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The symbiotic association between the coral animal and its endosymbiotic dinoflagellate
partner Symbiodinium is central to the success of corals. However, an array of other
microorganisms associated with coral (i.e., Bacteria, Archaea, Fungi, and viruses)
have a complex and intricate role in maintaining homeostasis between corals and
Symbiodinium. Corals are sensitive to shifts in the surrounding environmental conditions.
One of the most widely reported responses of coral to stressful environmental conditions
is bleaching. During this event, corals expel Symbiodinium cells from their gastrodermal
tissues upon experiencing extended seawater temperatures above their thermal
threshold. An array of other environmental stressors can also destabilize the coral
microbiome, resulting in compromised health of the host, which may include disease
and mortality in the worst scenario. However, the exact mechanisms by which the coral
microbiome supports coral health and increases resilience are poorly understood. Earlier
studies of coral microbiology proposed a coral probiotic hypothesis, wherein a dynamic
relationship exists between corals and their symbiotic microorganisms, selecting for
the coral holobiont that is best suited for the prevailing environmental conditions.
Here, we discuss the microbial-host relationships within the coral holobiont, along with
their potential roles in maintaining coral health. We propose the term BMC (Beneficial
Microorganisms for Corals) to define (specific) symbionts that promote coral health. This
term and concept are analogous to the term Plant Growth Promoting Rhizosphere
(PGPR), which has been widely explored and manipulated in the agricultural industry
for microorganisms that inhabit the rhizosphere and directly or indirectly promote plant
growth and development through the production of regulatory signals, antibiotics and
nutrients. Additionally, we propose and discuss the potential mechanisms of the effects
of BMC on corals, suggesting strategies for the use of this knowledge to manipulate
the microbiome, reversing dysbiosis to restore and protect coral reefs. This may include
developing and using BMC consortia as environmental “probiotics” to improve coral
resistance after bleaching events and/or the use of BMC with other strategies such as
human-assisted acclimation/adaption to shifting environmental conditions.
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INTRODUCTION

Microorganisms are key components of all multi-cellular life
due to their crucial roles in nutrient cycling and metabolism
(Ainsworth et al., 2010; Garren and Azam, 2012; Thompson
et al., 2014). In the past few decades, the important relationship
between coral and its microbial symbionts have been documented
(reviewed in Bourne et al., 2016). However, coral-microbiome
interactions are not yet fully understood due to complex
interactions, which include host modulation of the physiology of
symbiotic cells (Barott et al., 2015) and the influence of symbiotic
cells on their host (Sharp and Ritchie, 2012). The responses of
coral-associated microbial communities to shifts in coral health
(Harvell et al., 2007; Bourne et al., 2008; Jones et al., 2008;
Glasl et al., 2016; Guest et al., 2016) and environmental stressors
(Hughes et al., 2003; Doney et al., 2012; Vega Thurber et al.,
2014; Garren et al., 2015; Kwiatkowski et al., 2015) have been
extensively explored and reported. Changes in environmental
conditions may modify coral physiology, leading to changes
in the structure, spatial arrangement and abundance of the
local population. These environmental disturbances can also
directly or indirectly induce shifts in the associated microbial
communities, leading to the emergence of disease (Harvell et al.,
2007; Mouchka et al., 2010), which is an ongoing threat to coral
reefs worldwide (Mumby and Steneck, 2008; Harvell et al., 2007;
Vega Thurber et al., 2009; Krediet et al., 2013; Rogers and Miller,
2013).

Through shuffling of the dominant photosynthetic
Symbiodinium clades within their tissues, some corals have
become more tolerant to seawater temperature increases, thereby
avoiding repeated bleaching events (Buddemeier and Fautin,
1993; Baker et al., 2004; Berkelmans and van Oppen, 2006;
Abrego et al., 2008; Jones et al., 2008). However, corals may
revert to the original clade (i.e., sensitive clade) over the long-
term when the stress is removed (Thornhill et al., 2006). The
coral bacterial communities are also sensitive to environmental
changes and may also be involved in coral resilience (Reshef et al.,
2006; Santos et al., 2014, 2015, 2016; Thompson et al., 2014).
However, little is understood about the permanence of these shifts
in the coral microbiome in the face of changing environmental
conditions (Rowan et al., 1997; Thornhill et al., 2006; Thompson
et al., 2014) and whether shifting microbial baselines can provide
the resilience needed for corals facing mounting environmental
stresses. Additionally, some reports have also indicated the
importance of the coral genome to resilience (Barshis et al., 2013;
Bhattacharya et al., 2016; Howells et al., 2016). Thus, there is still
much to be explored about the relationship and the actual role
of coral-associated microbiota—including Symbiodinium—in
healthy conditions or when homeostasis breaks down.

The “Coral Probiotic Hypothesis” (CPH) (Reshef et al.,
2006) postulates that the coral microbiome can be modulated
to improve coral health and resilience. Little is currently
known about the mechanisms related to the “probiotic”
protection provided by the coral microbiome and whether
these mechanisms can actually be considered “probiotics”.
The objective of this review is to focus on the role of
beneficial microorganisms associated with coral, including their

identification, mechanisms of interaction with their host and
their possible manipulation to improve coral fitness. We propose
the term “Beneficial Microorganisms for Corals” (BMC) for these
coral “probiotic” microorganisms, in analogy to the Plant Growth
Promoting Rhizobacteria (PGPR) (Kloepper and Schroth, 1978),
which are well-described symbionts of plants that possess specific
mechanisms to promote plant growth and development (Podile
and Kishore, 2007; Lugtenberg and Kamilova, 2009). This term
directly refers to the symbiont microorganisms that are players
in the maintenance and protection of the coral physiological
balance. This comparison can be made if we define the BMC
mechanisms that promote coral health and use current published
examples that detail the mechanisms by which candidate BMC
promotes coral health. The network of beneficial interactions
provided by some symbiotic microorganisms is summarized in
Figure 1 and detailed further in subsequent discussion sections.
Within plant sciences, a similar approach has been widely
explored within the complex rhizo-microbiome environment,
which is inhabited by a wide range of microorganisms. Some
beneficial microbes in the rhizosphere improve plant health
and promote growth through direct and/or indirect mechanisms
such as enhancement of plant nutrition (e.g., nitrogen fixation,
solubilization of phosphate or production of siderophores),
biological control of plant pathogens and induction of plant
defense systems, among others (Götz et al., 2006; Couillerot et al.,
2009; do Carmo et al., 2011; Scheuring and Yu, 2012; Mendes
et al., 2013; Vacheron et al., 2013). We propose to evaluate
BMC in the same way, assembling the beneficial mechanisms of
individual microorganisms to generate a cluster of targets and
search for microbial groups that should be better understood and
perhaps manipulated to improve coral resilience (see Figure 2).
The selection and application of potential BMC can be achieved
by (i), isolating microbial organisms that have potential BMC
roles; and (ii), assembling and testing the ability of these BMC
to convey resilience to corals subject to environmental stress and
biotic and abiotic challenges (both experimentally and in situ).
Since the coral microbiome is potentially a key factor affecting
coral resilience, its manipulation is one action that can be
developed to protect and preserve coral reefs.

APPLYING THE PROBIOTIC CONCEPT
TO CORALS

Discussion of the term “probiotic” is important to evaluate
and determine its applicability to BMC. While there are several
definitions of the term “probiotic,” it is widely used in the
context of “a live microbial feed supplement that beneficially
affects the host animal by improving its intestinal balance”
(Fuller, 1989). It was first created to refer to gram-positive
bacteria associated with the genus Lactobacillus and its effects
in mammalian hosts (Fuller, 1989; Verschuere et al., 2000). The
definition provided by the Food and Agriculture Organization
of the United Nations and the World Health Organization
(FAO/WHO, 2001/2002) is “live microorganisms that, when
administered in adequate amounts, confer a health benefit to the
host.” When proposing the CPH, Reshef et al. (2006) asserted
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FIGURE 1 | Possible roles and relationships between corals and their symbionts and symbiotic microbial groups. It is important to highlight that these
mechanisms and interactions are some examples of potential BMC mechanisms. Other BMC roles still to be discovered are likely to be important targets in future
investigations.

that the term “probiotic” could also be applied to invertebrates
such as corals. Although corals and other marine invertebrates
do not themselves possess an intestine, they harbor diverse
microorganisms that assist in the maintenance of their fitness
(Krediet et al., 2013; Thompson et al., 2014). The use of the term
“probiotic” to simply describe microorganisms that can provide
benefits to the host (pro – “in favor of something” and “biotic” –
biological) or their ecosystems would be a natural adaptation of
this term. However, we must also consider that the most accurate
meaning of the term “probiotic” is restricted and encompasses
features that are needed to determine probiotic assignment. The
International Scientific Association for Probiotics and Prebiotics
(ISAPP) recognizes an overall framework for the use of the term
“probiotic” (Hill et al., 2014) and discusses the regulation of
these products, which is not trivial. Furthermore, coral symbionts
can provide many advantages to corals other than nutritional
benefits, including biological control of pathogens. PGPR provide
similar beneficial features in plants (Kloepper and Schroth, 1978),
which are widely used to improve agricultural sustainability and
productivity (Peixoto et al., 2010; Singh et al., 2011; Bhardwaj
et al., 2014). The CPH is an important and acceptable explanation
of the intrinsic relationship within the holobiont. Although
the use of the term “probiotic” is not wrong as a natural

adaptation of the terminology, and considering the international
requirements for classifying probiotic products (Hill et al., 2014),
we herein propose the use of the term BMC to specifically
address coral symbionts that possess potential beneficial traits,
including nutritional (“probiotics”) and protective mechanisms
that improve coral fitness and contribute to coral resilience (see
Table 1 and Figure 1).

BMC MECHANISMS

The coral holobiont comprises the coral host and its associated
microorganisms, including Symbiodinium, bacteria, viruses,
archaea, fungi, endolithic algae and protists (Rohwer et al.,
2002; Rosenberg et al., 2007). Distinct microbial communities
can colonize various coral microhabitats, such as the surface
mucopolysaccharide layer (SML), coral tissue, gastrovascular
cavity and coral skeleton (Rosenberg et al., 2007; Agostini et al.,
2012; Glasl et al., 2016). A number of other organisms, including
fishes, crabs, and a range of crustaceans, bivalves and worms also
belong to the group of eukaryotes associated with coral tissue
and its calcareous skeleton (Rosenberg et al., 2007; Bourne et al.,
2009; Ainsworth et al., 2010; Janouškovec et al., 2013; Šlapeta and
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FIGURE 2 | Potential strategies for identifying and application of Beneficial Microorganisms for Corals (BMCs) for increasing coral resilience. The first
step would be to randomly isolate microorganisms from the surrounding reef water and the target coral species. Then the BMC would be identified and screened for
beneficial interactions with the coral host through aquarium based experiments and the mechanisms by which the microorganisms confers benefits to the coral host
identified. Extensive screening of BMCs would be undertaken to ensure no pathogenic interactions occurs and investigate potential antagonistic interactions
between consortia of selected BMCs. The final steps would be application of the developed strategy in large mesocosm systems under relevant environmental
stress conditions and including bacterial challenges to assess effectiveness of treatments before any field trials can begin.

Linares, 2013). Although the diversity of organisms that interact
with the coral host is highly dynamic and often poorly described,
the wide variety in the coral-associated microbiome enhances the
range of potential BMC functions that these microorganisms can
play in the holobiont.

The coral holobiont concept provides a framework to discuss
how the associations among the different groups and shifts in
these associations can influence coral health and the holobiont
symbiotic community (Bourne et al., 2016). Coral-associated
microorganisms have important roles in maintaining dynamic
holobiont homeostasis, forming a network of connections
that include carbon uptake, nitrogen and sulfur cycling and
production of antimicrobial agents, thereby facilitating biological
control of pathogens (Ainsworth et al., 2010; Krediet et al.,
2013; Raina et al., 2016) (Table 1 and Figure 1). In addition,
bacterial biofilms on reef substrata can serve as cues to facilitate
settlement of coral larvae (Hadfield, 2011). Coral-associated fungi
can also protect coral tissue against ultraviolet radiation through

the production of protective molecules such as mycosporine-
like amino acids (MAA) (Dunlap and Shick, 1998) and can
enhance the survival of skeletogenic cell types (Domart-Coulon
et al., 2004) (Figure 1). Table 1 identifies some of the most
promising candidate BMCs and their interactions within the
coral holobiont, which can potentially be modulated to facilitate
improved coral fitness and resilience to environmental shifts.

Carbon Cycling
Photosynthesis, the process of producing fixed carbon from
carbon dioxide and water using light-derived energy, is one
of the most important known BMC mechanisms provided by
the endosymbiotic Symbiodinium present within the cnidarian’s
gastrodermis cells (Wakefield et al., 2000) (Table 1 and Figure 1).
Symbiodinium are highly efficient in their use of solar energy
(Brodersen et al., 2014), producing organic compounds that
contribute significantly to coral nutrition. Approximately 60–
80% of Symbiodinium photosynthetic fixed carbon is transferred
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TABLE 1 | Examples of proposed BMC (beneficial microorganisms for corals) characteristics and potential beneficial mechanisms.

Proposed Beneficial Characteristic
(BMC characteristics)

Beneficial mechanism Examples of references describing the beneficial
mechanism

Photosynthesis Input of organic compounds to the holobiont Verbruggen and Tribollet, 2011; Burriesci et al., 2012; Davy
et al., 2012; Tremblay et al., 2012

Nitrogen fixation Input of fixed nitrogen to the holobiont Olson et al., 2009; Lema et al., 2012; Santos et al., 2014;
Bednarz et al., 2015; Cardini et al., 2015

Fixed nitrogen and carbon cycling and
regulation

Control of organic compound distribution Kimes et al., 2010

Production of
dimethylsulfoniopropionate (DMSP)

Bacterial populations control on the coral
surface

Barott and Rohwer, 2012

Degradation of
dimethylsulfoniopropionate (DMSP)

Increase carbon and sulfur availability;
production of sulfur-based antimicrobial
compounds such as tropodithietic acid (TDA)

Kirkwood et al., 2010; Raina et al., 2016

Production of mediated signals to larval
settlement facilitation

Contribute to larval settlement modulation or
regulation

Webster et al., 2004; Heyward and Negri, 2010;
Ritson-Williams et al., 2010; Shikuma et al., 2014

Production of antibiotics and
competition with pathogens

Biological control of pathogens Ritchie, 2006; Gochfeld and Aeby, 2008; Kirkwood et al.,
2010; Alagely et al., 2011; Kvennefors et al., 2012

Production of quorum sensing (QS)
signal molecules, such as
N-acylhomoserine lactones (AHLs)

Allow microbial interactions within the
holobiont; can act on bacterial colonization
control, bioluminescence, pathogenesis control
and extracellular enzyme production

Henke and Bassler, 2004; Ng and Bassler, 2009; Tait et al.,
2010; Sharp and Ritchie, 2012; Certner and Vollmer, 2015;
Meyer et al., 2015

Mechanisms influencing the protection
of skeletogenic cells

Enhance the survival of skeletogenic cell types Domart-Coulon et al., 2004

Production of mycosporine-like amino
acids (MAA)

Protection of coral tissue against ultraviolet
radiation

Dunlap and Shick, 1998

to the coral host (Tremblay et al., 2012), primarily as glucose
(Burriesci et al., 2012). This glucose is used for coral growth,
reproduction, respiration and biocalcification (Davy et al., 2012).
A variety of Symbiodinium strains have been identified and are
distributed into 9 clades (A–I) (Pochon et al., 2006; Pochon and
Gates, 2010; Blackall et al., 2015). However, only 6 have been
identified in corals: A, B, C (Rowan and Powers, 1991), D (Baker,
2003), F (LaJeunesse, 2001) and G (Van Oppen et al., 2005). Type
D symbionts are known to be the most heat tolerant (Silverstein
et al., 2017), and as such, corals subject to repeated bleaching
events have a higher proportion of this symbiont (Baker et al.,
2004; Berkelmans and van Oppen, 2006; Stat and Gates, 2011;
Lesser et al., 2013; Silverstein et al., 2017). Recent data from
a rare Symbiodinium biosphere have demonstrated the de novo
acquisition of Symbiodinium types from surrounding water by
adult corals and indicate that an important switching strategy
may contribute to holobiont thermal tolerance (Boulotte et al.,
2016). It is known that corals in some of the hottest seas of the
world have developed a symbiotic relationship with algae, which
facilitates thermal tolerance to the host (Howells et al., 2013;
Hume et al., 2015). The genomic blue-print of Symbiodinium
is beginning to be unveiled; comparative analyses demonstrate
that all dinoflagellates have significantly more transmembrane
transporters, especially those associated with carbon and nitrogen
delivery, compared to other eukaryotes (Aranda et al., 2016).
Species-specific expansions in these transporters can potentially
provide a genomic explanation for specific Symbiodinium clade
adaptations to different hosts and environments. Increasing
genomic information for all BMCs, including Symbiodinium, will
help to identify traits essential for symbiosis and the shared
functional capacity that is critical for a stable coral holobiont.

Manipulation of Symbiodinium populations in hospite, i.e.,
inoculating more thermally tolerant strains (as part of BMC
consortia, as described in Figure 2), is one mechanism to
increase the resilience of the coral holobiont to thermal stress
(Berkelmans and van Oppen, 2006; van Oppen et al., 2015).
Symbiodinium are often manipulated in nature itself; corals can
naturally shuffle Symbiodinium populations with some being
more heat tolerant (Buddemeier and Fautin, 1993; Baker et al.,
2004, 2016; Berkelmans and van Oppen, 2006; Abrego et al.,
2008; Jones et al., 2008). However, the long-term stability of
manipulated coral/Symbiodinium associations is still unclear and
requires further investigation (Thornhill et al., 2006; Baker et al.,
2016). Efforts centered on coral propagation and reef restoration
are increasing globally (Young et al., 2012), in response to
alarming declines in coral reefs in some regions of the world
(Hoegh-Guldberg et al., 2008; De’ath et al., 2012). These efforts
offer the opportunity to test the manipulation of Symbiodinium
strains through inoculation of early life stages of corals with
resilient clades that offer the best hope for growth and survival
in restoration areas. However, the trade-offs in coral life history
traits must be fully explored to ensure that such manipulations
do not solve one problem and introduce another into the coral
population.

Many current studies are focused on identifying the
prokaryotes associated with corals and, more importantly,
elucidating their function, including pathways for nutrient
sharing and passage within the holobiont (reviewed in Bourne
et al., 2016). This ability of microbes to metabolize nutrients,
which can then be translocated to their host, is likely
a driver in the establishment of coral-associated microbial
assemblages. Coral metagenomic studies are beginning to identify
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several genes in the central carbon metabolism pathways,
including carbon fixation and degradation genes (Kimes et al.,
2010). However, the presence of a functional gene does not
necessarily imply functionality, and further in situ research or
metatranscriptomic and metabolomic analyses are needed to
improve our knowledge of the role of the microorganisms in
driving nutrient cycling in corals.

Williams et al. (2015) have suggested a potential, and
important, role of the endolithic algae influencing the
bacterial diversity within the coral tissue. Endolithic microbial
communities are often a forgotten component of the coral
holobiont (Yang et al., 2016). These organisms have also a
potential active role in protecting corals during bleaching events
through basal photosynthetic activity, translocating nutrients
from the skeleton to the coral tissue and keeping the coral alive
until re-colonization of Symbiodinium (Fine and Loya, 2002;
Verbruggen and Tribollet, 2011). A greater understanding of the
function of all prokaryote communities and their niche location
within the holobiont is essential to defining the BMC and then
elucidating mechanisms to manipulate them for the benefit
of corals. For instance, the use of network analysis, evaluating
negative and positive interactions between microorganisms and
their roles, has been suggested as moving the field of microbial
ecology in corals forward (Sweet and Bulling, 2017) and would
be extremely useful to elucidate such mechanisms.

Within the coral holobiont, symbiosis can occur not only
between the coral host and its photosymbionts or between
the coral host and its microbiome but also as a mutualistic
relationship between the photosymbionts and the microbiome.
The growth and density of dinoflagellate populations within
the coral host are highly dependent on available nutrients.
As such, the microorganisms mediating nutrient cycling likely
have an important role in the stability of the Symbiodinium
population and consequently aid in the maintenance of coral-
symbiotic algae interactions (Santos et al., 2014; Rädecker
et al., 2015). This indicates that BMC mechanisms are not
only specific to the coral host but could also be represented
by beneficial interactions between coral microbial symbionts.
Any manipulation must account for these complementary
interactions within the holobiont. Therefore, the use of consortia
(as opposed to single-strain inoculation) with a range of
mechanisms for beneficial outcomes for the coral is strongly
recommended. However, evaluating the potential benefits and/or
detrimental roles that each BMC has in a consortium, rather than
individually, is challenging and requires detailed investigation in
model systems.

Other Essential Nutrient Cycling
Pathways
Metagenomic studies have identified the presence of genes
involved in nitrogen cycling pathways via nitrogen fixation,
ammonification, nitrification, and denitrification within the
coral holobiont (Wegley et al., 2007). Ubiquitous nitrogen-
fixing bacteria have been reported in corals as inferred by
recovery of nitrogenase (nifH) gene diversity, with dominant
taxa representing the α-, β-, γ-, and δ-proteobacterial classes

(Olson et al., 2009; Lema et al., 2012; Santos et al., 2014). The
nitrogen provided by this process is likely to support the host
and its associated microbiota, including Symbiodinium (Santos
et al., 2014). It is estimated that diazotrophs provide up to
11% of Symbiodinium nitrogen requirements (Cardini et al.,
2015). Lesser et al. (2007) demonstrated that Symbiodinium
cells associated with Montastrea cavernosa acquire N from
cyanobacterial endosymbiotic diazotrophs; this ability seems
to increase with depth and is dependent on heterotrophy. In
addition, some fungal species have been hypothesized to be
involved in nitrogen metabolism through conversion of nitrate
and nitrite to ammonia, thereby enabling fixed nitrogen to cycle
within the coral holobiont (Wegley et al., 2007). Archaea may
also be central to nitrogen recycling within corals, likely through
nitrification and denitrification processes, and thus regulate
ammonium concentrations (Siboni et al., 2012).

Members of the Roseobacteriales group (also involved
in sulfur cycling) are often identified as obligate associates
within Symbiodinium cultures, increasing the growth rate of
dinoflagellates (Ritchie, 2011). Bacteria/algae interactions can be
affected under environmental disturbance and, in turn, can affect
the holobiont as a whole. Exploring and understanding these
interactions will facilitate the development of methodologies to
manipulate the nitrogen-fixing microbiome, stimulating specific
groups by adding nutrients or inoculating key BMC groups (BMC
consortia) to increase or regulate nitrogen inputs (Figure 2).

Symbiodinium and several bacterial groups have a central
BMC role within the sulfur cycling pathways of the coral
holobiont (Table 1 and Figure 1). The Symbiodinium are
large producers of dimethyl sulfate compounds (DSCs), which
take part in the antioxidant system of corals (Deschaseaux
et al., 2014) and also potentially in structuring coral-associated
bacterial communities that cycle carbon and sulfur within the
holobiont (Raina et al., 2009, 2010). Coral-associated bacterial
groups, including members of the Flavobacteriaceae (Howard
et al., 2011) Halomonas (Todd et al., 2010), Roseobacter,
Pseudomonas, and Oceanospirillales (Raina et al., 2010, 2013),
are capable of metabolizing dimethylsulfoniopropionate (DMSP)
and consuming its products for their own metabolic processes.
The catabolism of DMSP also potentially generates sulfur-based
antimicrobial compounds such as tropodithietic acid (TDA),
which at low concentrations (0.5 µg/mL) can inhibit the growth
of the coral pathogens Vibrio coralliilyticus and V. owensii (Raina
et al., 2016). Thus, the production and metabolism of sulfur
compounds represents a potential BMC mechanism, and the
manipulation of these key microbial groups may promote coral
health through the regulation of key symbiotic populations,
antimicrobial activity and nutrient input.

Production of Antibiotics and
Competition With Pathogens
Recent studies have focused on the biological control promoted
by native bacteria in the regulation of bacterial colonization
on the coral surface, which consequently controls resistance
against diseases (Bourne et al., 2016; Egan and Gardiner,
2016; Glasl et al., 2016). Corals can protect themselves against
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pathogen infection using the mucus microbiome as a barrier
against potential pathogens (Glasl et al., 2016). Some protective
mechanisms include competition for nutrients and/or space,
and/or production of antibiotics in mucus (Ritchie, 2006) or
coral tissue (Gochfeld and Aeby, 2008). Shifts in the native
microbial community may have a negative impact on the host,
i.e., dysbiosis (Petersen and Round, 2014), leading to the onset
of disease and eventual mortality (Egan and Gardiner, 2016).
For instance, thermal stress can induce changes in coral mucus
and a consequent shift in the microbiome, which in turn could
influence holobiont homeostasis (Lee et al., 2016).

Several studies have demonstrated that bacteria isolated
from corals are able to inhibit the colonization and growth
of many other types of bacteria through antibacterial activity,
including putative pathogens of coral such as Vibrio shiloi
(Rypien et al., 2010), V. coralliilyticus (Kvennefors et al., 2012)
and Serratia marcescens (Alagely et al., 2011). Thus, production
of antibiotics and niche competition with pathogens are strong
BMC mechanisms provided by the coral microbiome (Table 1).
The biological control of bacteria, including pathogens, can also
be performed by viruses and protists (Figure 1), which are
the two dominant top–down control mechanisms of bacteria
in the open ocean (Chow et al., 2014). Recent studies have
indicated the important role of viruses in coral fitness, either
causing diseases or promoting coral health (reviewed in Sweet
and Bythell, 2016 and Vega-Thurber et al., 2017). Corals can
harbor a great diversity of bacteriophages and archaeal phages,
feasibly involved in key ecological interactions and genetic
material exchange (Sweet and Bythell, 2016), playing a crucial
role in the reef microbial dynamics and biogeochemical cycling
(Vega-Thurber et al., 2017). However, despite their role in
the biological control of specific bacteria, Chow et al. (2014)
correlated shifts in microbial structures and detected positive
interactions between bacteria and viruses, suggesting that viruses
may not only control but also follow their host. This may indicate
that viruses can control pathogens and be used in association with
BMC consortia. Successful phage therapy experiments developed
in small aquarium demonstrate the prevention of the progression
of bacterially mediated lesions on infected corals (Efrony et al.,
2009; Cohen et al., 2013). Therefore, the effects of viruses on
bacterial development and competitiveness should be analyzed
as a potential factor to be manipulated for enhancing BMC
effectiveness.

Some bacterial groups, such as Endozoicomonas, are
predominant in healthy corals, but the relative abundance
of this group decreases in compromised or diseased corals
(Bayer et al., 2013; Vezzulli et al., 2013; Meyer et al., 2014;
Glasl et al., 2016; Neave et al., 2016; Morrow et al., 2017). The
genus Endozoicomonas belongs to the family Hahellaceae and
the order Oceanospirillales, a group of heterotrophic aerobic
marine bacteria that were first described by Kurahashi and
Yokota (2007). Although the functional role of Endozoicomonas
is not well understood, this genus has been described as a
very diverse and flexible symbiotic group (Neave et al., 2017)
that is associated with several marine hosts and is globally
distributed. The genus occurs in sponges, fishes, corals and
others (Kurahashi and Yokota, 2007; Bourne et al., 2008;

Choi et al., 2010; Jensen et al., 2010; Yang et al., 2010; Speck
and Donachie, 2012; Pike et al., 2013). Additionally, some
Endozoicomonas strains have been identified as producers of
antimicrobial compounds (Ritchie, 2006; Rua et al., 2014) and
may have a role in sulfur cycling (Raina et al., 2009). Ainsworth
et al. (2015) detected members of the order Endozoicimonaceae
in the coral mucus and/or skeleton, though this group was not
part of the symbiotic core microbiome associated with the coral
species Montipora capitate, Acropora granulosa, and Leptoseris
spp. Altogether, these findings highlight the potential role of
this group in the biological control of coral pathogens. Recent
genomic studies indicate that Endozoicomonas may be able to
recognize, translocate, communicate and modulate the coral
host (Ding et al., 2016) plus contribute to protein provision and
cycling of carbohydrates (Neave et al., 2017). Neave et al. (2017)
demonstrated evidence for specific symbiotic mechanisms for
different Endozoicomonas ecotypes associated with different
coral hosts though these ecotypes likely have a non-symbiotic life
stage due to possession of large genomes which have not been
narrowed for obligate endosymbiosis. These studies highlight the
importance of Endozoicomonas for corals and other marine hosts
in potentially developing one or more BMC mechanisms.

Quorum Sensing
Little is known about quorum sensing (QS), a system of
bacterial cell-cell chemical signaling, within the coral holobiont.
It is necessary to confirm the production of QS signals by
coral-associated commensals and pathogens under laboratory
conditions as well as to detect them in natural environments.
However, evidence from other microbial-host interactions
indicates that QS can be a beneficial mechanism to improve
coral health and resilience through the control of native
and/or pathogenic populations. For example, QS systems are
important for PGPRs, specifically legume-nodulating rhizobial
nitrogen-fixing symbiotic cells, which are strongly influenced
by QS signaling and often control other bacterial populations
(Wisniewski-Dyé and Downie, 2002; Chin-A-Woeng et al., 2003;
Gonzalez and Marketon, 2003; McAnulla et al., 2007; Sanchez-
Contreras et al., 2007). QS genes are also involved in several
bacterial physiological adaptations (e.g., light and antibiotic
production), allowing bacteria to change their behavior and
improve niche competitiveness (reviewed in Sanchez-Contreras
et al., 2007).

Quorum sensing may be one mechanism used to modulated
bacterial–host interactions at the coral surface (Sharp and Ritchie,
2012). Coral mucus/microorganism interactions are likely
competitive, with dominant communities potentially secreting
QS disruptive compounds that influence the colonization,
bioluminescence, pathogenesis and extracellular enzyme
production in a number of bacterial species, including some
from the genus Vibrio (Ng and Bassler, 2009). For example,
Vibrio growth dynamics and competitiveness in coral mucus
and tissues has been demonstrated to be linked to QS signaling
molecules such as N-acylhomoserine lactones (AHLs) (Henke
and Bassler, 2004; Tait et al., 2010; Certner and Vollmer, 2015).
These Vibrio-derived QS molecules are also influenced by
environmental factors such as temperature (Tait et al., 2010; Saha
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et al., 2015) with QS mechanisms breaking down under stress
conditions that disrupt the associated microbiome. Certner and
Vollmer (2015) demonstrated that resident microorganisms
can opportunistically cause white band disease in Acropora
cervicornis and that this seems to be regulated by a quorum-
sensing signaling molecule. Manipulating QS mechanisms to
promote beneficial microbes over opportunistic or pathogenic
microbes is one potential strategy to improve coral fitness during
times of stress (Table 1). However, it is necessary to increase
our knowledge of these interactions to establish a successful
manipulation process.

CORE MICROBIOME: A USEFUL CORAL
HEALTH INDICATOR

Defining the stable and ubiquitous core microbiome, the variable
microbial species associated with coral (and responsive to
environmental conditions) and the spatially and/or regionally
microbial core (niche-specific) (Hernandez-Agreda et al., 2016;
Sweet and Bulling, 2017) can inform the health status of coral
relative to the environment and constitutes a viable approach
to identify potential BMCs. The core microbiome is composed
of common members, host-specific, of two or more microbial
communities (Turnbaugh et al., 2007; Hamady and Knight, 2009;
Hernandez-Agreda et al., 2016; Sweet and Bulling, 2017). Studies
have suggested that identification of the operational taxonomic
units (OTUs) that compose the core microbiome is vital because
these populations may play key roles (potential BMC) due to
their ability to maintain stability in the face of environmental
changes (Shade and Handelsman, 2012; Shafquat et al., 2014;
Ainsworth et al., 2015; Chu and Vollmer, 2016). This approach
has been applied to identify the interactions between other
hosts and microorganisms, including mammalian intestines and
plant roots (Shade and Handelsman, 2012; Shafquat et al.,
2014). Identification of the central metabolic pathways associated
with the core microbiome will also provide vital information
about how host–microbiome interactions are established and
maintained (Shafquat et al., 2014; Ainsworth et al., 2015). The
“functional coral core microbiome” is potentially more important
than a taxonomic core, as demonstrated for seaweeds, with
functional redundancy widely observed in complex microbial
communities (Burke et al., 2011). Therefore, while microbial
community diversity may change in response to environmental
conditions, essential functions can be maintained by the
new taxonomic groups. Importantly, the core microbiome is
commonly associated with host-constructed niches, and these
microorganisms are therefore less sensitive to the surrounding
environment (Hester et al., 2015). However, they are also
potentially capable of adapting to environmental change (McFall-
Ngai et al., 2013; Santos et al., 2014).

Ainsworth et al. (2015) identified the bacterial symbionts that
compose the core microbiome in the corals Acropora granulosa,
Montipora capitata, and Leptoseris spp. The core microbiome
in various coral niches were identified, including bacteria
specific to the gastrodermis cells and symbiotic Symbiodinium
dinoflagellates (Ainsworth et al., 2015). Chu and Vollmer

(2016) detected a stable bacterial community (bacteriome core)
associated with six coral species from the Caribbean region,
suggesting that the host is the stronger driver of this core and
also indicating specific and divergent niches for bacteria. While
there is an identifiable core coral microbiome, there is also a
dynamic microbiome that varies depending on species, season,
habitat and life stage and is likely a product of stochastic events
or a response to changing environmental conditions (Hester
et al., 2015). This dynamic community is also an important target
for BMC studies because it can represent a source of strains
that are adaptive to specific conditions of environmental stress.
Acquisition and/or shifts in microorganisms have been suggested
as an important tool for coral adaptation and are potentially one
mechanism for increasing resilience under varied environmental
conditions (Zilber-Rosenberg and Rosenberg, 2008; Singh et al.,
2013; Ziegler et al., 2017).

Beneficial Microorganisms for Corals should be identified and
potentially manipulated for each individual coral species, each
regional location and each stage of development. For example,
in the case of humans, a doctor will always provide individual
analysis, considering specific medical records pertaining to a
specific patient, including their age, prior to prescribing a
medication or treatment. Likewise, a microbial consortium,
specifically isolated from and developed for oil bioremediation
in polar areas, may not be the best option for oil bioremediation
in tropical areas because strains may not be well adapted
to a new environment with a range of different biotic and
abiotic interactions. Environmental recovery and protection
strategies can be applied to various habitats, provided that
they are subject to the local conditions of that environment.
It is important to follow strict ethical guidelines, as currently
indicated for microbiome studies and manipulation of other
organisms (Rhodes et al., 2013), to avoid undesirable side effects.
The manipulation of native and non-modified microorganisms is
the first step to achieve this.

Coral Diseases, A Disruption Within The
Bmcs?
Coral diseases may occur in response to biotic stresses caused
by bacteria, fungi, and viruses (Davy et al., 2006; Bourne et al.,
2009; Krediet et al., 2013) and/or abiotic stresses, such as rising
temperature, ultraviolet radiation, sedimentation and pollution
(Harvell et al., 2002, 2007; Bruno et al., 2003; Burge et al., 2014).
The disruption of the BMC community (both core and dynamic
microbial communities) is likely an important trigger for disease
establishment. The term “disease” has a variety of definitions
and essentially describes a shift away from a healthy state that
may be caused by exogenous (external, environmental) and
endogenous (internal, from the organism itself) factors (Scully,
2004). In recent years, coral diseases have emerged as a significant
threat to reefs around the world. From the time the first coral
disease was described in Antonius (1973) to today, more than
30 diseases have been reported (Green and Bruckner, 2000),
which demands an urgency in understanding coral–microbiome
interactions. In general, these diseases are identified by changes
in coral coloration, whose characteristics provide the names of
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the diseases, such as black band, white band, yellow band, and
white pox, among others. Coral diseases have the potential to
cause widespread mortality and thereby significantly change the
structure of reef communities (Porter et al., 2001; Sutherland and
Ritchie, 2004; Miller et al., 2009). However, little is known about
the causes and effects of these diseases, including the etiology,
transmission route, prevention, control and reduction of their
impacts. Disruption of homeostasis may result in physiological
changes that may cause disease or even lead to the mortality
of the whole colony. It is possible that this disruption is
caused by an imbalance in BMC mechanisms, or dysbiosis, i.e.,
loss of antimicrobials and loss of nutritional pathways, which
then leads to disease. The mechanisms of disruption could be
unveiled by BMC studies, where the absence of benefits can
be regarded as potential disease mechanisms. For instance, it
is suggested that Symbiodinium cells require nitrogen that is
provided by coral-associated nitrogen-fixing bacteria (Cardini
et al., 2015). However, environmental thermal disturbances lead
to changes in the abundance and diversity of these nitrogen-
fixing communities (Santos et al., 2014). Initially, the holobiont
can adapt to supply Symbiodinium and consequently meet
coral requirements. However, if a thermal disturbance persists,
it is likely that a breakdown in the homeostasis may occur.
Knowledge of BMC mechanisms and symbiotic relationships
within coral could potentially aid in the development of
microbiome management strategies that may avoid any such
disruption in coral/microbial associations (Figure 2) and reverse
dysbiosis. For instance, specific nitrogen-fixing bacteria could be
inoculated during events of thermal stress. This procedure could
delay the effects of environmental impact within the holobiont,
which would then be capable of withstanding environmental
stress until the restoration of optimal environmental conditions.
It is important to understand the crucial breaking point when the
symbiotic interaction fails; fine-scale and dynamic observation
of both host and symbiont function will be required to do so.
For instance, the phylogenetic and functional response of sponge
holobionts to thermal stress was thoroughly described by Fan
et al. (2013). Such comprehensive surveys are needed to fully
understand what and when imbalances occur and pass a point
of no return.

POTENTIAL MANIPULATION OF BMCs

The recovery and selection of potential BMC could be developed
through basic microbiology methods using tailored culture
media and cultivation strategies and screening for specific
mechanisms (Figure 1). The selection of culture media can
be targeted to our current understanding of the nutritional
requirements of potential BMC organisms. BMC can be
inoculated at different coral life stages, such as larval and or
juvenile stages, prior to acquisition of Symbiodinium using
similar approaches to those performed in agriculture through
the inoculation of seeds with PGPRs (Götz et al., 2006). BMC
inoculation could also be performed on adult corals with
potentially novel applications, such as using microencapsulation
and nanoparticles to heterotrophically feed adult corals and

thereby transfer a BMC cocktail directly into the coelenteron.
Use of knowledge derived from other systems will be essential
to develop inoculation strategies suitable for corals. For example,
microbial saline suspension and microbial immobilization of
substrates such as biodegradable polymers are currently used in
terrestrial environments (Ahmad et al., 2011) and aquaculture
systems (Martínez Cruz et al., 2012). The use of cost-
effectiveness and biodegradable substrates, such as the widely
used alginate (Sivakumar et al., 2014), could potentially represent
an environmentally friendly approach to encapsulation of BMCs
and delivery to corals as heterotrophic feed particles, essentially
similar to probiotics in humans.

Microbiome manipulation to enhance coral health could be
used in association with other approaches for better results
(Figure 2). For instance, human-assisted evolution (HAE) of
coral involves the genetic natural enhancement of corals to
improve their tolerance to stress (van Oppen et al., 2015). Some
techniques may be used to naturally accelerate coral adaptation
against these stresses, such as random mutations, natural
selection, acclimatization and random changes in microbial
symbiont communities (van Oppen et al., 2015). The human-
assisted evolution of corals could be developed in association with
the use of specific BMC consortia inoculants for specific coral
species and environmental conditions, in addition to inducing
the modulation of naturally generated microbiota in corals.
BMC could be continually used during various stages of coral
development (Figure 2), to thereby increase the coral survival
rate. The use of phage therapy associated with BMC is also
a promising approach to be tested, as BMC could improve
coral fitness and phage could act to directly control potential
pathogens.

The host–microbial interaction data provided by these
experiments could be used to indicate functional microbiome
dynamics at different coral life stages. Induced shifts in the
microbiome of sensitive or diseased corals through the use of
BMC consortia inoculants or modulated BMC populations are
plausible options and could be considered an epigenetic process
of acclimation (Heard and Martienssen, 2014). Furthermore,
experiments that breed corals, maintain offspring under future
climate scenarios (i.e., elevated temperature) and evaluate
native microbiome responses under thermal stress conditions
could provide important information about the contribution
of BMC to coral resilience. Inoculation of various types of
Symbiodinium at various temperatures and the analysis of
the competitiveness of these different types, as well as the
resilience potential of inoculated corals, would also provide
important BMC mechanistic data that will be the basis of further
manipulation. To evaluate the concept of protection transmission
from resistant to sensitive corals, transplantation of the microbial
community via inoculation of healthy macerated tissue from
disease-resistant corals to sensitive ones (similar to fecal
transplant) could also be tested. However, the concentrations
of each of the protective populations may not be sufficiently
high to support competitiveness of these beneficial introduced
populations. It would also be interesting to encourage similar
approaches extrapolating the term BMC to other marine hosts
[i.e., Beneficial Microorganisms for Sponges (BMS), Beneficial
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Microorganisms for Seagrass (BMS), etc.] by manipulating and
evaluating specific mechanisms related to varied marine hosts
and evaluating the ecological data regarding marine host–
microbiome interactions.

The selected and proposed mechanisms can, and should,
be also expanded, as more information on the microbial
beneficial traits for corals are described. There are several
potential mechanisms to be explored to improve coral fitness.
For instance, the production of reactive oxygen species (ROS)
is a key response of marine organisms against environmental
stress, such as thermal stress (Lesser, 2012). In the absence
of a definite mechanism for coral bleaching, the most widely
accepted model is that Symbiodinium sp. chloroplasts are
heat-damaged by the light-induced generation of toxic ROS,
which could also be associated with other cellular processes
and pathways (Tolleter et al., 2013). Although several types
of ROS have been described, with a gradient of reactivity
and diffusivity across membranes (Lesser, 2006), the primary
mechanism of ROS production in Symbiodinium seems
to be through hydrogen peroxide formation at the end of
the photosynthetic electron transport chain. Suggett et al.
(2008) suggested that the thermal tolerance of Symbiodinium
could be associated with adaptive restrictions related to
photosynthesis and correlated sensitive phylotypes with higher
H2O2 production. Increasing the in hospite concentration of
catalase—an enzyme commonly found in organisms exposed to
oxygen that catalyzes the decomposition of hydrogen peroxide
to water and oxygen (Chelikani et al., 2004)— within the
holobiont could minimize the concentration of ROS during
periods of thermal stress. Exploiting the ability of specific
coral-associated microorganisms to increase catalase production
represents a BMC target to be explored as a potential BMC
mechanism and mitigation strategy to minimize and buffer
against severe bleaching episodes. Considering that there
are other enzymes that harvest ROS, such as super oxide
dismutase and lysozyme, several other mechanisms can be
suggested and evaluated to minimize ROS concentration
within corals under thermal stress, as research focusing
on coral microbiome manipulation start to be developed.
Likewise, several other groups and mechanisms should be
better explored as potential BMC, including groups, such
as cyanobacteria and endolithic algae. Research focusing
on coral microbiome manipulation is beginning to be
developed.

CHALLENGES AND CONCERNS

Studies of microbiome manipulations have, to date, mostly
focused on terrestrial hosts (Alivisatos et al., 2015) such as
biological control and PGPR inoculants for agricultural purposes
(Costa et al., 2006; Götz et al., 2006; Peixoto et al., 2006,
2010; Aboim et al., 2008; Berg, 2009; Rachid et al., 2013),
human fecal transplants (van Nood et al., 2013) and probiotics
for humans (Leite et al., 2013, 2015). Bioaugmentation or
microbiome manipulation approaches are also very useful for
the bioremediation of contaminated sites (Santos et al., 2011;

Cury et al., 2015; Jesus et al., 2015). Even within these
well-defined systems, microbiome manipulation is challenging
due to the evolving and complex nature of host/microorganism
interactions.

It is also important to highlight that BMC and the strategies
for their application, must be tested in well controlled,
realistic experimental systems before field application. Before
initiating reef recovery, it is best to perform a survey of the
target reef to determine which components would be more
suitable to improve the health of the site. Factors such as
the stability of the host/microbial associated community, the
microbiome transmission route (i.e., vertical vs. horizontal)
and the cross-species relationships (neutral, beneficial or
pathogenic) must be established. For instance, it is important
to ensure that selected BMC microorganisms are not members
of the “Pathobiome”; a term recently suggested by Sweet
and Bulling (2017) identifying the pathogenic members of
the microbiome. As highlighted by Sweet and Bulling (2017),
it is essential to understand the pathobiome members and
the mechanisms of interaction within the holobiont. This
concept is complementary to the BMC concept, as both aim
to better understand the mechanisms of dysbiosis and the
triggers of microbiome disruption within the holobiont. Strict
and robust testing of BMCs must be performed in small
scale experimental systems and scaled up to mesocosms, which
mimic field conditions, before field application. Questions such
as in situ microorganism growth characteristics, effectiveness,
competitiveness (interactions between host and inoculated
BMC), trade-offs, repeatability and mass application (ecosystem
scale) all need to be considered and evaluated. Although
potentially efficient, microbial manipulation is very specific, and
specific studies and strategies must be applied for each site.

CONCLUSION AND PERSPECTIVES
ABOUT BMC

Coral microbiologists continue to describe the potential
mechanisms by which corals benefit from associations
with microbial partners (Table 1), and the application of
“omics”-based approaches will further provide important
information about the BMCs associated with corals. We propose
that microorganisms possessing at least one of the listed
characteristics detailed in Table 1 could be classified as a BMC
and manipulated to assess potential effect on coral fitness and
resilience. This approach requires robust assessment of the
efficiency and safety, however, in laboratory conditions before
field application, similar to what is undertaken in agriculture,
bioremediation and probiotic use by humans. These approaches
will be challenging and there are many large knowledge gaps that
need to be filled before BMCs can be suitable to the real world.
However, the first step is to encourage the discussion around
the concept for corals and its possibilities for reef ecosystems.
The second step is undertaking well designed laboratory based
experimental manipulations of BMCs, evaluating the health
outcomes for coral holobionts under different environmental
conditions. Successful examples of microbial modulation in other
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organisms can guide these efforts to test BMCs. Considering
the alarming declines reported for coral reefs globally (Hoegh-
Guldberg et al., 2008) innovative solutions are required to
halt or even reverse these trends. While manipulation of the
microbiome to improve coral resilience may be challenging
and even controversial, the necessity to preserve coral reefs is
paramount and all options should be on the table. In fact, a
“natural BMC manipulation” of the bacterial community (i.e., a
positive correlation between bacterial community dynamics and
coral heat tolerance), was recently suggested by Ziegler et al.
(2017). At the very least, application of the BMC concept and
manipulation of identified BMC candidates can improve our
understanding of the vital role microbes play within the coral
holobiont through integrative physiological, microbiological and
‘omic’ based approaches. Such detailed understanding is critical
for corals and the reef ecosystems that they build, faced with
on-going global declines. Coral “microbial-therapy” is a potential
new area of study in the face of increasing threats to coral reefs
that could have positive outcomes for reefs in the near future.
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