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Abstract. This study reviews the neutral density dependence of electron transport in gases and
liquids and develops a method to determine the non-linear medium density dependence of electron
transport coefficients and scattering rates required for modeling transport in the vicinity of gas-
liquid interfaces. The method has its foundations in Blanc’s law for gas-mixtures and adapts the
theory of Garland et al. [1] to extract electron transport data across the gas-liquid transition
region using known data from the gas and liquid phases only. The method is systematically
benchmarked against multi-term Boltzmann equation solutions for Percus-Yevick model liquids.
Application to atomic liquids highlight the utility and accuracy of the derived method.



1. Introduction

There has been a recent increase in the investigation of charged species transport across gas-liquid
interfaces, with applications in environmental science, materials science, particle detector physics,
plasma medicine, and electrical switching [2–4], of particular note is the change in the nature of
particle transport due to changes in neutral background density‡. The transition between a dilute
gas and dense liquid involves many additional challenging phenomena such as surface tension,
surface charge accumulation, and binding energy of electrons in a liquid [9, 10]. In this study, we
choose to abstract the transport properties of intermediate fluid densities across the interface as a
function of n0, in order to facilitate modeling between the two distinct phases.

With a focus on plasma medicine advances, multiple studies have been performed in which charged
particle transport in gases and liquids was governed by two separate sets of processes [2, 4, 10–12].
In these studies, gas and liquid models were coupled at a boundary [4, 12], or liquid interface effects
were simply treated as a density and energy absorption or emission boundary condition applied to a
gas phase model [2–4]. In addition, electromagnetic effects across the interface, such as permittivity
changes and surface charge accumulation, have been included in previous comprehensive models
[2, 4, 10–12].

In recent studies, it has been noted that further attention is required on the nature of electron
transport in the gas-liquid interfacial region: (i) Lindsay et al. [12] identified that a better
understanding of interfacial electron transport may produce more accurate electron number density
and energy loss emission/absorption coefficients for use in macroscopic transport models; (ii) while
Mariotti et al. [13] noted that radicals, ions, and photons are often considered when studying
plasma-liquid reactions, little attention has been given to electron interactions with the liquid phase.
This current study seeks to develop a method for approximating electron transport properties across
the gas and liquid phases to include the effects of non-linear density dependent scattering processes
from dilute gas to a dense liquid. A successful method will be capable of providing moment model
[1] input data for electron transport at intermediate densities between two neutral particle density
extremes, allowing future studies to more accurately model electron transport across a gas-liquid
interface as a continuum over a neutral density transition.

In this study, we briefly review the formulation of moment models for electron transport in gases
and liquids in Section 2, elaborating on the modifications needed for electron transport in liquids.
Section 2 also discusses the properties of a non-polar simple atomic liquid interface, and we explicitly
highlight the input data requirements for modeling electron transport across an interface with a
spatially varying neutral density. In Section 3 we derive and benchmark approximate methods for
a solution to the input data requirements, where benchmarking is performed for a simple model

‡ In this work we define the gas-liquid interface as an intermediate zone between homogeneous gas and liquid
extremes, in which a well-defined increase in neutral density, n0, from gas to liquid is observed [5–8].
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liquid. Application of the final proposed method is performed in Section 4 using only electron drift
velocities in the dilute gas and liquid phases. Assessment of the accuracy of the method is made
for argon and xenon cases.

2. Theory

2.1. Moment modeling for electron transport in gases and liquids

Moment modeling is a common technique used to simulate a swarm or plasma, in gas or liquid
media, via balance equations of velocity-averaged variables, such as density, momentum, and energy
[1, 14–17]. This gives a relatively straightforward macroscopic model of a discharge, when compared
to the complex mathematical and computational requirements of particle based methods such as
Partice-in-Cell (PIC), Monte Carlo (MC), or kinetic solutions of the Boltzmann kinetic equation
[16, 18–22]. The simplest variable in moment modeling is the number density of a species, defined
as

n(r, t) =

∫
f(r,v, t) dv, (1)

where f (r,v, t) is the electron velocity distribution function (EVDF).

Generic velocity moments can be then defined as

〈Φ〉(r, t) =
1

n(r, t)

∫
f(r,v, t) Φ(v) dv, (2)

where Φ(v) is any velocity dependent function, and 〈. . .〉 denotes the expectation value, a velocity
average over f(r,v, t).

Multiplying the Boltzmann equation by an arbitrary velocity dependent trial function Φ(v) and
integrating over velocity space [16, 20] gives the generic moment equation

∂

∂t
(n〈Φ〉) +∇ ·(n〈vΦ〉)− na ·〈∇vΦ〉 = CΦ, (3)

where a is the acceleration experienced by electrons due to applied electromagnetic fields, and CΦ

is the rate-of-change of n 〈Φ〉 due to collisions.

Up to this point, the moment modeling methods described have been independent of the background
media of the swarm or discharge. However, the collisional rate-of-change introduced in (3) is
dependent on the medium and requires careful consideration of the coherent and incoherent
scattering mechanisms within it [23, 24]

CΦ = CΦcoherent + CΦincoherent. (4)

In previous studies, the derivation [23, 24] and implementation [1] of structure dependent scattering
into moment models has been presented through inclusions of elastic coherent scattering and
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electron interaction potential screening [25]. These effects are significant when the electron de
Broglie wavelength is comparable to the average background particle spacing, λ ∼ n

− 1
3

0 , and
modifications to the electron collision frequencies used in moment modeling are derived.

It was shown that energy transfer collision rates, used in moment modeling, are not explicitly
modified when coherent elastic scattering effects are included [23]. This allows the same form
of equation to be used in dilute gas and soft condensed dense fluid background media [23, 24].
Energy transfer due to inelastic collisions is considered localized to the immediate target atom and
is therefore unaffected by increased background densities, hence only the elastic scattering events
require consideration in the formulation of a structure dependent kinetic theory. We note that other
modifications to inelastic collisions can occur, such as collective excitations, however these remain
incoherent and we do not consider them in this formulation.

In contrast to energy transfer, density dependent elastic coherent scattering produces explicit
modifications to momentum transfer frequencies when the background medium is sufficiently dense,
such as in a liquid [1, 23, 24]. The scattering effects due to increased densities of the background
medium can be written as modifications of the dilute gas phase momentum transfer cross section

σm(v) = 2π

∫ π

0

σ(v, χ)[1− cosχ] sinχdχ, (5)

where v is the incoming electron speed, χ is the scattering angle from the target background medium,
and σ(v, χ) is the gas phase differential cross section.

These structure modifications are implemented through a density dependent momentum transfer
cross section

Σm(v, n0) = 2π

∫ π

0

Σ(v, χ, n0)[1− cosχ] sinχdχ, (6)

with Σ(v, χ, n0) being an effective differential cross section including coherent scattering via

Σ(v, χ, n0) = σ̃(v, χ)S(∆k, n0) , (7)

where σ̃(v, χ) is the liquid phase differential cross section containing any screening and polarisation

effects, S(∆k, n0) is the static structure factor and ∆k =
2mev

~
sin

χ

2
is the wavenumber

proportional to the change in momentum.

The static structure factor is a non-linear function of n0 of the target material, and may be calculated
from molecular simulations, measured via experiments [23, 25, 26], or derived analytically through
solutions of pair-correlation functions as per the Verlet-Weiss structure factor [27]. For detailed
discussion on the static structure factor, and its implementation in liquid scattering, readers are
directed to previous studies [23, 25, 26].

Applying this framework for modifying the momentum transfer cross section, the momentum
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transfer frequencies for dilute gas and liquid scattering, used as input to moment models, are

νm(v) = n0vσm(v) , (8)

ν̃m(v, n0) = n0vΣm(v, n0) , (9)

where νm(v) is the dilute gas momentum transfer frequency, and ν̃m(v, n0) is the structure modified
momentum collision frequency. It should be noted that ν̃m → νm in the limit of the electron de
Broglie wavelength being much smaller than average background particle spacing, λ� n

− 1
3

0 .

Previously, moment models have been used to simulate electron transport in homogeneous media
[1, 14, 15] in both gas and liquid phases. We now present the moment model used in this study, where
space dependence of n0 is explicitly included in the collision terms. Implementing the structure
dependent scattering modifications, and the general moment integral (3), we can write a four
moment model for electron transport, at any neutral density, where an electric field E is applied in
the medium [1]

∂n

∂t
+∇ · Γ = n(ν̃ss

I (ε̄, n0)− ν̃ss
a (ε̄, n0)) , (10)

∂Γ

∂t
+∇ ·(nθssm(ε̄))− n qe

me
E = −Γν̃ss

m(ε̄, n0) , (11)

∂nε
∂t

+∇ · Γε − qeE · Γ = −nS̃ss
ε (ε̄, n0) , (12)

∂Γε
∂t

+∇ ·
(
nθssξ (ε̄)

)
− nθssm(ε̄) · qeE− nε

qe
me

E = −Γεν̃
ss
ξ (ε̄, n0) , (13)

where shorthand variables for particle flux Γ, energy density nε, and energy density flux Γε are
defined as

Γ = n〈v〉 =

∫
f(r,v, t) vdv, (14)

nε = nε̄ =

∫
f(r,v, t)

1

2
mv2dv, (15)

Γε = n〈ξ〉 =

∫
f(r,v, t)

1

2
mv2vdv, (16)

with 〈v〉, ε̄ = 〈ε〉, and 〈ξ〉 being the electron average velocity, average energy, and average energy
flux. Input data is required via collision rates for ionization, ν̃ss

I , attachment, ν̃ss
a , momentum

transfer, ν̃ss
m, energy transfer, S̃ss

ε , energy flux transfer, ν̃ss
ξ , and higher order tensor product closure

approximations, θSS
m = 〈vv〉fss and θSS

ξ =
〈

1
2mv

2vv
〉
fss

. The superscripts SS denote that all input
data is computed via velocity averaging over the steady state EVDF found via MC [26, 28] or
multi-term kinetic solution of the Boltzmann equation [23, 24, 29, 30], for a given density, and
interpolated as a function of the local electron mean energy, ε̄. For further details on the moment
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model used in this study the reader is referred to the recent work of Garland et al. [1], in addition
to other recent studies and reviews on the topic [14–16].

With a moment model for electron transport across a gas-liquid interface detailed above, it can be
seen that collisional input rates to the model equations (10) - (13), such as ν̃ss

m(ε̄, n0) and Sss
ε (ε̄, n0),

are now functions of mean electron energy, ε̄, and the neutral atom density, n0, which varies in
space across the gas-liquid interface. In order to model electron transport across the interface, all
steady state averaged collision rates must be known as a function of energy and each value of n0

across the interface. This data requirement is problematic because to measure this experimentally
would be a consuming task, and to compute steady state distribution functions for all densities with
coherent scattering and potential screening modifications would be computationally demanding [24–
26, 28]. For a solution to this problem, we now seek an approximation to intermediate steady state
electron transport properties and collision frequencies using computed dilute gas and liquid extreme
transport properties only.

2.2. Interfacial density properties

In order to approximate the transport properties between vapor and liquid extremes, the
composition of the interface must be known. For this study, we assume the existence of an
equilibrium interfacial density profile formed between dilute gas and liquid phases of some atomic
fluid. For this study, non-polar systems (argon, xenon) have been chosen to begin formulating
and benchmarking electron transport models between gas and liquid phases. This is in part due
to the existence of good experimental data as well as the recent advances in liquid scattering and
transport theory [7, 24, 25] which have allowed accurate computation of electron properties in
non-polar atomic liquids.

Studies on the existence of an interface between a vapor and liquid surface in equilibrium were
modeled in the late 1970s using molecular dynamics (MD) simulations once sufficient computing
power became available [31]. Since then, many MD and Monte Carlo (MC) studies have been
performed with noble liquids, often modeled using Lennard-Jones (LJ) potentials [5–8]. Key
measurables from these studies included equilibrium liquid and vapor densities, surface tension,
and interface layer thickness. Kalos et al. [31] performed MD simulations of argon gas-liquid
interface formation, resulting in a well defined interface thickness of approximately 5σLJ, where σLJ

is the atomic diameter used in the LJ potential. Later MD and MC studies of various noble liquids
[5–7], such as krypton and xenon, confirmed the earlier simulation results of Kalos et al. [31].

The density profile between liquid and vapor was approximated as a hyperbolic tangent [5–8] as
shown in Figure 1, where key points on the interface are denoted I1 to I3. In the benchmarking and
results to follow, the electron transport properties at these density points between gas and liquid
will be approximated.
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Figure 1. Argon vapor-liquid equilibrium interface as determined by molecular dynamics
simulations [5–7]. Labels G and L denote dilute gas and liquid extremities respectively. Labels I1,
I2, I3 denote densities at one-quarter, half-way, and three-quarters along the density transition
which will be used for benchmarking in Section 3.

The ratio between vapor and liquid densities in equilibrium (ng/nl) was found to be variable
depending on the atomic potentials chosen in the MD simulations [5, 7]. Trokhymchuk and
Alejandre [7] studied different cut-off distances for LJ potentials to demonstrate liquid-vapor density
ratios of 1/200 to 1/500, depending on the cut-off distance from 2.5σLJ to 5.5σLJ. In the future, to
ensure a sensible liquid-vapor density ratio is employed in transport simulations across the liquid-
vapor interface, the highlighted variation in neutral density ratios due to choice of the interaction
potential will need to be considered. This cut-off distance is often employed in practice to make
computational implementation of the exact LJ potential simpler by assuming a model potential
that is fixed to be zero beyond the specified cut-off distance [7].

2.3. Simple model for benchmarking collisions in liquids

Before investigating electron transport in real atomic gases and liquids, it is beneficial to benchmark
the performance of a proposed model against simple, well known collision models. For this study we
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have employed the Percus-Yevick liquid model with structure factor correction of Verlet and Weiss
[26, 27, 32] to modify a simple gas phase collision model to induce structure and provide a well
defined simple liquid model, used often in previous studies [23–25]. The collision (or interaction)
model is defined as a hard-sphere elastic momentum transfer cross section σm = 6Å2 with inelastic
step function cross section σinel (ε) = 0.1Å2, and a threshold energy ∆εinel = 2 eV. Electron mass
and neutral atom mass are defined as me = 5.486× 10−4 amu and m0 = 4 amu respectively, with a
neutral background temperature of T0 = 300K.

A range of packing fractions φ = 0, 0.1, 0.2, 0.3, 0.4 were used to simulate increasingly dense fluids
between a dilute gas, φ = 0, and a final liquid phase, φ = 0.4. For a given known neutral atom
density the packing fraction is defined as

φ =
4

3
r3n0, (17)

where r is the hard sphere radius, which can be expressed as r =

√
σm
π

for the hard sphere collision

model or approximated by the van der Waal radius for a real atom.

The analytic static structure factor of Verlet and Weiss [27] was used in this study, and is defined
as

SVW (∆k, n0) =

(
1 +

24η(S1 + S2 + S3)

∆k2

)−1

, (18)

where the terms

S1 =
2

∆k2

(
12

γ

∆k2
− β

)
,

S2 =
sin(∆k)

∆k

(
α+ 2β + 4γ − 24

γ

∆k2

)
,

S3 =
2 cos(∆k)

∆k2

(
β + 6γ − 12

γ

∆k2

)
− cos(∆k)(α+ β + γ) ,

are non-linear functions of the neutral number density via the packing fraction (17), and η =

φ− φ2

16 , α = (1+2η)2

(1−η)4
, β = −6η

(
(1+0.5η)2

(1−η)4

)
, and γ = ηα

2 .

With well defined properties of an equilibrium vapor-liquid interface and a simple liquid collision
interaction model, we now seek to obtain expressions to approximate drift velocities, and thus
momentum transfer collision frequencies, for intermediate densities between gas and liquid extremes
as depicted in the interface configuration in Figure 1.

3. Approximating electron transport at associated intermediate densities

The following section presents the derivation and associated benchmarking of approximations to
input electron collision frequencies at intermediate densities between gas and liquid extremes. In
order to derive our approximations we take inspiration from dilute gas swarm physics methods for
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approximating drift velocities in gas mixtures as weighted combinations of each pure constituent
gas’s drift velocity. These mixture rules initially took the form of Blanc’s law [33], which assumed
that the EEDF in the gas mixture at a reduced field (E/N) is the same as the EEDF in the pure
constituent gases at the same E/N. This type of approximation was later described as a common
E/N (CEON) procedure [34]. The CEON concept was extended and improved [34, 35] to the
common mean energy (CME) method which assumes that the EEDF in the gas mixture at a given
electron mean energy is the same as the EEDF in the pure constituent gases at the same mean
energy.

In what follows, we adapt the CME derivation presented by Jovanovic et al. [34] and consider
steady state momentum and energy balance equations for gas, liquid, and intermediate densities
to yield expressions for electron drift velocities at intermediate densities. Drift velocity was chosen
as the benchmark variable in this study, as opposed to the collision frequencies needed as moment
model input. This was decided because experimentally measuring drift velocity is straightforward
compared to collision rates, allowing approximations produced in this study to be verified directly.
Further discussion on these dilute gas mixture rules are presented in the Appendix.

3.1. Momentum balance method

We first consider the steady state spatially averaged momentum balance form of equation (11) for
electrons in a dense fluid, of neutral density nint, within the interfacial region between the gas
and liquid extremes, with neutral densities ng and nl respectively. We assume the momentum
transfer collision frequency is a slowly varying function of electron mean energy and apply first
order momentum transfer theory (MTT) [17, 20, 36] to write electron transport as a function of
the electron mean energy, and assume there is a one to one relationship between the reduced field
and electron mean energy [34]. This yields

e

me
Ěint(〈ε〉int) = Wint(〈ε〉int)

〈
ν̌int
m

〉
(〈ε〉int) , (19)

where Ěint = Eint/nint is the reduced electric field, Wint is the electron drift velocity, and〈
ν̌int
m

〉
=
〈
νint
m

〉
/nint is the unknown electron reduced momentum transfer frequency in the fluid

at this intermediate density. For emphasis, we explicitly write that the steady state transport
properties are functions of the mean electron energy, 〈ε〉int.

As per the CMEmethod of dilute gas mixture rules [34], we now assume the intermediate momentum
transfer rate,

〈
ν̌int
m

〉
, can be approximated by a weighted combination of collisions due to gas phase

transport and collisions in the liquid extreme evaluated at a common electron mean energy〈
ν̌int
m

〉
(〈ε〉int) = xg〈ν̌gm〉(〈ε〉int) + xl

〈
ν̌lm
〉
(〈ε〉int) , (20)

where
〈
ν̌g,lm
〉

=
〈
νg,lm
〉
/nint denotes reduced collision frequencies of electrons in gas and liquid
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extremes, and the density fractions, xg,l, follow the relation

xl = 1− xg. (21)

These density fractions are determined by defining the intermediate density as a sum of fractions
of either density extreme

nint = xgng + xlnl, (22)

such that we can find an expression for the density fraction

xg =
nl − nint

nl − ng
. (23)

We now consider the steady state momentum balance equation (19) of electrons in the two gas
and liquid extremes taken at the same neutral density, nint, as the interfacial density we seek to
approximate

e

me
Ěg,l

(
〈ε〉g,l

)
= Wg,l

(
〈ε〉g,l

) 〈
ν̌g,lm
〉(
〈ε〉g,l

)
, (24)

where 〈ε〉g,l is the electron mean energy, Ěg,l is the reduced electric field, and Wg,l is the electron
drift velocity in either gas or liquid extremes.

We now invoke the CME assumption [34] so that electron transport is described as a function of a
common electron mean energy, ε̄, in any intermediate fluid on the interfacial region, or in pure gas
or liquid extremes. We may now substitute

〈
ν̌g,lm
〉
from equation (24) and combine equations (20)

and (19) to find an expression, similar to the dilute gas mixture rule of Blanc’s law [33], but which
accounts for electric field variation as a function of mean energy

1

Wint(ε̄)
= xg

Ěg(ε̄)

Ěint(ε̄)

1

Wg(ε̄)
+ xl

Ěl(ε̄)

Ěint(ε̄)

1

Wl(ε̄)
, (25)

where all steady state drift velocities and reduced fields are interpolated as functions of the local
electron mean energy ε̄.

To determine the accuracy of the proposed approximation from momentum balance (25) we now
perform benchmark calculations using the simple liquid collision model defined in Section 2.3.
Using the momentum balance rule (25), steady state drift velocities were approximated for multiple
packing fractions φ = 0.1, 0.2, 0.3 using only the properties of the extreme φ = 0 and φ = 0.4 fluids,
as per the interface layout in Figure 1.

Approximations computed from (25) were compared against accurate results obtained from multi-
term solutions of the Boltzmann equation [23–25]. All variables for the gas and liquid extremes
were interpolated as functions of electron mean energy, ε̄, using the steady state mean energy of the
intermediate density computed from a multi-term kinetic solution [24]. It should be noted that the
use of equation (25) necessitates a knowledge of the functional relationship between steady state
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reduced field and mean energy, Ěmix (ε̄) , which in practice would not be known when approximating
interfacial transport properties for input to a moment model. For these benchmarking calculations
the steady state relationship Ěmix (ε̄) computed from kinetic solutions was used at each intermediate
φ step; in this way the assumption of decomposing the intermediate collision frequency as a function
of gas and liquid extremes can be solely tested.

Results of the benchmark calculations for the momentum balance rule (25) are shown in Figure 2
where approximate values of drift velocity are given by the dashed line series and, for comparison,
solid lines denote accurate values obtained via multi-term solution of the Boltzmann equation.
The accurate benchmark solutions of the Boltzmann equation used in this study are computed
via the multi-term solution framework developed by the JCU group. For the formulation and
implementation details of this framework the reader is referred to [23–25, 29, 37].
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Figure 2. Comparison of electron drift velocities in model simple liquids for φ = 0.1, 0.2, 0.3.
Solid lines: multi-term solution of the Boltzmann equation [24]. Dashed lines: computed via
approximation (25) derived from momentum balance.

Across all packing fractions it can be seen that the momentum balance rule severely overestimates
the intermediate drift velocity, consistently predicting values above even the φ = 0.4 liquid extremity
drift velocities. This is attributed to the failure of the additivity assumption for constructing

〈
νint
m

〉
,

invoked in equation (20). This occurs because the background neutral number density n0 can no
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longer be factored out of the intermediate fluid’s momentum transfer collision frequency, ν̃m, when
coherent scattering effects are included.

The introduction of non-linearity in n0 can be seen by considering momentum transfer collision
frequencies (8) and (9), where the structure modified momentum cross section is derived via an
energy integral over the non-linear static structure factor, in this case the Verlet-Weiss analytic
form, SVW (∆k, n0) as per (18). In the dilute gas case, νm was directly proportional to n0 and so
some proportionality to n0 can be reasonably expected when neutral densities are low. However,
once coherent scattering effects are important, the non-linearity of the static structure factor clearly
breaks down any simple proportionality relation between ν̃m and n0. With the momentum balance
approximation failing to sufficiently describe intermediate density drift velocities, the assumption
invoked in equation (20) requires further improvement.

3.2. Energy balance method

We now consider the steady state spatially averaged form of the energy balance equation (12) for
an intermediate density between gas and liquid extremes. As per Section 3.1 we apply first order
momentum transfer theory (MTT) [17, 20, 36] and also assume there is a one to one relationship
between the reduced field and electron mean energy [34] to write transport coefficients and collision
rates as a function of the electron mean energy, 〈ε〉int, i.e.,

eĚint(〈ε〉int)Wint(〈ε〉int) =

(
〈ε〉int −

3

2
kBTint

)〈
ν̌int
e

〉
(〈ε〉int) + ∆εinel

〈
ν̌int
inel
〉
(〈ε〉int) , (26)

where we have explicitly separated the elastic and inelastic collision rates,
〈
ν̌int
e

〉
=
〈
νint
e

〉
/nint is

the reduced elastic electron energy transfer collision frequency, Tint is the temperature of the fluid
at an interfacial point, ∆εinel is the inelastic collision threshold energy, and

〈
ν̌int
inel
〉

=
〈
νint
inel
〉
/nint

is the reduced electron inelastic energy transfer collision frequency due to internal energy state
changes from inelastic threshold collisions §.

In contrast to Section 3.1, we now assume additivity of energy transfer collision frequencies for
both gas and liquid extremes, evaluated at the interfacial mean energy, 〈ε〉int, to approximate the
collision frequencies at the intermediate density

eĚint(〈ε〉int)Wint(〈ε〉int) =

(
〈ε〉int −

3

2
kBTint

)[
xg 〈ν̌ge 〉(〈ε〉int) + xl

〈
ν̌le
〉
(〈ε〉int)

]
+ (27)

∆εinel
[
xg 〈ν̌ginel〉(〈ε〉int) + xl

〈
ν̌linel

〉
(〈ε〉int)

]
,

where
〈
ν̌g,le
〉

=
〈
νg,le
〉
/nint denotes reduced electron energy transfer collision frequency with

superscripts g, l denoting either the gas or liquid extremes,
〈
ν̌g,linel

〉
is the reduced inelastic energy

§ For clarity in our derivation, we have included just one inelastic excitation scattering process. It is straightforward
to demonstrate that the following results are unaffected by adding further inelastic scattering processes.
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transfer collision frequency due to inelastic threshold collisions, and density fractions xg,l are defined
as per equations (21) - (23).

To obtain expressions for
〈
ν̌g,le
〉
in either extreme, we now consider the steady state energy balance

equations (26) of electrons in the gas and liquid extremes taken at the same neutral density, nint,
as the interfacial density we seek to approximate

eĚg,l

(
〈ε〉g,l

)
Wg,l

(
〈ε〉g,l

)
=

(
〈ε〉g,l −

3

2
kBTg,l

)〈
ν̌g,le
〉(
〈ε〉g,l

)
+ ∆εinel

〈
ν̌g,linel

〉(
〈ε〉g,l

)
. (28)

If we assume the temperature is constant across all densities in the gas-liquid interface system,
and we again invoke the CME assumption to abstract steady state electron transport at all neutral
densities as a function of some common mean energy, ε̄, we rearrange (28) to obtain expressions for〈
ν̌g,le
〉
and substitute them into (27). It can be shown that the reduced inelastic scattering rates〈

ν̌g,linel

〉
cancel out yielding an expression for the drift velocity at the intermediate density

Wint(ε̄) = xg
Ěg(ε̄)

Ěint(ε̄)
Wg(ε̄) + xl

Ěl(ε̄)

Ěint(ε̄)
Wl(ε̄) . (29)

To establish the accuracy of the energy balance approximation (29), we again performed the same
benchmark calculations for the simple Percus-Yevick atomic liquid. Results of this approximation
are shown in Figure 3, where solid lines denote accurate values obtained via multi-term solution
of the Boltzmann equation and approximate values of drift velocity are given by the dashed line
series.
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Figure 3. Comparison of electron drift velocities in model simple liquids for φ = 0.1, 0.2, 0.3.
Solid lines - multi-term solution of the Boltzmann equation [24]. Dashed lines - computed via
approximation (29) derived from energy balance.

In general, the approximation derived from energy balance (29) appears to be a better representation
of the intermediate density than the momentum balance method (25). For higher packing fractions
φ = 0.2, 0.3 the approximation of drift velocity by (29) demonstrates an excellent agreement with
an accurate kinetic solution across all energy ranges. The agreement for the φ = 0.1 case is strong
at low and high fields but loses accuracy at intermediate fields of approximately 1 Td - 5 Td, where
a maximum error of approximately 30% is produced. In this field range the assumption that the
energy transfer collision frequency can be approximated by a linear combination of the collision
frequencies in gas and liquid extremes, as invoked in (27), appears to be insufficient. The effects of
this inaccuracy are very apparent in the φ = 0.1 case in Figure 3, and present to a lesser degree
in the φ = 0.2 case. This is a reflection of the approximations associated with the first-order
momentum transfer theory used in developing the relation (29) [17, 38]. This inaccuracy could be
improved through higher-order momentum transfer theory if desired.

To explain why an approximation derived from energy balance should perform better than one
derived from momentum balance, we recall the modifications of electron transport in gases required
to simulate transport in liquid media, outlined in Section 2.1. Firstly, inelastic collisions result
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in largely localized energy transfer between electrons and the background medium, and we assume
that these are incoherent scattering events which can be treated by classical dilute gas kinetic theory
[23–25]. On the other hand, in the structure modified kinetic theory [23] used to describe electron
transport in condensed materials, coherent elastic scattering collisions are important. Since it is
elastic scattering that carries the explicit density dependent coherent scattering effects, it is not
surprising that momentum transfer is impacted more than energy transfer as the neutral density of
the background fluids are increased.

In summary, from a rule based on largely structure independent energy transfer (29) we observe
a reasonable approximation to Wint, as opposed to an approximation that ignores the non-linear
density effects on momentum transfer (25). With this result, it appears we are better placed
to approximate a lumped energy transfer collision frequency of an intermediate fluid by simply
assuming additivity of the gas and liquid reduced collision frequencies as per (27). We now seek
to correct the approximation derived from momentum balance in the previous section, in order to
provide a better approximation to momentum transfer collision rates.

3.3. Modified momentum balance method

We now propose a modified momentum balance approximation rule that aims to explicitly include
some of the non-linear effects of density dependent coherent scattering in the approximation of〈
νint
m

〉
. By only considering structure induced coherent scattering effects in this treatment, we

henceforth neglect density dependent potential screening effects in the differential cross section (7).
Future studies will endeavor to relax this assumption in order to more accurately describe density
dependent scattering via interaction potential screening and not just coherent scattering.

To isolate density dependence of the soft condensed phase scattering interaction, we apply first
order momentum transfer theory (MTT) [17, 20, 36] to evaluate the structure modified momentum
transfer cross section as a function of electron mean energy, ε̄,

Σm(ε̄, n0) ≈ σm(ε̄) s(ε̄, n0) , (30)

where s(ε̄, n0) is an angle integrated structure factor with explicit n0 dependence

s(ε̄, n0) =
1

2

∫ π

0

S

(
2

~
√

2meε̄ sin
χ

2
, n0

)
[1− cosχ] dχ. (31)

In the limit of isotropic scattering the approximations of equations (30) and (31) are exact
[17, 36, 38]. Decomposing the structure modified momentum transfer cross section to isolate a
density dependence, as per the approximation of equation (30), now allows dense phase collision
rates to be approximated via scaling of dilute gas collision rates.

We continue the use of MTT and evaluate the structure modified momentum transfer collision
frequency (9) as the dilute gas phase momentum transfer collision frequency multiplied by the
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angle integrated structure factor each evaluated at the electron mean energy, ε̄,

〈ν̃m〉(ε̄, n0) ≈ n0

√
2ε̄

me
Σm(ε̄, n0) ,

≈ s(ε̄, n0) 〈νm〉(ε̄) .

Using this result, we now return to the steady state limit of the momentum balance equation (19),
but now make the assertion that instead of simply combining certain fractions of gas and liquid
reduced momentum transfer collision frequencies we first normalize each input reduced collision
frequency sg,l and then rescale by the intermediate density’s sint

e

me
Ěint(ε̄) = Wint(ε̄)

[
xg
sint(ε̄)

sg(ε̄)
〈ν̌gm〉(ε̄) + xl

sint(ε̄)

sl(ε̄)

〈
ν̌lm
〉
(ε̄)

]
, (32)

where sg,l,int are the angle-integrated structure factors for gas and liquid extremes, and the
intermediate density respectively, all evaluated at a common mean energy ε̄, and density fractions
xg,l are defined as per equations (21) - (23).

In practice, when approximating transport properties between gas and liquid extremes over a range
of n0 values, sint must be specified at each point along the interface. Obtaining a function for sint at
each point would be very computationally demanding, and is generally not available experimentally.
As a result we propose a further approximation for sint as a combination of the limiting gas and
liquid angle-integrated structure factors

sint ≈ wsg + (1− w) sl, (33)

where to ensure the approximation is physically grounded in both the high and low energy limits,
the weighting factor, w, is fixed in the low energy limit by

w =
Sint(0, nint)− Sl(0, nl)
Sg(0, ng)− Sl(0, nl)

, (34)

where S (0) is the ∆k = 0 limit of the static structure factor, which is also proportional to the
fluid’s compressibility.

To benchmark the assumptions used to define equation (33) the approximate and exact angle-
integrated structure factors, computed by integrating the analytic Verlet-Weiss structure factor, are
compared in Figure 4, where solid lines denote exact values via integrating (31) and approximate
values of sint are given by the dashed line series. We note that for a dilute gas sg = 1 and so we
cease to use this variable in the remainder of this treatment.
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Figure 4. Comparison of approximated angle-integrated structure factors for Percus-Yevick
model liquids. Solid lines - exact values via (31). Dashed lines - approximated s via equations
(33) and (34).

As expected, the low and high energy limits are fixed exactly, while intermediate energies show
some differences once the structure factor begins to peak. By substituting an expression for

〈
ν̌g,lm
〉

from the momentum balance for either gas or liquid extremes (24) into the intermediate fluid
momentum balance (32), and assuming the common mean energy assumption, we yield a modified
approximation for drift velocity accounting for some non-linear density effects

1

Wint(ε̄)
= xgsint(ε̄)

Ěg(ε̄)

Ěint(ε̄)

1

Wg(ε̄)
+ xl

sint(ε̄)

sl(ε̄)

Ěl(ε̄)

Ěint(ε̄)

1

Wl(ε̄)
. (35)

We again benchmark this approximation and the results are shown in Figure 5, where solid lines
denote accurate values obtained via multi-term solution of the Boltzmann equation and approximate
values of drift velocity are given by the dashed line series.
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Figure 5. Comparison of electron drift velocities in model simple liquids for φ = 0.1, 0.2, 0.3.
Solid lines - multi-term solution of the Boltzmann equation [24]. Dashed lines - computed via
approximation (35) derived from structure modified momentum balance.

It can be seen that this modified momentum balance rule produces a better outcome than the results
of the unmodified momentum balance method, shown in Figure 2, for all benchmark intermediate
densities. As observed for the energy balance approximations in Figure 3, the φ = 0.2, 0.3 cases
in Figure 2 perform consistently well under the modified momentum balance approximation. In
contrast to the approximation derived from energy balance, the φ = 0.1 case now demonstrates
strong agreement between 1 Td - 10 Td, demonstrating insensitivity to inelastic scattering effects.
Inaccuracies due to equation (35) are observed in the φ = 0.1 case between 10 Td - 50 Td due to
the error in approximating sint as a combination of the gas and liquid extrema structure factors,
shown in Figure 4.

Despite the noted shortcomings at intermediate fields, the structure-modified drift velocity
approximation (35) provides a much better general approximation to Wint than the original
approximation derived from a simpler momentum balance (25), and demonstrates potential to
provide an improved approximation to electron transport at densities between gas and liquid
extrema.
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3.4. Practical implementation for plasma modeling

So far two approximation rules (29) and (35) have been derived and were demonstrated to have
potential in approximating electron drift velocities at intermediate densities between gas and liquid
extrema. Each equation is a function of a common mean energy ε̄, and steady state values of
Wg,l and Ěg,l,int are interpolated at these energies to provide input from either phase extreme.
As previously discussed, when used independently, each equation requires knowledge of the steady
state relationship between Ěint and ε̄ at the intermediate density between gas and liquid. This
requirement is problematic because the gas-liquid interface steady state properties are generally
unknown and hence the motivation for this study.

As a way to form an approximation that can be applied in practice, without any knowledge of the
steady state transport properties at each intermediate density, we combine the two benchmarked
approximation rules from energy balance (29) and modified momentum balance (35) and solve for
Wint, to eliminate Ěint,

W 2
int(ε̄) =

xgĚg(ε̄)Wg(ε̄) + xlĚl(ε̄)Wl(ε̄)

xgsint(ε̄) Ěg(ε̄)
1

Wg(ε̄)
+ xl

sint(ε̄)
sl(ε̄)

Ěl(ε̄)
1

Wl(ε̄)

. (36)

To test the performance of the approximation (36), we now apply it to the benchmark model
used throughout this study. The most straightforward measurable that can be used to verify the
accuracy of the approximation is the electron steady state drift velocity. Despite not being a
direct input in higher order moment models [1, 14, 15], it provides a solid measure on the validity
of approximations of input collision frequencies. For the Percus-Yevick model of a simple atomic
liquid, multiple packing fractions, φ = 0.1, 0.2, 0.3, were used to approximate electron drift velocity
and were compared with accurate calculations of the steady state drift velocity as shown in Figure
6.
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Figure 6. Comparison of electron drift velocities in model simple liquids for φ = 0.1, 0.2, 0.3.
Solid lines - multi-term solution of the Boltzmann equation [24]. Dashed lines - computed via the
practical approximation (36).

By only specifying the ∆k = 0 analytic limit of the structure factor SVW (0, nint) of the intermediate
densities the combined approximation (36) provides a good representation of the exact results.
As discussed earlier, the higher-density fluids perform very well, while the lower-density fluid
demonstrates variations from the exact result due to our assumptions on the fluid structure. For
packing fractions of φ = 0.2, 0.3 the maximum error observed was 12%, which occurred near the
peak value of W before the region of negative differential conductivity (NDC) began. For the lower
packing fraction, φ = 0.1, a maximum error of 25% was observed. This approximation was not as
accurate because the simple intermediate structure assumptions used in this study didn’t accurately
represent the transition to near-dilute gas phase. An additional encouraging feature of the proposed
approximation was the ability to predict structure induced NDC in the model liquids, which has
previously been reported to occur at packing fractions above φ = 0.2 [23], using only the analytic
∆k = 0 limit of the static structure factor, and dilute gas and liquid extreme transport data.
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3.5. Approximating collision frequencies across an interface

In practice, when simulating electron transport with higher order moment models [1, 14, 15] the
required inputs are not drift velocities or diffusion coefficients (which could be computed via an
Einstein relation onceWint is known), but rather reduced collision frequencies. Once an approximate
drift velocity is found one may simply compute a reduced momentum transfer frequency via

ν̌int
m (ε̄) =

eĚint(ε̄)

meWint(ε̄)
, (37)

in order to approximate the steady state momentum collision rate at the intermediate densities
between gas and liquid extremes. The results of using the collision frequency approximation (37)
are shown in Figure 7 for multiple packing fractions.
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Figure 7. Approximated ν̌mix
m for multiple packing fractions of PY model liquid. Solid line:

exact via multi-term kinetic solution [24], −−: approximation via (37).

It can be seen that the approximation to ν̌int
m performs quite well without much knowledge of

the intermediate fluid’s structure and steady state transport properties. Higher density fluids,
φ = 0.2, 0.3, demonstrate the best agreement, while the inaccuracies in approximating structure
for the φ = 0.1 case are highlighted by the deviation at intermediate energy ranges. This result
demonstrates potential for the final approximation rule (36) to be used in conjunction with higher
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order moment models [1, 14, 16, 39] to provide a foundation for simulating electron transport
between gas and liquid extremes as a continuum.

4. Application to noble gas-liquid systems

In order to further verify the suitability of the derived approximation (36), we now consider
application to real gases and liquids. In this Section we will seek to use our derived approximation
method, with known steady state transport properties of a dilute gas and dense liquid, to estimate
steady state electron drift velocities measured in a fluid of intermediate density. In contrast to the
previous model where only explicit coherent effects were considered, real atomic systems require
additional modifications to the interaction potential associated with varying the neutral density [25].
A classic example of the variation between cross sections at gas and liquid densities is observed in
some rare gases and their liquids, where the low-energy Ramsauer minimum found in gas phase
cross sections is suppressed and eventually completely non-existent as the liquid density increases
[25]. As a result of the complex scattering variations from gas to liquid states, in conjunction with
accessible experimental data, liquid argon and liquid xenon were chosen for comparison in this
study.

Experimental data of Gushchin et al. [40] for drift velocity, electric field, and mean energy of
electrons in liquid argon and liquid xenon were digitized as a basis for experimental validation of the
proposed approximation (36). This data set was chosen over other existing data sets [41–43] because
an approximation to the electron mean energy, scaled from measurements of the characteristic
energy D/µ, was included in the original study and so provided the necessary mean energy input
needed to use our derived approximations. Table 1 outlines the approximate gas to liquid transition
assumed for each atomic fluid.

Table 1. Benchmark atomic gas-liquid systems used for validating proposed drift velocity
approximation rule against experimental data

Liquid - Calc.
[24, 25]

Intermediate - Exp.
[40] Gas - Calc. [24, 25]

Argon 85 K 130 K 300 K
Xenon 165 K 230 K 300 K

As opposed to the Percus-Yevick model atomic liquid, temperature, T , as well as neutral atom
density, n0, varies between the densities used in experiment. In order to account for this, the neutral
densities at each temperature were calculated by interpolating the argon and xenon saturated liquid
curves as a function of T [44, 45].

Dilute gas neutral density was approximated as being 300 times smaller than the liquid extreme
neutral density based on the equilibrium liquid-gas density ratios found in molecular dynamics
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simulations of Lennard-Jones liquids [5–8].

In contrast to the simplified collision model used in the benchmark system in the previous Section,
each real fluid in Table 1 was measured at different temperatures as well as densities. We note that
a modification to the approximation method (36) is required to account for varying temperatures
and densities. To account for temperature variation we slightly modify the derivation of the
approximation (29) via energy balance (26) to allow thermal components, 3

2kBT , to vary between
the gas, liquid, and intermediate densities.

Assuming the same CME assumption as previous derivations, and allowing Tg 6= Tint 6= Tl we find
ratios of the common mean energy minus thermal components do not cancel in the approximation
derived from energy balance, and we yield a temperature-modified approximation rule

W 2
int(ε̄) =

(
xg

ε̄− 3
2
kBTint

ε̄− 3
2
kBTg

Ěg(ε̄)Wg(ε̄) + xl
ε̄− 3

2
kBTint

ε̄− 3
2
kBTl

Ěl(ε̄)Wl(ε̄)
)

xgsl(ε̄) Ěg(ε̄)Wl(ε̄) + xlĚl(ε̄)Wg(ε̄)

sl(ε̄)Wg(ε̄)Wl(ε̄)

sint(ε̄)
. (38)

To ensure accurate input data to our approximation method (38), multi-term solutions of
Boltzmann’s equation [24, 25] were computed to obtain transport properties for argon and xenon
in both dilute gas and liquid extreme conditions. In low density dilute gas and high density liquid
states, electron scattering cross sections were taken from the recent ab initio refinements that take
into account density dependent scattering and screening effects [25, 46] to obtain increased accuracy.
To demonstrate the validity of the calculated transport data in gas and liquid extremes, comparison
against experimental results is included in Figures 8 and 9. Gas phase drift velocity measurements
are taken from the work of Pack et al. [47], while liquid argon and liquid xenon measurements are
taken from Miller et al. [48] and Huang and Freeman [42] respectively.

The angle-integrated structure factors for the liquid extrema and the intermediate fluid, sl and
smix, were approximated as per the benchmark model atomic liquid used in Section 3.3. For liquid
argon and xenon we evaluate the analytic static structure factor expression of Verlet and Weiss
(18) using relevant parameters for argon and xenon, because it has been shown that despite the
complex interaction at high densities the expression of Verlet and Weiss is a good approximation to
the structure factor for noble liquids [7, 26]. With accurate data for gas and liquid extremes, and
a temperature modification to the approximation rule (38), we now compare the approximation of
the steady state drift velocity at an intermediate temperature/density for both liquid argon and
liquid xenon against experimental results of Gushchin et al. [40]. The results are shown in Figures
8 and 9.
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Figure 8. Electron drift velocity in liquid argon at 130 K. Present approximation computed via
equation (38) compared with experimental results of Gushchin et al. [40]. Reference data: Boyle
et al. [24, 46], Miller et al. [48], Pack et al. [47].
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Figure 9. Electron drift velocity in liquid xenon at 230 K. Present approximation computed via
equation (38) compared with experimental results of Gushchin et al. [40]. Reference data: Boyle
et al. [24, 25], Huang and Freeman [42], Pack et al. [47].

From the experimental work of Gushchin et al. [40] errors of approximately 5% each were quoted
for measurement of the drift velocity and applied electric field, and errors of approximately 10%
was quoted for the computation of electron mean energy. Carrying these errors through the
approximations used in this study we include estimated error bars on each line series for the
intermediate drift velocities in Figures 8 and 9.

In Figures 8 and 9, we see good agreement between the approximate values computed via (38)
and experimental measurements within the uncertainties displayed. Despite no knowledge of the
intermediate steady state transport properties, the complexities of the electron scattering cross
section changing between gas and liquid densities, and an approximate treatment of the effects of
structure, both approximations provide a good estimation of the drift velocity in the intermediate
fluid densities.

The liquid argon approximation provides the best fit of the two atomic systems considered, with
a strong qualitative and functional agreement between experiment and calculated data. An
encouraging feature of the liquid argon result is the ability of the approximation to demonstrate a
gradient change that occurs at roughly 10−3 Td. For liquid xenon, the prediction of NDC at low
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fields is also an encouraging result of our approximation. The magnitude and window of reduced
fields at which the approximated NDC occurs is not exactly replicated, but the ability of the
approximation rule to predict NDC by employing very simple structure assumptions shows the
utility of the proposed approximation. Future improvements in approximating the intermediate
density structure effects via experimental structure factors, and including interaction potential
screening effects, may yield even greater accuracy in approximating complex transport behavior.

5. Conclusions

In summary, we have proposed expressions (36) and (38) to approximate electron transport at
intermediate densities in the gas-liquid interfacial region from data in the gas and liquid extreme
phases only. To formulate the approximation method we have extended well known mean energy
dependent gas phase mixture rules into high density fluids which exhibit non-linear density
dependent transport properties. We have applied a simple analytic structure modification to account
for non-linear density effects on electron momentum transfer, and benchmarked this modification
with simple atomic liquid models. Following analysis of structure induced momentum transfer
effects, an approximation derived from energy balance between electrons and structured media was
benchmarked and demonstrated suitable accuracy for a wide range of reduced fields. Improved
accuracies could be achieved with higher-order momentum transfer theory [17, 38]. Finally, to
form a practical approximation rule that can be used without any knowledge of the reduced field’s
dependence on mean energy, approximations derived from energy balance and modified momentum
balance were combined and the subsequent expression was benchmarked.

Steady state transport properties of a simple atomic liquid model plus experimental data of argon
and xenon liquids were assembled for comparison. By applying the final combined drift velocity
approximation (36), and (38) for including temperature variation in the experimental benchmarks,
we have demonstrated the utility of our approximation in predicting drift velocities of intermediate
fluids between gas and liquid extremes. We subsequently demonstrated that reduced momentum
collision frequencies can be approximated with sufficient accuracy, to serve as input data in
higher order electron moment modeling. For the majority of model and experimental gases and
liquids the qualitative agreement between approximations and known results was strong. Despite
the encouraging performance of the proposed approximation rule, comparison against argon and
xenon experimental results demonstrated the complex interaction potentials of real liquids pose a
challenge and further study should be carried out on including low-energy screening effects into
the approximation of intermediate structure factors, smix. In addition, further enhancements on
the implementation of an angle-integrated structure factor should be studied to account for the
structure of even more complex liquids, such as polar molecular liquids like water.
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Appendix: Dilute gas mixture rules

To provide the foundation for an approximation of electron collision rates at intermediate densities
between a gas and liquid, methods of approximating drift velocities in dilute gas mixtures were
reviewed. Various rules have been used in literature, but all are based on the premise of density
fractions, xα = nα/ntotal, computed for each constituent gas being used to scale steady state drift
velocities of each constituent gas to provide an approximate of the mixture’s steady state transport
data.

Blanc’s law

The origin of mixing rules in gas phase charged particle transport can be traced to Blanc’s empirical
law [33]

1

Wmix

(
E
n0

) =
∑
α

xα

Wα

(
E
n0

) , (39)

where Wmix is the mixture drift velocity, xα is the density fraction of gas α such that
∑
α xα = 1,

andWα is the drift velocity in gas α. All drift velocities are evaluated at a common value of reduced
electric field, E/n0; which has since been termed a common E/n0 (CEON) approach [34].

By the mid 20th century experimental results necessitated modifications to Blanc’s law,

1

Wmix

(
E
n0

) =
∑
α

xα

Wα

(
E
n0

) + δB

(
E

n0

)
, (40)

where δB is some deviation from the original law to include higher order effects and inelastic
collisions [34, 49, 50]. Multiple approaches to computing deviations were presented, from rigorous
kinetic theory arguments to empirical observations based on new experimental observations. It was
shown that Blanc’s law was suitable for approximating ion transport in gas mixtures, whereas it
failed significantly for electron transport, without severe modifications to the original law [34, 35, 50–
52].

The breakdown of Blanc’s law for electrons can be understood as a failing of the following two
assumptions:
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(i) that electron impact cross sections can be added in simple linear combinations at a given value
of E/n0 [49], and

(ii) the steady state EEDF is the same for each gas, and the combination mixture, at a given value
of E/n0 [34].

In general, these assumptions will fail owing to the rapidly varying electron mean energy with
increasing E/n0, and the strong dependence of energy transfer on inelastic collisions, which may
occur at vastly different field ranges for different gases. These failings of the CEON method led to
an alternative mixing rule based on a common mean energy (CME) as proposed by Chiflikian [35].

Common mean energy procedure

The CME rule is in the spirit of modern plasma moment modeling in the sense that transport is
defined as a function of charged particle mean energy ε̄ [14, 15, 20, 53–55], instead of the reduced
field E/n0. Two variations of a CME rule may be derived from the steady state momentum and
energy balance equations for charged particle transport in a plasma to yield two slightly different
equations, corresponding to either momentum (p = +1) or energy balance (p = −1)

1 =
∑
α

Ěα (ε̄)

Ěmix (ε̄)

[
Wmix (ε̄)

Wα (ε̄)

]p
,

where Ěmix = Emix/n0 of the mixture, Ěα = Eα/n0 in gas α, Wmix is the drift velocity in the
mixture, and Wα is the drift velocity in gas α. All terms are evaluated at the same value of mean
energy ε̄.

Adopting either of the two CME approximations was shown to be suitable for both ions and electrons
in various gas mixtures. In contrast to Blanc’s Law, inelastic collisions are natively included in the
general theory [34, 35]. Furthermore, the accuracy of the rule is also not restricted to a two-term
EEDF theory, as arbitrary steady state EEDFs are assumed in the derivation [34].

—

References

[1] N A Garland, D G Cocks, G J Boyle, S Dujko, and R D White. Unified fluid model analysis
and benchmark study for electron transport in gas and liquid analogs. Plasma Sources Science
and Technology, 26(7), 2017.

[2] Natalia Yu Babaeva, Wei Tian, and Mark J Kushner. The interaction between plasma filaments
in dielectric barrier discharges and liquid covered wounds: electric fields delivered to model
platelets and cells. Journal of Physics D: Applied Physics, 47(23):235201, 2014.

28



[3] P J Bruggeman, M J Kushner, B R Locke, J G E Gardeniers, W G Graham, D B Graves,
R C H M Hofman-Caris, D Maric, J P Reid, E Ceriani, D Fernandez Rivas, J E Foster, S C
Garrick, Y Gorbanev, S Hamaguchi, F Iza, H Jablonowski, E Klimova, J Kolb, F Krcma,
P Lukes, Z Machala, I Marinov, D Mariotti, S Mededovic Thagard, D Minakata, E C Neyts,
J Pawlat, Z Lj Petrovic, R Pflieger, S Reuter, D C Schram, S Schröter, M Shiraiwa, B Tarabová,
P A Tsai, J R R Verlet, T von Woedtke, K R Wilson, K Yasui, and G Zvereva. Plasma-liquid
interactions: a review and roadmap. Plasma Sources Science and Technology, 25(5):053002,
2016.

[4] Amanda M Lietz and Mark J Kushner. Air plasma treatment of liquid covered tissue: long
timescale chemistry. Journal of Physics D: Applied Physics, 49(42):425204, 2016.

[5] Gustavo A Chapela, Graham Saville, Stephen M Thompson, and John S Rowlinson. Computer
simulation of a gas-liquid surface. Part 1. Journal of the Chemical Society, Faraday
Transactions 2: Molecular and Chemical Physics, 73(7):1133–1144, 1977.

[6] D.J. Lee, M.M. Telo da Gama, and K.E. Gubbins. The vapour-liquid interface for a Lennard-
Jones model of argon-krypton mixtures. Molecular Physics, 53(5):1113–1130, 1984.

[7] Andrij Trokhymchuk and Jose Alejandre. Computer simulations of liquid/vapor interface
in Lennard-Jones fluids: Some questions and answers. The Journal of Chemical Physics,
111(18):8510, 1999.

[8] Pan Yi, D. Poulikakos, J. Walther, and G. Yadigaroglu. Molecular dynamics simulation of
vaporization of an ultra-thin liquid argon layer on a surface. International Journal of Heat and
Mass Transfer, 45(10):2087–2100, 2002.

[9] Carolyn Richmonds, Megan Witzke, Brandon Bartling, Seung Whan Lee, Jesse Wainright,
Chung Chiun Liu, and R. Mohan Sankaran. Electron-transfer reactions at the plasma-liquid
interface. Journal of the American Chemical Society, 133(44):17582–17585, 2011.

[10] R Gopalakrishnan, E Kawamura, A J Lichtenberg, M A Lieberman, and D B Graves. Solvated
electrons at the atmospheric pressure plasma-water anodic interface. Journal of Physics D:
Applied Physics, 49(29):295205, 2016.

[11] Peter Bruggeman and Christophe Leys. Non-thermal plasmas in and in contact with liquids.
Journal of Physics D: Applied Physics, 42(5):053001, 2009.

[12] Alexander Lindsay, David Graves, and Steven Shannon. Fully Coupled Simulation of the
Plasma Liquid Interface and Interfacial Coefficient Effects. Journal of Physics D: Applied
Physics, 49:1–23, 2016.

[13] Davide Mariotti, Jenish Patel, Vladimir Švrček, and Paul Maguire. Plasma-liquid interactions
at atmospheric pressure for nanomaterials synthesis and surface engineering. Plasma Processes
and Polymers, 9(11-12):1074–1085, 2012.

29



[14] Markus M Becker, Hanno Kählert, Anbang Sun, Michael Bonitz, and Detlef Loffhagen.
Advanced fluid modelling and PIC/MCC simulations of low-pressure ccrf discharges. Plasma
Sources Sci. Technol., 26(044001):1–16, 2016.

[15] Aram H Markosyan, Jannis Teunissen, Saša Dujko, and Ute Ebert. Comparing plasma fluid
models of different order for 1D streamer ionization fronts. Plasma Sources Science and
Technology, 24(6):065002, 2015.

[16] S Dujko, A H Markosyan, R D White, and U Ebert. High-order fluid model for streamer
discharges: I. Derivation of model and transport data. Journal of Physics D: Applied Physics,
46(47):475202, 2013.

[17] Robert Robson, Ronald White, and Malte Hildebrandt. Fundamentals of Charged Particle
Transport in Gases and Condensed Matter (Monograph Series in Physical Sciences). CRC
Press, 2017.

[18] J. P. Boeuf and L. C. Pitchford. Two-dimensional model of a capacitively coupled rf discharge
and comparisons with experiments in the Gaseous Electronics Conference reference reactor.
Physical Review E, 51(2):1376–1390, 1995.

[19] G.J.M. Hagelaar and G.M.W. Kroesen. Speeding Up Fluid Models for Gas Discharges by
Implicit Treatment of the Electron Energy Source Term. Journal of Computational Physics,
159:1–12, 2000.

[20] R. E. Robson, R. D. White, and Z. Lj Petrović. Colloquium: Physically based fluid modeling
of collisionally dominated low-temperature plasmas. Reviews of Modern Physics, 77(4):1303–
1320, 2005.

[21] R. E. Robson, P. Nicoletopoulos, M. Hildebrandt, and R. D. White. Fundamental issues in fluid
modeling: Direct substitution and aliasing methods. Journal of Chemical Physics, 137(21),
2012.

[22] M. M. Turner, A. Derzsi, Z. Donkó, D. Eremin, S. J. Kelly, T. Lafleur, and T. Mussenbrock.
Simulation benchmarks for low-pressure plasmas: Capacitive discharges. Physics of Plasmas,
20(1), 2013.

[23] R. D. White and R. E. Robson. Multiterm solution of a generalized Boltzmann kinetic equation
for electron and positron transport in structured and soft condensed matter. Physical Review
E - Statistical, Nonlinear, and Soft Matter Physics, 84(3):1–10, 2011.

[24] G J Boyle, D G Cocks, W J Tattersall, R. P. McEachran, R D White, D G Cocks, R. P.
McEachran, and R D White. A multi-term solution of the space-time Boltzmann equation for
electrons in gases and liquids. Plasma Sources Science and Technology, 26(2):24007, 2017.

[25] G J Boyle, R P McEachran, D G Cocks, M J Brunger, S J Buckman, S Dujko, and R D White.

30



Ab initio electron scattering cross-sections and transport in liquid xenon. Journal of Physics
D: Applied Physics, 49(35):355201, 2016.

[26] W J Tattersall, D G Cocks, G J Boyle, S J Buckman, and R D White. Monte Carlo study of
coherent scattering effects of low-energy charged particle transport in Percus-Yevick liquids.
Phys. Rev. E, 91(4):43304, 2015.

[27] L Verlet and J. Weis. Equilibrium Theory of Simple Liquids. Phys. Rev. A, 5(1945):939, 1972.

[28] S Dujko, R D White, and Z Lj Petrovic. Monte Carlo studies of non-conservative electron
transport in the steady-state Townsend experiment. J. Phys. D: Appl. Phys., 41(24):245205,
2008.

[29] R D White, R E Robson, S Dujko, P Nicoletopoulos, and B Li. Recent advances in the
application of Boltzmann equation and fluid equation methods to charged particle transport
in non-equilibrium plasmas. Journal of Physics D: Applied Physics, 42(19):194001, 2009.

[30] Markus M. Becker and Detlef Loffhagen. Derivation of Moment Equations for the Theoretical
Description of Electrons in Nonthermal Plasmas. Advances in Pure Mathematics, 03(03):343–
352, 2013.

[31] M. H. Kalos, J. K. Percus, and M. Rao. Structure of a liquid-vapor interface. Journal of
Statistical Physics, 17(3):111–136, 1977.

[32] J. Lekner. Motion of electrons in liquid argon. Physical Review, 158(1):130–137, 1967.

[33] A. Blanc. Recherches sur les mobilités des ions dans les gaz. Journal de Physique Théorique
et Appliquée, 7(1):825–839, 1908.

[34] J. V. Jovanović, S. B. Vrhovac, and Z. Lj Petrović. Application of Blanc’s law at arbitrary
electric field to gas density ratios. European Physical Journal D, 28(1):91–99, 2004.

[35] R V Chiflikian. The analog of Blanc’s law for drift velocities of electrons in gas mixtures in
weakly ionized plasma. Physics of Plasmas, 2(10):3902–3909, 1995.

[36] R. E. Robson and K. F. Ness. Velocity distribution function and transport coefficients of
electron swarms in gases: Spherical-harmonics decomposition of Boltzmanns equation. Physical
Review A, 33(3):2068–2077, 1986.

[37] R D White, R E Robson, K F Ness, and B Li. Charged-particle transport in gases in electric
and magnetic fields crossed at arbitrary angles: Multiterm solution of Boltzmann’s equation.
Phys. Rev. E, 27(5):1249, 1999.

[38] G. J. Boyle, R. D. White, R. E. Robson, S. Dujko, and Z. Lj Petrovic. On the approximation
of transport properties in structured materials using momentum-transfer theory. New Journal
of Physics, 14, 2012.

[39] M M Becker and D Loffhagen. Enhanced reliability of drift-diffusion approximation for
electrons in fluid models for nonthermal plasmas. AIP Advances, 3(1):12108, 2013.

31



[40] E.M. M Gushchin, A.A. A Kruglov, and I.M. M Obodovskii. Electron dynamics in condensed
argon and xenon. Sov. Phys. JETP, 55(4):650, 1982.

[41] V.M. Atrazhev, A.V. Berezhnov, D.O. Dunikov, I.V. Chernysheva, V.V. Dmitrenko, and
G. Kapralova. Electron transport coefficients in liquid xenon. In IEEE International Conference
on Dielectric Liquids, 2005. ICDL 2005., pages 1–4, 2005.

[42] Sam Huang and Gordon R Freeman. Electron mobilities in gaseous, critical, and liquid xenon:
Density, electric field, and temperature effects: Quasilocalization. The Journal of Chemical
Physics, 68(4):1355–1362, 1978.

[43] Sam S.-S. Huang and Gordon R. Freeman. Density and temperature effects on electron
mobilities in gaseous, critical and liquid n-hexane, cyclohexane, and cyclopentane. Canadian
Journal of Chemistry, 56(18):2388–2395, 1978.

[44] O Sifner and J Klomfar. Thermodynamic Properties of Xenon from the Triple Point to 800 K
with Pressures up to 350 MPa. Journal of Physical and Chemical Reference Data, 23(1):63–152,
1994.

[45] Richard B Stewart and Richard T Jacobsen. Thermodynamic Properties of Argon from the
Triple Point to 1200 K with Pressures to 1000 MPa. Journal of Physical and Chemical Reference
Data, 18(2):639–798, apr 1989.

[46] G. J. Boyle, R. P. McEachran, D. G. Cocks, and R. D. White. Electron scattering and transport
in liquid argon. Journal of Chemical Physics, 142(15):1–13, 2015.

[47] J. L. Pack, R. E. Voshall, A. V. Phelps, and L. E. Kline. Longitudinal electron diffusion
coefficients in gases: Noble gases. Journal of Applied Physics, 71(11):5363–5371, 1992.

[48] L S Miller, S Howe, and W E Spear. Charge Transport in Solid and Liquid Ar, Kr, and Xe.
Phys. Rev., 166(3):871–878, 1968.

[49] Stanley I. Sandler and E. A. Mason. Kinetic Theory Deviations from Blanc’s Law of Ion
Mobilities. The Journal of Chemical Physics, 48(7):2873–2875, 1968.

[50] HB Milloy and RE Robson. The mobility of potassium ions in gas mixtures. Journal of Physics
B, 6:1139, 1973.

[51] Manfred A. Biondi and Lorne M. Chanin. Blanc’s law-ion mobilities in helium-neon mixtures.
Physical Review, 122(3):843–847, 1961.

[52] O Šašić, J Jovanović, Z Lj. Petrović, J de Urquijo, J R Castrejón-Pita, J L Hernández-Ávila,
and E Basurto. Electron drift velocities in mixtures of helium and xenon and experimental
verification of corrections to Blanc’s law. Physical Review E, 71(4):46408, apr 2005.

[53] P. Nicoletopoulos, R. E. Robson, and R. D. White. Fluid-model analysis of electron swarms in
a space-varying field: Nonlocality and resonance phenomena. Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics, 85(4):1–7, 2012.

32



[54] F Sigeneger and D Loffhagen. Fluid model of a single striated filament in an RF plasma jet at
atmospheric pressure. Plasma Sources Science and Technology, 25(3):035020, 2016.

[55] G J M Hagelaar and L C Pitchford. Solving the Boltzmann equation to obtain electron
transport coefficients and rate coefficients for fluid models. Plasma Sources Sci. Technol.,
14(14):722–733, 2005.

—

33


	Introduction
	Theory 
	Moment modeling for electron transport in gases and liquids
	Interfacial density properties 
	 Simple model for benchmarking collisions in liquids

	Approximating electron transport at associated intermediate densities
	Momentum balance method
	Energy balance method
	Modified momentum balance method
	Practical implementation for plasma modeling 
	Approximating collision frequencies across an interface

	Application to noble gas-liquid systems
	Conclusions
	References

