU (before noon) ×8, TU (afternoon) 5
Renmin University of China, TU ×8 5 TU (before noon) ×2, TU (small hours) ×7 5
Beijing Botanical Garden ×2 5 TU (before noon) ×6, TU (small hours) ×4 5

Carpark, TU 5 TU (before noon) ×6, TU (small hours) ×2, TU
(before noon) ×2

5

Home, TU ×4 5 TU (before noon) ×6, TU (small hours), TU
(before noon) ×4

5

TU ×32 5 TU (before noon) ×8, TU (small hours), TU
(before noon) ×2

5

TU ×6, Home 5 TU (before noon) ×12 5

TABLE 6.7: Top 20 length ≥ 2 place sequences (max sequential patterns) extracted from the
Geolife dataset (TU ×3 means TU, TU, TU). TU stands for Tsinghua University.

of the second column, in Table 6.7. Specifically, it appears that multiple Tsinghua
University attendees have recorded trajectories that reveal their various attendance
timetables. This finding, in particular, highlights the ability of STOSEM to
automatically recover human readable, quickly interpretable, semantic patterns.
Traditional spatio-temporal sequential patterns would have to visualise the
patterns on a map to add semantic meaning; due to the dense overlap of patterns
regarding Tsinghua University, this pattern may be obscured or at least difficult to
uncover if searched for by eye.

Overall, Table 6.7 demonstrates how the presence of sequential information aids
in discovering personalised and habitual patterns in the data. These kinds of
patterns could not quickly be extracted by traditional approaches that require
visualisation of the sequential patterns on a map. It is only due to my approach that
transforms spatio-temporal trajectories into semantic trajectories that human
readable results such as Table 6.7 are easily produced by applying traditional data
mining techniques.

In the second part of this experiment I, additionally, conducted top-20
sequential pattern mining using place-type visitation sequences. The results are
shown in Table 6.8. Table 6.8 reveals many of the same patterns as the other type of
top 20 patterns I have shown so far —for example the university attendee
timetables. However, I do highlight one particular type of pattern in Table 6.8, the
visits to parks, such as “leisure=park ×6" and “amenity=uni, leisure=park ×2".
Investigation reveals that many of the universities I have discovered in the results
are close to parks and nature strips. Furthermore, input from domain experts has
revealed that the parks near the universities are often used for social clubs and

6.5. Conclusion 151

activities associated with the university. For example, “The English Corner" is
public square (classified as “leisure=park") location within the Renmin University
campus, where people gather to speak English.

Place Type Sequence Sup Place-Type-Times Sequence Sup

building=yes ×3 24 building=yes (small hours) ×2 19
highway=bus stop, leisure=park 23 leisure=park (small hours) ×3 17

amenity=uni ×2, building=yes 22 amenity=uni (morning), amenity=uni (small
hours) 17

leisure=park, building=yes 21 amenity=uni (morning) ×2 17

amenity=uni ×2, leisure=park 21 amenity=uni (before noon), amenity=uni
(morning) 16

highway=bus stop ×4 21 amenity=uni (small hours), leisure=park (small
hours) 16

leisure=park ×6 21 amenity=uni (small hours) ×2, amenity=uni
(before noon) ×2

16

leisure=park, highway=bus stop ×2 20 amenity=uni (small hours), amenity=uni
(afternoon) 15

highway=bus stop, amenity=uni,
highway=bus stop 20 amenity=uni (before noon), amenity=uni

(afternoon) 15

highway=bus stop, building=yes ×2 20 amenity=uni (small hours), highway=bus stop
(small hours) 15

amenity=uni, highway=bus stop ×3 20 amenity=uni (small hours), leisure=park
(morning) 15

building=yes, amenity=uni ×2 20 leisure=park (small hours), amenity=uni (small
hours) 15

highway=bus stop, building=yes,
amenity=uni 19 leisure=park (small hours), leisure=park

(morning) ×2
15

amenity=uni, highway=bus stop,
building=yes 19 amenity=uni (small hours), amenity=uni

(morning), amenity=uni (before noon) 15

amenity=uni, building=yes ×2 19 amenity=uni (small hours), amenity=uni (before
noon) ×2, amenity=uni (small hours) 15

amenity=uni, building=yes,
amenity=uni 19

amenity=uni (small hours), amenity=uni (before
noon), amenity=uni (small hours), amenity=uni
(before noon)

15

highway=bus stop, building=yes,
highway=bus stop 19 highway=bus stop (small hours) ×2 15

amenity=uni, leisure=park ×2 19 amenity=uni (small hours), amenity=uni (before
noon) ×3

15

amenity=uni, leisure=park,
amenity=uni 19 amenity=uni (small hours) ×3, amenity=uni

(before noon), amenity=uni (small hours) 15

leisure=park, amenity=uni ×2 19 amenity=uni (small hours) ×4, amenity=uni
(before noon) 15

TABLE 6.8: Top 20 length ≥ 2 place type sequences (max sequential patterns) extracted from
the Geolife dataset (amenity=uni ×3 means amenity=uni, amenity=uni, amenity=uni). Uni

is an abbreviation for university.

6.5 Conclusion

Overall, I have presented my approach, STOSEM, which transforms raw
spatio-temporal trajectories into place visitations that can be mined for semantic
patterns. In Section 6.2.4 I presented my process for extracting places and primary
tags from a repository of real-world places (OSM). Additionally, in Section 6.2.5, I
introduced my unsupervised HMM-based place-matching algorithm, that
considers the order of visited places, overcomes the problem of stop/place
disambiguation, and handles place topology to produce sequences of likely place
visitations. Quantitatively the results have shown that the combination of POSMIT
and SeCluster is not only an effective simplification approach for spatio-temporal
trajectories, but, unlike other existing simplification approaches, also highly
effective at preserving the semantically meaningful stops. Furthermore, the results

152
Chapter 6. Mining Semantic Patterns From Spatio-temporal Trajectories Using

Complex Real-World Places

have demonstrated my place-matching approach is less efficient than approaches
that do not address stop/place disambiguation; however, in exchange for this
increased running time the accuracy of my approach is shown to be superior (up to
28% more accurate in some cases). Lastly, I presented a case-study where STOSEM
was applied to some real-world human trajectories from the Geolife study. The
results from the case study demonstrate STOSEM was able to uncover multiple
seemingly-real semantic patterns from the raw data. Furthermore, the results
revealed multiple habitual behaviours from the participants: many involving
universities and transport. The combination of these case study findings lead me to
conclude that my approach is valid and applicable for mining semantic patterns
from real-world trajectories and places.

153

Chapter 7

Conclusion

In this final chapter of my thesis I draw some overarching conclusions about the
research and discuss its contributions to the greater body of work. Specifically, I
begin this chapter with Section 7.1, which recaps the previous data chapters for the
reader’s convenience. Then, in Section 7.2, I evaluate each of the research
hypotheses I outlined in Section 2.6. I follow this with Section 7.6, which highlights
the limitations of each data chapter and some future research directions and
extensions for the approaches I have introduced. Next, I discuss the theoretical and
empirical contributions of the work in Section 7.3 and follow this with a discussion
of the real-world contributions in Section 7.4. Finally, in Section 7.5 I conclude with
some overall discussion of the research and some speculation about the future of
trajectory data mining.

7.1 Chapter Summaries

Before I proceed, I present a brief recap of each chapter for the convenience of the
reader.

Chapter 3. The aim of this chapter was to investigate trajectory simplification as
a technique to mitigate the challenge of data complexity in raw trajectory datasets.
In this chapter I presented a generalised framework for creating trajectory
simplification approaches by combining entry scoring functions and processing
strategies together. In all, I used five scoring functions and four processing
strategies, some taken from existing poly-line and trajectory simplification
approaches and others new, to create a total of twelve trajectory simplification
algorithms. I quantitatively evaluated each of these algorithms in experiments,
testing their respective running times on various datasets and, also, testing their
preservation error in terms of synchronised Euclidean distance, synchronised area,
and region-of-interest visitation. The experiment results demonstrated that I
produced several O(n) trajectory simplification algorithms that have efficient
running times, whilst maintaining low SED and SA error levels. Additionally, the
experiment results revealed that, in general, the simplification algorithms I created
preserved the original visited regions (even after heavy simplification of 90%).

Chapter 4. The aim of this chapter was to investigate redundancy-controlled,
contiguous sequential pattern mining as a technique to mitigate the challenge of
pattern complexity in large map-matched vehicle trajectory datasets. Specifically, in
this chapter, I presented DC-SPAN, my algorithm for mining a distinct (succinct
and redundancy-controllable) set of contiguous sequential patterns. Using several
real-world map-matched vehicle trajectory datasets, I evaluated DC-SPAN against
equivalent closed- and maximal-contiguous sequential pattern mining algorithms
in terms of running time, compression, lossiness, and redundancy. The experiment
results demonstrated that DC-SPAN can, indeed, control the redundancy of the

154 Chapter 7. Conclusion

pattern output with only a marginal increase in running time required. The results
also showed that when DC-SPAN’s maximum redundancy was set to 0%,
DC-SPAN produced a pattern output approximately 30 to 60% less redundant than
the set of max-contiguous sequential patterns, and 60 to 95% less redundant than
the set of closed-contiguous sequential patterns. This highlights DC-SPAN’s main
unique contribution: its vastly lower and controllable pattern output redundancy.

Chapter 5. The aim of this chapter was to investigate a probabilistic stop/move
classification approach that addresses the challenge of adding semantic meaning to
raw trajectories, while also accounting for the challenge of spatial uncertainty
present in real-world GPS recordings. Specifically, in this chapter, I introduced a
stop/move classification algorithm called POSMIT that calculates the stop
probability of each entry by considering its neighbouring entries and accounting
for the presence of spatial noise. By calculating the stop probability of each entry,
the user is able to set a threshold parameter to filter out stop classifications that are
not likely enough for their application. To evaluate and compare POSMIT to
existing approaches I collected real-world ground-truth datasets myself, using a
custom Android application that allowed me to annotate stops and moves as I
made them. Additionally, I found a publicly available bus dataset online, that
contained stops and moves that I used as a second ground-truth dataset. Lastly, I
generated some synthetic trajectories with millions of entries to test scalability.
Using these as my ground-truths, I compared POSMIT to two existing approaches
in terms of running time, classification effectiveness, parameter sensitivity,
parameter estimation, and sampling-rate robustness. The results demonstrated
POSMIT achieved higher classification effectiveness scores, less sensitive
parameters, effective (sometimes near optimal) parameter estimations, and a
greater robustness to sparse sampling-rates.

Chapter 6. This chapter was my final data chapter and, therefore, I used it to
present an overarching approach that combined several topics and concepts from
the previous chapters together. The aim of this overarching trajectory data mining
approach was to account for the challenges I identified in the introduction: spatial
uncertainty, trajectory complexity, pattern complexity, and adding semantic
meaning. Specifically, I introduce trajectory data mining approach, called STOSEM,
that mines frequent place visitation itemsets and sequences from raw
spatio-temporal trajectories. STOSEM begins by using POSMIT to extract
stop/move annotated trajectories. Then, these stop/move trajectories are
transformed into discrete stop/move episodes using an algorithm I introduced
called SeCluster. Next, each stop/move episode is associated with any nearby place
geometries from OpenStreetMap. Using a novel probabilistic place-matching
algorithm (that I introduced) each sequence of stop episodes is associated with the
most probable sequence of visited places. This place-matching algorithm is
different from existing approaches because it considers: the problem of stop/move
disambiguation, place topology, the sequence of visited places, and matching to
place geometries that are points or polygons —all in an unsupervised manner
without the need to expert-level parameters or training data. Once place-matching
is finished, the sequences of visited places are discrete and succinct; thus, they are
mined by existing itemset and sequential pattern mining approaches. Experiment
results with real and synthetic datasets demonstrate STOSEM’s running time
performance, robustness to GPS noise, dataset compression, and place-matching
accuracy. Additionally, a case study using human trajectories from the real-world
Geolife dataset revealed many interesting and seemingly-real patterns. These
findings suggest the effectiveness of my place-matching algorithm and also the

7.2. Evaluation of Research Hypotheses 155

general validity and applicability of STOSEM as a semantic trajectory data mining
approach.

7.2 Evaluation of Research Hypotheses

I present an evaluation of each of my research hypotheses in the following
subsections.

7.2.1 Trajectory Simplification Hypothesis

The research hypothesis for Chapter 3 was:

“A framework that generalises the problem of trajectory simplification into a
combination of significance scoring functions and processing strategies, will be
able to extend existing poly-line simplification algorithms to trajectory
simplification approaches. These new simplification approaches will outperform
their original counterparts in regard to spatio-temporal error metrics such as
SED."

In Chapter 3, I identified the scoring function and processing strategy of three
spatial simplification algorithms (Douglas and Peucker, 1973; Visvalingam and
Whyatt, 1993; Lee et al., 2007) and extended them using my framework so they
could simplify spatio-temporal trajectories. I conclude that this research hypothesis
is satisfied as the results in Section 3.3.2 demonstrated that SPLPD, EXTA, GRPPA
outperformed their 2d counterparts (the original algorithms) in both the SED and
SA experiments at all simplification levels.

7.2.2 Vehicle Trajectory Pattern Mining Hypothesis

The research hypothesis for Chapter 4 was:

“Mining map-matched vehicle trajectories, using a contiguous sequential
pattern mining approach that prunes the pattern output, will result in a set of
roads-driven that are unique (non-overlapping) and less redundant than the
output from existing contiguous-closed or max-sequential pattern mining
approaches."

In this chapter I proposed DC-SPAN, which effectively post-processes the
output of another contiguous sequential pattern mining algorithm to produce a
redundancy controlled pattern output. I have shown quantitatively in the
experiments in Section 4.4.5 that when the maximum redundancy is set to 0% the
percentage of redundant pairs (i.e redundant road segments in the case of vehicle
trajectories) is also 0%. In other words, by setting a maximum redundancy of 0%
one can achieve unique (non-overlapping) set of travelled roads when mining
vehicle trajectories; thus, satisfying my research hypothesis for this chapter.

7.2.3 Probabilistic Stop/Move Classification Hypothesis

The research hypothesis for Chapter 5 was:

156 Chapter 7. Conclusion

“A probabilistic stop/move detection algorithm with a minimum stop
probability threshold parameter will allow low probability (i.e. ambiguous) stop
classifications to be filtered out by the user; this will ultimately result in a more
controllable false-positive rate and a higher overall classification accuracy than
existing approaches."

The experiments in Section 5.3.4 quantitatively demonstrated that a user can
change the stop probability parameter to filter out low probability entries from the
classification result. Additionally, it was found that when the user increases the
minimum stop probability parameter, the number of false-positives consistently
decreased in the tested datasets: a finding I would expect to hold in other datasets.
Lastly, it was also demonstrated in the experiments in Section 5.3.2 that POSMIT
achieved a higher maximum classification effectiveness than the two compared
approaches and, additionally, that POSMIT generally had a wider range of
parameters that produced high classification effectiveness scores. Thus, I conclude
that the research hypothesis for this chapter is fulfilled.

7.2.4 Probabilistic Place-matching Hypothesis

The research hypothesis for Chapter 6 was:

“A probabilistic place-matching algorithm that considers stop/place
disambiguation, place topology, and the sequence of visited places will be more
accurate than place-matching approaches that form matches by using spatial
intersections."

The experiments in Section 6.3.4 quantitatively demonstrated that my
place-matching algorithm, which considers stop/place disambiguation, place
topology, and the sequence of visited places, was more accurate (even under
varying noise levels) than the representative algorithm I compared against that did
not consider these features. Thus, I conclude that the research hypothesis for this
chapter is fulfilled.

7.3 Theoretical and Empirical Contributions

I consider theoretical and empirical contributions as those that introduce ideas,
concepts, methods, or results that contribute to the greater body of trajectory data
mining research.

The first such contribution I highlight is the generalisation I introduced in
Chapter 5 to describe and create trajectory simplification algorithms. Specifically, I
introduced the notion of significance scoring functions and processing strategies,
which I demonstrated can be easily combined together to create new and tailored
trajectory simplification schemes. Furthermore, the generalisation seems to be a
useful technique to describe and compare various trajectory simplification schemes.
Thus, I conclude that this contribution may be useful to future researchers to
explore and create new trajectory simplification algorithms, and also, more
generally, as a tool to conceptualise and compare various approaches.

Chapter 4 also contains a number of theoretical contributions. Specifically, there
is the notion of redundancy controlled output through lossiness, the supporting
concepts of pairs and cover, and the notion of distinct patterns. As I highlighted in
Section 2.3, many of the existing sequential pattern mining approaches reduce the

7.3. Theoretical and Empirical Contributions 157

pattern output by applying some sort of constraint on the patterns. Yet, as I
demonstrated in Section 4.1, such approaches can produce highly redundant
pattern outputs when the input sequences are sufficiently homogeneous. Thus, I
investigated the notion of a truly lossy sequential pattern mining algorithm where
some subsequences are discarded entirely to produce a redundancy-controlled
pattern output. Except for the similar problem of mining a compressing set of
sequential patterns (Vreeken et al., 2011; Lam et al., 2014), this notion of discarding
patterns is relatively unexplored —most likely because most sequential pattern
mining approaches want to keep all relevant patterns. However, I argue I have
shown in Chapter 4 that mining a redundancy-controlled output can be useful in
specific applications, such as large map-matched vehicle trajectory datasets. Thus,
by introducing my notion of distinct patterns, and providing an investigation into
mining them, I argue that I have contributed to the greater body of sequential
pattern mining work. I encourage future researchers to find applications where a
redundancy-controlled sequential pattern mining output may be helpful and, in
those cases apply distinct pattern mining.

Chapter 5 also contains two contributions: one theoretical and the other
empirical. The theoretical contribution is the core concept behind POSMIT:
probabilistically finding stops and, thereby, indicating the degree of certainty
associated with each classification. This allows the user to filter out stops that are
not certain enough for their application. This notion of providing an indication of a
“goodness-of-classification" in the result is not a feature afforded by any of the
existing approaches I reviewed. However, the experiment results in Section 5.3.4
demonstrated it is effective and allows the user to easily filter out less likely
classifications (i.e. potential false-positives). As the results have shown POSMIT to
be effective, I consider the notions of probabilistic stop/move classification and
“goodness-of-classification" to be useful concepts for the field going forward; I
encourage future researchers to incorporate and extend them with their own
stop/move classification or general data mining schemes.

Additionally, the empirical contributions from Chapter 5 are the parameter
estimation schemes I provided. None of them are novel or unique from existing
parameter selection tasks. However, I argue their application to the problem is an
empirical contribution to the field: from my review in Section 2.4, very few
approaches provided parameter estimations (and none provided estimations for all
parameters, like I did). Thus, given the effectiveness of the parameter estimation
algorithms as demonstrated in the experiment results, I consider my parameter
estimation approaches for POSMIT a useful tutorial for future researchers dealing
with the problem of stop/move classification.

Lastly, there are three contributions from Chapter 6 that merit discussion. The
first contribution is the place-matching algorithm I introduced. It is most similar to
existing works by Yan et al. (2013) and Lv et al. (2016), in that is uses a probabilistic
approach based on HMMs like they do; however, unlike those approaches, my
place-matching is unsupervised and does not require any expert-level parameter
setting or training datasets. Specifically, the concepts I use to calculate the emission
probability and transition probability in the HMM —considering place geometry,
place topology, and the order of visited place types —is a those are theoretical
contributions future researchers can benefit from, extend, and compare against.

The second theoretical contribution from Chapter 6 is the presented trajectory
data mining approach: STOSEM. I consider this a theoretical contribution for future
researchers because it introduces an overarching technique for producing
sequences, frequent itemsets, and sequential patterns of place visitations from raw

158 Chapter 7. Conclusion

trajectories. It contains various concepts, of which many are not entirely new
contributions; however, the combination of them all together, in this way, is unique,
as far as I can tell. As STOSEM is relatively modularised I encourage future
researchers to extend STOSEM by introducing further semantic enrichment steps
and, ultimately, find even more knowledge rich trajectory patterns. The final
contribution from Chapter 6 is the empirical contribution of the case study
performed in Section 6.4. The contribution is not necessarily the specific findings
but, more generally, that place visitation sequences can reveal behaviour profiles
and frequent places/place sequences. I suggest that STOSEM, or at least its
combination of techniques, may lead to novel trajectory data mining applications,
particularly given that the only external requirement to run STOSEM is a place
repository (of which there are now many excellent choices).

7.4 Real-world Contributions

I consider the real-world contributions of this thesis to be tangible research outputs
that others may use in the future. Unfortunately, from the experience of conducting
this thesis, it seems apparent that very few approaches are being shared publicly in
the trajectory data mining community. This limits the growth of the field, as a whole,
and makes objective comparison, among approaches, more difficult than it needs to
be.

Thus, I consider the major real-world contribution of this thesis to be the
sharing of my approaches. I have investigated the overall process of trajectory data
mining and knowledge discovery, produced a number of algorithms as a result, and
am sharing all of them publicly. Specifically, I produced new algorithms relating to:
trajectory simplification 1, redundancy controlled contiguous sequential pattern
mining 2, stop/move detection 3, and place-matching/semantic pattern mining 4

—all of which I have made publicly available for future researchers. I highlight that
sharing all the algorithms is far more useful than sharing one, or some, because, as
a whole, they represent an entire semantic trajectory data mining tool-kit, which as
I have shown in Chapter 6, can be used to make knowledge discoveries from
real-world trajectories. Additionally many of the source code repositories I share,
also contain my synthetic data generators, evaluation frameworks, and existing
algorithms for map-matching, trajectory RoI mining, and stop/move detection
—all of which I expect may be useful for future researchers. Overall, I encourage
future researchers to use, extend, and compare all the approaches provided to
improve the greater body of knowledge in the field of trajectory data mining.

Other real-world contributions of my research include the ground-truth
stop/move annotated trajectories I collected to evaluate POSMIT in Chapter 5.
Again, I have made these publicly available5. From my review of existing
stop/move detection approaches in Section 2.4, it seemed apparent to me that the
field was sorely lacking a public ground-truth dataset they could use to evaluate
and compare various approaches with. Thus, I have contributed such a dataset to
the field along with the Android application used to collect it 6.

1https://github.com/lukehb/137-simplification
2https://github.com/lukehb/137-SPM
3https://github.com/lukehb/137-stopmove
4https://github.com/lukehb/STOSEM
5http://doi.org/10.13140/RG.2.2.29896.01281
6https://github.com/lukehb/137-GPS-Tracker

7.5. Concluding Remarks 159

7.5 Concluding Remarks

As discussed in Section 1.2, this thesis is situated in the second generation of
trajectory data mining, where the focus has shifted towards higher level semantic
knowledge and real-world applications that use a combination of techniques.
Earlier in this thesis, in Section 1.4, I identified four challenges that I consider to be
prevalent now and for the future of the field: spatial uncertainty, trajectory
complexity, pattern complexity, and semantic meaning. Each chapter I investigated
one or multiple of these challenges in regard to various topics within the field of
trajectory data mining.

Recalling the stages of the trajectory data mining and knowledge discovery
process —data, pre-processing, transformation, mining, knowledge discovery, and
application —this thesis has allowed me to investigate the relevant challenges at
each stage. Specifically I explored: pre-processing through trajectory simplification
in Chapter 3, trajectory transformation and mining through distinct pattern mining
in Chapter 4, trajectory transformation and semantic meaning through stop/move
classification in Chapter 5 and, lastly, all the stages in Chapter 6. Chapter 6 is
particularly important to my research because that chapter is effectively a
culmination of new approaches (i.e. place-matching), existing approaches, and
work from previous chapters to produce STOSEM: my overarching semantic
trajectory data mining approach. Additionally, in Section 6.4 of Chapter 6, I went a
step further than the other chapters and performed a case-study using real-world
human trajectories from the Geolife dataset. This revealed patterns that suggested
several interesting behaviour profiles and groups of people who appeared to be
university students or academics. These results were succinct, human readable, and
highly semantically meaningful. Thus, I consider the results from this case study to
demonstrate that my overall investigation has actually addressed each of the
challenges of spatial uncertainty, trajectory complexity, pattern complexity, and
semantic meaning. More broadly, I consider that culminating work to fulfil my
initial intention of “An Investigation Into Data Mining Large And Noisy
Spatio-Temporal Trajectories To Produce Succinct and Semantically Meaningful
Patterns".

In terms of where this leaves the field, I have already outlined specific
contributions in Section 7.3 and Section 7.4; however, more broadly, the four
challenges will still persist going forward but, perhaps, they will be less of a
problem as the continual research effort, which I have contributed to, produces
approaches to address them. Thus, we may currently be close to a third generation
of trajectory data mining where the challenges of the past are easily solved and the
focus is strongly on real-world semantic applications. For example, we may see
real-time decision making, smart transport, and smart urban planning applications
have the technological, data availability, and public adoption prerequisites to
become mainstream trajectory data mining research topics.

7.6 Limitations and Future Directions

Reflecting on this thesis, I identify a number of limitations and extension topics that
I now recommend as future research directions.

160 Chapter 7. Conclusion

7.6.1 Trajectory Simplification

The first new direction for the work in this chapter relates to the normalisation
process used in my framework. It essentially normalises each spatial and temporal
dimension into the unit space [0, 1], using the minimum and maximum observed
values for each dimension of the dataset. Normalising the data in this way imposes
a mapping between spatial and temporal coordinates; however, I did not
investigate the reasonableness of this mapping, nor its trade-offs compared to other
schemes. Such an investigation may be an interesting research direction, but I
recommend something different: investigating removing the normalisation step
entirely. Specifically, the normalisation step in my framework could be removed if
one the significance scoring functions are changed to do their own spatio-temporal
considerations.

For example, as I discussed in Section 2.2, a number of works have already
replaced the perpendicular distance functions in the Douglas-Peucker
algorithm (Douglas and Peucker, 1973) with SED because it naturally incorporated
both spatial and temporal dimensions. In this chapter I already introduced SA,
which could be used to replace the area scoring function in the
Visvalingham-Whyatt algorithm (Visvalingam and Whyatt, 1993) and, therefore,
make the normalisation step unnecessary for that approach. Considering the
synchronising scheme used in SED and SA, it seems feasible to invent a
synchronised angle measure and a synchronised parallel distance measure —doing
so would cover all the significance scoring functions I introduced in this chapter
(speed is already implicitly spatio-temporal so no special consideration is required
for that). Therefore, I recommend this as one future direction for the field of
trajectory simplification approaches, in general, because it bypasses the need for
normalising the whole dataset and handles the space-time relationship at a per
entry level, which is surely more effective.

Another limitation of this chapter are the types of significance scoring functions
evaluated. I only investigated approaches that calculate significance based on
spatio-temporal features. However, as I discussed in Section 1.4.4, the field of
trajectory data mining seems to be leaning towards uncovering semantically
meaningful patterns; thus, it follows, that a trajectory simplification approach
should score entries based on their semantic significance. For example, consider a
significance scoring function designed to preserve the features used for stop/move
detection (i.e. local sequence density and velocity). A semantic scoring function is
challenging though because it raises the task of comparability. For example, how
does one answer the question: is this entry more semantically meaningful than this
other entry? I speculate preserving semantics will be an important research
direction for trajectory simplification going forward.

The final limitation I consider for this chapter is that my framework was
designed to only produce offline trajectory simplification approaches. However, as
devices and infrastructure get better and cheaper there will, undoubtedly, be a
greater call for real-time trajectory data collection and on-device simplification.
Thus, as a specific future research direction for my framework I recommend
extending it to produce online trajectory simplification approaches. The most
difficult challenge in this direction appears to me to be the problem of requiring
user-specified algorithm-specific error tolerance parameters. Doing so would make
combining various modules together more difficult because the user would, then,
be required to predict the characteristics of the incoming data, and also have some
understanding of the internals of each specific scoring function they wish to use.

7.6. Limitations and Future Directions 161

7.6.2 Vehicle Trajectory Pattern Mining

The first limitation I identify for this chapter is that DC-SPAN mines the pattern
output of another algorithm. Therefore its performance characteristics are implicitly
tied to that algorithm and more specifically it cannot outperform that algorithm. In
order to break this dependency, I recommend investigating the mining of distinct-
contiguous sequential patterns within a single algorithm.

The second limitation of this chapter is that I focused solely on mining vehicle
trajectories; however, other fields of study, such as biology, may also find the
patterns produced by DC-SPAN useful. Thus, as a future research direction, I
recommend a case-study mining distinct patterns in various relevant domains and
comparing the usefulness to existing approaches used in those domains. Another
limitation I identify is that my implementation of DC-SPAN requires the sequence
database to fit into machine memory; however, many sequence databases
(especially vehicle trajectory datasets) are too large to be loaded into memory.
Thus, I recommend investigating an on-disk data-structure or distributed
computing modification for DC-SPAN.

The final limitation I identify is that the lossiness of DC-SPAN is unbounded,
which may be unsuitable for some use-cases. Considering how the redundancy
constraint is maintained in DC-SPAN, it seems plausible to me that an additional
constraint of maximum lossiness could also be maintained if another user-specified
parameter was passed in. Thus, my final recommendation for this chapter is to
investigate extending DC-SPAN to have a maximum lossiness parameter.

7.6.3 Trajectory Stop/Move Classification

The first limitation I identify for this chapter is that stop/move data is inferred from
GPS trajectories, which are increasingly being processed in real-time, as they are
collected in the field. However, POSMIT is a purely offline algorithm; therefore, one
future direction I recommend for POSMIT is an extension to handle online data.

Another limitation of POSMIT is that it requires two fixed parameters to
account for the presence of spatial noisiness in the data. Although I have provided
estimation heuristics for hd and hi, ultimately, they are fixed, and this makes
manually tuning the algorithm beyond estimation challenging —especially for hi,
as it impacts both the running time performance and effectiveness of the algorithm.
Considering that spatial uncertainty in GPS trajectories varies as the tracked entity
moves between more, or less, ideal recording environments, it would be preferable
if POSMIT’s weighting and sampling neighbourhood, hd and hi, somehow varied
with the relative spatial uncertainty at a given entry. Of course, this raises a new
challenge of correctly identifying the level of spatial uncertainty at each trajectory
entry.

My final future direction for this chapter is targeted at the field overall, rather
than POSMIT directly. Specifically, I recommend investigating a generalisation of
the problem similar to the one I did in Chapter 3 for trajectory simplification. My
reasoning is that my literature review in Section 2.4 seems to suggest that many
existing works follow a similar paradigm. Thus, a generalisation of the problem
seems plausible. I speculate that such a generalisation may allow one to combine
POSMIT’s probabilistic classification result with other types of approaches. For
example, density-based stop/move detection schemes may use the distance from
the stop cluster centroid as a metric to calculate the likelihood that a given entry

162 Chapter 7. Conclusion

belongs to that stop. Such fusions of concepts may present further and more
use-case specific stop/move detection approaches.

7.6.4 Trajectory Place-matching

The first limitation I identify for this chapter is that even though both stop and
move episodes are formulated, I only used the stop episodes during semantic
pattern mining. The move episodes are simply discarded. Thus, as a future
extension of STOSEM, I recommend using an existing inference approach, such as
the work of Widhalm et al. (2012), to label the move episodes based on their likely
transport mode (walk, bike, car, bus etc.). This would provide an extra dimension
of semantic data that would surely be beneficial to the final semantic pattern
output.

Another limitation of this chapter is that I only evaluated my place-matching
using synthetic data, and my overall mining approach through observations in a
case study. Ideally, in future works, I recommend evaluating these using a
real-world, ground-truth of spatio-temporal trajectories, annotated with visited
places. The problem is that generating such a dataset would surely require human
participants to keep travel diaries, which is tedious and error prone.

The final limitation of this chapter is that I only investigated mining frequent
itemset and sequential patterns from the sequences of visited places. Recall, that in
the case-study section of this chapter I discussed apparent behaviour profiles being
suggested by the pattern output. I argue that even richer behaviour profiles may
have emerged had I mined period patterns (Han et al., 1999). Periodic pattern
mining could automatically detect recurring visitations to certain sequences of
places, which may indicate a certain kind of participant. Thus, as a future research
extension to STOSEM I recommend mining periodic trajectory patterns from the
place visitation sequences.

163

Bibliography

Abul, Osman, Francesco Bonchi, and Mirco Nanni (2008). “Never Walk Alone:
Uncertainty for Anonymity in Moving Objects Databases”. In: Proceedings of the
2008 IEEE 24th International Conference on Data Engineering. ICDE ’08.
Washington, DC, USA: IEEE Computer Society, pp. 376–385. ISBN:
978-1-4244-1836-7. DOI: 10 . 1109 / ICDE . 2008 . 4497446. URL:
http://dx.doi.org/10.1109/ICDE.2008.4497446.

Alencar, Lucas Andre de et al. (2015). “A Rule-based Method for Discovering
Trajectory Profiles”. In: The 27th International Conference on Software Engineering
and Knowledge Engineering, SEKE 2015, Wyndham Pittsburgh University Center,
Pittsburgh, PA, USA, July 6-8, 2015, pp. 244–249. DOI:
10 . 18293 / SEKE2015 - 143. URL:
https://doi.org/10.18293/SEKE2015-143.

Alexander, Ken (2014). “US GPS program and policy update”. In: 26th SBAS
International Working Group, pp. 24–29.

Alexander, Lauren et al. (2015). “Origin–destination trips by purpose and time of day
inferred from mobile phone data”. In: Transportation Research Part C: Emerging
Technologies 58. Big Data in Transportation and Traffic Engineering, pp. 240 –250.
ISSN: 0968-090X. DOI: http://dx.doi.org/10.1016/j.trc.2015.02.
018. URL: http://www.sciencedirect.com/science/article/pii/
S0968090X1500073X.

Alvares, Luis Otavio et al. (2007). “A Model for Enriching Trajectories with
Semantic Geographical Information”. In: Proceedings of the 15th Annual ACM
International Symposium on Advances in Geographic Information Systems. GIS ’07.
Seattle, Washington: ACM, 22:1–22:8. ISBN: 978-1-59593-914-2.

Amato, G. et al. (2018). “How Data Mining and Machine Learning Evolved from
Relational Data Base to Data Science”. In: A Comprehensive Guide Through the
Italian Database Research Over the Last 25 Years. Ed. by Sergio Flesca et al. Cham:
Springer International Publishing, pp. 287–306. ISBN: 978-3-319-61893-7. DOI:
10 . 1007 / 978 - 3 - 319 - 61893 - 7 _ 17. URL:
https://doi.org/10.1007/978-3-319-61893-7_17.

Andrienko, Natalia and Gennady Andrienko (Jan. 2013). “Visual Analytics of
Movement: An Overview of Methods, Tools and Procedures”. In: Information
Visualization 12.1, pp. 3–24. ISSN: 1473-8716. DOI:
10 . 1177 / 1473871612457601. URL:
http://dx.doi.org/10.1177/1473871612457601.

Ankerst, Mihael et al. (June 1999). “OPTICS: Ordering Points to Identify the
Clustering Structure”. In: SIGMOD Rec. 28.2, pp. 49–60. ISSN: 0163-5808. DOI:
10 . 1145 / 304181 . 304187. URL:
http://doi.acm.org/10.1145/304181.304187.

Antunes, Cláudia and Arlindo L. Oliveira (2003a). “Generalization of
Pattern-Growth Methods for Sequential Pattern Mining with Gap Constraints”.
In: Machine Learning and Data Mining in Pattern Recognition: Third International
Conference, MLDM 2003 Leipzig, Germany, July 5–7, 2003 Proceedings. Ed. by

164 Bibliography

Petra Perner and Azriel Rosenfeld. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 239–251. ISBN: 978-3-540-45065-8. DOI:
10 . 1007 / 3 - 540 - 45065 - 3 _ 21. URL:
https://doi.org/10.1007/3-540-45065-3_21.

Antunes, Cláudia and Arlindo L. Oliveira (2003b). “Generalization of
Pattern-Growth Methods for Sequential Pattern Mining with Gap Constraints”.
In: Machine Learning and Data Mining in Pattern Recognition: Third International
Conference, MLDM 2003 Leipzig, Germany, July 5–7, 2003 Proceedings. Ed. by
Petra Perner and Azriel Rosenfeld. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 239–251. ISBN: 978-3-540-45065-8. DOI:
10 . 1007 / 3 - 540 - 45065 - 3 _ 21. URL:
http://dx.doi.org/10.1007/3-540-45065-3_21.

Ashbrook, Daniel and Thad Starner (Oct. 2003). “Using GPS to Learn Significant
Locations and Predict Movement Across Multiple Users”. In: Personal Ubiquitous
Comput. 7.5, pp. 275–286. ISSN: 1617-4909. DOI: 10.1007/s00779-003-0240-
0. URL: http://dx.doi.org/10.1007/s00779-003-0240-0.

Ashdown, J. D. et al. (Mar. 2013). “A full-duplex ultrasonic through-wall
communication and power delivery system”. In: IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control 60.3, pp. 587–595. ISSN:
0885-3010. DOI: 10.1109/TUFFC.2013.2600.

Atev, S., G. Miller, and N. P. Papanikolopoulos (Sept. 2010). “Clustering of Vehicle
Trajectories”. In: IEEE Transactions on Intelligent Transportation Systems 11.3,
pp. 647–657. ISSN: 1524-9050. DOI: 10.1109/TITS.2010.2048101.

Ayres, Jay et al. (2002). “Sequential PAttern Mining Using a Bitmap Representation”.
In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’02. New York, NY, USA: ACM, pp. 429–435.
ISBN: 1-58113-567-X. DOI: 10.1145/775047.775109. URL: http://doi.
acm.org/10.1145/775047.775109.

Bao, Jie et al. (July 2015). “Recommendations in Location-based Social Networks: A
Survey”. In: Geoinformatica 19.3, pp. 525–565. ISSN: 1384-6175. DOI: 10.1007/
s10707-014-0220-8. URL: http://dx.doi.org/10.1007/s10707-
014-0220-8.

Beber, Marco Aurelio et al. (Nov. 2016). “Towards activity recognition in moving
object trajectories from Twitter data”. In: XVII Brazilian Symposium on
Geoinformatics - GeoInfo 2016. Campos do Jordão, SP, Brazil, pp. 68–79. URL:
http://urlib.net/8JMKD3MGPDW34P/3NDC4BB.

Bermingham, L., K. Lee, and I. Lee (Dec. 2014). “Spatio-Temporal Trajectory
Region-of-Interest Mining Using Delaunay Triangulation”. In: 2014 IEEE
International Conference on Data Mining Workshop, pp. 1–8. DOI:
10.1109/ICDMW.2014.47.

Bermingham, Luke and Ickjai Lee (2014). “Spatio-temporal Sequential Pattern
Mining for Tourism Sciences”. In: Procedia Computer Science 29.0. 2014
International Conference on Computational Science, pp. 379 –389. ISSN:
1877-0509. DOI: http://dx.doi.org/10.1016/j.procs.2014.05.034.
URL: http : / / www . sciencedirect . com / science / article / pii /
S1877050914002117.

Bogorny, Vania et al. (2014). “CONSTAnT – A Conceptual Data Model for Semantic
Trajectories of Moving Objects”. In: Transactions in GIS 18.1, pp. 66–88. ISSN: 1467-
9671. DOI: 10.1111/tgis.12011. URL: http://dx.doi.org/10.1111/
tgis.12011.

Bibliography 165

Boukhechba, Mehdi et al. (2015). “Online Recognition of People’s Activities from
Raw GPS Data: Semantic Trajectory Data Analysis”. In: Proceedings of the 8th
ACM International Conference on PErvasive Technologies Related to Assistive
Environments. PETRA ’15. Corfu, Greece: ACM, 40:1–40:8. ISBN:
978-1-4503-3452-5. DOI: 10 . 1145 / 2769493 . 2769498. URL:
http://doi.acm.org/10.1145/2769493.2769498.

Brakatsoulas, Sotiris et al. (2005). “On Map-matching Vehicle Tracking Data”. In:
Proceedings of the 31st International Conference on Very Large Data Bases. VLDB ’05.
Trondheim, Norway: VLDB Endowment, pp. 853–864. ISBN: 1-59593-154-6. URL:
http://dl.acm.org/citation.cfm?id=1083592.1083691.

Buchin, Kevin et al. (2011). “Finding long and similar parts of trajectories”. In:
Computational Geometry 44.9, pp. 465 –476. ISSN: 0925-7721. DOI:
http : / / dx . doi . org / 10 . 1016 / j . comgeo . 2011 . 05 . 004. URL:
http : / / www . sciencedirect . com / science / article / pii /
S0925772111000344.

Cao, Hu, Ouri Wolfson, and Goce Trajcevski (Apr. 2006). “Spatio-temporal Data
Reduction With Deterministic Error Bounds”. In: The VLDB Journal 15.3,
pp. 211–228. ISSN: 1066-8888.

Cao, Huiping, Nikos Mamoulis, and David W. Cheung (2005). “Mining Frequent
Spatio-Temporal Sequential Patterns”. In: Proceedings of the Fifth IEEE
International Conference on Data Mining. ICDM ’05. Washington, DC, USA: IEEE
Computer Society, pp. 82–89. ISBN: 0-7695-2278-5. DOI:
10 . 1109 / ICDM . 2005 . 95. URL:
http://dx.doi.org/10.1109/ICDM.2005.95.

Cao, Xin, Gao Cong, and Christian S. Jensen (Sept. 2010). “Mining Significant
Semantic Locations from GPS Data”. In: Proc. VLDB Endow. 3.1-2, pp. 1009–1020.
ISSN: 2150-8097. DOI: 10 . 14778 / 1920841 . 1920968. URL:
http://dx.doi.org/10.14778/1920841.1920968.

Chen, Minjie, Mantao Xu, and P. Franti (May 2012). “A Fast O(N) Multiresolution
Polygonal Approximation Algorithm for GPS Trajectory Simplification”. In:
Image Processing, IEEE Transactions on 21.5, pp. 2770–2785. ISSN: 1057-7149. DOI:
10.1109/TIP.2012.2186146.

Chen, Yukun et al. (2009). “Trajectory Simplification Method for Location-based
Social Networking Services”. In: Proceedings of the 2009 International Workshop on
Location Based Social Networks. LBSN ’09. Seattle, Washington: ACM, pp. 33–40.
ISBN: 978-1-60558-860-5. DOI: 10 . 1145 / 1629890 . 1629898. URL:
http://doi.acm.org/10.1145/1629890.1629898.

Chen, Zaiben, Heng Tao Shen, and Xiaofang Zhou (2011). “Discovering Popular
Routes from Trajectories”. In: Proceedings of the 2011 IEEE 27th International
Conference on Data Engineering. ICDE ’11. Washington, DC, USA: IEEE
Computer Society, pp. 900–911. ISBN: 978-1-4244-8959-6. DOI:
10 . 1109 / ICDE . 2011 . 5767890. URL:
http://dx.doi.org/10.1109/ICDE.2011.5767890.

Cortes, Corinna and Vladimir Vapnik (Sept. 1995). “Support-Vector Networks”. In:
Mach. Learn. 20.3, pp. 273–297. ISSN: 0885-6125. DOI:
10 . 1023 / A : 1022627411411. URL:
https://doi.org/10.1023/A:1022627411411.

DATA.GOV.IE (2013). Dublin Bus GPS sample data from Dublin City Council (Insight
Project). [Online; accessed 12-November-2017]. URL:
https://data.gov.ie/dataset/dublin-bus-gps-sample-data-
from-dublin-city-council-insight-project.

166 Bibliography

Defence, Department of (2008). Global Positioning System Standard Positioning Service
Performance Standard. 4th. Department of Defence. URL: http://www.gps.
gov/technical/ps/2008-SPS-performance-standard.pdf.

Diggelen, Frank van and Per Enge (2015). “Proceedings of the 28th International
Technical Meeting of The Satellite Division of the Institute of Navigation (ION
GNSS 2015)”. In: Proceedings of the 28th International Technical Meeting of The
Satellite Division of the Institute of Navigation (ION GNSS 2015). Vol. 63. ION,
361–369. URL: https :
//www.ion.org/publications/abstract.cfm?articleID=13079.

Diggelen, Frank Van (2007). “Accuracy-Lies, Damn Lies, and Statistics”. In: GPS
world 18.1, pp. 26–33.

Douglas, David H and Thomas K Peucker (1973). “Algorithms For The Reduction
Of The Number Of Points Required To Represent A Digitized Line Or Its
Caricature”. In: Cartographica: The International Journal for Geographic Information
and Geovisualization 10.2, pp. 112–122.

Ekdemir, Sadan (2011). “ Efficient Implementation of Polyline Simplification for
Large Datasets and Usability Evaluation”. MA thesis. Uppsala University,
Department of Information Technology.

Ester, Martin et al. (1996). “A density-based algorithm for discovering clusters in
large spatial databases with noise”. In: KDD ’96: Proceedings of the 2nd
International Conference on Knowledge Discovery and Data Mining. AAAI Press,
pp. 226–231.

Exarchos, Themis P. et al. (2008). “Mining sequential patterns for protein fold
recognition”. In: Journal of Biomedical Informatics 41.1, pp. 165 –179. ISSN:
1532-0464.

Feng, Z. and Y. Zhu (Apr. 2016). “A Survey on Trajectory Data Mining: Techniques
and Applications”. In: IEEE Access 4, pp. 2056–2067. ISSN: 2169-3536. DOI: 10.
1109/ACCESS.2016.2553681.

Fournier-Viger, Philippe et al. (2014a). “Fast Vertical Mining of Sequential Patterns
Using Co-occurrence Information”. In: Advances in Knowledge Discovery and Data
Mining: 18th Pacific-Asia Conference, PAKDD 2014, Tainan, Taiwan, May 13-16, 2014.
Proceedings, Part I. Ed. by Vincent S. Tseng et al. Cham: Springer International
Publishing, pp. 40–52. ISBN: 978-3-319-06608-0. DOI: 10.1007/978-3-319-
06608-0_4.

Fournier-Viger, Philippe et al. (2014b). “SPMF: A Java Open-source Pattern Mining
Library”. In: J. Mach. Learn. Res. 15.1, pp. 3389–3393. ISSN: 1532-4435. URL: http:
//dl.acm.org/citation.cfm?id=2627435.2750353.

Fournier-Viger, Philippe et al. (2014c). “VMSP: Efficient Vertical Mining of Maximal
Sequential Patterns”. In: Advances in Artificial Intelligence: 27th Canadian
Conference on Artificial Intelligence, Canadian AI 2014, Montréal, QC, Canada, May
6-9, 2014. Proceedings. Ed. by Marina Sokolova and Peter van Beek. Cham:
Springer International Publishing, pp. 83–94. ISBN: 978-3-319-06483-3. DOI:
10.1007/978-3-319-06483-3_8.

Fournier-Viger, Philippe et al. (2017). “A Survey of Sequential Pattern Mining”. In:
Data Science and Pattern Recognition 1.1, pp. 54–77. ISSN: 2520-4165. URL: http:
//www.ikelab.net/dspr-pdf/vol1-1/dspr-paper5.pdf.

Fu, Zhongliang et al. (2016). “A Two-Step Clustering Approach to Extract Locations
from Individual GPS Trajectory Data”. In: ISPRS International Journal of
Geo-Information 5.10. ISSN: 2220-9964. DOI: 10 . 3390 / ijgi5100166. URL:
http://www.mdpi.com/2220-9964/5/10/166.

Bibliography 167

Furletti, Barbara et al. (2013). “Inferring Human Activities from GPS Tracks”. In:
Proceedings of the 2Nd ACM SIGKDD International Workshop on Urban Computing.
UrbComp ’13. New York, NY, USA: ACM, 5:1–5:8. ISBN: 978-1-4503-2331-4. DOI:
10.1145/2505821.2505830. URL: http://doi.acm.org/10.1145/
2505821.2505830.

Ghosh, Shreya and Soumya K. Ghosh (2017). “Modeling of Human Movement
Behavioral Knowledge from GPS Traces for Categorizing Mobile Users”. In:
Proceedings of the 26th International Conference on World Wide Web Companion.
WWW ’17 Companion. Perth, Australia: International World Wide Web
Conferences Steering Committee, pp. 51–58. ISBN: 978-1-4503-4914-7. DOI:
10 . 1145 / 3041021 . 3054150. URL:
https://doi.org/10.1145/3041021.3054150.

Giannotti, Fosca et al. (2007). “Trajectory Pattern Mining”. In: Proceedings of the 13th
ACM SIGKDD international conference on Knowledge discovery and data mining. San
Jose, California, USA: ACM, pp. 330–339. ISBN: 978-1-59593-609-7.

Gidófalvi, Győző and Torben Bach Pedersen (Mar. 2009). “Mining Long, Sharable
Patterns in Trajectories of Moving Objects”. In: GeoInformatica 13.1, pp. 27–55.
ISSN: 1573-7624. DOI: 10.1007/s10707-007-0042-z. URL: https://doi.
org/10.1007/s10707-007-0042-z.

Gold, Christopher M. (1989). “Surface Interpolation”. In: Three Dimensional
Applications in Geographic Information Systems. London, England: Taylor and
Francis, pp. 21–35.

Gomariz, Antonio et al. (2013). “ClaSP: An Efficient Algorithm for Mining Frequent
Closed Sequences”. In: Advances in Knowledge Discovery and Data Mining: 17th
Pacific-Asia Conference, PAKDD 2013, Gold Coast, Australia, April 14-17, 2013,
Proceedings, Part I. Ed. by Jian Pei et al. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 50–61. ISBN: 978-3-642-37453-1. DOI:
10 . 1007 / 978 - 3 - 642 - 37453 - 1 _ 5. URL:
https://doi.org/10.1007/978-3-642-37453-1_5.

Gong, Lei et al. (2015). “Identification of activity stop locations in GPS trajectories
by density-based clustering method combined with support vector machines”.
In: Journal of Modern Transportation 23.3, pp. 202–213. ISSN: 2196-0577. DOI: 10.
1007/s40534- 015- 0079- x. URL: http://dx.doi.org/10.1007/
s40534-015-0079-x.

GPS.gov (2000). Data From the First Week Without Selective Availability. URL: http:
//www.gps.gov/systems/gps/modernization/sa/data/ (visited on
08/05/2017).

Grünwald, Peter (2005). “A Tutorial Introduction to the Minimum Description
Length Principle”. In: Advances in Minimum Description Length: Theory and
Applications. MIT Press.

Gu, Qihang et al. (2017). “Inferring Venue Visits from GPS Trajectories”. In:
Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. GIS ’17. New York, NY, USA: ACM. ISBN:
978-1-4503-5490-5/17/11. DOI: 10.1145/3139958.3140034.

Gudmundsson, Joachim et al. (Nov. 2009). “Compressing spatio-temporal
trajectories”. In: Computational Geometry 42.9, pp. 825–841. ISSN: 09257721.

Haining, R.P. (2003). Spatial Data Analysis: Theory and Practice. Cambridge University
Press. ISBN: 9780521774376. URL: https://books.google.com.au/books?
id=CYZSh347eiAC.

Han, Jiawei, Guozhu Dong, and Yiwen Yin (1999). “Efficient Mining of Partial
Periodic Patterns in Time Series Database”. In: Proceedings of the 15th

168 Bibliography

International Conference on Data Engineering. ICDE ’99. Washington, DC, USA:
IEEE Computer Society, pp. 106–. ISBN: 0-7695-0071-4. URL:
http://dl.acm.org/citation.cfm?id=846218.847205.

Han, Jiawei, Micheline Kamber, and Jian Pei (2011). Data Mining: Concepts and
Techniques. 3rd. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
ISBN: 0123814790, 9780123814791.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2001). The Elements of
Statistical Learning. Springer.

Hernández-Muñoz, José M. et al. (2011). “Smart Cities at the Forefront of the Future
Internet”. In: The Future Internet: Future Internet Assembly 2011: Achievements and
Technological Promises. Ed. by John Domingue et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 447–462. ISBN: 978-3-642-20898-0. DOI: 10.1007/978-
3-642-20898-0_32. URL: https://doi.org/10.1007/978-3-642-
20898-0_32.

Herrera, Juan C. et al. (2010). “Evaluation of traffic data obtained via GPS-enabled
mobile phones: The Mobile Century field experiment”. In: Transportation Research
Part C: Emerging Technologies 18.4, pp. 568 –583. ISSN: 0968-090X. DOI: http:
//dx.doi.org/10.1016/j.trc.2009.10.006. URL: http://www.
sciencedirect.com/science/article/pii/S0968090X09001430.

Hightower, Jeffrey (Oct. 2003). “From Position to Place”. In: Proceedings of The 2003
Workshop on Location-Aware Computing. part of the 2003 Ubiquitous Computing
Conference, pp. 10–12.

Hightower, Jeffrey and Gaetano Borriello (2004). “Particle Filters for Location
Estimation in Ubiquitous Computing: A Case Study”. In: UbiComp 2004:
Ubiquitous Computing: 6th International Conference, Nottingham, UK, September
7-10, 2004. Proceedings. Ed. by Nigel Davies, Elizabeth D. Mynatt, and Itiro Siio.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 88–106. ISBN:
978-3-540-30119-6. DOI: 10 . 1007 / 978 - 3 - 540 - 30119 - 6 _ 6. URL:
https://doi.org/10.1007/978-3-540-30119-6_6.

Hightower, Jeffrey et al. (2005). “Learning and Recognizing the Places We Go”. In:
Proceedings of the 7th International Conference on Ubiquitous Computing.
UbiComp’05. Berlin, Heidelberg: Springer-Verlag, pp. 159–176. ISBN:
978-3-540-28760-5. DOI: 10 . 1007 / 11551201 _ 10. URL:
http://dx.doi.org/10.1007/11551201_10.

Huang, Lian, Qingquan Li, and Yang Yue (2010). “Activity Identification from GPS
Trajectories Using Spatial Temporal POIs’ Attractiveness”. In: Proceedings of the
2Nd ACM SIGSPATIAL International Workshop on Location Based Social Networks.
LBSN ’10. San Jose, California: ACM, pp. 27–30. ISBN: 978-1-4503-0434-4. DOI:
10.1145/1867699.1867704. URL: http://doi.acm.org/10.1145/
1867699.1867704.

Hwang, Sungsoon, Christian Evans, and Timothy Hanke (2017). “Detecting Stop
Episodes from GPS Trajectories with Gaps”. In: Seeing Cities Through Big Data:
Research, Methods and Applications in Urban Informatics. Cham: Springer
International Publishing, pp. 427–439. ISBN: 978-3-319-40902-3. DOI:
10 . 1007 / 978 - 3 - 319 - 40902 - 3 _ 23. URL:
https://doi.org/10.1007/978-3-319-40902-3_23.

Jiang, S., J. Ferreira, and M. C. Gonzalez (June 2017). “Activity-Based Human
Mobility Patterns Inferred from Mobile Phone Data: A Case Study of
Singapore”. In: IEEE Transactions on Big Data 3.2, pp. 208–219. DOI:
10.1109/TBDATA.2016.2631141.

Bibliography 169

Kang, Jong Hee et al. (2004). “Extracting Places from Traces of Locations”. In:
Proceedings of the 2Nd ACM International Workshop on Wireless Mobile Applications
and Services on WLAN Hotspots. WMASH ’04. New York, NY, USA: ACM,
pp. 110–118. ISBN: 1-58113-877-6. DOI: 10 . 1145 / 1024733 . 1024748. URL:
http://doi.acm.org/10.1145/1024733.1024748.

Kang, Juyoung and Hwan-Seung Yong (2010). “Mining Spatio-Temporal Patterns in
Trajectory Data”. In: Journal of Information Processing Systems 6.4, pp. 521–536.

Kellaris, Georgios, Nikos Pelekis, and Yannis Theodoridis (2009). “Trajectory
Compression Under Network Constraints”. In: Proceedings of the 11th
International Symposium on Advances in Spatial and Temporal Databases. SSTD ’09.
Aalborg, Denmark: Springer-Verlag, pp. 392–398. ISBN: 978-3-642-02981-3. DOI:
10 . 1007 / 978 - 3 - 642 - 02982 - 0 _ 27. URL:
http://dx.doi.org/10.1007/978-3-642-02982-0_27.

Khetarpaul, Sonia et al. (2011). “Mining GPS Data to Determine Interesting
Locations”. In: Proceedings of the 8th International Workshop on Information
Integration on the Web: In Conjunction with WWW 2011. IIWeb ’11. Hyderabad,
India: ACM, 8:1–8:6. ISBN: 978-1-4503-0620-1. DOI:
10 . 1145 / 1982624 . 1982632. URL:
http://doi.acm.org/10.1145/1982624.1982632.

Kolesnikov, Alexander (2011). “Efficient Online Algorithms for the Polygonal
Approximation of Trajectory Data”. In: Proceedings of the 2011 IEEE 12th
International Conference on Mobile Data Management - Volume 01. MDM ’11.
Washington, DC, USA: IEEE Computer Society, pp. 49–57. ISBN:
978-0-7695-4436-6. DOI: 10 . 1109 / MDM . 2011 . 53. URL:
http://dx.doi.org/10.1109/MDM.2011.53.

Kong, Xiangjie et al. (2016). “Urban Traffic Congestion Estimation and Prediction
Based on Floating Car Trajectory Data”. In: Future Gener. Comput. Syst. 61.C,
pp. 97–107. ISSN: 0167-739X. DOI: 10.1016/j.future.2015.11.013. URL:
http://dx.doi.org/10.1016/j.future.2015.11.013.

Kumar, Ravi et al. (2015). “Driven by Food: Modeling Geographic Choice”. In:
Proceedings of the Eighth ACM International Conference on Web Search and Data
Mining. WSDM ’15. Shanghai, China: ACM, pp. 213–222. ISBN:
978-1-4503-3317-7. DOI: 10 . 1145 / 2684822 . 2685300. URL:
http://doi.acm.org/10.1145/2684822.2685300.

Lam, Hoang Thanh et al. (2014). “Mining Compressing Sequential Patterns”. In:
Statistical Analysis and Data Mining 7.1, pp. 34–52. ISSN: 1932-1872. DOI:
10.1002/sam.11192. URL: http://dx.doi.org/10.1002/sam.11192.

Lange, R. et al. (2009). “Remote real-time trajectory simplification”. In: Pervasive
Computing and Communications, 2009. PerCom 2009. IEEE International Conference
on. IEEE Computer Society, pp. 1–10. DOI: 10.1109/PERCOM.2009.4912767.

Lange, Ralph, Frank Dürr, and Kurt Rothermel (2008). “Online Trajectory Data
Reduction Using Connection-preserving Dead Reckoning”. In: Proceedings of the
5th Annual International Conference on Mobile and Ubiquitous Systems: Computing,
Networking, and Services. Mobiquitous ’08. Dublin, Ireland: ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering),
52:1–52:10. ISBN: 978-963-9799-27-1.

Laube, Patrick (May 2015). “The Low Hanging Fruit is Gone: Achievements and
Challenges of Computational Movement Analysis”. In: SIGSPATIAL Special 7.1,
pp. 3–10. ISSN: 1946-7729. DOI: 10.1145/2782759.2782762. URL: http:
//doi.acm.org/10.1145/2782759.2782762.

170 Bibliography

Lee, Anthony J. T., Yi-An Chen, and Weng-Chong Ip (June 2009). “Mining Frequent
Trajectory Patterns in Spatial-temporal Databases”. In: Inf. Sci. 179.13,
pp. 2218–2231. ISSN: 0020-0255. DOI: 10.1016/j.ins.2009.02.016. URL:
http://dx.doi.org/10.1016/j.ins.2009.02.016.

Lee, Jae-Gil, Jiawei Han, and Kyu-Young Whang (2007). “Trajectory Clustering: A
Partition-and-group Framework”. In: Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’07. New York, NY,
USA: ACM, pp. 593–604. ISBN: 978-1-59593-686-8. DOI:
10 . 1145 / 1247480 . 1247546. URL:
http://doi.acm.org/10.1145/1247480.1247546.

Lee, L. et al. (Dec. 2016). “Comparison of Accuracy and Precision of GPS-Enabled
Mobile Devices”. In: 2016 IEEE International Conference on Computer and
Information Technology (CIT), pp. 73–82. DOI: 10.1109/CIT.2016.94.

Lee, Wang-Chien and John Krumm (2011). “Trajectory Preprocessing”. In: Computing
with Spatial Trajectories. Ed. by Yu Zheng and Xiaofang Zhou. New York, NY,
USA: Springer New York. Chap. 1, pp. 3–33. ISBN: 978-1-4614-1629-6. DOI: 10.
1007/978-1-4614-1629-6_1.

Leung, Kenneth Wai-Ting, Dik Lun Lee, and Wang-Chien Lee (2011). “CLR: A
Collaborative Location Recommendation Framework Based on Co-clustering”.
In: Proceedings of the 34th International ACM SIGIR Conference on Research and
Development in Information Retrieval. SIGIR ’11. Beijing, China: ACM,
pp. 305–314. ISBN: 978-1-4503-0757-4. DOI: 10.1145/2009916.2009960. URL:
http://doi.acm.org/10.1145/2009916.2009960.

Li, Chun and Jianyong Wang (2008). “Efficiently Mining Closed Subsequences with
Gap Constraints”. In: Proceedings of the 2008 SIAM International Conference on Data
Mining, pp. 313–322. DOI: 10.1137/1.9781611972788.28. URL: http://
epubs.siam.org/doi/abs/10.1137/1.9781611972788.28.

Li, Chun et al. (2012). “Efficient Mining of Gap-Constrained Subsequences and Its
Various Applications”. In: ACM Trans. Knowl. Discov. Data 6.1, 2:1–2:39. ISSN:
1556-4681. DOI: 10 . 1145 / 2133360 . 2133362. URL:
http://doi.acm.org/10.1145/2133360.2133362.

Li, Xingxing et al. (June 2015). “Accuracy and reliability of multi-GNSS real-time
precise positioning: GPS, GLONASS, BeiDou, and Galileo”. In: Journal of Geodesy
89.6, pp. 607–635. ISSN: 1432-1394. DOI: 10.1007/s00190-015-0802-8. URL:
https://doi.org/10.1007/s00190-015-0802-8.

Liao, Lin, Dieter Fox, and Henry Kautz (Jan. 2007). “Extracting Places and Activities
from GPS Traces Using Hierarchical Conditional Random Fields”. In: Int. J. Rob.
Res. 26.1, pp. 119–134. ISSN: 0278-3649. DOI: 10.1177/0278364907073775.
URL: http://dx.doi.org/10.1177/0278364907073775.

Lin, C. Y., C. C. Hung, and P. R. Lei (Nov. 2016). “A velocity-preserving trajectory
simplification approach”. In: 2016 Conference on Technologies and Applications of
Artificial Intelligence (TAAI), pp. 58–65. DOI: 10.1109/TAAI.2016.7880172.

Lin, Meng-Chang et al. (2015). “An ultrafast rechargeable aluminium-ion battery”.
In: Nature 520.7547, p. 325.

Lin, Nancy P et al. (2007). “Fast mining maximal sequential patterns”. In:
Proceedings of the 7th International Conference on Simulation, Modeling and
Optimization, September, pp. 15–17.

Liu, Guangwen, Masayuki Iwai, and Kaoru Sezaki (2013). “An Online Method for
Trajectory Simplification Under Uncertainty of GPS”. In: IPSJ Online Transactions
6.July, pp. 65–74. ISSN: 1882-6660.

Bibliography 171

Liu, J. et al. (Apr. 2015). “Bounded Quadrant System: Error-bounded trajectory
compression on the go”. In: 2015 IEEE 31st International Conference on Data
Engineering, pp. 987–998. DOI: 10.1109/ICDE.2015.7113350.

Liu, Kuien et al. (2014). “Compressing Large Scale Urban Trajectory Data”. In:
Proceedings of the Fourth International Workshop on Cloud Data and Platforms.
CloudDP ’14. Amsterdam, The Netherlands: ACM, 3:1–3:6. ISBN:
978-1-4503-2714-5. DOI: 10 . 1145 / 2592784 . 2592787. URL:
http://doi.acm.org/10.1145/2592784.2592787.

Long, Cheng, Raymond Chi-Wing Wong, and H. V. Jagadish (Aug. 2013). “Direction-
preserving Trajectory Simplification”. In: Proc. VLDB Endow. 6.10, pp. 949–960.
ISSN: 2150-8097. DOI: 10.14778/2536206.2536221. URL: http://dx.doi.
org/10.14778/2536206.2536221.

— (Sept. 2014). “Trajectory Simplification: On Minimizing the Direction-based
Error”. In: Proc. VLDB Endow. 8.1, pp. 49–60. ISSN: 2150-8097. DOI:
10 . 14778 / 2735461 . 2735466. URL:
http://dx.doi.org/10.14778/2735461.2735466.

Lou, Yin et al. (2009). “Map-matching for Low-sampling-rate GPS Trajectories”. In:
Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. GIS ’09. New York, NY, USA: ACM, pp. 352–361.
ISBN: 978-1-60558-649-6. DOI: 10.1145/1653771.1653820. URL: http://
doi.acm.org/10.1145/1653771.1653820.

Luo, Ting et al. (2017). “An Improved DBSCAN Algorithm to Detect Stops in
Individual Trajectories”. In: ISPRS International Journal of Geo-Information 6.3.
ISSN: 2220-9964. DOI: 10 . 3390 / ijgi6030063. URL:
http://www.mdpi.com/2220-9964/6/3/63.

Lv, Mingqi et al. (2016). “The Discovery of Personally Semantic Places Based on
Trajectory Data Mining”. In: Neurocomput. 173.P3, pp. 1142–1153. ISSN:
0925-2312. DOI: 10 . 1016 / j . neucom . 2015 . 08 . 071. URL:
https://doi.org/10.1016/j.neucom.2015.08.071.

M. J. Smith M. F. Goodchild, P. A. Longley (2015). Geospatial Analysis: A Comprehensive
Guide to Principles, Techniques and Software Tools. 5th ed. The Winchelsea Press.

M. M. Fischer, A. Getis (2010). Handbook of Applied Spatial Analysis: Software Tools,
Methods and Applications. Springer.

MacQueen, J. (1967). “Some methods for classification and analysis of multivariate
observations”. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics. Berkeley, Calif.: University of
California Press, pp. 281–297. URL:
http://projecteuclid.org/euclid.bsmsp/1200512992.

Marino, Daniel L. and Milos Manic (2016). “Fast Trajectory Simplification Algorithm
for Natural User Interfaces in Robot Programming by Demonstration”. In: CoRR
abs/1608.07338. eprint: 1608.07338. URL: http://arxiv.org/abs/1608.
07338.

Mautz, Rainer (2009). “Overview of current indoor positioning systems”. In:
Geodezija ir kartografija 35.1, pp. 18–22.

Meratnia, Nirvana and Rolf A. de By (2004). “Spatiotemporal Compression
Techniques for Moving Point Objects”. In: Advances in Database Technology -
EDBT 2004: 9th International Conference on Extending Database Technology,
Heraklion, Crete, Greece, March 14-18, 2004. Ed. by Elisa Bertino et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 765–782. ISBN: 978-3-540-24741-8.
DOI: 10 . 1007 / 978 - 3 - 540 - 24741 - 8 _ 44. URL:
https://doi.org/10.1007/978-3-540-24741-8_44.

172 Bibliography

Misra, P. and P. Enge (2011). Global Positioning System: Signals, Measurements, and
Performance. Ganga-Jamuna Press. ISBN: 9780970954428. URL: https://books.
google.com.au/books?id=5WJOywAACAAJ.

Monreale, Anna et al. (2009). “WhereNext: A Location Predictor on Trajectory
Pattern Mining”. In: Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. KDD ’09. New York, NY, USA: ACM,
pp. 637–646. ISBN: 978-1-60558-495-9. DOI: 10.1145/1557019.1557091. URL:
http://doi.acm.org/10.1145/1557019.1557091.

Moreno, Francisco Javier et al. (2014). “SMoT+: extending the SMoT algorithm for
discovering stops in nested sites”. In: Computing and Informatics 33.2, pp. 327–342.

Morzy, Mikolaj (2007). “Mining Frequent Trajectories of Moving Objects for Location
Prediction”. In: Proceedings of the 5th International Conference on Machine Learning
and Data Mining in Pattern Recognition. MLDM ’07. Leipzig, Germany: Springer-
Verlag, pp. 667–680. ISBN: 978-3-540-73498-7. DOI: 10.1007/978- 3- 540-
73499-4_50. URL: http://dx.doi.org/10.1007/978-3-540-73499-
4_50.

Muckell, Jonathan et al. (2011). “SQUISH: An Online Approach for GPS Trajectory
Compression”. In: Proceedings of the 2Nd International Conference on Computing for
Geospatial Research &Amp; Applications. COM.Geo ’11. New York, NY, USA: ACM,
13:1–13:8. ISBN: 978-1-4503-0681-2. DOI: 10.1145/1999320.1999333. URL:
http://doi.acm.org/10.1145/1999320.1999333.

Muckell, Jonathan et al. (July 2014). “Compression of trajectory data: a
comprehensive evaluation and new approach”. In: GeoInformatica 18.3,
pp. 435–460. ISSN: 1573-7624. DOI: 10.1007/s10707- 013- 0184- 0. URL:
https://doi.org/10.1007/s10707-013-0184-0.

Nadaraya, Elizbar A (1964). “On estimating regression”. In: Theory of Probability &
Its Applications 9.1, pp. 141–142.

Nanni, Mirco and Dino Pedreschi (2006). “Time-focused Clustering of Trajectories of
Moving Objects”. In: Journal of Intelligent Information Systems 27.3, pp. 267–289.

Newson, Paul and John Krumm (2009). “Hidden Markov Map Matching Through
Noise and Sparseness”. In: Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. GIS ’09. New York, NY,
USA: ACM, pp. 336–343. ISBN: 978-1-60558-649-6. DOI: 10.1145/1653771.
1653818. URL: http://doi.acm.org/10.1145/1653771.1653818.

Oliveira, Ricardo, Maribel Yasmina Santos, and Joao Moura Pires (Dec. 2013).
“4D+SNN: A Spatio-Temporal Density-Based Clustering Approach with 4D
Similarity”. In: 2013 IEEE 13th International Conference on Data Mining Workshops,
pp. 1045–1052. DOI: 10.1109/ICDMW.2013.119.

Orlando, Salvatore, Raffaele Perego, and Claudio Silvestri (2004). “A New
Algorithm for Gap Constrained Sequence Mining”. In: Proceedings of the 2004
ACM Symposium on Applied Computing. SAC ’04. Nicosia, Cyprus: ACM,
pp. 540–547. ISBN: 1-58113-812-1. DOI: 10 . 1145 / 967900 . 968014. URL:
http://doi.acm.org/10.1145/967900.968014.

Palma, Andrey Tietbohl et al. (2008). “A Clustering-based Approach for
Discovering Interesting Places in Trajectories”. In: SAC ’08, pp. 863–868. DOI:
10 . 1145 / 1363686 . 1363886. URL:
http://doi.acm.org/10.1145/1363686.1363886.

Panagiotakis, Costas et al. (2012). “Segmentation and Sampling of Moving Object
Trajectories Based on Representativeness”. In: IEEE Trans. on Knowl. and Data Eng.
24.7, pp. 1328–1343. ISSN: 1041-4347. DOI: 10.1109/TKDE.2011.39. URL:
http://dx.doi.org/10.1109/TKDE.2011.39.

Bibliography 173

Parent, Christine et al. (Aug. 2013). “Semantic Trajectories Modeling and Analysis”.
In: ACM Comput. Surv. 45.4, 42:1–42:32. ISSN: 0360-0300. DOI:
10 . 1145 / 2501654 . 2501656. URL:
http://doi.acm.org/10.1145/2501654.2501656.

Parkka, J. et al. (Jan. 2006). “Activity Classification Using Realistic Data from
Wearable Sensors”. In: Trans. Info. Tech. Biomed. 10.1, pp. 119–128. ISSN:
1089-7771. DOI: 10 . 1109 / TITB . 2005 . 856863. URL:
http://dx.doi.org/10.1109/TITB.2005.856863.

Patroumpas, K. (2013). “Online Tracking and Summarization over Streaming
Maritime Trajectories”. In: In Proceedings of MOVE Workshop on Moving Objects at
Sea. Brest, France: University of Piraeus.

Pei, Jian, Jiawei Han, and Runying Mao (2000). “CLOSET: An Efficient Algorithm for
Mining Frequent Closed Itemsets.” In: ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery. New York, NY, USA: ACM, pp. 21–30.
URL: http://dblp.org/rec/conf/dmkd/PeiHM00.

Pei, Jian et al. (2004). “Mining Sequential Patterns by Pattern-Growth: The
PrefixSpan Approach”. In: IEEE Trans. on Knowl. and Data Eng. 16.11,
pp. 1424–1440. ISSN: 1041-4347. DOI: 10 . 1109 / TKDE . 2004 . 77. URL:
http://dx.doi.org/10.1109/TKDE.2004.77.

Pelekis, Nikos et al. (2009). “Clustering Trajectories of Moving Objects in an
Uncertain World”. In: Proceedings of the 9th IEEE International Conference on Data
Mining. IEEE Computer Society, pp. 417–427.

Pelekis, Nikos et al. (2011). “Clustering Uncertain Trajectories”. In: Knowl. Inf. Syst.
28.1, pp. 117–147. ISSN: 0219-1377. DOI: 10.1007/s10115-010-0316-x. URL:
http://dx.doi.org/10.1007/s10115-010-0316-x.

Pesyna, Kenneth M., Robert W. Heath, and Todd E. Humphreys (2014). “Centimeter
positioning with a smartphone-quality GNSS antenna”. In: 27th International
Technical Meeting of the Satellite Division of the Institute of Navigation, ION GNSS
2014. Vol. 2. United States: Institute of Navigation, pp. 1568–1577.

Pfoser, Dieter and Christian S. Jensen (1999). “Capturing the Uncertainty of
Moving-Object Representations”. In: Proceedings of the 6th International
Symposium on Advances in Spatial Databases. SSD ’99. London, UK, UK:
Springer-Verlag, pp. 111–132. ISBN: 3-540-66247-2. URL:
http://dl.acm.org/citation.cfm?id=647226.719082.

Potamias, Michalis, Kostas Patroumpas, and Timos Sellis (2006). “Sampling
Trajectory Streams with Spatiotemporal Criteria”. In: Proceedings of the 18th
International Conference on Scientific and Statistical Database Management. SSDBM
’06. Washington, DC, USA: IEEE Computer Society, pp. 275–284. ISBN:
0-7695-2590-3. DOI: 10 . 1109 / SSDBM . 2006 . 45. URL:
http://dx.doi.org/10.1109/SSDBM.2006.45.

Radziemski, Leon and Inder Raj S. Makin (2016). “In vivo demonstration of
ultrasound power delivery to charge implanted medical devices via acute and
survival porcine studies”. In: Ultrasonics 64, pp. 1 –9. ISSN: 0041-624X. DOI:
http : / / dx . doi . org / 10 . 1016 / j . ultras . 2015 . 07 . 012. URL:
http : / / www . sciencedirect . com / science / article / pii /
S0041624X15001973.

Raissi, C., P. Poncelet, and M. Teisseire (Sept. 2006). “SPEED : Mining Maxirnal
Sequential Patterns over Data Strearns”. In: 2006 3rd International IEEE
Conference Intelligent Systems, pp. 546–552. DOI: 10.1109/IS.2006.348478.

Renso, Chiara et al. (2013). “How you move reveals who you are: understanding
human behavior by analyzing trajectory data”. In: Knowledge and Information

174 Bibliography

Systems 37.2, pp. 331–362. ISSN: 0219-3116. DOI:
10 . 1007 / s10115 - 012 - 0511 - z. URL:
https://doi.org/10.1007/s10115-012-0511-z.

Richter, Kai-Florian, Falko Schmid, and Patrick Laube (2012). “Semantic trajectory
compression: Representing urban movement in a nutshell”. In: Journal of Spatial
Information Science 2012.4, pp. 3–30.

Rissanen, Jorma (1978). “Modeling by shortest data description”. In: Automatica 14.5,
pp. 465 –471. ISSN: 0005-1098. DOI: https://doi.org/10.1016/0005-
1098(78)90005-5. URL: http://www.sciencedirect.com/science/
article/pii/0005109878900055.

Rocha, J. A. M. R. et al. (July 2010). “DB-SMoT: A direction-based spatio-temporal
clustering method”. In: 2010 5th IEEE International Conference Intelligent Systems,
pp. 114–119. DOI: 10.1109/IS.2010.5548396.

Rodriguez, Alex and Alessandro Laio (2014). “Clustering by fast search and find of
density peaks”. In: Science 344.6191, pp. 1492–1496. ISSN: 0036-8075. DOI:
10 . 1126 / science . 1242072. eprint: http :
//science.sciencemag.org/content/344/6191/1492.full.pdf.
URL: http://science.sciencemag.org/content/344/6191/1492.

Satopaa, Ville et al. (2011). “Finding a "Kneedle" in a Haystack: Detecting Knee
Points in System Behavior”. In: Proceedings of the 2011 31st International
Conference on Distributed Computing Systems Workshops. ICDCSW ’11.
Washington, DC, USA: IEEE Computer Society, pp. 166–171. ISBN:
978-0-7695-4386-4. DOI: 10 . 1109 / ICDCSW . 2011 . 20. URL:
http://dx.doi.org/10.1109/ICDCSW.2011.20.

Savage, Norma Saiph et al. (2010). “Frequent Trajectory Mining on GPS Data”. In:
Proceedings of the 3rd International Workshop on Location and the Web. LocWeb ’10.
Tokyo, Japan: ACM, 3:1–3:4. ISBN: 978-1-4503-0412-2. DOI: 10.1145/1899662.
1899665. URL: http://doi.acm.org/10.1145/1899662.1899665.

Shaw, Arthur A. and N.P. Gopalan (2014). “Finding frequent trajectories by
clustering and sequential pattern mining”. In: Journal of Traffic and Transportation
Engineering (English Edition) 1.6, pp. 393 –403. ISSN: 2095-7564. DOI:
https : / / doi . org / 10 . 1016 / S2095 - 7564(15) 30289 - 0. URL:
http : / / www . sciencedirect . com / science / article / pii /
S2095756415302890.

Shi, Wenzhong and ChuiKwan Cheung (2006). “Performance Evaluation of Line
Simplification Algorithms for Vector Generalization”. In: The British Cartographic
Society 43.1, pp. 27–44.

Silva, T. L. C. d., K. Zeitouni, and J. A. F. d. Macêdo (June 2016). “Online Clustering
of Trajectory Data Stream”. In: 2016 17th IEEE International Conference on Mobile
Data Management (MDM). Vol. 1, pp. 112–121. DOI: 10.1109/MDM.2016.28.

Song, Renchu et al. (May 2014). “PRESS: A Novel Framework of Trajectory
Compression in Road Networks”. In: Proc. VLDB Endow. 7.9, pp. 661–672. ISSN:
2150-8097. DOI: 10 . 14778 / 2732939 . 2732940. URL:
http://dx.doi.org/10.14778/2732939.2732940.

Spaccapietra, Stefano et al. (2008). “A Conceptual View on Trajectories”. In: Data
Knowl. Eng. 65.1, pp. 126–146. ISSN: 0169-023X. DOI: 10.1016/j.datak.2007.
10.008. URL: http://dx.doi.org/10.1016/j.datak.2007.10.008.

Spinsanti, Laura, Fabrizio Celli, and Chiara Renso (2010). “Where you stop is who
you are: understanding people’s activities by places visited”. In: BMI ’10:
Proceedings of the 5th BMI, Workshop on Behaviour Monitoring and Interpretation
2010. Karlsruhe, Germany: CEUR-WS, pp. 38–52.

Bibliography 175

Srikant, Ramakrishnan and Rakesh Agrawal (1996). “Mining Sequential Patterns:
Generalizations and Performance Improvements”. In: Proceedings of the 5th
International Conference on Extending Database Technology: Advances in Database
Technology. EDBT ’96. London, UK, UK: Springer-Verlag, pp. 3–17. ISBN:
3-540-61057-X. URL:
http://dl.acm.org/citation.cfm?id=645337.650382.

Takeuchi, Yuichiro and Masanori Sugimoto (2006). “CityVoyager: An Outdoor
Recommendation System Based on User Location History”. In: Proceedings of the
Third International Conference on Ubiquitous Intelligence and Computing. UIC’06.
Wuhan, China: Springer-Verlag, pp. 625–636. ISBN: 3-540-38091-4,
978-3-540-38091-7. DOI: 10 . 1007 / 11833529 _ 64. URL:
http://dx.doi.org/10.1007/11833529_64.

Tang, Yuxin et al. (2017). “Water-Soluble Sericin Protein Enabling Stable
Solid–Electrolyte Interphase for Fast Charging High Voltage Battery Electrode”.
In: Advanced Materials 29.33, 1701828–n/a. ISSN: 1521-4095. DOI:
10 . 1002 / adma . 201701828. URL:
http://dx.doi.org/10.1002/adma.201701828.

Tauberer, Joshua (2014). “Open Government Data”. In: 2nd ed., pp. 1–20. URL:
{https://opengovdata.io/}.

Teunissen, P. J. G. and A. Khodabandeh (Mar. 2015). “Review and principles of PPP-
RTK methods”. In: Journal of Geodesy 89.3, pp. 217–240. ISSN: 1432-1394. DOI: 10.
1007/s00190-014-0771-3. URL: https://doi.org/10.1007/s00190-
014-0771-3.

The White House (May 2000). Statement By The President Regarding The United States’
Decision To Stop Degrading Global Positioning System Accuracy. U.S. Office of the
Press Secretary (Producer). URL: https :
//www.navcen.uscg.gov/?pageName=gpsSelectiveAvailability.

Thierry, Benoit, Basile Chaix, and Yan Kestens (2013). “Detecting activity locations
from raw GPS data: a novel kernel-based algorithm”. In: International journal of
health geographics 12.1, p. 14.

Tobler, W. R. (1970). “A Computer Movie Simulating Urban Growth in the Detroit
Region”. In: Economic Geography 46, pp. 234–240. ISSN: 00130095, 19448287.

Toole, Jameson L. et al. (2015). “The path most traveled: Travel demand estimation
using big data resources”. In: Transportation Research Part C: Emerging
Technologies 58. Big Data in Transportation and Traffic Engineering, pp. 162 –177.
ISSN: 0968-090X. DOI:
http://dx.doi.org/10.1016/j.trc.2015.04.022. URL: http://www.
sciencedirect.com/science/article/pii/S0968090X15001631.

Trajcevski, Goce (2011). “Uncertainty in Spatial Trajectories”. In: Computing with
Spatial Trajectories. New York, NY: Springer New York, pp. 63–107. ISBN:
978-1-4614-1629-6. DOI: 10 . 1007 / 978 - 1 - 4614 - 1629 - 6 _ 3. URL:
http://dx.doi.org/10.1007/978-1-4614-1629-6_3.

Trajcevski, Goce et al. (2004). “Managing uncertainty in moving objects databases”.
In: ACM Transactions on Database Systems (TODS) 29.3, pp. 463–507.

Tran, Le Hung et al. (2011). Robust and Hierarchical Stop Discovery in Sparse and Diverse
Trajectories. Tech. rep. EPFL: EPFL.

Visvalingam, M. and J. D. Whyatt (1993). “Line Generalisation by Repeated
Elimination of Points”. In: The Cartographic Journal 30.1, pp. 46–51.

Viterbi, A. (1967). “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm”. In: IEEE Transactions on Information Theory 13.2,
pp. 260–269. ISSN: 0018-9448. DOI: 10.1109/TIT.1967.1054010.

176 Bibliography

Vreeken, Jilles, Matthijs Leeuwen, and Arno Siebes (July 2011). “Krimp: Mining
Itemsets That Compress”. In: Data Min. Knowl. Discov. 23.1, pp. 169–214. ISSN:
1384-5810. DOI: 10 . 1007 / s10618 - 010 - 0202 - x. URL:
http://dx.doi.org/10.1007/s10618-010-0202-x.

Vrotsou, K. et al. (Jan. 2015). “SimpliFly: A Methodology for Simplification and
Thematic Enhancement of Trajectories”. In: IEEE Transactions on Visualization and
Computer Graphics 21.1, pp. 107–121. ISSN: 1077-2626. DOI:
10.1109/TVCG.2014.2337333.

Wang, Jianyong and Jiawei Han (2004). “BIDE: Efficient Mining of Frequent Closed
Sequences”. In: Proceedings of the 20th International Conference on Data Engineering.
ICDE ’04. Washington, DC, USA: IEEE Computer Society, pp. 79–. ISBN: 0-7695-
2065-0. URL: http://dl.acm.org/citation.cfm?id=977401.978142.

Wang, Yilun, Yu Zheng, and Yexiang Xue (2014). “Travel Time Estimation of a Path
Using Sparse Trajectories”. In: Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. KDD ’14. New York, NY, USA:
ACM, pp. 25–34. ISBN: 978-1-4503-2956-9. DOI: 10.1145/2623330.2623656.
URL: http://doi.acm.org/10.1145/2623330.2623656.

Wei, Hong et al. (2012). “Fast Viterbi Map Matching with Tunable Weight
Functions”. In: Proceedings of the 20th International Conference on Advances in
Geographic Information Systems. SIGSPATIAL ’12. New York, NY, USA: ACM,
pp. 613–616. ISBN: 978-1-4503-1691-0. DOI: 10.1145/2424321.2424430. URL:
http://doi.acm.org/10.1145/2424321.2424430.

Widhalm, P., P. Nitsche, and N. Brändie (Nov. 2012). “Transport mode detection
with realistic Smartphone sensor data”. In: Proceedings of the 21st International
Conference on Pattern Recognition (ICPR2012), pp. 573–576.

Xia, Hao et al. (2014). “Using smart phone sensors to detect transportation modes”.
In: Sensors 14.11, pp. 20843–20865.

Xiang, Longgang, Meng Gao, and Tao Wu (2016). “Extracting Stops from Noisy
Trajectories: A Sequence Oriented Clustering Approach”. In: ISPRS International
Journal of Geo-Information 5.3. ISSN: 2220-9964. DOI: 10.3390/ijgi5030029.
URL: http://www.mdpi.com/2220-9964/5/3/29.

Xie, Kexin, Ke Deng, and Xiaofang Zhou (2009). “From Trajectories to Activities: A
Spatio-temporal Join Approach”. In: Proceedings of the 2009 International Workshop
on Location Based Social Networks. LBSN ’09. Seattle, Washington: ACM, pp. 25–32.
ISBN: 978-1-60558-860-5. DOI: 10.1145/1629890.1629897. URL: http://
doi.acm.org/10.1145/1629890.1629897.

Yan, Xifeng, Jiawei Han, and Ramin Afshar (2003). “CloSpan: Mining: Closed
Sequential Patterns in Large Datasets”. In: Proceedings of the 2003 SIAM
International Conference on Data Mining, pp. 166–177. DOI:
10 . 1137 / 1 . 9781611972733 . 15. URL:
http://epubs.siam.org/doi/abs/10.1137/1.9781611972733.15.

Yan, Zhixian et al. (2013). “Semantic Trajectories: Mobility Data Computation and
Annotation”. In: ACM Trans. Intell. Syst. Technol. 4.3, 49:1–49:38. ISSN: 2157-6904.
DOI: 10.1145/2483669.2483682. URL: http://doi.acm.org/10.1145/
2483669.2483682.

Yang, Hanqing, Le Gruenwald, and Mathilda Boulanger (2013). “A Novel Real-time
Framework for Extracting Patterns from Trajectory Data Streams”. In: Proceedings
of the 4th ACM SIGSPATIAL International Workshop on GeoStreaming. IWGS ’13.
New York, NY, USA: ACM, pp. 26–32. ISBN: 978-1-4503-2532-5. DOI: 10.1145/
2534303.2534313. URL: http://doi.acm.org/10.1145/2534303.
2534313.

Bibliography 177

Yang, Jiong and Meng Hu (2006). “TrajPattern: Mining Sequential Patterns from
Imprecise Trajectories of Mobile Objects”. In: Advances in Database Technology -
EDBT 2006: 10th International Conference on Extending Database Technology,
Munich, Germany, March 26-31, 2006. Ed. by Yannis Ioannidis et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 664–681. ISBN: 978-3-540-32961-9.
DOI: 10 . 1007 / 11687238 _ 40. URL:
https://doi.org/10.1007/11687238_40.

Yang, Zhenglu, Yitong Wang, and Masaru Kitsuregawa (2007). “LAPIN: Effective
Sequential Pattern Mining Algorithms by Last Position Induction for Dense
Databases”. In: Proceedings of the 12th International Conference on Database Systems
for Advanced Applications. DASFAA’07. Berlin, Heidelberg: Springer-Verlag,
pp. 1020–1023. ISBN: 978-3-540-71702-7. URL:
http://dl.acm.org/citation.cfm?id=1783823.1783946.

Yin, Zhijun et al. (2011). “Diversified Trajectory Pattern Ranking in Geo-Tagged
Social Media”. In: Proceedings of the 2011 SIAM International Conference on Data
Mining, pp. 980–991. DOI: 10 . 1137 / 1 . 9781611972818 . 84. eprint:
http://epubs.siam.org/doi/pdf/10.1137/1.9781611972818.84.
URL:
http://epubs.siam.org/doi/abs/10.1137/1.9781611972818.84.

Ying, Josh Jia-Ching, Wang-Chien Lee, and Vincent S. Tseng (2014). “Mining
Geographic-temporal-semantic Patterns in Trajectories for Location Prediction”.
In: ACM Trans. Intell. Syst. Technol. 5.1, 2:1–2:33. ISSN: 2157-6904. DOI:
10 . 1145 / 2542182 . 2542184. URL:
http://doi.acm.org/10.1145/2542182.2542184.

Yuan, J. et al. (Jan. 2013). “T-Drive: Enhancing Driving Directions with Taxi Drivers’
Intelligence”. In: IEEE Transactions on Knowledge and Data Engineering 25.1,
pp. 220–232. ISSN: 1041-4347. DOI: 10.1109/TKDE.2011.200.

Yuan, Jing et al. (2010). “T-drive: Driving Directions Based on Taxi Trajectories”. In:
Proceedings of the 18th SIGSPATIAL International Conference on Advances in
Geographic Information Systems. GIS ’10. New York, NY, USA: ACM, pp. 99–108.
ISBN: 978-1-4503-0428-3. DOI: 10 . 1145 / 1869790 . 1869807. URL:
http://doi.acm.org/10.1145/1869790.1869807.

Yuan, Jing et al. (2011). “Driving with Knowledge from the Physical World”. In:
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’11. New York, NY, USA: ACM, pp. 316–324.
ISBN: 978-1-4503-0813-7. DOI: 10 . 1145 / 2020408 . 2020462. URL:
http://doi.acm.org/10.1145/2020408.2020462.

Yuan, Jing, Yu Zheng, and Xing Xie (2012). “Discovering Regions of Different
Functions in a City Using Human Mobility and POIs”. In: Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’12. Beijing, China: ACM, pp. 186–194. ISBN: 978-1-4503-1462-6. DOI:
10 . 1145 / 2339530 . 2339561. URL:
http://doi.acm.org/10.1145/2339530.2339561.

Yuan, N. J. et al. (Mar. 2015). “Discovering Urban Functional Zones Using Latent
Activity Trajectories”. In: IEEE Transactions on Knowledge and Data Engineering
27.3, pp. 712–725. ISSN: 1041-4347. DOI: 10.1109/TKDE.2014.2345405.

Zaki, Mohammed J. (2001). “SPADE: An Efficient Algorithm for Mining Frequent
Sequences”. In: Machine Learning 42.1, pp. 31–60. ISSN: 1573-0565. DOI:
10 . 1023 / A : 1007652502315. URL:
http://dx.doi.org/10.1023/A:1007652502315.

178 Bibliography

Zhang, Jingsong, Yinglin Wang, and Dingyu Yang (2015). “CCSpan: Mining closed
contiguous sequential patterns”. In: Knowledge-Based Systems 89, pp. 1 –13. ISSN:
0950-7051. DOI: http://dx.doi.org/10.1016/j.knosys.2015.06.
014. URL: http://www.sciencedirect.com/science/article/pii/
S0950705115002324.

Zheng, K. et al. (Aug. 2014a). “Online Discovery of Gathering Patterns over
Trajectories”. In: IEEE Transactions on Knowledge and Data Engineering 26.8,
pp. 1974–1988. ISSN: 1041-4347. DOI: 10.1109/TKDE.2013.160.

Zheng, Kai et al. (2012). “Reducing Uncertainty of Low-Sampling-Rate Trajectories”.
In: Proceedings of the 2012 IEEE 28th International Conference on Data Engineering.
ICDE ’12. Washington, DC, USA: IEEE Computer Society, pp. 1144–1155. ISBN:
978-0-7695-4747-3. DOI: 10.1109/ICDE.2012.42. URL: http://dx.doi.
org/10.1109/ICDE.2012.42.

Zheng, Yu (May 2015). “Trajectory Data Mining: An Overview”. In: ACM Trans.
Intell. Syst. Technol. 6.3, 29:1–29:41. ISSN: 2157-6904. DOI: 10.1145/2743025.
URL: http://doi.acm.org/10.1145/2743025.

Zheng, Yu and Xing Xie (2011). “Learning Travel Recommendations from
User-generated GPS Traces”. In: ACM Trans. Intell. Syst. Technol. 2.1, 2:1–2:29.
ISSN: 2157-6904. DOI: 10 . 1145 / 1889681 . 1889683. URL:
http://doi.acm.org/10.1145/1889681.1889683.

Zheng, Yu and Xiaofang Zhou (2011). Computing with Spatial Trajectories. 1st. New
York, NY, USA: Springer New York. ISBN: 978-1-4614-1628-9. DOI: 10.1007/
978-1-4614-1629-6.

Zheng, Yu et al. (2008). “Understanding Mobility Based on GPS Data”. In: Proceedings
of the 10th International Conference on Ubiquitous Computing. UbiComp ’08. Seoul,
Korea: ACM, pp. 312–321. ISBN: 978-1-60558-136-1. DOI: 10.1145/1409635.
1409677. URL: http://doi.acm.org/10.1145/1409635.1409677.

Zheng, Yu et al. (2009). “Mining Interesting Locations and Travel Sequences from
GPS Trajectories”. In: Proceedings of the 18th International Conference on World Wide
Web. WWW ’09. Madrid, Spain: ACM, pp. 791–800. ISBN: 978-1-60558-487-4. DOI:
10.1145/1526709.1526816. URL: http://doi.acm.org/10.1145/
1526709.1526816.

Zheng, Yu, Xing Xie, and Wei-Ying Ma (2010). “GeoLife: A Collaborative Social
Networking Service among User, location and trajectory”. In: IEEE Data(base)
Engineering Bulletin. URL: https : / / www . microsoft . com / en -
us/research/publication/geolife- a- collaborative- social-
networking-service-among-user-location-and-trajectory/.

Zheng, Yu et al. (2014b). “Urban Computing: Concepts, Methodologies, and
Applications”. In: ACM Trans. Intell. Syst. Technol. 5.3, 38:1–38:55. ISSN:
2157-6904. DOI: 10 . 1145 / 2629592. URL:
http://doi.acm.org/10.1145/2629592.

Zhu, Xingquan and Xindong Wu (2007). “Mining Complex Patterns Across
Sequences with Gap Requirements”. In: Proceedings of the 20th International Joint
Conference on Artifical Intelligence. IJCAI’07. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., pp. 2934–2940. URL:
http://dl.acm.org/citation.cfm?id=1625275.1625748.

Zhu, Zack, Ulf Blanke, and Gerhard Tröster (Feb. 2016). “Recognizing Composite
Daily Activities from Crowd-labelled Social Media Data”. In: Pervasive Mob.
Comput. 26.C, pp. 103–120. ISSN: 1574-1192. DOI:
10 . 1016 / j . pmcj . 2015 . 10 . 007. URL:
http://dx.doi.org/10.1016/j.pmcj.2015.10.007.

Bibliography 179

Zimmermann, Max, Thomas Kirste, and Myra Spiliopoulou (2009). “Finding Stops
in Error-Prone Trajectories of Moving Objects with Time-Based Clustering”. In:
Intelligent Interactive Assistance and Mobile Multimedia Computing: International
Conference, IMC 2009, Rostock-Warnemünde, Germany, November 9-11, 2009.
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 275–286. ISBN:
978-3-642-10263-9. DOI: 10 . 1007 / 978 - 3 - 642 - 10263 - 9 _ 24. URL:
https://doi.org/10.1007/978-3-642-10263-9_24.

	Cover Sheet
	Front Pages
	Title Page
	Declaration of Authorship
	Acknowledgements
	Statement of the Contribution of Others
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations

	Chapter 1. Introduction
	Chapter 2. Literature Review
	Chapter 3. A Framework of Spatio-temporal Trajectory Simplification Methods
	Chapter 4. Mining Distinct and Contiguous Sequential Patterns From Large Vehicle Trajectories
	Chapter 5. A Probabilistic Stop and Move Classifier for Noisy GPS Trajectories
	Chapter 6. Mining Semantic Patterns From Spatio-temporal Trajectories Using Complex Real-World Places
	Chapter 7. Conclusion
	Bibliography

