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Abstract. Many different factors influence animal activity. Often, the value of an environmental variable
may influence significantly the upper or lower tails of the activity distribution. For describing relationships
with heterogeneous boundaries, quantile regressions predict a quantile of the conditional distribution of
the dependent variable. A quantile count model extends linear quantile regression methods to discrete
response variables, and is useful if activity is quantified by trapping, where there may be many tied (equal)
values in the activity distribution, over a small range of discrete values. Additionally, different environ-
mental variables in combination may have synergistic or antagonistic effects on activity, so examining their
effects together, in a modeling framework, is a useful approach. Thus, model selection on quantile counts
can be used to determine the relative importance of different variables in determining activity, across the
entire distribution of capture results. We conducted model selection on quantile count models to describe
the factors affecting activity (numbers of captures) of cane toads (Rhinella marina) in response to several
environmental variables (humidity, temperature, rainfall, wind speed, and moon luminosity) over eleven
months of trapping. Environmental effects on activity are understudied in this pest animal. In the dry sea-
son, model selection on quantile count models suggested that rainfall positively affected activity, especially
near the lower tails of the activity distribution. In the wet season, wind speed limited activity near the max-
imum of the distribution, while minimum activity increased with minimum temperature. This statistical
methodology allowed us to explore, in depth, how environmental factors influenced activity across the
entire distribution, and is applicable to any survey or trapping regime, in which environmental variables
affect activity.
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INTRODUCTION

Animal activity is influenced by a complex
web of factors (Tester and Figala 1990), including
a range of environmental variables (Chamaill�e-
Jammes et al. 2007, Upham and Hafner 2013).
Animal activity can vary widely in response to a
variety of different environmental variables, but
rather than determining the mean number of
active animals, such variables may impose a limit

on the maximum or minimum number of active
animals. In such cases, it should be more appro-
priate to analyze particular portions of an activ-
ity distribution, rather than simply describing
the rate of change of the mean, which may or
may not change with the variable of interest.
Examining the rate of change of the mean may
underestimate, overestimate, or neglect changes
at the minimum and maximum extents of a
heterogeneous distribution (Terrell et al. 1996).
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Quantile regression is especially useful for exam-
ining distributions with heterogeneous variances
(Koenker and Bassett 1978), a common character-
istic of distributions in ecology (Cade and Noon
2003), including animal activity in relation to
environmental variables (Johnson et al. 2014).
Specifically, rates of change near the maximum
(i.e., 0.95 quantile) or minimum (i.e., 0.05 quan-
tile) of the distribution are often a better repre-
sentation of the influence of the measured
variable than the mean (Thomson et al. 1996,
Cade et al. 1999). If, for example, a particular
measured variable imposes a limit on activity, the
organism’s response cannot increase to more than
the upper limit set by that factor; however, it can
be any value less than that, for example, if other,
unmeasured, factors are also influencing activity
(Cade and Noon 2003).

Our motivating example was estimating effects
of various environmental variables on cane toad
(Rhinella marina) activity in northern Australia.
Cane toads are large, nocturnal, terrestrial anu-
rans originating from South America, whose
invaded range includes many tropical and sub-
tropical areas globally, including Australia. The
physiological constraints on terrestrial amphib-
ians (Tracy 1976), and experimental data on cane
toads (e.g., Cohen and Alford 1996), suggest that
seasonal variation in activity should be strongly
associated with environmental moisture. Wind
speed also affects desiccation rates, and activity,
of anurans (Henzi et al. 1995), while locomotor
performance and behavior are strongly depen-
dent on temperature in ectotherms (Huey and
Stevenson 1979, Huey 1982). Finally, positive and
negative effects of lunar cycles on amphibian
biology have also been observed (Grant et al.
2012). These factors limit activity in other species;
for example, several ectothermic species are inac-
tive below certain temperatures (e.g., Lei and
Booth 2014). Any combination of these environ-
mental variables may impose a limit on the maxi-
mum or minimum activity of cane toads.

Trapping is a common method for measuring
animal activity (e.g., Gibbons and Bennett 1974,
Price 1977, Rowcliffe et al. 2014) and could be
used to measure cane toad activity (Muller and
Schwarzkopf 2017). Cane toad traps for adults
contain a lure that produces a cane toad adver-
tisement call, and a light that attracts insects as a
visual cue (Yeager et al. 2014). Trap efficacy

depends primarily on activity; toads must be
active to approach the lure, and enter the trap.
Therefore, the number of toads trapped per night
provides an estimate of toad activity on that
night. However, if captures are low, or if the trap
has limited capacity (i.e., the maximum number
of animals capturable is constrained by trap
size), trapping may result in a very small range
of counts, with numerous tied (equal) count val-
ues. Indeed, previous studies report mean cane
toad capture rates of approximately 1–6 individ-
uals per trap per night, and it is uncommon to
exceed 14 captures in a single night (although
the maximum number of toads caught in a single
trap to date was 31; Muller and Schwarzkopf
2017). In this case, conventional quantile regres-
sion analysis creates serious interpretation and
inference issues, because the models assume a
continuous dependent variable, rather than a dis-
crete dependent variable (Cade and Dong 2008).
The quantile count model is a special implemen-
tation of conventional quantile regression,
whereby the changes in quantiles of counts are
estimated by making them continuous random
variables and then back-transforming estimates
to the discrete response without sacrificing
model accuracy (Machado and Santos Silva
2005). Therefore, a quantile count model can be
used to analyze trapping data, to examine the
entire cane toad activity distribution in response
to an environmental variable.
Multiple environmental factors may influence

toad activity across various parts of the activity
distribution and, thus, quantile regression mod-
eling, as with any regression modeling, may
require considering alternative models with vari-
ous combinations of predictor variables. Model
selection using differences in Akaike’s informa-
tion criterion (AIC) is often used to select among
alternative candidate models for analyses in ecol-
ogy (Arnold 2010). Akaike’s information criterion
is valuable where there are a range of variables
that may be associated with a biological variable
and the researcher is interested in which are most
influential (Symonds and Moussalli 2010). A
range of competing models containing various
combinations of variables are analyzed simulta-
neously and AIC ranks these models (Akaike
1974, 1998, Richards et al. 2011). When differ-
ences in AIC among models with various combi-
nations of predictor variables are calculated with
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respect to a null model with just an intercept,
then the comparison of differences in AIC is
related to the proportionate reduction in varia-
tion of the phenomenon explained by each com-
bination of variables (adjusted by the number of
estimated parameters), given what was mea-
sured (Richards et al. 2011). Akaike’s information
criterion is calculated using the number of fitted
parameters (including the intercept) in the model
and the likelihood associated with the maxi-
mum-likelihood estimate. The weighted sums of
absolute deviations minimized in conventional
quantile regression estimation are maximum-
likelihood estimates assuming an asymmetric
double exponential distribution, providing the
basis for computing AIC and other information
criteria on quantile regression models (Koenker
and Machado 1999, Yu and Moyeed 2001, Cade
et al. 2005). Therefore, model selection on quan-
tile count models can be used to determine
which combination of variables affects toad
activity across the entire response distribution.

We trapped cane toads over eleven months at
one location while simultaneously collecting infor-
mation on humidity, temperature, rainfall, wind
speed, and moon luminosity. We examined the
distributions of toad captures using model selec-
tion on quantile count models (using every 5th
quantile between s = 0.05 and s = 0.95) to exam-
ine which environmental variables affected toad
activity at different parts of the activity distribu-
tion during different seasons. We suggest that
model selection on quantile count models is appli-
cable to any trapping regime for which several
environmental variables affect the number of indi-
viduals captured, especially if those effects occur
near the lower or upper tails of the distribution.

MATERIALS AND METHODS

Study site
The study occurred on Orpheus Island

(18°36046.0″ S, 146°29025.2″ E) from 21 May 2013
to 28 March 2014, with the exception of 16 d in
November 2013, 17 d in December 2013, 10 d in
January 2014, and 9 d in February 2014. The
island is approximately 23 km east of the
Australian mainland and 120 km north of
Townsville, Queensland. It is approximately
12 km long and is comprised primarily of dry
woodlands, with rainforest patches.

Data collection
To catch toads, we used wire traps

(1 9 1 9 0.25 m), equipped with doors that
opened easily with pressure from outside, but
prevented egress of trapped toads. The trap con-
tained a lure that repeatedly played a cane toad
advertisement call at night, and had a small LED
black (UV) light that attracted insects. More
detail on the trap and methodology is available
in Yeager et al. (2014).
We used two traps for the study, at two trap-

ping sites. Both trapping sites were located
in open, grassy areas and had similar ambient
light (�x = 0.051 lx) and environmental noise
(�x = 32.5 dB) levels. We measured light and
noise levels at each site on 15 randomly selected
nights, at 22:00 hours, using a lux meter (ATP
DT-1300), and a C-weighted Lutron sound level
meter (model: SL-4013). We placed the traps
400 m apart, such that the acoustic lure at one
site could not be heard by toads at the other site
(Muller et al. 2016). We removed, counted, and
sexed trapped toads daily by visual inspection of
coloration and skin texture (females are dark
brown with a smooth bumpy dorsum, whereas
males are lighter with a rough sandpapery dor-
sum). We placed a water bowl and PVC pipe for
shelter in each trap. Toads were euthanized
immediately after their removal from the traps,
using an overdose (350 ppm) of buffered tricaine
methanesulfonate (MS-222), and exposure was
via submersion in water containing a sodium
bicarbonate-buffered solution. Euthanizing toads
after capture may have reduced the number of
toads available for capture on subsequent nights,
but there was never a decrease in toad numbers
that was not easily explained by weather (e.g.,
there were no consistent patterns in which
nightly captures were low following a large
capture event). Toads move nomadically (Sch-
warzkopf and Alford 2002), and the size of the
toad population, and the island, facilitated con-
stant immigration into the study area, and there-
fore, the number of toads available to local
trapping was likely approximately constant.
We collected humidity, minimum temperature,

and mean wind speed (recorded every half
hour), and recorded total nightly rainfall, from
the Australian Institute of Marine Science
weather station on Orpheus Island (located
approximately 300 m from the study site) for
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every night during the trapping period. We aver-
aged half-hourly recordings across the 12-h per-
iod from 18:00 hours to 6:00 hours to calculate
nightly averages. We characterized moon lumi-
nosity as the percent of the moon illuminated on
each night (as measured from Townsville;
approximately 79 km from the study site) during
the trapping period (obtained from www.timea
nddate.com).

Statistical methods
We divided the trapping period into four sea-

sons: the dry season (June–August), the pre-wet
season (September–November), the wet season
(December–February), and the post-wet season
(March–May).

We used captures for each trap from each
night as replicates so each night had two mea-
sures of toad activity which were counts of cap-
tured toads. We used the quantile count model of
Machado and Santos Silva (2005), where the dis-
crete count response (y) is transformed to the
continuous scale (jittered) for quantile estimates
by adding a random uniform number between 0
and 1 to each count, z = y + U[0, 1). We used an
exponential count model, Qz(s|X) = s + exp(Xb(s)),
estimated in its linear form by taking loga-
rithms, for log(z � s) the Qlog(z � s)(s|X) = Xb(s),
where X is the matrix of predictor variables and
a column of 1’s for the intercept. Estimates in
the artificial continuous scale are then back-
transformed with a ceiling function, Qy(s|X) =
ds þ expðXb̂ðsÞÞ � 1 e, to recover the quantile
estimates in the discrete random variable scale
(counts y). Our quantile count model had the
typical multiplicative exponential form used
with other parametric count models (Cade and
Dong 2008) that ensures that all estimates are
greater than or equal to zero. For each season,
we estimated five candidate quantile count mod-
els with environmental predictors (humidity,
minimum temperature, rainfall, wind speed, and
moon luminosity) and one null quantile count
model with just an intercept. Estimates were
implemented with the rq() function in the quan-
treg package for the R environment for statistical
computing and graphics (Koenker 2012; Appen-
dix S1). Models were estimated for s 2 {0.05,
0.10, 0.15, . . ., 0.95}. To integrate out the artificial
noise introduced by jittering toad counts to a con-
tinuous variable (z = y + U[0, 1)), we estimated

each model m = 500 times, using m random
samples between 0 and 1 (U[0, 1)) and averaged
the estimates (Machado and Santos Silva 2005,
Cade and Dong 2008).
We calculated the AIC for each model, includ-

ing a null model with just an intercept, for each
of the m = 500 replications at every quantile for
which models were estimated (n = 9500 AIC
estimates across the entire distribution per can-
didate model). To calculate DAICs for each can-
didate model, we subtracted the AICs of each
candidate model from the AICs of the null
model for each of the m = 500 replications at
every quantile for which models were estimated
(Cade et al. 2017). Therefore, models with
higher DAIC are better supported because the
null model had no significant relationship with
any predictor variable. We averaged across
m = 500 replications by quantile to compute the
average DAIC of each candidate model at s 2
{0.05, 0.10, 0.15, . . ., 0.95}. This calculation dis-
closed the strength of the relationship between
toad captures and each predictor variable across
the entirety of the distribution in the continuous
log-transformed scale of toad counts. We per-
formed model selection for strong predictor
variables by identifying models that had the
highest DAIC at any quantile or were within 2
DAIC of the strongest model at any quantile
(Burnham and Anderson 2004). Often, different
models were strongest at different parts of the
distribution. We then considered candidate
models that included all possible combinations
of the strong predictor variables, and a null
model containing only an intercept to which
candidate models were compared. We once
again identified which models had high average
DAICs across the entirety of the distribution
and selected the strongest model for further
analysis.
After deciding on a reasonable set of predic-

tor variables to include in our seasonal models,
we estimated the models again incorporating
the count of toads on the previous night as an
additional predictor variable to account for
first-order temporal autocorrelation in our esti-
mates. We compared models with and without
the lagged toad counts across quantiles with
AIC, as before, to determine whether the first-
order temporal autocorrelation improved our
quantile estimates. Estimates of the first-order
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temporal autocorrelation parameter were also
examined to determine whether they were suf-
ficiently different from zero to justify their
inclusion in the seasonal models.

Confidence intervals for parameter estimates
made in the continuous log scale were estimated
by integrating out the artificial noise introduced
by the m = 500 random jitters to the continuous
scale. We averaged estimates of confidence inter-
val end points for parameters in the strongest
model based on the quantile rank score test
inversion approach in rq(), with weights based
on a local bandwidth of quantiles to account for
heterogeneity (Koenker and Machado 1999, Cade
et al. 2005, Cade and Dong 2008). Other
approaches to estimating confidence intervals for
quantile count models based on estimating the
asymptotic variance/covariance from averaging
components across m simulations have been
developed (Machado and Santos Silva 2005) and
implemented in the Qtools package for R (Geraci
2016). However, the quantile rank score test
inversion approach usually provides better
confidence interval coverage and length at smal-
ler to intermediate sample sizes than procedures
based on the variance/covariance estimates as it
requires estimating neither the density of obser-
vations near the quantile estimate of interest nor
the direct computation of variances of parameter
estimates. Properties of the quantile rank score
test have been investigated in Koenker (1994)
and Cade et al. (2006).

The confidence intervals for parameter esti-
mates and AIC model selection statistics were
all obtained in the continuous log scale, but
interpretation of the model estimates was made
in the discrete count scale. We back-trans-
formed quantile estimates of the strongest
model from the continuous log scale to the dis-
crete count scale using the ceiling function
(Machado and Santos Silva 2005, Cade and
Dong 2008). In cases where the strongest model
included more than one predictor variable, we
calculated quantile estimates for each variable
while holding all other variables included in
the model at their median values. From these
estimates, we examined the proportional
changes in counts by calculating, as a percent-
age, the changes of estimated counts at particu-
lar quantiles, across a selected range of values
of the predictor variable.

RESULTS

Traps were open for 91 nights in the dry
season, 74 nights in the pre-wet season, 54 nights
in the wet season, and 39 nights in the post-wet
season (total of 516 effective trap nights, given
two traps were open each night throughout the
trapping period). We trapped 241 toads in the
dry season, 387 toads in the pre-wet season, 490
toads in the wet season, and 167 toads in the
post-wet season. Toads were most active in
the wet season and were least active in the dry
season (Fig. 1).

Dry season
In the dry season, the model including rainfall

consistently had the highest average DAIC,
across all quantiles (Fig. 2A). We did not include
any other variables in a combination model with
rainfall, because the DAIC of every other variable
was <2 at all quantiles ≥0.15 (Fig. 2A). The model
that included a first-order temporal autocorrela-
tion effect, in combination with rainfall, was
slightly better supported across most of the dis-
tribution, but was particularly well supported at
lower quantiles (Appendix S2: Fig. S1). In this
model, rainfall had a positive effect on all quan-
tiles ≥0.10 of the toad counts; the estimated par-
tial effect was strongest near the minimum of the
distribution (Fig. 3). The proportional changes in
counts at quantiles ≥0.75 increased 60–67% as

Fig. 1. Seasonal variation in mean nightly cane toad
captures on Orpheus Island, from 21 May 2013 to 28
March 2014.
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rainfall increased from 20 mm to 33 mm; how-
ever, the greatest proportional increases (up to
200%) occurred at quantiles ≤0.25 as rainfall
increased from 20 to 33 mm (Fig. 4). This indi-
cated that rain events were the strongest driver
of activity in the dry season. It may also indicate
that generally inactive toads (represented by
counts at quantiles ≤0.25) were most likely to be
trapped during rain events when more than
20 mm fell per night, because the minimum
activity (i.e., minimum captures) greatly
increased when rainfall was >20 mm.

Pre-wet season
In the pre-wet season, wind speed, minimum

temperature, and rainfall were all strong predic-
tors of activity, at different points across the dis-
tribution (Fig. 2B). Models including various
combinations of these variables were of similar
strength, especially at higher quantiles (Fig. 5).
We selected for further examination a model that
included minimum temperature and wind
speed, because this model was the strongest at
all quantiles ≥0.20 (Fig. 5). The model that
included a first-order temporal autocorrelation

Fig. 2. Change in average DAICs of candidate variable models in the dry (A), pre-wet (B), wet (C), and post-
wet (D) seasons, on Orpheus Island, from 21 May 2013 to 28 March 2014, across s 2 {0.05, 0.10, 0.15, . . ., 0.95},
for m = 500 replications of z = y + U[0, 1). In the dry season (A), rainfall was the strongest predictor variable, at
every quantile; therefore, a combination model that included other variables was not estimated. In the pre-wet
season (B), wind speed, minimum temperature, and rainfall were all strong predictor variables at different points
across the distribution. In the wet season (C), minimum temperature and wind speed were both strong predictors
of activity. In the post-wet season (D), moon luminosity was the strongest predictor of activity, especially at lower
quantiles. AIC, Akaike’s information criterion.
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effect, in combination with minimum tempera-
ture and wind speed, was well supported, espe-
cially at lower quantiles (Appendix S2: Fig. S2).
In this model, minimum temperature had a

positive effect on all quantiles ≥0.10 of the toad
counts, when wind speed and lagged toad
counts were fixed at their respective median val-
ues (Figs. 3, 6A). Proportional increases in toad

Fig. 3. Average of m = 500 parameter estimates of 90% confidence intervals (rank score test inversion) for quan-
tile count models of trapped cane toads on Orpheus Island, from 21 May 2013 to 28 March 2014, where z = y + U
[0, 1) was randomized m times for the estimate of strongest model chosen from a selection of models containing
various combinations of environmental variables. Shown are the rates of change of the number of toads trapped
with the strongest environmental predictor variable(s) in each season, as identified by the quantile count model.
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counts were largest (57–200%) at quantiles ≥0.50,
when the minimum temperature increased from
22° to 26°C. Proportional increases in toad counts
when minimum temperature increased from 19°
to 22°C were considerably smaller, and only
occurred at quantiles ≥0.75. This may indicate
that many toads were inactive when the temper-
ature was below 22°C; the highest chance of
capture for these individuals was when tempera-
tures were 22° to 26°C. Conversely, wind speed
had a negative effect on all quantiles ≥0.10 of the
toad counts when minimum temperature was
fixed at its median value (Figs. 3, 6B). Propor-
tional changes in toad counts were largest when
wind speed was below 25 km/h; counts at quan-
tiles ≥0.50 decreased 38–67% when wind speed
increased from 5 to 25 km/h, and toad counts at
quantiles ≤0.25 decreased to zero. The negative
effect of wind tapered off when speed exceeded
25 km/h. The combination model suggests that
toads are most active in the pre-wet season when
the minimum temperature was above 22°C and
wind speed was low.

Wet season
In the wet season, minimum temperature and

wind speed were the two candidate variable mod-
els that had the highest average DAIC, across all
quantiles (Fig. 2C). Minimum temperature was

the strongest predictor variable at quantiles ≤0.25,
while wind speed was the strongest predictor
near the middle and upper limits of the distribu-
tion. A model including both variables had con-
siderable support across all of the distribution,
especially at lower limits (Fig. 7). The model that
included a first-order temporal autocorrelation, in
combination with minimum temperature and
wind speed, was never within 2 DAIC units of the
selected model at any quantile, and was not con-
sidered further. Minimum temperature had a pos-
itive effect on all quantiles ≥0.10 of the toad
counts, when wind speed was fixed at its median
value; however, this effect was considerably stron-
ger at lower quantiles (Fig. 3). The proportional
changes in counts increased 67–200% at quantiles
≤0.5 when temperature increased from 24° to
28°C; however, proportional changes in counts at
higher quantiles were comparatively lower, across
the same temperature range (Fig. 8A). The obvi-
ous interpretation is that even the lowest mini-
mum temperatures in the wet season were warm
enough to allow toad activity, however when tem-
peratures were higher, the minimum activity (i.e.,
minimum captures) greatly increased. Wind

Fig. 4. Estimated quantile count model for cane toad
captures (n = 182) on Orpheus Island in the dry season
(June–August 2013), as a function of rainfall and a
first-order autocorrelation effect, estimated using a
ceiling function. An average of estimates for m = 500
random jitterings for cane toad counts was used.

Fig. 5. Change in average DAICs of models contain-
ing various combinations of rainfall, minimum tem-
perature, and wind speed, across s 2 {0.05, 0.10, 0.15,
. . ., 0.95}, for m = 500 replications of z = y + U[0, 1),
on Orpheus Island, in the pre-wet season (September–
November 2013). The relative strength of models
containing individual environmental variables in the
pre-wet season is shown in Fig. 2B. In the pre-wet
season, a combination model containing minimum
temperature and wind speed was strongest at all quan-
tiles ≥0.20. AIC, Akaike’s information criterion.
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speed had a negative effect on all quantiles ≥0.10
of the toad counts, when minimum temperature
was fixed at its median value (Fig. 3). When
s ≥ 0.75, the proportional changes in counts
decreased 42–45% as wind speed increased from
5 to 20 km/h (Fig. 8B). This indicated that wind
may have limited toad activity in the wet season,
given that the rate of change of toad counts was

highest at quantiles near the maximum of the dis-
tribution. Overall, the model indicated that warm,
still nights were most conducive to toad activity.
While minimum temperatures were generally
warm enough to facilitate high toad activity, wind
speed constrained the maximum activity of toads,
and may be the primary driver of activity in the
wet season.

Post-wet season
In the post-wet season, moon luminosity was

the strongest predictor of toad activity; the
model including moon luminosity had the high-
est average DAIC for m = 500 replications of jit-
tered toad counts, across most quantiles
(Fig. 2D). This model was strongest at the lower
limits of the distribution, and gradually weak-
ened at higher quantiles. The model that
included a first-order temporal autocorrelation,
in combination with moon luminosity, was never
within 2 DAIC units of the selected model at any
quantile, and was not considered further.
Although the negative effect of moon luminosity
on toad activity was strong at quantiles ≤0.50

Fig. 7. Change in average DAICs of models contain-
ing minimum temperature, wind speed, and a combi-
nation of both variables, across s 2 {0.05, 0.10, 0.15,
. . ., 0.95}, for m = 500 replications of z = y + U[0, 1),
on Orpheus Island, in the wet season (December 2013–
February 2014). The relative strength of models con-
taining individual environmental variables in the wet
season is shown in Fig. 2C. In the wet season, a combi-
nation model containing minimum temperature and
wind speed was strongest at quantiles ≤0.70, and
within 2 DAIC units of the strongest model at upper
quantiles. AIC, Akaike’s information criterion.

Fig. 6. Estimated quantile count model, including a
first-order temporal autocorrelation effect, for cane
toad captures (n = 148) on Orpheus Island in the pre-
wet season (September–November 2013), as a function
of minimum temperature, with wind speed and
lagged toad counts fixed at their median values (A),
and as a function of wind speed, with minimum tem-
perature and lagged toad counts fixed at their median
values (B), estimated using a ceiling function. An aver-
age of estimates for m = 500 random jitterings for cane
toad counts was used.
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(Figs. 2D, 3), none of the models had an average
DAIC > 2 at quantiles ≥0.80, indicating that none
of the measured variables limited toad activity in
the post-wet season. The proportional changes in
counts decreased 67–200% (to zero in some
cases) at quantiles ≤0.50 as moon luminosity
increased from 0% to 52% (Fig. 9). The decrease
in proportional changes in counts was not as
rapid at moderate to high moon luminosities
(≥52%), at quantiles where counts were above

zero. This may indicate that most toads preferred
dark conditions in the post-wet season, and were
not active when moon luminosity was ≥52%;
however, some toads were always active, regard-
less of moon luminosity.

DISCUSSION

Overall, several different variables had syner-
gistic and antagonistic effects on cane toad activ-
ity. Using our combination of statistical
techniques, we detected the influence of environ-
mental variables on both lower and upper
bounds of toad activity. We also found that there
was high seasonal variability in cane toad activ-
ity; toads were more active in the wet season
(December–February) and less active in the dry
season (June–August). Furthermore, there was
variability in the combinations of environmental
variables that influenced toad activity, depend-
ing on the time of year. This may be because par-
ticular environmental variables were sufficient
for minimum activity during certain seasons, but
not others.
Results acquired using model selection on

quantile count models were consistent with
expectations based on the physiological require-
ments of cane toads. For example, rainfall was
the strongest predictor of toad activity in the dry
season, across all measured quantiles. Minimum

Fig. 8. Estimated quantile count model for cane toad
captures (n = 108) on Orpheus Island in the wet sea-
son (December 2013–February 2014), as a function of
minimum temperature, with wind speed fixed at its
median value (A), and as a function of wind speed,
with minimum temperature fixed at its median value
(B), estimated using a ceiling function. An average of
estimates for m = 500 random jitterings for cane toad
counts was used.

Fig. 9. Estimated quantile count model for cane toad
(n = 78) captures on Orpheus Island in the post-wet
season (May 2013, March 2014), as a function of moon
luminosity, estimated using a ceiling function. An
average of estimates for m = 500 random jitterings for
cane toad counts was used.
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toad activity increased up to 200% when rainfall
exceeded 20 mm, suggesting that many toads
may be generally inactive during the dry season,
and only emerge from their burrows, forage, or
search for mates, when rainfall is high. Cane
toads emerge from their burrows more fre-
quently (Seebacher and Alford 1999), and move
longer distances (Schwarzkopf and Alford 2002)
when there is more atmospheric and soil mois-
ture, probably because moist conditions limit
water loss via their permeable skin (Schwarzkopf
and Alford 1996). The first-order temporal auto-
correlation effect evident in the dry season indi-
cated that activity on a given night partially
predicted activity on the subsequent night. This
could be interpreted as a lagged effect of rainfall,
where soil moisture was comparatively high for
several consecutive nights after rain, which cre-
ated extended periods of favorable conditions for
toad activity. Rainfall in the dry season was rare;
therefore, the physiological cost of movement
was generally high. Toad capture rates increased
with rainfall, probably because the cost of move-
ment (i.e., water loss) was lower than in dry peri-
ods (Schwarzkopf and Alford 2002).

In the wet season, wind speed appeared to limit
toad activity (Fig. 8B). This may be because evap-
orative water loss rates increase when wind speed
is high (Bentley and Yorio 1979); therefore, toads
may reduce activity when wind exceeds a certain
speed. High winds may also reduce insect activity
(Holyoak et al. 1997), so toads may be less active
for feeding, and our insect-attracting UV light lure
may also be less attractive when it is windy
(McGeachie 1989). Windy conditions may have
also increased the excess attenuation of the call
used to lure toads, and therefore reduced the
distance the call carried (Larom et al. 1997). The
strongest predictor model in the wet season also
included minimum temperature, the effect of
which was strongest at lower quantiles. Toad
captures increased a great deal (67–200%) at lower
quantiles (≤0.5), when minimum temperature
increased 4°C (from 24° to 28°C), while captures
at upper quantiles, across the same temperature
range, remained relatively stable. This large
increase in toad captures with a relatively small
increase in ambient temperature indicates that
minimum temperature in the wet season was well
above the minimum threshold for toad activity,
because many toads were active, regardless of

temperature. The increase in minimum toad activ-
ity is consistent with the strong increase in toad
locomotor performance from a preferred tempera-
ture of 24°C toward a thermal optimum of
approximately 30°C (Kearney et al. 2008). The
availability of temperatures conducive to high
performance may have encouraged activity from
even the most inactive toads, and greatly
increased their chance of capture.
Our toad activity models included various com-

binations of rainfall, minimum temperature, and
wind speed in most seasons. However, in the
post-wet season, moon luminosity appeared to
influence toad activity, especially at lower quan-
tiles. Activity in the post-wet season may occur
because there is a need to feed after breeding in
the wet season (Yasumiba et al. 2016). Toads
strongly avoid light (Davis et al. 2015), but will
feed under lighted conditions if there is food
available (Gonz�alez-Bernal et al. 2011). We sug-
gest some toads limited their activity as ambient
light increased; however, bolder (or hungrier)
individuals may have continued feeding in spite
of the moonlight. Several studies report depressed
nocturnal activity in amphibians due to moon-
light, probably because amphibians avoid light,
which may occur because there is an increase in
their detectability to predators in lighter condi-
tions (reviewed in Grant et al. 2012). It was
surprising that the moonlight effects were only
detectable in one season and that the magnitude
of reduction in activity appeared to vary across
the moon luminosity spectrum. Possibly, the
effects of moonlight were most detectable in this
season because, after the wet season, toad activity
was most strongly determined by foraging needs.
Temperature and humidity were still high enough
to encourage activity, so that an otherwise weak
effect of moon luminosity, not detectable in other
seasons, when other factors (such as reproduction
or hydration) were affecting the toad’s propensity
to be active, then became influential.
One of the main strengths of quantile count

models, and the quantile regression approach
more generally, is that prediction intervals for
future new observations are easily obtainable,
without any of the parametric distributional
assumptions (e.g., a normal error distribution)
required for interpretation of prediction intervals
obtained using ordinary least squares regression
(Neter et al. 1996, Cade and Noon 2003). In
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quantile regression, the interval between 0.10
and 0.90 quantile regression estimated at any
specified value of X is an 80% prediction interval
for a single future observation of y (Cade and
Noon 2003). For example, in the dry season, the
80% prediction interval increases from 0–4 toads
when rainfall is 10 mm, to 1–8 toads when rain-
fall is 25 mm (Fig. 4). Conversely, in the wet sea-
son, the 80% prediction interval decreases from
2–10 toads when wind speed is 10 km/h to 1–5
toads when wind speed is 25 km/h (Fig. 8B).
Our quantile count models characterize the vari-
ability of prediction intervals for future toad
counts reasonably, in each season, with few
assumptions. An additional advantage of the
quantile count model over traditional parametric
count models is that it avoids having to select
from among various parametric distributions
(e.g., Poisson, negative binomial, and their zero-
inflated counterparts).

Examining rates of change at various points
across cane toad capture distribution models,
using model selection, enabled us to more effec-
tively examine the influence of several environ-
mental factors across the entire distribution. Our
jittered quantile count model is particularly use-
ful when the dependent variable includes many
tied values, across a small range of values.
Indeed, nightly numbers of toads captured often
ranged between 0 and 5 (89% of the toad counts
fell within this range). Thus, our jittered quantile
count model allowed for interpretation of a dis-
crete count response variable with many tied val-
ues, across an extremely limited range of values
(Machado and Santos Silva 2005, Cade and Dong
2008). Finally, our model selection procedure
allowed us to select strong predictor models at
any quantile in the distribution to include in
combination models, while simultaneously
rejecting weak predictor models that may have
otherwise added an uninformative parameter to
the combination model (Arnold 2010). This
method streamlined the model selection process
and reduced the chance of misinterpretation of
AIC results (see Arnold 2010).

Model selection on quantile count models was
extremely effective at examining, in depth, the
effect of environmental variables on cane toad
trapping rates, and activity. Our study provides
a simple example of this methodology, using
only five environmental variables. Future studies

could incorporate a wider range of variables to
better approximate the factors effecting activity,
and counts. This methodology could also be used
for standard quantile regressions, when the
range of values is large, with few tied values,
using a process similar to generalized linear
modeling to obtain slope estimates at various
quantiles across the distribution. The indepen-
dent use of AIC model selection, and quantile
count models, is not new; however, we have
demonstrated that the use of both methods,
simultaneously, can allow us to examine exten-
sively the relationship between environmental
variables and rates of capture in trapping and
mark–recapture regimes, and also to determine
which of these variables affect the study organ-
ism’s activity.
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