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ABSTRACT 

 

Phosphorus is a non-renewable resource, essential for agriculture. Struvite crystallisation from 

wastewater offers an easy method of recovering up to 17% of global phosphorus losses. Reported 

struvite crystallisation kinetics vary significantly, resulting in large uncertainties in crystalliser design. 

Additionally, crystallisation models are rarely capable of describing particle size distribution, which is 

a key property of crystallisation kinetics, crystal packing and crystal dissolution rates.  

This thesis consisted of three major components: model development, experimental investigations 

and parameter estimation. As a precursor to model development, a review was conducted on struvite 

crystallization modelling and data from multiple kinetic investigations was analysed to identify trends 

and areas for targeted improvement. The large range in kinetic modelling techniques and results 

suggested the need for more detailed modelling, incorporating aggregation. On this basis, further 

investigations were conducted on population balances used to model aggregation processes. The 

volume average technique and a modified Hounslow technique were adopted for this work. Model 

testing showed that implementation of the cell average technique produced more accurate results 

but longer simulation times. The final approach used to analyse data in this work combined both 

models – using the cell average technique for nucleation and crystal growth analysis and the Galbraith 

modified Hounslow technique for the more computationally intensive aggregation investigations. A 

non-ideal thermodynamic model was used to describe the kinetic driving force for crystallization in 

the population balance model, which was then integrated into a continuum Poiseuille flow reactor 

model. Model tuning resulted in an acceptable level of output uncertainty. The key output of the 

modelling work was the development of a framework for nucleation, growth and aggregation 

investigation occurring in Poiseuille flow. 
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In the experimental phase of this work, a lab-scale Poiseuille flow reactor was developed and used to 

investigate the impacts of feed mixing and supersaturation level on phosphorus recovery and particle 

size distribution. Sonication was successfully used to disrupt weakly bound aggregates providing 

insight into the aggregation process. Disrupted particles were relatively independent of operational 

conditions, showing that they continue to grow during the aggregation process. Vortex mixing was 

shown to have a significant influence on PSD and phosphorus recovery. A major output of the 

experimental work was the development of techniques for investigating aggregation, with potential 

for further application. 

The final major component of this work was to combine experimental results and the reactor model 

to regress kinetic parameters for nucleation growth and aggregation. The parameter estimation 

process was preceded by model sensitivity analysis. This allowed identification of (1) the most 

sensitive kinetic parameters, (2) how parameters affect outputs, (3) which parameters are correlated, 

and (4) how input variable uncertainty affected output variable uncertainty. Point 4 was used to 

inform uncertainty in the parameter regression process. Finally, parameter optimisation was 

conducted using a global, normalised, weighted objective function. Sonicated data provided 

nucleation and growth parameters which were then fixed to separately analyse non-sonicated data, 

providing aggregation parameters. The regressed parameters were close to those found by other 

population balance work on struvite – a significant result considering the large variation seen in the 

literature.  
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NOMENCLATURE 

Note: the nomenclature given below refers only to variables used in this work and excludes those from 

some equations discussed in the literature review but not used here. 

Abbreviations: 

Symbol Variable 
𝐼𝐼𝐼𝐼𝐶𝐶 Ion activity product 
𝐶𝐶𝐼𝐼 Cell average 

𝐼𝐼𝐺𝐺𝐺𝐺_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑋𝑋𝑖𝑖 Index determining whether aggregation related birth event will occur in cell 𝑚𝑚 
𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 Molecular mass of struvite [𝑛𝑛 𝜇𝜇𝑚𝑚𝑚𝑚𝑒𝑒−1] 

 

Latin Symbols: 

Symbol Variable 
𝑎𝑎 DeBye-Hückel equation constant 
𝑎𝑎𝑖𝑖  Activity of Species 𝑚𝑚 
𝐼𝐼 DeBye-Hückel equation constant 
𝐼𝐼′′ Growth rate constant in the ‘birth and spread’ model [𝜇𝜇𝜇𝜇 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝐼𝐼𝑛𝑛 Nucleation pre-exponential factor/ collision factor [𝐵𝐵𝜇𝜇−3𝑠𝑠−1] 
𝐼𝐼𝑦𝑦 Generalisation of ionic compound with charge 𝑦𝑦 
𝑏𝑏 DeBye-Hückel equation constant 
𝑏𝑏𝑖𝑖 Birth rate of particles distributed into cell 𝑚𝑚 
𝐵𝐵 Total birth rate of particles from all mechanisms (continuous) [# 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝐵𝐵′ Supersaturation constant in the ‘birth and spread’ model 

𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 Total birth rate of particles in cell 𝑚𝑚 via aggregation [# 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 Total birth rate of particles in cell 𝑚𝑚 via growth [# 𝜇𝜇𝑚𝑚𝑛𝑛−1] 

𝐵𝐵𝑖𝑖  Total birth rate of particles from all mechanisms in cell 𝑚𝑚 (discrete) [# 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝐵𝐵𝑖𝑖,𝑝𝑝 Total birth rate of particles from all mechanisms in cell 𝑚𝑚  as a result of event 𝑝𝑝 

(discrete) [# 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖 Induction time model constant 
𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖′ Induction time model constant 
𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,𝑖𝑖 Total birth rate of particles in cell 𝑚𝑚 via nucleation [# 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝐵𝐵0 Nucleation rate [# 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝐶𝐶𝐷𝐷 Particle drag coefficient 
𝐶𝐶𝑖𝑖 Concentration of species 𝑚𝑚 
𝐼𝐼 Total particle death rate from all mechanisms (continuous) [# 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝓓𝓓 Diffusivity [𝜇𝜇2 𝜇𝜇𝑚𝑚𝑛𝑛−1] 

𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 Total death rate of particles in cell 𝑚𝑚 via aggregation [# 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝐼𝐼𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 Total death rate of particles in cell 𝑚𝑚 via growth [# 𝜇𝜇𝑚𝑚𝑛𝑛−1] 

𝐼𝐼𝑖𝑖 Total particle death rate from all mechanisms in cell 𝑚𝑚 (discrete) [# 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝐼𝐼𝑛𝑛𝑠𝑠𝑛𝑛,𝑖𝑖 Total death rate of particles in cell 𝑚𝑚 via nucleation [# 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑛𝑛𝑠𝑠𝑔𝑔𝑠𝑠 Reactor diameter [𝜇𝜇] 
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𝐼𝐼𝑓𝑓 Absolute error in a predicted variable 𝑓𝑓 
𝐼𝐼𝑓𝑓� Normalised absolute error in a predicted variable 𝑓𝑓 
𝐼𝐼(𝑡𝑡) Exit age distribution [𝑠𝑠−1] 
𝑛𝑛 Acceleration due to gravity [𝜇𝜇 𝑠𝑠−2] 
𝐺𝐺 Growth rate [𝜇𝜇𝜇𝜇3 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝐺𝐺𝐿𝐿 Length based particle growth rate e [𝜇𝜇𝜇𝜇 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝐻𝐻(𝑥𝑥) Heaviside step/ unit step function 
𝑚𝑚 Index/ iterator 
𝐼𝐼 Ionic strength 
𝑗𝑗 Index/ iterator  
𝑘𝑘 Index/ iterator 

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 Aggregation rate constant [𝐿𝐿 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝑘𝑘𝑎𝑎 Growth rate constant [𝜇𝜇𝜇𝜇 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝑘𝑘𝑛𝑛𝑠𝑠𝑛𝑛 Nucleation rate constant [# 𝐿𝐿−1 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝐾𝐾𝑠𝑠𝑒𝑒 Speciation equilibrium constant 
𝐾𝐾𝑠𝑠𝑝𝑝 Solubility product 
𝐿𝐿 Spherical equivalent particle diameter [𝜇𝜇𝜇𝜇] 
𝐿𝐿𝑠𝑠 Entry length [𝜇𝜇] 
𝑛𝑛 Number density [# 𝜇𝜇𝜇𝜇−1𝐿𝐿−1] 

𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 Aggregation rate order 
𝑛𝑛𝑎𝑎 Growth rate order 
𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛 Nucleation rate order 
𝐼𝐼 Particle number [# 𝐿𝐿−1] 
𝑝𝑝 Index/ iterator 
𝐶𝐶 Total number of events resulting in a birth in a cell 
𝑄𝑄 Reactor flow rate [𝜇𝜇3 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝑟𝑟 Reactor radius domain [𝜇𝜇] 

𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 Rate of struvite crystallisation [𝜇𝜇𝑚𝑚𝑚𝑚 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝑅𝑅 Reactor radius [𝜇𝜇] 
𝑅𝑅𝑒𝑒 Reynolds number of reactor 
𝑅𝑅𝑒𝑒𝑗𝑗𝑠𝑠𝑠𝑠 Reynolds number of mixer jet 
𝑅𝑅𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚 Reynolds number of mixer 
𝑆𝑆𝑠𝑠 Supersaturation ratio of multi-component system 
𝑆𝑆𝐼𝐼 Saturation index of multi-component system 
𝑡𝑡 Time [𝜇𝜇𝑚𝑚𝑛𝑛] 
𝑡𝑡̅ Mean residence time [𝜇𝜇𝑚𝑚𝑛𝑛] 
𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖 Induction time [𝜇𝜇𝑚𝑚𝑛𝑛] 
𝑇𝑇 Temperature [𝐾𝐾] 
𝑣𝑣 Particle volume [𝜇𝜇𝜇𝜇3] 
�̅�𝑣 Average particle volume [𝜇𝜇𝜇𝜇3] 

𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎 Particle settling velocity [𝜇𝜇 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝑣𝑣𝑧𝑧 Fluid velocity along the reactor length [𝜇𝜇 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝑣𝑣𝑧𝑧�  Average fluid velocity along the reactor length [𝜇𝜇 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝑣𝑣𝑚𝑚 Molecular volume [𝐵𝐵𝜇𝜇3] 
𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀 Particle velocity along the reactor length [𝜇𝜇 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝑉𝑉 Reactor volume [𝜇𝜇3] 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 Total volume of particles born into cell 𝑚𝑚 via aggregation [𝜇𝜇𝜇𝜇3 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝑉𝑉𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 Total volume of particles born into cell 𝑚𝑚 via growth [𝜇𝜇𝜇𝜇3 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝑉𝑉𝑛𝑛𝑠𝑠𝑛𝑛,𝑖𝑖  Total volume of particles born into cell 𝑚𝑚 via nucleation [𝜇𝜇𝜇𝜇3 𝜇𝜇𝑚𝑚𝑛𝑛−1] 
𝑥𝑥 Generalised distribution domain/internal physical property/coordinate 
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𝑧𝑧 Reactor length domain [𝜇𝜇] 
𝑍𝑍 Reaction length [𝜇𝜇] 
𝑍𝑍𝑖𝑖  Charge of species 𝑚𝑚 

 

Symbols: 

Symbol Variable 
𝛽𝛽 Aggregation kernel 
𝛽𝛽0 Size independent aggregation kernel 
𝛿𝛿 Dirac delta function 
𝜖𝜖𝑓𝑓 Absolute measurement tolerance of variable 𝑓𝑓 
𝛾𝛾 interfacial tension [𝜇𝜇𝑚𝑚.𝜇𝜇−2] 
𝛾𝛾𝑖𝑖  Activity coefficient of species 𝑚𝑚 
𝛾𝛾𝑠𝑠 Interfacial tension [𝐼𝐼/𝜇𝜇] 
𝜇𝜇𝑖𝑖  𝑚𝑚𝑠𝑠ℎ moment of a particle size distribution 

𝜆𝜆𝑖𝑖
±(𝑣𝑣) Weighting factor determining the fraction of births in a cell assigned to higher or lower 

cells 
Ω Saturation ratio 
𝜌𝜌𝑝𝑝 Particle density [𝑘𝑘𝑛𝑛 𝜇𝜇−3] 
𝜌𝜌𝑓𝑓 Fluid density [𝑘𝑘𝑛𝑛 𝜇𝜇−3] 
𝜎𝜎2 Residence time distribution variance 
𝜏𝜏𝑖𝑖𝑛𝑛𝑖𝑖 Induction time [𝜇𝜇𝑚𝑚𝑛𝑛] 
𝜈𝜈 Number of ions making up a salt 
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 Introduction 

 

This chapter gives a background to the motivations for the investigations documented 

in this thesis. The importance of phosphorus is discussed, followed by a summary of 

existing supplies and consumption at various locations around the world. Focus is then 

narrowed to the role of struvite crystallisation in phosphorus recycling, highlighting 

research areas addressed in this thesis. 

 Nutrient stewardship 

Phosphorus is critical for all life on the planet; it is a key element in DNA and the ATP energy cycle. 

Humans and animals obtain phosphate via the food they consume. Like oil, phosphorus is a finite 

resource, but unlike oil it has no alternative. The motivations for this research are concerned with the 

stewardship of phosphorus. That is, taking action to control the destination of phosphorus after its 

use so that it may be reused in the future.  

Resource reuse is coupled with ideas of sustainability and resilience. In a truly sustainable system, 

resource reuse is complete and ideally the only resource allowed to exit a system is that which 

continuously enters – energy from sunlight. Resilience of a system is the capacity of a system to adapt 

to change while continuing to develop.1 Ensuring system resilience requires an understanding of the 

self-organizing capacity of a system and the feedbacks within it. A continuously evolving system will 

increase its resilience when it is faced with disturbances or increase its efficiency when it is not. When 

a system is not faced with disturbances, its resilience may decrease. On a global scale disturbances 

caused by resource depletion are yet to be seen. 

                                                           
1 http://www.stockholmresilience.org/research/resilience-dictionary.html 
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Since the industrial revolution, oil, water and fertilisers have been in constant supply, allowing humans 

to develop highly efficient and networked food production systems. Market forces are the primary 

mechanisms used to manage production, and while they can allow the food production system to 

adapt to find the most cost effective solution, they are reactionary and do not attribute value to 

environmental or social degradation. Environmental degradation may not be immediately costly, but 

recent estimates suggest that the value of services provided by natural ecosystems is nearly double 

that of global GDP (Costanza et al., 2014). Socially, short term fertiliser price spikes can cause civil 

unrest due to unaffordable food as seen in 2008 (Berazneva & Lee, 2013; Mittal, 2009) and long term 

resource shortages often contribute to conflicts (Klare, 2012; Nillesen & Bulte, 2014). Perhaps it would 

be wise to nurture a smooth revolution to sustainable and resilient food supply systems, after all 

“there are only nine meals between mankind and anarchy” (Lewis, 1906). 

Impacts of geographical distributions of resources and increasing transport costs can be attenuated 

by localising food supply. External cost fluctuations can be buffered by minimising resource 

consumption and improving local supply. For the case of phosphorus fertilisers, this can be achieved 

by reducing the demand for phosphorus intensive agriculture, increasing efficiency of phosphorus use 

and increasing phosphorus recycling from points of losses within the system. This research focuses on 

developing an improved understanding of phosphorus recycling technology.  

 Phosphorus reserves and fluxes 

Nitrogen, phosphorus and potassium, commonly known as NPK in the fertiliser industry, are macro-

nutrients essential for all plant growth and therefore a vital part of global food production. Each of 

these nutrients undergoes biological and geological cycles. An understanding of the phosphorus cycle 

provides a basis for the need for phosphorus recycling. 

On average, 90.73% of phosphorus resides as deep ocean sediment and 8.54% in ocean surface waters 

(<300m deep), leaving only 0.73% available on land. Of the phosphorus on land, 76.6% occurs in plant 

matter, 10.6% in marine plant matter, 5.8% in animal matter, 6.6% in soil and 0.4% in humans (Smil, 
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2000). This leaves a small fraction of phosphorus available for use as a mineral fertiliser. Within the 

soil, 83% of phosphorus occurs in its inorganic form, which is quickly fixed into a highly insoluble form 

(e.g. 𝐼𝐼𝑚𝑚𝐶𝐶𝐶𝐶4 , 𝐹𝐹𝑒𝑒𝐶𝐶𝐶𝐶4 , 𝐶𝐶𝑎𝑎5(𝐶𝐶𝐶𝐶4)3𝐶𝐶𝐻𝐻  and 𝐶𝐶𝑎𝑎5(𝐶𝐶𝐶𝐶4)3𝐹𝐹 ) making much of the phosphorus in soil 

unavailable to plants at a given point in time (Smil, 2000). Increased phosphorus concentrations in 

agricultural land may reduce future demand (Van Vuuren, Bouwman, & Beusen, 2010), but a better 

understanding of the interactions between phosphorus and soil is required to properly model these 

fluxes (Dumas, Frossard, & Scholz, 2011). 

The geological processes which transport phosphorus mineral deposits from ocean sediment to the 

earth’s surface operate on a timescale of tens to hundreds of millions of years (Neset & Cordell, 2012). 

On a 1000-year timescale, phosphorus is currently a one way transition from mineral deposits to the 

ocean by mineralization, weathering, erosion and runoff. Modelling has suggested that 25% of 

phosphate rock mined flows to waterways (Van Vuuren et al., 2010), although losses to waterways 

are difficult to account for as very little data is available (Dumas et al., 2011). The increased flow of 

phosphorus (and nitrogen) into waterways as a result of various human activities is the subject of 

significant concern as they cause freshwater eutrophication and ocean dead zones (Ashley, Cordell, & 

Mavinic, 2011).2  

Terrestrial phosphorus flows are relatively fast, occurring on a timescale of less than one year, and 

account for 10% of global phosphorus fluxes (Smil, 2000). Organic phosphorus fluxes account for 73% 

of terrestrial phosphorus movement while the remainder is due to erosion. Biological reuse is naturally 

                                                           
2 Increased nutrient loads accelerate algal growth, stripping water bodies of oxygen, killing larger aquatic animals 
– in 2011, 530 dead zones had been identified with 228 additional sites exhibiting signs of eutrophication 
(http://www.wri.org/our-work/project/eutrophication-and-hypoxia). On release to land, nutrient bearing 
wastewater also causes soil acidification, leading to the death of plants and trees (R. Kumar & Pal, 2015). Recent 
estimates suggest that global nitrogen and phosphorus loads on the environment significantly exceed planetary 
boundaries and pose a high risk of a large scale ocean anoxic event and widespread eutrophication of localised 
freshwater systems (Steffen et al., 2015). 
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very efficient as phosphorus is recycled hundreds of times before leaving the system, although 

industrialized agriculture, where most mined phosphorus is used, is far less efficient.(Smil, 2000). 

Global food production obtains 60% of its phosphorus requirements from rock phosphate (Cooper, 

Lombardi, Boardman, & Carliell-Marquet, 2011), which accounts for at least 80% - 90% of mined 

phosphorus (Neset & Cordell, 2012; Shu, Schneider, Jegatheesan, & Johnson, 2006). While the finite 

nature of phosphate rock has been of concern since as early as 1798 (Ashley et al., 2011), modern 

estimates of phosphorus reserves have been made since 1972 (Ashley et al., 2011; Van Vuuren et al., 

2010). Peak in phosphate production has been predicted to occur between 2030 and 2040 and 

estimates of phosphate rock exhaustion vary from approximately 2100 to 2400 (Ashley et al., 2011; 

Van Kauwenbergh, 2010; Van Vuuren et al., 2010). Inconsistent estimates of viable reserves are due 

to various factors including inconsistent definition of the term ‘reserves’, non-disclosure of reserve 

estimates because of corporate secrecy and lack of independent assessments, decline in product 

quality, and uncertain production rates. Because of declining availability of high quality phosphate 

rock, it is estimated that phosphate production costs will increase by a factor of 3 – 5 fold in the coming 

century (Van Vuuren et al., 2010). These cost increases will inevitably result in increases in food costs 

globally, but localised price spikes can occur long before global reserve depletion due to 

disproportionate geographical distribution.  

It is estimated that 70% of global phosphate production relies on reserves which will be depleted by 

2100, increasing costs for countries like the US which will then rely solely on importation (Van Vuuren 

et al., 2010). China already takes steps to control domestic reserves – they hold the second largest 

phosphorus reserve, but control exports and were a net importer until 2006 (Persona, 2014). 

Approximately 77% of known global reserves are found in Moroccan occupied Western Sahara, a 

region historically contested for ownership.3 By 2100, Morocco will need to increase production by 

                                                           
3Morocco currently. It had been under Spanish control since 1884 and was declared a province of Spain in 1934. 
After guerrilla insurgencies in the early 1970’s by the native Sahawari’s, the Polisario front, representing the 
Saharan people, was established on 10 May 1973. The Spanish relinquished control of the region due to pressure 
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700% to meet global demands, accruing an 80% market share of global production and an 89% share 

of global reserves (Cooper et al., 2011).  

Considering declining phosphate rock quality, geographical imbalances, an emerging monopoly, and 

eutrophication risks, phosphorus is evidently a strategic element for the security of food supply and 

aquatic environments of many countries. Consequently, is broadly agreed that there should be a 

concerted effort to increase efficiency in phosphorus mining and use (Cooper et al., 2011; Van 

Kauwenbergh, 2010; Van Vuuren et al., 2010). This can be addressed by taking a number of steps 

including reducing fertiliser use, reducing losses from agricultural and food systems, reduction of 

livestock as a food source, and increased phosphorus recycling from human and livestock wastewater. 

This work focusses on the latter. 

Currently phosphorus is not recycled significantly within the use chain - 90% of phosphorus mined is 

used for food production and only 17% of that makes it to human consumption. Human and livestock 

effluents account for 15% and 40% of mined phosphorus, respectively (Cordell, Drangert, & White, 

2009). Point losses of interest include food processing, digested sewerage sludge, landfill leachate, 

semi-conductor wastewater, human urine, dairy and piggery wastewater, feedlot run-off, coal power 

plants, leather industries, paper pulp industries, construction sites and mines (Cordell, Neset, & Prior, 

2012; R. Kumar & Pal, 2015).  

Phosphorus removal options include biological accumulation (bacteria or algae), chemical coagulation 

and flocculation (usually iron or aluminium based), ion adsorption, solvent extraction, plant 

extraction, membrane filtration, and magnetic separation (Mehta, Khunjar, Nguyen, Tait, & Batstone, 

2014). Further processing is often required to release phosphorus before it can be recovered. Struvite 

                                                           
from Morocco and Mauritania. Territorial claims by both. Morocco and Mauritania were rejected by the 
international court of justice (October 16 1975) and later the UN (Corell, 2002). Violent conflict continued 
between Morocco and the Polisario front, resulting in 10,000 – 20,000 deaths. A cease fire was signed on 6 Sep 
1991. Since then various UN brokered attempts at resolutions have been successful (BBC News Africa, 2014; 
New Internationalist Magazine, 1997). 
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(𝑀𝑀𝑛𝑛𝐼𝐼𝐻𝐻4𝐶𝐶𝐶𝐶4 ∙ 6𝐻𝐻2𝐶𝐶 ) precipitation is a common method of phosphorus recovery because waste 

streams often contain an excess of 𝐼𝐼𝐻𝐻4+  and only require the addition of 𝑀𝑀𝑛𝑛2+  and minor pH 

adjustment to alkaline conditions to achieve crystallisation.  

 Struvite crystallisation 

This section gives an overview of struvite crystallisation motivations, economics, and areas for 

improvement. For the interested reader, more detailed struvite crystallisation reviews are available 

on modelling techniques (Le Corre, Valsami-Jones, Hobbs, & Parsons, 2009), nucleation kinetics 

(Galbraith & Schneider, 2009b), and industrial scale implementation (R. Kumar & Pal, 2015; Le Corre 

et al., 2009; Md. Mukhlesur Rahman et al., 2014; Tao, Fattah, & Huchzermeier, 2016).  

1.3.1 Why struvite? 

Struvite crystallisation ranks higher than other technologies because of its simplicity, cost 

effectiveness, and safety (Mehta et al., 2014). Additionally, struvite crystallisation leaves 

contaminants like hormones, pharmaceuticals and heavy metals remain in solution, allowing it to be 

applied directly as a fertiliser (Kataki, West, Clarke, & Baruah, 2016b; Ronteltap, Maurer, & Gujer, 

2007b).  

Struvite was identified as a leading alternative to fossil-based mineral fertilisers when compared to 

other waste streams (Sigurnjak, Crappé, Michels, & Meers, 2015), although it cannot be used alone as 

it does not deliver the correct nutrient ratios and may affect availability of other nutrients (Kataki, 

West, Clarke, & Baruah, 2016a; Md M Rahman, Liu, Kwag, & Ra, 2011). It is sparingly soluble 

(≈0.02g/100mL H2O (Kataki et al., 2016a)) and has a high specific gravity (≈1.7), making it ideal as a 

slow release fertiliser as it is unlikely to be solubilized or washed away during rain events. Low 

solubility also results in lower nitrogen leaching rates (1.99%) than conventional superphosphate/urea 

mixes (7.14%), resulting in greater efficiency and sustained nitrogen supply (Md M Rahman et al., 

2011). A recent study has also shown that plants are able to solubilize struvite as a nutrient source 

(Ahmed et al., 2015). In comparison to traditional phosphorus fertilisers, di-ammonium phosphate 
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(DAP) and triple super phosphate (TSP), struvite provides lower initial phosphorus supply, but 

equivalent rates of P uptake, yield and apparent fertiliser recovery at harvest (Talboys et al., 2015).  

1.3.2 Economic potential 

Struvite costs vary between locations but its recovery is generally economically viable, with production 

costs ranging from 140 – 460 USD/t (Forrest, Fattah, Mavinic, & Koch, 2008) and market values in the 

range of 198–1885 USD/t (Jaffer, Clark, Pearce, & Parsons, 2002; Ueno & Fujii, 2001). Some research 

has indicated that operational costs of struvite recovery marginally outweigh returns on sale but that 

reduced chemical consumption and sludge disposal costs compensate for this (Shu et al., 2006). 

Fluidisation energy (Paolo Battistoni, Paci, Fatone, & Pavan, 2005) and sale price (Shepherd, Burns, 

Raman, Moody, & Stalder, 2009) have been identified as economically limiting factors. Additionally, it 

has been asserted that the full potential of struvite as a fertiliser product can only be realised when 

particles are produced in a 3 – 5 mm size range, with sufficient hardness to be spread by a commercial 

fertiliser spreader (Adnan, Mavinic, & Koch, 2003; Forrest et al., 2008). The shape and size of a crystal 

particulate has a significant impact on the quality of the final product. Size enlargement is used to 

improve flowability, dispersibility, bulk density and dusting behaviour of a particulate (Wauters, Liu, 

& Meesters, 2001). Apart from chemical composition, flowability is the most important parameter of 

particulate fertilisers (Kohonen, Reinikainen, & Höskuldsson, 2009). As such, the ability to control the 

crystal size distribution (CSD) is of great value (A. Randolph & Larson, 1988). Although struvite 

crystallisation is economically feasible in some scenarios, efficiency and product quality improvements 

are necessary for it to become a default technology in wastewater treatment. 

1.3.3 Industrial applications 

Large-scale struvite recovery has been implemented in various locations around the world, with the 

fluidised bed reactor (FBR) being the most common method of recovery (P Battistoni, Paci, Fatone, & 

Pavan, 2006; Britton et al., 2005; Kazuaki Shimamura, Ishikawa, Tanaka, & Hirasawa, 2007). In these 

FBRs, fluid streams are mixed by submerged impinging jets, after which they flow upward through a 
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fluidised crystal bed. Many struvite crystallisers operate in a semi-batch mode where crystals are 

intermittently harvested, while a stock of crystals is retained. Building the crystal stock to obtain an 

effective steady state operation, can take weeks to months to achieve (P Battistoni et al., 2006; Britton 

et al., 2005). Continuous seeding offers a means of reducing this time and improving reactor operation 

and control.  

1.3.4 Effects of crystalliser seeding  

Struvite seeding has been experimentally shown to improve recovery by 12% (Kim, Ryu, Kim, Kim, & 

Lee, 2007) and a semi batch seeding crystalliser has been utilised to smooth struvite FBR crystalliser 

operation and obtain better control over crystal size (Kazuaki Shimamura et al., 2007). The effects of 

seeding depend on seed loading and seed Particle Size Distribution (PSD), since these properties affect 

the surface area available for mass transfer For example, when seeds are initially added to a system, 

crystal mass deposition increases with increasing seed load (surface area). Then, at a certain seed 

loading, the rate of mass deposition becomes less dependent on crystal surface area and more 

dependent on the rate of change of reagents from liquid to crystal (Schneider, Wallace, & Tickle, 

2013). At this point the system is reaction limited and able to accommodate increases in feed 

concentration at the highest rate possible. Therefore, introducing seeds reduces the time taken for an 

effective steady state to be achieved. Reactor simulations have also shown that increased struvite 

seed loading rate increases supersaturation buffering and decreases final particle size (Schneider et 

al., 2013). Struvite seed crystal sizes have varied from 30 to 500 µm, however further experimental 

investigations are necessary to determine optimum seed size and loading (Kataki et al., 2016a). No 

work to date has been published investigating continuous struvite seed production. 

Systematic seed crystal design may enable tailoring of the final product PSD to achieve desired 

handling, packaging and dissolution properties. PSD can also be used as a process actuator4 in system 

control (Nagy & Aamir, 2012). A common method of tailoring seeds to control PSD is to classify seeds 

                                                           
4 A manipulated variable in a feedback loop 
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based on standard sieve sizes (Aamir, Nagy, & Rielly, 2010). Recently however, continuous seeding of 

a FBR has been shown to significantly influence output PSD (Binev, Seidel-Morgenstern, & Lorenz, 

2015) and continuous seeding of a fed batch crystalliser has been shown to produce a controlled PSD 

(Jiang et al., 2012; Woo, Tan, & Braatz, 2011). As such, this research investigated the controlled 

production of struvite seeds.  

1.3.5 Seed production methods 

One method of continuous seed production that has become prominent in pharmaceutical production 

over the last two decades is rapid mixing and nucleation followed by a particle growth reactor. Rapid 

mixing creates uniform SI, causing more uniform nucleation rates and a narrower PSD than could be 

achieved in a well-mixed volume (Ferguson, Morris, Hao, Barrett, & Glennon, 2012). Confined 

impinging jets are most commonly used, while vortex mixers, shown in Figure 1.1, offer an alternative. 

Vortex mixers with two tangential feed streams at 180° are known as Roughton mixers. They can 

achieve five times shorter mixing times than Y-mixers for the same Reynolds number and are able to 

operate efficiently in situations where feed stream ratios and viscosities differ (Lindenberg & Mazzotti, 

2009). 
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Figure 1.1 – Roughton mixer schematic 

A plug flow (fully turbulent) section often follows the rapid mixing in order to sustain higher SI levels 

than could be achieved in back-mixed volumes. Plug flow crystalliser hydraulic residence times (HRT) 

reported in the literature vary significantly and depend on turbulence levels and crystallisation 

kinetics, each of which affects PSD output. Rigorous design of plug flow crystallisers is rarely described 

in detail, although reactor geometry is usually constrained by available supply pressures (Ferguson et 

al., 2012). Some work has utilised a short plug flow section after rapid mixing, followed by a 

continuously stirred tank reactor (CSTR) for subsequent crystal growth (Hacherl, Paul, & Buettner, 

2003). Poiseuille flow, which describes fully developed laminar flow (Re<2000) in a cylindrical pipe, is 

a compromise between the two mixing regimes, offering a lower variance in HRT than a CSTR, while 

achieving pressure losses >10 times less than a plug flow system of the same residence time. Struvite 

crystallisation in Poiseuille flow has only been theoretically investigated for application to catheter 

encrustation (Band, Cummings, Waters, & Wattis, 2009). This work investigates a Poiseuille Flow 
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Reactor (PFR) as a novel means of continuously producing seeds for the struvite system, although 

results are applicable to any crystallisation system. 

1.3.6 Modelling 

Accurate struvite process model development is necessary for reactor design and optimisation. It 

facilitates sensitivity analysis on experimental variables (Schneider et al., 2013) and kinetic models 

(Galbraith, Schneider, & Flood, 2014). In recent years a focus has developed in the wastewater 

treatment industry for plant-wide modelling, with an increased focus on improved physico-chemical 

and chemical processes (Lizarralde et al., 2015). Development of accurate struvite crystallisation 

models contributes to this goal.  

Model confidence relies on adequate model complexity and knowledge of kinetic and thermodynamic 

parameters. This sub-section provides an introduction to struvite modelling and associated gaps in the 

literature, while a detailed review of struvite modelling is provided in Chapter 2. Reaction equation 

1.1 shows that three ions take place in struvite formation. 

𝑀𝑀𝑛𝑛2+ (𝑎𝑎𝑎𝑎) + 𝐼𝐼𝐻𝐻4+(𝑎𝑎𝑎𝑎) + 𝐶𝐶𝐶𝐶43− (𝑎𝑎𝑎𝑎) + 6𝐻𝐻2𝐶𝐶(𝑚𝑚) ↔ 𝑀𝑀𝑛𝑛𝐼𝐼𝐻𝐻4𝐶𝐶𝐶𝐶4 ∙ 6𝐻𝐻2𝐶𝐶(𝑠𝑠) 1.1 

Key properties which must be described by a model are total recovery, PSD and rate of recovery. To 

describe these properties the model requires ‘hardware’ describing mass conservation and ‘software’ 

describing phenomenological relations like thermodynamics and kinetics. Thermodynamics describe 

the achievable recovery and the driving force for crystallisation, while kinetics describe the rate of 

crystallisation. Thermodynamics and kinetics are related by the supersaturation, which is a function 

of ion concentrations, described in this work by the saturation index, termed SI (equation 1.2).  

𝑆𝑆𝐼𝐼 = 𝑓𝑓�𝐶𝐶𝑀𝑀𝑎𝑎2+ ,𝐶𝐶𝑁𝑁𝐻𝐻4+ ,𝐶𝐶𝑀𝑀𝑂𝑂43−� 1.2 

The SI describes both the total recovery achievable and the driving force for crystallisation, which 

influences the rate of crystal formation via three concurrent mechanisms: 

1. Nucleation – appearance of new particles 
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2. Growth – enlargement of existing particles 

3. Aggregation – sticking together of particles 

Each crystallisation mechanism influences the PSD, as shown by Figure 1.2.  

 

Figure 1.2 – PSD and crystallisation mechanisms 

Struvite thermodynamic modelling, while complex, is well understood. Authors have applied various 

water chemistry software packages including PhreeqC (Ariyanto, Sen, & Ang, 2014; Bhuiyan & Mavinic, 

2008; Ronteltap, Maurer, Hausherr, & Gujer, 2010; Sakthivel, Tilley, & Udert, 2012; Warmadewanthi 

& Liu, 2009), MinteqA2 (Golubev, Pokrovsky, & Savenko, 2001; Hanhoun et al., 2011; Nelson, 

Mikkelsen, & Hesterberg, 2003; Pastor, Mangin, Barat, & Seco, 2008), Minteql + (Bhuiyan, Mavinic, & 

Beckie, 2007; A. N. Kofina & Koutsoukos, 2005), ChemEQ L v 2.0 (Bouropoulos & Koutsoukos, 2000), 

and Aquasim 2.0 (Morales, Boehler, Buettner, Liebi, & Siegrist, 2013; Udert, Larsen, Biebow, & Gujer, 

2003). Alternatively, others have developed their own water chemistry models, using the same 

thermodynamic relationships, to allow easy integration into larger process models (Ali & Schneider, 
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2008b; Galbraith & Schneider, 2014; Harada et al., 2006; Rahaman, Mavinic, Meikleham, & Ellis, 2014). 

Thermodynamic modelling has been carried out on various wastewater systems including swine and 

dairy wastewater (Celen, Buchanan, Burns, Bruce Robinson, & Raj Raman, 2007; Nelson et al., 2003), 

urine (Ronteltap, Maurer, & Gujer, 2007a; Sakthivel et al., 2012), anaerobic supernatant (Mehta & 

Batstone, 2013; B. N. Ohlinger, Young, & Schroeder, 2000), and synthetic solutions (Abbona & 

Boistelle, 1985; Ali & Schneider, 2008a; Bouropoulos & Koutsoukos, 2000; Buchanan, Mote, & 

Robinson, 1994; K. N. Ohlinger, Young, & Schroeder, 1998). 

While thermodynamics are relatively well understood, struvite kinetic models vary widely in the 

literature, both in rate equation form and rate coefficient values (section 2.2). Assuming accurate 

measurement techniques, the causes of this variation are inaccurate model assumptions and/or 

oversimplifications. Some assumptions which have been made are: 

• Model crystallisation is dependent only on liquid phase concentrations (neglecting particle 

surface area) (Bhuiyan, Mavinic, & Beckie, 2008; Bouropoulos & Koutsoukos, 2000; Le Corre, 

Hobbs, & Parsons, 2007a; Nelson et al., 2003; B. K. N. Ohlinger, Young, & Schroeder, 2000; 

Quintana, Sánchez, et al., 2005; Rahaman, Ellis, & Mavinic, 2008; Türker & Celen, 2007). 

• A point distribution of particles exists, which does not change in number because 

o The reactor was seeded and nucleation and aggregation are assumed negligible (Ali & 

Schneider, 2008a; Mehta & Batstone, 2013; Rahaman, Mavinic, & Ellis, 2008) 

o Rapid nucleation occurs, followed by growth, assuming no aggregation (P. Battistoni, 

De Angelis, Prisciandaro, Boccadoro, & Bolzonella, 2002) 

• Variables which affect crystallisation rate are not included in the model, most notably 

hydrodynamics (Koralewska, Piotrowski, Wierzbowska, & Matynia, 2009; Qu, 2003; Rahaman 

& Mavinic, 2009; Rahaman et al., 2014). 

These assumptions make the problem easier to solve but introduce potentially significant uncertainty. 

It is evident throughout the literature that aggregation plays a key role in struvite formation, as 
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detailed in section 2.2.5. Nucleation and growth have also been observed simultaneously, even at low 

supersaturation levels, where secondary nucleation is dominant (Galbraith et al., 2014; Mehta & 

Batstone, 2013). 

To model any combination of nucleation, growth and aggregation simultaneously, a population 

balance model (PBM) is required. PBMs describe the total rate of change of particle number of a given 

size - they are described in detail in Chapter 3. Some struvite kinetic investigations have used PBM 

methods (Galbraith & Schneider, 2014; Hanhoun et al., 2013; Koralewska et al., 2009; Triger, Pic, & 

Cabassud, 2012). Of these works, only Galbraith’s incorporated aggregation, however it made PSD 

assumptions for particles <2µm and applied a novel modelling approach which had not been 

analytically validated. He also found that kinetic parameters regressed simultaneously resulted in 

parameter correlation. 

 Research objectives 

The following core objectives were addressed in this work: 

1. Develop a dynamic reactor model capable of accurately predicting Poiseuille flow seed reactor 

operation 

2. Perform sensitivity analysis to determine key input variables and kinetic parameters 

3. Investigate continuous struvite seed production in a lab-scale novel Poiseuille flow crystalliser 

4. Regress nucleation, growth and aggregation kinetic parameters using experimental and 

modelling work 

The effects of supersaturation on PSD were a key focus of experiments. Supersaturation was selected 

as an independent variable, since this is the primary driving force for crystallisation and can therefore 

be used to drive kinetic models. PSD was measured because it is considered a key seed crystal property 

and is integral for mechanistic kinetic parameter regression. Particles down to 0.01µm were 

measured, overcoming the shortfall of Galbraith’s work, which measured particles down to 2µm. This 
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work examined a novel technique of decoupling the aggregation mechanism within experimental 

data, allowing its investigation separately, therefore improving confidence in the estimation 

techniques. The impact of vortex mixing on PSD was also investigated for comparison with traditional 

techniques.  

Previous studies have reported struvite crystal growth rates ranging five orders of magnitude as a 

result of varying assumptions discussed in detail in section 2.2.4. To address this issue, this work placed 

great emphasis on accurate reactor modelling and struvite parameter estimation. This was achieved 

by integrating a new, high accuracy PBM technique with detailed hydrodynamic and thermodynamic 

models, and conducting model validation and sensitivity analysis to an extent not seen in struvite 

literature. 

 Thesis structure 

In this thesis, the first three chapters detail varying levels of model development to create a reactor 

model, then the fourth chapter uses the model to examine reactor operation. Next, experimental 

investigations are presented, followed by sensitivity analysis, which combine to inform a chapter 

detailing parameter regression. Finally results and conclusions are presented. A summary of each 

chapter is presented below: 

Chapter 2 – Review of struvite thermodynamic and kinetic modelling techniques – provides in-depth 

detail on how crystallisation thermodynamic and kinetic modelling techniques, of varying complexity, 

have been applied to struvite crystallisation. Struvite kinetic models are analysed on a common basis, 

enabling comparisons not previously presented in the literature. The insight gained is used to inform 

experimental and modelling design in the remainder of this thesis. 

Chapter 3 – Population balance model development and validation – outlines a PBM technique not 

previously applied to struvite. Validations are then presented, ensuring model accuracy and 

confidence in subsequent analysis and parameter regressions. 
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Chapter 4 - Poiseuille flow crystalliser model development – presents the fluid flow model which was 

developed to achieve an acceptable level of accuracy in a minimal solution time. Model validation 

presented includes solution methods, scaling techniques and a grid convergence. 

Chapter 5 – Poiseuille flow reactor simulations – combines mass balance, fluid flow, population 

balance and thermodynamic models to examine predicted reactor operation. This includes startup 

transients at the outlet and along the reactor length, steady kinetic parameters, PSDs, the velocity 

profile and expected residence time distributions 

Chapter 6 – Poiseuille flow reactor design and testing – details the design and testing of the Poiseuille 

flow reactor. Design details include information on: supersaturation; reactor orientation, length and 

diameter; residence time and flow regime; and mixing characteristics. Experimental examinations 

include supersaturation and mixing regime. Information is presented on how sonication techniques 

were used to elucidate aggregation effects. 

Chapter 7 – Poiseuille flow crystalliser sensitivity analysis – sensitivity of model outputs to known 

parameters is examined to remove unnecessary model complexity and improve model solution time. 

Sensitivity analysis is then used to show which input variables and yet to be estimated kinetic 

parameters have the greatest influence on output variables. This information is used to inform 

accurate parameter regression methods and can be used in future experimental designs. 

Chapter 8 – Struvite kinetic parameter regression – Experimental results are used to regress 

nucleation, growth and aggregation kinetic parameters in the process model. Detailed discussion is 

presented on the parameter regression process including numerical methods, uncertainty, stability 

and parameter selection. Parameter regression results are then used to investigate the applicability 

of an alternative kinetic model. 

Chapter 9 – Conclusions and recommendations – Summarises conclusions of the work performed in 

this thesis in the context of the existing literature. Recommendations are made based on these 

conclusions and ideas are presented for potential future investigations. 

Appendix A. – Photomicrographs 
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Appendix B. – DPB formulations 

Appendix C. – Population balance analytic solutions 

Appendix D. – Derivation of advection, diffusion & reaction model and key process parameters 

Appendix E. – gPROMS model code 

Appendix F. – Grid convergence methods 

Appendix G. – Supplementary batch experiments 
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 Review of struvite crystallisation  

 

This chapter provides a background on solution chemistry and crystallisation kinetic 

modelling techniques, with a focus on identifying best practices for struvite. 

Differences in the literature are highlighted to eliminate the possibility of false 

comparisons. Significant uncertainties are evident in struvite nucleation models, 

suggesting that a power law model may be as effective as any other model form. 

Comparisons of nucleation and growth rates show large variations across the 

literature, which are suspected to be due to oversimplified model formulations. 

Additionally, struvite agglomeration is identified as an area which has not yet been 

thoroughly investigated. A detailed summary of key findings is presented at the 

conclusion of this chapter. 

 Solution chemistry modelling 

Thermodynamics of a chemical system refers to the interrelation of heat and work to the reactions 

occurring in the system. This includes the effects of temperature, pressure, concentration, ionic 

dissociation and ion interactions. It is the sum of all of these factors which determines whether it is 

energetically favourable for a phase change from aqueous to solid to occur i.e. crystallisation. By 

properly understanding and modelling thermodynamic interactions, it is possible to predict the driving 

force for crystallisation. This can then influence predictions of the rate at which crystallisation occurs. 

2.1.1 Real solution effects 

The activity (𝑎𝑎𝑖𝑖) of a species 𝑚𝑚 in solution represents its effective concentration as a result of molecular 

and/or ionic interactions. Activity coefficients (𝛾𝛾𝑖𝑖) are used to relate the activity and concentration 

(𝐶𝐶𝑖𝑖) of species 𝑚𝑚, as shown in equation 2.1: 
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𝑎𝑎𝑖𝑖 = 𝛾𝛾𝑖𝑖𝐶𝐶𝑖𝑖 2.1 

For sparingly soluble salts, average activity coefficients are used for all species of a particular valency. 

The DeBye-Hückel relationship with Davies approximation (equation 2.2) can be used to determine 

average activity coefficients for any ion of a particular charge. In this equation, 𝐼𝐼 is the Debye-Hückel 

constant (0.59 at 25˚C), 𝑧𝑧𝑖𝑖  is the valency of the species, 𝑎𝑎  and 𝑏𝑏  are constants, and 𝐼𝐼  is the ionic 

strength [mol/L], which describes the total concentration of ions in solution and is defined by equation 

2.3.  

−𝑚𝑚𝑚𝑚𝑛𝑛(𝛾𝛾𝑖𝑖) = 𝐼𝐼𝑧𝑧𝑖𝑖2 ��
√𝐼𝐼

1 + 𝑎𝑎√𝐼𝐼
� − 𝑏𝑏𝐼𝐼� 

2.2 

 

𝐼𝐼 =
1
2
�𝐶𝐶𝑖𝑖𝑍𝑍𝑖𝑖2

𝑖𝑖

 2.3 

 

The upper limit of ionic strength for equation varies depending on the source. Davies originally 

proposes that 𝑎𝑎 = 1 and 𝑏𝑏 = 0.2 and that the relationship is valid up to 𝐼𝐼 < 0.1 (Davies, 1932). Later 

Davies proposed the more commonly used coefficient values of 𝑎𝑎 = 1 and 𝑏𝑏 = 0.3. For the latter 

version, Mullin suggests that the equation holds up to 𝐼𝐼 < 0.2𝑀𝑀 (Mullin, 2001), Stumm & Morgan 

suggest a limit of 𝐼𝐼 < 0.5 (Stumm & Morgan, 1996), and Sohnel and Garside suggest an upper limit as 

high as 𝐼𝐼 < 1.0𝑀𝑀 (Sohnel & Garside, 1992). Research on struvite thermodynamics in urine claims that 

the DeBye-Hückel equation with Davies approximation is accurate up to 𝐼𝐼 < 0.5  M (Ronteltap, 

Maurer, & Gujer, 2007). On this basis, this work assumes an ionic strength upper limit of 0.5 M. 

2.1.2 Equilibrium 

In any crystal system, the compounds in the crystalline lattice are continually moving into and out of 

solution. When the rate of these processes are equal, the system is at equilibrium. The driving force 

for this process depends only on the concentration of ion in solution and not on the solid crystal mass. 
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This means that crystal equilibrium is modelled differently to chemical equilibrium involving multiple 

liquid or gas phases – the solid concentration is omitted from the description, as a pure solid has an 

activity of 1 (equation 2.5).  

2.1.3 Solubility and supersaturation 

Solubility describes the amount of a solid that can be dissolved into a liquid at equilibrium, at a fixed 

set of conditions (e.g. temperature, pressure and pH), while supersaturationdescribes the amount of 

a compound dissolved in solution relative to saturation. A solution in contact with a crystal can be 

over or under-saturated but will tend towards equilibrium with time. The difference between the 

supersaturation and saturation (described by the solubility) is the driving force for precipitation 

(supersaturation) or dissolution (undersaturation). A greater driving force results in faster 

precipitation processes. Describing this driving force is the focus of thermodynamic modelling detailed 

here. All of the factors discussed below are important because they allow the accurate description of 

saturation.  

In order to describe the degree of supersaturation, a description of solubility is necessary. In the 

simplest case, where a single ionic solute is being dissolved in a solvent with no other compounds 

present, solubility can be described using the concentration of the species resulting from the 

dissolution of the solid phase, at equilibrium. This is known as the concentration solubility product 

(𝐾𝐾𝑠𝑠𝑝𝑝) (Mullin, 2001). Given the following general reaction: 

𝑀𝑀𝑚𝑚𝐼𝐼𝑦𝑦 ⇌ 𝑥𝑥𝑀𝑀𝑦𝑦+ + 𝑦𝑦𝐼𝐼𝑚𝑚− 2.4 

Where 𝑥𝑥  and 𝑦𝑦  are the stoichiometric numbers and correspond to the ion valencies, then for a 

saturated solution: 

𝐶𝐶𝑀𝑀𝑚𝑚𝐶𝐶𝑀𝑀𝑦𝑦 = 𝐾𝐾𝑠𝑠𝑝𝑝 = 𝐵𝐵𝑚𝑚𝑛𝑛𝑠𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡 2.5 

The expression involving concentration is only applicable for solutions of total ion concentration less 

than 0.001M (Mullin, 2001). In scenarios where ionic strength is greater than this value, 
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concentrations are replaced with activity coefficients. This is the case even if, as in the case of this 

research, the precipitate in question is sparingly soluble. This is because foreign ion concentration can 

create higher ion concentration (i.e. ionic strength, given by equation 2.3) than if only the solute were 

dissolved in the solvent. In the scenario where activities are used in place of concentration, the 

solubility is designated 𝐾𝐾𝑎𝑎, where 𝑎𝑎 indicates activity. This value can deviate significantly from the 

actual solubility as a result of changes in solution phase species concentrations.  

Supersaturation can be described in many ways depending on the derivation and application. Various 

descriptions are provided below to help the reader understand the importance of clarity when 

describing precipitation. It should be noted that there is little consistency in symbol use and 

terminology in crystallisation texts and research papers, making it an imperative that the reader is 

always aware of the description being used (Jones, 2002; Mullin, 2001; Sohnel & Garside, 1992). In 

this work, terminology and symbols for crystallisation fundamentals are adopted from work by Mullin 

(Mullin, 2001). In addition, this work takes other terminologies specifically relevant to recent research 

on struvite crystallisation. For a compound where driving force for crystallisation depends on only one 

species in solution, the difference between the concentration (𝐶𝐶) and the equilibrium concentration 

(𝐶𝐶𝑠𝑠𝑒𝑒) can be used to describe supersaturation (Δ𝐶𝐶5): 

Δ𝐶𝐶 = 𝐶𝐶 − 𝐶𝐶𝑠𝑠𝑒𝑒 2.6 

This description is applicable when a compound is precipitating only with itself (e.g. sugar), or where 

the rate depends primarily on a single limiting reactant Various examples of this approach exist in the 

struvite literature (Le Corre, Hobbs, & Parsons, 2007a; B. N. Ohlinger, Young, & Schroeder, 2000; 

Rahaman, Ellis, & Mavinic, 2008). An alternative description uses a supersaturation ratio rather than 

a difference (Mullin, 2001). This has been denoted using the variable 𝑆𝑆 by Mullin and 𝑆𝑆𝑠𝑠 by Sohnel and 

Garside (Sohnel & Garside, 1992). Here we will use 𝑆𝑆𝑠𝑠∗ to distinguish from later variables: 

                                                           
5 The concentration difference 𝛥𝛥𝐶𝐶 is sometimes interchanged with the variable 𝑆𝑆. 
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𝑆𝑆𝑠𝑠∗ =
𝐶𝐶
𝐶𝐶𝑠𝑠𝑒𝑒

 2.7 

Combining equations 2.6 and 2.7 gives what is termed an absolute supersaturation, 𝑆𝑆𝑎𝑎∗ (Mullin, 2001), 

or relative supersaturation, 𝜎𝜎  (Jones, 2002). The difference in terminology here highlights the 

inconsistencies between texts. 

𝑆𝑆𝑎𝑎∗ = 𝜎𝜎 =
𝐶𝐶 − 𝐶𝐶𝑠𝑠𝑒𝑒
𝐶𝐶𝑠𝑠𝑒𝑒

= 𝑆𝑆 − 1 
2.8 

These descriptions become slightly more complex in multi-ionic systems because the ratios of species 

contributing to precipitation can vary. This problem is dealt with by introducing a term similar to the 

concentration solubility product presented in equation 2.5, but at non-equilibrium conditions. For 

scenarios where non-ideal solution thermodynamics occur, concentrations are replaced with ion 

activities and the variable is termed an ion activity product (𝐼𝐼𝐼𝐼𝐶𝐶), which as its namesake suggests, is 

the product of the activities of ions in the system. Supersaturation is then defined by the 𝐼𝐼𝐼𝐼𝐶𝐶 relative 

to itself at saturation (𝐾𝐾𝑠𝑠𝑝𝑝), where the subscript 𝑠𝑠𝑝𝑝 denotes ‘solubility product’. Alone, this is termed 

the supersaturation ratio (equation 2.9), represented by both Ω and 𝑆𝑆𝑆𝑆𝑅𝑅 in the literature. Various 

researchers have utilised this description when analysing struvite precipitation (Bhuiyan, Mavinic, & 

Beckie, 2009; Fattah, Mavinic, Koch, & Jacob, 2008). 

Ω = SSR =
𝐼𝐼𝐼𝐼𝐶𝐶
𝐾𝐾𝑠𝑠𝑝𝑝

 2.9 

Alternatively, supersaturation (termed absolute or relative) is often defined by equation 2.10 (Jones, 

2002; Mullin, 2001): 

𝑆𝑆𝑎𝑎 = 𝜎𝜎 = Ω1/𝜈𝜈 = �
𝐼𝐼𝐼𝐼𝐶𝐶
𝐾𝐾𝑠𝑠𝑝𝑝

�
1/𝜈𝜈

 
2.10 

Where 𝜈𝜈 is the number of ions which make up the salt, which in the case of struvite crystallisation is 

3; 𝑀𝑀𝑛𝑛2+ , 𝐼𝐼𝐻𝐻4+  and 𝐶𝐶𝐶𝐶43− . This description was applied in the struvite crystallisation study which 

produced the most commonly used 𝐾𝐾𝑠𝑠𝑝𝑝 value (K. N. Ohlinger, Young, & Schroeder, 1999). The relative 
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supersaturation for struvite has also been presented using equation 2.11 (Bhuiyan, Mavinic, & Beckie, 

2008), which combines supersaturation descriptions given in equations 2.10 and 2.8. This formulation 

is only presented here for the reader’s awareness while assessing the literature and will not be used 

in this work. It is interesting to note though that descriptions of struvite saturation vary even within 

individual research groups.  

𝑆𝑆𝑠𝑠 = Ω1/3 − 1 2.11 

Another alternative description, which is only listed here due to its specific use in some struvite 

investigations (Hanhoun et al., 2013), defines saturation as the difference between 𝐼𝐼𝐼𝐼𝐶𝐶  and 𝐾𝐾𝑠𝑠𝑝𝑝 

including the inverse power of the number of ions (equation 2.12). This has been termed 𝑆𝑆ℎ here for 

distinction between other saturation definitions. 

𝑆𝑆ℎ = 𝐼𝐼𝐼𝐼𝐶𝐶1/3 − 𝐾𝐾𝑠𝑠𝑝𝑝
1/3 2.12 

The description of supersaturation used in this work is the saturation index (𝑆𝑆𝐼𝐼), which has been 

adopted by many struvite research groups (Ariyanto, Sen, & Ang, 2014; Bhuiyan & Mavinic, 2008; 

Galbraith & Schneider, 2014; Tilley, Gantenbein, Khadka, Zurbrügg, & Udert, 2009; Jiansen Wang, 

Song, Yuan, Peng, & Fan, 2006; Warmadewanthi & Liu, 2009), is given by equation 2.13.  

𝑆𝑆𝐼𝐼 = log10 �
𝐼𝐼𝐼𝐼𝐶𝐶
𝐾𝐾𝑠𝑠𝑝𝑝

� 
2.13 

 

An alternative formulation, given by equation 2.14 has also been used by some authors (Ali & 

Schneider, 2008; Triger, Pic, & Cabassud, 2012). Expression of the saturation on a log scale overcomes 

many numerical issues associated with calculating species concentrations with differences of many 

orders of magnitude between them. This description is also beneficial in that it describes the 

interactions of all ions driving crystallisation by using the 𝐼𝐼𝐼𝐼𝐶𝐶 and 𝐾𝐾𝑠𝑠𝑝𝑝, and has the property that (like 

equation 2.11) it is equal to zero when saturation is reached. This is important when incorporating the 

description of supersaturation into crystal growth mechanism rate functions. Ultimately, it is only 
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important to ensure that differences in saturation descriptions are accounted for when making 

comparisons and that rate coefficients are adjusted accordingly. 

𝑆𝑆𝐼𝐼 = log10 �
𝐼𝐼𝐼𝐼𝐶𝐶
𝐾𝐾𝑠𝑠𝑝𝑝

�
1/3

 
2.14 

 

2.1.4 Ion speciation 

Ions in solution interact to create many different species, each of which is in equilibrium with all other 

species. The degree to which each species forms is determined by the equilibrium reaction for its 

formation. The equilibrium constants for each reaction associated with struvite formation are given 

in Table 2.1. 

Table 2.1 – Species expected to form in a system containing water, magnesium, ammonium 

and phosphate ions 

Species Equilibrium Equation and 
Constant (𝑲𝑲𝒆𝒆𝒆𝒆) 

Reference 

 𝑯𝑯𝑯𝑯𝑶𝑶𝟒𝟒
𝟐𝟐− 𝑎𝑎𝐻𝐻+ × 𝑎𝑎𝑀𝑀𝑂𝑂43−

𝑎𝑎𝐻𝐻𝑀𝑀𝑂𝑂42−
=  10−12.35 (Morel and Hering 1993) 

𝑯𝑯𝟐𝟐𝑯𝑯𝑶𝑶𝟒𝟒
− 𝑎𝑎𝐻𝐻+ × 𝑎𝑎𝐻𝐻𝑀𝑀𝑂𝑂42−

𝑎𝑎𝐻𝐻2𝑀𝑀𝑂𝑂4−
=  10−7.20 

(Morel and Hering 1993) 

𝑯𝑯𝟑𝟑𝑯𝑯𝑶𝑶𝟒𝟒 𝑎𝑎𝐻𝐻+ × 𝑎𝑎𝐻𝐻2𝑀𝑀𝑂𝑂4−
𝑎𝑎𝐻𝐻3𝑀𝑀𝑂𝑂4

= 10−2.15 (Martel and Smith 1989) 

 𝑴𝑴𝑴𝑴𝑯𝑯𝑶𝑶𝟒𝟒
− 𝑎𝑎𝑀𝑀𝑎𝑎2+ × 𝑎𝑎𝑀𝑀𝑂𝑂43−

𝑎𝑎𝑀𝑀𝑎𝑎𝑀𝑀𝑂𝑂4−
= 10−4.80 

(Martel and Smith 1989) 

𝑴𝑴𝑴𝑴𝑯𝑯𝑯𝑯𝑶𝑶𝟒𝟒  𝑎𝑎𝑀𝑀𝑎𝑎2+ × 𝑎𝑎𝐻𝐻𝑀𝑀𝑂𝑂42−

𝑀𝑀𝑛𝑛𝐻𝐻𝐶𝐶𝐶𝐶4
= 10−2.91 

(Martel and Smith 1989) 

𝑴𝑴𝑴𝑴𝑯𝑯𝟐𝟐𝑯𝑯𝑶𝑶𝟒𝟒  𝑎𝑎𝑀𝑀𝑎𝑎2+ × 𝑎𝑎𝐻𝐻2𝑀𝑀𝑂𝑂42−
𝑎𝑎𝑀𝑀𝑎𝑎𝐻𝐻2𝑀𝑀𝑂𝑂4

= 10−0.45 (Martel and Smith 1989) 

𝑴𝑴𝑴𝑴𝑶𝑶𝑯𝑯+ 𝑎𝑎𝑀𝑀𝑎𝑎2+ × 𝑎𝑎𝑂𝑂𝐻𝐻−

𝑎𝑎𝑀𝑀𝑎𝑎𝑂𝑂𝐻𝐻+
= 10−2.56 (Childs 1970) 

𝑵𝑵𝑯𝑯𝟒𝟒
+ 𝑎𝑎𝑁𝑁𝐻𝐻3 × 𝑎𝑎𝐻𝐻+

𝑎𝑎𝑁𝑁𝐻𝐻4+
= 10−9.25 (Taylor, Frazier et al. 1963) 
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𝑯𝑯𝟐𝟐𝑶𝑶 𝑎𝑎𝑂𝑂𝐻𝐻− × 𝑎𝑎𝐻𝐻+

𝑎𝑎𝐻𝐻2𝑂𝑂
= 10−14 (Harris 2003) 

 

The system of equations was solved using logarithmic scaling, for example:  

log10(𝑎𝑎𝐻𝐻+) + log10�𝑎𝑎𝑀𝑀𝑂𝑂43−� − log10�𝑎𝑎𝐻𝐻𝑀𝑀𝑂𝑂42−�  = −12.35 2.15 

It should be noted that during simulations performed in this work, numerical solutions were more 

difficult to find (i.e. long initialisation times) when 𝐻𝐻3𝐶𝐶𝐶𝐶4 was included since its concentration is very 

low at high pH. Concentrations very close to zero can be rounded to zero, causing the Davies 

approximation to raise zero to a negative power. This problem was resolved by removing this species 

as it did not affect the mass balance to any discernible extent.6  

2.1.5 Temperature 
Changes in temperature affect struvite solubility and ion species equilibria. For each equilibrium 

constant (from Table 2.1), the temperature change effects can be modelled using the Van’t Hoff 

equation: 

ln�𝐾𝐾𝑠𝑠𝑒𝑒� = −
∆𝐻𝐻
𝑅𝑅𝑇𝑇

+
∆𝑆𝑆
𝑅𝑅

 2.16 

Where ∆𝐻𝐻 is the enthalpy of reaction, ∆𝑆𝑆 is the change in entropy, 𝑅𝑅 = 8.234 [𝑚𝑚 𝜇𝜇𝑚𝑚𝑚𝑚−1 𝐾𝐾−1] is the 

ideal gas constant, and 𝑇𝑇 [𝐾𝐾] is temperature.  

Various investigations have been conducted on the effects of temperature on struvite solubility 

product (Aage, Andersen, Blom, & Jensen, 1997; Bhuiyan, Mavinic, & Beckie, 2007; Burns & Finlayson, 

1982; Hanhoun et al., 2011), although they each involve the use of different sets of ionic species and 

equilibrium coefficients, making comparisons difficult. Recent investigations, involving more detailed 

thermodynamic modelling techniques are in agreement that a minimum solubility is reached at 

approximately 30˚C (Bhuiyan et al., 2007; Hanhoun et al., 2011). Bhuiyan et al. determined that the 

                                                           
6 Initialising with guess values very close to the solution also improves the likelihood of obtaining a solution 
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minimum solubility product to be 𝑝𝑝𝐾𝐾𝑠𝑠𝑝𝑝 = 13.17 ± 0.05 by dissolving it into water, while Hanhoun et 

al. used an optimisation simulation based on the temperature dependent expression for free energy, 

which predicted the minimum solubility product to be 𝑝𝑝𝐾𝐾𝑠𝑠𝑝𝑝 = 13.00 ± 0.04. These figures are very 

close, making them effectively the same. 

Since a non-linear relationship exists between ln�𝐾𝐾𝑠𝑠𝑝𝑝� and 1/𝑇𝑇, equation 2.14 is not suitable for 

modelling struvite 𝐾𝐾𝑠𝑠𝑝𝑝 . This is because enthalpy and entropy of struvite crystallisation are also a 

function of temperature. Struvite 𝐾𝐾𝑠𝑠𝑝𝑝  must therefore be modelled as a higher order function of 

temperature, for example:  

ln�𝐾𝐾𝑠𝑠𝑝𝑝� = 𝑎𝑎′ +
𝑏𝑏′
𝑇𝑇

+
𝐵𝐵′
𝑇𝑇2

 
2.17 

Where 𝑎𝑎, 𝑏𝑏 and 𝐵𝐵 absorb the enthalpy, entropy and gas constant terms.  

 

In this work, the solubility of struvite is assumed to be log10�𝐾𝐾𝑠𝑠𝑝𝑝� = −13.26 at 25˚ (corresponding to 

all experimental conditions. This avoids any uncertainties associated with temperature variations. 

2.1.6 Electroneutrality and pH 

Although gradients of electrical charge may exist within a system, as a whole, any solution is 

electrically neutral. By knowing the concentration and valency of each ion in solution, a charge balance 

can be written: 

0 = �𝐶𝐶𝑖𝑖𝑍𝑍𝑖𝑖  2.18 

 

Where 𝑍𝑍𝑖𝑖  is the valency of component 𝑚𝑚 . The electro-neutrality condition completes the 

thermodynamic model, allowing for supersaturation and pH predictions to be made with only the 

knowledge of ion concentrations. Converting pH from a model input variable to a predicted variable 
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is very important as it and enables kinetic parameter regression based on pH. However, it is important 

to distinguish between speciation based pH prediction and reaction equation based pH prediction, 

which includes hydrogen in the crystallisation reaction equation as shown in equations 2.19 and 2.20, 

which have been asserted by some researchers with the aid of a thermodynamic model (Bouropoulos 

& Koutsoukos, 2000; Jun Wang, Burken, & Zhang, 2006) and by various other without a 

thermodynamic model (Koralewska, Piotrowski, Wierzbowska, & Matynia, 2007; Le Corre, Hobbs, & 

Parsons, 2007b; Matynia, Koralewska, & Wierzbowska, 2006; Stratful, Scrimshaw, & Lester, 2001; Zeng 

& Li, 2006).  

𝑀𝑀𝑛𝑛2+ + 𝐼𝐼𝐻𝐻4+ + 𝐻𝐻𝐶𝐶𝐶𝐶42− + 6𝐻𝐻2𝐶𝐶 ⇌  𝑀𝑀𝑛𝑛𝐼𝐼𝐻𝐻4𝐶𝐶𝐶𝐶4 ∙ 6𝐻𝐻2𝐶𝐶 +𝐻𝐻+ 2.19 

OR 

𝑀𝑀𝑛𝑛2+ + 𝐼𝐼𝐻𝐻4+ + 𝐻𝐻2𝐶𝐶𝐶𝐶4− +6𝐻𝐻2𝐶𝐶 ⇌  𝑀𝑀𝑛𝑛𝐼𝐼𝐻𝐻4𝐶𝐶𝐶𝐶4 ∙ 6𝐻𝐻2𝐶𝐶 + 2𝐻𝐻+ 2.20 

 

Applying this approach without a thermodynamic model is erroneous because changes in pH occur 

when ion concentrations change and thermodynamic equilibriums adjust to maintain 

electroneutrality. As a result, pH sensitivity to crystal formation can vary drastically between systems 

with different ionic concentrations and ionic ratios. This does not mean that pH can’t be used, but that 

non-ideal thermodynamic modelling must be applied to describe its effect correctly. This method was 

applied in this work. 

 Crystallisation kinetics 

In a supersaturated system, crystallisation occurs and the solution equilibria change. The rate of 

solution equilibria formation is much higher than that of crystallization. As a result, they can be 

accurately represented by the algebraic equations presented earlier in this chapter. The rate at which 

crystalline lattice forms is proportional to the level of supersaturation (the driving force for 

crystallisation). As discussed earlier, the level of supersaturation is determined by the equilibria 
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formed in solution and the solubility of struvite. The subject of this section is to examine how the 

crystallisation rate is influenced by supersaturation and how this relationship has been modelled. 

Interestingly, a positive driving force for crystallisation (supersaturation) does not necessarily imply 

that crystal formation will occur within any immediate time interval. As supersaturation is increased, 

there first exists what is termed a meta-stable range, in which the driving force is too low to initiate 

spontaneous crystal formation. Often crystallisers are operated in this range to achieve growth of 

existing crystals without introducing new smaller crystals to the system. As supersaturation is further 

increased there is a gradual transition into what is known as the labile range, where spontaneous 

crystallisation occurs. Interpretation of what is ‘spontaneous’ remains open, leaving any specific 

transition indistinct. Instead, the transition from metastable to labile is described by a logarithmically 

reducing time interval between when a given supersaturation is reached and spontaneous crystal 

nucleation begins. This interval is known as the induction time and is the subject of the next section. 

2.2.1 Induction time 

Theoretically, induction time can be defined as the time taken from the creation of supersaturation to 

the onset of nucleation. The molecular process of crystal nuclei formation is not known with any 

degree of certainty, making the exact definition of induction time difficult. Ions must coagulate, resist 

the tendency to re-dissolve, and become oriented into a fixed crystalline lattice (Mullin, 2001). 

Practically, the definition of the appearance of nuclei is dependent on the method of particle 

detection. Jones defines induction time to consist of the time taken for nuclei formation plus the time 

taken for nuclei to grow to a detectable size (Jones, 2002), while Mullin also includes a relaxation time 

for ions to evenly diffuse through the system and describes an extra ‘latent period’ between the 

induction time and the time of detectable de-supersaturation (Mullin, 2001). Induction time models 

are widely based on the concept that induction time is inversely proportional to nucleation rate: 

𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖 ∝ 𝐵𝐵0−1 2.21 
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Where 𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖  is the induction time and 𝐵𝐵0  is the nucleation rate. All struvite induction time studies 

assume that nucleation time is much greater than subsequent growth time, causing induction time to 

be defined as the time needed for the formation of a critical nucleus. In reality, this time cannot be 

measured and the induction time should be modelled as the time taken for a particle to grow to a 

detectable size. Jones gives various models for this scenario based on different crystal growth 

mechanisms (Jones, 2002). 

Two forms of the induction time model have been applied to struvite by various research groups. They 

differ by their representation of saturation but are otherwise equivalent. Bouropoulos & Koutsoukos 

(Bouropoulos & Koutsoukos, 2000) and Bhuiyan (Bhuiyan & Mavinic, 2008) both used equation 2.22, 

which was given by Mullin (Mullin, 2001). This form of the equation uses Ω, given by equation 2.9, as 

the measure of supersaturation. 

log 𝜏𝜏𝑖𝑖𝑛𝑛𝑖𝑖 = log𝐼𝐼𝑖𝑖𝑛𝑛𝑖𝑖 +
𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖

(logΩ)2 2.22 

Where 𝐼𝐼 is constant and 𝐵𝐵 is given by: 

𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖 =
𝛽𝛽𝜐𝜐𝑚𝑚2 𝛾𝛾𝑠𝑠2

(2.303𝑘𝑘𝐵𝐵𝑇𝑇)3 
2.23 

Where 𝛽𝛽 is a nucleus shape factor (32 for cubes and 16𝜋𝜋/3 for spheres), 𝜐𝜐𝑚𝑚 is the molecular volume 

of struvite (=molecular weight/(Avogadro’s number × density × number of ions in a formula unit) = 

7.95×10-23cm3 for struvite), 𝛾𝛾𝑠𝑠  is the interfacial tension (i.e. surface energy) of the solid which is 

forming, 𝑘𝑘𝐵𝐵  is the Boltzmann constant and 𝑇𝑇 is the absolute temperature. Other groups have also 

used equation 2.24 which uses 𝑆𝑆𝑎𝑎, described by equation 2.10, as the measure of saturation (Galbraith 

& Schneider, 2009; Mehta & Batstone, 2013; K. N. Ohlinger et al., 1999). 

log 𝜏𝜏𝑖𝑖𝑛𝑛𝑖𝑖 = log𝐼𝐼𝑖𝑖𝑛𝑛𝑖𝑖 +
𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖′

(log Sa)2 
2.24 

Where again 𝐼𝐼 is constant and 𝐵𝐵 is identical, accept in this instance includes the number of ions into 

which a molecule of the crystal dissociates, 𝜈𝜈, which accounts for the different measure of saturation: 
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𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖′ =
𝛽𝛽𝑣𝑣𝑚𝑚2 𝛾𝛾𝑆𝑆3𝑓𝑓(𝜃𝜃)

(2.303𝑘𝑘𝐵𝐵 𝑇𝑇)3𝜈𝜈2
 

2.25 

In equation 2.25, 𝑓𝑓(𝜃𝜃) is a correction factor to account for heterogeneous nucleation. 𝜃𝜃 is the wetting 

angle of the solid phase by the liquid, where 𝑓𝑓(𝜃𝜃) = 1 for homogeneous nucleation. This model has 

been applied successfully to heterogeneous nucleation (K. N. Ohlinger et al., 1999; A. Randolph & 

Larson, 1988).  

Although homogeneous nucleation is asserted during measurements of induction time, 

heterogeneous primary nucleation (induced by suspended particles) is much more likely, both in lab 

environments and in real solutions. This is especially true at low supersaturation levels. Many authors 

have identified a supersaturation level where homogeneous nucleation ceases to occur (summarised 

in Table 2.2). The transition between homogeneous and heterogeneous nucleation is commonly 

defined as the intersection of two linear regressions made on a (log(Ω))−2 vs. log(𝑡𝑡𝑖𝑖𝑛𝑛𝑖𝑖) plot. Views 

of the accuracy of this technique are undecided; Mullin suggests that applying the homogeneous 

induction time model at low supersaturations is a questionable technique, while Randolph & Larson 

and Ohlinger assert that it is acceptable.  

Many investigations have been made into struvite induction time, the results of which vary depending 

on experimental methods and analysis techniques. Table 2.2 provides a consolidation of induction 

time models, which shows that the lower saturation bound for homogeneous nucleation has been 

predicted to occur anywhere in the range of 𝑆𝑆𝐼𝐼 = 0.237− 0.69 (Table 2.2). Figure 2.1 then provides 

a comparison of model predictions of induction times over a range of 𝑆𝑆𝐼𝐼 values. This was done using 

methods described by Galbraith (Galbraith & Schneider, 2009) and incorporating more recent data (Le 

Corre, Hobbs, et al., 2007b; Mehta & Batstone, 2013). Results from Mehta 2013 were calculated using 

induction time model parameters rather than thermodynamic modelling, as raw data were not 

provided. The model from Bhuiyan et al. was not considered accurate as pH change was used to 

identify the end of induction time in a solution which likely had significant ammonia buffering (N:P 

ratio of 17:1).  
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Figure 2.1 – Induction time model comparison 

Figure 2.1 shows that induction time increases exponentially below SI = 0.8, irrespective of the model 

parameters adopted. Variations in induction time parameters within the literature have been 

attributed to many effects, including variations in detection methods, mixing speeds and reagent ion 

ratios (Galbraith & Schneider, 2009).  
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Table 2.2 – Reported induction time model conditions and homogeneous nucleation saturation level 

Author pH 
range  

Experimental 
saturation 
range (SI) 

Phosphate 
conc. [mM] 

Molar 
ratio 

Mg:N:P 

Reactor 
type 

Mixing 
speed 
[rpm] 

Method of 
nucleation 
detection 

Reported 
Induction 

time range 
[min] 

Lowest 
saturation for 
homogeneous 
nucleation (SI) 

Mehta (Mehta & 
Batstone, 2013) 

N/A ~0.42 – ~0.85 100 1:1:1 200mL 
glass 

bottles 

300 pH change 
(0.05) 

0.17 – 
16.67 

0.69 

Galbraith (Galbraith & 
Schneider, 2009) 

7.8 – 9.2 0.04 – 0.31 1.0 – 2.5 1:1:1 250mL 
beaker 

Quiescent Light 
scintillations 

16.65 – 
438.15 

0.237 

Saido (Saidou, Ben 
Moussa, & Ben Amor, 

2009) 

8.2 0.9 3.8 1:1:1 1L 
aerated 

FBR 

N/A P & Mg 
concentration 

5 – 17 N/A 

Bhuiyan et al (2008) 
(Bhuiyan & Mavinic, 

2008) 

8.2 – 
8.51 

1.38 – 1.83 1.81 – 3.39 1:22.1:1.3 2L square 
beaker 

120 pH change 0.2 – 8.33 N/A 

Le Corre (Le Corre, 
Hobbs, et al., 2007b) 

9 0.88 – 1.52 2.4 – 4.6 1:2:2 250mL 
beaker & 
10L FBR 

Quiescent pH change  0.5 – 12  N/A 

Kabdasli (Kabdasli, 
Parsons, & Tunay, 

2006) 

8.44 - 
9.23 

0.371 - 1.135 2.45 1:1:1 1.5L 
cylinder, 
0.2m dia. 

300 Absorbance 0.83 – 42  N/A 

Kofina & Koutsokous 
2005 

8.5 0.318 – 0.633 2.2 – 3.0 1:1:1 250mL 
beaker 

 pH change 
(0.005) 

3.92 – 
69.17  

0.502 – 0.643  

(Bouropoulos & 
Koutsoukos, 2000) 

8.5 0.05 – 0.52 2.75 – 4.00 1:1:1 250mL 
beaker 

N/A pH change 
(0.005) 

6 - 125 0.30 

Ohlinger (1999) (K. N. 
Ohlinger et al., 1999) 

6.3 – 7.9 0.61 – 1.47 4 – 20 1:1:1 beaker 570 Light 
scintillations 

0.22 – 38 N/A 
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When induction time is reached and crystal formation begins, the formation rate can be represented with 

various mathematical descriptions, each with its benefits and trade-offs. Generally, struvite mass 

formation rate is calculated using two different kinetic models: rates of liquid phase species depletion 

and rates of individual crystal formation mechanisms. These categories are discussed in more detail in the 

following sections. 

2.2.2 Liquid phase species desupersaturation rate 

The simplest and most commonly implemented method of modelling struvite formation rate is by 

measuring the rate of change of one species in the solution phase and inferring the struvite formation 

rate using stoichiometry. Usually the limiting reagent is selected as the driver for de-supersaturation, 

which in most struvite applications is phosphate. Species concentration or supersaturation (given by any 

of equations 2.6 to 2.8) is used as the driving force in a rate equation. A power law kinetic model (equation 

2.26) is most commonly implemented. 

𝑑𝑑𝐶𝐶
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝐶𝐶𝑛𝑛 
2.26 

Where 𝐶𝐶 is the concentration of the species in question, 𝑡𝑡 is some measure of time and 𝑘𝑘 and 𝑛𝑛 are the 

rate constant and order.  

Various researchers have modelled struvite by applying a first order kinetic model (𝑛𝑛 = 1), which when 

integrated gives equation 2.27 (Ariyanto et al., 2014; Le Corre, Hobbs, et al., 2007a; Nelson, Mikkelsen, & 

Hesterberg, 2003; B. K. N. Ohlinger, Young, & Schroeder, 2000; Quintana et al., 2005; Rahaman et al., 

2008). 

ln�𝐶𝐶 − 𝐶𝐶𝑠𝑠𝑒𝑒� = −𝑘𝑘𝑡𝑡 + ln(𝐶𝐶 − 𝐶𝐶0) 2.27 

Where 𝐶𝐶 , 𝐶𝐶𝑠𝑠𝑒𝑒  and 𝐶𝐶0  are the concentrations of the reactant at time 𝑡𝑡, at equilibrium and at time 0, 

respectively. Le Corre et al. used magnesium as the ion of interest as it was the limiting reagent, inferring 

its concentration change in Mg concentration by pH measurement and the stoichiometry given by 

equation 2.20 (Le Corre, Valsami-Jones, Hobbs, & Parsons, 2007b). Le Corre et al. noted that at a given 
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initial pH, as ion concentration increased, the rate of pH drop decreased. Two other studies, utilising a 

first order model based on phosphate concentration, observed variations in first order rate constant with 

changes in Mg:P ratio (Quintana et al., 2005; Rahaman et al., 2008). Nelson used 𝐶𝐶𝐶𝐶4 − 𝐶𝐶 as the limiting 

reagent and observed a three-fold increase in rate constant using a constant caustic dose (although 

starting solution pH varied by 0.6). (Nelson et al., 2003). Ariyanto et al. showed that first order growth 

rate increased with pH, temperature, NaCl concentration and mixing speed (Ariyanto et al., 2014). Each 

of these studies suggests that a more detailed kinetic model is necessary to represent the struvite system 

over a range of conditions. The abovementioned correlation of rate with ion ratio suggests that the use 

of a single species in a reaction equation is flawed and that struvite kinetics are likely better described 

using the ion activity product. 

Some struvite research, in which faster growth rates have been observed, found that a second order 

kinetic model provided a better fit. Substituting 𝑛𝑛 = 2 into equation 2.26 and integrating gives equation 

2.28. 

1
𝐶𝐶

=
1
𝐶𝐶0

+ 𝑘𝑘𝑡𝑡 2.28 

In a study focusing on the removal of ammonia from digester effluent by addition of phosphate and 

magnesium, a second order kinetic model with respect to magnesium concentration was found to fit best 

(Türker and Celen, 2007). The model suggested a much faster precipitation as a result of nucleation 

(presumably induced by higher supersaturation levels) rather than growth, although no supersaturation 

or particle size data was provided to support this claim. Another study of spontaneous precipitation 

regressed a second order dependence on 𝑆𝑆𝑠𝑠, indicating a surface controlled mechanism (Bouropoulos & 

Koutsoukos, 2000). An alternative approach utilised a two-step model, where diffusion to the crystal 

surface is followed by a surface reaction rate, finding that in the given conditions, the system was 

transport limited (Bhuiyan et al., 2008). In this scenario, the surface reaction was also assumed to be 

second order. In all the above mentioned studies, kinetic models and associated parameters varied with 
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system conditions, indicating that a more detailed kinetic model is necessary if crystallisation is to be 

modelled under varying operating conditions.  

A more detailed approach to species depletion was used by Mehta, who applied a power law molar 

deposition model (equation 2.29) based on reduced supersaturation ratio (𝑆𝑆𝑠𝑠) and crystal surface area 

term described by the initial and final mass of crystal, assuming size independent growth (SIG) and no 

nucleation (Mehta & Batstone, 2013).  

𝑑𝑑𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑅𝑅𝐼𝐼 �
𝜇𝜇
𝜇𝜇0

�
2
3
𝑆𝑆𝑠𝑠
𝑛𝑛𝑅𝑅  

2.29 

Where 𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀 is the struvite concentration [mM], 𝑘𝑘𝑅𝑅 is the rate constant (0.09±0.04 mM.m-2.s-1), 𝐼𝐼 is the 

specific surface area of the seed crystals before growth occurs [m2/L], 𝜇𝜇0 and 𝜇𝜇 represent the crystal 

mass initially and at any time and 𝑛𝑛𝑅𝑅 is the growth rate order. Their work used a stirred seeded batch 

vessel and both synthetic wastewater and digester supernatant diluted 10:1. The struvite growth rate 

exhibited a higher dependence on SI in real wastewater than in synthetic wastewater, highlighting that 

results are not transferrable between the two systems. The growth order was regressed to be 3.52±0.1, 

significantly higher than first and second order models discussed above. While inferences about 

crystallisation mechanisms based on order are tenuous (as discussed later in section 2.2.4.5), this may 

suggest a dominant surface integration mechanism. By converting from molar growth rate, they 

estimated crystal linear growth rate to be 0.06 – 0.3 µm/min/unit of 𝑆𝑆𝑠𝑠 in the SI range of 0.12 – 1.47, 

although PSD assumptions necessary to make this conversion were unclear. The corresponding maximum 

and minimum crystal growth rates, plotted in Figure 2.3 (section 2.2.4.5) for comparison to other kinetic 

models, span a significant range and are within the region of growth rates predicted by other research. 

The alternative approach to using a liquid phase species depletion rate is to model individual 

crystallisation mechanisms. Crystal growth can be broken down into various phenomenon, namely, 

nucleation, growth and agglomeration. In all of the above examples, these mechanisms have been 
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neglected or merged. The following sections introduce mechanisms of crystallisation and identify 

deficiencies in the struvite crystallisation literature. 

2.2.3 Nucleation 

The formation of a nuclei can be defined as the point at which the solute changes state from liquid to 

solid. It can be categorised into primary and secondary nucleation, which represent the formation of new 

particles with or without the presence of other particles, respectively. Primary nucleation can occur 

without the presence of any other particles (homogeneous) or on the surface of a non-crystalline solid in 

solution, for example suspended solids or container walls (heterogeneous). Secondary nucleation 

represents any nucleation in which a solute crystal in the solution played a role. Once crystallisation 

begins, the effects of primary nucleation relative to secondary nucleation become quite small. 

Actually measuring or predicting the rate of nucleation and defining the size at which nuclei are said to 

enter a system is very difficult. This is because the resolution of even modern equipment is not high 

enough to capture an accurate picture of both the number and size of nuclei upon their formation. The 

appearance of a phase change has been found to be best determined by small angle X-ray scattering 

(SAXS) (Alison et al., 2003), although this method provides no information about the nuclei size 

distribution. As a result of this limitation, most nucleation studies involve measuring the rate at which 

crystals come into the smallest size range measurable. Various theories have been formulated to relate 

measurable quantities to fundamental theories about how nuclei form. These theories and relationships 

are presented below, accompanied by a discussion of investigations made with relevance to struvite. 

2.2.3.1 Primary nucleation 

Primary nucleation describes the formation of a crystal from a pure solution, free of all other crystal and 

particulate matter. This scenario is practically impossible, since all solutions contain some level of 

contamination, of both crystal and particulate matter. Although much effort has been invested into 

understanding and modelling primary nucleation, it has for the most part been to no avail. Many 

prominent figures in the field have discussed primary nucleation theory in much detail, only to conclude 
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that it has not been successfully measured or modelled (A. Randolph & Larson, 1988). Nevertheless, what 

theory does exist can be used in an attempt to describe the formation of new particles during 

crystallisation.  

The thermodynamic approach to representing primary nucleation utilises the Arrhenius reaction velocity 

equation used to represent thermally activated processes. The derivation, which can be found in Mullin 

(Mullin, 2001), assumes spherical nuclei and uses the Gibbs-Thompson relationship between particle size 

and solubility. The resulting expression of nucleation rate (𝑚𝑚 [𝑠𝑠−1𝐵𝐵𝜇𝜇−3]) is given by: 

𝑚𝑚 = 𝐼𝐼 exp�−
16𝜋𝜋𝛾𝛾3𝑣𝑣2

3𝑘𝑘3𝑇𝑇3(lnΩ)2� 
2.30 

Where 𝐼𝐼 is a kinetic factor (/ pre-exponential factor/ collision factor) with units [𝐵𝐵𝜇𝜇−3𝑠𝑠−1], 𝑘𝑘  is the 

Boltzmann constant (1.38 × 10−23𝑚𝑚/𝐾𝐾) , Ω  is the saturation ratio (equation 2.9), 𝛾𝛾  is the interfacial 

tension between the crystal and the solution [𝜇𝜇𝑚𝑚/𝜇𝜇2] , 𝑣𝑣 is the molecular volume [𝐵𝐵𝜇𝜇3] (described by 

equation 2.23), and 𝑇𝑇 is the absolute temperature. If this expression is generalised to include particle 

shape factors it can be written as:  

𝑚𝑚 = 𝐼𝐼 exp�−
192𝑘𝑘𝑉𝑉2𝛾𝛾3𝑣𝑣2

𝑘𝑘𝑀𝑀𝑘𝑘3𝑇𝑇3(lnΩ)2� 
2.31 

 

Where 𝑘𝑘𝑉𝑉 and 𝑘𝑘𝑀𝑀 represent the volume and surface area shape factors, respectively, and can be written 

for any shaped particle as:  

𝑘𝑘𝑉𝑉 =
𝑉𝑉
𝐿𝐿3

 2.32 

 

𝑘𝑘𝑀𝑀 =
𝑆𝑆𝐼𝐼
𝐿𝐿2

 2.33 

Where 𝑉𝑉 and 𝑆𝑆𝐼𝐼 are expressions for particle volume and surface area, respectively, and 𝐿𝐿 is the particle 

characteristic length (diameter for a sphere). Note that the units given for these variables are those which 
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they are commonly displayed with. When the nucleation rate is calculated, SI units must be used for the 

equations 2.30 and 2.31 to be correct. 

For struvite, the kinetic factor 𝐼𝐼 has been assumed to be 1017𝑛𝑛𝐵𝐵𝐵𝐵𝑚𝑚𝑒𝑒𝑚𝑚/𝐵𝐵𝜇𝜇3 (Abbona & Boistelle, 1985; 

Bouropoulos & Koutsoukos, 2000) although according to the Gibbs-Volmer theory, sparingly soluble salts 

should have a kinetic factor in the range of ~1025  (Mullin, 2001; Alan D Randolph & Larson, 1988). 

Alternatively, a study utilising a draft tube jet pump crystalliser, assuming MSMPR operation in the SI 

range of 4.53 – 6.597, predicted struvite nucleation rate in the range of 7.28 × 1011 − 4.08 × 1014. These 

values were estimated by applying the Rojkowski hyperbolic size dependent growth model (equation 2.45 

in section 2.2.4.3) to a population balance model, incorporating nucleation and growth, and performing 

a least squares optimisation (Koralewska, Piotrowski, Wierzbowska, & Matynia, 2009). Calculation of a 

kinetic factor based on more recent nucleation studies is possible, but would still rely on an assumed 

value for interfacial tension, which would itself rely on previous kinetic factor estimates.  

The interfacial tension 𝛾𝛾 has been found to be 15, 43, 50 and 50 𝜇𝜇𝑚𝑚/𝜇𝜇2 by Kofina et al., Bhuiyan, Abbona 

& Boistelle and Bouropoulos & Koutsoukos, respectively (Abbona & Boistelle, 1985; Bhuiyan et al., 2008; 

Bouropoulos & Koutsoukos, 2000; Kofina & Koutsoukos, 2005). The variation of Kofina’s result was 

attributed to interference by excess 𝑆𝑆𝐶𝐶42− ions, which is logical as 𝛾𝛾 is inversely proportional to a salt’s 

solubility (Mullin, 2001). Results from induction time experiments conducted by Ohlinger assumed that 

struvite interfacial tension would be similar to that of silica (78𝜇𝜇𝑚𝑚/𝜇𝜇2), making predictions in the range 

of observed results (K. N. Ohlinger et al., 1999). Comparing these results to interfacial tensions calculated 

for struvite, and to Figure 2.1, which indicates that significant nucleation occurs above 𝑆𝑆𝐼𝐼 = 0.8 , it 

appears that this assumed interfacial tension is too large. In any case, the determined surface tension is 

only an estimation due to variations in experimental conditions.  

                                                           
7 Estimated using thermodynamic modelling 
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2.2.3.2 Secondary nucleation 

Secondary nucleation is said to occur when a crystal is born via any process in which an existing crystal is 

involved. Many classifications can be made of physical processes leading to secondary nucleation as 

discussed below (A. Randolph & Larson, 1988): 

1. Fracture - occurs when high agitation rates in high suspension density systems causes crystals to 

break, resulting in many small round crystals. This is not likely to be significant for struvite due to 

its high hardness. 

2. Attrition - is effectively the same process as fracture, but occurs from crystal-crystal interactions. 

3. Needle breeding - is a fracture process that specifically occurs when dendritic growth occurs on 

crystals. Rod-like crystals growing on the surface of a larger crystal are much more likely to break 

free than the crystal itself is to break. This is a likely process during struvite crystallisation as 

struvite has been shown to form dendritic/needle like crystals at high supersaturation levels 

(Abbona & Boistelle, 1985). 

4. Fluid sheer - occurs when some of adsorbed layer is sheered away by a large velocity gradient in 

the bulk fluid. This process is not likely to represent large fraction as clusters must then be 

subjected to higher saturation levels than those they were produced in order to become nuclei. 

5. Contact nucleation - is the most likely cause of secondary nucleation in a crystalliser. Contact 

nucleation occurs when some of the adsorbed layer of a crystal comes into contact with agitator 

or (more likely) with other crystals and is displaced. This process would be produced by energy 

levels far lower than those required for fracture or attrition as the adsorbed layer is not yet in a 

crystalline state. Various authors have shown that contact nucleation occurs and that it creates 

new nuclei without visible damage to the parent crystal. The contact energy and super saturation 

affect the number of nuclei produced. At higher supersaturation levels, a thicker adsorbed layer 

exists which results both in the production of more potential nuclei by contact nucleation and a 

smaller critical nucleus diameter for successful nuclei formation. Results that support this theory 

have been demonstrated by various authors (Garside, Rusli, & Larson, 1979; Youngquist & 
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Randolph, 1972). Larson and Bendig showed that above a certain contact rate, no increase in 

nucleation is seen. This is likely to be because the adsorbed layer is being disrupted faster than it 

can regenerate (Larson & Bendig, 1976). In the same study, it was found that small crystals 

<100µm do not play a significant role in contact nucleation. Contact nucleation depends on 

supersaturation and can be represented with a power law relationship (A. Randolph & Larson, 

1988): 

𝐵𝐵0 = 𝑘𝑘(𝑇𝑇)𝜔𝜔𝑠𝑠𝑀𝑀𝑗𝑗𝑆𝑆𝑖𝑖  2.34 

Where 𝑘𝑘(𝑇𝑇) is a rate constant which varies with temperature, 𝜔𝜔 is a function of agitation, 𝑀𝑀 is 

the suspension density and 𝑆𝑆 is a measure of supersaturation. The exponents in this equation are 

determined experimentally, but 𝑗𝑗 is usually 1 and 𝑚𝑚 is usually between 1 and 3. 

Little account is given to modelling secondary nucleation of struvite, which may play a significant role in 

crystallisation once a particle population is established. The degree to which each secondary nucleation 

mechanism occurs (if at all) can depend on particle size, number density, fluid shear, saturation and 

temperature (Mullin, 2001).  

One study has measured secondary nucleation by measuring particle size distribution (PSD) in batch 

experiments, seeded with 35 ± 3𝜇𝜇𝜇𝜇 struvite particles to ensure that no primary nucleation was possible. 

The nucleation rate was represented using a power law model (equation 2.35), which is similar to 2.34, 

but does not describe influence of mixing energy, suspension density and temperature (Mehta & 

Batstone, 2013).  

𝐵𝐵 =
𝑑𝑑𝐼𝐼𝑇𝑇
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝐵𝐵(𝜎𝜎 − 𝜎𝜎𝑖𝑖)𝑛𝑛𝐵𝐵  
2.35 

Where 𝑘𝑘𝐵𝐵 and 𝑛𝑛𝐵𝐵 are the rate coefficient and exponent, estimated as 8.3 ± 2.3 × 106[𝑛𝑛𝐵𝐵𝐵𝐵𝑚𝑚𝑒𝑒𝑚𝑚 ∙ 𝐿𝐿−1𝑠𝑠−1] 

and 1.75 ± 0.13, respectivley. 𝜎𝜎𝑖𝑖 is the threshold saturation for secondary nucleation, regressed as 𝜎𝜎𝑖𝑖 =

0.55 ± 0.1 , which is equivalent to 𝑆𝑆𝐼𝐼 = 0.57 ± 0.12 . De-supersaturation due to crystal growth was 

assumed negligible based on an observed 3% reduction in total phosphorus. However, our simulations 
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show that this is equivalent to a 44.18% reduction in supersaturation at the lower supersaturation range, 

meaning growth likely influenced results.  Contact nucleation was proposed as the most likely model, 

which suggests that particles < 100𝜇𝜇𝜇𝜇 do play a significant role in secondary nucleation, contrary to 

results from previous studies. 

A similar study operated a seeded lab scale crystalliser in the supersaturation range of 𝑆𝑆𝐼𝐼 = 0.25 − 0.79, 

assuming mixed suspension mixed product removal (MSMPR) and implemented a general power law 

model, as shown below in equation 2.36 (Galbraith, Schneider, & Flood, 2014). 

𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛 = 𝑘𝑘𝑛𝑛𝑠𝑠𝑛𝑛𝑆𝑆𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 2.36 

Where the nucleation rate constant 𝑘𝑘𝑛𝑛𝑠𝑠𝑛𝑛 = 8.5(±0.076) × 107 and the nucleation rate order 𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛 =

1.68(±0.014). Kinetic parameters were regressed by applying a hybrid population balance technique, 

incorporating nucleation, growth and agglomeration (Galbraith et al., 2014). Note that population 

balance techniques are discussed in detail in section 3.1. 

2.2.3.3 Struvite nucleation rates 

Figure 2.2 compares the results of various nucleation models applied to struvite crystallisation. Primary 

nucleation rate is described as a function of 𝑆𝑆𝐼𝐼 , using multiple estimates of interfacial tension and 

equation 2.30. Equations 2.35 and 2.36 are used to describe secondary nucleation rate.  
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Figure 2.2 – Nucleation rate model comparison including classic primary nucleation rate models 

(Kofina & Koutsoukos; Bouropoulos & Koutsoukos; Abbona; Ohlinger), and power law models for 

primary (Galbraith et al.) and secondary (Mehta) nucleation. 

The primary nucleation rate curves are described over a broad range of saturation index because the 

interfacial tension is a property which, so far as fundamental theory goes, does not change with 

supersaturation. Secondary nucleation rate relationships on the other hand are only shown for the 

saturation range at which their kinetic parameters were calculated, since these are empirical 

relationships. The significant differences in primary nucleation rates resulting from changes in the 

interfacial tension illustrate how sensitive the model is to this parameter, which is notoriously difficult to 

estimate. The asymptotic nature of equation 2.30 means that each instance of this model shown in Figure 

2.2 are approaching the assumed maximum nucleation rate of 𝐼𝐼 = 1 × 1017[𝐵𝐵𝜇𝜇−3𝑠𝑠−1], although, as 

shown above, a great deal of uncertainty is also found in this parameter.  
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Secondary nucleation rates are less sensitive to 𝑆𝑆𝐼𝐼 than primary nucleation rates. Compared to the large 

variability in primary nucleation rates, results from Mehta et al. and Galbraith et al. are reasonably close, 

indicating that they are likely a reasonable description of struvite secondary nucleation in that 

supersaturation range. These results are in the range of 104 − 107, which align with rates suggested by 

Mullin (Mullin, 2001), but are significantly different to the assumed primary nucleation pre-exponential 

factor (1017) and the maximum nucleation rate estimated by Koralewska et al. (in the range of 1012 −

1014).  

Unless the transition between primary and secondary nucleation is estimated, and both key parameters 

in the primary nucleation model are found with a greater degree of certainty, applying a general power 

law model to nucleation is just as effective as any other method. 

2.2.4 Particle growth 

In this work, growth describes the size increase of individual particles. The following sections detail 

various crystal growth models, discuss the effects of impurities on crystal growth, then present a detailed 

review of work on struvite crystal growth rate. 

2.2.4.1 Two-step growth 

Particle growth is often described as a two-step process: transport of the solute to the crystal surface and 

integration from liquid to solid phase on the crystal surface. As these steps must operate in series, the 

slower of the two is always rate limiting. The dominant mechanism may change depending on the 

hydrodynamic properties of the system (as investigated by Tai (Tai, 1999) for sparingly soluble salts), 

temperature and solution composition (Sohnel & Garside, 1992). The two-step model is usually posed as 

a mass deposition rate, but can be converted to a particle linear growth rate with the knowledge of total 

particle mass, average particle diameter and solution volume (Bhuiyan et al., 2008). The diffusion rate can 

be written as: 

𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑖𝑖(𝐶𝐶 − 𝐶𝐶𝑖𝑖)𝑛𝑛𝑑𝑑 
2.37 
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Where 𝐿𝐿 is particle equivalent diameter, 𝑘𝑘𝑖𝑖  is the diffusion rate constant, 𝐶𝐶 − 𝐶𝐶𝑖𝑖  is the concentration 

difference between the bulk solution and the interface, and 𝑛𝑛𝑖𝑖 is the diffusion order, which is almost 

always assumed to be 1, but may not necessarily be (Mullin, 2001). Struvite has been described by the 

diffusion model when equation 2.26 was found to be 1st order (Ariyanto et al., 2014). The surface 

integration rate, detailed further in the next section, is given as: 

𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑠𝑠(𝐶𝐶𝑖𝑖 − 𝐶𝐶𝑠𝑠)𝑛𝑛𝑟𝑟 
2.38 

Where 𝑘𝑘𝑠𝑠 is the reaction rate constant, 𝐶𝐶𝑖𝑖 − 𝐶𝐶𝑠𝑠 is the concentration difference between the interface and 

saturation and 𝑛𝑛𝑠𝑠 is the reaction rate order. If 𝑛𝑛𝑠𝑠 = 1, the diffusion and reaction steps can be combined 

to give: 

𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡

= 𝐾𝐾𝑎𝑎(𝐶𝐶 − 𝐶𝐶𝑠𝑠) = 𝐾𝐾𝑎𝑎𝑆𝑆 
2.39 

For struvite application, the term (𝐶𝐶 − 𝐶𝐶𝑠𝑠) should be replaced here by one of the more appropriate 

descriptions of supersaturation for sparingly soluble salts (generally termed 𝑆𝑆). In equation 2.39, 𝐾𝐾𝑎𝑎 =

𝑘𝑘𝑖𝑖𝑘𝑘𝑠𝑠/(𝑘𝑘𝑖𝑖 + 𝑘𝑘𝑠𝑠). Alternatively, if 𝑛𝑛𝑠𝑠 = 2, the reaction can be written as: 

𝐺𝐺 =
𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑖𝑖𝑆𝑆 ��1 +
𝑘𝑘𝑖𝑖

2𝑘𝑘𝑠𝑠𝑆𝑆
� − ���1 +

𝑘𝑘𝑖𝑖
2𝑘𝑘𝑠𝑠𝑆𝑆

�
2

− 1�� 
2.40 

Struvite has been modelled using equation 2.40, assuming a point distribution of particles and negligible 

change in seed size (Bhuiyan et al., 2008). The number of data points and fit of the model to the data 

were unclear, shedding some doubt on this work. Both diffusion and growth were considered and the 

relative orders of coefficients are used to infer diffusion as the rate controlling mechanism.  

2.2.4.2 Integration controlled crystal growth 

After the solute has diffused to the crystal surface, it must be integrated into the crystal lattice. An 

absorbed layer of solute exists on the surface of a growing crystal. This third phase consists of partially 

ordered solute in a partially de-solvated lattice. It is not yet crystalline, but it is more ordered and 

concentrated than the bulk solution. It is the ordering of this layer into a crystalline structure which the 
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integration rate describes. In many struvite systems (presented later in Table 2.3), mixing is sufficient to 

ensure diffusion effects are negligible, transforming the growth rate to a surface integration rate 

controlled step. This step has been described by a number of models. A power law model can be used for 

parameter regression when the form of the growth rate model is unknown. Changes in the growth rate 

constant and order with supersaturation level are then used to infer greater model detail. 

𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑎𝑎𝑆𝑆𝑛𝑛𝑔𝑔 
2.41 

Where 𝑘𝑘𝑎𝑎  is a growth rate constant, 𝑆𝑆  is some description of supersaturation and 𝑛𝑛𝑎𝑎  is an empirical 

particle growth rate order. The continuous growth model (Jones, 2002), which assumes a rough surface 

to which ions integrate at the site of lowest energy, takes the form of equation 2.41 with 𝑛𝑛𝑎𝑎 = 1.  

Various works have implemented a form of equation 2.41 to describe struvite crystallisation. Hanhoun et 

al. regressed nucleation and growth kinetics with a least squares regression using supersaturation given 

by equation 2.12, which was predicted by pH measurements and a method of moments population 

balance (Hanhoun et al., 2013). Triger investigated struvite growth rate, defining supersaturation as the 

logarithm of supersaturation ratio using equation 2.14 (Triger et al., 2012). A least squares regression was 

performed using measured and predicted turbidity, which accurately predicted PSD properties but not 

PSD shape. Ali & Schneider also used equation 2.14 to regress struvite crystal growth rate, assuming an 

initial point distribution of particles and performing a least squares regression comparing measured and 

estimated ammonia, magnesium and phosphorus concentrations and mean crystal size (Ali & Schneider, 

2008). These investigations occurred over a significant time period (36 h), making the operating SI lower 

than that achieved by the non-equilibrium state of mixing feed streams. Galbraith et al. investigated 

seeded struvite growth rate defining SI by equation 2.13 and using a hybrid population balance technique, 

incorporating nucleation, growth and agglomeration (Galbraith et al., 2014). The growth rate regressed 

exhibited a higher order than the 1 – 2 traditionally observed for crystallisation (𝑛𝑛𝑎𝑎 = 5.062 ± 0.005) in 

the SI range of 0.37 – 0.54. They suggested that the high order could also be represented by a second 
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order model with a dead-zone, where growth rate becomes insignificant below a given supersaturation, 

𝑆𝑆𝐼𝐼∗. 

𝐺𝐺 =
𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑎𝑎(𝑆𝑆𝐼𝐼 − 𝑆𝑆𝐼𝐼∗)2 
2.42 

Where 𝑆𝑆𝐼𝐼∗ = 0.3. This outcome reinforces the null supersaturation concept used to describe secondary 

nucleation (Mehta & Batstone, 2013) and the surface nucleation model described below (equation 2.43).  

The surface nucleation (i.e. birth and spread model) describes nuclei forming on a smooth crystal surface 

and spreading to sites of lowest energy. In this model, nucleation is the rate controlling step as spread of 

nuclei is much faster due to lower energy requirements (Ohara & Reid, 1973). 

𝐺𝐺 = 𝐼𝐼′′𝑆𝑆𝑝𝑝 exp�−
𝐵𝐵′

𝑆𝑆 �
 

2.43 

Where 𝐼𝐼′′, 𝐵𝐵′, and 𝑝𝑝 are constants and 𝑝𝑝 = 1 − 2. In this equation, 𝐵𝐵′ represents a value of 𝑆𝑆 at which 

growth becomes significant. When 𝑆𝑆 is significantly larger than 𝐵𝐵′, the exponential term in equation 2.43 

tends to 1 reducing the equation to the same form as 2.41. When 𝑆𝑆 is significantly smaller than 𝐵𝐵′, the 

exponential term (therefore the growth rate) tends to 0. Another alternative is the continuous step 

growth model, which describes a self-perpetuating kink/dislocation, which forms a screw dislocation. This 

form of growth has been observed by crystal etching and reflective microscopy (A. Randolph & Larson, 

1988). The screw dislocation model is also referred to as Burton Cabrera Frank (BCF) model (Burton, 

Cabrera, & Frank, 1951) and is the most widely applied model.  

𝐺𝐺 = 𝐼𝐼′′′𝑆𝑆2 tanh�
𝐵𝐵′′′
𝑆𝑆 �  

2.44 

Where 𝐼𝐼′′′ and 𝐵𝐵′′′ are constants. At low supersaturations (𝑆𝑆 ≪ 𝐵𝐵′′′), the hyperbolic term tends towards 

1 and the model reduces to a power law with 𝑛𝑛𝑎𝑎 = 2. At high supersaturations (𝑆𝑆 ≫ 𝐵𝐵′′′), the model can 

be approximated with power law model with 𝑛𝑛𝑎𝑎 = 1. After the proposition of these three model types, 

it must still be noted that there are scenarios which cannot be explained by any of them (Alan D Randolph 

& Larson, 1988). 
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2.2.4.3 Growth rate dispersion (GRD) & size dependent growth (SDG) 

GRD describes crystal growth rate variation with time and between different particles of the same size; it 

has been measured in many crystal systems (Ochsenbein et al., 2015; A.D. Randolph & White, 1977; Zekic, 

Mitrovic, Elezovic-Hadzic, & Malivuk, 2011). This phenomenon has been discussed extensively yet 

remains to be properly understood (Mullin, 2001; A. Randolph & Larson, 1988; Singh & Ramkrishna, 

2014). An alternative theory to growth rate dispersion is size dependent growth (SDG) (Mullin, 2001; 

Rojkowski, 1978). Conceptually it is important to distinguish SDG from GRD. SDG asserts that a particles 

growth rate is a function of its size, while GRD asserts that one crystal becomes larger than another 

because it grew faster, rather than growing faster because it is larger. SDG has been shown to be 

significant only when comparing micro and macro crystals by grouping distributions of particles with 

different growth rate and showing little difference in growth rate within groups (Mitrovic, Zekic, & Iiic, 

2002). To complicate the matter, the growth rate of an individual crystal can be random or fixed over the 

course of its growth (Mitrović, Žekić, & Baroš, 2008; A. Randolph & Larson, 1988), and growth rate 

dispersion has been observed to change over the course of a crystallisation process (Zekic et al., 2011). 

Feasible reasons suggested for these phenomenon include the presence of impurities; surface stage 

changes (which relate to a change in the dominant dislocation face as nuclei which formed quickly take 

on their dominant form); and lattice strain, which relates to the amount of defects on the crystal surface 

(Zekic et al., 2011). 

A recent theory proposes that crystal growth rate dispersion is caused by randomised kink sites on crystal 

faces and localised fluctuations in temperature and saturation resulting from Brownian motion (Singh & 

Ramkrishna, 2014). The study also suggests that this effect is more noticeable at higher supersaturation 

ranges. It is unclear though, how significantly growth rate might vary due to temperature/supersaturation 

gradients, as measurable particle size exceeds the volume of fluid in which a supersaturation distribution 

can be observed. It should be noted that in this study, while the simulated coefficient of variation for a 

range of supersaturation values was 0.67, the assumed fluid volume was 22.89nm3 and crystal growth 

occurs on a µm scale. As such, it would be expected that variations in growth rate at this scale would be 
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unnoticeable when integrated through space and time for a particle system like struvite where PSDs 

average in the range of 10 – 1000µm. Nucleation rates on the other hand may be distributed as a result 

of this Brownian motion, depending on the critical nucleus size. 

Struvite crystallisation has been described by the Rojkowski Hyperbolic SDG model for an MSMPR 

(equation 2.45), achieving the best fit out of a range of empirical and semi-empirical size dependent 

growth models (Koralewska et al., 2009; Lobanov, 2009; Matynia et al., 2006).  

𝑛𝑛(𝐿𝐿) = 𝑛𝑛0 exp �−�
𝐺𝐺∞ − 𝐺𝐺0
𝜏𝜏𝑎𝑎𝐺𝐺∞2

ln �
𝑎𝑎𝐺𝐺∞𝐿𝐿 + 𝐺𝐺0

𝐺𝐺0
� +

𝐿𝐿
𝜏𝜏𝐺𝐺∞

+ ln �
𝑎𝑎𝐺𝐺∞𝐿𝐿 + 𝐺𝐺0
(1 + 𝑎𝑎𝐿𝐿)𝐺𝐺0

��� 
2.45 

Where 𝑛𝑛(𝐿𝐿) is the population density, 𝑛𝑛0 is the nuclei population density, 𝑎𝑎 is a kinetic coefficient and 𝐺𝐺0 

and 𝐺𝐺∞ are the growth rates of the nuclei and the largest crystals, respectively. While this model may 

provide a best fit to some data, it was not compared to size independent growth models and there is no 

physical evidence that size dependent growth is occurring, making it as good as any other that could be 

fit to the same data. Although there is opportunity within struvite crystallisation modelling to investigate 

the application of GRD SDG models, they are not investigated further in this research due to their complex 

and uncertain nature. 

2.2.4.4 Effect of impurities on crystal growth 

Impurities, in general, refer to any compounds in a system not directly taking part in the desired 

crystallisation reaction. The term can refer to suspended solids, dissolved metals, coagulants and 

flocculants and can be present in the feed, carried over from earlier parts of the process or produced as 

a by-product of reactions occurring. Impurities in a system are almost impossible to avoid, even under lab 

conditions and can both increase and decrease the rates of growth and nucleation. Impurities are often 

essential for nuclei formation as is the case in struvite crystallisers seeded with silica (P Battistoni, Paci, 

Fatone, & Pavan, 2006; B. K. N. Ohlinger et al., 2000; Regy, Mangin, Klein, & Lieto, 2001). As noted in 

section 2.2.3, though, silica’s higher interfacial tension means that it would have a lower primary 

heterogeneous nucleation rate than if struvite were used as a seed. Impurities in the system can be 
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adsorbed onto the crystal surface during growth, which can reduce the interfacial tension but also reduce 

the available surface area for growth (A. Randolph & Larson, 1988). Impurities may also vary the solubility 

of the product or cause other by-products to be formed. These effects combined can create significant 

differences between testing under lab conditions and testing with real solutions in which impurity levels 

may be quite high. The exact effect of impurities on any given system is very subjective and must be 

carefully studied. 

2.2.4.5 Struvite growth rate discussion 

In this section, struvite research is evaluated to identify common trends and assess which practices should 

and should not be adopted in this work. Species depletion models are not considered adequate for 

struvite modelling because of the relationship observed between rate constant and ion concentrations 

(section 2.2.2). Table 2.3 summarises investigations of struvite crystallisation investigations and Figure 

2.3 provides a visual comparison of crystal growth rates on a common supersaturation scale.  

Table 2.3 shows that measured struvite crystal growth rate is reported from 0.03 – 24 µm/min, while 

regressions based on Figure 2.3 showed growth rate 0.01 – 12.86 µm/min in the SI range of 0.25 – 1.4. 

Unfortunately such a large range in growth rate does not offer much confidence to somebody trying to 

find an accurate model for design purposes. To assess the impact of this uncertainty, this work will present 

sensitivity analysis on struvite crystallisation kinetic parameters. 
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Table 2.3 – Struvite particle growth rate comparison 

*Maximum pH/SI for batch reactors and steady state SI for continuous; ** Calculated using thermodynamic model and conditions given. *** SI given in PhD thesis document. ^ Parameter 
regression included seed size. ^^ High ammonia concentration introduces uncertainty to SI prediction via thermodynamic model. N/P = not provided. 

Source pH range* Experimental 
saturation range 
(SI via eqn 2.13) 

Phosphate 
conc. 
[mM] 

Molar 
ratio 

Mg:N:P 

Reactor type 
(seeded/continuous/ 

batch) 

Mixing 
speed 
[rpm] 

Residence 
time [min] 

Final particle 
size [µm] 

Model equation  saturation 
measure 

Rate Constant(s) 
[µm/min] 

Rate order 
presented 

Linear growth 
rate 

[µm/min] 

(Ali & Schneider, 
2008) 

7.22 – 7.51 0.053** 
0.32 – 0.57*** 

6 1:1:1 Seeded fed batch 
recirculating (16-

16.8L) 

- 439.2, 480 
& 2160 

~170 - 195 Power law  2.14 0.784±0.14 1.64±0.19 0.011 – 0.083 
(calculated) 

Power law  
(seed size estimated) 

2.14 0.819±0.14 1.68±0.18 0.011 – 0.079 
(calculated) 

(Galbraith et al., 2014) 7.46 – 7.62 0.25 – 0.74 5 1:1:1 Stirred, seeded, draft 
tube, baffled, batch 

(1L) 

- 120 <30 Power law  2.13 12.49±0.06 5.062±0.00
5 

0.011 – 2.74 
(calculated) 

(Hanhoun et al., 2013) 8.5 – 9.6 0.26 – 0.54 3 – 4 1:1:1 Stirred batch (3L) 500 60 D[50]=70 - 89 Power law  2.12 280.64 1.34 2E-4 – 1.3E-3 
(calculated) 

(Ariyanto et al., 2014) 8.0 – 9.5 0.31 – 1.00 2 1:1:1 Stirred, seeded batch 
(1L) 

50 - 120 120 24.3 – 84.8 
(seed size) 

Power law  2.9 0.5 – 10.0 1.05 – 1.47 0.07 – 14.39 
(calculated) 

(Triger et al., 2012) 9.31 ~3.7** ^^ 14.08 
(synth) 

1.3:33:1 Stirred batch (2L) 300 0.33 D[50]=54.1-
52.5 

Power law  2.14 1.75 - 2 1.15 – 2 2.72 – 3.56 
(calculated) 

9.29 ~3.7** ^^ 13.95 
(real) 

1.3:16:1 Stirred batch (2L) 300 0.33 - Power law  2.14 1.8 2 2.45 – 3.20 
(calculated) 

9.35 ~3.7** ^^ 14.40 
(real) 

1.3:19:1 Stirred batch (2L) 150 0.33 D[50]=45.7 Power law  2.14 1.5 1.8 1.98 – 2.52 
(calculated) 

(Bhuiyan et al., 2008) 8.07 <1.38 ~0.7 (read 
from plot) 

- Seeded continuous 
FBR (5.56L) 

- 420 500 - 2000 Two-step 2.11 𝑘𝑘𝑖𝑖 = 1.11𝐼𝐼 − 8 
𝑘𝑘𝑠𝑠 = 7.99𝐼𝐼 − 5 

[m/s] 

2 0.51 – 16.02 
(calculated) 

(Mehta & Batstone, 
2013) 

8.0 – 9.0 0.12 – 1.47 3.67 5.14:4.88
:1 

Stirred, seeded, 
baffled batch 

- 120 D[50] ~ 100 Power law (including 
surface area) 

2.11 - - 0.02 – 8.55 
(calculated) 

(Koralewska et al., 
2009) 

9 4.53 – 6.59 100 - 820 1:1:1 Draft tube MSMPR 
(1.2L) 

6.6 15 <90 SD RHG - - - 0.03 – 1.99 
 

(Mazienczuk, Matynia, 
Piotrowski, & 

Wierzbowska, 2012) 

9 - 11 - 105 1:1:1 Draft tube MSMPR 
(1.2L) 

0.25 
[W/kg] 

15, 30 & 60 <90 
D[50]=4.1-

19.1 

SIG NCG - - - 0.07 – 0.43 

(Kozik, Hutnik, 
Piotrowski, & 

Matynia, 2014) 

8.5 - 10 - 65 1.2:1:1 DT MSMPR (0.6L) 4 15, 30 & 60  SIG NCG - - - 0.2 – 1.0 

(Harrison, Johns, 
White, & Mehta, 

2011) 

7.5 – 8.5 - - - Stirred, seeded batch 
(1L) 

- - - Power law 2.6  1.9 – 2.1 10 – 24 

8.5 - - - Stirred, seeded pilot 
scale at abattoir (200L) 

- - - Power law 2.6 𝑘𝑘𝑎𝑎 = 1.5𝐼𝐼 − 5 to 
1.0𝐼𝐼 − 4 
[µm/min/ 
(mg/L)2] 

2 0.45 – 0.8 
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It is important to identify which assumptions may have contributed to the large variation in results. First, 

the assumption of negligible nucleation and agglomeration will be examined. Two examples of this 

include the supporting assumption of a point distribution of particles (Ali & Schneider, 2008; Bhuiyan et 

al., 2008). Bhuiyan et al. assumed a second order integration step in a two-step model and assumed that 

the point distribution of particles did not change in size, while Ali & Schneider regressed kinetic 

parameters based on total molar concentrations and mean particle size (Ali & Schneider, 2008). By 

operating at a very low SI, Ali & Schneider regressed relatively low growth rates when compared to other 

work (Figure 2.3). In an alternative two examples, researchers assumed constant PSD shape and 

calculated growth rate using PSD translation (Ariyanto et al., 2014; Harrison et al., 2011). Harrison et al.’s 

results must be taken cautiously though as they showed that PSD shape did vary and represented 

supersaturation using phosphorus concentration difference, neglecting ion speciation. Although Bhuiyan 

et al., Ali & Schneider and Ariyanto et al. were able to produce a good fit to their individual datasets, the 

growth rate predictions from these ‘growth only’ models vary by two orders of magnitude (Figure 2.3). 

To eliminate some uncertainty observed in these models, this work will incorporate the nucleation 

mechanism, use full PSD measurements and operate within an SI range where kinetics can be easily 

observed. 

Multiple works have modelled simultaneous struvite nucleation and growth using population balance 

techniques. Investigations by Triger incorporate nucleation and growth, but regressed parameters using 

only turbidity (Triger et al., 2012). Their experiments were conducted at a very high SI, but growth rates 

regressed were in the in line with other works at lower SI’s, indicating a diffusion limitation. The authors 

attribute errors to non-ideal mixing and attrition, although agglomeration and operation at a very high SI 

may also play a role. Hanhoun et al. also applied a nucleation and crystal growth model, but manually 

selected nucleation parameters, and while a least squares regression was used, it was only applied to 

saturation data predicted from pH rather than concentration or PSD data (Hanhoun et al., 2013). This 

resulted in a growth rate prediction significantly lower than those of other struvite investigations (Figure 

2.3), which suggests that a single variable is insufficient for parameter regression. Koralewska et al. 
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incorporated nucleation and growth mechanisms and used a highly controlled procedure, giving 

reasonable confidence to the range of particle growth rates they measured, although the growth rate 

dispersion model they applied is theoretically unlikely, as discussed in section 2.2.4.3 (Koralewska et al., 

2009). Work by Mazienczuk et al. regressed nucleation and growth parameters using the PSD only (Kozik 

et al., 2014; Mazienczuk et al., 2012). While their work was experimentally sound, the model proposed 

should be applied cautiously as it did not match the data in lower particle size ranges, indicating that the 

nucleation and growth model alone could not accurately represent the entire dataset. Improvements on 

these works, which can be applied to the work in this thesis include: making parameter optimisations 

using multiple variables, not operating at a high SI and examining agglomeration (discussed in section 

2.2.5.5).  
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Figure 2.3 – Crystal linear growth rate comparison. Dashed and solid lines represent batch and 

continuous reactors, respectively. Circles indicate 𝐶𝐶𝑀𝑀𝑂𝑂4 < 5 mM, squares indicate 5 ≤ 𝐶𝐶𝑀𝑀𝑂𝑂4 < 10 

mM and triangles indicate 𝐶𝐶𝑀𝑀𝑂𝑂4 ≥ 10  mM. Filled and unfilled markers represent seeded and 

unseeded scenarios, respectively. Uncertainties in kinetic parameters were incorporated where 

available and significant enough to be visible. 

When comparing kinetic models based on the experimental conditions which they were obtained, Figure 

2.3 shows no major trends. The growth rates predicted by these models vary over 5 orders of magnitude, 

although it appears that seeded growth rates are much higher than unseeded growth rates. Seeded 

growth rates represent the majority of the data in the 10−2  to 10  µm/min range. The unseeded 

investigation by Hanhoun et al. produced crystal growth rates an order of magnitude lower than all other 

seeded investigations in the range of SI = 0.25 – 0.75  (Figure 2.3 and Table 2.3). Comparisons between 

continuous and batch experiments also offer no insight since growth rates from continuous reactors span 

approximately three orders of magnitude and those from batch experiments span five. All authors 
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reported increasing crystal growth rate with SI except Mazienczuk et al., who observed a decrease in 

growth rate with increasing pH (assuming SI is proportional to pH within the range tested), which was 

attributed to a greater initial nucleation rate and associated decrease in SI.  

Many authors suggest that since the order of reaction regressed is >1, crystallisation is likely reaction 

controlled. The texts often cited to justify this conclusion measure supersaturation in the diffusion-

reaction model using a difference in solute concentration (Mullin, 2001; A. Randolph & Larson, 1988). 

Most investigations of struvite use one of various more complex descriptions of supersaturation (section 

2.1.3), the selection of which will result in a variation in regressed model order. In addition to this, Mullin 

notes that diffusion and integration are difficult to distinguish considering that likely more steps are 

involved (i.e. boundary layer, adsorption layer and surface diffusion, ion dehydration, surface integration 

and counter diffusion of dehydrated water) and that diffusion term may exhibit be a higher order than 1. 

To examine the effect of supersaturation measure on regressed growth rate order, a power law model 

using SI was fit to each trend shown in Figure 2.3. All models gave an R2 value >0.97 and the indices varied 

from 1.64 – 2 for all models accept that by Galbraith et al., which has an order of 5.062. By repeating this 

process using reduced saturation, it was found that growth rate orders mostly fell in the range of 0.9 – 

1.34, while results from Triger et al. and Galbraith et al. gave orders of 0.21 – 0.23 and 3.14, respectively. 

In this case all R2 values were >0.99. This illustrates that great care must be taken to ensure consistency 

between selection of supersaturation measure and that conclusions about reaction or diffusion 

mechanisms must be taken cautiously. 

2.2.5 Aggregation 

In a dispersed particle system, particle collisions can result in the particles joining together to make a 

larger particle. As this process occurs, the PSD changes, which in turn decreases the total number of 

particles and potentially the specific surface area. Often terminology is interchanged within the literature. 

This work deals primarily with aggregation and to a lesser extent agglomeration. The following definitions 

are given for the readers information (Jones, 2002; A. Randolph & Larson, 1988): 
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• Coagulate or flocculate - A group of particles weakly held together by cohesive forces 

• Aggregate - A group of particles weakly cemented together by crystalline structure 

• Agglomerate - A group of particles cemented together by crystalline structure. Although the 

crystal properties remain the same, the macro-structure of the particle will determine its 

properties i.e. density, strength etc. 

2.2.5.1 Primary aggregation 

Aggregation can be further divided into two categories: primary and secondary. Primary aggregation is 

defined as mal-growth comprising of individual units within a structure i.e. stacking, dendrites (like 

snowflakes), twins etc. It is the consequence of nucleation on impurities or diffusion layer limitations at 

high growth rates (Jones, 2002). This process is rarely discussed as it is likely absorbed into the growth 

rate when modelling the system. Modelling this process as growth likely contributes to the variations in 

crystal growth rate models e.g. birth-spread and screw dislocation.  

2.2.5.2 Secondary aggregation 

Secondary aggregation, which is more widely investigated, is the result of particle collisions. All further 

references to aggregation in this thesis will refer to secondary aggregation unless otherwise stated. This 

process requires a number of steps to be successful. First particles must collide with sufficient energy to 

overcome colloidal repulsion forces (discussed in section 2.2.5.3). Particles must then spend sufficient 

time together to bond. Finally, saturation levels must be high enough that a bond is formed (Regy et al., 

2001). These processes are discussed below in more detail. 

1. Particle collisions: 

A collision may result from a variety of forces depending on the particle size, particle and fluid properties, 

and shear rate. For smaller particles (<1um), collisions occur by Brownian motion as they travel within 

fluid eddies. These are referred to as perikinetic collisions. Larger particle (>1um) collisions resulting from 

fluid velocity gradients are referred to as orthokinetic collisions. It has been theorised that smaller 

particles (<100 µm) are only influenced by fluid velocity gradient, while larger particle collisions also result 
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from particle inertia. Additionally, as aggregates grow larger, their fractal nature causes increased 

porosity, which increases their fluid drag, resulting in increased collision frequency (Kusters, Wijers, & 

Thoenes, 1997). Particle collisions can also be influenced by externally applied fields – gravitational and 

electrostatic. 

2. Particles spend sufficient time together: 

The probability that particles collide and remain together for long enough to cement depends on the 

colloidal forces between the particles (section 2.2.5.3 below), the rate of particle cementing (proportional 

to particle growth rate), and fluid shear.  

3. Particles cement: 

While particles are together, solute must diffuse from the bulk of solution, between them to the contact 

point where growth must occur. Various theories have been proposed on which variables have the most 

significant impact on this cementation rate.  

2.2.5.3 Colloidal forces 

On any phase boundary; solid, liquid or gaseous, positive and negative charges separate, creating a region 

of varying electrical potential. The thickness of this potential is only one or more molecular diameters but 

has an electrostatic potential in the range of 1V (Hunter, 2001). At the boundary between a solid and a 

solution, ions, electrons and dipolar constituents arrange themselves at the interface to minimise free 

energy levels. This results in the polarisation of neighbouring molecules. The net result of these charge 

interactions is a potential difference between bulk of two phases called inner of Galvani potential (∆𝜙𝜙). 

This potential, although theoretically important, cannot be measured unequivocally unless the phases are 

identical (Hunter, 2001).  

A crystal in solution develops a surface charge in the manner discussed above, causing some ions in 

solution to have a greater affinity for the crystal surface than others. As the concentration of constituent 

ions in the bulk solution varies, so does their affinity for adsorption onto the crystal interface. When one 
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ion has a greater affinity for adsorption, the solid surface has an excess of that charge and then itself is 

charged (Hiemenz & Rajagopalan, 1997). This charge differential in the adsorbed layer is countered by an 

equal and opposite charge through the diffusion layer so that the system is electrically neutral (as seen in 

Figure 2.4). This phenomenon is referred to as the electrical double layer. These electrical double layers 

result in electromagnetic interactions between particles in a system. It is the properties of these layers 

that determine whether attractive or repulsive forces exist between particles. These forces then affect 

the rate of particle collisions and thus the rate of agglomeration. 

The thickness of the electrical double layer is determined by fluid velocity gradients which control the 

diffusion layer thickness. Investigations by Melis et al. (Melis, Verduyn, Storti, Morbidelli, & Baldyga, 1999) 

show that hydrodynamics affect particle interactions when a large electrical double layer exists, but that 

particles with small electrical double layers seem unaffected by changes in fluid shear. For large electrical 

double layers, it was found that above a critical size, the aggregation rate constant increases with 

increasing particle size. 
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Figure 2.4 - Electrical double layer 

The overall potential gradient between the solid surface and the bulk solution is called the Nernst 

potential, 𝐼𝐼, which is given as: 

𝐼𝐼 = 𝜎𝜎 + 𝜁𝜁 2.46 

 

Where 𝜎𝜎 is the potential of the immobile layer and 𝜁𝜁, the zeta potential, is the potential of the diffusion 

layer. Zeta potential is a function of ionic strength, which is in turn a function of the relative charge and 

concentration of each component in the solution. The relationship between zeta potential and ionic 

strength varies depending on charges of the particles in the system. As ionic strength increases, zeta 

potential may reach a maximum then become smaller (mono- and bivalent ions), it may fall towards zero 

(bi- and trivalent ions), or it may drop to a minimum then increase (bi- and tetravalent ions). If zeta 
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potential is large, repulsive forces are dominant, but if zeta potential is small the attractive forces are 

dominant. 

The concept of zeta potential is well understood, but its interaction with parameters in a struvite system 

has not yet been fully explored. Warmadewanthi & Liu found that zeta potential became more positive 

as molar ratio (Mg:P) increased, reaching a maximum at a ratio of 2.5:1 (Warmadewanthi & Liu, 2009). 

This supports results from Bouropoulos & Koutsoukos indicating that excess Mg causes the negative 

surface charge on struvite to approach zero (Bouropoulos & Koutsoukos, 2000). Warmadewanthi & Liu 

also found that zeta potential reached a maximum at approximately pH 10. This is contrary to results from 

Bouropoulos & Koutsoukos who found that surface charge became more negative between pH 9.2 and 

10, then saw flocculation at pH 10.5 but provided no zeta potential measurement (Bouropoulos & 

Koutsoukos, 2000). Warmadewanthi & Liu attributed his result to the formation of other crystals like 

bobbierite.  

Le Corre et al. (Le Corre, Valsami-Jones, Hobbs, Jefferson, & Parsons, 2007a) also conducted investigations 

of the effect of zeta potential on struvite agglomeration by using coagulants to remove fines. Le Corre et 

al. found that struvite has a zeta potential between -27 to -17 mV, which agrees with Bouropoulos & 

Koutsoukos (Bouropoulos & Koutsoukos, 2000) who measured values of -26 to -20 mV over a pH range of 

9.2 to 10. These values are higher than those reported by Henderson et al. to limit agglomeration of 

organic matter, algae and kaolin (Henderson, Sharp, Jarvis, Parsons, & Jefferson, 2006). How transferrable 

the values are to struvite is unknown, but Le Corre et al. showed that as zeta potential was reduced by 

addition of a coagulant, an increase in average particle size was observed. It was also found that floc 

formation was highly pH sensitive. These results may indicate that zeta potential is a controlling factor in 

struvite particle size enlargement, but the impact of coagulant use on the actual agglomeration process 

is unknown. It may very well be that although larger particles are formed, their structural properties may 

be different. Bouropoulos & Koutsoukos found that zeta potential was made more positive by increased 

magnesium concentration. Although these investigations shed some light on factors influencing struvite 
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agglomeration and what effect it has on overall particle size enlargement, a comprehensive investigation 

remains to be conducted. 

The other set of forces which exist between crystals in solution are Van der Waals forces. They are the 

sum of the attractive and repulsive forces between particles not associated with covalent bonds or 

electrostatic interactions i.e. the electrical double layer. They consist of Keesom interactions (permanent 

dipoles), DeBye forces (induced dipoles) and London forces (instantaneous dipoles). These forces create 

weak attraction forces between particles of similar material and their effect decays rapidly with particle 

separation distance. These forces can be described by (Jones, 2002): 

𝑉𝑉 = 𝐼𝐼12𝑓𝑓(ℎ) 2.47 

Where 𝐼𝐼12 is the Hamaker constant for the material and h is the separation distance of two particles. 

In an attempt to accurately describe particle interactions, DLVO (Derjaguin-Landau Verwey-Overbeek) 

theory combines estimations of energy of attraction by London and Van der Waals forces and repulsion 

from overlapping electrical double layers (Adamson & Gast, 1997). A limitation of this theory is that it 

cannot account for the effects of saturation levels or ion concentration on agglomeration (A. S. Bramley, 

Hounslow, Newman, & Paterson, 1997). It also ceases to work when suspensions get so dense that the 

separation distance of particles is in the order of the adsorbed layer (Adamson & Gast, 1997). 

2.2.5.4 Aggregation rate 

Various efforts have been made to describe and model steps of crystal aggregation. While this work uses 

a relatively simple particle size independent aggregation model, some background on alternative 

techniques are included for the interested reader.  

Smolowchowski originally described the collision frequency of dispersed particles due to Brownian 

motion (Smolowchowski 1917). A general expression of aggregation describes the rate of aggregation of 

particles of size 𝑚𝑚 with those of size 𝑗𝑗 as proportional to the product of the number of particles in each 

size range (𝐼𝐼𝑖𝑖  and 𝐼𝐼𝑗𝑗) and includes a rate constant known as the aggregation kernel, 𝛽𝛽𝑖𝑖,𝑗𝑗.  
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𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 = 𝛽𝛽𝑖𝑖,𝑗𝑗𝐼𝐼𝑖𝑖𝐼𝐼𝑗𝑗  2.48 

The aggregation kernel can be broken down into two terms; 𝛽𝛽0 , representing system properties 

(supersaturation, fluid velocity etc.), and a particle size dependent function, 𝑓𝑓(𝑚𝑚, 𝑗𝑗), representing the 

aggregation frequency. The size dependence term can take various forms depending on the mechanism(s) 

causing aggregation (perikinetic, orthokinetic etc.). Aggregation investigations are notoriously difficult 

because of the many concurrent influencing factors. In the century since Smolowchowski’s formulation, 

many investigations have been made into the agglomeration kernel and now more than 50 variants of 

the agglomeration kernel can be found in the literature (Mersmann, Braun, & Löffelmann, 2002).  

One theoretical investigation of agglomeration accounting for Brownian motion, laminar flow and 

turbulent flow found that PSD properties and de-supersaturation profiles depend strongly on aggregation 

rate constant (contained within 𝛽𝛽0 ), initial supersaturation, and hydrodynamics (David, Paulaime, 

Espitalier, & Rouleau, 2003). These variables are sometimes combined into a collision efficiency model 

including hydrodynamics, bond formation rate and bond strength.  

For the calcium oxalate monohydrate system, a sparingly soluble salt which is assumed to behave similarly 

to struvite, aggregation has been investigated for dependency on a number of factors including: 

hydrodynamics (A. Bramley, Hounslow, & Ryall, 1997; M. J. Hounslow, Bramley, & Paterson, 1998); 

solution composition (M. J. Hounslow et al., 1998); Thiele modulus (a term describing the ratio of reaction 

rate to diffusion rate) (M. J. Hounslow et al., 1998); and solution ionic ratio (A. Bramley et al., 1997; Liew, 

Barrick, & Hounslow, 2003). It was found that a maximum aggregation rate exists with varying shear rate, 

due to a trade-off between increasing collision rate and increasing tensile stress between crystals 

(Mumtaz, Hounslow, Seaton, & Paterson, 1997). All of the abovementioned factors were able to be 

correlated by comparing particle collision efficiency with a number representing the ratio of aggregate 

bond strength of an aggregate to the force exerted on it in a collision (M. Hounslow, Mumtaz, Collier, 

Barrick, & Bramley, 2001).  
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Similar theoretical collision efficiency models have been developed incorporating hydrodynamic and 

colloidal interactions, accounting for particle mass, fractal dimension and a non-dimensional Hamaker 

constant (Babler, 2008)8. Babler’s work concluded that collisions between particles of similar size are 

preferential to those with different sizes. This outcome is of importance in crystallisation applications as 

often it is assumed that particle surface area is not conserved during aggregation events, and that the 

effect of this assumption is relatively low because the majority of collisions occur between particles of 

significantly different sizes. 

While it is physically accurate that aggregation mechanisms depend on particle size, the overall 

aggregation kernel can often be approximated by a size independent kernel (Jones, 2002). In a number of 

investigations a size independent kernel has provided a better fit to data than size dependent kernels (A. 

S. Bramley, 1994; M. J. Hounslow, 1990; Ilievski, 1991). This outcome has been attributed to a decrease 

in collision efficiency and increased particle disruption with particle size (Jones, 2002). In this scenario, 

the aggregation rate becomes a function of stirring rate and supersaturation only.  

In this thesis, since hydrodynamics remain constant and non-turbulent, their effects on collision 

frequency and aggregate breakage (due to weak bond strength) are not considered. Bond formation rate 

is incorporated using a similar approach to previous struvite aggregation investigations by describing 

aggregation using a power law model (equation 2.49), where the saturation index (SI) is the driving force, 

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 are the rate constant and order, respectively. 

𝛽𝛽0 = 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎(𝑆𝑆𝐼𝐼)𝑛𝑛𝑎𝑎𝑔𝑔𝑔𝑔 2.49 

 

2.2.5.5 Struvite aggregation 

Early work on struvite crystallisation showed that for equimolar solutions of magnesium, ammonium and 

phosphate, twinning and aggregation occurs above a concentration of approximately 0.005M, where the 

                                                           
8 Application to crystallisation systems would likely also require a description of the growth rate of a bridging bond. 
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supersaturation necessary for aggregation is approximately SI = 1.51, but progressively decreases with 

increasing concentration (Abbona & Boistelle, 1985). Struvite aggregation is evident in many industrial 

applications as shown by Figure 2.5 and Figure 2.6 below. Other fluidised bed reactor investigations have 

also reported particle sizes of 0.41 - 1.43 mm (Shimamura, Tanaka, Miura, & Ishikawa, 2003) and 2.2 - 

3.5mm (Adnan, Mavinic, & Koch, 2003), which are likely only achieved by aggregation. Another FBR 

investigation observed pellets with a tightly bound inner core and a thick outside coating of fines (Bhuiyan 

& Mavinic, 2008). In addition to struvite crystallisation, one group observed 2-3 µm hydroxyapatite 

agglomerates forming both alone and on the surface of struvite crystals (Hutnik, Piotrowski, 

Wierzbowska, & Matynia, 2011).  

 

Figure 2.5 – Macroscope photos from upper fluidised section (left) and lower packed section (right) 

of a fluidised bed crystalliser operating for 2.29 – 7.46 days producing particles up to 1.4mm (Paolo 

Battistoni, Paci, Fatone, & Pavan, 2005) 
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Figure 2.6 – SEM images of crystals from a fluidised bed reactor fed with digester supernatant. 

Particle diameter reached 1.5mm in diameter with a CRT of 10 to 20 days (Huang, Mavinic, Lo, & 

Koch, 2005) 

While struvite aggregation is commonly observed, it is not thoroughly investigated. As discussed earlier, 

one study using coagulants to promote aggregation, found average particle size increased from 75 – 750 

µm with reduction in zeta potential (Le Corre, Valsami-Jones, et al., 2007a). However, the structural 

stability of agglomerates and the biological impacts of some coagulants on fertilisers are unknown. Only 
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one work has experimentally determined kinetics of struvite nucleation, growth and aggregation 

(Galbraith et al., 2014). Discretised population balance methods were used to analyse data from a stirred 

batch vessel fed with equimolar 0.005 M feed operating at SI = 0.37 – 0.74. Galbraith regressed an 

aggregation kernel in the range of 10−8 to 10−10, which was within a reasonable range when compared 

to studies of other sparingly soluble salts. While this work regresses kinetic parameters using extensive 

PSD and concentration data, it does finds high correlation between kinetic parameters and makes 

assumptions about the PSD below 2 microns. As such, work in this thesis will attempt to reduce the 

probability of parametric correlation and measure particles below 2 microns. 

 Summary  

• Thermodynamics 

o Non-ideal solution chemistry modelling coupled with a charge balance is best suited to 

describe supersaturation and predict pH over a broad range of conditions 

o It is assumed that ion activity coefficients can be modelled at ionic strengths of <0.5 M 

using the DeBye-Hückel equation with Davies approximation 

o The 𝐻𝐻3𝐶𝐶𝐶𝐶4  ion is not included in the thermodynamic model as it does not affect SI 

prediction and can cause numerical problems 

• Nucleation 

o Struvite induction time increases exponentially below SI = 0.8 and the lower saturation 

bound for homogeneous nucleation has been predicted to occur anywhere in the range 

of 𝑆𝑆𝐼𝐼 = 0.237− 0.69 

o Primary nucleation rate is highly sensitive to interfacial tension 

o Secondary nucleation likely plays a significant role in struvite for particles below 

100microns 
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o Due to the high uncertainty in primary nucleation kinetic model and the uncertain 

transition between primary and secondary nucleation, a power law model may be equally 

as effective at describing nucleation. 

• Particle size enlargement 

o Struvite particle growth rate is most likely surface integration controlled (rather than 

diffusion controlled) 

o Struvite particle growth rate is low below a given supersaturation level, suggesting a 

surface nucleation mechanism is likely 

o Uncertainty in results can be reduced by: using full PSD measurements; operating at an 

SI large enough to observe significant crystal growth; incorporating nucleation, growth 

and agglomeration mechanisms; and performing model parameter optimisations using 

multiple variables 

o Estimated struvite growth rates vary over 5 orders of magnitude and are higher under 

seeded conditions than unseeded conditions 

o Increased Mg:P causes an increase in zeta potential (approaching zero), which increases 

the probability of successful aggregate formation 

o Struvite aggregation and agglomeration have been observed extensively but only one 

attempt has been made to model this phenomenon 

o This work will examine size independent aggregation as a function of SI only

 Conclusions 

Thermodynamic modelling of the struvite crystallisation system under lab conditions is relatively well 

understood and can be used to predict a driving force (SI in this work) for the rate of crystallisation. 

Selection of a predictive kinetic model (able to match data at a different SI) is the main limitation of 

existing struvite crystallisation modelling. Two factors contributing to this problem are addressed in 

this work: (1) applying kinetic models which do not fully describe the crystallisation process 
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(nucleation, growth and aggregation), and (2) uncertainty in nucleation and growth parameters at low 

SI. The first is overcome here by using a population balance model, which is described in Chapter 3 

and the second is addressed by using a high supersaturation achieved by rapid mixing followed by 

Poiseuille flow. A continuum model for the experimental system is developed in Chapter 4. 
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 Discretised population balance 

development and validation 

 

This chapter provides a background on population balances and describes the formulation 

of the cell average (CA) discretised population balance (DPB). DPBs are developed and 

validated against nucleation-growth and growth-aggregation analytic solutions. 

 Population balances 

Nucleation, growth and agglomeration crystallisation processes are impossible to separate as they are 

coupled. This is true both in theory and reality. For example, crystal agglomeration cannot be modelled 

alone as the cementing of particles is dependent on the growth rate. Similarly, nucleation may 

continuously introduce new particles into the system, altering the number of particles growing and 

agglomerating. This chapter focuses on the development of a theoretical framework call a population 

balance model (PBM), which is necessary to describe all processes simultaneously and predict the 

resulting particle size distribution (PSD).  

3.1.1 General formulation 

Equation 3.1 shows the general form of the population balance for a batch system 

𝜕𝜕𝑛𝑛(𝑡𝑡, 𝑥𝑥)
𝜕𝜕𝑡𝑡

+
𝜕𝜕[𝐺𝐺(𝑡𝑡, 𝑥𝑥)𝑛𝑛(𝑡𝑡, 𝑥𝑥)]

𝜕𝜕𝑥𝑥
= 𝐵𝐵(𝑡𝑡, 𝑥𝑥) − 𝐼𝐼(𝑡𝑡, 𝑥𝑥) 

3.1 

Where 𝑥𝑥  is the distribution domain (internal physical property/ coordinate), which is usually a 

characteristic particle length or particle volume and 𝑛𝑛(𝑡𝑡, 𝑥𝑥) is the number density distribution, which is 

related to particle number per unit volume (𝐼𝐼) by equation 3.2. The internal coordinate 𝑥𝑥 will henceforth 

be used to represent particle length. 
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𝑛𝑛(𝑡𝑡, 𝑥𝑥) =
𝑑𝑑𝐼𝐼(𝑡𝑡)
𝑑𝑑𝑥𝑥

 
3.2 

In equation 3.1, 𝐺𝐺(𝑡𝑡, 𝑥𝑥) is the particle growth rate, which in this work is assumed to follow McCabe’s ΔL 

law, such that the length based particle growth rate remains size independent (Jones, 2002; Alan D 

Randolph & Larson, 1988); 𝐵𝐵(𝑡𝑡, 𝑥𝑥) is a source term describing the birth rate of new particles, which could 

result from nucleation and/or aggregation events; and 𝐼𝐼(𝑡𝑡, 𝑥𝑥) is a sink term describing the death of 

particles due to aggregation or dissolution events. 𝐵𝐵(𝑡𝑡, 𝑥𝑥)  and 𝐼𝐼(𝑡𝑡, 𝑥𝑥)  can also be used to describe 

breakage events, but these are not considered in this work. 

The PSD can be characterised by the moments of the distribution, given by equation 3.3. When the 

distribution domain 𝑥𝑥 is chosen to be particle length, the 0th, 1st, 2nd and 3rd moments (𝜇𝜇0,𝜇𝜇1, 𝜇𝜇2 and 𝜇𝜇3) 

relate to the total particle number, total length, total surface area and total volume, respectively. When 

the distribution domain is chosen to be particle volume, the 0th and 1st moments relate to the total particle 

number and total volume, respectively. 

𝜇𝜇𝑗𝑗 = � 𝑥𝑥𝑗𝑗𝑛𝑛(𝑡𝑡, 𝑥𝑥)
∞

0
𝑑𝑑𝑥𝑥 

3.3 

Analytic solutions for PBMs only exist for specific conditions, so they are most commonly solved using 

numerical techniques. A commonly applied technique (and that used in this work) is a sectional method 

where the continuous distribution function 𝑛𝑛(𝑥𝑥) is approximated by a discrete distribution function as 

illustrated by Figure 3.1 below.  
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Figure 3.1 – PSD Discretisation 

The PBM is approximated by a series of ordinary differential equations, creating what is referred to as a 

discretised population balance (DPB). The information presented below gives a brief background on DPBs 

with targeted information relevant to this work.  

3.1.2 Discretisation methods 

DPB resolution and computing requirements increase with increasing discretisation, thus a balance must 

be made between resolution and solution time. While using a uniformly distributed discretisation 

provides an accurate solution (Sutugin & Fuchs, 1970; Tolfo, 1977), often a geometric discretisation of 

the particle volume domain is used to achieve higher number resolution at the lower end of the scale 

while minimising the discretisation number necessary to represent the full domain (Michael J Hounslow, 

1990a; S. Kumar & Ramkrishna, 1996b).  
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A geometric discretisation can follow any relationship which causes the step between representative cell 

sizes to increase with the cell number. The use of a geometric discretisation introduces a problem though 

– during aggregation events, particles in lower cell sizes do not combine to be represented by higher cell 

sizes. This is shown visually in Figure 3.2, where on a geometric discretisation, a particle of volume 𝑣𝑣1 

aggregates with a particle of volume 𝑣𝑣2  to become a particle of a larger volume (�̅�𝑣), not equal to a 

representative size on the discretisation domain. 

 

Figure 3.2 – Geometric discretisation of an aggregation event 

Hounslow proposed the first DPB solution, able to reasonably conserve particle volume and number for 

nucleation, growth and aggregation problems using a geometric discretisation (Michael J Hounslow, 

1990a). This formulation is of particular interest to this work as a hybridized version (discussed below) 

has been used to investigate struvite crystallisation kinetics (Galbraith & Schneider, 2014). The 

discretisation utilised a constant ratio in volume between one cell and the next, as described by the 

equivalent equations 3.4 and 3.5. This formulation was subsequently extended to enable variable 

discretisation coarseness (Wynn, 1996). While interesting this is not employed in this work. 

𝑣𝑣𝑖𝑖
𝑣𝑣𝑖𝑖−1

= 2  3.4 

𝐿𝐿𝑖𝑖
𝐿𝐿𝑖𝑖−1

= √23  3.5 
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3.1.3 First cell size and nucleation rate 

Nuclei are expected to form on the same size scale as crystal constituents, although nuclei size is 

notoriously difficult to define, let alone measure (section 2.2.3). Numerically, nucleation is described by 

the appearance of particles at the representative size of the first cell. Setting the first cell size to an atomic 

scale would require a very large number of discretisation cells to represent the entire size domain, 

significantly increasing the computational burden. As such, the first cell size was set low enough to ensure 

that particles grow from their actual nuclei size to the first cell size fast enough for effects on total particle 

volume to be negligible. This work utilises a first cell representative size of 0.01µm, which has been 

estimated to be suitable for struvite (Galbraith, 2011) and coincides with the minimum resolution of the 

Malvern Mastersizer3000 used for particle size measurement. 

3.1.4 Selected numerical methods 

The nucleation and growth discretisation method initially proposed by Hounslow (equation 3.6) is 

numerically stable but results in some ‘leakage’ (i.e. false contribution) of particles into higher cells, 

creating an overestimation of the third moment of the number-length distribution and thus particle 

volume (Michael J Hounslow, 1990a). To account for this, Hounslow introduced and refined a 3-term 

nucleation and growth equation given in equation 3.7. 

𝑑𝑑𝐼𝐼𝑖𝑖
𝑑𝑑𝑡𝑡 �𝑁𝑁𝑁𝑁

=

⎩
⎨

⎧ 𝐵𝐵0 +
𝐺𝐺𝐿𝐿𝐼𝐼1

(𝑟𝑟 − 1)𝐿𝐿1
𝑚𝑚 = 1

𝐺𝐺𝐿𝐿
(𝑟𝑟 − 1)𝐿𝐿𝑖𝑖

(𝑟𝑟𝐼𝐼𝑖𝑖−1 − 𝐼𝐼𝑖𝑖) 𝑚𝑚 > 1
 

3.6 

 

𝑑𝑑𝐼𝐼𝑖𝑖
𝑑𝑑𝑡𝑡 �𝑁𝑁𝑁𝑁

=

⎩
⎪
⎨

⎪
⎧𝐵𝐵0 +

2𝐺𝐺𝐿𝐿
(1 + 𝑟𝑟)𝐿𝐿1

��1 −
𝑟𝑟2

𝑟𝑟2 − 1�
𝐼𝐼1 −

𝑟𝑟
𝑟𝑟2 − 1

𝐼𝐼2� 𝑚𝑚 = 1

2𝐺𝐺𝐿𝐿
(1 + 𝑟𝑟)𝐿𝐿𝑖𝑖

�
𝑟𝑟

𝑟𝑟2 − 1
𝐼𝐼𝑖𝑖−1 + 𝐼𝐼𝑖𝑖 −

𝑟𝑟
𝑟𝑟2 − 1

𝐼𝐼𝑖𝑖+1� 𝑚𝑚 > 1
 

3.7 

Equation 3.8 shows the aggregation formulation proposed by Hounslow, which can be applied in 

conjunction with either equation 3.6 or 3.7. 
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𝑑𝑑𝐼𝐼𝑖𝑖
𝑑𝑑𝑡𝑡 �𝑀𝑀𝑁𝑁𝑁𝑁

= 𝐼𝐼𝑖𝑖−1𝛽𝛽0�2𝑗𝑗−𝑖𝑖+1𝐼𝐼𝑗𝑗

𝑖𝑖−2

𝑗𝑗=1

+
1
2
𝛽𝛽0𝐼𝐼𝑖𝑖−12 − 𝐼𝐼𝑖𝑖𝛽𝛽0�2𝑗𝑗−𝑖𝑖𝐼𝐼𝑗𝑗

𝑖𝑖−1

𝑗𝑗=1

− 𝐼𝐼𝑖𝑖𝛽𝛽0�𝐼𝐼𝑗𝑗

𝑁𝑁𝑒𝑒𝑒𝑒

𝑗𝑗=1

 
3.8 

While the 3-term nucleation and growth equation (3.7) is more accurate, it is unstable when applied to a 

dynamic mixed suspension mixed product removal (MSMPR) reactor. In order to extend Hounslow’s work 

to dynamic simulation, Galbraith used a sigmoid function to transition between the 2-term and 3-term 

forms of the nucleation and crystal growth DPBs (Galbraith et al., 2014). This approach enabled a 

compromise between the numerical stability of the 2-term model at lower particle size ranges and 

numerical resolution of the 3-term model at higher particle size ranges. Since this approach has been used 

for struvite investigations, it will be used in this work for comparative purposes to the new approach 

under consideration. This Galbraith modified Hounslow technique will henceforth be referred to as GMH. 

A significant development since Hounslow’s work was that of Kumar and Ramkrishna, who developed a 

solution method referred to as the ‘fixed pivot technique’, which is applicable to any discretisation 

scheme, and can be reduced to the Hounslow formulation when applied to the same discretisation (S. 

Kumar & Ramkrishna, 1996a). The fixed pivot technique assigns a fraction of each birth in a cell to an 

adjacent cell based on the position of the birth, taking into account the range between the representative 

volume below and above the cell in question. While relatively accurate, the particle property distribution 

results are consistently over-predicted by the fixed pivot method (J. Kumar, Peglow, Warnecke, & 

Heinrich, 2008). Additionally, without the particle growth term, the fixed pivot method produces some 

error (Alexopoulos & Kiparissides, 2005). Kumar and Ramkrishna also proposed a moving pivot technique 

for scenarios where growth is a dominant term (S. Kumar & Ramkrishna, 1997), however, while highly 

accurate, this method is difficult to apply for scenarios involving nucleation as it requires a continuously 

increasing number of discretisation elements (Alexopoulos & Kiparissides, 2005). 

The cell average technique (abbreviated CAT), which is applied in this work, extends on work by Kumar 

and Ramkrishna by applying a finite volume scheme (J. Kumar et al., 2008). This technique differs from 

the fixed pivot technique by averaging the total births into a cell before performing a single redistribution 
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of particles, rather than redistributing each individual birth event. A further advantage of the cell average 

technique is that it can be extended to conserve any number of moments of a distribution. While detailed 

descriptions of the cell averaged technique are available in multiple publications (J. Kumar, 2006; J. Kumar 

et al., 2008), they are presented in the following section for the clarity of the reader.  

 Cell average technique 

First we must explore the formulation and nomenclature of the discretisation method. In the cell average 

technique, the particle number density distribution is divided into 𝐼𝐼 cells, where the lower and upper 

bounds of the 𝑚𝑚𝑠𝑠ℎ  cell are denoted by 𝑣𝑣𝑖𝑖−12
 and 𝑣𝑣𝑖𝑖+12

, respectively. All particles belonging to a cell are 

identified by a representative size, or grid point, 𝑣𝑣𝑖𝑖 . Figure 3.3 gives a visual representation of three 

adjacent cells. While the representative size, 𝑣𝑣𝑖𝑖, could be chosen at any point between the lower and 

upper bounds of the cell, this work uses the mean volume between those bounds i.e. 𝑣𝑣𝑖𝑖 =

�𝑣𝑣𝑖𝑖−1/2 + 𝑣𝑣𝑖𝑖+1/2�/2. 

 

Figure 3.3 - Cell average discretisation 

The cell average technique transforms the general continuous population balance into a set of 𝐼𝐼 ODEs of 

the form: 

𝑑𝑑𝐼𝐼𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝐵𝐵𝑖𝑖𝐶𝐶𝑀𝑀�
𝑏𝑏𝑖𝑖𝑠𝑠𝑠𝑠ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠

− 𝐼𝐼𝑖𝑖�
𝑖𝑖𝑠𝑠𝑎𝑎𝑠𝑠ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠

, 𝑚𝑚 = 1,2, … 𝐼𝐼 3.9 

Where 𝐼𝐼𝑖𝑖  is the total number of particles in cell 𝑚𝑚, 𝐵𝐵 and 𝐼𝐼 represents the “birth” and “death” rates of 

particles into cell 𝑚𝑚 (alternatively the net inflow and outflow of particles from cell 𝑚𝑚) and 𝐶𝐶𝐼𝐼 denotes that 

cell averaging is used. The CA technique is constituted by the following four steps. 

𝑣𝑣𝑖𝑖−3/2 𝑣𝑣𝑖𝑖−1/2 𝑣𝑣𝑖𝑖+1/2 𝑣𝑣𝑖𝑖+3/2 𝑣𝑣𝑖𝑖−1 𝑣𝑣𝑖𝑖 𝑣𝑣𝑖𝑖+1 

(𝑚𝑚 − 1)𝑠𝑠ℎ cell 𝑚𝑚𝑠𝑠ℎ cell (𝑚𝑚 + 1)𝑠𝑠ℎ cell 
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1. Calculate particle births and deaths resulting from particle processes (growth, agglomeration and 

nucleation events) 

2. Calculate average volume of particles born into a cell 

3. Distribute particles between current and adjacent (above or below) cells based on their relative 

position to the cell representative size 

4. Solve ODEs expressing the total change of particle number at the representative size in each cell 

resulting from particle births and deaths (equation 3.9) 

3.2.1 Step 1 - expression for total births 

Consider 𝐶𝐶 particle births 𝐵𝐵𝑖𝑖,1,𝐵𝐵𝑖𝑖,2, … ,𝐵𝐵𝑖𝑖,𝑀𝑀 at corresponding positions 𝑣𝑣𝑖𝑖,1,𝑣𝑣𝑖𝑖,2, … , 𝑣𝑣𝑖𝑖,𝑀𝑀 within the 𝑚𝑚𝑠𝑠ℎ cell. 

Each birth could have resulted from any process (nucleation, growth, agglomeration and/or breakage), 

meaning that it may not necessarily occur at the representative volume 𝑣𝑣𝑖𝑖 . This is especially true for 

aggregation events, as discussed earlier. Methods for calculating these birth volumes are described in 

section 3.3 below. In general terms, the total birth rate of particles in the 𝑚𝑚𝑠𝑠ℎ cell is calculated by summing 

the birth rates resulting from each process: 

𝐵𝐵𝑖𝑖 = �𝐵𝐵𝑖𝑖,𝑝𝑝

𝑀𝑀

𝑝𝑝=1

 
3.10 

3.2.2 Step 2 - expression for average volume: 

The average volume of newborn particles in cell 𝑚𝑚 is then given by 

�̅�𝑣𝑖𝑖 =
∑ 𝑣𝑣𝑖𝑖,𝑗𝑗𝐵𝐵𝑖𝑖,𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝐵𝐵𝑖𝑖
 

3.11 

Using equations 3.10 and 3.11, the total contribution of particle number and mass can be equated to 𝐵𝐵𝑖𝑖  

particles located at size �̅�𝑣𝑖𝑖. If the average size �̅�𝑣𝑖𝑖 matches the representative size, 𝑣𝑣𝑖𝑖, then the total birth 

rate 𝐵𝐵𝑖𝑖  can be assigned to the cell 𝑣𝑣𝑖𝑖. In the more likely alternative, where the average size is not equal 

to the representative size, a fraction of the total birth rate, 𝐵𝐵𝑖𝑖, is assigned to 𝑣𝑣𝑖𝑖 and the remainder is 

assigned to the representative volume of a neighbouring cell (either 𝑣𝑣𝑖𝑖−1  or 𝑣𝑣𝑖𝑖+1 ), conservation of 
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particle number and volume. The proportion of particles assigned to the neighboring cells is calculated 

based on the average volume of newborn particles in the cell, �̅�𝑣𝑖𝑖, relative to the representative sizes of 

cell 𝑚𝑚 and the neighboring cell. If the average volume is greater than the representative cell size then a 

fraction of the volume is assigned to the upper cell, (𝑣𝑣𝑖𝑖+1). Similarly if the average volume is less than the 

representative cell size, a fraction of the volume is assigned to the lower cell, (𝑣𝑣𝑖𝑖−1). The manner of 

redistribution will be discussed in detail below. 

3.2.3 Step 3 - expression for redistribution 

Redistribution of the birth rate into cell 𝑚𝑚 will be demonstrated by examining the scenario where �̅�𝑣𝑖𝑖 > 𝑣𝑣𝑖𝑖 

(Figure 3.4), although the process remains the same for �̅�𝑣𝑖𝑖 < 𝑣𝑣𝑖𝑖. In either case the overriding goal is to 

conserve (preserve) the number of particle born in the cell, so as not to gain/lose particles due to the 

approximate nature of the discretisation.  The birth rate of particles distributed to 𝑣𝑣𝑖𝑖  and 𝑣𝑣𝑖𝑖+1 , are 

denoted 𝑎𝑎𝑖𝑖  and 𝑎𝑎𝑖𝑖+1 respectively. Equation 3.12 shows that the sum of 𝑏𝑏𝑖𝑖 and 𝑏𝑏𝑖𝑖+1 is equal to the total 

birth rate of particles, 𝐵𝐵𝑖𝑖, calculated in step 1. 

𝐵𝐵𝑖𝑖 = 𝑏𝑏𝑖𝑖 + 𝑏𝑏𝑖𝑖+1 3.12 

Conservation of particle volume is ensured by equating the total rate of change of volume at �̅�𝑣𝑖𝑖 to the 

rate of change of volume resulting from the reassignment to 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑖𝑖+1 (equation 3.13): 

𝐵𝐵𝑖𝑖�̅�𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖𝑏𝑏𝑖𝑖 + 𝑣𝑣𝑖𝑖+1𝑏𝑏𝑖𝑖+1 3.13 

By combining equations 3.12 and 3.13, we can solve for 𝑎𝑎𝑖𝑖  and 𝑎𝑎𝑖𝑖+1. The ratios of volume in 𝑎𝑎𝑖𝑖  and 𝑎𝑎𝑖𝑖+1 

are expressed visually in Figure 3.4 

𝑏𝑏(�̅�𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖) = 𝐵𝐵𝑖𝑖
�̅�𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1

 3.14 

𝑏𝑏𝑖𝑖+1(�̅�𝑣𝑖𝑖, 𝑣𝑣𝑖𝑖+1) = 𝐵𝐵𝑖𝑖
�̅�𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖
𝑣𝑣𝑖𝑖+1 − 𝑣𝑣𝑖𝑖

 3.15 

Figure 3.4 - Reassignment of particles into adjacent cells. Adapted from (J. Kumar et al., 2008). 
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In the scenario where �̅�𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖, no births are assigned to 𝑣𝑣𝑖𝑖+1, while in the scenario where �̅�𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖+1/2, 

50% (assuming uniform spacing of representative volumes) of births are assigned to 𝑣𝑣𝑖𝑖+1. To generalise, 

for the average volume being either higher or lower than the representative volume, the lambda function 

is defined: 

𝜆𝜆𝑖𝑖
±(𝑣𝑣) =

𝑣𝑣 − 𝑣𝑣𝑖𝑖±1
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖±1

 3.16 

Where the 𝑚𝑚 in 𝜆𝜆𝑖𝑖
±(𝑣𝑣) denotes the cell to which the particles will be assigned, 𝑣𝑣 is a variable representing 

the average volume under consideration (i.e. �̅�𝑣𝑖𝑖−1, �̅�𝑣𝑖𝑖 or �̅�𝑣𝑖𝑖+1) and ± is the sign used to indicate the upper 

or lower reference cell (all signs in the expression are either + or -).  

Equation 3.14 can be rewritten as: 

𝑏𝑏𝑖𝑖(�̅�𝑣𝑖𝑖, 𝑣𝑣𝑖𝑖) = 𝐵𝐵𝑖𝑖𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖) 3.17 

Where 

𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖) =
�̅�𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1

 3.18 

Similarly, equation 3.15 can be written as: 

𝑎𝑎𝑖𝑖+1(�̅�𝑣𝑖𝑖, 𝑣𝑣𝑖𝑖+1) = 𝐵𝐵𝑖𝑖𝜆𝜆𝑖𝑖+1− (�̅�𝑣𝑖𝑖) 3.19 

Where 

𝜆𝜆𝑖𝑖+1− (�̅�𝑣𝑖𝑖) =
�̅�𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖
𝑣𝑣𝑖𝑖+1 − 𝑣𝑣𝑖𝑖

 3.20 

Equation 3.20 refers to an assignment of a fraction of particles away from cell 𝑚𝑚. In practice this quantity 

is not calculated when examining the rate of change of particles in cell 𝑚𝑚, rather, it is accounted for by the 

birth term of the cell receiving the assignment. The standard expressions for distributions of birth rates 

into cell 𝑚𝑚 are given in step 4. 
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3.2.4 Step 4 - development of ODEs describing change in total particle number 

The cell average birth rate may be contributed to by four potential redistributed rates. Two potential 

contributions come from fractions of the birth rates in the lower (𝑣𝑣𝑖𝑖−1) and upper (𝑣𝑣𝑖𝑖+1) cells. Another 

two potential contributions exist within cell 𝑚𝑚, depending on whether �̅�𝑣𝑖𝑖 is greater or less than 𝑣𝑣𝑖𝑖. The 

specific contributions which occur are determined by the relative position of the average volume of 

particles born into each cell in the previous time step. The associated lambda function for each potential 

redistribution are given by equations 3.21 to 3.24. 

For �̅�𝑣𝑖𝑖−1 > 𝑣𝑣𝑖𝑖−1, a fraction of 𝐵𝐵𝑖𝑖−1is assigned to 𝑣𝑣𝑖𝑖: 

𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖−1) =
�̅�𝑣𝑖𝑖−1 − 𝑣𝑣𝑖𝑖−1
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖−1

 3.21 

For �̅�𝑣𝑖𝑖 < 𝑣𝑣𝑖𝑖 a fraction of 𝐵𝐵𝑖𝑖  is assigned to 𝑣𝑣𝑖𝑖: 

𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖) =
�̅�𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖−1
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖−1

 3.22 

For �̅�𝑣𝑖𝑖 > 𝑣𝑣𝑖𝑖 a fraction of 𝐵𝐵𝑖𝑖  is assigned to 𝑣𝑣𝑖𝑖: 

𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖) =
�̅�𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1

 3.23 

For �̅�𝑣𝑖𝑖+1 < 𝑣𝑣𝑖𝑖+1, a fraction of 𝐵𝐵𝑖𝑖+1is assigned to 𝑣𝑣𝑖𝑖: 

𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖+1) =
�̅�𝑣𝑖𝑖+1 − 𝑣𝑣𝑖𝑖+1
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1

 3.24 

A general description of births into cell 𝑚𝑚 is given by equation 3.25. 

𝐵𝐵𝑖𝑖𝐶𝐶𝑀𝑀 = 𝐵𝐵𝑖𝑖−1𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖−1)𝐻𝐻(�̅�𝑣𝑖𝑖−1 − 𝑣𝑣𝑖𝑖−1) 

        +  𝐵𝐵𝑖𝑖𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖)𝐻𝐻(𝑣𝑣𝑖𝑖 − �̅�𝑣𝑖𝑖) 

        +  𝐵𝐵𝑖𝑖𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖)𝐻𝐻(�̅�𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖) 

        +  𝐵𝐵𝑖𝑖+1𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖+1)𝐻𝐻(𝑣𝑣𝑖𝑖+1 − �̅�𝑣𝑖𝑖+1) 

3.25 

Where the Heaviside step function, 𝐻𝐻(𝑥𝑥) , (i.e. the unit step function) is defined by: 
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𝐻𝐻(𝑥𝑥) = �

1, 𝑥𝑥 > 0
1
2

, 𝑥𝑥 = 0
0 𝑥𝑥 < 0

 

3.26 

This expression is used to isolate the correct contributions to the total birth rate at 𝑣𝑣𝑖𝑖. For example, in the 

scenario where �̅�𝑣𝑖𝑖 > 𝑣𝑣𝑖𝑖, the second term in equation 3.25 becomes zero as the lambda function in this 

term (given by equation 3.22) represents the alternate scenario where �̅�𝑣𝑖𝑖 < 𝑣𝑣𝑖𝑖.  

At this point, a method has been developed for reassigning fractions of the total particle number born 

into a cell to the representative volumes of that cell and a neighbouring cell. The reassignment is based 

on the average volume relative to the representative volumes and conserves particle number and volume. 

In the following sections, the model implementation is presented and numerical models for different 

combinations of crystallisation mechanisms are compared to analytic solutions to assess their relative 

resolution. Formulations of these numerical models are presented in Appendix B, analytic solutions are 

presented in Appendix C and sample code for these models, coded in the software package gPROMS, is 

presented in Appendix E.  

 DPB implementation 

The following section describes formulations of the total particle birth and death rates 

[𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡𝑚𝑚𝐵𝐵𝑚𝑚𝑒𝑒𝑠𝑠. 𝐿𝐿−1. min−1] and volume growth rate [𝜇𝜇𝜇𝜇3.𝐿𝐿−1. min−1]  in each cell, resulting from each 

crystallisation mechanism. The birth rates are used to calculate the volume rates, which are then used in 

birth rate reassignment calculations (sections 3.2.3 and 3.2.4). The resulting birth rates, modified by the 

cell average technique, are then combined with the death rates to create the overall DPB which conserves 

particle number and volume. 

3.3.1 Nucleation 

Nucleation was assumed to occur at a fixed rate of 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛  [𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡𝑚𝑚𝐵𝐵𝑚𝑚𝑒𝑒𝑠𝑠. 𝐿𝐿−1𝜇𝜇𝑚𝑚𝑛𝑛−1]  in the first cell 

representative size, 𝑣𝑣1[𝐵𝐵𝜇𝜇3.𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡𝑚𝑚𝐵𝐵𝑚𝑚𝑒𝑒𝑠𝑠−1] . The volume rate, 𝑉𝑉𝑛𝑛𝑠𝑠𝑛𝑛,1[𝐵𝐵𝜇𝜇3.𝐿𝐿−1𝜇𝜇𝑚𝑚𝑛𝑛−1] , was then 

calculated using equation 3.27 below. No particle deaths result from particle nucleation. 
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𝑉𝑉𝑛𝑛𝑠𝑠𝑛𝑛,1 = 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛𝑣𝑣1 3.27 

 

3.3.2 Growth 

Growth is represented by the birth of particles in a cell (𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖  [𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡𝑚𝑚𝐵𝐵𝑚𝑚𝑒𝑒𝑠𝑠. 𝐿𝐿−1. min−1]) slightly larger 

than the representative size of the cell (equation 3.28), balanced by an equal death rate of particles from 

the representative size of the cell (equation 3.29). This ensures that a positive crystal volume rate exists 

(𝑉𝑉𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 [𝐵𝐵𝜇𝜇3.𝐿𝐿−1𝜇𝜇𝑚𝑚𝑛𝑛−1] in equation 3.30), adding crystal volume to each cell, while the number of 

particles goes unchanged. The volume, 𝑣𝑣0,𝑎𝑎 [𝐵𝐵𝜇𝜇3], in equations 3.28 and  3.29 represents the small mass 

increment used to approximate growth – in this work it was arbitrarily set to 10% of the first cell volume 

and found to have no significant difference on results when compared to an analytic solution. 

𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 =
𝐺𝐺𝑠𝑠𝐼𝐼𝑖𝑖
𝑣𝑣0,𝑎𝑎

  3.28 

 

𝐼𝐼𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ =
𝐺𝐺𝑠𝑠𝐼𝐼𝑖𝑖
𝑣𝑣0,𝑎𝑎

 3.29 

 

𝑉𝑉𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 = 𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖�𝑣𝑣𝑖𝑖 + 𝑣𝑣0,𝑎𝑎� 3.30 

 

3.3.3 Aggregation 

Particle births in each cell resulting from aggregation are calculated by adding contributions from all 

possible combinations of smaller particles (equation 3.31). The aggregation rate from each combination 

depends on the number of particles in each cell (𝐼𝐼𝑗𝑗  and 𝐼𝐼𝑘𝑘) and the aggregation kernel (𝛽𝛽𝑗𝑗,𝑘𝑘), which 

describes the likelihood of a successful aggregation event. The Dirac function �1 − 1
2
𝛿𝛿𝑗𝑗,𝑘𝑘� is used to avoid 

double counting of particle interactions; it is equal to ½ when 𝑗𝑗 = 𝑘𝑘 and 1 for all other scenarios. To avoid 
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logic statements within the code, the summation is generalised to occur over all cells (where 𝐼𝐼𝐼𝐼𝑄𝑄 is the 

final cell) and the 𝐼𝐼𝐺𝐺𝐺𝐺_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑋𝑋 term (equation 3.32) describes whether two colliding particles from cells 

𝑗𝑗 and 𝑘𝑘 would result in the birth of a particle in cell 𝑚𝑚. . 

𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 = � 𝐼𝐼𝐺𝐺𝐺𝐺_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑋𝑋𝑖𝑖 × �1 −
1
2
𝛿𝛿𝑗𝑗,𝑘𝑘�𝛽𝛽𝑗𝑗,𝑘𝑘𝐼𝐼𝑗𝑗𝐼𝐼𝑘𝑘

𝑁𝑁𝑁𝑁𝑁𝑁

𝑗𝑗,𝑘𝑘=1

 
3.31 

 

𝐼𝐼𝐺𝐺𝐺𝐺_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑋𝑋 = �0.5 + 0.5𝐻𝐻�𝑣𝑣𝑖𝑖+1/2 − 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎�� �0.5 + 0.5𝐻𝐻�𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑣𝑣𝑖𝑖−1/2�� 3.32 

Where 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑣𝑣𝑗𝑗 + 𝑣𝑣𝑘𝑘 . The death rate resulting from aggregation is given by the sum of all possible 

aggregation events that could occur between the cell and other cells (equation 3.33).  

𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 = 𝐼𝐼𝑖𝑖 � 𝛽𝛽𝑖𝑖,𝑘𝑘𝐼𝐼𝑘𝑘

𝑁𝑁𝑁𝑁𝑁𝑁

𝑘𝑘=1

 
3.33 

The total volume added by aggregation is calculated by introducing the aggregate volume into equation 

3.31, as shown in equation 3.34 below: 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 = �𝐼𝐼𝐺𝐺𝐺𝐺_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑋𝑋𝑖𝑖 × �1 −
1
2
𝛿𝛿𝑗𝑗,𝑘𝑘�𝛽𝛽𝑗𝑗,𝑘𝑘𝐼𝐼𝑗𝑗𝐼𝐼𝑘𝑘

𝑁𝑁𝑁𝑁𝑁𝑁

𝑗𝑗,𝑘𝑘

𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎,𝑗𝑗,𝑘𝑘 
3.34 

3.3.4 Combined processes 

Finally, total birth rate (equation 3.35) and volume (equation 3.36) are used to calculate the average 

volume of particles being born into cell 𝑚𝑚 (equation 3.37).  

𝐵𝐵𝑠𝑠𝑔𝑔𝑠𝑠,𝑖𝑖 = 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,𝑖𝑖 + 𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 + 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖  3.35 

 

𝑉𝑉𝑠𝑠𝑔𝑔𝑠𝑠,𝑖𝑖 = 𝑉𝑉𝑛𝑛𝑠𝑠𝑛𝑛,𝑖𝑖 + 𝑉𝑉𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 + 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖  3.36 
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𝑣𝑣𝚤𝚤� =
𝑉𝑉𝑠𝑠𝑔𝑔𝑠𝑠,𝑖𝑖

𝐵𝐵𝑠𝑠𝑔𝑔𝑠𝑠,𝑖𝑖
 3.37 

Total death rate in cell 𝑚𝑚 is given by equation 3.38 

𝐼𝐼𝑠𝑠𝑔𝑔𝑠𝑠,𝑖𝑖 = 𝐼𝐼𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 + 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 3.38 

The overall DPB is the constructed by substituting each of the abovementioned terms into equation 3.25 

and calculating Heaviside and Lambda functions. 

 Validations 

Validations were conducted by comparing numerical solutions to analytic (exact) solutions for specific 

scenarios where analytic solutions are possible. This was done for nucleation-growth and growth-

aggregation scenarios, covering all mechanisms which are expected to affect struvite PSDs in this work. 

For all validations, the PSD was discretised using the geometric progression defined by equations 3.4 and 

3.5 to allow comparison between the CAT and GMH techniques, where possible. For nucleation and 

crystal growth scenarios, residence time was set to that of the reactor defined in section 4.1.3, while for 

the aggregation and crystal growth scenario, the dimensionless growth time was used (appendix section 

B.3). The nucleation, growth and aggregation rates were arbitrarily assigned values shown below Table 

3.1. In later analyses, these rates were described using power law functions of supersaturation, enabling 

them to reduce as supersaturation decrease. 

Table 3.1 below summarises the error between analytic and numerical solutions for zeroth and first 

moments, showing that all errors were <5%, which is considered acceptable. The CAT was found to be 

more accurate than the GMH method for the nucleation-growth scenario, justifying its use to model this 

condition. However the GMH gave superior simulation times when modelling nucleation growth and 

aggregation simultaneously. Therefore, the CAT method was used to model nucleation and growth while 

the GMH method was used to model aggregation. The growth rate description utilised in the GMH 

solution was not compatible with the analytic solution and was therefore not included.  
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Table 3.1 – Error in numerical solutions for PSD moments  

Scenario 
Cell Average Galbraith Modified Hounslow 

𝝁𝝁𝟎𝟎 error [%] 𝝁𝝁𝟏𝟏 error [%] 𝝁𝝁𝟎𝟎 error [%] 𝝁𝝁𝟏𝟏 error [%] 

Nucleation & Growth* −1.30 × 10−16 6.83 × 10−6 2.59 × 10−14 4.55 

Aggregation & Growth** 5.02 × 10−4 −4.15 N/A N/A 

*𝐺𝐺𝐿𝐿 = 10, 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛 = 1 × 107; ** 𝐺𝐺0 = 10, 𝛽𝛽0 = 1 × 10−6 

Figure 3.5, Figure 3.6 and Figure 3.7 compare final numerical and analytic PSDs for each scenario. Figure 

3.5 and Figure 3.6 show numerical diffusion around the discontinuity for the nucleation and crystal growth 

scenario – this diffusion is greater for the GMH technique. Similarly, Figure 3.7 shows reasonable 

agreement between numerical and analytic solutions at high particle numbers and deviations at low 

particle numbers, on either side of the distribution – this is also attributed to numerical diffusion. These 

results are expected for these DPB solutions (Michael J Hounslow, 1990b; J. Kumar, 2006). 
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Figure 3.5 – Comparison of numerical and analytic results using the cell average technique 

formulation for nucleation and crystal growth 

 

 

Figure 3.6 – Comparison of numerical and analytic results using the Galbraith Modified Hounslow 

formulation for nucleation and crystal growth 
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Figure 3.7 – Comparison of numerical and analytic results using the CAT formulation for 

aggregation and crystal growth 

 Summary 

• Population balances are necessary to model concurrent crystallisation mechanisms 

• Geometric discretisation is necessary for the efficient solution of population balance equations 

• Weighting factors (GMH technique) or particle mass reassignment (CAT technique) are necessary 

for mass conservation in geometrically discretised population balances 

• The CAT technique is slightly more accurate than the GMH technique and both conserve particle 

mass to within 5% of the analytic solution 

 Conclusion 

Formulations of the Cell Average Technique and Galbraith Modified Hounslow technique were tested 

against analytic solutions where possible. For the nucleation and growth scenario, both techniques were 

accurate to within 5%, although the CAT was more accurate than GMH. While an analytic solution was 

not possible for the nucleation, growth and aggregation scenario, the GMH delivered significantly better 
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simulation times. Based on these results, modelling and parameter optimisation for nucleation and 

growth was conducted using the CAT, and that for aggregation was conducted using GMH method. 

Further detail on parameter optimisation procedures is given in chapter 7. 

 

 

 



113 
 

 Poiseuille flow crystalliser model 

development 

 

This chapter describes the Poiseuille flow crystalliser (PFC) experimental apparatus used 

in this work, followed by the development of an advection-diffusion-reaction model used 

to represent it. Following that, numerical solution methods and steps taken to improve 

model robustness and speed are presented, including a grid convergence study and 

scaling. Combining this model with previously described thermodynamic and kinetic 

models (Chapters 3 and 4) results in a full process model, which will be used for sensitivity 

analysis in the next chapter.  

 Experimental apparatus 

Figure 4.1 shows the Poiseuille flow reactor (PFR) used in this work and details the analysis performed. 

Details of reactor design are presented, including assessment and quantification of associated trade-offs.  
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Figure 4.1 – Poiseuille flow crystalliser with rapid mixing via  Roughton (R) and submerged 

impinging jet (IJ) mixers. All dimensions in mm. 

4.1.1 Orientation 

The reactor was operated vertically with downwards flow after various design iterations. Preliminary 

experiments showed that: 

• Particles can be visually observed to settle in a horizontal pipe below fully developed turbulence 

(Re>4000) 
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• Vertical upward laminar flow creates a fluidised bed as fluid velocity near the reactor wall is less 

than settling velocity of larger particles. These particles then form weakly bound aggregates 

which contributed to blockages. 

• Vertical downwards flow narrows the PSD, since larger particles tend to exit the reactor faster 

due to settling. Settling increases with particle size, exceeding the centreline fluid velocity for 

particles >100µm as shown by Figure 4.2 below. 

 

Figure 4.2 – Particle settling velocity profile  

4.1.2 Length 

Reactor length (1.58m) was limited to the ceiling-to-bench distance, while the diameter was selected to 

enable a range of residence times to be achieved (11.5 – 23min).  

4.1.3 Residence time 

The minimum residence time (on the flow centreline) was selected to be the time taken for 90% de-

supersaturation to occur. This time was estimated by measuring pH response in batch experiments using 
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a variety of synthetic feeds (Synthetic urine - 0.02M P Mg:N:P = 1.5:7:1 (Maurer, Pronk, & Larsen, 2006; 

Udert, Larsen, Biebow, & Gujer, 2003); Synthetic equimolar 0.02M P; Synthetic digester centrate - 

0.0028M P Mg:N:P = 1.5:11:1 (Cleveland Bay Purification Plant, Townsville)). The average residence time 

used was 23.12min.  

4.1.4 Diameter 

Reactor diameter 𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑛𝑛𝑠𝑠𝑔𝑔𝑠𝑠 [𝜇𝜇] was calculated based on selected feed flow rate 𝑄𝑄 [𝜇𝜇3𝜇𝜇𝑚𝑚𝑛𝑛−1] (section 

5.2.1), mean residence time 𝑡𝑡̅ [𝜇𝜇𝑚𝑚𝑛𝑛] and reactor length 𝑍𝑍 [𝜇𝜇] using equation 4.1. 

𝐼𝐼𝑠𝑠𝑠𝑠𝑎𝑎𝑛𝑛𝑠𝑠𝑔𝑔𝑠𝑠 = �4𝑄𝑄𝑡𝑡̅
𝜋𝜋𝑍𝑍

 
4.1 

The mean residence time, residence time distribution (RTD) and variance of the residence time 

distribution of a pipe undergoing Poiseuille flow are given by equations 4.2, 4.3 and 4.4, respectively 

(Levenspiel, 1999). 

𝑡𝑡̅ =
𝑉𝑉
𝑄𝑄

 4.2 

𝐼𝐼(𝑡𝑡) =
𝑡𝑡̅2

2𝑡𝑡3
, 𝑡𝑡 >

𝑡𝑡
2
�

 
4.3 

𝜎𝜎2 = � (𝑡𝑡 − 𝑡𝑡̅)2𝐼𝐼(𝑡𝑡)
∞

0
𝑑𝑑𝑡𝑡 

4.4 

Where 𝑉𝑉 [𝜇𝜇3] is reactor volume, 𝑄𝑄 [𝜇𝜇3 𝜇𝜇𝑚𝑚𝑛𝑛−1] is the total flow rate, 𝐼𝐼(𝑡𝑡)[𝑠𝑠−1] represents the exit age 

distribution of fluid elements in the reactor, 𝑡𝑡 [𝜇𝜇𝑚𝑚𝑛𝑛] is time, 𝑡𝑡̅ [𝜇𝜇𝑚𝑚𝑛𝑛] is the mean hydraulic residence time 

(HRT) and 𝜎𝜎2 [𝜇𝜇𝑚𝑚𝑛𝑛2]  is the standard deviation of the RTD. These equations show that the exit age 

distribution and its variance are independent of reactor dimensions for a reactor undergoing Poiseuille 

flow, at a given residence time. The length to diameter ratio does however affect the fraction of the 

reactor length necessary for full laminar flow development, known as the entry length (𝐿𝐿𝑠𝑠). The entry 

length was calculated to be <11% of the reactor length using equation 4.5 (Munson, Young, & Okiishi, 

2006).  
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𝐿𝐿𝑠𝑠 = 0.12𝑅𝑅𝑒𝑒 ∙ 𝑅𝑅 4.5 

Where 𝑅𝑅𝑒𝑒 is the Reynolds number and 𝑅𝑅 [𝜇𝜇] is the reactor radius. The applicability of this entry length 

estimation is uncertain though since the conical diffuser expansion angle is larger than the 5˚ 

recommended to avoid flow separation in laminar flows (Sparrow, Abraham, & Minkowycz, 2009). The 

fluid rotation from the mixer may have reduced this effect, but without detailed investigations (via CFD 

for example), this cannot be quantified. For a given flow rate, the fraction of the reactor length (and the 

induction time) taken up by the entry length can be reduced by reducing the reactor radius. This, however 

requires an increase in the necessary length, something not possible in this scenario. Therefore, the flow 

development is an operational constraint that had to be accepted in this work.  

Simulation results shown in section 4.8 predicted that 20% of the thermodynamic yield would be achieved 

by the reactor length where full laminar flow has developed. This means that a lower crystal mass and 

surface area would exist in this region and crystal growth would not be significantly affected by the 

transition flow.  

4.1.5 Flow regime 

The flow regime for the reactor was determined to be completely convective (i.e. Poiseuille flow model 

can be used and axial dispersion effects ignored) by locating the flow regime on a flow map where the 

Bodenstein number (Reynolds number × Schmidt number) and reactor geometry are considered 

(Levenspiel, 1999). This result was confirmed by modelling the reactor using an axially and radially 

discretised advection-diffusion-reaction model, which showed no measureable change in reactor outlet 

concentrations or particle size when axial and radial ion diffusion terms were excluded (section 6.3). 

4.1.6 Feed stream mixing 

Two feed mixing arrangements were tested. The impinging jet mixer was used to represent  pilot scale 

fluidised bed reactors where impinging feed streams are used (Britton et al., 2005; Shimamura, Ishikawa, 

Tanaka, & Hirasawa, 2007), and the Roughton mixer was trialled as a more efficient alternative. The R 

mixer was designed to meet three criteria:  
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1. The mixer Reynolds number was greater than 1600 (Liu, Cheng, Prud’homme, & Fox, 2008). This 

is calculated using mixer diameter (40mm as shown on Figure 4.1) and inlet jet velocity. The actual 

mixer Reynolds number was 28,181 

2. The mixing time (0.23s) was less than the mixer HRT (4.86s), which was in turn less than the lowest 

expected induction time (15.16s) (Alison et al., 2003; Alvarez & Myerson, 2010) 

3. The mixer inlet jet diameter (2mm) was not greater than that predicted using scaling methods 

based on constant meso- and micro-mixing (2mm) (Gillian & Kirwan, 2008).  

Mixing time was calculated based on the Kolmogorov mixing timescale (Lindenberg & Mazzotti, 2009; Liu 

et al., 2008).  The impinging jet mixer was given the same dimensions as the Roughton mixer, with an 

altered jet direction as shown in Figure 4.1 (b). 

 Model structure 

Figure 4.3 shows how the solid and liquid phase mass balance equations detailed in this chapter were 

linked to the thermodynamic model (section 2.1) and kinetic model (Chapter 3). All equations describing 

the system are distributed over the length and radius of the reactor. The liquid mass balances are used to 

infer the driving force for crystallisation, which are used in the kinetic models within the discretised 

population balance. The population balance is then used to determine the amount of crystal formed and 

corresponding depletion of reactants in the mass balance. The continuum equations for the solid and 

liquid phases describe the flow of each phase as a result of convection, diffusion and settling. These are 

necessary to differentiate the flow of solids and liquids in the system. 
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Figure 4.3 – Modelling topology highlighting the place of mass balance within the model architecture 

𝐶𝐶𝑖𝑖  
𝐵𝐵0,𝛽𝛽0,𝐺𝐺 

𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 

𝑆𝑆𝐼𝐼  

Solid Phase Mass Balance 

𝑑𝑑𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠
𝑑𝑑𝑡𝑡

= 𝑓𝑓(𝑣𝑣𝑧𝑧 , 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠) 

Thermodynamics 

𝑆𝑆𝐼𝐼 = 𝑓𝑓�𝐾𝐾𝑠𝑠𝑝𝑝,𝐶𝐶𝑖𝑖� 

Kinetics 

𝐵𝐵0,𝛽𝛽0,𝐺𝐺 = 𝑓𝑓(𝑆𝑆𝐼𝐼) 

Liquid Phase Mass Balance 
𝑑𝑑𝐶𝐶𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝑓𝑓(𝑣𝑣𝑧𝑧 ,𝓓𝓓, 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠) 

Population Balance 
𝑖𝑖𝑁𝑁
𝑖𝑖𝑠𝑠

= 𝑓𝑓(𝐵𝐵0,𝛽𝛽0),  𝑖𝑖𝑠𝑠
𝑖𝑖𝑠𝑠

= 𝑓𝑓(𝐺𝐺) 

𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 = 𝑓𝑓(𝐼𝐼, 𝑣𝑣) 

Equations distributed over reactor length and radius in the ranges 0 < 𝑧𝑧 < 𝑍𝑍 and 0 < 𝑟𝑟 < 𝑅𝑅 

Boundary Conditions 

𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒆𝒆,𝑪𝑪𝒔𝒔,𝑵𝑵 at: 

• 𝑧𝑧 = 0,𝑍𝑍 

• 𝑟𝑟 = 0,𝑅𝑅 

• 𝑡𝑡 = 0 for 0 < 𝑧𝑧 < 𝑍𝑍 

and 0 < 𝑟𝑟 < 𝑅𝑅 
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 Model equations 

Reagents are fed into one end of a cylindrical reactor and allowed to react over its length, as shown in 

Figure 4.4.  

 

Figure 4.4 – Poiseuille flow reactor model schematic showing boundary conditions and distribution 

domains 
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Equation 4.6 is the advection-diffusion-reaction (ADR) liquid phase mass balance which describes the 

change in ion concentration 𝐶𝐶𝑖𝑖 [mol/L] along the length (𝑧𝑧) and radius (𝑟𝑟) of the reactor. A derivation of 

this equation can be found in Appendix D.  

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑡𝑡

= −𝑣𝑣𝑧𝑧(𝑟𝑟)
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑧𝑧

+ 𝓓𝓓𝒔𝒔
𝜕𝜕2𝐶𝐶𝑖𝑖
𝜕𝜕𝑧𝑧2

+𝓓𝓓𝒔𝒔
𝜕𝜕2𝐶𝐶𝑖𝑖
𝜕𝜕𝑟𝑟2

− 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 
4.6 

 Similarly, Equation 4.7 is the solid phase mass balance, which excludes diffusion. 

𝜕𝜕𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠
𝜕𝜕𝑡𝑡

= −𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀(𝑟𝑟)
𝜕𝜕𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠

𝜕𝜕𝑧𝑧
+ 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 

4.7 

In the 1st term on the right hand side (advection), 𝑣𝑣𝑧𝑧(𝑟𝑟) [m/min] is the fluid velocity in the axial direction. 

Fluid advection is described by equation 4.8.  

𝑣𝑣𝑧𝑧(𝑟𝑟) = 2𝑣𝑣𝑧𝑧� �1 − �
𝑟𝑟
𝑅𝑅
�
2
� 

4.8 

Where 𝑣𝑣𝑧𝑧(𝑟𝑟) is the axial fluid velocity as a function of the radial coordinate 𝑟𝑟, 𝑣𝑣𝑧𝑧�  is the average fluid axial 

velocity and 𝑅𝑅 is the reactor radius. In equation 4.7, the solid phase advection also incorporates particle 

settling to describe the axially vertically reactor, as described by equations 4.9 to 4.11. 

𝑣𝑣𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑣𝑣𝑧𝑧(𝑟𝑟) + 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎 4.9 

 

𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎 =

2�𝜌𝜌𝑝𝑝 − 𝜌𝜌𝑓𝑓�𝑛𝑛𝑅𝑅2

9𝜇𝜇
𝐿𝐿 < 40𝜇𝜇𝜇𝜇

8�𝜌𝜌𝑝𝑝 − 𝜌𝜌𝑓𝑓�𝑛𝑛𝑅𝑅
3𝜌𝜌𝑓𝑓𝐶𝐶𝐷𝐷

𝐿𝐿 ≥ 40𝜇𝜇𝜇𝜇
 

4.10 

Where 𝐿𝐿 describes particle equivalent diameter and 𝐶𝐶𝐷𝐷 , the laminar drag coefficient, is calculated as 

follows. 

𝐶𝐶𝐷𝐷 = �
24
𝑅𝑅𝑒𝑒𝑝𝑝

� �1 + 0.14𝑅𝑅𝑒𝑒𝑝𝑝0.7� 
4.11 

Where 𝜌𝜌𝑝𝑝  and 𝜌𝜌𝑓𝑓  are the densities of the particle and fluid, 𝑛𝑛 is acceleration due to gravity, 𝑅𝑅  is the 

particle radius, 𝜇𝜇 is the dynamic viscosity of the fluid, 𝐶𝐶𝐷𝐷 is the drag coefficient. Equation 4.10 describes 
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the Stokes settling for particles below and above a particle Reynolds number of 0.1, and equation 4.11 is 

an empirical approximation accurate to within 6% for the range 0.1 < 𝑅𝑅𝑒𝑒𝑝𝑝 < 1000, which corresponds 

to 40 – 860 microns (Perry, Green, & Maloney, 1999). The 2nd term in equation 4.6 (excluded from 4.7), 

describes ion diffusion, where 𝑫𝑫𝒔𝒔 [m2/min] is the diffusivity of species 𝑚𝑚. Finally, the last term in both 4.6 

and 4.7, 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠  [mol/L.min] is the formation rate of struvite, which couples the fluid and solid mass 

balance models to the population balance kinetic model via equation 4.12 below. 

𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 =
𝜌𝜌𝑝𝑝

𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠
�

𝜕𝜕𝐼𝐼𝑖𝑖
𝜕𝜕𝑡𝑡

𝑣𝑣𝑖𝑖
𝑖𝑖

 
4.12 

Where 𝜌𝜌𝑝𝑝  is the particle density and 𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠  is the molar mass of struvite. The formulation in 

equation 4.6 assumes fully developed axisymmetric steady state flow with zero radial velocity, which is 

reasonable in fully developed laminar flow (Munson et al., 2006). To validate this assumption, the 

distance from the pipe entry to full flow development is defined by the convergence of viscous boundary 

layers, which can be approximated by equation 4.13 (Munson et al., 2006). 

𝐿𝐿𝑠𝑠 = 0.12𝑅𝑅𝑒𝑒 ∙ 𝑅𝑅 4.13 

Where 𝐿𝐿𝑠𝑠 is the entry length and 𝑅𝑅𝑒𝑒 is the Reynolds number. In the experiments conducted in this work, 

𝐿𝐿𝑠𝑠  was <10% of the reactor length. While not ideal, this was deemed acceptable considering the 

estimated induction time (no nucleation) took ~10% of reactor length and crystal surface area for growth 

is initially low after nucleation begins.  

 Boundary conditions 

Spatial boundary conditions used to solve equation 4.6 are shown schematically in Figure 4.4 and 

described by equations 4.14 to 4.17 below. These are standard conditions applied to this type of problem 

(Rice & Do, 1995). The no slip and symmetry conditions dictate that the radial concentration change at 

the centreline (𝑟𝑟 = 0) and the reactor wall (𝑟𝑟 = 𝑅𝑅) are zero. The outlet condition dictates that the outlet 

(𝑧𝑧 = 𝑍𝑍 ) axial change in concentration is zero. And finally, the inlet conditions define the reagent 

concentrations immediately after the mixer (i.e. the feed conditions). These can be found in section 5.2.3.  
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𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑟𝑟 𝑠𝑠=0

= 0 
4.14 

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑟𝑟 𝑠𝑠=𝑅𝑅

= 0 
4.15 

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑧𝑧 𝑧𝑧=𝑍𝑍

= 0 
4.16 

𝐶𝐶𝑖𝑖𝑧𝑧=0 = 𝐶𝐶𝑖𝑖,0 4.17 

Initially, the reactor was initially filled with saturated solution (𝐶𝐶𝑁𝑁𝐻𝐻4+ = 0.01𝑀𝑀,𝐶𝐶𝑀𝑀𝑂𝑂43− = 0.01𝑀𝑀,𝐶𝐶𝑀𝑀𝑎𝑎2+ =

0.015𝑀𝑀,𝐶𝐶𝑁𝑁𝑎𝑎𝑂𝑂𝐻𝐻 = 0.005378𝑀𝑀,𝐶𝐶𝐶𝐶𝑠𝑠 = 0.03𝑀𝑀,𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 = 0 ) to avoid particle dissolution, both 

experimentally and numerically. Concentrations at all spatial elements not defined by equations 4.14 to 

4.17 were defined to represent this. 

 Derivative solution 

The advection �−𝑣𝑣𝑧𝑧(𝑟𝑟) 𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑧𝑧
� and reaction (𝜐𝜐𝑖𝑖 ∙ 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠) terms were approximated in the radial and axial 

domains using a first order backwards finite difference method (BFDM). It is recognised that alternative 

and higher order methods can achieve lower truncation errors, but the first order BFDM method was 

most robust, delivering solutions under all conditions without oscillation. 9  The diffusion terms 

�𝓓𝓓𝒔𝒔
𝜕𝜕2𝐶𝐶𝑖𝑖
𝜕𝜕𝑧𝑧2

+ 𝓓𝓓𝒔𝒔
𝜕𝜕2𝐶𝐶𝑖𝑖
𝜕𝜕𝑠𝑠2

� were approximated using a second order centered finite difference scheme (CFDM) 

to account for the multi directional nature of diffusion. Differential equations were solved using a variable 

time step, fully-implicit Runge-Kutta method. Model robustness was improved by providing accurate 

initial guess values from previous simulations, which were found to be key to obtaining fast solution 

convergence, especially for low concentration systems (e.g. real digester centrate). 

Variables within the model range over approximately 30 orders of magnitude. Accuracy for both small 

concentration (< 10−8) and large particle number (> 109) values can be achieved in multiple ways. 

Increasing the number of iterations to ensure all variables are solved to the lowest absolute tolerance is 

possible but is time consuming and some variables are solved to a tolerance far beyond what is necessary. 

                                                           
9 Confirmed by personal communication with software developer 
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In this work variables were scaled so that they were of similar orders of magnitude and a higher (more 

relaxed) solution tolerance was applied. Numerical solutions are easier to achieve for variables with 

similar orders of magnitude as integration is performed over smaller gradients. Compared to tightened 

solution tolerances, particle numbers scaled by a factor of 10−9, such that one simulated particle unit 

represented 109 actual particles, reduced simulation times by 20%. However, it should be realised that 

scaling increases uncertainty when small particle numbers are involved. This is deemed acceptable as 

they contribute less to mass balance. Concentrations within the thermodynamic equilibrium model were 

logarithmically scaled as per equations 4.18 to 4.20.  

𝑍𝑍 ⇌ 𝑋𝑋 + 𝑌𝑌 4.18 

𝐾𝐾𝑠𝑠𝑒𝑒 =
𝐶𝐶𝑋𝑋𝐶𝐶𝑌𝑌
𝐶𝐶𝑍𝑍

 4.19 

log10(𝐾𝐾𝑠𝑠𝑒𝑒) = log10(𝐶𝐶𝑋𝑋) + log10(𝐶𝐶𝑌𝑌) − log10(𝐶𝐶𝑍𝑍) 4.20 

Where 𝐾𝐾𝑠𝑠𝑒𝑒  is an equilibrium constant for the reaction equation 4.18. Model tolerances (relative and 

absolute) were determined in an iterative process. First, the minimum acceptable tolerance of each 

variable was defined to be one order of magnitude lower than the respective measurement tolerances. 

Secondly, the absolute and relative tolerances were decreased until solution time was significantly 

affected. This resulted in absolute and relative tolerances being set to 10−9.  

Initialisation of the numerical model with no particles present causes solution difficulties and creates 

problems with PSD statistical descriptions (i.e. percentiles and moments). As such, the model was 

initialised with a small number of particles (<103) in the the first cell/smallest predicted size – 0.01 

microns. Starting with some particles present in a very low size range is also physically more realistic as it 

is likely impossible that reagents will be completely free of particles (Mullin, 2001).  

 Grid convergence study 

This section details the methods used to determine the minimum number of spatial elements (axial and 

radial) required to ensure accuracy of the numerical solution to equation 4.6. Traditionally, grid 
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independence is defined by the number of discrete elements required for the solution to stop changing 

within machine (computer) tolerance. Here, grid convergence was deemed to be achieved when the 

difference between the numerical and exact10 solution, for a variable, was less than 10% of that variable’s 

outlet measurement uncertainty. The population balance model was decoupled from ADR model to 

decrease simulation time. All grid convergence studies were performed under steady state operation, 

determined to occur after 60 min.11 Phosphorus concentration and flow rate were used to indicate grid 

convergence as their measurement uncertainties were known. Phosphorus concentration was also 

identified as the slowest concentration variable to stabilise after changes to reactor feed, thereby 

indicating that all other species concentrations would be stabilised. These “indicator” variables were 

examined at all axial and radial grid elements. An arbitrary grid coarseness (65 elements in both 

dimensions), assumed to be greater than that required for grid independence, was used to determine 

steady state. This assumption was later validated. The grid convergence study found that a solution could 

be achieved within this tolerance using 41 radial and 18 axial grid elements. 

4.6.1 Methods 

The number of grid elements has a significant impact on the computation time, so it is imperative that 

only sufficient granularity is selected to achieve a reasonable solution. Grid convergence methods are 

detailed in Appendix F. The solution is achieved when the absolute error in a predicted variable 𝐼𝐼𝑓𝑓 was 

less than the absolute measurement tolerance for that variable 𝜖𝜖𝑓𝑓 . Here 𝜖𝜖𝑓𝑓  was defined as 10% of 

measurement tolerance – error in phosphorus concentration, 𝜖𝜖𝐶𝐶𝑃𝑃 = 8.88 × 10−6 [𝑚𝑚𝑔𝑔𝑠𝑠
𝐿𝐿

] and error in feed 

flow rate, 𝜖𝜖𝑁𝑁𝑓𝑓𝑒𝑒𝑒𝑒𝑑𝑑 = 5 × 10−4 𝐿𝐿/ℎ. A dimensionless error term was used to describe this phenomenon 

(equation 4.21), where for a given grid coarseness, if 𝐼𝐼𝑓𝑓� < 1 , the variable 𝑓𝑓  can be considered grid 

independent.  

                                                           
10 Exact solution was approximated using 512 grid elements in both domains. 
11 Negligible change was observed between 60min and 300min of operation. 
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𝐼𝐼𝑓𝑓� =
𝐼𝐼𝑓𝑓
𝜖𝜖𝑓𝑓

 
4.21 

Phosphorus concentration uncertainty was estimated by combining variances of 54 measurements (using 

molybdo-vanadate UV-Vis method) and flow uncertainty was assumed based on pump flow rate 

resolution i.e. the pumps used in experiments were accurate to 0.01 L/h. 

4.6.2 Kinetic model decoupling 

The population balance was decoupled from the ADR model to reduce computation time.12 Instead the 

rate term (𝜐𝜐𝑖𝑖 ∙ 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠) was described using a 6th order polynomial as a function of total phosphorus 

concentration. The polynomial (𝑅𝑅2 = 0.9997) was fit to rate data at inner, middle and outer reactor radii 

to ensure accurate representation in all regions. Concentration and rate data are shown in Figure 4.5 (a) 

and (b), respectively. They were obtained using 41 radial grid elements, 65 axial grid elements and an 

operating time of 300 min, assuming kinetics from Galbraith (Galbraith, Schneider, & Flood, 2014).  

 

Figure 4.5 – (a) Phosphorus concentration and (b) struvite formation rate variation with reactor 

length 

4.6.3 Grid independence measure 

Grid independence was determined for all radial and axial grid elements. This is important because 

phosphorus concentration may be within measurement uncertainty at the reactor outlet, but exhibit 

                                                           
12 The cell average population balance model inherently conserves particle mass and number so is not considered 
for grid independence here 
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significant error upstream at varying radial positions. This effect is visualised in Figure 4.6, where on the 

centreline (r=0), phosphate concentrations given by coarser grids (Nz=3-5) are above the upper error 

limit, while for the outer perimeter (r=0.025 m), they are below. This is because at the outer perimeter, 

phosphate concentration has reached equilibrium before the outlet.  
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Figure 4.6 – Phosphorus concentration profile along the reactor length, simulated using varying axial 

elements (Nz), at the centreline (r=0), half reactor cross sectional area (r=0.0177) and outer perimeter 

(r=0.025). Measurement upper error limit is given by adding the phosphate measurement tolerance to 

the assumed exact solution (Nz=513). 
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This effect can also be observed by comparing results of the grid convergence method applied over the 

reactor length and radius to those where it is applied only on the outlet mixed concentration. The outlet 

mixed phosphorus concentration was calculated by integrating phosphorus concentration (𝐶𝐶𝑀𝑀𝑂𝑂4) and fluid 

velocity (𝑣𝑣𝑧𝑧) over all radial elements in Figure 4.4, as shown by equation 4.22. 

𝐶𝐶𝑖𝑖 =
𝜇𝜇𝑚𝑚𝑚𝑚𝑒𝑒𝑠𝑠𝑖𝑖,𝑇𝑇
𝑄𝑄𝑇𝑇

=
∫ 𝐶𝐶(𝑟𝑟)𝑣𝑣𝑧𝑧(𝑟𝑟)2𝜋𝜋𝑟𝑟𝑅𝑅
0 𝑑𝑑𝑟𝑟

∫ 𝑣𝑣𝑧𝑧(𝑟𝑟)2𝜋𝜋𝑟𝑟𝑅𝑅
0 𝑑𝑑𝑟𝑟

 
4.22 

Figure 4.7 shows that the number of axial grid elements necessary for grid convergence at all elements is 

significantly larger (18 elements) than that necessary for convergence using the mixed outlet 

concentration only (7). 

 

Figure 4.7 - Dimensionless phosphorus concentration error as a function of axial elements, 

calculated at the reactor outlet and maximum of any point in the reactor at 𝑟𝑟 = 0.0213 
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4.6.4 Results 

Figure 4.8 summarises the grid convergence study results. Radial grid coarseness was analysed before 

axial grid coarseness because mass conservation independent of the axial coordinate. This allowed for 

the use of a coarse axial grid during the radial analysis. Grid convergence order (discussed in Appendix F) 

indicated that radial grid coarseness was limited by flow rate resolution – this is also shown in Figure 4.8 

where the radial phosphorus concentration line crosses the error boundary of 1 before the radial flow 

line. Radial grid independence was achieved using 41 elements, equivalent to a step size of ℎ𝑠𝑠~0.61 𝜇𝜇𝜇𝜇. 

Using the identified radial grid coarseness, axial grid convergence was determined to occur in 18 

elements.13  

 

Figure 4.8 – Grid convergence using normalised flow rate error for radial and axial elements 

                                                           
13  Axial grid convergence only considered phosphorus concentration since flow rate is independent of axial 
coarseness. 
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 Mass conservation check 

The grid convergence was checked by ensuring that overall phosphorus removal was achieved to within 

an acceptable tolerance, using the full population balance model. This was done by calculating the 

amount of MAP formed as a percentage of the change in phosphorus concentration over the reactor, 

then comparing this to the acceptable uncertainty. Phosphorus measurement uncertainty corresponded 

to a conservation of the solid phase of within 0.48%. Figure 4.9 shows that the percentage error between 

the solid and liquid mass balance was within this range at a lower number of axial grid elements than was 

identified by the grid convergence. Therefore the overall conservation of mass was achieved to within an 

acceptable limit using 41 radial and 18 axial grid elements. The asymptotic nature of the mass 

conservation error suggests that other numerical factors make contributions, although these are not 

considered of importance since uncertainty is already within and acceptable tolerance.  

 

Figure 4.9 – Struvite mass balance closure described by the ratio of struvite to phosphorus 

removed at the reactor outlet.  
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 Reactor simulations 

Once tuned for accuracy, the reactor model was used to examine (1) how much crystallisation is likely to 

have occurred in the entry length region and (2) the difference between using a more common 2nd order 

particle growth model and the 5th order model found by Galbraith. Simulations used for these 

investigations used initial and boundary conditions given in section 4.4 and feed conditions and simulation 

parameters given in Table 4.1 and Table 4.2 below. 

Table 4.1 – Reactor simulation feed conditions 

Variable Nutrient feed NaOH feed 

Flow rate [L/h] 4 4 

NH4H2PO4 conc. [mM] 20 - 

MgCl2·6H2O conc. [mM] 30 - 

NaOH conc. [mM] - 17.61 

 

Table 4.2 – Reactor simulation parameters 

Parameter Value 

Growth rate constant (𝒌𝒌𝑴𝑴) [µm/min] 12.49 

Nucleation rate constant (𝒌𝒌𝒏𝒏𝒔𝒔𝒏𝒏) [1/L.min] 8.5 × 107 

Aggregation rate constant (𝒌𝒌𝒂𝒂𝑴𝑴𝑴𝑴) [L/min] 3.72 × 10−7 

Growth rate order (𝒏𝒏𝑴𝑴) 5.06 

Growth rate order (𝒏𝒏𝑴𝑴) 2 

Nucleation rate order (𝒏𝒏𝒏𝒏𝒔𝒔𝒏𝒏) 1.68 

Aggregation rate order (𝒏𝒏𝒂𝒂𝑴𝑴𝑴𝑴) 5.26 

Induction time [min] 0.908 
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4.8.1 Entry length investigation 

As noted earlier, developing flow at the entry to the reactor would not exhibit the well defined Poiseuille 

flow described by the model. Because of this, it is of interest to know how far the reaction has progressed 

in this region. Reaction progress is described by SI and the fraction of recoverable phosphorus which has 

been recovered (thermodynamic yield), given by equation 4.23 below. 

𝑌𝑌𝑚𝑚𝑒𝑒𝑚𝑚𝑑𝑑𝑠𝑠ℎ𝑠𝑠𝑠𝑠𝑚𝑚𝑔𝑔 =
�𝐶𝐶𝑀𝑀𝑂𝑂43− − 𝐶𝐶𝑀𝑀𝑂𝑂43−,𝑠𝑠𝑒𝑒�

𝐶𝐶𝑀𝑀𝑂𝑂43−,𝑠𝑠𝑒𝑒
 

4.23 

Where 𝐶𝐶𝑀𝑀𝑂𝑂43−  is the orthophosphate concentration and 𝐶𝐶𝑀𝑀𝑂𝑂43−,𝑠𝑠𝑒𝑒 is the orthophosphate concentration at 

equilibrium. Simulations of SI and thermodynamic yield are shown in Figure 4.10 and Figure 4.11 below. 

Equation 4.13 was used to estimate the entry length to be 0.17m. At this length, Figure 4.10 and Figure 

4.11 show that a 20% drop in SI has occurred, resulting in 20% of thermodynamic yield (at the 

approximate equilibrium time of 60 min). This indicates that a significant portion of the crystal growth 

occurs within developed flow. The entry length equates to two axial grid elements. Figure 1.6 shows that 

if the axial grid resolution were halved so that the entry length occurs within the first grid element, error 

in phosphate concentration along the reactor length would have remained below the arbitrary limit (10% 

of measurement tolerance) for most radial elements, only exceeding the limit near the reactor wall. On 

this basis, the error in the simulation resulting from a poor description of the flow development is not 

considered to be of significance. However, this analysis does not quantify the effects of the diffuser or the 

circular motion caused by the mixer. Future work should quantify these effects using CFD.  

 



134 
 

 

Figure 4.10 – Average thermodynamic yield along the reactor length at various operating times. 

Average thermodynamic yield was calculated using the thermodynamic model and reagent 

concentrations integrated over the reactor radius. 

 

Figure 4.11 – Average SI along the reactor length at various operating times. Average SI was 

calculated using the thermodynamic model and reagent concentrations integrated over the 

reactor radius. 
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4.8.2 Growth rate order impact 

As noted in Chapter 2, all struvite crystal growth power law models exhibited an order between 1.68 and 

2 – this is a common finding for surface integration controlled crystallisation. However, the only model 

which used a DPB found a growth rate order of 5.06 (Galbraith, Schneider, & Flood, 2014). These models 

were shown to give similar rates above SI = 0.3 but deviate below. In the event that the parameter 

estimation problem in this work becomes over-parameterised, the growth rate order can be fixed to an 

already measured value to allow better estimation of the growth rate constant. Since the output SI in this 

reactor is unknown, it is important to examine the impact of growth rate order on the reactor SI profile 

and resulting crystallisation mechanism rates. Simulations visualised below show profiles of the SI, growth 

rate, nucleation rate and aggregation rate using a growth rate order of n=2 and n=5.06.  

 
Figure 4.12 – SI profile at steady state simulated by the nucleation and crystal growth model with 

growth rate order 𝑛𝑛𝑎𝑎 = 5.06 [𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1] 
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Figure 4.13 - SI profile at steady state simulated by the nucleation and crystal growth model with 

growth rate order 𝑛𝑛𝑎𝑎 = 2 [𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1] 

 
Figure 4.14 – Nucleation rate (𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛 [𝐿𝐿−1𝜇𝜇𝑚𝑚𝑛𝑛−1] ) profile at steady state simulated by the 

nucleation and crystal growth model with growth rate order 𝑛𝑛𝑎𝑎 = 5.06 [𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1] 
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Figure 4.15 - Nucleation rate (𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛  [𝐿𝐿−1𝜇𝜇𝑚𝑚𝑛𝑛−1] ) profile at steady state simulated by the 

nucleation and crystal growth model with growth rate order 𝑛𝑛𝑎𝑎 = 2 [𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1] 

 
Figure 4.16 – Growth rate (𝐺𝐺𝐿𝐿  [𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1]) profile at steady state simulated by the nucleation 

and crystal growth model with growth rate order 𝑛𝑛𝑎𝑎 = 5.06 [𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1] 
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Figure 4.17 - Growth rate (𝐺𝐺𝐿𝐿  [𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1]) profile at steady state simulated by the nucleation 

and crystal growth model with growth rate order 𝑛𝑛𝑎𝑎 = 2 [𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1] 

 

Figure 4.18 – Aggregation rate [𝐿𝐿−1𝜇𝜇𝑚𝑚𝑛𝑛−1] profile at steady state simulated by nucleation crystal 

growth and aggregation model with growth rate order 𝑛𝑛𝑎𝑎 = 5.06 [𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1] 
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Figure 4.19 – Aggregation rate [𝐿𝐿−1𝜇𝜇𝑚𝑚𝑛𝑛−1] profile at steady state simulated by nucleation crystal 

growth and aggregation model with growth rate order 𝑛𝑛𝑎𝑎 = 2 [𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1] 

It can be seen that for 𝑛𝑛𝑎𝑎 = 5.06, the growth rate is lower initially and plateaus towards the end of the 

reactor, showing the ‘growth rate dead zone’ discussed by Galbraith. This results in a sustained SI and 

subsequent nucleation and aggregation rate throughout the reactor, meaning that the choice of growth 

order has a significant impact. If growth order needs to be fixed, the selection of order can be determined 

by the supersaturation observed at the outlet. If the supersaturation reaches zero, then no dead zone 

exists and a lower growth order can be used. If supersaturation plateaus, then a dead zone is likely and a 

higher order growth model can be used. 

 Summary 

• A reactor model incorporating fluid and particle advection, axial and radial solute diffusion, 

struvite crystallisation via a discretised population balance, particle settling, non-ideal solution 

thermodynamics and a mass balance was developed to represent changes in solid and liquid 

phase concentrations in a Poiseuille flow reactor.  
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• Numerical solution methods, scaling techniques and initialisation techniques were examined 

before conducting a grid convergence study.  

• A Grid convergence study was used to determine an adequate axial and radial grid size to ensure 

the uncertainty introduced by using a numerical solution was <10% of key measurement 

uncertainties.  

• Conservation of mass was confirmed to within an acceptable range, providing confidence that 

the model could be used for sensitivity analysis and parameter optimisation purposes.  

 Conclusions 

The model developed in this chapter describes crystal nucleation, growth and aggregation in Poiseuille 

flow. The complexity of this model makes it broadly useful for describing any particulate system in 

Poiseuille flow. This means that it can be adapted to investigate kinetics of other crystal systems or, if 

kinetics are known, it can be applied to Poiseuille seed reactor simulation and design. The model is used 

in subsequent chapters for struvite nucleation, growth and kinetic parameter optimisation based on 

experimental results. Simulations conducted here show that varying growth rate order based on previous 

work significantly affects SI profile throughout the reactor and is therefore important to consider when 

conducting parameter estimation. Chapter 6 provides a detailed comparison of the sensitivity of the 

reactor outputs to each kinetic parameter. The entry region remains a key limitation of the models ability 

to describe the experimental apparatus however simulations show that the impact on simulation 

accuracy is not very large. While steps could be taken to increase model complexity, removing the 

constriction between the mixer and Poiseuille section may prove to be an easier solution.  



141 
 

 Poiseuille flow reactor design and 

testing 

 

This chapter details the  operation of the Poiseuille flow experimental reactor (detailed in 

Chapter 4) for the continuous production of controlled seeds at varying levels of feed 

supersaturation.14 The reactor flow behaviour was examined to confirm the creation of a 

high supersaturation region, resulting in primary nucleation. The crystal product was 

analysed for phase composition and particle size distribution (PSD). Sonication was 

utilised to distinguish nucleation and growth mechanisms from aggregation. In 

experiments, non-equilibrium feed saturation index (SI) was varied from 0.8 to 1.4. A 

Roughton (R) style vortex mixer was compared to the more common impinging jet (IJ) 

mixer to assess differences in mixing performance and PSD. Results showed that all 

particles produced in this work were within the range of those produced in previous 

struvite seeding studies. Increasing feed SI increased PSD properties (distribution width 

and median diameter) measured in line, but after sonication the difference was not 

significant, indicating the presence of weakly-bound aggregates. The R mixer achieved a 

narrower PSD at SI = 0.8 and improved phosphorus recovery at all supersaturation levels. 

Scatter in PSD data at higher SI values indicated incomplete mixing in both mixers, calling 

into doubt the applicability of the induction time and mixing models utilised in this study. 

                                                           
14  Note: The contents of this chapter resulted in the following publications: M. Burns, L. Natividad Marin, P. 
Schneider, Investigations of a continuous Poiseuille flow struvite seed crystalliser - Mixer performance and 
aggregate disruption by sonication, Chem. Eng. J., 295 (2016) 552-562. doi:10.1016/j.cej.2016.03.061. 
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Discrepancies between particle mass measurements and predictions at the reactor outlet, 

suggest that between 5% and 13% of particle mass was likely retained within the reactor. 

 Introduction 

The work outlined in this chapter served two goals. The first was to investigate Poiseuille flow reactor 

performance for generating struvite seed particles suitable for subsequent size enlargement. Reactor 

performance was investigated with respect to fluid mixing and inlet supersaturation, which were varied 

while product PSD and recovery were examined. Fluid mixing was varied by using both a Roughton and 

an impinging jet mixer and inlet supersaturation was varied using caustic feed concentration. The second 

goal was to generate data in a well-defined flow regime which can be used for optimisation of nucleation 

growth and aggregation kinetic parameters. This is important since the only DPB work on all three 

mechanisms of struvite did not investigate primary nucleation and has not been conducted in well 

characterised fluid dynamics. Reliable primary nucleation data requires generation of a region of high 

supersaturation since induction times become increasingly uncertain with lower supersaturation. 

Therefore, tracer studies were used to show that high supersaturation was achieved early in the reactor, 

indicating the onset of primary nucleation. Finally, this work attempted to address the issue of parameter 

correlation when simultaneously determining nucleation, growth and aggregation kinetic parameters. 

This was done by employing a novel data collection method to separate nucleation and growth 

mechanisms from aggregation. 

 Reactor operation 

5.2.1 Inlet supersaturation 

Supersaturation, the driving force for crystallisation, was quantified by SI. Maximum SI achieved at the 

reactor inlet was predicted by modelling non-ideal thermodynamics as described in section 2.1. 

𝑆𝑆𝐼𝐼 = log10 �
𝐼𝐼𝐼𝐼𝐶𝐶
𝐾𝐾𝑠𝑠𝑝𝑝

� 
5.1 
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Where IAP is the ion activity product and Ksp is the equilibrium solubility product for struvite (13.26) (K. 

N. Ohlinger et al., 1998). Code used to solve the thermodynamic model is provided in Appendix E.  

5.2.2 Flow rate 

Two Grundfos DME12 diaphragm pumps were used to supply 4.00±0.005 L/h of both nutrient and 𝐼𝐼𝑎𝑎𝐶𝐶𝐻𝐻 

solutions. This flow rate was selected to ensure particle flow through the Mastersizer3000 flow cell by 

taking the following steps:  

1. Struvite crystals were suspended in saturated solution in the Mastersizer3000 sampling 

container, by mixing at 1200rpm, to ensure even sampling  

2. The suspension was then recirculated through the flow cell at flows ranging 4 – 12 L/h while PSD 

was repeatedly measured  

For recirculation flows >7 L/h, PSD remained unchanged. Settling in dead zones at lower flow rates was 

checked by operating at a given flow rate for 5 residence times then increasing flow to maximum to 

observe flush through of any build-up. No flush through was observed for flows >8 L/h. As such minimum 

reactor flow rate was set to 8L/h. Nutrient and caustic were fed at an equal volumetric flow rate to achieve 

consistent and reliable mixing in the IJ mixer.  

5.2.3 Feed concentrations 

All experiments were conducted using 20-L batches of nutrient solution with an elemental phosphorus 

concentration of 0.02 M and elemental Mg:N:P molar ratios of 1.5:1:1. Feed concentration selection is 

discussed in detail in sections 5.2.3.1 to 5.2.3.4 below. Stock nutrient solutions were made using 

𝐼𝐼𝐻𝐻4𝐻𝐻2𝐶𝐶𝐶𝐶4 and 𝑀𝑀𝑛𝑛𝐶𝐶𝑚𝑚2·6𝐻𝐻2𝐶𝐶 and SI values of 0.8, 1.0 and 1.4 were achieved by the addition of 16.5, 17.6 

and 19.3 mM caustic (𝐼𝐼𝑎𝑎𝐶𝐶𝐻𝐻) solution, achieving predicted non-equilibrium pH values of 7.172, 7.351 and 

7.727 respectively. Solutions were made with Sigma-Aldrich analytical grade reagents and RO filtered 

water, subsequently filtered through 0.2-µm cellulose nitrate membrane filter. All solutions were stored 

in sealed vessels to minimise CO2 intrusion, which can impact solution thermodynamics through 

carbonate chemistry. 
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5.2.3.1 Phosphorus concentration 

Phosphorus concentration was selected to ensure that uncertainties in reagent composition contributed 

< 1% uncertainty in saturation index (𝑆𝑆𝐼𝐼). Uncertainty propagation was evaluated with a thermodynamic 

model (Ali & Schneider, 2008a) in EES software package. 15  When all other uncertainties in the 

thermodynamic model are accounted for (most of which are attributed to solubility and stability 

constants), the resulting uncertainty in saturation index is 6%. Although this is significant, all uncertainties 

other than solution concentration are expected to be constant between experiments. Using a phosphorus 

concentration higher than typical wastewater enabled a sufficient crystal mass to be collected in a shorter 

period. 

5.2.3.2 Ammonia Concentration 

Using a 1:1 N:P ratio produces a greater pH change during crystallisation than that observed in urine and 

digester wastewaters where N:P can vary from 4 to 49 (Maurer et al., 2006; Md. Mukhlesur Rahman et 

al., 2014; Ronteltap et al., 2010). Greater pH change, relative to measurement uncertainty, reduces the 

uncertainty in subsequent thermodynamic model predictions. 

5.2.3.3 Magnesium Concentration 

Investigations of element molar ratio are regularly made on laboratory and pilot scale studies, but are 

seldom comparable, due to variations in experimental conditions. A common finding is that increasing 

Mg:P ratio produces an increase in phosphorus recovery (Bhuiyan et al., 2008; Nelson et al., 2003; Stratful, 

Scrimshaw, & Lester, 2001a). Mg:P ratios from 1.5:1 to 3.5:1 resulted in increased particle size of 30 % – 

60 %, of high purity struvite, while maintaining >90% P removal, in fluidised bed reactors fed with 

anaerobic supernatant (Huang et al., 2005). It is uncertain whether steady state was achieved in the two 

reactors examined by Huang et al, as particle size was trending upwards at different rates. In another 

study, struvite formation rate was shown to double when Mg:P ratio increased from 1.1 to 1.5 (Quintana, 

Colmenarejo, et al., 2005). On the basis of the abovementioned studies, Mg:P ratio was set at 1.5:1. 

                                                           
15 http://www.fchart.com/ees/ 
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5.2.3.4 NaOH Concentration/ Supersaturation Range 

NaOH concentration was varied to achieve SI levels between 0.8 and 1.4. This range was selected to 

ensure sufficiently low induction times (15 – 237 s at SI = 0.8) while avoiding dendritic crystal growth 

(SI>1.4). The minimum SI was set based on previously determined induction time models and the 

maximum SI was determined by qualitatively assessing when unwanted dendritic crystal growth became 

dominant. 

Struvite induction time models, which operate in the same SI range as this work, are all based on classical 

nucleation theory, but vary in form, aqueous species considerations and solubility description (Bhuiyan 

et al., 2008; Bouropoulos & Koutsoukos, 2000; Kabdasli et al., 2006; K. N. Ohlinger et al., 1999). Induction 

time data were consolidated using methods described by Galbraith (Galbraith, 2011), incorporating more 

recent data (Le Corre, Hobbs, et al., 2007b; Mehta & Batstone, 2013). Results from Mehta 2013 were 

calculated using induction time model parameters rather than thermodynamic modelling, as raw data 

were not provided. The model from Bhuiyan et al. was not considered accurate as pH change was used 

to identify the end of induction time in a solution which likely had significant ammonia buffering (N:P 

ratio of 17:1). Several models indicated that induction time increased exponentially below SI = 0.8, 

therefore only higher saturations were considered (Figure 5.1). For mixer design, the lowest predicted 

induction time was used to ensure complete mixing before nucleation.  
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Figure 5.1 – Induction time models from various authors processed using a common thermodynamic basis.  

Dendritic growth at higher SI results from the increased availability of 𝐶𝐶𝐶𝐶43−  and 𝐼𝐼𝐻𝐻4+ . These ions 

preferentially absorb on the crystal c-axis, because of electrostatic inhibition of rectangular facet to facet 

particle adsorption created by Mg[H2O]6
2+ species (Ye et al., 2014). Preliminary tests in this work showed 

that dendritic growth was prevalent at SI>1.4 (Figure 5.2). This was set as the upper limit of testing to 

reduce laser diffraction PSD measurement uncertainty introduced by apparent D[50] increases with 

particle aspect ratio (Kelly & Kazanjian, 2006).  
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Figure 5.2 – Microscope images of crystals at SI = 1.4 and SI = 1.8 after 20min growth in a stirred 

vessel. 

5.2.4 Tracer studies 

Hydraulic and crystal tracer studies were conducted and repeated to ensure consistent reactor operation. 

To measure hydraulic residence time distribution (RTD), a 5-mL volume of 5% mass fraction of NaCl 

solution was injected into the feed stream and outlet conductivity was measured using a Thermo Orion 

013605MD conductivity probe. NaCl was selected due to its availability and highly linear relationship 

between concentration and conductivity. A pulse of struvite crystals, suspended in saturated solution to 

avoid crystal dissolution, was used to measure crystal RTD. Their PSD is shown in Figure 5.3 below. Crystals 

were collected from a previous experiment using the PFR to ensure similar PSD and habit to experimental 

conditions. The outlet PSD was sized in-line by feeding reactor output directly into the Malvern 

Mastersizer 3000. Laser obscuration was used as a surrogate for mass concentration to calculate the 

crystal residence time (CRT). HRT and CRT were calculated as the first moment of the respective RTDs 

(Levenspiel, 1999). 
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Figure 5.3 – PSD of struvite crystal pulse used in tracer study 

Figure 5.4 presents hydraulic RTD (NaCl tracer) and crystal RTD tracer study results, averaged from two 

repeats. Theoretical hydraulic and crystal RTDs are provided for reference. The theoretical crystal RTD 

differs from the hydraulic RTD as it accounts for settling effects based on the PSD given in Figure 5.3. 

Uncertainty in the theoretical hydraulic RTD resulting from feed flow rate uncertainty is negligible when 

viewed on this figure. Hydraulic and crystal RTD error bars represent sample standard deviation based on 

two repeats. While uncertainty is high around discontinuities, it remains low at all other points. As such, 

no further repeats were deemed necessary.  
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Figure 5.4 – Hydraulic and crystal tracer responses in the Poiseuille seed crystalliser 

The given reactor dimensions, operating conditions and entry length should have resulted in close-to-

ideal Poiseuille flow (Section 4.1.5). Figure 5.4 shows that hydraulic and crystal RTDs exhibit a partial lag 

time, suggesting an initial period of high SI was achieved. This confirms the suitability of the proposed 

reactor for investigation of narrow crystal size distribution production. The hydraulic RTD in Figure 5.4 

shows fluid elements exiting the reactor faster than predicted by the theoretical fluid RTD for Poiseuille 

flow, an effect known as short circuiting. The HRT was 16% lower than the theoretical value and its 

standard deviation was 19.3% greater, which is also an indication of short circuiting. In addition to fluid 

elements exiting the reactor early, some remain in the reactor for longer than expected by theory. These 

results indicate plume formation, where some fluid elements, exiting the centre of the orifice between 

the mixer and Poiseuille flow section, move faster than theoretically anticipated, while others exiting near 

the edge of the orifice recirculate and spend longer than expected in the entry of the reactor. PSD 

spreading might be reduced by increasing reactor length-to-diameter ratio or decreasing the reactor-
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diameter to orifice-diameter ratio. The crystal RTD in Figure 5.4 shows that a fraction of crystal tracer 

exits the reactor earlier than the theoretical crystal RTD, indicating that the crystals used in the tracer also 

short circuited. It is likely that they were entrained with the short circuiting fluid. It must be noted that in 

reality, particles would not have exited as early as measured since they would have begun as nuclei, 

whereas the crystals used in the tracer entered the reactor at full size (𝐼𝐼[50] =  34.2µ𝜇𝜇) and were 

therefore subject to maximum settling force. The separation of the crystal tracer based on particle size is 

visualised in Figure 5.5 below which shows larger particles exiting the reactor faster. Calculations 

incorporating particle growth and settling effects estimated that during seed production experiments, 

particles would begin to exit the reactor after 10.05min, rather than after the 5min mark as observed in 

the crystal tracer. This indicates that the crystal RTD would be translated right, putting it in line with the 

fluid RTD. Although some short circuiting was evident, the agreement between theoretical and measured 

crystal RTDs gave confidence that the reactor operated as intended and could be modelled using 

Poiseuille flow and settling theory. 

 

Figure 5.5 – Outlet median particle diameter during crystal tracer study decreasing with time as 

larger particles settle faster 
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 Experimental design 

Table 5.1 describes the experimental campaign undertaken. In experiment set 1, in-line PSD sampling was 

conducted with a minimum of three runs for each level of SI to address the significant scatter 

encountered. Additional runs were conducted at SI = 0.8 and 1.0 when an equipment modification was 

made to the reactor. Their inclusion had negligible impact on averaged results so they were included in 

the analysis. In experiment set 2, filtered and sonicated sampling was conducted with a single run under 

each condition due to the low variance in data and the time and resource intensive nature of manual 

sampling. At SI = 1.4, the beginning of transfer line blockage formation reduced the number of reliable 

filtered samples. 

Table 5.1 – Experimental campaign for Poiseuille flow reactor with either in-line or filtered and 

sonicated PSD measurement techniques 

SI Mixer 

Experimental Set 1 – 
In-line 

Experimental Set 2 – 
Filter/ Sonicate 

Runs Number of PSD 
Samples taken Runs Number of PSD 

Samples taken 
0.8 R 4 10 1 10 

IJ 4 10 1 10 
1.0 R 5 10 1 10 

IJ 6 10 1 10 
1.4 R 3 10 1 7 

IJ 3 10 1 7 
 

 Sampling and analysis 

5.4.1 Analysis methods 

All pH measurements were taken at the reactor outlet before filtration using a Ross Ultra Sureflow Semi-

micro probe (8175BNWP) in a flow cell. Phosphate concentration was determined with an Agilent 8453 

UV-Vis spectro-photometer using the molybdo-vanado-phosphoric acid method (APHA, AWWA, & WEF, 

1999). Precipitant phosphate and magnesium ratio were determined by dissolving crystal in de-ionised 

water and analysing using ICP-OES. PSD analysis was performed by laser diffraction (LD) using a Malvern 
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Mastersizer3000. In one set of experiments the PSD was measured in-line and in another set of 

experiments it was measured after filtering particles and subjecting them to sonication (40 W at 40 kHz 

for 5 min) in saturated solution. In-line sonication, although desirable, was not possible with the 

Mastersizer3000 without introducing a mixed volume that would have sustained crystal growth and 

allowed sample back-mixing. Sample collection was conducted using vacuum filtration using 0.2-μm 

cellulose nitrate filters. Filters were changed and washed with saturated solution in 10-min cycles to avoid 

bridging of crystals in the filter cake as this would compromise subsequent PSD measurements. Saturated 

solution was prepared by collecting filtrate, allowing it to rest for at least 24 hours and filtering again. All 

equipment was calibrated as per manufacturer specifications before each experiment. We employed four 

measures/inferences of struvite suspended solids, measured in g/L. It was directly measured at the 

reactor outlet by crystal filtration and mass measurement over a known time frame at a given average 

flow rate. The filtrate phosphorus concentration was also used to determine phosphorus removal from 

solution by mass balance. Suspended solids was also measured by inference from laser diffraction 

measurements using the Beer-Lambert Law and finally by using thermodynamic modelling based on 𝑝𝑝𝐻𝐻 

measurements (Figure 5.8). 

5.4.2 Scale formation in Mastersizer 

Preliminary tests showed in-line particle size to increase with run time at fixed operating conditions. 

Scaling of the Mastersizer flow cell was identified by injecting 60-mL pulses of 2-M 𝐻𝐻𝐶𝐶𝑚𝑚 in the line after 

the reactor, but before the Mastersizer3000. Reduction of particle size and return of laser obscuration to 

the base line were achieved (Figure 5.6). Note that the multiple downward spiking of pH results from HCl 

moving both upwards and downwards from the injection point. On this basis, the particle size 

measurements taken in line were considered correct for only the first 10 minutes after application of acid 

flush, once a stable pH was achieved.  
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Figure 5.6 – Flushing of HCl through laser diffraction flow cell to remove scaling. Obs.= laser 

obscuration %. 

5.4.3 pH probe drift and response time 

Drift of the pH measurements was determined to be negligible (<0.01) over test durations of up to 3h. 

Although, crystallisation experiments showed that the effects of probe encrustation were significant. The 

crystallisation experiments involved measuring the pH of nutrient solutions with two probes. One probe 

remained clean, while the other was encrusted with struvite under the same solution thermodynamic 

and hydrodynamic conditions as in Poiseuille flow tests. Tests were repeated in triplicate and probes were 

calibrated before each test. Before encrustation, the pH difference between probes averaged 0.04, 

showing that in solutions of low ionic strength (0.045M), pH agreement is worse than the manufacturer’s 

specification (±0.01), but better than the uncertainty of buffer solutions used for calibration (±0.05). After 

encrustation took place, the difference in pH between the clean and encrusted probe was 1.585 after 30s 

and 0.176 after 5min, illustrating high response time of the crystal encrusted probe. This significantly 

reduces reliability of pH as an indicator of the thermodynamic state in this study and raises questions of 

the applicability of pH as a meaningful variable in industrial scenarios, where probe encrustation is likely. 
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 Results and discussion 

5.5.1 XRD characterisation 

Figure 5.7 shows XRD of the product crystals created at SI = 0.8, 1.0 and 1.4. The figure also includes 

indication of the major responses, which are expected to be associated with either struvite and 

newberyite, although struvite responses are much stronger. Many minor responses associated with each 

of these minerals (not presented here) overlap due to the similar ionic structure of struvite and 

newberyite. The key responses suggesting the occurrence of newberyite, which do not overlap with 

struvite, occur at 2θ=18.82, 19.18, 20.04, 25.82, 28.86, 29.30 and 34.94. Miller indices for each phase are 

also included to indicate crystal faces upon which preferential growth occurs. 

 

Figure 5.7 – XRD patterns taken from samples at SI = 0.8, 1.0 and 1.4 
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XRD patterns (Figure 5.7) of the solid phase produced matched that of struvite. Preferential growth of the 

struvite 002, 011 and 120 faces with increasing SI was indicated by increasing intensity of responses at 2θ 

= 15.78, 16.60 and 32.06, respectively. This supports the observation of increasing aspect ratio with 

increasing SI shown in Figure 5.9 and the needle-like particles shown at SI = 1.8 in Section 5.2.3.4. Similar 

results have been observed by other authors (Chauhan, Joseph, Parekh, & Joshi, 2008; Korchef, Saidou, 

& Ben Amor, 2011; Ye et al., 2014). Peak heights at 2θ = 20.84⁰ (111) were lower than expected at all SI 

values, indicating low growth on this face, or possibly orientation bias, where crystals preferentially orient 

in one direction during measurement. The XRD patterns also suggest small quantities of newberyite 

(MgHPO4·3H2O) formation at SI = 0.8 and 1.0. ICP analysis gave an Mg:P ratio of the crystal product as 

1.15±0.02, 1.13±0.04 and 1.18±0.02 in tests using 𝑆𝑆𝐼𝐼 = 0.8, 1.0 𝑎𝑎𝑛𝑛𝑑𝑑 1.4, respectively, suggesting that an 

additional magnesium phosphate solid phase is forming. Incorporating magnesium phosphate solid 

phases to the model suggested that under the conditions tested, it was thermodynamically possible for 

formation of bobbierite, Mg3(PO4)2·8H2O, and newberyite, MgH(PO4), which at the inlet would have 

supersaturations of SI = 1.07 and SI = 0.2823, respectively.16 Previous work has observed XRD patterns 

indicating the formation of cattiite, (Mg3PO4)2·22H2O at Mg:P of 3-4 (Korchef et al., 2011), although 

thermodynamic modelling and XRD results do not suggest its formation here. The presence of newberyite 

did not explain the excess Mg in the crystal, since newberyite has the same Mg:P ratio as struvite. 

Therefore bobbierite is the most likely secondary mineral forming although XRD patterns for bobbierite 

and cattiite do not significantly match any unexplained XRD peaks. If the excess magnesium does exist in 

the form of bobbierite, thermodynamic modelling shows that struvite purity on a mass fraction basis was 

73.78±3.69%; 77.44±3.63%; 68.19±3.77% at SI = 0.8, 1.0 and 1.4, respectively.  

                                                           
16 It should be noted that 𝑆𝑆𝐼𝐼 values are not comparable between minerals in relation to crystallisation kinetics nor 
even to the equilibrium state.  𝑆𝑆𝐼𝐼  simply indicates whether the system is at, or away, from thermodynamic 
equilibrium. 
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5.5.2 Phosphorus recovery measurement/ estimation 

Figure 5.8 shows the suspended solids of the flow exiting the reactor between two residence times 

duration towards the end of each reactor operation, typically 5 residence times. This should reflect steady 

state operation of the system. Operating times beyond this were not possible due to transfer tube fouling 

(Figure 4.1). Four different precipitation measurement methods were utilised for validation purposes – 

solution phosphorus concentration, filtered crystal mass, suspended solids based on laser obscuration, 

and crystal mass inferred from pH change. Their uncertainties are described in Table 5.2.   

Table 5.2 – Phosphorus concentration measurement methods and uncertainties 

Crystal mass 
concentration [g/L] 
calculation method 

Uncertainty estimation method Crystal mass concentration 
uncertainty [g/L] 

Solution phosphorus 
concentration 

Spectrophotometer (average S.D. = 
8.88 × 10−5𝑀𝑀 from 10 repeat 

measurements), dilution (0.66%) and 
thermodynamic model uncertainties 

0.039 – 0.061  
(S.D.) 

Filtered crystal mass Electronic balance precision (5 × 10−5), 
filtrate volume (0.029) 

4.29 × 10−5 − 594 × 10−5  
(min/max) 

Suspended solids (laser 
obscuration) 

10 repeat measurements per sample 0.007 – 0.167  
(S.D.) 

pH Buffer solution (0.05 min/max) and 
thermodynamic model uncertainties 

0.001 – 0.029 (S.D.) 

 

The most reliable measurement of crystal formation was that based on the remaining liquid phosphorus 

concentration. The filtration and weighing technique tended to underreport suspended solids, due to 

scaling losses within the reactor. Obscuration-based suspended solids, shown in Figure 5.8, displayed a 

high variance in repeat measurements of the same sample and between samples. This effect was more 

prominent at higher SI and may have been caused by higher particle aspect ratio at higher SI, as seen in 

Figure 5.9 below. Higher particle aspect ratios have been shown to reduce the accuracy of laser diffraction 

PSD measurements (Kelly & Kazanjian, 2006), an effect which has also been observed for the struvite 

system (Ariyanto et al., 2014). Crystal formation inferred from pH measurements was also uncertain due 

to encrustation of the pH probe, which occurred mostly on the leading edge of the pH probe, reducing 
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accuracy and increasing response time (Section 5.4.2). These issues highlight the need to be meticulous 

when measuring phosphorus recovery. Despite these issues it is still comforting that all four techniques 

were in the same order of magnitude. 

 

Figure 5.8 – Transient struvite suspended solids [g/L] produced in Poiseuille flow crystalliser with 

impinging jet (IJ) and Roughton (R) mixers at SI = 0.8, SI = 1.0 and SI = 1.4. Legend indicates method 

by which suspended solids was measured/inferred. 
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Figure 5.9 shows photomicrographs of crystals at increasing SI, using R and IJ mixers before and after 

sonication. Extra images are provided in Appendix A. A 1-mm scale is provided in the bottom right and 

individual images contain a scale, where minor divisions are 10 µm and major divisions are 100 µm. The 

images show that aggregates broke apart and aspect ratios of individual crystals observed before and 

after sonication suggest that crystal breakage was insignificant. A detailed discussion of how sonication 

impacted the results is given later in section 5.5.5. 
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Figure 5.9 – Photomicrograph of crystals exiting the Poiseuille flow crystalliser, comparing in-line and sonicated samples from both Roughton (R) and 

impinging jet (IJ) mixer apparatus at SI of 0.8, 1.0 and 1.4. 
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5.5.3 Effects of mixing on phosphorus recovery 

Figure 5.10 shows ‘recovery curves’ for this system, which represent the de-supersaturation pathway of 

the outlet phosphorus concentration for a given inlet 𝑆𝑆𝐼𝐼 . The curves are created by solving the 

thermodynamic model for this system (Galbraith & Schneider, 2014), using a particular feed condition.  

Three feed conditions are shown on the plot: high, medium and low non-equilibria 𝑆𝑆𝐼𝐼.  All curves start at 

a positive 𝑆𝑆𝐼𝐼 , decreasing to 𝑆𝑆𝐼𝐼 = 0 , which is the theoretical thermodynamic end-state of the feed 

solution.  Each point is superimposed on its respective inlet condition curve based on the measured outlet 

phosphorus concentration.  Each phosphorus concentration data point and uncertainty (standard 

deviations) are the combination of all sonicated runs, all samples, all repeat measurements and include 

dilution uncertainties. Thermodynamic model uncertainty has not been included since it would be 

consistent between phosphorus recovery curves. The grey dashed line shows an apparent plateau of 

minimum 𝑆𝑆𝐼𝐼 for the IJ mixer. 

 

Figure 5.10 – Phosphorus recovery and exit saturation index (SI) for Roughton (R) and impinging 

jet (IJ) mixers at SI = 0.8, 1.0 and 1.4. Dashed line shows the limiting phosphorus recovery 

performance of the IJ mixer. 
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Figure 5.10 shows that reactor outlet SI plateaued with the IJ mixer for all feed conditions studied (grey 

dashed line), since none of the outflows reached the equilibrium target phosphorus concentration. The R 

mixer did a much better job of achieving close-to-equilibrium recoveries. Although the IJ mixer would 

produce equilibrium results at a longer residence time, this shows that the IJ mixer lags behind the R 

mixer. While slower kinetics have been observed below SI = 0.2 (Galbraith et al., 2014; Mehta & Batstone, 

2013; Schneider et al., 2013), excellent recoveries achieved using the R mixer contradict this observation. 

This suggests that phosphorus recovery depends significantly on mixing and not only on SI level in the 

inlet. Insufficient mixing could affect phosphorus recovery by causing a number of effects: 

First, poorer mixing creates localised zones of high SI and resulting nucleation rates. However, the 

interfacial area between feed fluids is lower, resulting in a lower average SI and nucleation rate, when 

integrated over the radial cross section. This means that uniform mixing generates a greater overall 

nucleation rate as all of the reagents are able to react simultaneously. This results in a greater crystal 

surface area for subsequent crystal growth. Reduced mixing has previously been shown to cause PSD 

spreading, and decreased recoveries (Hacherl et al., 2003) and computational fluid dynamics (CFD) has 

been used to show that mixing is lower in IJ applications (Lindenberg & Mazzotti, 2009), but no work could 

be found investigating the SI distribution in a tubular reactor. Therefore, lower ultimate phosphorus 

recovery in the IJ mixer at SI = 0.8 suggests lower nucleation rates, a result of poor mixing.  

Second, poor mixing means that small volumes of one feed can be mixed with larger volumes of the other 

and vice-versa, creating localised SI variations. This means that fluid elements of undersaturated feed 

exist, enabling nuclei dissolution. For example, Figure 5.11 shows that for the non-equilibrium feed SI of 

1.4, when the ratio of caustic to feed fluid element volume varies from 1:10 to 20:10, SI varies from -1.41 

to 2.46. Higher caustic feed ratios (>20:10) introduce a dilution effect causing SI to decline.  

These first two explanations hinge on the assumption that the increase in nucleation rate and decrease 

in dissolution zones due to complete mixing outweighs the increase in nucleation rate in localised zones 

of high supersaturation created by incomplete mixing. The results seem to support this assumption but it 
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can only be truly tested with a sound knowledge of nucleation kinetics and a detailed hydrodynamic 

model e.g. a CFD model. 

 

Figure 5.11 – Effects of increasing ratio of sodium hydroxide to nutrient feed flow rate on SI 

A third way that insufficient mixing might affect phosphorus recovery is by aggregation. Concentration 

gradients created by incomplete mixing may promote aggregate formation by a number of mechanisms. 

Firstly, collisions in high supersaturation regions are more likely to form a bridge due to high growth rates 

(M. Hounslow et al., 2001). Lower shear forces in the IJ mixer reduce the probability of aggregate 

disruption (Balakin, Hoffmann, & Kosinski, 2010; M. Hounslow et al., 2001). The resulting increase in 

aggregation can then limit surface area available for crystal growth. Larger aggregates observed in the IJ 

mixer contribute to lower phosphorus removal due to reduced crystal surface area and diffusion 

limitations of fractal aggregates. Figure 5.13 shows that at SI = 1.0, particle size is 53% larger in the IJ 

mixer than in the R mixer, yet phosphorus recovery is 13% lower. Similarly, at SI = 1.4, aggregate size is 
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35% greater (in the IJ mixer case), while phosphorus recovery is 11% lower. These results support the 

abovementioned potential mass transfer limited growth, 

Finally, secondary nucleation caused by fluid shear of scale formation in the R mixer (Figure 5.12) may 

also contribute to the greater observed phosphorus recovery. Higher turbulence is created in the R mixer 

than the IJ mixer, which is known to increase struvite scale formation (K. N. Ohlinger et al., 1999). The 

reason for this is twofold: firstly, improved mixing results in more uniform supersaturation; and secondly, 

rotational fluid motion creates a wider distribution of fluid element residence times (Lindenberg, Schöll, 

Vicum, Mazzotti, & Brozio, 2008). Both of these factors increase the probability that the mixer surface is 

exposed to supersaturated solution and subject to scale formation. Scaling could be reduced in future 

work by polishing the inside of the mixer to reduce surface roughness. 

 

Figure 5.12 – Long term mixer scaling from Roughton mixing operation 
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5.5.4 Supersaturation impacts on PSD 

Figure 5.13 and Figure 5.14 show the average volume median particle diameter (D[50]) and PSD width 

(D[90]-D[10]) of the reactor outflow across the range of inlet 𝑆𝑆𝐼𝐼  values, using R and IJ mixer types, 

measured in-line and after sonication. Results for sonicated samples and in-line samples are from 

unrelated runs. Data points and uncertainties (one standard deviation) are the combination of all runs, 

all samples, all repeat measurements and include dilution uncertainty propagation. The statistically 

significant outcomes of results presented in Figure 5.13 and Figure 5.14 are summarised in Table 5.3, 

where each result was determined using a two-tailed test at 95% confidence interval.  

 

Figure 5.13 – Volume Median Diameter (D[50]) averaged over repeat experiments for varying 

saturation index (SI) levels using Roughton (R) and Impinging Jet (IJ) mixers. Uncertainty defined 

as ±1σ of all experimental D[50] values.17  

                                                           
17 Note that the standard deviation of D[50] values differs from the standard deviation of an individual distribution, 
which is a measure more akin to the distribution width described later. 
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Figure 5.14 – PSD width (D[90]-D[10]) obtained in a Poiseuille flow reactor at different saturation 

indices (SI) with  Roughton (R) and Impinging Jet (IJ) mixers using In-Line (IL) PSD measurement 

and filtration followed by sonication (FS) PSD measurement. 

 

 

 

 

 

 



166 
 

Table 5.3 – Summary of significant differences in averaged volume median diameter and PSD 

width results between supersaturation levels and sonication conditions for the Poiseuille flow 

reactor. Conditions 1 and 2 describe the comparison made using a Z or t test 

PSD 
property Mixer Measurement 

technique SI Condition 
1 

Condition 
2 

Statistical 
Test 

Change in 
PSD 

property ± 
95% CI 
[µm] 

D[50] R In-line - SI = 0.8 SI = 1.4 Z 33.1 ± 8.5 
D[50] IJ In-line - SI = 0.8 SI = 1.4 Z 45.9 ± 12.5 
D[50] IJ Sonicated - SI = 0.8 SI = 1.0 t 5.7 ± 2.5 
D[50] IJ N/A 0.8 In-line Sonicated t 15.8 ± 3.5 
D[50] IJ N/A 1.0 In-line Sonicated t 42.8 ± 9.3 
D[50] IJ N/A 1.4 In-line Sonicated t 55.1 ± 14.8 
D[50] IJ N/A 1.4 In-line Sonicated t 121.7 ± 27.3 
width R In-line - SI = 0.8 SI = 1.4 Z 112.2 ± 32.0 
width IJ In-line - SI = 0.8 SI = 1.4 Z 93.2 ± 23.9 
width IJ N/A 0.8 In-line Sonicated t 43.5 ± 10.0 
width IJ N/A 1.0 In-line Sonicated t 107.3 ± 24.0 
width R N/A 1.4 In-line Sonicated t 35.1 ± 10.9 
width R N/A 1.4 In-line Sonicated t 109.8 ± 39.1 

 

Under all supersaturation levels considered, the seeds produced in this work, before and after sonication, 

are in the size range of those encountered in previous work: 5 – 20 µm (Galbraith et al., 2014); 35±3 µm 

(Mehta & Batstone, 2013); 45 – 63 µm (Ali, Schneider, & Hudson, 2005) and; 75 - 150 µm (Kim et al., 2007; 

Jun Wang et al., 2006). This enables the results of those investigations to inform future investigations of 

a continuous seeding reactor followed by a growth reactor. The continuous seeding reactor should be 

investigated as a method of process control. This requires two sets of experiments to: 1) examine the 

influence of SI and shear rate on PFR output PSD; and 2) examine the effects of seed size and mass loading 

on the growth reactor phosphorus recovery and PSD. Designing such a system requires the use of existing 

kinetic models. Since this reactor has produced seed crystals similar to those used in previous kinetic 

investigations, the results of those investigations can be used in the growth reactor design process.  

Figure 5.13 and Figure 5.14 show increased magnitudes of both the D[50] and distribution width 

(difference between volume based PSD 90th and 10th percentiles), respectively, with increasing feed SI for 
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in-line samples. A summary of the PSD and width differences, between a variety of SI and sonication 

conditions, at 95% confidence is presented in Table 5.3. These results also exhibit an increasing degree of 

scatter with increased SI. Thus, as feed SI is increased, particles observed at the outlet get larger and more 

variable in size. Other work on struvite crystallisation has shown increasing SI to cause an increase in D[50] 

(Koralewska et al., 2007). Koralewska et al. also found that increasing SI generated no discernible trend 

in PSD standard deviation, which is analogous to PSD width, because of large scatter in the data. In this 

work, some PSD width increase is likely due to uncertainties in laser diffraction measurement of high 

aspect ratio particles, but is primarily attributed to aggregation. 

5.5.5 Sonication impacts on PSD 

Figure 5.15 shows the change in D[50] with time of various crystal samples undergoing sonication. These 

tests were performed to identify whether attrition (i.e. destruction of particles) caused significant change 

in the PSD over time. The most significant reduction in particle size had occurred by 3 min and a stable 

trend was observed after 5 min. 

 

Figure 5.15 – Volume median diameter of particles during sonication. 
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Sonication easily disrupted aggregates, suggesting that they are only weakly bound.18 Figure 5.15 shows 

plateauing particle size reduction with ongoing sonication. We assume that this represents individual 

particles that have been released from aggregate structures and that the sonication used does not cause 

significant struvite particle attrition. In sonicated samples, mixer type and feed SI had little effect on the 

D[50] and distribution width, unlike the in-line (non-sonicated) sampling strategy. Figure 5.13 shows that 

the sonicated D[50] did not change significantly with increasing feed SI using the R mixer and only slightly 

increased between SI = 0.8 and 1.0 using the IJ mixer (Table 5.3). Figure 5.14 shows that distribution width 

did not change significantly in sonicated samples for any condition examined. Microscopy, shown in 

Figure 5.9, corroborates these results. At SI = 0.8, in the R mixer D[50] and distribution width were almost 

identical for in-line and sonicated samples. Conversely, in the IJ mixer, in-line D[50] was 55±12% greater 

and in-line distribution width was 83±19% greater than sonicated samples (Table 5.3). This shows that at 

SI = 0.8, aggregation is negligible in the R mixer, but significant in the IJ mixer, supporting the idea that 

aggregation is increased when mixing is incomplete before crystallisation begins.  

Aggregation is also more evident at higher SI levels. The difference between sonicated and non-sonicated 

D[50] and width are significant at SI = 1.0 for the IJ mixer and at SI = 1.4 for both mixer types (Table 5.3). 

This again shows that aggregation is significant at higher SI. Increased distribution width shows that 

aggregates cause increased D[90], but that small particles remain present in all samples. Comparing mixer 

types at SI = 1.0 and 1.4 using non-sonicated measurements gives no significant conclusions, owing to 

excessive scatter in the data. While scatter is much lower in sonicated samples, no trends are observed. 

Increasing scatter and converging average D[50] and width suggest that differences between R and IJ 

mixers become less important at higher 𝑆𝑆𝐼𝐼 levels. The implication is that mixing time and/or induction 

time models utilised were not an accurate representation of this system. 

                                                           
18 Note that aggregates are different to agglomerates, which exhibit the same strength as their constituent particles. 
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5.5.6 Contributions of nucleation, growth and aggregation 

Under all conditions tested, all individual particles reach a similar ultimate size, whether aggregation 

occurred or not.  The observed in-line PSD differences primarily result from weak aggregate formation. 

The similarity of the de-aggregated (i.e. sonicated) crystal PSDs at different SI levels across a range of 

mixing regimes, suggests that individual crystals continue growing after they aggregate. The difference in 

phosphorus removed from solution at different SI values and in different mixers, shown in Figure 5.10, 

means that higher feed SI levels create more particles. Quantification of differences in nucleation rate 

under different operating conditions would be best achieved with an accurate measurement of particle 

number density, which is better delivered using particle counting and sizing techniques, rather than 

particle-ensemble, volume-based laser diffraction techniques. This is, unfortunately, a limitation of this 

work. 

Comparing sonicated to in-line samples shows that greater aggregation occurs at higher SI levels, which 

could result from a number of mechanisms. First, increased SI increases particle number density due to 

increased nucleation rates, increasing the rate of particle collisions. Second, it increases the driving force 

for aggregate bridge formation, reducing the time between particle collision and bridging. Finally, 

increased SI causes dendritic growth, due to preferential adsorption of ions onto one crystal face, 

increasing the probability of particle collisions and resulting in the formation of more loose and porous 

aggregates (Ye et al., 2014). Microscopy shows that the contact between aggregate constituents is 

minimal, which means that the crystal mass increase associated with bond formation between 

constituent particles in the aggregate is also small. As such, the sonicated samples could be used as a 

proxy for nucleation and growth mechanisms only. This result is not trivial as it offers a method of 

extricating aggregation from nucleation and growth mechanisms, a task which has not been properly 

addressed for struvite, and many other crystal systems. Elucidating true kinetic mechanisms of 

crystallisation can reduce risk and enhance crystalliser design.  
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Applying the model developed in Chapter 4, using the cell average technique and nucleation and growth 

kinetics based on work by Galbraith (Galbraith et al., 2014), shows some agreement between 

experimental and simulated PSD and phosphorus recovery (Figure 5.16, giving validity to these kinetic 

parameters. It can be seen though that phosphorus recovery is under-predicted for all supersaturation 

levels and PSD is under-predicted for SI = 0.8, indicating that improved parameter optimisation is 

necessary. Varying levels of kinetic parameter regression/ optimisation complexity are discussed in 

section 2.2. This work implements a least squares approach accounting for PSD and phosphorus recovery 

data from multiple datasets simultaneously, presented in detail in Chapter 7. 

 

Figure 5.16 – Roughton mixer PFR PSD and outlet phosphorus concentration compared to those 

predicted by kinetics estimated by Galbraith (Galbraith et al., 2014) 
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5.5.7 Mixer design evaluation 

The method used to specify the inlet jet diameter for both mixers is based on a generalised model for 

meso- and micro-mixing (Gillian & Kirwan, 2008). The method was previously validated for confined 

impinging jet mixers, while in this work, the base model applied was a vortex mixer with multiple inputs 

(Liu et al., 2008). Very little difference in mixing time was observed in the work by Liu between two and 

four jet scenarios, so the difference between that scenario and this application is not considered of 

significance. The jet diameters predicted here are considered reasonable due to the generalised nature 

of the mixing model. In addition, jet Reynolds number (calculated using jet diameter and jet velocity) used 

in this work (Rejet = 705) was far larger than the jet Reynolds number in the vortex mixer used as a base 

for jet diameter design (Rejet = 73), indicating that the jet diameter used for this work produced more 

turbulent mixer jets with the feed flows used. Mixer Reynolds number in this work as described by Figure 

5.17 below, was 28,181. That is more than 20 times the Reynolds number reported for reaction mixing 

independence using acid/base neutralisation reactions (Liu et al., 2008), which are much faster than 

struvite formation rates.  

 

Figure 5.17 – Mixer characteristic Reynolds number calculation methods 
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𝑅𝑅𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚 =
𝜌𝜌𝐵𝐵𝑗𝑗𝑠𝑠𝑠𝑠𝐼𝐼𝑚𝑚𝑖𝑖𝑚𝑚
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𝑅𝑅𝑒𝑒𝑗𝑗𝑠𝑠𝑠𝑠 =
𝜌𝜌𝐵𝐵𝑗𝑗𝑠𝑠𝑠𝑠𝐼𝐼𝑚𝑚𝑖𝑖𝑚𝑚

𝜇𝜇  

Roughton mixer top view 
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Section 5.5.5 suggests that the mixing time and induction time models utilised do not adequately describe 

the system at high SI as nucleation (resulting in scale formation) occurs in the R mixer before mixing is 

complete. The mixing time model utilised in this work was previously validated using an inlet jet Reynolds 

number of approximately 5200 (Lindenberg & Mazzotti, 2009), compared to 700 in this work. Using the 

Lindenberg & Mazzotti model as a base for design, rather than the model by Liu (described above), yields 

a jet diameter 5 times smaller than that used in this work, although in their model mixing times were 

below 1ms, which is well under our requirements. Despite differences between this work and previous 

work, the design criteria used suggest that it is very unlikely that mixing would be incomplete since the 

predicted mixing time (0.23 s) was 66 times lower than the lowest predicted induction time (15.15 s at SI 

= 1.4).  

This early nucleation may indicate that the mixer Reynolds number, defined by the mixer diameter and 

jet velocity is not the best indication of mixer turbulence. This is because for a fixed jet velocity, mixer 

Reynolds number increases proportionally with mixer diameter, but increased fluid volume results in a 

lower vortex velocity. To test this theory, a series of tracer studies was performed. A small piece of 

Styrofoam was placed on the open surface of the fluid in the mixer and showed that the average rotational 

velocity was 1.39 rev/s, which equates to 0.349m/s, almost equal to the jet velocity of 0.354m/s. This 

indicates that for the reactor geometry and operating conditions, viscous fluid dissipation has a negligible 

effect on vortex velocity. Nonetheless, we suggest that an improved mixer description for future design 

and optimisation purposes incorporates mixer aspect ratio and mixer diameter to exit orifice diameter 

ratio. These tests also showed that the rotational velocity is higher in the center, an effect driven by the 

fluid exiting the orifice in the bottom of the mixer. 

An estimate of the rotational velocity was also made by measuring the depth between the top of the 

mixer and the fluid surface in the center (Δh=2.5mm). By assuming a rotating body, where linear slopes 

represent the surface from the outer circumference to centre, then equating the centripetal force to the 

pressure force, it can be shown that v=(gΔh)0.5, where v [m/s] is the fluid velocity at the wall and g [m/s2] 
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is acceleration due to gravity. This relationship estimates the rotational velocity to be 1.25rev/s 

(0.157m/s); less than the measured velocity on the surface. By assuming that the outer velocity, created 

by the jets, is the average of the two estimates given above, the Blasius solution can be used to estimate 

the viscous sub-layer thickness to be 0.0037m and the maximum viscous sub-layer velocity to be 0.055m/s 

(Munson et al., 2006). While this estimate is uncertain, it indicates that around 34% of the mixer volume, 

consists of laminar flow as a result of the no slip condition on the mixer wall. At the maximum laminar 

velocity, the fluid would exit the mixer in 9.94s, which is over triple the mixer residence time, but still less 

than the lowest expected induction time. Applying the same methods, it is estimated that the thickness 

from the laminar layer, wherein the fluid resides in the mixer longer than the crystal induction time is 

0.0002m. This is considered a reasonable explanation for the crystal scale observed on the mixer wall 

(Figure 5.12). An improved mixer design would reduce the mixer diameter, thus reducing any difference 

between jet and vortex velocities. In addition, the orifice separating the mixer and PFR (Figure 4.1) could 

be removed to assess whether its shape contributes to scale formation. 

 A more accurate description of the system would represent mixing time, fluid residence time and 

induction time as distributed variables. Mixing time and residence times are a function of fluid 

hydrodynamics, which are distributed because of the laminar layer. Induction time becomes distributed 

because of supersaturation gradients during the mixing process. The combination of these effects is that 

some fluid elements stay in the mixer longer than their induction time. This may also be compounded by 

scale formation facilitating secondary nucleation. In short, the averaged models for mixing time, fluid 

residence time and induction time are not an adequate description of the complex processes occurring in 

the mixer. 

Future designs can account for these RTD effects by ensuring that a large fraction (e.g. 99%) of the mixer 

residence time is below the induction time, rather than using average mixer residence time. This will 

reduce the probability of distributed nucleation and scaling by ensuring that fluid elements are well and 

truly mixed and outside of the mixer before nucleation. Additionally, if a computational fluid dynamics 
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model were applied, supersaturation and resulting induction times could be modelled as distributed 

variables. Unfortunately, this level of model complexity was outside the scope of this thesis. 

5.5.8 Operational considerations 

Various operational considerations were identified as important for future investigations. Reactor and 

transfer line fouling made long term reactor operation unachievable and meant that true steady state 

operation was not achieved. Despite this, phosphorus removal remained relatively constant over the 

timescale considered (implying that there was sufficient surface area for mass transfer). Scaling of the 

flow cell in the PSD measuring device also reduced the number of acceptable in-line (i.e. unsonicated) 

data points (Section 5.4.2). Flow through the orifice separating the mixer from the main reactor became 

restricted after extended operating times in some runs. This phenomenon indicates that while the 

residence time of the mixer was 5-fold lower than the induction time at the maximum SI considered, 

nucleation and subsequent scaling persist. Some degree of stock solution particulate contamination was 

also inevitable, despite filtration, meaning that true homogeneous nucleation is highly unlikely and that 

heterogeneous nucleation effects are important. Despite this, past experiments used to determine 

induction time models were conducted under similar conditions and therefore account for these effects. 

If both induction time and scaling follow probability distributions, then scaling is unavoidable under long-

term operation of any reactor. To quantify scaling, after selected tests, the reactor was drained and filled 

with 1M HCl, dissolving the accumulated scale. The phosphorus concentration in this volume was then 

measured and showed that the mixer and reactor scaling contributed between 5% and 13% of total 

phosphorus removal for SI = 0.8 and 1.4, respectively.  

 Conclusions & recommendations 

A Poiseuille flow reactor can be used as a low pressure drop method for continuous production of struvite 

seeds of comparable properties to those used in other work. The PFR produced a significantly narrower 

hydraulic RTD than a well-mixed tank of equivalent residence time, although some short circuiting and 

PSD spreading were evident. Scale formation within the reactor and transfer line blockages were 
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identified as an operational limitation, which must be addressed if this reactor is to be used for future 

work. Mixer scaling indicates slow moving fluid within the mixer and/or issues with induction time 

estimates. XRD results showed that struvite was primarily formed, with minor formation of newberyite. 

Crystal elemental molar ratios suggested bobbierite formation, although this was not observed in XRD 

analysis.  

Analysis of PSD and phosphorus recovery data provided a number of insights about mixing and aggregate 

formation. First, phosphorus recovery data showed that the R mixer was superior to the IJ mixer, under 

all conditions examined. Second, examining PSD differences between in-line and sonicated samples 

suggested the formation of weakly-bound aggregates. This was also observed using microscopy. 

Aggregate formation was found to be insignificant at SI = 0.8 in the R mixer, but significant in the IJ mixer. 

Finally, aggregate formation increased at SI = 1.0 and 1.4, making R and IJ mixers’ performance 

indistinguishable.  

Increased aggregate formation at higher SI in both mixers is likely due to higher particle number densities, 

increased bridge formation rate, incomplete mixing, and higher particle aspect ratios. In addition, 

increased scatter in PSD measurements at higher SI levels suggests poorer mixing in both mixing 

configurations. Sonicated PSD properties remained unchanged for all conditions accept for a minor 

change between SI = 0.8 and 1.0 in the IJ mixer, indicating that individual crystals grow to a similar size, 

irrespective of their participation in aggregation. The results brought into question the characteristic 

Reynolds number used for mixer design and highlighted the need for larger differences between mixer 

residence time and induction time. 

Results of this investigation are of relevance to both struvite seed production and modelling of struvite 

formation in Poiseuille flow, for example in catheter encrustation. The applicability of this reactor as a 

means of continuously producing consistent seed particles will depend on product requirements. If seed 

requirements match those used in previous research, then an un-sonicated product is acceptable. 

Alternatively, if a narrower and more repeatable product is required, sonication or another method of 
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de-aggregation should be implemented. In addition, because contact area of individual crystals making 

up aggregates is small, sonicated samples may provide reasonable data to determine nucleation and 

growth rates, essentially ignoring the impact of aggregation. In any case, if this reactor design is to be 

used for struvite crystallisation, crystal scaling mechanisms require further investigation. 
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 Poiseuille flow crystalliser sensitivity 

analysis 

 

Basic sensitivity analyses of the Poiseuille flow reactor (PFR) were conducted using the PFR 

model discussed in earlier chapters. Analyses are presented with three key goals in mind. 

Firstly, unnecessary model complexity was identified and removed to reduce simulation 

time. Secondly, propagation of input variable uncertainty to output variable uncertainty 

was quantified, determining those input variables that have the greatest influence and 

which output variables vary most significantly. Finally, the propagation of kinetic 

parameter uncertainty to output variables was quantified, showing which kinetic 

parameters have the greatest influence on output variables and what variation would be 

expected based on kinetic models available in the literature. Kinetic uncertainty 

propagation was also used to identify suitable kinetic parameter boundaries for 

parameter optimisations, which are presented in the following chapter. 
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 Introduction 

Experimental work in chapter 5 will be used for kinetic parameter optimisation in chapter 7. This chapter 

analyses the model to help make the parameter optimisation more efficient. This is done by (1) reducing 

unnecessary model complexity – since kinetic parameter optimisation is an iterative process, it can be 

very time consuming. Therefore simulation time reduction can be very useful. The first part of this chapter 

aims to reduce simulation time by identifying aspects of the model developed in chapter 4 which do not 

make a significant contribution to reactor outlet variables used for kinetic parameter optimisation (PSD 

and phosphorus concentration). (2) determining whether output variable measurement uncertainties can 

be used during parameter optimisation – output variable uncertainty must be defined for (or found 

during) the kinetic parameter optimisation process. These uncertainties could be defined based on output 

measurement device uncertainty or input uncertainty propagated through the model. The larger of the 

two will be used in parameter optimisation to ensure kinetic parameters do not have unrepresentatively 

low uncertainties. While measurement uncertainty is known, propagated uncertainty must be calculated. 

This can be done in the kinetic parameter optimisation process. Preliminary sensitivity analysis was used 

to identify whether this is necessary. This was done by varying input variables and observing output 

variables. The expected output variable uncertainty must be calculated based on input variable 

uncertainty only (not kinetic parameter uncertainty), as the kinetic parameter uncertainty will be 

calculated in the parameter optimisation. This chapter details the calculation of propagated uncertainty 

using the same experimental conditions as in chapter 5. No experimental data is used in this chapter 

though. (3) identifying which kinetic parameters have the greatest influence on the output variables 

during simulations – kinetic parameters which have the greatest influence on output variables are of most 

interest during kinetic parameter optimisation. These parameters are identified in this chapter with the 

intention of limiting the number of kinetic parameters to be optimised in chapter 7, to avoid over-

parameterisation.  
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These three objectives were achieved using simple delta analysis and it was deemed that Monte Carlo 

simulations were not necessary to reiterate the outcomes considering the much higher computational 

requirements. Monte Carlo analyses were however used to examine the effects of kinetic parameter 

variation and industrial feed input variations using a generalised model.  

In addition to improving parameter optimisation efficiency, kinetic parameter variations provided output 

variable boundaries for parameter optimisation in chapter 8, while industrial feed variations were used 

to show how this reactor might perform in real life. It should be noted that the generalised model is useful 

for describing a broad range of experimental data in the literature but contains multiple parameters which 

are highly uncertain, making its application difficult. Further analysis in chapter 7, is therefore devoted 

primarily to the standard power law model. This also facilitates ease of comparison with other struvite 

DPB work. 

 Methods 

The full PFR model combining fluid flow, cell average population balance techniques and thermodynamic 

models discussed in earlier chapters was used to conduct sensitivity analyses of the experimental system 

being examined. In this chapter, key input variables are fixed but have some experimental uncertainty, 

like flow rate and feed concentration. Output variables refer to measures of system performance which 

could be measured directly or calculated based on other measurements. These change with time and 

have uncertainty resulting from input variable uncertainty. Finally, kinetic parameters are fixed with time 

and exhibit some degree of uncertainty, either as a result of parameter optimisation techniques or data 

variance. 

6.2.1 Key output variable identification 

Output variables selected for consideration were the SI, pH, thermodynamic yield, volume median 

diameter (D[50]) and PSD width (difference between D[90] and D[10]). These variables differ from those 

used in chapter 5 and 7 since they are better representations of reactor performance. PSD uncertainty is 

difficult to display since individual size range measurements may have variable uncertainties. The actual 
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uncertainties are analysed as part of the parameter optimisation process in chapter 7. The output 

variables examined here are analogous to the direct measurements used for parameter optimisation. 

Thermodynamic yield is analogous to phosphorus concentration and D[50] and width are representative 

of PSD. The rationale for their selection and their measurement uncertainties are given below in Table 

6.1.  

Table 6.1 – Output variable uncertainty 

Variable Rationale Uncertainty Uncertainty Basis 
Used in 

Parameter 
Regression 

SI Driving force for all 
kinetic mechanisms 

0.063 (abs) Propagation through 
thermodynamic model** 

N 

pH Easy to measure and 
is linked to many 
thermodynamic 
equilibriums 

0.05 (abs) Buffer solution N 

D[50] [µm] An indication of 
average product size 

1% (relative)* Instrument specification Y 

PSD width [µm] 
(D[90] – D[10]) 

An indication of 
variation in product 
size 

1% (relative)* Instrument specification Y 

Thermodynamic 
yield*** [%] 

An indication of the 
performance of the 
reactor 

6.34 Propagation through 
thermodynamic model** 

Y 

* If D[50] or width are <1 micron, uncertainty is fixed at Mastersizer3000 lower detection limit (0.01 
microns) 
** using methods described by NIST (Taylor & Kuyatt, 1994) 
*** Thermodynamic yield is calculated based on phosphorus concentration uncertainty relative to the 
phosphorus concentration at equilibrium 
 
While not all of these variables were used in later parameter optimisations, they remained of interest for 

their description of reactor operation/performance. Propagated SI uncertainty was calculated based on 

phosphorus concentration measurement uncertainty (±8.88 × 10−5[𝑀𝑀𝑀𝑀𝑂𝑂43−−𝑀𝑀]), flow rate uncertainty 

(±0.005 [𝐿𝐿/ℎ]) and the struvite equilibrium constant uncertainty (±0.04) (K. N. Ohlinger et al., 1998). 

Approximately half of the 𝑆𝑆𝐼𝐼  uncertainty given above resulted from assumed equilibrium constant 

uncertainty.  

The uncertainty in PSD measurements is difficult to accurately define, so its propagated uncertainty was 

investigated under high and low growth rates. The Mastersizer3000 operating manual suggests that its 
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relative uncertainty is less than 1%. Using a percentage measurement uncertainty means that propagated 

uncertainty may exceed this expected measurement uncertainty for low particle sizes. 

6.2.2 Preliminary sensitivity analysis 

Preliminary sensitivity analyses were conducted to quantify the impacts of input variable uncertainty and 

kinetic parameter uncertainty on the key variables listed in Table 6.1 above (sections 6.4 and 6.5, 

respectively). These were favoured over stochastic analysis as they are far less computationally 

demanding but still provide useful information. In all preliminary simulations, input variables and kinetic 

parameters were varied, individually and in combination, to the extremes of their uncertainties, to 

generate the greatest possible deviation from baseline. In the worst case scenario, NaOH flow was 

increased, feed flow was decreased, and the concentration of both feed and caustic were maximised. 

Preliminary simulations were run for 60 minutes, since all output variables of interest were at steady state 

(within 10% of their measurement tolerances) by that time. The experimental feed condition of SI = 1.0 

(non-equilibrium immediately after mixing) was used and fixed kinetic parameters were assumed. The 

assumed kinetic parameters were based on work by Galbraith et al. (Galbraith et al., 2014).   

6.2.3 Stochastic simulations 

The propagation of uncertainty through complex systems can be analysed using stochastic simulations 

(Monte Carlo simulations), which are discussed in section 6.6. In stochastic analysis, simulations are 

repeated, using values randomly selected from appropriate probability distributions. Results of these 

simulations are combined to construct probability distributions of output variables and the standard 

deviations of these can be used to describe their uncertainty.  

Stochastic simulations were carried out in the gPROMS platform by generating an array of the process 

model of size 𝑛𝑛 = 200 , where each element of the array is an instance of the model. This can be 

conceptualised as 𝑛𝑛  reactors operating in parallel. In each reactor instance, the input variables and 

parameters which are expected to make a significant contribution to the uncertainty of key output 

variables are randomly assigned using a probability distribution. Simulating a large array of reactors 
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generates a large number of variables considering that each axially and radially distributed element 

contains a fluid flow model, a discretised population balance model and a non-ideal solution 

thermodynamic model. In a simulation containing 20 reactor instances, 3.3 million equations were 

generated, requiring 12GB RAM. To enable this type of simulation to run on machines with limited RAM 

without creating a bottle-neck, a novel technique was used where the outlet conditions of each reactor 

were recorded at a specified simulation time, then key variables and parameters in each reactor were 

reassigned new values from their respective distributions and the model was allowed to continue running.  

 Model simplification  

Model simplification is important since elimination of a single term can significantly reduce the number 

of equations if that term is distributed over axial, radial and particle size domains.  

6.3.1 Diffusion and settling effects 

Equations representing diffusion (equation 4.6) and particle settling effects (equations 6.2 and 6.3) were 

examined to determine their impact on key output variables (Figure 6.1). 

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑡𝑡

= −𝑣𝑣𝑧𝑧(𝑟𝑟)
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑧𝑧

+ 𝓓𝓓𝒔𝒔
𝜕𝜕2𝐶𝐶𝑖𝑖
𝜕𝜕𝑧𝑧2

+𝓓𝓓𝒔𝒔
𝜕𝜕2𝐶𝐶𝑖𝑖
𝜕𝜕𝑟𝑟2

− 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 
6.1 

Where 𝐶𝐶𝑖𝑖 [mol/L] along the length is ion concentration alone the reactor length (𝑧𝑧) radius (𝑟𝑟).  

 

𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎 =

2�𝜌𝜌𝑝𝑝 − 𝜌𝜌𝑓𝑓�𝑛𝑛𝑅𝑅2

9𝜇𝜇
𝐿𝐿 < 40𝜇𝜇𝜇𝜇

8�𝜌𝜌𝑝𝑝 − 𝜌𝜌𝑓𝑓�𝑛𝑛𝑅𝑅
3𝜌𝜌𝑓𝑓𝐶𝐶𝐷𝐷

𝐿𝐿 ≥ 40𝜇𝜇𝜇𝜇
 

6.2 

Where 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎 is the settling velocity incorporated into 𝑣𝑣𝑧𝑧  for particle advection, 𝐿𝐿 describes particle 

equivalent diameter and 𝐶𝐶𝐷𝐷, the laminar drag coefficient, is calculated as follows. 

𝐶𝐶𝐷𝐷 = �
24
𝑅𝑅𝑒𝑒𝑝𝑝

� �1 + 0.14𝑅𝑅𝑒𝑒𝑝𝑝0.7� 
6.3 
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Where 𝜌𝜌𝑝𝑝  and 𝜌𝜌𝑓𝑓  are the densities of the particle and fluid, 𝑛𝑛 is acceleration due to gravity, 𝑅𝑅  is the 

particle radius, 𝜇𝜇 is the dynamic viscosity of the fluid, 𝐶𝐶𝐷𝐷 is the drag coefficient. 

 

Figure 6.1 – Particle settling and ionic diffusion effects on key output variables 

Particle settling effects had a negligible impact on thermodynamic properties but significantly affect 

outlet PSD. Exclusion of settling effects resulted in a 30% increase in PSD width, a 15% increase in volume 

median diameter and an 8% decrease in solution time. On this basis, settling effects were incorporated 

into all further modelling. The exclusion of diffusion resulted in a 44% decrease in computation time and 

no significant differences in key output solution parameters, which all varied by less than 30% of their 

respective measurement uncertainties. The diffusivity was approximated by that of hydrogen (4.5 ×

10−5[𝐵𝐵𝜇𝜇2𝑠𝑠−1]), an overestimate since most ions in the system are significantly larger and therefore 

exhibit lower diffusion rates. This result does not imply that diffusion can be ignored when simulating all 

struvite crystallisation scenarios though, as its relative impact depends on concentration gradients and 

fluid velocity.  
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 Sensitivity to experimental input variables 

An accurate description of output variable uncertainty, resulting from input uncertainty, is necessary for 

parameter optimisations and provides an understanding of which input variables have the most influence 

on results. In this section output uncertainties propagated from input uncertainties are presented. Output 

uncertainties were normalised against measurement tolerances to indicate whether the propagated 

uncertainty was of significance. A significant result is therefore defined by a normalised value greater 

than 1.  

6.4.1 Input variables 

Input variables were selected for investigation if their uncertainty could be estimated and controlled. 

These are shown in Table 6.2 below. 

Table 6.2 – Input variable uncertainties 

Variable and 
units Value ± Uncertainty Uncertainty Basis 

𝑪𝑪𝑯𝑯 [M] 0.02 ± 5.19 × 10−6 Scales, glassware 
𝑪𝑪𝑵𝑵𝒂𝒂𝑶𝑶𝑯𝑯 [M] 0.0176 ± 1.067 × 10−5 Scales, glassware 

𝑸𝑸𝑵𝑵𝒂𝒂𝑶𝑶𝑯𝑯,𝑸𝑸𝒏𝒏𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒆𝒆𝒏𝒏𝒔𝒔 
[L/h] 4.00 ± 5 × 10−3 Pump resolution 

𝑸𝑸𝒔𝒔𝒕𝒕𝒔𝒔 [L/h] 7.976 ± 0.146 Outlet flow measurements 
 

Methods described by NIST (Taylor & Kuyatt, 1994) were used to calculate uncertainty propagation for 

total flow and feed concentrations. Experimental total flow was defined as a separate variable to inlet 

flow rate because during experiments, total flow was controlled using a valve on the outlet, while inlet 

flows were determined by pumps. The variance in outlet flow was buffered by headspace above the 

mixer. Changes in total flow rate affect the residence time, while variations in individual pump flow rates 

also affect the inlet supersaturation level.  
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6.4.2 Preliminary (min/max) sensitivity analysis 

Figure 6.2 shows that no single experimental input uncertainty had a significant impact on output 

variables. However, the combined effect of uncertainty in all input variables may cause D[50] and PSD 

width to vary up to 15% and 18% more than their measurement tolerance, respectively. 

 

Figure 6.2 – Sensitivity to experimental parameters presented as normalised key output variable 

change resulting from changes in individual key input variables. *Yield is given as thermodynamic 

yield 

These results suggest that it is possible, although unlikely, that uncertainties in experimental conditions 

can cause output variable changes greater than their respective measurement tolerances, using the 

assumed kinetic parameters. The symmetrical nature of + and – responses indicates that the system 

behaved linearly within the range examined. Flow rate of NaOH and nutrient feed had the greatest impact 

on reactor outputs and PSD properties were the most sensitive outputs, irrespective of the input variable. 

Other output variables were relatively insensitive to input uncertainties, and interestingly, outlet pH was 
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completely insensitive to feed phosphorus and NaOH concentration. This shows that pH may not be an 

ideal variable for reactor control (a common practice). Additionally, the uncertainties in total 

experimental flow rate had less effect on all output variables than uncertainties in individual pump flow 

rates, despite being 29.2 times greater, highlighting that the feed component ratios are more important 

than reactor residence time. 

6.4.3 Preliminary (min/max) sensitivity analysis at low growth rate 

Assuming a 1% relative uncertainty in PSD measurements (section 1.1) creates reduced uncertainty at 

low particle sizes. Therefore, propagated PSD uncertainty may exceed measurement uncertainty at low 

growth rates. To examine this effect, the growth rate constant was reduced to a constant 0.043 µm/min, 

which is at the low end of the spectrum of those measured for struvite (section 2.2.4.5). In Figure 6.3 12% 

of the volume based PSD produced in the lower growth rate scenario resides below 1µm. In this region, 

measurement relative uncertainties are greater than 1% because 1% of any measurement made below 

1µm exceeds the 0.01µm lower detection limit.  

 

Figure 6.3 – Volume based particle size distributions for Galbraith et al. kinetic model and reduced 

particle growth rate. 
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The results shown in Figure 6.4 below confirm that at lower growth rates D[50], PSD width and yield 

uncertainties exceed their respective measurement uncertainties. For parameter optimisation purposes, 

this means that if a significantly low growth rate is encountered experimentally, the expected output 

variable uncertainty must be updated from the measurement uncertainty to the new expected variance. 

Since both the particle growth rate models vary significantly (section 2.2.4.5), it is possible that a low 

growth rate may be encountered. Therefore, the uncertainty of PSD properties and thermodynamic yield 

must be included as an estimated variable during parameter optimisations. Stochastic simulations 

discussed in section 6.6 will be used to provide limits to this uncertainty estimation. 

 

Figure 6.4 – Normalised key output variable change resulting from changes in individual key input 

variables at a reduced growth rate. *Yield is given as thermodynamic yield 

When contrasting Figure 6.4 with the higher growth rate data in Figure 6.2, it becomes evident that the 

feed flow rates have a more significant impact at lower growth rates and their impact on thermodynamic 

properties is also larger. More generally, all thermodynamic variables are more sensitive at lower growth 
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rates because of reduced levels of phosphorus removal in the reactor, creating higher levels of 

supersaturation throughout the reactor.  

Observing the reactor output in the low growth scenario, where SI remains high, magnifies the effects of 

feed ratio and NaOH concentration changes. Additionally, all output uncertainties, while different to the 

higher growth rate scenario, remained relatively symmetrical. This showed that although the kinetic 

power law models were high order, they still exhibited a nearly linear response to the range of input 

variances examined. However, this may not remain the case if greater input variances were examined. 

 Kinetic model effects on output uncertainties 

Kinetic parameters offer the greatest potential uncertainty in the model. This section examines the impact 

individual kinetic parameter uncertainties as detailed below:  

1) Fixed percentage (10%) change in uncertainties – to show which kinetic parameters have the 

greatest impact, assuming equal variance 

2) Boundaries of mathematically feasible kinetic parameters based on work by Galbraith et al. – to 

show that the parameter constraints used by Galbraith et al. encompass the data collected in this 

work 

3) Expected kinetic parameter uncertainties from Galbraith et al. – to show the output uncertainties, 

continuing with the assumed model in section 6.4 

4) Generalised kinetic model uncertainty, based on many kinetic studies available in the literature – 

to show what uncertainties could be expected based on the variations in struvite kinetics 

reported in the literature 

6.5.1 Relative effect of kinetic parameters 

To assess the relative effects of changes in kinetic parameters, each kinetic parameter was varied by 

±10%. For consistency the kinetic parameters proposed by Galbraith et al. were used (Galbraith et al., 

2014). Output variable uncertainties used for normalisation are given in Table 6.1 in section 6.2.1. This 
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analysis shows how sensitive each output variable is to each kinetic parameter and allows for comparison 

between results. Table 6.3 and Figure 6.5 show the relative influence of each kinetic parameter. 

Table 6.3 – Relative influence of kinetic parameters 

Property Type Order of Kinetic Parameter Influence 

PSD 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 > 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 >  𝑘𝑘𝑎𝑎 >  𝑛𝑛𝑎𝑎 >  𝑘𝑘𝑛𝑛𝑠𝑠𝑛𝑛 >  𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛 

Yield 𝑛𝑛𝑎𝑎 > 𝑘𝑘𝑎𝑎 > 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 > 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 > 𝑘𝑘𝑛𝑛𝑠𝑠𝑛𝑛 > 𝑛𝑛𝑛𝑛𝑠𝑠𝑛𝑛 

 

 

Figure 6.5 - Galbraith et al. model sensitivity using ±10% uncertainty, showing normalised key 

output variable change resulting from kinetic parameters. Positive and negative sign (+/-) on 

kinetic parameter labels indicate increase and decrease respectively. *Yield is given as 

thermodynamic yield 
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Generally, aggregation-related kinetic parameters have the greatest influence on PSD properties, growth-

related parameters have the greatest influence on yield, and nucleation-related parameters are least 

influential. Assigning equal importance to yield and PSD indicates that aggregation and growth kinetic 

parameters are equally important. However, kinetic parameters have a greater influence on PSD 

properties than thermodynamic properties (relative to measurement uncertainties). Therefore the order 

of kinetic parameter influence on PSD should be used to identify the least important kinetic parameters 

which might be fixed during the parameter optimisation process. Results in Figure 6.5 also reinforce the 

linear nature of the process response to kinetic parameter changes.  

6.5.2 Effect of kinetic parameters within solution space 

This analysis serves to determine whether the range of kinetic parameter values considered by Galbraith 

et al. (Galbraith, 2011), presented in  Table 6.4, can span the range of experimental data in this work. This 

range was adopted by Galbraith et al. using trial and error to ensure numerical stability while allowing a 

broad enough range of conditions to be examined.  

Table 6.4 – Kinetic parameter range proposed by Galbraith et al. (Galbraith, 2011)  

Parameter Optimised Value Lower Limit Upper Limit 

𝒌𝒌𝒏𝒏𝒔𝒔𝒏𝒏 [𝟏𝟏/𝑳𝑳.𝒎𝒎𝒔𝒔𝒏𝒏] 8.5 × 107 1.0 × 107 9.0 × 108 

𝒏𝒏𝒏𝒏𝒔𝒔𝒏𝒏 1.68 1 5 

𝒌𝒌𝑴𝑴 [µ𝐦𝐦/𝐦𝐦𝐦𝐦𝐦𝐦] 12.49 1 15 

𝒏𝒏𝑴𝑴 5.06 1 6 

𝒌𝒌𝒂𝒂𝑴𝑴𝑴𝑴 [𝟏𝟏/𝑳𝑳.𝒎𝒎𝒔𝒔𝒏𝒏] 3.72 × 10−7 1 × 10−8 9 × 10−6 

𝒏𝒏𝒂𝒂𝑴𝑴𝑴𝑴 5.26 1 5 

 

Table 6.5 compares output variable ranges resulting from the parameter ranges considered in Table 6.4 

with those recorded during the experimental work from Chapter 5. The comparison is made with and 
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without particle aggregation considerations. The output variable boundaries in Table 6.5 are the 

minimum and maximum values based on uncertainties in individual kinetic parameters and worst case 

scenarios from combined kinetic parameter changes.  

Table 6.5 – Limits of output variables using previously assumed nucleation and crystal growth 

kinetic parameter boundaries, compared to experimental results 

  Mass and Population Balance 
Related Variables 

PSD Properties 

  SI pH Yield [%] D[50] [µm] Width [µm] 

N
uc

le
at

io
n 

&
 G

ro
w

th
 Boundary Min 0 6.687 23 9 12.55 

Experimental Min 0.01 6.875 46 21.08 38.97 
Experimental Max 0.45 7.244 99 37.45 63.50 
Boundary Max 0.83 7.228* 100 35.44* 54.19* 

N
uc

le
at

io
n,

 
G

ro
w

th
 &

 
Ag

gr
eg

at
io

n Boundary Min 0 6.689 2 12.32 16.90 
Experimental Min 0.01 6.875 46 38.81 40.13 
Experimental Max 0.45 7.244 99 140.87 279.01 
Boundary Max 1.37 7.711 100 839.03 581.81 

*Experimental measurement exceeds boundary maximum 
 

In the nucleation and crystal growth-only scenario, the maximum experimental PSD properties exceed 

those achievable within the proposed parameter space. Therefore a broader nucleation and growth 

kinetic parameter space was utilised during parameter optimisations in this work. When aggregation is 

additionally considered, the PSD range achievable by the model significantly expands to include all 

measured PSD values, suggesting that the aggregation kinetic parameter range is suitable. The instance 

where measured pH exceeds its boundary is not considered significant as it still lies within experimental 

uncertainty. 

6.5.3 Effect of existing struvite kinetic model parameter uncertainties 

This analysis aimed to show whether output variables would be expected to vary significantly when 

adopting the kinetic parameter uncertainties determined by Galbraith et al. (Galbraith et al., 2014). The 

kinetic parameters optimised by Galbraith et al. were the most applicable to this work as they were 
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estimated using DPB methods. The same kinetic parameters as section 6.4.2 are used here. The 

experimental uncertainties examined in that section were neglected here to show only the impacts of 

kinetic parameter uncertainties. Kinetic parameters were varied over their reported ranges (Table 6.6 

below). The worst-case scenario of their combined uncertainties was examined by an increase in 

nucleation and growth rate constant and a decrease in both power law model orders. Decreasing orders 

resulted in an overall increase in nucleation and growth rate.  

Table 6.6 – Kinetics parameter uncertainties 

Parameter Value Uncertainty (95% CI) Uncertainty  
(95% CI) [%] 

𝒌𝒌𝑴𝑴 
[µ𝒎𝒎/𝒎𝒎𝒔𝒔𝒏𝒏] 

12.490 0.061 0.49 

𝒏𝒏𝑴𝑴 5.060 0.005 0.10 
𝒌𝒌𝒏𝒏𝒔𝒔𝒏𝒏 �× 𝟏𝟏𝟎𝟎𝟕𝟕� 
�𝑳𝑳−𝟏𝟏𝐦𝐦𝐦𝐦𝐦𝐦−𝟏𝟏� 

8.500 0.076 0.89 

𝒏𝒏𝒏𝒏𝒔𝒔𝒏𝒏 1.680 0.014 0.83 
𝒌𝒌𝒂𝒂𝑴𝑴𝑴𝑴 �× 𝟏𝟏𝟎𝟎−𝟕𝟕� 
�𝑳𝑳.𝒎𝒎𝒔𝒔𝒏𝒏−𝟏𝟏� 

3.72 0.014 0.38 

𝒏𝒏𝒂𝒂𝑴𝑴𝑴𝑴 5.260 0.004 0.08 
 

Results presented in Figure 6.6 below show that no individual kinetic parameter uncertainty or their 

worst-case combination had a measurable effect on output uncertainty in the Poiseuille flow reactor 

model. Changes to the nucleation rate order had a minimal impact on output thermodynamic properties. 

Both nucleation and growth rate order had a smaller effect on output variables than nucleation and 

growth rate coefficients indicating that they are less important variables in parameter optimisations. 

Growth rate order did however have a more significant effect on phosphorus recovery than nucleation 

rate order but the magnitude of the change remains significantly lower than effects on PSD.  

Interestingly, the combined effect of kinetic parameter uncertainties on PSD was less than the effect of 

uncertainties in individual parameters, while the effect on yield, pH and 𝑆𝑆𝐼𝐼 was greater. This is because, 

when nucleation and growth rates are simultaneously increased or decreased, the amount of 

crystallisation changes accordingly, but the fraction of de-supersaturation contributing to each 
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mechanism is less affected. Put another way, kinetic parameters are positively correlated with respect to 

PSD properties and negatively correlated with respect to thermodynamic properties. This result is also 

shown in 6.5.1. 

 

Figure 6.6 – Galbraith et al. model sensitivity within optimisation uncertainty showing absolute 

normalised key output variable change resulting from kinetic parameters. Positive and negative 

sign (+/-) on labels indicates parameter increase and decrease, respectively. *Yield is given as 

thermodynamic yield 

6.5.4 Effect of generalised model kinetic parameter uncertainty 

Since large variations exist between kinetic models within the literature (section 2.2), it is not unlikely 

that kinetics may be very different to those assumed earlier in this chapter. Figure 6.7 shows the effect 

of uncertainties in kinetic parameters which may be possible for a general model structure. In this general 

kinetic asnalysis, various growth rate investigations from the literature were averaged using a single 

model given by equation 6.4, where a reduced supersaturation was used, given by equation 6.5.  
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𝐺𝐺𝐿𝐿 =
𝑑𝑑𝐿𝐿
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑎𝑎𝑆𝑆𝑠𝑠
𝑛𝑛𝑔𝑔 

6.4 

 

𝑆𝑆𝑠𝑠 = �
𝐼𝐼𝐼𝐼𝐶𝐶
𝐾𝐾𝑠𝑠𝑝𝑝

�
1/3

− 1 
6.5 

 

Where 𝑘𝑘𝑎𝑎 [𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1] and 𝑛𝑛𝑎𝑎 are the growth rate constant and order; 𝑆𝑆𝑠𝑠 is the reduced saturation; 𝐼𝐼𝐼𝐼𝐶𝐶 

is the ion activity product; and 𝐾𝐾𝑠𝑠𝑝𝑝 is the solubility product of struvite. Nearly all previous results were 

found to be represented by a first order model ( 𝑛𝑛𝑎𝑎 = 1 ) and 𝑘𝑘𝑎𝑎  was found to vary between 

0.06 [𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1]  and [0.66 𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1] . For analysis purposes, a baseline value of 𝑘𝑘𝑎𝑎 =

0.36 [𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1] was taken and given an uncertainty of ±0.3 [𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1]. Nucleation rate was also 

investigated using a primary nucleation model, given by equation 6.6.  

𝑚𝑚 = 𝐼𝐼𝑛𝑛 exp �−
16𝜋𝜋𝛾𝛾3𝑣𝑣2

3𝑘𝑘3𝑇𝑇3(lnΩ)2� 
6.6 

 

Where 𝐼𝐼𝑛𝑛 [𝐵𝐵𝜇𝜇−3𝑠𝑠−1] is a kinetic factor (/ pre-exponential factor/ collision factor), 𝑘𝑘 is the Boltzmann 

constant (1.38 × 10−23𝑚𝑚.𝐾𝐾−1), Ω is the saturation ratio, 𝛾𝛾 [𝜇𝜇𝑚𝑚.𝜇𝜇−2] is the interfacial tension between 

the crystal and the solution, 𝑣𝑣𝑚𝑚 [𝐵𝐵𝜇𝜇3] is the molecular volume, and 𝑇𝑇 [𝐾𝐾] is the absolute temperature 

(298𝐾𝐾). Uncertainties in nucleation rate were examined based on interfacial tension reported in the 

literature (15 < 𝛾𝛾 < 50) and uncertainties in the pre-exponential factor, 𝐼𝐼𝑛𝑛. The pre-exponential factor 

for struvite is commonly assumed to be 1017 (Abbona & Boistelle, 1985; Bouropoulos & Koutsoukos, 

2000), although for sparingly soluble salts is reported to be up to 1025  (Mullin, 2001; Alan D Randolph & 

Larson, 1988). Since no substantial information was available to suggest a reasonable variance for this 

value, it was given a baseline of 1017 and varied three orders of magnitude in either direction. 
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It should be noted that the primary nucleation model behaves significantly differently to the power law 

model, showing that model selection is important. When the nucleation rate constant estimated by 

Galbraith et al. was converted to the units of 𝐼𝐼𝑛𝑛 , it became significantly smaller (𝑘𝑘𝑛𝑛𝑠𝑠𝑛𝑛 = 1.42 ×

10−3 [𝐵𝐵𝜇𝜇−3𝑠𝑠−1] ). This highlighted two things: first, that seeded secondary nucleation rate at low 

supersaturation (Galbraith et al. model) is significantly lower than primary nucleation rate (homo- or 

heterogeneous); and second, for the primary nucleation model to represent the same nucleation rate as 

the power law model, a judicious choice must be made in selecting an interfacial tension value as it 

determines the fraction of the pre-exponential maximum (𝐼𝐼𝑛𝑛) achieved at a given supersaturation. This 

is troublesome as interfacial tension cannot be directly measured and is notoriously difficult to estimate. 

Most examinations of nucleation rate and interfacial tension occur around the transitional 

supersaturation where nucleation becomes significant, meaning that there likely exists a high correlation 

between the selection of pre-exponential factor and the estimated interfacial tension. It could be argued 

that the problem of estimating nucleation rates, especially using a primary nucleation model, is essentially 

guess-work. One might be tempted to increase complexity of the model, but without a sufficiently rich 

dataset, this only adds additional degrees of freedom to the problem. As such analysis was continued 

using this model, but results must be treated as estimates at best. 

Figure 6.7 shows that when using the generalised nucleation and crystal growth model, individual kinetic 

parameter uncertainties caused significant uncertainties in output variables. Output variables maintained 

relatively similar ratios of uncertainty for all kinetic parameters, indicating that each kinetic parameter is 

equally important. Particle 𝐼𝐼[50] was the most affected output variable, with uncertainties 50 to 80 

times greater than measurement uncertainty for each individual kinetic parameter. Thermodynamic 

properties also appeared to be more significantly affected in this analysis than in the analysis presented 

in section 6.5.1. This is because the general model utilises a first order growth model, which does not slow 

growth as significantly at SI < 1, as higher order models do. The key conclusion drawn from this analysis 

is that, based on the literature, reactor outputs are highly uncertain. As such, stochastic simulations were 
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used to estimate the expected variance of key output parameters based on the combined uncertainties 

of all kinetic parameters. 

 

 

Figure 6.7 – Generalised kinetic model sensitivity showing normalised key output variable change 

resulting from changes in kinetic parameters within the proposed solution space. Positive and 

negative sign (+/-) on kinetic parameter labels indicate variable increase and decrease 

respectively. *Yield is given as thermodynamic yield 
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 Stochastic simulations 

In this section, stochastic simulations are used to examine the expected variance in reactor outputs using 

a generalised kinetic model using: 1) kinetic parameter uncertainties; and 2) feed concentration 

uncertainties.  

6.6.1 General model 

When assuming a kinetic model for design purposes, the variability of kinetic models available in the 

literature must be taken into consideration. This has been done here by estimating key output variable 

uncertainties using kinetic parameter uncertainties based on the literature. The uncertainties estimated 

here also provided reasonable upper limits to output variable uncertainties (PSD width, 𝐼𝐼[50]  and 

thermodynamic yield) which were found simultaneously with kinetic parameters (Chapter 7). 19  The 

stochastic simulation was performed applying the general kinetic model and associated variances given 

in section 6.5.3 and the input parameter uncertainties given in section 6.4.2. These uncertainties and the 

models used to describe them are shown below in Figure 6.7. A normal distribution was used where a 

parameter value was based on experimental data, while a uniform distribution was used if the distribution 

of a parameter was unknown.  

  

                                                           
19 Using reasonable upper uncertainty limits is important as it constrains the solution space and associated execution 
times. 
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Table 6.7 – Variance models of kinetic parameters and experimental variables used in stochastic 

analysis of a general kinetic model 

Parameters Baseline Notes Distribution Type 
Nucleation pre-exponential 

factor (𝑨𝑨 �𝒏𝒏𝒎𝒎−𝟑𝟑𝒔𝒔−𝟏𝟏�) 
1 × 1017±3 Assumed based on 

literature 
Uniform 

Nucleation interfacial 
tension (𝜸𝜸 [𝒎𝒎𝒎𝒎.𝒎𝒎−𝟐𝟐]) 

39.50 ± 16.66 Reported range = 15 
to 50 

Normal 

Growth rate constant 
(𝒌𝒌𝑴𝑴 [𝒎𝒎𝒔𝒔𝒏𝒏−𝟏𝟏]) 

0.36 ± 0.30 Reported range = 0.06 
to 0.66 

Uniform 

Total reactor outlet flow rate 
[𝑳𝑳.𝒉𝒉−𝟏𝟏] 

7.976 ± 0.1459 Measured Normal 

Nutrient feed flow rate 
[𝑳𝑳.𝒉𝒉−𝟏𝟏] 

4.00 ± 0.005 Assumed based on 
flow increment 

resolution 

Uniform 

NaOH feed flow rate 
[𝑳𝑳.𝒉𝒉−𝟏𝟏] 

4.00 ± 0.005 Assumed based on 
flow increment 

resolution 

Uniform 

Phosphorus concentration 
(𝑯𝑯𝑶𝑶𝟒𝟒 − 𝑯𝑯)  

[𝑴𝑴] 
0.02 ± 5.19 × 10−6 

Calculated using scale 
and glassware 

uncertainty 
Normal 

Ammonia concentration 
(𝑵𝑵𝑯𝑯𝟒𝟒 − 𝑵𝑵) 

[𝑴𝑴] 
0.02 ± 5.19 × 10−6 

Calculated using scale 
and glassware 

uncertainty 
Normal 

 

Stochastic simulations were conducted in batches of 100 until the mean and standard deviation of all 

output variables became independent of further simulations beyond an arbitrary tolerance of 1%. PSD 

width was used to identify the maximum number of simulations required, as it was found to fluctuate 

most (since it is calculated based on two properties 𝐼𝐼[90] and 𝐼𝐼[10]). Figure 6.8 and Figure 6.9 show the 

normalised change of the PSD width average and standard deviation with increasing simulation number. 

It can be seen that the change in width average and standard deviation stabilised below 1% after 150 and 

120 simulations, respectively. Therefore, 200 simulations was deemed sufficient to estimate all output 

variable uncertainties. 
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Figure 6.8 – PSD Width normalised change in average from generalised kinetic model shown as 

moving average over 10 data points 

 

Figure 6.9 – PSD Width normalised change in standard deviation from generalised kinetic model 

shown as moving average over 10 points 
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The mean and standard deviation of each key output variable are shown below in Table 6.8. The PSD 

properties, thermodynamic yield and outlet 𝑆𝑆𝐼𝐼 exhibited standard deviations in the vicinity of 100%. This 

estimate provided an upper limit for estimations of output measurement uncertainties during parameter 

optimisation simulations, helping to constrain the problem and reduce solution time. This degree of 

uncertainty is not expected in any reactor because kinetic model uncertainty in the literature is likely 

systematic rather than random, having a strong dependence on differences in experimental conditions 

and parameter optimisation techniques. The wide variation in struvite kinetics available in the literature 

suggests that more rigorous experimental work and more detailed modelling is necessary. While it is 

tempting to avoid increased model complexity for fear of introducing too many unknown parameters (as 

mentioned earlier), it is evident that simplified models are unable to consistently represent struvite 

crystallisation. The power of a detailed model lies in its ability to show when operational parameters have 

a significant or insignificant impact on system outputs. This understanding is necessary for improved 

crystalliser designs. The process of improving understanding is iterative though. At this point, any number 

of more complex models could be proposed, but the ability to test them is limited by richness of datasets.  

Table 6.8 – Key output variable average and standard deviation predicted by stochastic 

simulations using a generalised kinetic model 

Output Variable Mean ± Standard Deviation Relative Error [%] 

PSD D[50] 9.22 ± 11.36 123.21 

PSD Width 13.33 ± 15.11 113.35 

pH 6.955 ± 0.295 4.24 

Thermodynamic Yield 0.593 ± 0.452 71.67 

SI 0.392 ± 0.446 113.78 

 

What these results did show, however, is that if a particular struvite crystallisation kinetic model is 

assumed to accurately represent a system and used for design purposes, the results must be taken with 
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great caution. This assertion remains true even for scenarios where experimental conditions are similar. 

For example, kinetic investigations by both Glabraith et al. and Ali & Schneider were conducted using 

synthetic solutions under similar thermodynamic conditions (pH, 𝑆𝑆𝐼𝐼 , phosphorus concentration), but 

using batch and continuous reactors, respectively, and yielded very different results – their growth rate 

constants were an order of magnitude different and the growth rates were significantly greater at larger 

𝑆𝑆𝐼𝐼 in the batch scenario (Ali & Schneider, 2008a; Galbraith et al., 2014). These results might be random 

but are most likely attributable to systematic differences in data collection and analysis methods. 

Similarly, one study showed that induction time model parameters vary with phosphorus concentration 

at constant 𝑆𝑆𝐼𝐼, challenging traditional induction time theory (Galbraith & Schneider, 2009b), while other 

induction time models regressed under different 𝑆𝑆𝐼𝐼  and phosphorus concentrations are very similar 

(Mehta & Batstone, 2013; K. N. Ohlinger et al., 1999). Replication of studies may be useful in gaining 

better insight into this phenomenon, although very little attention is paid to repeating existing work. 

Replication (to some extent) is more frequent in industrial applications, since often similar technologies 

are used. It is however difficult to analyse differences in industrial results owing to variations in key 

nutrient, organics and competing and spectator ion concentrations.  

6.6.2 Feed concentration variations 

Feed concentration in experimental work conducted in this thesis was known to a high certainty, but in 

industrial applications can vary significantly and is difficult to measure in real time. As such, reactor 

sensitivity to industrial concentration variations was considered. Table 6.9 shows the baseline and 

variance models for feed phosphorus and ammonia concentrations, taken as the average and standard 

deviation of digester centrate based on data from the Cleveland Bay Purification Plant, Townsville QLD, 

Australia, and from various literature sources (Britton et al., 2005; Lahav et al., 2013; Lew et al., 2010; 

Musvoto, Wentzel, Loewenthal, & Ekama, 2000; Perera, Wu, Chen, & Han, 2009; Ueno & Fujii, 2001; van 

Rensburg, Musvoto, Wentzel, & Ekama, 2003). A triangular distribution was favoured over a normal 

distribution because a normal distribution enabled negative concentrations. Uncertainties in feed flow 

rates, sodium hydroxide concentration and magnesium concentration were the same as in section 6.4.2. 
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Flow and reagent concentration uncertainties were included to give an indication of ‘real life’ 

performance of the reactor. Diurnal patterns in flow were not considered of importance since they are 

buffered by upstream processes and can be accounted for with changes in feed flow rates. 

For consistency with earlier analyses, simulations were performed using a fixed 𝐼𝐼𝑎𝑎𝐶𝐶𝐻𝐻  flow and 

concentration necessary to achieve 𝑆𝑆𝐼𝐼 = 1.0 at the baseline phosphorus concentration. The spectator ion 

concentration (in this case 𝐶𝐶𝑚𝑚−) was increased proportionally with ammonium concentration to maintain 

a similar reactor pH. Key output variables were monitored at steady state (80min). Using a fixed caustic 

dosing rate showed how a reactor without a control system would respond to natural variations. The 

kinetic model from section 6.5 was used for this analysis, incorporating kinetic parameter uncertainty. 

Finally, absolute yield was used instead of thermodynamic yield because the thermodynamic equilibrium 

point varied significantly with varying input nutrient concentrations. 

Table 6.9 – Expected variations in phosphorus and ammonia concentration in anaerobic digester 

centrate  

Variable Baseline Uncertainty 
(standard deviation) 

Variance Model 

Phosphorus concentration 
(𝑯𝑯𝑶𝑶𝟒𝟒 − 𝑯𝑯)  

[M] 
4.76 × 10−3 2.80 × 10−3 Triangular 

Ammonia concentration 
(𝑵𝑵𝑯𝑯𝟒𝟒 − 𝑵𝑵) 

[M] 
3.86 × 10−2 1.92 × 10−2 Triangular 

 

Table 6.10 shows that the final pH and 𝑆𝑆𝐼𝐼 vary relatively little, but the total yield varies significantly. For 

the purposes of removing phosphorus, yield is not considered important since it is assumed that the seeds 

produced by the PFR will be fed to a growth reactor where further phosphorus recovery will be achieved. 

For the purpose of using intentional continuous seeding to influence growth reactor operation though, 

the yield may be important as it is a direct measure of the seed loading rate. Reports on the effects of 

seed loading on final PSD vary in the literature, highlighting the need for further investigations. Increased 
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seed loading in a continuous tubular crystalliser has been shown to reduce final product size (Eder et al., 

2011), which seems logical since the same mass deposition is distributed over a greater number of 

particles. Alternatively, growth and aggregation rates have been shown to increase with seed loading in 

other systems (Pitt, Mitchell, Ray, Heywood, & Hounslow, 2012). On this basis, it would be prudent to 

perform investigations into the effects of seed loading on final PSD in a struvite system before any 

conclusions are made. Unfortunately this is outside the scope of this work. 

Table 6.10 – Key output variable average and standard deviation predicted by stochastic 

simulations using a generalised kinetic model 

Output Variable Average ± Standard Deviation Relative Error [%] 

PSD D[50] 18.72 ± 6.05 32.32 

PSD Width 30.82 ± 10.73 34.82 

pH 7.44 ± 0.17 2.28 

Total Yield 0.21 ± 0.14 66.67 

SI 0.35 ± 0.04 11.43 

 

The D[50] and width variation (which are most important in a seed producing reactor) were approximately 

±33%. The seed size range was comparable (both as an absolute and percentage) to seed PSDs used in 

previous struvite kinetic studies, where seeds have ranged in size from 5 - 20µm (Galbraith et al., 2014); 

35±3µm (Mehta & Batstone, 2013); 45 – 63 µm (Ali et al., 2005). In industrial struvite crystallisation 

applications, larger seed particles in the size range of 100 to 1000 µm have been used (Le Corre et al., 

2009). However, it is likely that to this point, researchers have used what they have on hand rather than 

designing and/or controlling seeds. This work aims to generate seeds intentionally to achieve better 

control of the crystal growth process. Unfortunately, no investigations could be found on the effects of 

struvite seed PSD on final PSD, making this a necessary investigation before any real conclusions can be 

made on the application of a Poiseuille flow seed reactor. Work on other crystallisation systems has 



204 
 

however shown controlled seeding to be effective. Work on L-asparagine monohydrate has shown that 

continuous seeding of a growth reactor with a controlled PSD in the range of 10 – 20 µm can lead to tight 

control of output PSD (Jiang et al., 2012). Other work has used seeds in the size range of 40 – 106 µm to 

control a final PSD with a D[50] > 500 µm (Aamir et al., 2010), a comparable product size to struvite 

applications. Therefore, the PFR could likely produce a reasonable seed size range for the purposes of 

kinetic investigations and industrial PSD control.  

 Summary 

• Sensitivity analysis determined diffusion effects to be negligible. Removing diffusion from the 

model halved simulation time 

• Propagation of uncertainty in experimental variables was shown to cause significant variation in 

key output variables under low growth rate conditions. This was because low growth rate 

conditions increased the relative uncertainty in thermodynamic properties, due to the low level 

of phosphorus recovery 

• Output variables were less sensitive to large variations in total flow rate than smaller variations 

in individual flow rates, since these caused changes in feed ratios 

• PSD properties were more sensitive to kinetic parameter uncertainties than to thermodynamic 

properties were. However, if the kinetic model presented by Galbraith et al. was assumed, then 

kinetic uncertainties did not have a significant impact on reactor outputs 

• Nucleation and growth kinetic boundaries used by Galbraith et al. were insufficient to cover the 

range of data observed in this work 

• Nucleation rate order and constant had a smaller effect on thermodynamic and PSD properties 

than other kinetic parameters, suggesting that their accuracy is less important during parameter 

optimisation calculations 

• Kinetic parameters are positively correlated with respect to PSD properties and negatively 

correlated with respect to thermodynamic properties 
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• If more liberal kinetic uncertainties or a more general kinetic model are assumed, a broad 

variation in reactor outputs may be possible for this reactor 

• Stochastic simulations showed that selection of kinetic parameters for reactor simulation should 

be performed cautiously as expected model variations can produce PSD and thermodynamic 

property uncertainties of ±100%. This suggests that further investigations and replications of 

struvite crystallisation kinetic studies are necessary 

• A Poiseuille seed reactor using industrial feeds is likely able to produce seeds for struvite kinetic 

studies and industrial applications 

• Effects of seed PSD and seed loading rate on final PSD from a growth reactor require further 

investigation 

 Conclusions 

Analysis in this chapter made a number of useful findings. It was shown that diffusion effects could be 

neglected from the model without significant recourse, resulting in valuable reductions in simulation time 

during subsequent parameter estimations. Simple delta analysis was able to show that it is possible 

(however unlikely) that propagated input variable uncertainty may exceed that of output variable 

measurements. Therefore, uncertainties need to be found during the parameter estimation process. It 

was shown that a broader kinetic parameter solution space is necessary in this work than what was used 

by Galbraith, ensuring that the estimation process is not constrained. Examining the primary nucleation 

model showed that interfacial tension is a very important parameter. Since this parameter is highly 

uncertain, a power law model will be used in the parameter estimation process. This also allows for 

comparison kinetic parameters found in this work to those found by Galbraith. Finally, it was shown that, 

expectedly, nucleation and growth kinetic parameters are correlated, meaning that some parameters 

may need to be fixed to obtain a reasonable degree of certainty in the parameter optimisation process. 

The least influential parameters were then identified as candidates to be fixed. Using equal percentage 

uncertainty for kinetic parameters showed that nucleation kinetic parameters were least influential. 
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However, using uncertainties regressed by Galbraith showed that nucleation and growth order were least 

influential. Since growth rate order is relatively well defined in the literature and nucleation rate order is 

not, the nucleation and growth rate orders are likely the best options for fixing.  
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 Kinetic parameter optimisation 

 

As shown in Chapter 6, previously determined nucleation and crystal growth kinetic 

parameters did not produce PSDs or phosphorus recovery data fitting experimental data 

from this work. This chapter aims to improve this fit by conducting parameter 

optimisations for struvite nucleation, growth and aggregation power law model kinetic 

models. Kinetic parameters were tuned using the combined population balance and 

Poiseuille flow model. Each of these models was presented individually in Chapters 3 and 

4. Sensitivity analysis of the combined model presented in Chapter 6 was used to inform 

uncertainties and kinetic parameter range boundaries in the parameter optimisation 

process. This chapter first presents information on parameter optimisation methods, 

including uncertainty models, parameter selection, parameter stability and solution 

techniques. The choice of datasets for the kinetic parameter optimisations are explained 

and justified, and the quality of the fit between the model and experimental datasets is 

discussed. 

 Methods 

The parameter optimisation process works by iteratively varying kinetic parameters to minimise an 

objective function (section 7.1.3) incorporating differences between measured and simulated data. Since 

the objective function can incorporate measurements from different conditions of experiments, 

parameters can be regressed to simultaneously best fit all datasets. The parameter optimisations 

conducted in this work are visualised in Figure 7.1 below and described in detail in the following sections. 

Two separate parameter optimisations were conducted. The first used the sonicated data to estimate 

nucleation and crystal growth kinetic parameters, and the second used unsonicated data to estimate 
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aggregation kinetic parameters. Parameter optimisations using batch data were also used to investigate 

alternative kinetic models. 

 

Figure 7.1 -  Parameter optimisation flow chart for nucleation and crystal growth kinetic 

parameters 

 

Figure 7.2 -  Parameter optimisation flow chart for aggregation kinetic parameter  
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Figure 7.3 – Parameter optimisation flow chart for nucleation and crystal growth kinetic parameters 

Before parameter optimisations could be conducted, it was important to ensure control of the process. 

Various factors influencing the parameter optimisation are discussed in this section including: 

measurement uncertainty models, parameter selection and solution techniques. First parameter 

uncertainty models were selected (section 7.1.1), then key kinetic parameters were selected for 

optimisation to reduce the probability of parameter correlation (section 7.1.2). Finally, solution 

techniques were investigated to identify a numerically stable parameter range, ensure an even 
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contribution of experimental measurements to the optimisation process and identify solution local 

minima (section 7.1.3). 

7.1.1 Uncertainty and variance model selection 

The regressed parameter values depend on two key factors: 1) the validity of the model (assessed in 

earlier chapters), and 2) the experimental measurements and their uncertainties. Uncertainties and 

variance models can have a significant influence on the parameter optimisation process. Although 

measurement uncertainties were assumed20 to refine the methods discussed herein, sensitivity analysis 

in Chapter 5 showed that PSD and yield uncertainties may exceed expected measurement uncertainties. 

Therefore the uncertainties were also estimated within the parameter optimisation process by using a 

feature of the optimisation tool which includes each measurement uncertainty as regressed parameter. 

Variance models used are shown in Table 7.1. 

Table 7.1 – Variance models used for parameter optimisation 

Measured Variable Variance Model Initially Assumed 
Variance 

Calculated Variance 

Phosphorus Concentration (𝑪𝑪𝑯𝑯𝑶𝑶𝟒𝟒𝟑𝟑−) 
[M] 

Constant variance 8.88 × 10−5 1.00 × 10−4 

PSD Volume 
[%] 

Constant variance 0.01 – 2.73* 1.16 

PSD Volume (zero measurement) 
i.e. volume fraction in cell = 0** 

[%] 

Constant variance 0.01 1.10 × 10−4 

PSD Median (D[50])*** 
[µm] 

Constant variance 4.83 7.32 

PSD Width*** 
[µm] 

Constant variance 9.62 10.35 

*Each PSD cell was given its own variance within this range based on experimental data variance 
**A separate variance model must be specified for PSD volume fraction zero measurements to ensure 
that these terms do not dominate the objective function (discussed below) during parameter 
optimisations 
***Calculated using the uncertainty in volume % 

                                                           
20 Measurement uncertainties were initially assumed based on experimental work in Chapter 5 
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A constant variance model21 was used for both outlet phosphorus concentration and PSD measurements. 

Constant variance is more appropriate to the collected PSD data as it avoids measurements with small 

absolute values exhibiting a small absolute variance, but large relative variance.  

7.1.2 Selecting optimisation parameters 

Previous work has shown that regressed parameters are not independent during the optimisation process 

(Galbraith, 2011). This means that a change in one parameter can be offset by a change in another, to 

achieve a similar fit to a dataset. Preliminary testing here found that similutaneously optimising for all 

parameters resulted in unacceptably long simulation times (~4 weeks) and parameter uncertainties in the 

range of 100%. Unfortunately, this meant that targeted parameter selection was necessary. Most 

influential parameters were kept in the optimisation, while least influential parameters were fixed. 

Section 6.5.1 showed that nucleation order was unequivocally the least influential kinetic parameter. This 

was followed by nucleation rate constant, however this parameter was maintained in the optimisation to 

allow nucleation rate to be varied during simulations. Results differed thereafter depending on whether 

PSD or yield were considered. PSD impacts were used to determine kinetic parameter importance though, 

since the magnitude of effect was far greater. On this basis, growth order was fixed. Similarly, in the 

aggregation parameter estimations, aggregation order was fixed. This method is supported by results in 

section 6.5.3, which use parameters and uncertainties optimised by Galbraith, to show that rate orders 

are less influential than their respective rate constants, on PSD and yield output variables. The nucleation 

and aggregation orders were set to 1.68 and 5.26, respectively, for comparison with previous estimations 

(Galbraith et al., 2014). A 2nd order growth rate model with respect to SI was assumed, aligning with the 

majority of previously determined struvite growth rate models (section 2.2.4) and traditional 

crystallisation theory (Mullin, 2001).22 Additionally, the fifth order growth model used by Galbraith made 

                                                           
21 Variance models available in the gPROMS software package include constant variance, constant relative variance, 
heteroscedastic (power law relative variance) and linear variance. 
22 When the traditional second order model using reduced saturation is converted to saturation index, the order 
becomes 2.2 as the logarithmic saturation index changes slower. This difference is not considered important 
considering the insensitivity of reactor outputs to growth rate order. 
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it very difficult to reach the near-equilibrium conditions observed in this work – an average of 99% 

thermodynamic phosphorus recovery in the Roughton mixer SI = 1.4 condition shown in section 5.5.3. 

This is because high order growth models cause the growth rate to rapidly decline as supersaturation 

approaches zero. 

Parameter range upper boundaries were fixed to allow only solvable combinations (Table 7.2) and checks 

were made to ensure that the parameter ranges allowed prediction of the maximum PSD properties 

(D[50] and PSD width). Parameter range lower boundaries were arbitrarily set as they did not cause 

numerical instability and were not constrained during parameter optimisations. The lower boundary of 

the growth rate constant was based on the lowest observed in the literature and that of the nucleation 

rate constant was assigned a value which did not affect PSD within measurement uncertainty (determined 

in Chapter 6).  

Table 7.2 – Numerically stable parameter range boundaries 

Kinetic Parameter Lower Boundary Upper Boundary 

Growth rate constant (𝒌𝒌𝑴𝑴) [µm/min] 5 230 

Nucleation rate constant (𝒌𝒌𝒏𝒏𝒔𝒔𝒏𝒏) [1/L.min] 1 × 105 5 × 109 

Aggregation rate constant (𝒌𝒌𝒂𝒂𝑴𝑴𝑴𝑴) [L/min] 1 × 10−8 7.44 × 10−6 

Growth rate order (𝒏𝒏𝑴𝑴) 2 2 

Nucleation rate order (𝒏𝒏𝒏𝒏𝒔𝒔𝒏𝒏) 1.68 1.68 

Aggregation rate order (𝒏𝒏𝒂𝒂𝑴𝑴𝑴𝑴) 1 6 

 

7.1.3 Solution techniques 

The software package gPROMS was chosen in this work for parameter optimisation purposes for its ease 

of implementation with pre-existing models developed by Galbraith et al. (Galbraith, 2011) and because 

it allows the simultaneous estimation of multiple parameters using ensemble data sets (dynamic and 
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steady state data sets from a variety of experimental conditions). The estimation technique also allows 

sensor variance to be quantified, as per the above discussion.  

The objective function (equation 7.1) used by the gPROMS software for all parameter optimisations, 

determines optimum kinetic parameters based on experimental data. It is a global, normalised, weighted 

objective function and is statistically robust. Optimisation was conducted using a nonlinear optimisation 

solver built into the gPROMS software. The solver employs a sequential quadratic programming method 

for the solution of a nonlinear programming problem.  

Φ =
𝐼𝐼
2

ln(2𝜋𝜋) +
1
2

min
θ
��� � �ln�𝜎𝜎𝑖𝑖𝑗𝑗𝑘𝑘2 � +
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Where 𝐼𝐼 is the total number of measurements; 𝜃𝜃 is the set of estimated model parameters, subject to 

upper and lower bounds; 𝐼𝐼𝐼𝐼 is the number of experiments performed; 𝐼𝐼𝑉𝑉𝑖𝑖 is the number of variables 

measured in the 𝑚𝑚𝑠𝑠ℎ  experiment; 𝐼𝐼𝑀𝑀𝑖𝑖𝑗𝑗  is the number of measurements of the 𝑗𝑗𝑠𝑠ℎ  variable in the 𝑚𝑚𝑠𝑠ℎ 

experiment; 𝜎𝜎𝑖𝑖𝑗𝑗𝑘𝑘2  is the variance of the 𝑘𝑘𝑠𝑠ℎ  measurement of variable 𝑗𝑗 in experiment 𝑚𝑚; �̃�𝑧𝑖𝑖𝑗𝑗𝑘𝑘  is the 𝑘𝑘𝑠𝑠ℎ 

measured value of variable 𝑗𝑗 in experiment 𝑚𝑚; and  𝑧𝑧𝑖𝑖𝑗𝑗𝑘𝑘  is the 𝑘𝑘𝑠𝑠ℎ (model-) predicted value of variable 𝑗𝑗 in 

experiment 𝑚𝑚.  

In each iteration of the optimisation procedure, parameters are varied, the model is solved and results 

are evaluated. The following criteria must be met before an optimal solution is accepted: 1) No parameter 

or variable boundary conditions are exceeded; 2) The rate of change of the objective function is zero; 3) 

An optimisation tolerance (calculated by normalising a Lagrange function incorporating the objective 

function), is less than a given uncertainty (default 0.001). If these criteria are not met, parameters are 

varied to achieve a solution closer to an optimum. Since the optimisation tolerance is somewhat arbitrary, 

a solution can also be accepted if the absolute objective function change is less than 1E-12 between 

iterations.  
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Using volume based PSD measurements increases simulation time by a factor of two, but produces a 

lower objective function value, indicating a better fit to data and more accurate parameter optimisations. 

As such, volume fraction PSD measurements were used in this work. 

PSD measurements consist of volume fractions at discrete representative sizes called cells. Cells in which 

all experimental measurements were zero were deemed unnecessary in the parameter optimisation 

model and were eliminated to improve solution times and focus parameter optimisations on meaningful 

data. This is important since the optimisation objective function is contributed to by all measurements 

and can be unnecessarily weighted by ‘zero’ measurements away from the main PSD. Often the smallest 

detected particle size is significantly larger than the assumed nuclei size and the intermittent cells created 

by the geometric distribution are not used. Some of the cells between the nuclei size and the first 

measured particle size can be lumped together without sacrificing accuracy23 or numerical stability. This 

variable discretisation capability is one advantage of the cell average technique. The geometric 

distribution must be maintained in higher cells (𝑚𝑚 ≥ 2) to minimise numerical diffusion. Figure 7.4 below 

shows how this was achieved and Figure 7.5 and Figure 7.6 show that moments and number density were 

not significantly affected. When applied to the measurement discretisation used by the Malvern 

Mastersizer3000, a 26% simulation time reduction was achieved by extending the second cell to 115% of 

the first cell size (whereas in the original distribution it was only 14% larger). Further lumping of smaller 

cells created numerical instability.  

 

Figure 7.4 – large lower cell created by combining smaller geometrically distributed cells 

                                                           
23 When combining lower cells, the first representative size must still be defined at a sufficiently low size relative to 
growth rate to ensure the DPB represents nucleation properly (as discussed earlier). 

𝑣𝑣−1/2 𝑣𝑣3/2 𝑣𝑣5/2 𝑣𝑣7/2 𝑣𝑣1 𝑣𝑣3 

1st cell 2nd cell 3rd cell 

𝑣𝑣2 
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Figure 7.5 – Error in PSD moments caused by combining smaller cells 

 

 

Figure 7.6 – PSD Number density difference caused by combining lower cells 
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Since there are 87 discrete particle size ranges (cells) in each PSD measurement24, the PSD measurements 

hold 87 times the weighting of phosphorus recovery measurements in the objective function. To evenly 

weight PSD and phosphorus recovery measurements in the objective function, a weighting factor of 87 

was added to phosphorus recovery measurements. This was achieved by multiplying the objective 

function term ��̃�𝑧𝑖𝑖𝑗𝑗𝑘𝑘 − 𝑧𝑧𝑖𝑖𝑗𝑗𝑘𝑘� by a weighting factor of 87. Addition of a weighting factor gave a significantly 

better fit to phosphorus recovery measurements, without noticeable changes to PSD fit or solution time.  

The Cell Average Technique (CAT) was used for all nucleation and crystal growth parameter optimisations. 

The Galbraith Modified Hounslow (GMH) technique was favoured for aggregation parameter 

optimisations because of its superior aggregation simulation, despite carrying a 4.15% particle volume 

uncertainty. This is an unfortunate result of the iterative nature of parameter optimisations. In future, 

steps must be taken to obtain more efficient solutions to the CAT aggregation model and to develop 

steady state model solutions for parameter optimisation purposes. 

A multi-start analysis was conducted to ensure that initial guesses did not influence parameter 

optimisation results. For consistency with the optimisations shown later in this chapter, nucleation and 

crystal growth parameter optimisations were conducted separate to those for aggregation. Table 7.3 

shows that kinetic parameters were estimated to be the same irrespective of starting condition, 

suggesting that no local minima existed for this problem.  

 

 

 

 

                                                           
24 While the Mastersizer3000 uses 101 cells, only 87 were necessary to cover all measurement data. Reducing the 
total number of cells considered reduces simulation time. 
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Table 7.3 – Multi-start analysis results 

 
 

Low Medium High 

Initial 
Guess 

𝑘𝑘𝑎𝑎 
 [𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1] 

6 12.5 25 

𝑘𝑘𝑛𝑛𝑠𝑠𝑛𝑛 
[𝐿𝐿−1𝜇𝜇𝑚𝑚𝑛𝑛−1] (× 107) 

0.1 8.5 100 

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎  
[𝐿𝐿.𝜇𝜇𝑚𝑚𝑛𝑛−1] (× 10−7) 

0.1 1 10 

Weighted residual/Chi squared (<1 represents 
good fit) 

0.45 0.45 0.46 

Number of iterations 8 14 9 

Regressed 
Value 

(CI=95%) 

𝑘𝑘𝑎𝑎  
[𝜇𝜇𝜇𝜇.𝜇𝜇𝑚𝑚𝑛𝑛−1] 

9.12 ± 0.30 9.09 ± 0.30 9.00 ± 0.28 

𝑘𝑘𝑛𝑛𝑠𝑠𝑛𝑛 
[𝐿𝐿−1𝜇𝜇𝑚𝑚𝑛𝑛−1] (× 107) 

1.00 ± 0.05 1.00 ± 0.05 1.00 ± 0.05 

 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎  
[𝐿𝐿.𝜇𝜇𝑚𝑚𝑛𝑛−1] (× 10−7) 

0.771 ± 0.114 0.770 
± 0.113 

0.771
± 0.114 

 

7.1.4 Experimental datasets used for optimisation 

PFR kinetic parameter optimisations used steady state data from the Roughton mixer because of its better 

mixing performance (Chapter 5). In addition, supplementary unseeded batch experiments (detailed in 

Appendix G) were conducted to provide temporal PSD and phosphorus recovery data not achievable by 

the PFR and reduce parameter optimisation uncertainty. This is possible since each dataset can be 

combined with its associated process model to feed into the parameter optimisation process.  

Early samples in the batch experiments contained insufficient crystal concentration to achieve the laser 

obscuration necessary for reliable PSD measurements, specifically, samples taken at 17.97min, 14.12min 

and 12.83min for SI = 0.8, 1.0 and 1.4, respectively. Therefore, data used for kinetic parameter 

optimisation included: steady state PFR phosphorus recovery and PSD data; temporal batch phosphorus 

recovery data; and the later segments of batch PSD data. The lack of reliable PSD information available 

early in the crystallisation process casts some doubt upon estimated kinetic parameters, as it is during 

this time that significant changes occur. Measurement techniques capable of accurately detecting small 

particles (>0.01µm) at low concentrations (<1%) are highly recommended for future studies of 
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crystallisation kinetics. Such techniques may include single particle optical sizing or quenching and 

concentrating large samples. 

 Results and discussion 

The following sections show the optimisation fits to PSD and phosphorus recovery datasets and 

independent datasets. PSD data is displayed as an average of the multiple PSD measurements taken, with 

their variability described by the standard deviation.25 The regressed kinetic parameters are shown in 

Table 7.4. 

Table 7.4 – Estimated Kinetic Parameters for Poiseuille flow reactor using Roughton mixer. 

Uncertainties given as 95% confidence intervals 

Mechanism (𝒔𝒔) Rate Constant Parameter 
Correlation (R) 

95% CI [%] Rate Order (fixed) 

Nucleation (× 𝟏𝟏𝟎𝟎𝟕𝟕) 
𝒌𝒌𝒏𝒏𝒔𝒔𝒏𝒏 [𝑳𝑳−𝟏𝟏𝒎𝒎𝒔𝒔𝒏𝒏−𝟏𝟏] 7.509 ± 0.257 

-0.91 
3.42% 1.68 

Growth 
𝒌𝒌𝑴𝑴 [𝝁𝝁𝒎𝒎.𝒎𝒎𝒔𝒔𝒏𝒏−𝟏𝟏] 16.72 ± 0.195 1.17% 2 

Aggregation (× 𝟏𝟏𝟎𝟎−𝟔𝟔) 
𝒌𝒌𝒂𝒂𝑴𝑴𝑴𝑴 [𝑳𝑳.𝒎𝒎𝒔𝒔𝒏𝒏−𝟏𝟏] 2.09 ± 0.01 N/A 0.5% 5.26 

 

Kinetic parameter uncertainties shown in Table 7.4 were up to 5 times larger than those found in 

optimisations by Galbraith et al. [ref]. However, they are still deemed acceptable for future design 

purposes, as it is unlikely that they would have a measureable impact on key reactor output parameters. 

This is demonstrated by results from Chapter 6, which showed that: 1) kinetic parameter uncertainties 

(±10%) which propagated to measurable changes in output variables were 3 times larger than the 

maximum uncertainty regressed here (±3.42%); and 2) Galbraith et al.’s kinetic parameter uncertainties 

caused maximum key output parameter variations approximately 10 fold lower than measurement 

uncertainties.  

                                                           
25 Error was presented as the standard deviation of all measurement values to show how the shapes of the curves 
varied. 
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Outlet phosphorus concentration uncertainty predicted during the parameter optimisation process 

(Table 7.1) was 12.6 % higher than what was estimated experimentally (8.88 × 10−5) because of the 

variation between individual data points. It is unknown whether this variation stems from reactor 

operation or measurement technique, but this increased level of uncertainty is not considered of 

significance to overall results considering that it equates to a maximum relative uncertainty of 1.32% (for 

SI = 1.4 phosphorus concentration measurements). Average PSD volume percentage measurement 

variance was estimated to be 1.16 % (absolute); significantly larger than if the recommended 1% relative 

uncertainty were used (PSD measurement device manufacturer specification). This shows that the 

combination of input uncertainties (flow rate, concentration and kinetics) was sufficient to increase the 

reactor output PSD variance beyond expected measurement variance. When PSD uncertainty was 

propagated to D[50] and PSD width, their respective uncertainties were 7.32% and 10.35%. This is lower 

than previously used struvite median diameter uncertainty of 20% (Galbraith et al., 2014), and is deemed 

to be a realistic estimation useful for future work. Quantifying kinetic parameter uncertainty allows for 

informed comparison of results to the literature and quantification of propagated uncertainty in any 

subsequent reactor designs. 

7.2.1 Nucleation & crystal growth 

Figure 7.7 and Figure 7.8 show nucleation and growth kinetic parameter optimisation results, comparing 

experimental and simulated PSDs and phosphorus recovery, respectively. 
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Figure 7.7 – PSDs for nucleation and crystal growth parameter optimisation using the Roughton 

mixer 
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Figure 7.8 – Phosphorus recovery for nucleation and crystal growth parameter optimisation using 

the Roughton mixer 



222 
 

The contributions of different measurements to different terms are shown for the readers information 

below in Table 7.5. The absolute value of the objective function is dominated by the residual term 

(��̃�𝑧𝑖𝑖𝑗𝑗𝑘𝑘 − 𝑧𝑧𝑖𝑖𝑗𝑗𝑘𝑘�/𝜎𝜎𝑖𝑖𝑗𝑗𝑘𝑘2  ) pertaining to the phosphorus concentration measurements. This is because the 

already low uncertainty in the phosphorus measurement is amplified by the weighting factor 

implemented. However, the large magnitude does not indicate that the optimisation is most sensitive to 

phosphorus concentration. A more detailed examination of the hessian would be necessary to determine 

this. 

Table 7.5 – Nucleation and crystal growth parameter estimation objective function contributions 

SI Measurement Constant Term Variance Term Residual Term 

0.8 
P conc. 8.3 -124.2 85989.9 

PSD 719.5 -2231.8 524.1 

1.0 
P conc. 7.4 -110.4 105500.0 

PSD 639.6 -1903.2 719.7 

1.4 
P conc. 5.5 -82.8 46673.7 

PSD 479.7 -1437.0 196.7 

 

Figure 7.7 shows that the under-shoot of larger particles for SI = 0.8 is more pronounced than the under-

shoot of small particles for SI = 1.0 and 1.4. This is because the geometric discretisation creates a larger 

concentration of data points in lower size ranges, unevenly weighting the fit towards the smaller particles 

in the distribution. Future parameter optimisations could be improved by incorporating a particle size 

weighting into the objective function to account for the geometric discretisation.  

The PSDs in Figure 7.7 are slightly narrower, compared to the experimental data, in all scenarios. This 

indicates minor formation of agglomerates (strong aggregates) unable to be disrupted by sonication. The 
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transition between weak aggregate and fully formed agglomerate can be modelled by incorporating 

aggregate density and bond strength parameters although this is outside the scope of this work. 

The correlation coefficient (𝑅𝑅 ) between 𝑘𝑘𝑎𝑎  and 𝑘𝑘𝑛𝑛𝑠𝑠𝑛𝑛  was −0.91 , showing an inverse relationship 

between these parameters. Although the correlation value was large, it is not high considering the that 

the model is non-linear, and was not considered high enough by gPROMS (>0.95) to be of concern. 

Additionally, since the correlation coefficient is based on linear regression theory, the meaning of this 

result is uncertain in such a non-linear model. The correlation between 𝑘𝑘𝑎𝑎 and 𝑘𝑘𝑛𝑛𝑠𝑠𝑛𝑛 observed in this work 

was higher than that presented in Galbraith’s PhD thsesis (Galbraith, 2011). It was however lower than 

the correlation observed between the rate constants and orders in his work. Increasing dataset breadth 

and resolution would reduce correlation, but it is an effect of parameter optimisation which cannot be 

avoided. 

Correlation may also have been influenced by the weighting factor applied to phosphorus recovery data 

to give it an even objective function contribution to PSD data. Results in section 6.5.1 and 6.5.3 showed 

that kinetic parameters are positively correlated with respect to PSD data and negatively correlated with 

respect to phosphorus recovery data. This was reinforced by positive correlations observed in preliminary 

parameter optimisations which did not use objective function weighting, and were therefore more 

strongly influenced by PSD data.  

The negative correlation observed shows that an increase in nucleation rate results in a reduction in 

growth rate and vice versa. This is because if 𝑘𝑘𝑛𝑛𝑠𝑠𝑛𝑛 is low, fewer particles are born and a high growth rate 

is necessary to consume feed reagents to the same extent. If 𝑘𝑘𝑛𝑛𝑠𝑠𝑛𝑛 is high, more particles are born and a 

lower growth rate is necessary to consume feed reagents to the same extent. Therefore the parameter 

correlation was dominated by the phosphorus recovery data contributions, although they were scaled to 

make a more evenly weighted contribution. Geometric discretisation would have contributed to this 

effect by placing disproportionate focus on low particle size measurements in PSD data. This results in an 

accurate fit around these small particle data points which do not contribute significantly to the mass 
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balance, and a looser fit around larger particle measurements which do. The result is that the PSD 

measurements are not able to influence the mass balance in the model as easily as the phosphorus 

recovery data. This conclusion highlights the influence of measurement weighting on regressed kinetic 

parameters.  

Figure 7.9 below compares nucleation and crystal growth optimisation predicted PSDs (Figure 7.7) to an 

independent dataset (sonicated impinging jet scenario) for validation purposes. Only SI = 1.0 and 1.4 

conditions were considered as it had already been established in Chapter 5 that sonicated impinging jet 

phosphorus recovery at SI = 0.8 was significantly different to that of the Roughton mixer. 

 

Figure 7.9 – Validation of regressed nucleation and growth kinetic parameters by comparison of 

predicted PSDs to data from sonicated IJ mixer experiments not used in optimisations 



225 
 

Figure 7.9 shows that nucleation and growth kinetic predicted PSDs fit independent experimental data 

well although large particles present in experimental datasets showed that the impinging jet samples 

contained more aggregates unable to be disrupted by sonication. The reasonable fit adds confidence to 

the predictive capability of the calibrated model, within the operating condition range examined.  

7.2.2 Aggregation 

Figure 7.10 and Figure 7.11 show aggregation kinetic parameter optimisation results, comparing 

unsonicated experimental with simulated PSDs and measured with simulated phosphorus recovery, 

respectively. Table 7.6 below shows, for the readers information, the objective function contributions. 

The residual term for SI = 1.4 correspond to the differences seen between simulation and experimental 

results in Figure 7.10. 

Table 7.6 – Nucleation and crystal growth parameter estimation objective function contributions 

SI Measurement Constant Term Variance Term Residual Term 

0.8 PSD 2109.0 -7294.8 7507.8 

1.0 PSD 1640.3 -5779.3 6711.3 

1.4 PSD 1312.2 -4269.5 86767.1 
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Figure 7.10 – PSDs for aggregation parameter optimisation using the Roughton mixer  
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Figure 7.11 - Phosphorus recovery for aggregation parameter optimisation using the Roughton 

mixer 
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Figure 7.12 – Validation of regressed nucleation, growth and aggregation kinetic parameters by 

comparison of predicted PSDs to data from unsonicated R mixer experimental data not used in 

optimisations 
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Aggregation predicted PSDs (Figure 7.10 and Figure 7.12) showed reasonable fits for SI = 0.8 and SI = 1.0. 

At SI = 1.4 though, the optimisation PSDs include more large particles than the experimental PSDs. This 

may be an indicator that aggregation in this system is size dependent. Aggregation is theoretically a size 

dependent process, but has been best modelled in previous work as size independent (section 2.2.5). A 

size dependent aggregation kernel would allow smaller particles to remain in the system while larger 

particles continued to aggregate. The SI = 1.4 aggregation data also exhibited more nuclei than predicted 

by the model, both for optimisation (Figure 7.10) and validation datasets (Figure 7.12). This indicates that 

the model was unable to properly describe the nucleation rate. This suggests that nucleation rate may 

have been higher than predicted, using regressed nucleation and crystal growth parameters, at SI = 1.4. 

Therefore, a higher nucleation order may be more suitable as it would increase nucleation rate at SI = 1.4 

while having a lesser effect on nucleation rate at lower SI levels where the PSD fit is better. Unfortunately, 

increasing the number of parameters regressed is not possible with the dataset used here because of 

correlation issues. In any event the PSD fit is relatively good for SI = 0.8 and 1.0, and acceptable for SI = 

1.4. 

Insignificant differences in simulated phosphorus recovery between aggregation (Figure 7.11) and 

nucleation-growth optimisations (Figure 7.8) show that aggregate formation does not significantly affect 

the mass balance. This is to be expected and supports conclusions made in Chapter 5 that aggregate 

bonds are weak. In contrast, aggregation significantly affects PSD results, increasing 𝐼𝐼[50] by 39%, 62% 

and 102% for SI = 0.8, 1.0 and 1.4, respectively. 

7.2.3 Batch experiments 

Batch experiments were conducted in an attempt to gather temporal data not attainable using the PFR. 

To identify whether the aggregation model was necessary for modelling batch experiments, PSD was 

measured for final batch samples before and after sonication. Figure 7.13 confirms that aggregation was 

minimal, since the sonicated and unsonicated PSDs overlap within uncertainty ranges. As such, batch data 

was analysed using the nucleation and crystal growth kinetic model. 
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Figure 7.13 – Final PSDs for batch tests before and after 5 minutes of sonication 
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Temporal data collection from batch experiments was partially successful, although particle 

concentrations remained too low to make PSD measurements early in the crystallisation process. 

Nonetheless, the acceptable results were implemented in a novel parameter optimisation process which 

identified a single set of kinetic parameters to represent both reactors simultaneously. PFR data was 

examined using the PFR model while batch data was examined using a batch model. Both models fed 

results to a single objective function during parameter optimisation. Table 7.7 shows the resulting 

nucleation and growth kinetic parameters. Figure 7.14 and Figure 7.15 compare optimisation and 

experimental PSD and phosphorus recovery data. 

Table 7.7 – Kinetic parameters regressed using both batch and Roughton PFR data at SI = 0.8, 1.0 

and 1.4  

Mechanism (𝒔𝒔) Rate Constant Rate Order (fixed) 
Nucleation(× 𝟏𝟏𝟎𝟎𝟕𝟕) 
𝒌𝒌𝒏𝒏𝒔𝒔𝒏𝒏 [𝑳𝑳−𝟏𝟏𝒎𝒎𝒔𝒔𝒏𝒏−𝟏𝟏] 

4.47* 1.68 

Growth 
𝒌𝒌𝑴𝑴 [𝝁𝝁𝒎𝒎.𝒎𝒎𝒔𝒔𝒏𝒏−𝟏𝟏] 

15.97* 2 

* Kinetic parameter uncertainty could not be calculated since a satisfactory fit could not be achieved. 
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Figure 7.14 – PSDs from parameter optimisation combining Roughton PFR and batch data 
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Figure 7.15 – Phosphorus recoveries from parameter optimisation combining PFR and batch data 

Figure 7.14 shows that sonicated PSDs at the batch experiment conclusion were larger and wider than 

those observed in PFR experiments. This confirms (as suspected from tracer studies shown in section 

5.2.4) that the de-aggregated crystals from the Poiseuille flow reactor have a narrower PSD than those 

produced in a batch reactor.  

A set of kinetic parameters which provided a satisfactory fit to batch and continuous datasets 

simultaneously could not be found. PFR PSDs were overestimated for SI = 1.0 and 1.4, while batch PSDs 

were underestimated for all scenarios and did not match experimental PSD shape. Batch phosphorus 

recovery data was also overestimated in each scenario. The inability of the kinetic model to fit both PFR 

and batch datasets simultaneously can be explained by a combination of two things. First, differences in 
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experimental conditions (e.g. hydrodynamics) were not accounted for by the model. Second, an 

alternative kinetic model form may better represent struvite kinetics. Various alternative kinetic model 

combinations were examined to identify whether a better fit to batch data could be achieved. Alternative 

kinetic model optimisation PSD and phosphorus recovery data are compared in Figure 7.16 and Figure 

7.17 below. The models detailed in the legend of Figure 7.16 are discussed in detail in section 2.2.4. 
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Figure 7.16 – PSDs from batch alternative kinetic model parameter optimisations 
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Figure 7.17 – Phosphorus recoveries from batch alternative kinetic model parameter optimisations 
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The birth and spread growth model (equation 7.2) provided the best fit to batch phosphorus recovery data 

(Figure 7.17) and produced a PSD indistinguishable from other growth models (Figure 7.16). 

𝐺𝐺 = 𝐼𝐼′′𝑆𝑆𝑠𝑠2 exp�−
𝐵𝐵′

𝑆𝑆𝑠𝑠
� 

7.2 

Where 𝐼𝐼′′[𝜇𝜇𝜇𝜇/𝜇𝜇𝑚𝑚𝑛𝑛] is the growth rate constant and 𝐵𝐵′ represents a value of 𝑆𝑆𝑠𝑠  above which which 

growth becomes significant, which was selected to be equivalent to 𝑆𝑆𝐼𝐼 = 0.3 based on previous work 

(Galbraith et al., 2014). On this basis, the nucleation and crystal growth parameter optimisations 

simultaneously assessing batch and PFR data were repeated, substituting the new growth model. This 

generated kinetic parameters shown in Table 7.8, which correspond to the PSD and phosphorus recovery 

data shown by Figure 7.18 and Figure 7.19, respectively. 

Table 7.8 – Birth and spread growth model and power law nucleation model regressed kinetic parameters 

Mechanism Rate Constant Rate Order (fixed) 
Nucleation 

𝑩𝑩𝒏𝒏𝒔𝒔𝒏𝒏 𝑳𝑳−𝟏𝟏𝒎𝒎𝒔𝒔𝒏𝒏−𝟏𝟏 
(1.791 ± 0.002) × 107 1.68 

Growth 
𝑨𝑨′′[𝝁𝝁𝒎𝒎/𝒎𝒎𝒔𝒔𝒏𝒏] 

64.63 ± 0.16 2 
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Figure 7.18 – PSDs from combined PFR and batch parameter optimisation using birth and spread 

crystal growth model 
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Figure 7.19 – Phosphorus recoveries from parameter optimisation combining PFR and batch data 

using birth and spread growth model 

Repeating the combined batch and PFR parameter optimisation with the birth and spread model provided 

a better batch PSD fit and a worse PFR PSD fit (Figure 7.18). It also gave a marginally better fit to batch 

phosphorus recovery data at SI = 1.4, a poorer fit at lower supersaturations, and an unchanged fit to PFR 

phosphorus recovery (Figure 7.19). The fact that PSDs were underestimated in batch experiments and 

overestimated in PFR experiments suggests that aggregation might be playing a role in batch experiments. 

However, sonication showed aggregation effects to be minimal (Figure 7.13). The remaining explanation 
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is that physical differences (like hydrodynamics) between batch and PFR experiments must be examined 

in detail and incorporated into kinetic models to fit both datasets simultaneously. 

7.2.4 Nucleation rate 

The estimated nucleation rate constant is 12% lower than that found by Galbraith (Galbraith et al., 2014). 

This difference is not large and is likely a result of scatter in experimental data. However, this result is 

interesting, since it was expected that the higher supersaturation in this work would generate a higher 

(primary) nucleation rate (section 2.2.3), compared to the secondary nucleation rate examined in 

Galbraith’s work (Figure 7.20). This shows that, in the PFTR, after some initial primary nucleation, 

secondary nucleation may dominate. 

 

Figure 7.20 – Nucleation rate estimation comparison to models available in the literature 

Further, parameter optimisations from batch data using a number of different nucleation and growth 

models (Figure 7.16 and Figure 7.17) showed that a primary homogeneous nucleation model was unable 

to fit PSDs for all SI values. A sharp drop in nucleation rate with decreasing SI is a property exhibited by 
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the primary homogeneous nucleation models, as discussed in section 6.5.4. This means that when this 

model is used for parameter optimisations, there is an insufficient nucleation rate at SI = 0.8 and an 

excessive nucleation rate at higher SI values, resulting in over- and underestimated PSDs and severely 

overestimated recoveries. This result reinforces that primary homogeneous nucleation is not a dominant 

mechanism, and that for the supersaturation range examined, secondary nucleation can be achieved by 

relatively low shear rates. 

7.2.5 Growth rate 

Phosphorus recovery curves (Figure 7.8) are matched accurately in each case, implying that the 2nd order 

growth model is better than 5th order model (Figure 7.21), which was unable to achieve the required 

desupersaturation. 
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Figure 7.21 – Roughton mixer PFR PSD and outlet phosphorus concentration compared to those 

predicted by kinetics estimated by Galbraith (Galbraith et al., 2014), which used a 5th order growth 

model 

The regressed growth rate constant (Table 7.4) was higher than that predicted by Galbraith et al. 

(Galbraith et al., 2014). This means that growth rate itself is also higher (than Galbraith’s), which is 

especially evident when considering that a second order growth model was used in this work, compared 

to a fifth order growth model in the work by Galbraith. This is because the second order model enables 

higher growth rates below SI = 1.0 than the 5th order model.  
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Figure 7.22 - Growth rate estimation comparison to models available in the literature.  Dashed 

and solid lines represent batch and continuous reactors, respectively. Circles indicate 𝐶𝐶𝑀𝑀𝑂𝑂4 < 5 

mM, squares indicate 5 ≤ 𝐶𝐶𝑀𝑀𝑂𝑂4 < 10  mM and triangles indicate 𝐶𝐶𝑀𝑀𝑂𝑂4 ≥ 10  mM. Filled and 

unfilled markers represent seeded and unseeded scenarios, respectively. Uncertainties in kinetic 

parameters were incorporated where available and significant enough to be visible. 

Figure 7.22 compares the estimated growth rates, over the range examined, to pre-existing struvite 

growth rate models. It shows that the overall growth rate generated by parameters regressed in this work 

is higher than most other models. This is because other models ignore aggregation, which can be 

construed as lumping it with growth. When aggregation and growth are lumped together, and growth is 

regressed from phosphorus recovery data (a common practice), the apparent overall growth rate is lower 

because aggregation causes a decrease in particle surface area available for growth. This shows that the 

true growth rate is higher and that agglomeration plays a significant role in struvite particle size 

enlargement (a result supported by the unsonicated/ aggregation data). Therefore, aggregation, 
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agglomeration and the variables affecting these processes must be accounted for to properly model 

crystallisation kinetics.  

As mentioned earlier, including operating variables which influence aggregation and agglomeration, like 

fluid shear, into a kinetic model may provide a means of consolidating batch and Poiseuille data. More 

generally it may also help to consolidate differences seen the many kinetic models available in the 

literature. Struvite growth rate dependency on fluid shear has been suggested before (Le Corre, Valsami-

Jones, et al., 2007b), but no research has been made into the effects. To properly incorporate this effect, 

a fluid-particle drag or energy transfer model is necessary. Such a model could be adapted from existing 

work modelling collision probability as a function of fluid shear (H. Mumtaz et al., 1997). 

7.2.6 Aggregation rate 

Table 7.9 shows that the size-independent aggregation kernel found in this work is larger than those 

found in other works on sparingly soluble salts. 

Table 7.9 – Aggregation kernel comparison between this work and previous works 

Reference Compound SSR Aggregation Kernel 
This work Struvite 6.3-23.1 6.46 × 10−7 − 1.23 × 10−5 

(Galbraith et al., 2014)*  Struvite 6.3-23.1 1.15 × 10−7 − 2.18 × 10−6 
(Livk & Ilievski, 2007) Gibbsite 1.5-2.9 4.8 × 10−10 − 6.0 × 10−11 

(D Ilievski, 2001) Gibbsite 1.67-1.86 4.2 × 10−12 − 1.5 × 10−11 
(H. S. Mumtaz & 
Hounslow, 2000) 

Calcium oxalate 
monohydrate (COM) 

3.61 2.0 × 10−9 − 6.0 × 10−11 

*Model applied to the same supersaturation measure (SI) as this work 

Aggregation rate constant was 5.6 times larger than that found by Galbraith. Greater confidence is held 

in this aggregation rate constant, since it was calculated independent of crystal growth rate, eliminating 

possible parameter confounding. Factors contributing to the higher aggregation rate are: 1) reduced 

probability of aggregate breakup at low shear rate, and 2) larger apparent aggregate size caused by LD 

measurement inaccuracies. Using equation 7.3 (derived from equation 4.8) the maximum shear rate in 

the PFR was found to be 0.181 [𝑠𝑠−1].  
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7.3 

Various works on the Calcium Oxalate Monohydrate (COM), a crystal system similar to struvite, suggest 

that this shear rate, in combination with the relatively high growth rate observed in this work, can cause 

high aggregation rates. Firstly, in Poiseuille flow experiments on COM an aggregation efficiency of >50% 

was observed at a shear rate26 of 10 [𝑠𝑠−1], linearly decreasing to 15% at 500 [𝑠𝑠−1] (H. S. Mumtaz & 

Hounslow, 2000). The lower shear rate in this work suggests that aggregation efficiency should also be 

>50%. Secondly, for the same COM system, the critical aggregate size (the point where aggregation 

disruptive and bonding forces balance) was approximately 8µm for the same shear rate as used here (Pitt 

& Hounslow, 2015). This suggests that for particles greater than 8µm, aggregation effects become more 

significant. For reference, in this work an average of 3% (by number) or 5% (by mass) of particles exiting 

the reactor were less than 8µm in size. Finally, inferences can be made on aggregation efficiency by 

applying a dimensionless variable 𝑀𝑀 (equation 7.4), which describes the ratio of particle bond strength to 

hydrodynamic forces (Pitt & Hounslow, 2015).  

𝑀𝑀 =
𝜎𝜎𝑌𝑌𝐿𝐿∗𝐺𝐺
�̇�𝛾2𝜇𝜇𝑑𝑑𝑠𝑠𝑒𝑒2

 
7.4 

Where 𝜎𝜎𝑌𝑌 [𝐶𝐶𝑎𝑎]  is the yield strength at the aggregate cementing site, 𝐿𝐿∗ [𝜇𝜇]  is a geometric factor 

combining collision geometry and contact length, 𝜇𝜇 [𝐶𝐶𝑎𝑎. 𝑠𝑠]  is dynamic viscosity and 𝑑𝑑𝑠𝑠𝑒𝑒 [𝜇𝜇]  is an 

equivalent diameter. For the purpose of analysis, 𝑑𝑑𝑠𝑠𝑒𝑒 is assumed here as the 𝐼𝐼[50] and the term 𝜎𝜎𝑌𝑌𝐿𝐿∗ is 

assumed to be the same as in the COM system (i.e. 1.35), based on work by (Pitt & Hounslow, 2015). A 

Mumtaz number significantly greater than 1 represents a system with high aggregation efficiency. The 

Mumtaz number calculated for this work ranged between 6.2 and 12.8, which indicates an aggregation 

efficiency ~100% (M.J. Hounslow, Wynn, Kubo, & Pitt, 2013). 

                                                           
26 Shear rate calculated by �̇�𝛾 = 8

15
�̇�𝛾𝑚𝑚𝑎𝑎𝑚𝑚  
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When compared to the experimental system used by Galbraith, the lower shear rate and high growth rate 

in this work create ideal conditions for aggregate formation as colliding particles are less likely to be 

disrupted and can bond more quickly. Additionally, settling effects in this reactor (examined in section 

6.3.1), would have been more significant than in Galbraith’s reactor which was mixed27 and contained 

smaller particles (less than 35µm). It is expected that this contributed to an increase in particle collision 

rate in this reactor, as faster moving particles collide with slower ones. The relative impact of settling on 

aggregation may not have been large however, due to the low particle concentration (0.2 – 0.3 g/L). In 

any case, these factors may explain the larger struvite aggregation rate in this work. 

While aggregation rates appear to be very high, strong confidence cannot be held in aggregate 

measurements using PSD. Laser diffraction accuracy decreases as particle shape deviates from spherical 

(Kelly & Kazanjian, 2006). Additionally, loosely bound aggregates may contain a significant degree of voids 

not accounted for by the model – examples of such a particles are shown below in Figure 7.23 

                                                           
27 Mixing rate was not reported by Galbraith 
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Figure 7.23 – Unsonicated struvite crystals created in Poiseuille flow at SI = 1.4 

 Conclusions & recommendations 

This chapter investigated parameter optimisation methods including multi-start analysis, objective 

function weighting and parameter correlation reduction. Multi-start analysis observed no local minima. 
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Objective function weighting was used to balance PSD and phosphorus recovery contributions and 

successfully improved fit without significantly increasing computation times. Reducing parameter 

correlation effects by reducing the number of estimated parameters successfully reduced simulation 

time, although kinetic parameter correlation remained. The negative correlation between nucleation and 

growth rate constants showed that the optimisation was weighted towards phosphorus recovery data. 

Future analysis might counter this by including a volume weighting factor to account for the concentration 

of PSD data at lower particle sizes, which is caused by geometric discretisation. Parameter correlation 

may also be reduced by using a richer data set. This was attempted by conducting batch experiments to 

examine PSDs early in the crystallisation process, however particle concentration remained too low for 

accurate PSD measurements. Future work should examine alternative sampling and/or measurement 

techniques for samples with low particle concentrations. This could be achieved by concentrating large 

samples or using an alternative PSD measurement technique like single particle optical sizing (Pitt & 

Hounslow, 2015). In addition, a simultaneous fit could not be achieved between batch and PFR data, 

indicating that the kinetic model needed to incorporate physical properties like hydrodynamics to achieve 

this. 

Estimated kinetic parameters, using the power law model, were similar to previous estimations for 

struvite using population balance methods and showed similar agreement to experimental data not used 

in optimisations, giving confidence to results. Low nucleation rate in the PFR, combined with poor primary 

nucleation model fits to batch data, indicated that secondary nucleation was a dominant mechanism. 

Results from aggregation investigations showed that a higher nucleation order than that assumed in this 

work (1.68) is appropriate for future struvite kinetic investigations. A second order growth model better 

fitted phosphorus recovery data than a previously used fifth order model, indicating that a ‘growth dead 

zone’ was unlikely. Alternatively, batch investigations showed that a ‘birth and spread’ growth model 

provided a quality fit to phosphorus recovery data by using an exponential decaying rate at low 

supersaturation. This shows that the birth and spread growth model is a good candidate for future 

investigations. Aggregation rate was successfully decoupled from nucleation and crystal growth rates by 
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examining data from experiments with and without sonication separately. The estimated aggregation rate 

constant was higher than prior estimates. This was because of high aggregation efficiency in Poiseuille 

flow, although the rate may have been overestimated since laser diffraction becomes inaccurate when 

applied to irregular shapes and the model used here did not describe aggregate porosity. These issues 

could be addressed, to a point, by using optical particle sizing techniques mentioned above.  

When considering alternative models, it is clear that the power law model provides the best description 

of the PFR system. It is also currently the best option for modelling struvite crystallisation over a wide 

supersaturation range, based on the agreement between this work and work by Galbraith using very 

different experimental systems. This work has also shown that the homogeneous nucleation model is not 

suitable for modelling struvite.  

The kinetic parameters found in this work suggest that a struvite crystalliser could be operated at high 

supersaturation, maximising aggregation rate. This is because high supersaturation and low shear rates 

created an ideal scenario for aggregation. Additionally, since secondary nucleation appeared to be 

dominant, large nucleation rates (predicted by primary nucleation models) are less likely to be an issue. 

As such, this possibility warrants further investigation as it may offer a means of significantly reducing 

crystal residence time necessary to achieve a given particle size. 
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 Conclusions & recommendations 

This chapter provides an overarching summary and draws conclusions about Poiseuille 

flow struvite seed production and population balance based kinetic parameter 

optimisation. Recommendations are made on future improvements and directions for 

research in this field. 

 Summary of work carried out 

This study investigated the production of struvite seed crystals in a Poiseuille flow reactor via 

experimentation and numerical modelling and analysis. This included design and operation of a bench-

scale reactor and the development a process model suitable for sensitivity analysis and, using data from 

the bench-scale reactor, kinetic parameter optimisations. 

Experimental investigations carried out across a range of feed supersaturations using two different mixers 

provided insight into the effects of mixing and the data necessary for kinetic parameter optimisations. 

This work successfully met the aims and objectives outlined in section 1.4 as detailed below. 

Objective 1 – to develop a dynamic reactor model capable of accurately predicting Poiseuille flow seed 

reactor operation. Throughout the thesis, a dynamic reactor model was developed incorporating a non-

ideal thermodynamic model; Poiseuille fluid flow including advection, diffusion and reaction effects; and 

a discretised population balance (DPB) model representing nucleation, growth and aggregation 

mechanisms. The reactor model and the DPB were validated via a grid convergence study and comparison 

to analytic solutions, respectively. 

Objective 2 – perform a sensitivity analysis to determine key input variables and kinetic parameters as 

they impacted on key model outputs. Chapter 6 investigated the sensitivity of the reactor to diffusion and 
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settling effects, uncertainties in experimental independent variables, and the uncertainty in kinetic 

parameters. It also examined reactor operation via stochastic simulations. 

Objective 3 – investigate continuous struvite seed production in a lab-scale Poiseuille flow crystalliser. 

Based on available literature, the reactor developed was the first to combine vortex mixing with Poiseuille 

flow, underlining its novelty. It also utilised sonication to disrupt weakly bound aggregates and better 

understand the crystallisation process in a fashion not performed elsewhere. Various operational issues 

were identified for improvement in future work. 

Objective 4 was to regress nucleation, growth and aggregation kinetic parameters using experimental 

data from the bench-scale reactor. Parameter optimisation methods were developed based on the 

available literature, sensitivity analysis, and optimisation model testing. This process accounted for 

parameter uncertainties, parameter boundaries and correlation; optimisation data selection; and 

objective function local minima and application of weighting factors to experimental data. Nucleation and 

crystal growth rates were regressed with the more accurate CAT model, while the aggregation rate was 

regressed using the GMH nucleation, growth and aggregation model since it delivered faster simulation 

times.  

Great effort was taken to reduce and, failing that, quantify uncertainties and identify areas of 

improvement for future work. This work has extended the field of struvite crystallisation, mixing and 

Poiseuille flow crystallisation modelling and laid down a framework for future studies on any 

crystallisation system. 

 Conclusions 

The Poiseuille flow crystalliser experimentally examined in this work produced struvite seed crystals of a 

similar quality to those used in previous investigations. This work has shown that vortex mixing is superior 

to impinging jet mixing, producing higher phosphorus recovery than an impinging jet mixer at all 𝑆𝑆𝐼𝐼 levels 

tested and negligible aggregation at the lowest supersaturation level tested (𝑆𝑆𝐼𝐼 = 0.8).  



252 
 

Examining the feed concentration variance expected in an industrial application showed struvite seeds, 

acceptable by current industrial standards, can be achieved without a control system in place. These 

results show the potential of this model to be utilised for process interrogation and design, and provides 

grounds for further investigation into continuous struvite seeding. 

Sonication was an effective means of disrupting aggregates without damaging individual crystals. Two key 

conclusions arose from this practice. First, sonicated PSDs were indistinguishable between the feed 

supersaturation levels studied, for both mixers (exception in the IJ mixer between SI = 0.8 and 1.0). This 

suggests that the constituent particles making up porous aggregates continued to grow after aggregation. 

Second, sonicated data offered a novel approach to separate the aggregation mechanism from nucleation 

and growth. Sonicated samples were assumed to be an acceptable proxy measurement of nucleation and 

growth mechanisms only, while unsonicated samples represented all three mechanisms of particle size 

enlargement. This assumption was considered reasonable based on microscopy and the relative ease of 

aggregate disruption by sonication, which indicated that the contact area of particles forming weak 

aggregates was small.  

The resulting nucleation and growth rate coefficients (𝑘𝑘𝑛𝑛𝑠𝑠𝑛𝑛  and 𝑘𝑘𝑎𝑎) were 12% lower and 34% higher, 

respectively, than those from previous struvite kinetic investigations using DPBs. This is an important 

result as these are relatively small differences compared to the much larger variations in previously-

estimated struvite nucleation and growth rate kinetics discussed in section 2.2. Adding to the significance 

of this result is the fact that the earlier DPB studies on struvite varied in a number of key ways: they were 

seeded while these were not; they used a stirred batch system while these were continuous Poiseuille 

flow; they operated at lower supersaturation levels (SI = 0.37 - 0.74) than used here (SI = 0.8 – 1.4); and 

they used a numerical model with a 5% higher uncertainty in mass conservation than that used here. 

Achieving similar results, despite these differences and in light of the large variations seen in the 

literature, is a step forward in struvite modelling and gives confidence that DPB techniques are a valid 

modelling platform for further crystallisation kinetic modelling.  
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Examining the kinetic models regressed in this work revealed multiple insights. The nucleation rate was 

significantly lower than those predicted by existing struvite primary nucleation models, despite the high 

supersaturation used in this work. Further, attempts to fit a primary nucleation model to the data were 

unsuccessful, resulting in insufficient nucleation at low (SI = 0.8) and excessive nucleation at high (SI = 1.4) 

supersaturations. Together, these results revealed that, over the course of crystallisation, secondary 

nucleation was dominant over primary nucleation. Analysis using alternative growth models identified 

that the exponentially decaying ‘birth and spread’ crystal growth model was superior, providing an 

improved fit to experimental data. Finally, the aggregation rate was five times larger than previous 

estimates for struvite. This was likely influenced by laser diffraction measurement techniques, which have 

inherent problems measuring irregular and loosely aggregated particles. 

In addition to experimental determinations, the process model was used to identify the relative influence 

of system variables and kinetic parameters. Diffusion effects and uncertainties in reagent concentration 

and flow rate were found to have an insignificant effect on the reactor model output. Sensitivity analysis 

found that nucleation kinetic parameters had the least influence on both PSD and yield, growth kinetic 

parameters had the greatest influence on yield, and aggregation kinetic parameters had the greatest 

influence on PSD. These results were important for minimising parameter correlation impacts on the 

optimisation process by allowing less influential parameters to be fixed. This improved optimisation 

simulation time and stability.  

A correlation between regressed parameters was still observed although it was lower than those from 

previous works. Based on sensitivity analysis results, this negative correlation indicated that the 

optimisation process was more significantly influenced by phosphorus recovery data than PSD data. The 

geometric discretisation is expected to have caused this by magnifying the contribution of small particles 

which do not contribute significantly to the mass balance. This extension on previous correlation analysis 

serves as a stepping stone for future parameter optimisations by highlighting that good parameter 

optimisation is multifaceted and difficult. 



254 
 

 Implications for nutrient recovery and crystallisation modelling 

The conclusions discussed above describe the outputs of the work, which significantly add to the body of 

research within the struvite community. The real value of this work though is in the outcome of developing 

a new experimental and modelling framework which can be adapted and applied to analyse any 

crystallisation system. The care taken to quantify uncertainty and identify areas for improvement paves 

the way for future research of the same fashion to be conducted with far greater ease. This has 

ramifications in a number of areas. 

The state of the art in industrial struvite crystallisation modelling is significantly less complex than that 

shown here. However, DPB modelling is not uncommon in the pharmaceuticals industry and its broader 

application is the next logical step in nutrient recovery kinetic modelling. As most nutrient recovery 

systems operate as fluidised beds, discretised Poiseuille flow could be replaced with a simpler and faster 

tanks in series model, where each tank represents a relatively constant region of supersaturation. Some 

representation of fluid mixing/turbulence in each tank could then be incorporated into the power law 

rate expressions for secondary nucleation and aggregation, while growth could remain independent of 

mixing assuming that it is reaction controlled. Kinetic parameter optimization could be achieved by 

sampling PSD and concentration data over a range of feed concentrations and flow rates. Once kinetic 

parameters capable of representing the operating conditions are found, the model could be used for PSD 

and recovery optimization and crystalliser design. Integration of such a model into existing frameworks 

may prove to be the most difficult step as it would need to be developed in a new software environment 

where numerical solution methods must be manually specified. 

There are multiple implications for future experimental studies. Firstly, identification of a superior mixing 

technique (i.e. the vortex mixer) is important on industrial and lab scales since complete reactant mixing 

is necessary to achieve uniform supersaturation and resulting uniform crystal nucleation, growth and 

aggregation. Secondly, continuous struvite seed production, within the PSD range used for lab-scale 

studies, showed that methods applied here are worthy of crystalliser feasibility studies. Further work in 
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this area would draw together existing industrial struvite seeding studies with continuous seeding work 

applied to other crystallisation systems where PSD control is a key objective.  

A key aim in crystallisation design is to produce a PSD with desirable filterability and storage properties. 

Designing reactors to achieve a desired PSD requires an accurately calibrated model capable of predicting 

PSD as a function of process variables. This work has shown that DPB models are capable in this regard.  

One major disadvantage of introducing kinetic models for nucleation, growth and aggregation is the 

commensurate increase in the number of unknown parameters. As discussed in Chapter 7, this results in 

parameter correlation where, during the optimisation process, changes in one parameter can be offset 

by changes in another. This reduces confidence in the applicability of regressed kinetic parameters to 

different experimental conditions, despite how well they may fit datasets used for their optimisation. This 

work highlighted that this phenomenon is very difficult to avoid and should not be ignored, lest the high 

variability between regressed kinetic parameters in the literature continue. Additionally, sensitivity 

analysis validated a logical interpretation of what nucleation and growth coefficient correlation means, 

which will help future interpretation of results. 

The sonication method used in this work successfully separated aggregation from nucleation and growth, 

removing the potential correlation expected between growth and aggregation kinetic parameters, during 

their optimisation. This provides a precedent for future crystallisation kinetic investigations. Applying 

experimental and modelling techniques developed in this work to future struvite investigations may 

reduce some of the large range encountered in kinetics reported in the literature review.  

Nucleation and growth kinetics predicted in this work were similar to those from other DPB based work 

on struvite when compared to the large variations observed in other kinetic modelling studies in the 

literature. This showed that modelling of nucleation, growth and agglomeration processes is necessary 

for improved accuracy in struvite crystalliser modelling. Any future simulation of the struvite system 

would be wise to implement at least a nucleation and crystal growth DPB.  
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Traditionally, primary nucleation has been assumed and high supersaturation levels avoided to limit 

excessive nucleation. In this work however, the estimated nucleation rate was much lower and less 

dependent on supersaturation than previously employed primary nucleation models. The Poiseuille flow 

reactor was also found to be less sensitive to nucleation kinetic parameters than those of aggregation and 

growth. Combining these result with the relatively high aggregation rate observed highlights the potential 

for reactor operation at high supersaturation to achieve fast particle size enlargement without the risk of 

excessive nucleation.  

 Recommendations for future research 

It is important to continue the iterative process of improving, calibrating and validating crystallisation 

models. This will lead to improved understanding of crystallisation processes and better, more cost 

effective reactor designs. In addition, investigation of alternative reactor types is essential to achieving 

optimum designs. The implications discussed in 8.3 could be further realised by addressing a number of 

key areas discussed in detail below, namely: 1) Experimental improvements to the current work; 2) Choice 

of larger dataset ranges with respect to supersaturation and mixing regimes; 3) Experimental 

investigations of Poiseuille flow reactors and combined continuous seeding and growth reactors; and 4) 

advancement in modelling techniques.  

Experimental improvements: 

1. Many PSD measurements in this work were deemed unacceptable because of insufficient particle 

concentrations. This can be dealt with by either concentrating particles in samples or using PSD 

measurement techniques that better accommodate low particle concentration, for example 

single particle optical sizing (SPOS). One advantage of SPOS is that is quantifies particle number 

concentrations, the property directly predicted by PBMs. This enables a more direct method of 

model calibration. Another advantage (of SPOS) is its ability to provide more information about 

properties of non-spherical particles, enabling improved aggregation modelling. 
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2. Flow restriction due to crystal scaling around the orifice separating the mixer from the main 

reactor was observed in this work. Future work should utilise a constant diameter from mixer to 

reactor outlet to avoid this issue. Alternatively, plug flow could be as it could achieve reactor 

scouring velocities. 

3. Probe encrustation caused pH measurement response times to become unacceptably large 

(>5min), rendering pH measurements essentially useless. Future work can improve in-situ pH 

measurement by using a flow cell or shroud to reduce the impact of probe encrustation on 

response time and accuracy. Alternatively, a process type probe suitable for crystallisation 

systems should be sought, although care must be taken to ensure probe accuracy. 

Data Collection/ Validation: 

4. Nucleation and growth rate coefficients regressed in this work showed a correlation coefficient 

of𝑅𝑅 = −0.91, coming very close to being classified as highly correlated (>0.95). This can be 

countered by collecting a wider range of PSD and phosphorus recovery data. It is suggested that 

data be collected for supersaturations between SI = 0.1 and 1.4 to capture the ‘null 

supersaturation’ range proposed by various authors (section 2.2.4.5), while not creating needle-

like crystals. Data should be collected throughout the entire course of reaction, to show distinctly 

different aspects of kinetic mechanisms. This will require techniques suitable for low particle 

concentration PSD measurement, as discussed above. It may also be worth considering seeded 

experiments that measure only a secondary nucleation rate as this appears to become dominant 

over primary nucleation anyway. 

Further experimental investigations: 

5. The literature presented very little work investigating the effects of struvite seed PSD and seed 

loading rate on final PSD from a growth reactor (Chapter 2). This information is pre-requisite to 

seed reactor designs and investigations of combined seeding and growth reactors. As such tests 
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should be conducted examining the effects of seed PSD variations on crystal output variations at 

a variety of SI levels (ideally SI = 0.8, 1.0 and 1.4 for comparison to this work). These results would 

also be useful for kinetic parameter optimisations. 

6. This research has shown that a Poiseuille flow crystalliser is able to produce struvite with a PSD 

suitable for seeding. Subject to studies mentioned in point 5 above, the Poiseuille flow reactor 

should be examined to identify its suitability as a control actuator for PSD in a subsequent growth 

reactor. This could be achieved by operating at steady state and introducing a step change in seed 

reactor feed conditions.  

7. Fluid sheer was identified as a key variable likely to account for the inability to regress kinetic 

parameters which fit data from two different reactor types (discussed throughout Chapter 7). 

Further work must be done to investigate the impact of fluid shear on each kinetic mechanism so 

it can be incorporated into kinetic models. This can be achieved utilising any reactor with a well-

defined fluid shear rate (e.g. Poiseuille flow or Taylor-Couette flow). 

8. As discussed in section 8.3, nucleation rates were lower than expected from primary nucleation 

models and the PFR outputs were less sensitive to nucleation parameters than aggregation 

parameters, even at high supersaturation levels. Therefore, at high supersaturation, nuclei may 

be able to be incorporated into aggregates and fast formation of enlarged particles may be 

possible. This warrants investigations of struvite crystallisation at supersaturation levels 

exceeding those examined in this work (SI>1.4), and up to the maximum supersaturation level 

examined in other work (SI<4).  

Modelling: 

9. Model Structure: The reactor model developed in Chapter 4 assumed that no nucleation occurred 

within the entry length, although scaling evident in the mixer (section 5.5) suggests otherwise. 

Particulate processes can be modelled in this region provided some description of fluid flow is 
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developed. This could be achieved simply (though roughly) by modelling the transition zone, 

where Poiseuille flow is developing, as a well-mixed volume. 

10. Model Assumptions: 

i. The literature review reveals that the majority of struvite kinetic investigations have 

utilised solutions containing only the species necessary for struvite crystallisation. To 

enable kinetic modelling of real-life systems, the thermodynamic model must include 

species encountered in real waste streams, such as urine. These included carbonate, 

potassium and calcium. Inclusion of these species would also require the inclusion of the 

potential solid phases and their associated kinetic models (which may not exist). 

ii. Settling was shown to play a significant role in the Poiseuille flow reactor, both 

experimentally and in modelling. The settling model used in this work assumed spherical 

particles. However, individual particles were not spherical and aggregate particles were 

irregular and porous. As such, future work should extend the settling model to represent 

non-spherical particles. 

iii. This work showed that secondary nucleation was likely dominant. Primary nucleation 

however, still plays a significant role. Future modelling work should consider 

implementing parallel primary and secondary nucleation mechanisms. Note though that 

introducing another level of complexity to the model would lead to over-

parameterisation. 

iv. Extend particle aggregation description to include porosity, fractal dimension, collision 

efficiency and bond strength. This work identified growth of aggregate constituent 

particles after aggregation and regressed an aggregation rate significantly higher than 

expected as a result of overestimation of aggregate mass. Together these results suggest 

that porosity must be accounted for to accurately model aggregation and subsequent 

agglomeration.  

11. Numerical Improvements: 
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i. A steady state numerical solution for the PFR process (algebraic) model could not be 

achieved in this work. Instead, the dynamic model had to be solved to a steady state. 

Achieving a steady state solution would significantly reduce simulation times, making the 

parameter optimisation process much faster and easier to troubleshoot. This must be 

done by obtaining steady state solutions for each model sub-section (mass balance, 

population balance, thermodynamics) and progressively combining these models. 

ii. A limitation of this work was the significant time required to solve the CAT DPB 

incorporating aggregation. It is anticipated that simulation times could be vastly reduced 

with increased control over numerical solution methods. This can be achieved by 

implementing the solution in an alternative software package, for example MATLAB. Take 

note, though, that this would require the development of new parameter optimisation 

techniques.  
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 Photomicrographs 
A.1. Photomicrographs 

Microscopy is presented using two experimental runs for the Roughton mixer and one for the impinging 

jet mixer. For each experimental run, two images of are given before and after sonication for each 

supersaturation level. 
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A.1.1. SI = 0.8 A unsonicated 
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A.1.2. SI = 0.8 A sonicated 
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A.1.3. SI = 0.8 B unsonicated 

 

 

A.1.4. SI = 0.8 B sonicated 
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A.1.5. SI = 1.0 A unsonicated 

 

 

A.1.6. SI = 1.0 A sonicated 
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A.1.7. SI = 1.0 B unsonicated 
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A.1.8. SI = 1.0 B sonicated 
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A.1.9. SI = 1.4 A unsonicated 

 

 

 



297 
 

A.1.10. SI = 1.4 A sonicated 
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A.1.11. SI = 1.4 B unsonicated 

 

 

 



299 
 

A.1.12. SI = 1.4 B sonicated 

 

 

 



300 
 

  – DPB formulations 
All formulations shown here are adapted from work by (J. Kumar et al., 2008) and are displayed in this 

thesis for the convenience of the reader only. 

B.1. CAT Growth only 

In the cell average approach, growth is modelled as the formation and subsequent adherence of infinitely 

small nuclei onto particles. This approach makes combination of growth with other processes quite 

simple. In the below section, the agglomeration based growth model is related to a standard growth rate 

expression (𝐺𝐺(𝑡𝑡, 𝑣𝑣)), and the CA technique is used to create a set of ODEs. First the population balance 

for agglomeration (equation 0.1) is applied to the scenario of particles of volume 𝑣𝑣0 aggregating with 

particles of size 𝑣𝑣. This expression does not include the integral terms usually seen in an agglomeration 

population balance because the size of the agglomerating particle, 𝑣𝑣0, is fixed. 

𝜕𝜕𝑛𝑛(𝑡𝑡, 𝑣𝑣)
𝜕𝜕𝑡𝑡

= 𝛽𝛽(𝑣𝑣 − 𝑣𝑣0,𝑣𝑣0)𝑛𝑛(𝑣𝑣 − 𝑣𝑣0)𝑛𝑛(𝑣𝑣0) − 𝛽𝛽(𝑣𝑣, 𝑣𝑣0)𝑛𝑛(𝑣𝑣)𝑛𝑛(𝑣𝑣0) 
0.1 

factoring out 𝑣𝑣0𝑛𝑛(𝑣𝑣0) gives: 

𝜕𝜕𝑛𝑛(𝑡𝑡, 𝑣𝑣)
𝜕𝜕𝑡𝑡

= −𝑣𝑣0𝑛𝑛(𝑣𝑣0)�
𝛽𝛽(𝑣𝑣, 𝑣𝑣0)𝑛𝑛(𝑣𝑣) − 𝛽𝛽(𝑣𝑣 − 𝑣𝑣0,𝑣𝑣0)𝑛𝑛(𝑣𝑣 − 𝑣𝑣0)

𝑣𝑣0
� 

0.2 

Assuming that 𝜇𝜇0 = 𝑣𝑣0𝑛𝑛(𝑣𝑣0) and taking the limit of 𝑣𝑣0 → 0: 

𝜕𝜕𝑛𝑛(𝑡𝑡, 𝑣𝑣)
𝜕𝜕𝑡𝑡

= −𝜇𝜇0
𝜕𝜕
𝜕𝜕𝑣𝑣 �

𝛽𝛽(𝑣𝑣, 𝑣𝑣0)𝑛𝑛(𝑣𝑣)� 
0.3 

given the classical growth equation: 

𝜕𝜕𝑛𝑛(𝑡𝑡, 𝑣𝑣)
𝜕𝜕𝑡𝑡

= −
𝜕𝜕
𝜕𝜕𝑣𝑣 �

𝐺𝐺(𝑡𝑡, 𝑣𝑣)𝑛𝑛(𝑣𝑣)� 
0.4 

the following equivalency is evident: 

𝐺𝐺(𝑡𝑡, 𝑣𝑣) = 𝜇𝜇0𝛽𝛽(𝑣𝑣, 𝑣𝑣0) 0.5 
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Now that a relationship has been developed between this new formulation and the classical definition of 

growth, the cell average technique can be applied to develop ODEs. 

Step 1 - Birth and death rates: 

The discrete birth and death rates within any cell can be described by integrating the birth and death 

terms of equation 0.1 over cell 𝑚𝑚. Equation 0.6 describes the agglomeration of a nuclei of size 𝑣𝑣0 and a 

particle of size (𝑣𝑣 − 𝑣𝑣0) to form a particle of size 𝑣𝑣, while equation 0.7 describes the agglomeration of a 

particle of size 𝑣𝑣0 with a particle of size 𝑣𝑣 resulting in the particle moving out of that size range. 

𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 = � 𝛽𝛽(𝑣𝑣 − 𝑣𝑣0,𝑣𝑣0)𝑛𝑛(𝑣𝑣 − 𝑣𝑣0)𝑛𝑛(𝑣𝑣0)𝑑𝑑𝑣𝑣
𝑚𝑚
𝑖𝑖+12

𝑚𝑚
𝑖𝑖−12

 
0.6 

 

𝐼𝐼𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 = � 𝛽𝛽(𝑣𝑣, 𝑣𝑣0)𝑛𝑛(𝑣𝑣)𝑛𝑛(𝑣𝑣0)𝑑𝑑𝑣𝑣
𝑚𝑚
𝑖𝑖+12

𝑚𝑚
𝑖𝑖−12

 
0.7 

Where 𝛽𝛽(𝑣𝑣 − 𝑣𝑣0,𝑣𝑣0) is the agglomeration kernel for particles of size 𝑣𝑣 − 𝑣𝑣0 and 𝑣𝑣0; 𝑛𝑛(𝑣𝑣 − 𝑣𝑣) and 𝑛𝑛(𝑣𝑣0) 

are the particle number densities of size 𝑣𝑣 − 𝑣𝑣0 and 𝑣𝑣0 respectively. The integral term is removed by 

substituting the number density 𝑛𝑛(𝑡𝑡, 𝑣𝑣) = ∑ 𝐼𝐼𝑗𝑗𝛿𝛿�𝑣𝑣 − 𝑣𝑣𝑗𝑗�𝐼𝐼
𝑗𝑗=1 . As 𝑣𝑣0  has zero size, this function uses a 

Dirac delta function to concentrate the number densities to points 𝑣𝑣 = 𝑣𝑣𝑗𝑗. 

𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 = � 𝛽𝛽(𝑣𝑣 − 𝑣𝑣0, 𝑣𝑣0)� 𝐼𝐼𝑗𝑗𝛿𝛿�𝑣𝑣 − 𝑣𝑣0 − 𝑣𝑣𝑗𝑗�
𝐼𝐼

𝑗𝑗=1
𝑛𝑛(𝑣𝑣0)𝑑𝑑𝑣𝑣

𝑠𝑠
𝑖𝑖+12

𝑠𝑠
𝑖𝑖−12

 

𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 = 𝛽𝛽(𝑣𝑣𝑖𝑖, 𝑣𝑣0)𝐼𝐼𝑖𝑖𝑛𝑛(𝑣𝑣0) 

0.8 

Similarly: 

𝐼𝐼𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 = � 𝛽𝛽(𝑣𝑣, 𝑣𝑣0)� 𝐼𝐼𝑗𝑗𝛿𝛿�𝑣𝑣 − 𝑣𝑣𝑗𝑗�
𝐼𝐼

𝑗𝑗=1
𝑛𝑛(𝑣𝑣0)𝑑𝑑𝑣𝑣

𝑠𝑠
𝑖𝑖+12

𝑠𝑠
𝑖𝑖−12

 

𝐼𝐼𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 = 𝛽𝛽(𝑣𝑣𝑖𝑖, 𝑣𝑣0)𝐼𝐼𝑖𝑖𝑛𝑛(𝑣𝑣0) 

0.9 
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The equality of birth and death rates is expected as the total number of particles must remain constant 

in a pure growth scenario.  

Step 2 - Average volume of particles born into cell 𝑚𝑚: 

All particles increase by the volume of the nuclei during the growth process. As a result, the average 

volume of particles resulting from growth can be expressed quite simply: 

�̅�𝑣𝑖𝑖 =
𝑉𝑉𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖

𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖
=
𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖(𝑣𝑣𝑖𝑖 + 𝑣𝑣0)

𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖
= (𝑣𝑣𝑖𝑖 + 𝑣𝑣0) 

0.10 

Step 3 - Birth modification: 

𝐵𝐵𝑖𝑖𝐶𝐶𝑀𝑀 = 𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖−1𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖−1)𝐻𝐻(�̅�𝑣𝑖𝑖−1 − 𝑣𝑣𝑖𝑖−1) 

        +  𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖)𝐻𝐻(𝑣𝑣𝑖𝑖 − �̅�𝑣𝑖𝑖) 

        +  𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖)𝐻𝐻(�̅�𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖) 

        +  𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖+1𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖+1)𝐻𝐻(𝑣𝑣𝑖𝑖+1 − �̅�𝑣𝑖𝑖+1) 

0.11 

Since �̅�𝑣𝑖𝑖 > 𝑣𝑣𝑖𝑖 the Heaviside step function will always be equal to zero in the second and fourth term and 

always equal to one in the first and third term.  

𝐵𝐵𝑖𝑖,𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ𝐶𝐶𝑀𝑀 = 𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖−1𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖−1) + 𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖) 0.12 

 

Step 4 - Development of ODEs describing change in total particle number: 

𝑑𝑑𝐼𝐼𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝐵𝐵𝑖𝑖,𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ𝐶𝐶𝑀𝑀 − 𝐼𝐼𝑖𝑖,𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ 
0.13 

Substituting equation 0.12 into equation 0.13: 

𝑑𝑑𝐼𝐼𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖−1𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖−1) +   𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖) − 𝐼𝐼𝑖𝑖,𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ 
0.14 

Applying the definition of the lambda function and substituting equations 0.8 and 0.9 gives: 
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𝑑𝑑𝐼𝐼𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝛽𝛽(𝑣𝑣𝑖𝑖−1,𝑣𝑣0)𝐼𝐼𝑖𝑖−1𝑛𝑛(𝑣𝑣0) �
�̅�𝑣𝑖𝑖−1 − 𝑣𝑣𝑖𝑖−1
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖−1

� 

        +  𝛽𝛽(𝑣𝑣𝑖𝑖 , 𝑣𝑣0)𝐼𝐼𝑖𝑖𝑛𝑛(𝑣𝑣0) �
�̅�𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1

� 

        −  𝛽𝛽(𝑣𝑣𝑖𝑖 , 𝑣𝑣0)𝐼𝐼𝑖𝑖𝑛𝑛(𝑣𝑣0) 

0.15 

 

𝑑𝑑𝐼𝐼𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝛽𝛽(𝑣𝑣𝑖𝑖−1,𝑣𝑣0)𝐼𝐼𝑖𝑖−1𝑛𝑛(𝑣𝑣0) �
�̅�𝑣𝑖𝑖−1 − 𝑣𝑣𝑖𝑖−1
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖−1

�

+   𝛽𝛽(𝑣𝑣𝑖𝑖 , 𝑣𝑣0)𝐼𝐼𝑖𝑖𝑛𝑛(𝑣𝑣0) �
�̅�𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1

−
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1

� 

0.16 

𝑑𝑑𝐼𝐼𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝛽𝛽(𝑣𝑣𝑖𝑖−1,𝑣𝑣0)𝐼𝐼𝑖𝑖−1𝑛𝑛(𝑣𝑣0) �
�̅�𝑣𝑖𝑖−1 − 𝑣𝑣𝑖𝑖−1
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖−1

� + 𝛽𝛽(𝑣𝑣𝑖𝑖 , 𝑣𝑣0)𝐼𝐼𝑖𝑖𝑛𝑛(𝑣𝑣0) �
�̅�𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1

� 
0.17 

substituting �̅�𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖 + 𝑣𝑣0 (equation 0.10) gives: 

𝑑𝑑𝐼𝐼𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝛽𝛽(𝑣𝑣𝑖𝑖−1,𝑣𝑣0)𝐼𝐼𝑖𝑖−1𝑛𝑛(𝑣𝑣0) �
𝑣𝑣𝑖𝑖−1 + 𝑣𝑣0 − 𝑣𝑣𝑖𝑖−1

𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖−1
� + 𝛽𝛽(𝑣𝑣𝑖𝑖, 𝑣𝑣0)𝐼𝐼𝑖𝑖𝑛𝑛(𝑣𝑣0) �

𝑣𝑣𝑖𝑖 + 𝑣𝑣0 − 𝑣𝑣𝑖𝑖
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1

� 
0.18 

Recalling equation 0.5, 𝐺𝐺(𝑡𝑡, 𝑣𝑣) = 𝜇𝜇0𝛽𝛽(𝑣𝑣, 𝑣𝑣0) and 𝜇𝜇0 = 𝑣𝑣0𝑛𝑛(𝑣𝑣0): 

𝑑𝑑𝐼𝐼𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝐺𝐺(𝑣𝑣𝑖𝑖−1)𝐼𝐼𝑖𝑖−1 �
1

𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖−1
� + 𝐺𝐺(𝑣𝑣𝑖𝑖)𝐼𝐼𝑖𝑖 �

1
𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖+1

� 
0.19 

rearranging: 

𝑑𝑑𝐼𝐼𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝐺𝐺(𝑣𝑣𝑖𝑖−1)
𝐼𝐼𝑖𝑖−1

𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖−1
− 𝐺𝐺(𝑣𝑣𝑖𝑖)

𝐼𝐼𝑖𝑖
𝑣𝑣𝑖𝑖+1 − 𝑣𝑣𝑖𝑖

 
0.20 

For equidistant grids and constant volumetric growth rate, equation 0.20 reduces to the first order 

upwind discretisation. Equation 0.20 holds for 𝑚𝑚 = 2 to 𝐼𝐼. In the first cell, 𝑚𝑚 = 1, the first term doesn't 

exist, reducing the expression to:  

𝑑𝑑𝐼𝐼1
𝑑𝑑𝑡𝑡

= −𝐺𝐺(𝑣𝑣1)
𝐼𝐼1

𝑣𝑣2 − 𝑣𝑣1
 

0.21 
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B.2. CAT Nucleation and crystal growth 

The general formulation of the ODE is given by equation 0.22 

𝑑𝑑𝐼𝐼𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖
𝐶𝐶𝑀𝑀 − 𝐼𝐼𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 

0.22 

Where: 

𝐵𝐵𝑖𝑖𝐶𝐶𝑀𝑀 = 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖−1𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖−1)𝐻𝐻(�̅�𝑣𝑖𝑖−1 − 𝑣𝑣𝑖𝑖−1) 

        +  𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖)𝐻𝐻(𝑣𝑣𝑖𝑖 − �̅�𝑣𝑖𝑖) 

        +  𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖)𝐻𝐻(�̅�𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖) 

        +  𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖+1𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖+1)𝐻𝐻(𝑣𝑣𝑖𝑖+1 − �̅�𝑣𝑖𝑖+1) 

0.23 

Step 1 - Birth and death rates: 

𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 = 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,𝑖𝑖 + 𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 0.24 

Nucleation can be introduced in a few manners. If nucleation is mono-disperse it can be defined as a 

boundary condition at particle size zero, as a source located near particle size zero or appearance of 

particles at the representative size of the first cell. In this work the latter will be implemented for 

simplicity. The implications of using this technique are discussed in section xx. Birth and death rates 

associated with growth are the same as those in equations 0.8 and 0.9 respectively. If nucleation is mono-

disperse at the representative size of the first cell: 

for 𝑚𝑚 = 1: 

𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,1 = 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1 + 𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,1 0.25 

 

𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,1 = 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1 + 𝛽𝛽(𝑣𝑣𝑖𝑖, 𝑣𝑣0)𝐼𝐼𝑖𝑖𝑛𝑛(𝑣𝑣0) 0.26 

 

and for 𝑚𝑚 = 2 → 𝐼𝐼: 
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𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 = 𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 = 𝛽𝛽(𝑣𝑣𝑖𝑖, 𝑣𝑣0)𝐼𝐼𝑖𝑖𝑛𝑛(𝑣𝑣0) 0.27 

 

for all 𝑚𝑚 

𝐼𝐼𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 = 𝛽𝛽(𝑣𝑣𝑖𝑖, 𝑣𝑣0)𝐼𝐼𝑖𝑖𝑛𝑛(𝑣𝑣0) 0.28 

 

Step 2 - Average volume of particles born into cell 𝑚𝑚: 

�̅�𝑣𝑖𝑖 =
𝑉𝑉𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖

𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖
 

�̅�𝑣𝑖𝑖 =
𝑉𝑉𝑛𝑛𝑠𝑠𝑛𝑛,𝑖𝑖 + 𝑉𝑉𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖

𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,𝑖𝑖 + 𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖
 

0.29 

for 𝑚𝑚 = 1: 

�̅�𝑣1 =
𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1𝑣𝑣1 + (𝑣𝑣1 + 𝑣𝑣0)𝛽𝛽(𝑣𝑣1,𝑣𝑣0)𝐼𝐼1𝑛𝑛(𝑣𝑣0)

𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1 + 𝛽𝛽(𝑣𝑣1, 𝑣𝑣0)𝐼𝐼1𝑛𝑛(𝑣𝑣0)  
0.30 

for 𝑚𝑚 = 2 → 𝐼𝐼, nucleation doesn't occur and the standard growth formulation can be applied: 

�̅�𝑣𝑖𝑖 =
𝑉𝑉𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖

𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖
=
𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖(𝑣𝑣𝑖𝑖 + 𝑣𝑣0)

𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖
= (𝑣𝑣𝑖𝑖 + 𝑣𝑣0) 

0.31 

 

Step 3 - Birth modification: 

𝐵𝐵𝑖𝑖𝐶𝐶𝑀𝑀 = 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖−1𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖−1)𝐻𝐻(�̅�𝑣𝑖𝑖−1 − 𝑣𝑣𝑖𝑖−1) 

        +  𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖)𝐻𝐻(𝑣𝑣𝑖𝑖 − �̅�𝑣𝑖𝑖) 

        +  𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖)𝐻𝐻(�̅�𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖) 

        +  𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖+1𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖+1)𝐻𝐻(𝑣𝑣𝑖𝑖+1 − �̅�𝑣𝑖𝑖+1) 

0.32 

As in the pure growth scenario, since �̅�𝑣𝑖𝑖 > 𝑥𝑥𝑖𝑖, the Heaviside step function will always be equal to zero in 

the second and fourth term and always equal to one in the first and third term. This also holds for the 
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first cell as the nuclei are born exactly at the representative size. Equation 0.32 is reduced to equation 

0.33. 

𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖
𝐶𝐶𝑀𝑀 = 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖−1𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖−1) + 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖) 0.33 

 

Step 4 - Development of ODEs describing change in total particle number: 

Substituting equation 0.33 into equation 0.22 gives  

𝑑𝑑𝐼𝐼𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖−1𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖−1) + 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖) − 𝐼𝐼𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 
0.34 

Cell 𝑚𝑚 = 1: 

Nucleation is defined to occur only in cell 𝑚𝑚 = 1. In this cell, the term 𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖−1) doesn't exist, reducing the 

expression to: 

𝑑𝑑𝐼𝐼𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,1 �
�̅�𝑣1 − 𝑣𝑣2
𝑣𝑣1 − 𝑣𝑣2

� − 𝐼𝐼𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,1 
0.35 

Substituting the expression for the average volume (�̅�𝑣1) in cell 1 (equation 0.30), the expression for birth 

due to nucleation and growth in cell 1 (equation xx) and the expression for death due to growth in cell 1 

(equation xx) gives: 

𝑑𝑑𝐼𝐼1
𝑑𝑑𝑡𝑡

= �𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1 + 𝛽𝛽(𝑣𝑣1,𝑣𝑣0)𝐼𝐼1𝑛𝑛(𝑣𝑣0)�

⎝

⎛

𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1𝑣𝑣1 + (𝑣𝑣1 + 𝑣𝑣0)𝛽𝛽(𝑣𝑣1,𝑣𝑣0)𝐼𝐼1𝑛𝑛(𝑣𝑣0)
𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1 + 𝛽𝛽(𝑣𝑣1,𝑣𝑣0)𝐼𝐼1𝑛𝑛(𝑣𝑣0) − 𝑣𝑣2

𝑣𝑣1 − 𝑣𝑣2
⎠

⎞

− 𝛽𝛽(𝑣𝑣 ,𝑣𝑣0)𝐼𝐼1𝑛𝑛(𝑣𝑣0) 

0.36 

The equality 𝐺𝐺(𝑡𝑡, 𝑥𝑥𝑖𝑖) = 𝑥𝑥0𝑛𝑛(𝑥𝑥0)𝛽𝛽(𝑥𝑥𝑖𝑖 , 𝑥𝑥0) can be rearranged and substituted into equation 0.36 to give: 
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𝑑𝑑𝐼𝐼1
𝑑𝑑𝑡𝑡

= �𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1 +
𝐼𝐼1𝐺𝐺(𝑡𝑡, 𝑣𝑣1)

𝑣𝑣0
�

⎝

⎜
⎜
⎜
⎜
⎛
𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1𝑣𝑣1 + (𝑣𝑣1 + 𝑣𝑣0)𝐼𝐼𝑖𝑖𝐺𝐺(𝑡𝑡, 𝑣𝑣1)

𝑣𝑣0
𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1 + 𝐼𝐼𝑖𝑖𝐺𝐺(𝑡𝑡, 𝑣𝑣1)

𝑣𝑣0

− 𝑣𝑣2

𝑣𝑣1 − 𝑣𝑣2

⎠

⎟
⎟
⎟
⎟
⎞

−
𝐼𝐼1𝐺𝐺(𝑡𝑡, 𝑣𝑣1)

𝑣𝑣0
 

0.37 

 

𝑑𝑑𝐼𝐼1
𝑑𝑑𝑡𝑡

= �𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1 +
𝐼𝐼1𝐺𝐺(𝑡𝑡, 𝑣𝑣1)

𝑣𝑣0
��

𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1𝑣𝑣1 + (𝑣𝑣1 + 𝑣𝑣0)𝐼𝐼1𝐺𝐺(𝑡𝑡, 𝑣𝑣1)
𝑥𝑥0

− 𝑣𝑣2 �𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1 + 𝐼𝐼1𝐺𝐺(𝑡𝑡, 𝑣𝑣1)
𝑣𝑣0

�

�𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1 + 𝐼𝐼1𝐺𝐺(𝑡𝑡, 𝑣𝑣1)
𝑣𝑣0

� (𝑣𝑣𝑖𝑖 − 𝑣𝑣2)
�

−
𝐼𝐼1𝐺𝐺(𝑡𝑡, 𝑣𝑣1)

𝑣𝑣0
 

0.38 

 

𝑑𝑑𝐼𝐼1
𝑑𝑑𝑡𝑡

= �
𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1𝑣𝑣1 + (𝑣𝑣1 + 𝑣𝑣0)𝐼𝐼𝑖𝑖𝐺𝐺(𝑡𝑡, 𝑣𝑣1)

𝑣𝑣0
− 𝑣𝑣2 �𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1 +𝐼𝐼𝑖𝑖𝐺𝐺(𝑡𝑡, 𝑣𝑣1)

𝑣𝑣0
�

(𝑣𝑣1 − 𝑣𝑣2) �−
𝐼𝐼1𝐺𝐺(𝑡𝑡, 𝑣𝑣1)

𝑣𝑣0
 

0.39 

 

𝑑𝑑𝐼𝐼1
𝑑𝑑𝑡𝑡

= �
𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1(𝑣𝑣1 − 𝑣𝑣2) + (𝑣𝑣1 − 𝑣𝑣2)𝐼𝐼𝑖𝑖𝐺𝐺(𝑡𝑡, 𝑣𝑣𝑖𝑖)

𝑣𝑣0
+ 𝐼𝐼𝑖𝑖𝐺𝐺(𝑡𝑡, 𝑣𝑣𝑖𝑖)

(𝑣𝑣1 − 𝑣𝑣2) �−
𝐼𝐼𝑖𝑖𝐺𝐺(𝑡𝑡, 𝑣𝑣𝑖𝑖)

𝑣𝑣0
 

0.40 

 

𝑑𝑑𝐼𝐼1
𝑑𝑑𝑡𝑡

= 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1 +
𝐼𝐼𝑖𝑖𝐺𝐺(𝑡𝑡, 𝑣𝑣𝑖𝑖)

𝑣𝑣0
+
𝐼𝐼𝑖𝑖𝐺𝐺(𝑡𝑡, 𝑣𝑣𝑖𝑖)
(𝑣𝑣1 − 𝑣𝑣2) −

𝐼𝐼𝑖𝑖𝐺𝐺(𝑡𝑡, 𝑣𝑣𝑖𝑖)
𝑣𝑣0

 
0.41 

 

𝑑𝑑𝐼𝐼1
𝑑𝑑𝑡𝑡

= 𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛,1 +
𝐼𝐼𝑖𝑖𝐺𝐺(𝑡𝑡, 𝑣𝑣𝑖𝑖)
(𝑣𝑣1 − 𝑣𝑣2) 

0.42 
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B.3. CAT Aggregation and crystal growth 

The general formulation of the ODE is given by equation 0.22 

𝑑𝑑𝐼𝐼𝑖𝑖
𝑑𝑑𝑡𝑡

= 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖
𝐶𝐶𝑀𝑀 − 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖  

0.43 

Where: 

𝐵𝐵𝑖𝑖𝐶𝐶𝑀𝑀 = 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖−1𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖−1)𝐻𝐻(�̅�𝑣𝑖𝑖−1 − 𝑣𝑣𝑖𝑖−1) 

        +  𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖𝜆𝜆𝑖𝑖−(�̅�𝑣𝑖𝑖)𝐻𝐻(𝑣𝑣𝑖𝑖 − �̅�𝑣𝑖𝑖) 

        +  𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖)𝐻𝐻(�̅�𝑣𝑖𝑖 − 𝑣𝑣𝑖𝑖) 

        +  𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖+1𝜆𝜆𝑖𝑖+(�̅�𝑣𝑖𝑖+1)𝐻𝐻(𝑣𝑣𝑖𝑖+1 − �̅�𝑣𝑖𝑖+1) 

0.44 

Step 1 - Birth and death rates: 

𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 = 𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 + 𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖  0.45 

for all 𝑚𝑚 

𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖 = 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 + 𝐼𝐼𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖  0.46 

 

Step 2 - Average volume of particles born into cell 𝑚𝑚: 

�̅�𝑣𝑖𝑖 =
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖

𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎+𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖
 

�̅�𝑣𝑖𝑖 =
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 + 𝑉𝑉𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖

𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖 + 𝐵𝐵𝑎𝑎𝑠𝑠𝑔𝑔𝑔𝑔𝑠𝑠ℎ,𝑖𝑖
 

0.47 

 

Steps 3 & 4 - Birth modification & development of ODEs describing change in total particle number:  

Inclusion of aggregation means that the equations presented in steps 1 and 2 cannot be analytically 

reduced as was done in sections B.1 and B.2. Because of this, equations 0.43 to 0.47 are implemented 

directly to obtain the aggregation and growth numerical solution. 
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 – Population balance analytic 
solutions 

C.1. Agglomeration and growth analytic solution 

This analytic solution of the scenario of constant agglomeration and linear growth is based on work 

by (Ramabhadran, 1976). Assuming an exponential distribution initial condition (equation 0.48), the 

PSD evolution is given by equation 0.49.  

𝑛𝑛(𝑣𝑣, 0) =
𝐼𝐼0
𝑣𝑣0

exp �−
𝑣𝑣
𝑣𝑣0
� 0.48 

 

𝑛𝑛(𝑣𝑣, 𝑡𝑡) =
𝐼𝐼0
𝑣𝑣0

(1 − 𝑇𝑇)2 exp �−
2Λ𝑇𝑇

1 − 𝑇𝑇
� exp �−

𝑣𝑣
𝑣𝑣0

(1 − 𝑇𝑇) exp �−
2Λ𝑇𝑇

1 − 𝑇𝑇
�� 0.49 

Where: 

Λ =
𝐺𝐺0

𝑣𝑣0𝛽𝛽0𝐼𝐼0
 0.50 

 

𝐺𝐺𝑠𝑠 = 𝐺𝐺0𝑣𝑣 0.51 

 

𝑇𝑇 = 1 −
𝜇𝜇0
𝐼𝐼0

 0.52 

 

The zeroth and first moments are given by equations 0.53 and 0.54. 

𝜇𝜇0 =
2𝐼𝐼0

2 + 𝛽𝛽0𝐼𝐼0𝑡𝑡
 0.53 

 



311 
 

𝜇𝜇1 = 𝜇𝜇0𝑣𝑣0 exp(𝜎𝜎1𝑡𝑡) 0.54 

 

The dimensionless aggregation time and dimensionless growth time are defined by equations 0.55 

and 0.56, respectively. 

𝑇𝑇𝑎𝑎 = 𝛽𝛽0𝐼𝐼0𝑡𝑡 0.55 

 

𝑇𝑇𝑎𝑎 =
𝐺𝐺𝑠𝑠(𝑣𝑣0)𝑡𝑡
𝑣𝑣0

 
0.56 

 

C.2. Nucleation and growth analytical solution 

C.2.1. Constant volumetric growth rate 

The population balance for nucleation and crystal growth can be written in terms of particle volume 

as: 

𝜕𝜕𝑛𝑛(𝑡𝑡, 𝑣𝑣)
𝜕𝜕𝑡𝑡

= 𝑆𝑆(𝑣𝑣) −
𝜕𝜕[𝐺𝐺(𝑡𝑡, 𝑣𝑣)𝑛𝑛(𝑡𝑡, 𝑣𝑣)]

𝜕𝜕𝑣𝑣
 

0.57 

Where 𝑆𝑆(𝑣𝑣) is the nucleation term. Hounslow (Michael J Hounslow, 1990b) gave the analytic solution 

for a constant growth rate (𝐺𝐺(𝑡𝑡, 𝑣𝑣) = 𝐺𝐺𝑠𝑠 ) and mono-disperse nuclei of zero volume (𝑆𝑆(𝑣𝑣) =

𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛𝛿𝛿(𝑣𝑣 − 𝑣𝑣0)), starting with no particles (𝑛𝑛(0, 𝑣𝑣) = 0) as: 

𝑛𝑛(𝑡𝑡, 𝑣𝑣) =
𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛
𝐺𝐺𝑠𝑠

𝐻𝐻 �𝑡𝑡 −
𝑣𝑣
𝐺𝐺𝑠𝑠
� 0.58 

The general analytical solution for the moments of the population balance are obtained by 

substituting equation 0.58 into the general definition for the 𝑗𝑗𝑠𝑠ℎ moment of a distribution. 

𝜇𝜇𝑗𝑗 = � 𝑣𝑣𝑗𝑗
𝐵𝐵0
𝐺𝐺𝑠𝑠
𝐻𝐻 �𝑡𝑡 −

𝑣𝑣
𝐺𝐺𝑠𝑠
�

∞

0
𝑑𝑑𝑣𝑣 

0.59 
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The unit step function causes the limits of the integral to be changed. The unit step function is unity 

at 𝑣𝑣 < 𝐺𝐺𝑠𝑠𝑡𝑡, causing the function to only exist when this condition is satisfied. As such the upper limit 

on the integration becomes 𝐺𝐺𝑠𝑠𝑡𝑡. 

𝜇𝜇𝑗𝑗 =
𝐵𝐵0
𝐺𝐺𝑠𝑠
� 𝑣𝑣𝑗𝑗𝑑𝑑𝑣𝑣
𝑁𝑁𝑣𝑣𝑠𝑠

0
 

0.60 

solving gives: 

𝜇𝜇𝑗𝑗 =
𝐵𝐵0

(𝑗𝑗 + 1)𝐺𝐺𝑠𝑠
(𝐺𝐺𝑠𝑠𝑡𝑡)𝑗𝑗+1 0.61 

where 𝐶𝐶 is a constant, the value of which is unimportant when the derivative is taken with respect to 

time 

𝜕𝜕𝜇𝜇𝑗𝑗
𝜕𝜕𝑡𝑡

= 𝐵𝐵0𝐺𝐺𝑠𝑠
𝑗𝑗𝑡𝑡𝑗𝑗 

0.62 

substituting 𝑗𝑗 = 0, and 𝑗𝑗 = 1 gives 

𝜕𝜕𝜇𝜇0
𝜕𝜕𝑡𝑡

= 𝐵𝐵0 
0.63 

And  

𝜕𝜕𝜇𝜇1
𝜕𝜕𝑡𝑡

= 𝐵𝐵0𝐺𝐺𝑠𝑠𝑡𝑡 
0.64 

respectively. 

C.2.2. Constant length growth rate 

The population balance for nucleation and crystal growth can be written in terms of particle length as: 

𝜕𝜕𝑛𝑛(𝑡𝑡, 𝐿𝐿)
𝜕𝜕𝑡𝑡

= 𝑆𝑆(𝐿𝐿) −
𝜕𝜕[𝐺𝐺(𝑡𝑡, 𝐿𝐿)𝑛𝑛(𝑡𝑡, 𝐿𝐿)]

𝜕𝜕𝐿𝐿
 

0.65 

Where 𝑆𝑆(𝐿𝐿)  is the nucleation term. Hounslow (Michael J Hounslow, 1990b) gave the analytical 

solution for a constant growth rate (𝐺𝐺(𝑡𝑡, 𝐿𝐿) = 𝐺𝐺𝐿𝐿) and mono-disperse nuclei of zero volume (𝑆𝑆(𝐿𝐿) =

𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛𝛿𝛿(𝐿𝐿 − 𝐿𝐿0)), starting with no particles (𝑛𝑛(0, 𝐿𝐿) = 0) as: 
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𝑛𝑛(𝑡𝑡, 𝐿𝐿) =
𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛
𝐺𝐺𝐿𝐿

𝐻𝐻 �𝑡𝑡 −
𝐿𝐿
𝐺𝐺𝐿𝐿
� 0.66 

To express this solution in terms of a volumetric distribution (𝑛𝑛(𝑡𝑡, 𝑣𝑣)), 𝑛𝑛(𝑡𝑡, 𝑣𝑣) must be related to 

𝑛𝑛(𝑡𝑡, 𝐿𝐿) and length must be expressed in terms of volume. Using a spherical particle volume and the 

differential relationship between volume and length based distributions gives an analytical solution 

for a volume distributed population balance, starting with no particles, undergoing nucleation and 

constant particle length growth. 

𝑛𝑛(𝑡𝑡, 𝑣𝑣) =
𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛
𝐺𝐺𝐿𝐿

𝐻𝐻�𝑡𝑡 −
�6𝑣𝑣
𝜋𝜋 �

1/3

𝐺𝐺𝐿𝐿
��

2
9𝜋𝜋
�
1/3

𝑣𝑣−2/3 

0.67 

 

Equation 0.67 can be substituted into the general moment definition to give an expression for the 

moments for the distribution in terms of a volume discretisation. 

𝜇𝜇𝑗𝑗 = � 𝑣𝑣𝑗𝑗
∞

0

𝐵𝐵𝑛𝑛𝑠𝑠𝑛𝑛
𝐺𝐺𝐿𝐿

𝐻𝐻�𝑡𝑡 −
�6𝑣𝑣
𝜋𝜋 �

1/3

𝐺𝐺𝐿𝐿
��

2
9𝜋𝜋
�
1/3

𝑣𝑣−2/3𝑑𝑑𝑣𝑣 

0.68 

The term 𝐵𝐵𝑛𝑛𝑛𝑛𝑛𝑛
𝑁𝑁𝐿𝐿

� 2
9𝜋𝜋
�
1/3

 is absorbed in to a constant 𝑘𝑘∗ for simplicity in this derivation giving: 

𝜇𝜇𝑗𝑗 = 𝑘𝑘∗ � 𝑣𝑣𝑗𝑗
∞

0
𝐻𝐻�𝑡𝑡 −

�6𝑣𝑣
𝜋𝜋 �

1/3

𝐺𝐺𝐿𝐿
�𝑣𝑣−2/3𝑑𝑑𝑣𝑣 

0.69 

As in equation 0.60, the limits of the unit step function alters the limits of the integration. In this case 

the upper limit becomes 𝑁𝑁𝐿𝐿
3𝑠𝑠3𝜋𝜋
6

 

𝜇𝜇𝑗𝑗 = 𝑘𝑘∗ � 𝑣𝑣𝑗𝑗−2/3𝑑𝑑𝑣𝑣
𝑁𝑁𝐿𝐿
3𝑠𝑠3𝜋𝜋
6

0
 

0.70 

solving yields: 
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𝜇𝜇𝑗𝑗 =
3𝑘𝑘∗ �𝐺𝐺𝐿𝐿

3𝑡𝑡3𝜋𝜋
6 �

𝑗𝑗+13

𝑗𝑗 + 1
+ 𝐶𝐶 

0.71 

substituting 𝑗𝑗 = 0: 

𝜇𝜇0 = 3𝑘𝑘∗𝐺𝐺𝐿𝐿𝑡𝑡 �
𝜋𝜋
6
�
1/3

+ 𝐶𝐶 
0.72 

therefore: 

𝜕𝜕𝜇𝜇0
𝜕𝜕𝑡𝑡

= 3𝑘𝑘∗𝐺𝐺𝐿𝐿 �
𝜋𝜋
6
�
1/3

 
0.73 

similarly for 𝑗𝑗 = 1: 

𝜇𝜇1 =
3𝑘𝑘∗𝐺𝐺𝐿𝐿4𝑡𝑡4 �

𝜋𝜋
6�

4
3

2
+ 𝐶𝐶 

0.74 

and 

𝜕𝜕𝜇𝜇1
𝜕𝜕𝑡𝑡

= 6𝑘𝑘∗𝐺𝐺𝐿𝐿4𝑡𝑡3 �
𝜋𝜋
6
�
4
3 

0.75 
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 – Derivation of advection, 
diffusion & reaction model and key process 
parameters 
This appendix provides a first principles derivation of the advection diffusion reaction 

model. It also includes methods used to calculate key process variables, namely: reactor 

outlet concentration; concentration over a sampling period not at steady state; and 

reactor outlet PSD percentiles (D[10], D[50] & D[90). 

D.1. Advection, diffusion and reaction model derivation 

To construct a differential mole balance on an arbitrary species 𝑚𝑚 we consider a differential volume within 

the reactor: 

 

Where ∆𝑉𝑉 is differential control volume, 𝐼𝐼 is reactor cross sectional area and ∆𝑧𝑧 is differential length. If 

we write a general mass balance equation as follows: 

𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝜇𝜇𝐵𝐵𝑚𝑚𝑎𝑎𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛 = 𝐼𝐼𝑛𝑛 − 𝐶𝐶𝐵𝐵𝑡𝑡 + 𝐺𝐺𝑒𝑒𝑛𝑛𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛 0.76 

Accumulation can be described by:  

𝐼𝐼𝐵𝐵𝐵𝐵𝐵𝐵𝜇𝜇𝐵𝐵𝑚𝑚𝑎𝑎𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛 = ∆𝑉𝑉
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑡𝑡

 
0.77 

Component 𝑚𝑚 can enter and exit the differential volume by convection and diffusion: 
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𝐶𝐶𝑚𝑚𝑛𝑛𝑣𝑣𝑒𝑒𝐵𝐵𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛 𝐼𝐼𝑛𝑛 =  (𝑣𝑣𝐼𝐼𝐶𝐶𝑖𝑖)𝑧𝑧 

𝐶𝐶𝑚𝑚𝑛𝑛𝑣𝑣𝑒𝑒𝐵𝐵𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛 𝐶𝐶𝐵𝐵𝑡𝑡 =  (𝑣𝑣𝐼𝐼𝐶𝐶𝑖𝑖)𝑧𝑧+Δ𝑧𝑧 

𝐼𝐼𝑚𝑚𝑓𝑓𝑓𝑓𝐵𝐵𝑠𝑠𝑚𝑚𝑚𝑚𝑛𝑛 𝐼𝐼𝑛𝑛 = (𝐼𝐼𝑚𝑚𝑖𝑖)𝑧𝑧 

𝐼𝐼𝑚𝑚𝑓𝑓𝑓𝑓𝐵𝐵𝑠𝑠𝑚𝑚𝑚𝑚𝑛𝑛 𝐶𝐶𝐵𝐵𝑡𝑡 = (𝐼𝐼𝑚𝑚𝑖𝑖)𝑧𝑧+Δ𝑧𝑧 

0.78 

Where 𝑣𝑣 is bulk fluid velocity in the axial direction, 𝑚𝑚𝑖𝑖 is the molar flux of species 𝑚𝑚 and Fick's Law defines 

𝑚𝑚𝑖𝑖 as: 

𝑚𝑚𝑖𝑖 = 𝐼𝐼
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑧𝑧

 
0.79 

Generation (also accounting for consumption if negative) is given by: 

𝐺𝐺𝑒𝑒𝑛𝑛𝑒𝑒𝑟𝑟𝑎𝑎𝑡𝑡𝑚𝑚𝑚𝑚𝑛𝑛 =  𝜐𝜐𝑖𝑖 ∙ Δ𝑉𝑉 ∙ 𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒𝑖𝑖 0.80 

Where 𝜐𝜐𝑖𝑖 is the stoichiometric coefficient of species 𝑚𝑚 and 𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒𝑖𝑖 is the rate of formation of species 𝑚𝑚 (given 

by a kinetic model). Substituting these equations into the original mass balance gives: 

∆𝑉𝑉
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑡𝑡

= (𝑣𝑣𝐼𝐼𝐶𝐶𝑖𝑖)𝑧𝑧 − (𝑣𝑣𝐼𝐼𝐶𝐶𝑖𝑖)𝑧𝑧+Δ𝑧𝑧 + (𝐼𝐼𝑚𝑚𝑖𝑖)𝑧𝑧 − (𝐼𝐼𝑚𝑚𝑖𝑖)𝑧𝑧+Δ𝑧𝑧 +  𝜐𝜐𝑖𝑖 ∙ Δ𝑉𝑉 ∙ 𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒𝑖𝑖 
0.81 

Assuming cross-sectional area of the reactor is constant we can substitute ∆𝑉𝑉 = 𝐼𝐼 ∙ ∆𝑧𝑧 to get: 

𝐼𝐼 ∙ ∆𝑧𝑧
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑡𝑡

= (𝑣𝑣𝐼𝐼𝐶𝐶𝑖𝑖)𝑧𝑧 − (𝑣𝑣𝐼𝐼𝐶𝐶𝑖𝑖)𝑧𝑧+Δ𝑧𝑧 + (𝐼𝐼𝑚𝑚𝑖𝑖)𝑧𝑧 − (𝐼𝐼𝑚𝑚𝑖𝑖)𝑧𝑧+Δ𝑧𝑧 +  𝜐𝜐𝑖𝑖 ∙ 𝐼𝐼 ∙ ∆𝑧𝑧 ∙ 𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒𝑖𝑖 
0.82 

Dividing by 𝐼𝐼 ∙ ∆𝑧𝑧 and taking lim
∆𝑧𝑧→0

gives: 

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑡𝑡

= −
𝜕𝜕(𝑣𝑣𝐶𝐶𝑖𝑖)
𝜕𝜕𝑧𝑧

−
𝜕𝜕𝑚𝑚𝑖𝑖
𝜕𝜕𝑧𝑧

+ 𝜐𝜐𝑖𝑖 ∙ 𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒𝑖𝑖  
0.83 

using the product rule: 

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑡𝑡

= −𝐶𝐶𝑖𝑖
𝜕𝜕𝑣𝑣
𝜕𝜕𝑧𝑧

− 𝑣𝑣
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑧𝑧

−
𝜕𝜕𝑚𝑚𝑖𝑖
𝜕𝜕𝑧𝑧

+ 𝜐𝜐𝑖𝑖 ∙ 𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒𝑖𝑖 
0.84 

As cross-sectional area was assumed constant, fluid bulk velocity does not vary axially. Therefore: 

𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑡𝑡

= −𝑣𝑣
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑧𝑧

−
𝜕𝜕𝑚𝑚𝑖𝑖
𝜕𝜕𝑧𝑧

+ 𝜐𝜐𝑖𝑖 ∙ 𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒𝑖𝑖 
0.85 

Substituting Fick's Law gives: 
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𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑡𝑡

= −𝑣𝑣
𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝑧𝑧

+ 𝐼𝐼
𝜕𝜕2𝐶𝐶𝑖𝑖
𝜕𝜕𝑧𝑧2

+ 𝜐𝜐𝑖𝑖 ∙ 𝑟𝑟𝑎𝑎𝑡𝑡𝑒𝑒𝑖𝑖  
0.86 

This equation can be solved numerically if boundary conditions, initial conditions and a kinetics are 

defined. 

D.1.1. Poiseuille flow 

Equation 0.86 can be easily extended into the radial dimension since the reactor radius only affects the 

velocity term. Poiseuille flow can be derived from the Navier-Stokes equations by assuming fully 

developed axisymmetric steady state flow with zero radial velocity. Under these assumptions, velocity 

profile can be written as a function of pipe radius (𝑣𝑣𝑧𝑧(𝑟𝑟)).  

𝑣𝑣𝑧𝑧(𝑟𝑟) = 2�̅�𝑣 �1 − �
𝑟𝑟
𝑅𝑅
�
2
� 

0.87 

Where �̅�𝑣 is the mean fluid velocity and 𝑅𝑅 is the pipe radius. 

D.2. Outlet concentrations 

D.2.1. Instantaneous outlet concentration 

The concentrations of compounds exiting the reactor are key process variables as they can be measured 

and used to assess reactor performance. These concentrations are not intrinsically calculated by the 

distributed model and as such must be calculated manually. This is done by integrating over the reactor 

radius. The differential expression flow in the pipe is then given by: 

𝑑𝑑𝑄𝑄 = 𝑣𝑣𝑧𝑧(𝑟𝑟)𝑑𝑑𝐼𝐼 0.88 

where, 

𝑑𝑑𝐼𝐼 = 2𝜋𝜋𝑟𝑟𝑑𝑑𝑟𝑟 0.89 

Number of moles of component 𝑚𝑚 (𝐼𝐼𝑖𝑖) can then be expressed by multiplying concentration of component 

𝑚𝑚 (𝐶𝐶𝑖𝑖(𝑟𝑟)) by flow: 

𝑑𝑑𝐼𝐼𝑖𝑖 = 𝐶𝐶𝑖𝑖(𝑟𝑟)𝑑𝑑𝑄𝑄 0.90 
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Combining equations 0.88 to 0.90 gives an expression for the total concentration of a component exiting 

the pipe: 

𝐶𝐶𝑖𝑖 =
𝐼𝐼𝑖𝑖,𝑇𝑇
𝑄𝑄𝑇𝑇

=
∫ 𝐶𝐶(𝑟𝑟)𝑣𝑣𝑧𝑧(𝑟𝑟)2𝜋𝜋𝑟𝑟𝑅𝑅
0 𝑑𝑑𝑟𝑟

∫ 𝑣𝑣𝑧𝑧(𝑟𝑟)2𝜋𝜋𝑟𝑟𝑅𝑅
0 𝑑𝑑𝑟𝑟

 
0.91 

D.2.2. Average outlet concentration over a sampling period 

The outlet concentration of component 𝑚𝑚  (𝐶𝐶𝑖𝑖 ) taken during a period of transient operation must be 

integrated through time. The following construct was used to achieve this:  

𝑑𝑑𝐶𝐶𝚤𝚤,𝚥𝚥����
𝑑𝑑𝑡𝑡

=
1
𝑆𝑆𝑗𝑗
∙
𝑑𝑑𝑆𝑆𝑗𝑗
𝑑𝑑𝑡𝑡

∙ 𝐶𝐶𝑖𝑖 
0.92 

 

𝑑𝑑𝑆𝑆𝑗𝑗
𝑑𝑑𝑡𝑡

= �tanh �1 × 1010�𝑡𝑡 − 𝑡𝑡𝑠𝑠(𝑗𝑗 − 1)�� + 1� �tanh�−1 × 1010(𝑡𝑡 − 𝑡𝑡𝑠𝑠𝑗𝑗)� + 1�/2 
0.93 

Where 𝐶𝐶𝚤𝚤,𝚥𝚥���� is the average concentration of species 𝑚𝑚 over the sampling period 𝑗𝑗 and 𝑆𝑆 is a continuous 

variable used to describe discrete sampling, where 𝑡𝑡𝑠𝑠 is the duration of each sample (in this case 10min). 

For example, for the second sample: 𝑗𝑗 = 2, 𝐶𝐶𝑖𝑖,2is integrated (by 0.97) only for the period described by 

equation 0.94 i.e. 

𝑑𝑑𝑆𝑆2
𝑑𝑑𝑡𝑡

=
0; 𝑡𝑡 < 10

1; 10 < 𝑡𝑡 < 20
0; 𝑡𝑡 > 20

 
0.94 

D.2.3. Particle size distribution percentiles 

The 10th, 50th and 90th percentiles of the particle volume distribution are commonly used to describe 

particulates. The 50th percentile is also known as the volume median diameter (VMD) and represents the 

diameter which 50% of the total crystal volume resides under. These properties are not immediately 

available from the moments of the PSD and must be calculated using cumulative volume percent. Note 

that the equations provided are applied to the exit of the reactor for all modelling conducted in this work 

but can be applied at any axial coordinate. The volume percentage is given by: 
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𝑓𝑓𝑉𝑉 =
𝑣𝑣𝑖𝑖 ∫ 𝐼𝐼𝑖𝑖

𝑅𝑅
0 𝑑𝑑𝑟𝑟

∫ 𝜇𝜇1
𝑅𝑅
0 𝑑𝑑𝑟𝑟

 
0.95 

Where 𝑓𝑓𝑉𝑉 is the volume fraction, 𝑣𝑣𝑖𝑖 and 𝐼𝐼𝑖𝑖  are the representative particle volume and number in the DPB 

cell 𝑚𝑚, and 𝜇𝜇1 is the first moment or total particle volume. The volume fraction is converted to a cumulative 

form 𝑓𝑓𝑉𝑉𝑛𝑛  and the following mechanism is used to describe the percentiles using a single expression 

without logical terms. Frequently changing logical terms can increase simulation time. 

𝐼𝐼[10] = �

�
�0.1 − 𝑓𝑓𝑉𝑉𝑛𝑛,𝑖𝑖�(𝐼𝐼𝑖𝑖+1 − 𝐼𝐼𝑖𝑖)

�𝑓𝑓𝑉𝑉𝑛𝑛,𝑖𝑖+1 − 𝑓𝑓𝑉𝑉𝑛𝑛,𝑖𝑖�
+ 𝐼𝐼𝑖𝑖� ×

�tanh �1 × 1010�0.1− 𝑓𝑓𝑉𝑉𝑛𝑛,𝑖𝑖�� + 1� ×

�tanh �1 × 1010�𝑓𝑓𝑉𝑉𝑛𝑛,𝑖𝑖+1 − 0.1�� + 1�
𝑖𝑖

 

0.96 

The first term is an iterator is used to interpolate the exact diameter corresponding to a given volume 

weighted percentile. The following terms ensure that the interpolation is performed between the correct 

particle sizes. The second term is equal to 1 for all particle sizes where 𝑓𝑓𝑉𝑉𝑛𝑛 < 50% and the third term is 

equal to 1 for all particle sizes where 𝑓𝑓𝑉𝑉𝑛𝑛 > 50%. Multiplying these terms for all cell sizes provides a 

binary indicator of the lower cell to be used in an interpolation. While the TANH function is used in this 

example, the same effect can be achieved in various ways. 
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 – Thermodynamic model code 
This section gives examples of raw code for each simulation described in this thesis. The 

processes used to call each model are given first, followed by the individual models and 

sub-models. This code will not solve if copy pasted into gPROMS without the associated 

initialisation files, parameter boundaries and other specifications, which are not provided 

here. Please contact the authors if you would like a working version of a model presented 

here. 

E.1. Processes 

Processes are used in the simulation package gPROMS to instantiate generic models by providing 

specifications for undefined model parameters and variables and to define operating procedures for 

these models. Below are examples of processes used for reactor simulations (including for parameter 

regressions) and stochastic simulations. 

E.1.1. Reactor simulation 

{Struvite_Growth_Batch_1 
The process contains the following nested models: 
    - PFR mass balance 
        - kinetics & 2D DPB 
            - thermodynamic model 
 
Strict variable limits and high order growth rate made it difficult for gPROMS  
to initialise. This issue was overcome by removing H3PO4 from thermo model. 
Reducing the order of the growth model also allows for full de-supersaturation 
to occur. 
} 
 
 
UNIT 
    MB AS PFR_Mass_Balance 
 
PARAMETER 
    ReactorLength   AS  REAL 
    ReactorRadius   AS  REAL 
    NoSamples       AS  INTEGER # 10min per sample - gives sample time 
    number_scaling  AS  REAL 
 
VARIABLE 
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    # Stored_values is an array containing: SI, pH, VMD, PSD_width and N at outlet 
    # for min/max values of: NaOH flow, feed flow, NaOH conc., Feed P conc.,  
    # k_nuc, n_nuc, k_g, n_g 
    RunTime         AS  NOTYPE # simulation time 
    PSD_width       AS  NOTYPE 
    Yield_thermo    AS  NOTYPE 
    SI_out          AS  NOTYPE 
    pH_out          AS  NOTYPE 
    VMD_out         AS  NOTYPE 
    particulate_num AS  NOTYPE # initial number of particles (for numerical stability) 
 
SET 
    # -----  SAMPLES NUMBER  ----- 
    NoSamples           :=  12; #120min covers all steady state simulations 
 
    # If a parameter is set in the process, its value is known in sub models. 
    ReactorLength       :=  1.58; # [m] 
    ReactorRadius       :=  0.025; # [m] 
 
    number_scaling      :=  1E-9; # 1E-6 minimum required. Can go up to 1E-9 without affecting solution. 
 
EQUATION 
    # Link key process variables to sub-models 
    PSD_width       =   MB.Kinetics.PSD_width_out; 
    Yield_thermo    =   MB.Yield_thermo; 
    SI_out          =   MB.SI_out; 
    pH_out          =   MB.pH_out; 
    VMD_out         =   MB.Kinetics.VMD_out; 
    MB.Kinetics.particulate_num = particulate_num; 
    particulate_num = 1; 
 
ASSIGN 
# Comment in scenario of interest 
    # SI=0.8: 
#    MB.C_NaOH_batch         := 0.008249*2; # [mol/L]; SI=0.8 
#    MB.C_T_P_satd           := 0.008335; # SI=0.8 
#    MB.Kinetics.t_ind       := 3.942; # 0.8 
 
    # SI=1.0: 
#    MB.C_NaOH_batch         := 0.008803*2; # + 1.067E-5; # [mol/L]; SI=1.0 from EES uncertainty propagation 
#    MB.C_T_P_satd           := 0.008013; # SI=1.0 
#    MB.Kinetics.t_ind       := 0.908; # 1.0 
 
    # SI=1.4 
    MB.C_NaOH_batch         := 0.00965*2; # [mol/L]; SI=1.4 
    MB.C_T_P_satd           := 0.007515; # SI=1.4 
    MB.Kinetics.t_ind       := 0.253; # 1.4 
 
    RunTime             :=  10*NoSamples; # [min] 
 
# Add kinetics of interest 
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    # Growth Rate - Galbraith 2014 
    # @ SI=1, this growth rate varies from 12 to 0.1 
    MB.Kinetics.k_g := 16.72; # growth rate constant  
    MB.Kinetics.n_g := 2; # growth rate order 
    # Nucleation kinetic parameters - Galbraith 2014 
    MB.Kinetics.k_nuc := 1.195E7; # nucleation rate constant 
    MB.Kinetics.n_nuc := 1.68; # nucleation rate order 
    # Aggregation kinetic mechanisms: 
    MB.Kinetics.k_agg := 2.09E-6; # aggregation rate constant 
    MB.Kinetics.n_agg := 5.26; # aggregation rate order 
 
    # General fundamental nucleation kinetics: 
    MB.Kinetics.k_g_avg := 0.36; #0.06, 0.66 
    MB.Kinetics.n_g_avg := 1; #0.06, 0.66 
    MB.Kinetics.tension  := 39.5; #-16.66; #(+/-16.66); #+.061; 
    MB.Kinetics.A_factor  := 1E17; #UNIFORM(1E14, 1E20); #+.061; 
 
    # Total concentrations entering PFTR: 
    # NOTE: C_MAP is set implicitly by the initial number of particles present (below) 
    MB.C_MgCl26H2O_batch    :=  0.03; #-6.019E-6; #(uncertainty) # [mol/L] 
    MB.C_NH4_batch          :=  0.02; #-5.195E-6; # [mol/L] # C_NH4 and C_PO4 were made using NH4H2PO4 
in experiments. 
    MB.C_PO4_batch          :=  0.02; #-5.195E-6; # [mol/L] # They have been split up here to analyse varying 
N:P 
    MB.C_NaCl_batch         :=  0; # [mol/L] 
    MB.C_HCl_batch          := 0; # mol/L 
 
    # Diffusivity  
    MB.D    :=  4.5E-9*60; #[m^2/x]*[60s/min] - KCl=2.47E-9m2/s; NH4=1.64E-9m2/s; Cl=1.25E-9m2/s;  
 
    # Flow rates of streams entering PFR 
    MB.Flow_Reagent_Batch       :=  4; # [L/h] 
    MB.Flow_NaOH_Batch          :=  4; # [L/h] 
    MB.Flow_T                   :=  7.976; # + 0.1459; # [L/h] 
 
    # Volume of batch containers - determines mass of reagents. 
    MB.Vol_Reagent_Batch        := 10; # [L] 
    MB.Vol_NaOH_Batch           := 10; # [L] 
 
#PRESET 
#    RESTORE "Base_solution_industrial" 
 
 
INITIAL 
    WITHIN MB.Kinetics DO 
        FOR z := 0|+ TO ReactorLength|- DO 
            FOR r := 0|+ TO ReactorRadius|- DO 
                N(1,z,r) = particulate_num*number_scaling; 
                FOR i := 2 TO NEQ DO 
                    n_density(i,z,r) = 0; 
                END #FOR 
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            END #FOR 
        END #FOR 
    END #DO 
 
    # for distributed model, every point in distribution (apart from the boundaries) 
    # needs an initial condition: 
 
    # REAL DIGESTER CENTRATE - Start with reactor full of saturated solution from previous run 
#    WITHIN MB DO 
#        FOR z := 0|+ TO ReactorLength|- DO 
#            FOR r := 0|+ TO ReactorRadius|- DO 
#                # give non-zero values to get initial solution 
#                # start with saturated solution based on "saturated solution calculation.EES" 
#                C_T_Mg(z,r)   =   0.003567; # [moles/L] 
#                C_T_NH4(z,r)  =   0.01932; # [moles/L] 
#                C_T_PO4(z,r)  =   0.002378; # [moles/L] 
#                C_Na(z,r)     =   0.001599;  # [moles/L] # Modelled for SI = 0 using gPROMS Thermo in file 
"Volume_Average_DPB_G_L_analytical_moments 
#                C_Cl(z,r)     =   0.02408; # [moles/L] 
#                C_MAP(z,r)    =   0; # [moles/L] 
#            END #FOR 
#        END #FOR 
#    END #WITHIN 
 
    WITHIN MB DO 
        FOR z := 0|+ TO ReactorLength|- DO 
            FOR r := 0|+ TO ReactorRadius|- DO 
                # give non-zero values to get initial solution 
                # start with saturated solution based on "saturated solution calculation.EES" 
                C_T_Mg(z,r)   =   0.015; # [moles/L] 
                C_T_NH4(z,r)  =   0.01; # [moles/L] 
                C_T_PO4(z,r)  =   0.01; # [moles/L] 
                C_Na(z,r)     =   0.005378; #0.005351916;  # [moles/L] # Modelled for SI = 0 using gPROMS Thermo 
in file "Volume_Average_DPB_G_L_analytical_moments 
                C_Cl(z,r)     =   0.03; # [moles/L] 
                C_MAP(z,r)    =   0; # [moles/L] 
            END #FOR 
        END #FOR 
    END #WITHIN 
 
 
SOLUTIONPARAMETERS 
REPORTINGINTERVAL := 10; 
 
IndexReduction := ON  
#IdentityElimination := OFF 
 
DASolver := "DASOLV" [  
"LASolver" := "MA48" [  
"FullSwitchFactor" := 0.01,  
"PivotStabilityFactor" := 0.99  
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],  
"AbsoluteTolerance" := 1.0E-9,  
"OutputLevel" := 0,  
"RelativeTolerance" := 1.0E-9,  
"VariablesWithLargestCorrectorSteps" := 2  
]  
 
 
SCHEDULE 
        CONTINUE FOR RunTime 
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E.1.2. Stochastic simulation 

{ ------------ PROCESS - Stochastic Simulation ---------------- 
THIS STOCHASTIC PROCESS IS USED TO SIMULATE THE EFFECT OF VARIATIONS IN  
P CONCENTRATION, REACTOR EQUIPMENT AND CAUSTIC DOSING CONCENTRATION,  
IN AN INDUSTRIAL APPLICATION. 
 
This process calls on the model 'Stochastic_industrial2' and gives it the  
stochastic simulation inputs. It also defines all parameters and variables in  
sub models necessary for them to run. The definitions are taken from the process 
'Struvite_Growth_Batch_solved'.  
} 
 
PARAMETER 
    NoSamples       AS  INTEGER #  
    # Define common parameters in the process so that their values can be propagated 
    # to sub-models: 
    ReactorLength   AS  REAL 
    ReactorRadius   AS  REAL 
    number_scaling  AS  REAL 
 
VARIABLE 
    RunTime         AS  NOTYPE 
    particulate_num AS  NOTYPE 
 
UNIT 
    # Call an instance of the stocastic simulation model 
        MonteCarlo   AS  Stochastic_industrial2 
 
SET 
# Number of samples gives run time (10 min per sample) 
    NoSamples           :=  18; # simulation goes for 180 min per run 
 
# Set the number of scenarios to be included in the stochastic simulation.  
# This is limited by the RAM of the machine running the simulation. The 32GB RAM machine can run 20 
simulations simultaneously 
# Repeat blocks of scenarios can be run back to back using the 'schedule' below to gather more data. 
    MonteCarlo.NoScenarios := 20 ; # simulation has 20 scenarios per run, then run is repeaded in schedule 
 
# Set the reactor dimensions to be used by all sub-models: 
    ReactorLength       :=  1.58; # [m] 
    ReactorRadius       :=  0.025; # [m] 
 
# Scale total particle number by this fraction: 
    number_scaling      :=  1E-9; 
 
 
EQUATION 
    particulate_num = 1E3; # Number of initial particles in first cell for every scenario 
    WITHIN MonteCarlo DO 
        FOR i := 1 TO NoScenarios DO 
            ScenarioMB(i).Kinetics.particulate_num = particulate_num; 
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        END # WITHIN 
    END # FOR 
 
 
ASSIGN 
    RunTime             :=  10*NoSamples; # [min] 
 
# Variable assignments remain the same as the deterministic simulation accept  
# for the following variables which are being analysed: 
 
# DISTRIBUTED INPUT VARIABLES: 
    WITHIN MonteCarlo DO 
#        VMD_out_stddev           := 0;  
#        PSD_width_out_stddev     := 0;  
#        SI_out_stddev           := 0;  
#        Yield_thermo_stddev      := 0;  
#        pH_out_stddev            := 0;  
 
        FOR i := 1 TO NoScenarios DO 
            ScenarioMB(i).Flow_NaOH_Batch       := UNIFORM(3.995, 4.005) ; # uniformly assign as standard 
deviation is unknown and there is no evidence to suggest any particular distribution 
 
            ScenarioMB(i).Flow_Reagent_Batch    := UNIFORM(3.995, 4.005) ; 
 
            ScenarioMB(i).C_NaOH_batch        := NORMAL(0.005753, 1.067E-5) ; # +/- 0.002g based on 
measurements = +/- 5E-5M, was less for lower SI but 0.0036g/L(9E-5) for SI=1.4 
 
            ScenarioMB(i).C_MgCl26H2O_batch     := NORMAL(0.004756*1.5, 6.019E-6) ; 
 
            ScenarioMB(i).C_NH4_batch           := TRIANGULAR(0.019446,0.038643,0.05784);  
 
            ScenarioMB(i).Kinetics.k_g := NORMAL(12.49,0.061); 
 
            ScenarioMB(i).Kinetics.n_g := NORMAL(5.06,0.005); #5.06;  
 
            ScenarioMB(i).Kinetics.k_nuc := NORMAL(8.5E7,0.076E7); 
 
            ScenarioMB(i).Kinetics.n_nuc := NORMAL(1.68,0.014); 
 
# NON-VARIANT PROCESS VARIABLES:     
    # for every simulation, use the following FEED CONDITIONS: 
            WITHIN ScenarioMB(i) DO 
#                Kinetics.k_g := 12.49; 
#                Kinetics.n_g := 5.06; #5.06;  
#                Kinetics.k_nuc := 8.5E7; 
#                Kinetics.n_nuc := 1.68; 
                Kinetics.tension  := 39.5; #-16.66; #(+/-16.66); #+.061; 
                Kinetics.A_factor  := 1E17; #UNIFORM(1E14, 1E20); #+.061; 
                Kinetics.k_g_avg := 0.36; #0.06, 0.66 
                Kinetics.n_g_avg := 1; #0.06, 0.66 
                # Total concentrations entering PFTR to achieve SI=1.0 
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#                C_MgCl26H2O_batch    :=  0.03; # [mol/L] 
                C_NaCl_batch         :=  0; # [mol/L] 
                C_HCl_batch          := 0; # mol/L 
                D    :=  1E-7; #[m^2/s] 
                Vol_Reagent_Batch        := 10; # [L] 
                Vol_NaOH_Batch           := 10; # [L] 
                Flow_T                   := 7.976 ; # [L/h] 
            END # WITHIN 
        END # FOR 
    END # WITHIN 
 
 
PRESET 
    # An initialisation condition created using experimental conditions from this work 
    RESTORE "Base_solution_stoch_industrial" 
 
 
INITIAL 
# for every simulation, use the following INITIAL CONDITIONS: 
    WITHIN MonteCarlo DO 
    # for each scenario: 
        FOR x := 1 TO NoScenarios DO  
        # set the particle number: 
            WITHIN ScenarioMB(x).Kinetics DO 
                FOR z := 0|+ TO ReactorLength|- DO 
                    FOR r := 0|+ TO ReactorRadius|- DO 
                        N(1,z,r) = particulate_num*number_scaling; 
                        FOR i := 2 TO NEQ DO 
                            n_density(i,z,r) = 0; 
                        END #FOR 
                    END #FOR 
                END #FOR 
            END #DO 
 
        # for distributed model, every point in distribution (apart from the boundaries) 
        # needs an initial condition: 
        # Start with reactor full of filtered saturated solution from previous run 
            WITHIN ScenarioMB(x) DO 
                FOR z := 0|+ TO ReactorLength|- DO 
                    FOR r := 0|+ TO ReactorRadius|- DO 
                        # give non-zero values to get initial solution 
                        # start with saturated solution based on "saturated solution calculation.EES" 
                        C_T_Mg(z,r)   =   0.015; # [moles/L] 
                        C_T_NH4(z,r)  =   0.01; # [moles/L] 
                        C_T_PO4(z,r)  =   0.01; # [moles/L] 
                        C_Na(z,r)     =   0.005351916;  # [moles/L] # Modelled for SI = 0 using gPROMS Thermo in file 
"Volume_Average_DPB_G_L_analytical_moments 
                        C_Cl(z,r)     =   0.03; # [moles/L] 
                        C_MAP(z,r)    =   0; # [moles/L] 
                    END #FOR 
                END #FOR 
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            END #WITHIN 
        END #FOR 
    END # WITHIN 
 
 
SOLUTIONPARAMETERS 
REPORTINGINTERVAL := 80; 
IndexReduction:= ON  
DASolver := "DASOLV" [  
"LASolver" := "MA48" [  
"FullSwitchFactor" := 0.01,  
"PivotStabilityFactor" := 0.99  
],  
"AbsoluteTolerance" := 1.0E-9,  
"OutputLevel" := 0,  
"RelativeTolerance" := 1.0E-9,  
"VariablesWithLargestCorrectorSteps" := 2  
]  
 
 
SCHEDULE # the order of model execution 
    SEQUENCE 
    # run the first batch of simulations 
        CONTINUE FOR RunTime; # RunTime # [min] ; Steady State 
 
(Note: The following piece of code was repeated 6 times during stochastic simulations: 
################################################# 
 
    # restore a common start point from which initialisation is gauranteed 
            RESTORE "Base_solution_stoch_industrial" 
    # generate new distributions of the stochastic varaibles 
        RESET 
            WITHIN MonteCarlo DO 
                FOR i := 1 TO NoScenarios DO 
                    ScenarioMB(i).Flow_NaOH_Batch       := UNIFORM(3.995, 4.005) ; # uniformly assign as 
standard deviation is unknown and there is no evidence to suggest any particular distribution 
                    ScenarioMB(i).Flow_Reagent_Batch    := UNIFORM(3.995, 4.005) ; 
                    ScenarioMB(i).C_NaOH_batch          := NORMAL(0.005753, 1.067E-5) ; 
                    ScenarioMB(i).C_MgCl26H2O_batch     := NORMAL(0.004756*1.5, 6.019E-6) ; 
                    ScenarioMB(i).C_NH4_batch           := TRIANGULAR(0.019446,0.038643,0.05784);  
                    ScenarioMB(i).C_PO4_batch           := TRIANGULAR(0.001956,0.004756,0.007556) ; 
                    ScenarioMB(i).Kinetics.k_g := NORMAL(12.49,0.061); 
                    ScenarioMB(i).Kinetics.n_g := NORMAL(5.06,0.005); #5.06;  
                    ScenarioMB(i).Kinetics.k_nuc := NORMAL(8.5E7,0.076E7); 
                    ScenarioMB(i).Kinetics.n_nuc := NORMAL(1.68,0.014); 
                END # FOR  
            END # WITHIN 
        END # RESET 
        CONTINUE FOR RunTime # [min] ; Steady State 
################################################# 
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E.2. Models 

E.2.1. PFR mass balance 

# This model describes the MB over a Poiseuille flow reactor. The model has the  
# following traits:  
# - It is distributed over PFR length and radius.  
# - solved using 1st order BFDM  
# - Boundary conditions are used to represent mixing point 
# - Instant mixing is assumed 
 
PARAMETER 
    NoSamples           AS  INTEGER 
    PI                  AS  REAL DEFAULT 3.14159265  #Pi 
    {Molecular masses} 
    # reagents are used to make up batch solution. These MM's are needed to 
    # calculate the masses required 
    MM_MgCl26H2O    AS REAL 
    MM_NH4H2PO4     AS REAL 
    MM_NaOH         AS REAL 
    MM_NaCl         AS REAL 
 
    # Reactor length - must be parameter for distribution domain to work 
    ReactorLength   AS REAL 
    ReactorRadius   AS  REAL 
 
    # coefficient to indicate consumption. Uused for distributed test on Mg 
    v_Mg    AS REAL 
    v_NH4   AS REAL 
    v_PO4   AS REAL 
    v_MAP   AS REAL 
 
DISTRIBUTION_DOMAIN 
# Note: distribution domain can't be variable therefore reactor length must be a parameter 
    Axial   AS  [ 0 : ReactorLength ] # [m] 
    Radial  AS  [ 0 : ReactorRadius ] # [m] 
 
 
UNIT 
    # An instance of the kinetics model is called kinetics. 
#    Kinetics AS Cell_Avg_Nuc_Growth_GL 
    Kinetics    AS Kinetics_Poiseiulle_NCG_DPB_scaled_Malvern #_no_props 
    Thermo_out  AS Thermodynamics 
 
 
VARIABLE 
    #variables for trial PDE using Mg based on PFR example 
    C_T_Mg          AS  Distribution(Axial,Radial)  OF Concentration 
    C_T_NH4         AS  Distribution(Axial,Radial)  OF Concentration 
    C_T_PO4         AS  Distribution(Axial,Radial)  OF Concentration 
    C_Na            AS  Distribution(Axial,Radial)  OF Concentration 
    C_Cl            AS  Distribution(Axial,Radial)  OF Concentration 
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    C_MAP           AS  Distribution(Axial,Radial)  OF Concentration 
    v_z             AS  Distribution(Radial)        OF Velocity # [m/min] 
    C_MAP_int       AS  Distribution(Axial)         OF Concentration 
    v_bar           AS  Velocity 
    D               AS  Diffusivity 
    ReactorVol      AS  Volume 
    C_PO4_out       AS  moles   # [mol/min] 
    C_T_P_satd      AS  moles 
    C_NH4_out       AS  moles   # [mol/min] 
    C_Mg_out        AS  moles   # [mol/min] 
    C_Mg_out_2      AS  NOTYPE   # [mol/min] 
    C_Na_out        AS  moles   # [mol/min] 
    C_Cl_out        AS  moles   # [mol/min] 
    C_MAP_out       AS  moles   # [mol/min] 
    C_MAP_out_g     AS  Concentration   # [g/L] 
    C_MAP_out_g_bar AS  ARRAY(NoSamples)    OF  Concentration   # [g/L] 
    t_bar           AS  NOTYPE  # [min] 
    tau             AS  NOTYPE  # [dimensionless] 
    SI_out          AS  NOTYPE 
    my_time         AS  NOTYPE  # [min] 
    SampleTime      AS  ARRAY(NoSamples)    OF   NOTYPE  # [min] 
    integrating     AS  ARRAY(NoSamples)    OF   NOTYPE  # [min] 
    first_term      AS  ARRAY(NoSamples)    OF   NOTYPE  # [min] 
    second_term     AS  ARRAY(NoSamples)    OF   NOTYPE  # [min] 
    Yield_thermo    AS  NOTYPE 
    pH_out          AS  NOTYPE 
 
    {Flowrates} 
    # Overall volumetric flow rates around the mixing point between the batch  
    # solution and the NaOH 
    Flow_T                  AS      FlowRate     # [L/h] 
    Flow_T_out              AS      FlowRate     # [L/h] 
    Flow_Reagent_Batch      AS      FlowRate     # [L/h] 
    Flow_NaOH_Batch         AS      FlowRate     # [L/h] 
 
    {moles of reagents} 
    # initial amount of reagents in the batch solution i.e. remains same. 
    moles_MgCl26H2O         AS  moles 
    moles_NH4H2PO4          AS  moles 
    moles_NaOH              AS  moles 
    moles_NaCl              AS  moles 
    moles_HCl               AS  moles 
 
    {Volume} 
    # Volumes of the batch containers feeding the PFR 
    Vol_Reagent_Batch       AS  Volume 
    Vol_NaOH_Batch          AS  Volume 
 
    {mass of solid reagents to be mixed up in batch solution} 
    mass_MgCl26H2O          AS  mass 
    mass_NH4H2PO4           AS  mass 



331 
 

    mass_NaOH               AS  mass 
    mass_NaCl               AS  mass 
 
    {concentration of of compounds in their batch solutions} 
    C_NaOH_batch            AS Concentration 
    C_HCl_batch             AS Concentration 
    C_NaCl_batch            AS Concentration 
    C_MgCl26H2O_batch       AS Concentration 
    C_NH4_batch             AS Concentration 
    C_PO4_batch             AS Concentration 
 
    {concentrations of compounds after the mixing point} 
    # these values change due to dilution but they do not vary over reactor length 
    C_T_Mg_in               AS Concentration    # [mol/L];  removed for distribution test 
    C_T_NH4_in              AS Concentration    # [mol/L] 
    C_T_PO4_in              AS Concentration    # [mol/L] 
    C_Na_in                 AS Concentration    # [mol/L] 
    C_Cl_in                 AS Concentration    # [mol/L] 
 
    # Checking for mass balance conservation via two different calculation methods: 
    MAP_MB_percent_overshoot    AS  NOTYPE 
 
SET 
    # Test at setting distribution solution parameters in model rather than process: 
    Axial    := [ BFDM, 1, 18 ] ; # determined by grid independence study 
    Radial   := [ BFDM, 1, 41 ] ; # determined by grid independence study 
#    Axial    := [ CFDM, 2, 18 ] ; # determined by grid independence study 
#    Radial   := [ CFDM, 2, 41 ] ; # determined by grid independence study 
 
 
    # Molecular masses 
    MM_MgCl26H2O    :=  203.30; # [g/mole] 
    MM_NH4H2PO4     :=  115.03; # [g/mole] 
    MM_NaOH         :=  40.00; # [g/mole] 
    MM_NaCl         :=  58.44; # [g/mole] 
 
    # Stoicheometry (-ve means consumed, +ve means produced) 
    v_Mg    :=  -1; 
    v_NH4   :=  -1; 
    v_PO4   :=  -1; 
    v_MAP   :=  1; 
 
 
BOUNDARY 
    # @ z = 0, for all r (inlet) 
    FOR r := 0 TO ReactorRadius DO 
        C_T_Mg(0,r)   = C_MgCl26H2O_batch*Flow_Reagent_Batch/(Flow_Reagent_Batch + 
Flow_NaOH_Batch); 
        C_T_NH4(0,r)  = C_NH4_batch*Flow_Reagent_Batch/(Flow_Reagent_Batch + Flow_NaOH_Batch); 
        C_T_PO4(0,r)  = C_PO4_batch*Flow_Reagent_Batch/(Flow_Reagent_Batch + Flow_NaOH_Batch); 
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        C_Na(0,r)     = (C_NaOH_batch*Flow_NaOH_Batch + 
C_NaCl_batch*Flow_Reagent_Batch)/(Flow_Reagent_Batch + Flow_NaOH_Batch); 
        C_Cl(0,r)     = (C_HCl_batch*Flow_Reagent_Batch + C_NaCl_batch*Flow_Reagent_Batch + 
C_MgCl26H2O_batch*2*Flow_Reagent_Batch + (C_NH4_batch-
C_PO4_batch)*Flow_Reagent_Batch)/(Flow_Reagent_Batch + Flow_NaOH_Batch); 
        C_MAP(0,r)    = 0; # this model is for a reactor making seeds, doesn't need any initial MAP 
    END #FOR 
 
    # @ z = L, for all r (outlet) - outlet concentration change in axial direction is 0 
    # this means that the last two axial grid points are the same but can change 
    FOR r := 0 TO ReactorRadius DO 
        PARTIAL(C_T_Mg(ReactorLength,r),Axial)      = 0; 
        PARTIAL(C_T_NH4(ReactorLength,r),Axial)     = 0; 
        PARTIAL(C_T_PO4(ReactorLength,r),Axial)     = 0; 
        PARTIAL(C_Na(ReactorLength,r),Axial)        = 0; 
        PARTIAL(C_Cl(ReactorLength,r),Axial)        = 0; 
        PARTIAL(C_MAP(ReactorLength,r),Axial)       = 0; 
    END #FOR 
 
    # @ r = 0, for all L (centreline) - dC/dr = 0 - change in concentration radially at r=0 is 0 
    # this means that radial grid points at r=0 are same as those next door. Ensures symetry. 
    FOR z := 0|+ TO ReactorLength|- DO 
        PARTIAL(C_T_Mg(z,0),Radial)     = 0; 
        PARTIAL(C_T_NH4(z,0),Radial)    = 0; 
        PARTIAL(C_T_PO4(z,0),Radial)    = 0; 
        PARTIAL(C_Na(z,0),Radial)       = 0; 
        PARTIAL(C_Cl(z,0),Radial)       = 0; 
        PARTIAL(C_MAP(z,0),Radial)      = 0; 
    END #FOR 
 
    # @ r = R, for all L (reactor wall) - change in concentration radially at r=R is 0 
    # this means that radial grid points at r=R are same as those next door. Ensures symetry. 
    FOR z := 0|+ TO ReactorLength|- DO 
        PARTIAL(C_T_Mg(z,ReactorRadius),Radial)     = 0; 
        PARTIAL(C_T_NH4(z,ReactorRadius),Radial)    = 0; 
        PARTIAL(C_T_PO4(z,ReactorRadius),Radial)    = 0; 
        PARTIAL(C_Na(z,ReactorRadius),Radial)       = 0; 
        PARTIAL(C_Cl(z,ReactorRadius),Radial)       = 0; 
        PARTIAL(C_MAP(z,ReactorRadius),Radial)      = 0; 
    END #FOR 
 
 
EQUATION 
#-------------------             MODEL LINKING              -------------------  
    # C_MAP isn't defined in thermo - MB occurs here. It's presence is implicit 
    # by the loss of ions in solutions from the MB. 
    C_T_Mg      =   Kinetics.Thermo.C_T_Mg;  
    C_T_NH4     =   Kinetics.Thermo.C_T_NH4; 
    C_T_PO4     =   Kinetics.Thermo.C_T_PO4; 
    C_Na        =   Kinetics.Thermo.C_Na; 
    C_Cl        =   Kinetics.Thermo.C_Cl; 
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    Kinetics.v_z = v_z; # [m/min] 
 
#-------------------             FEED CONDITIONS             -------------------  
    # elemental MB over the mixing point - these variables just give C_T_Mg @ z=0 
    C_T_Mg_in      =   C_MgCl26H2O_batch*Flow_Reagent_Batch/(Flow_Reagent_Batch + 
Flow_NaOH_Batch); # [mol/L]*[L/h]*[h/L] = [mol/L] 
    C_T_NH4_in     =   C_NH4_batch*Flow_Reagent_Batch/(Flow_Reagent_Batch + Flow_NaOH_Batch); 
    C_T_PO4_in     =   C_PO4_batch*Flow_Reagent_Batch/(Flow_Reagent_Batch + Flow_NaOH_Batch); 
    C_Na_in        =   (C_NaOH_batch*Flow_NaOH_Batch + 
C_NaCl_batch*Flow_Reagent_Batch)/(Flow_Reagent_Batch + Flow_NaOH_Batch); 
    C_Cl_in        =   (C_HCl_batch*Flow_Reagent_Batch + C_NaCl_batch*Flow_Reagent_Batch + 
C_MgCl26H2O_batch*2*Flow_Reagent_Batch)/(Flow_Reagent_Batch + Flow_NaOH_Batch); 
 
    # Calculate the mass of reagent required: 
    {moles of reagents in batch containers} 
    moles_NaOH      =   C_NaOH_batch*Vol_NaOH_batch; 
    moles_HCl       =   C_HCl_batch*Vol_reagent_batch;  
    moles_NaCl      =   C_NaCl_batch*Vol_reagent_batch; 
    moles_MgCl26H2O =   C_MgCl26H2O_batch*Vol_reagent_batch; 
    moles_NH4H2PO4  =   C_PO4_batch*Vol_reagent_batch; # only applicable if N:P=1:1 
 
    {masses of reagents in batch containers} 
    mass_MgCl26H2O  =   moles_MgCl26H2O * MM_MgCl26H2O; 
    mass_NH4H2PO4   =   moles_NH4H2PO4 * MM_NH4H2PO4; 
    mass_NaOH       =   moles_NaOH * MM_NaOH; 
    mass_NaCl       =   moles_NaCl * MM_NaCl; 
 
#-------------------             HYDRODYNAMICS              -------------------  
    # Actual residence time: 
#    t_bar   = 23.11; # [min] 
    # Simplified geometry residence time 
    t_bar = ReactorVol/Flow_T*60; # [min] = [L]/[L/h]*[60min/h] 
    # residence time count: 
    $tau    = 1/t_bar; # [dimensionless] 
    # Velocity Profile: 
    # Average flow velocity v_z 
    v_bar = ReactorLength/(ReactorVol/Flow_T)/60; # [m/min] = [m]/([L]/[L/h])/60[min/h] 
    #v_bar = 0.01; 
    # Actual reactor volume 
#    ReactorVol = 2.93; # [L] 
    # Simplified geometry reactor volume 
    ReactorVol = ReactorLength*pi*ReactorRadius^2*1000; # 2.93; # [L]=[m^3]*1000L/m^3 
     
    # v_z is only used in differential equations not defined at boundaries 
    # v_z is the same for any point in L 
    FOR r := 0 TO ReactorRadius DO 
        v_z(r) = 2*v_bar*(1-(r/ReactorRadius)^2); # [m/min] 
    END #FOR 
 
    {Flow rates} 
#    Flow_T       =   Flow_Reagent_Batch + Flow_NaOH_Batch; 
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#    Flow_Reagent_Batch = Flow_NaOH_Batch; 
 
#-------------------             MASS BALANCE              -------------------  
    # The diffusion term has negligable effect on the results so it was removed 
    FOR z := 0|+ TO ReactorLength|- DO 
        FOR r := 0|+ TO ReactorRadius|- DO 
            # Diffusion term not included 
            # [Molar/min]   = [m/min]*[Molar/m]                  + [Molar/min] 
            $C_T_Mg(z,r)    = -v_z(r)*PARTIAL(C_T_Mg(z,r),Axial) + v_Mg*Kinetics.rate(z,r); 
            $C_T_NH4(z,r)   = -v_z(r)*PARTIAL(C_T_NH4(z,r),Axial) + v_NH4*Kinetics.rate(z,r); 
            $C_T_PO4(z,r)   = -v_z(r)*PARTIAL(C_T_PO4(z,r),Axial) + v_PO4*Kinetics.rate(z,r); 
            $C_Na(z,r)      = -v_z(r)*PARTIAL(C_Na(z,r), Axial); 
            $C_Cl(z,r)      = -v_z(r)*PARTIAL(C_Cl(z,r), Axial); 
            $C_MAP(z,r)     = -v_z(r)*PARTIAL(C_MAP(z,r), Axial) + v_MAP*Kinetics.rate(z,r); 
 
            # Axial Diffusion term included: 
#            $C_T_Mg(z,r)    = -v_z(r)*PARTIAL(C_T_Mg(z,r),Axial) + D*PARTIAL(C_T_Mg(z,r),Axial,Axial) + 
v_Mg*Kinetics.rate(z,r); # [Molar/min] = [m/min]*[Molar/m] + [m^2/s]*[Molar/m^2]*[60s/min] 
#            $C_T_NH4(z,r)   = -v_z(r)*PARTIAL(C_T_NH4(z,r),Axial) + D*PARTIAL(C_T_NH4(z,r),Axial,Axial) + 
v_NH4*Kinetics.rate(z,r); 
#            $C_T_PO4(z,r)   = -v_z(r)*PARTIAL(C_T_PO4(z,r),Axial) + D*PARTIAL(C_T_PO4(z,r),Axial,Axial) + 
v_PO4*Kinetics.rate(z,r); 
#            $C_Na(z,r)      = -v_z(r)*PARTIAL(C_Na(z,r), Axial) + D*PARTIAL(C_Na(z,r),Axial,Axial); 
#            $C_Cl(z,r)      = -v_z(r)*PARTIAL(C_Cl(z,r), Axial) + D*PARTIAL(C_Cl(z,r),Axial,Axial); 
#            $C_MAP(z,r)     = -v_z(r)*PARTIAL(C_MAP(z,r), Axial) + D*PARTIAL(C_MAP(z,r),Axial,Axial) + 
v_MAP*Kinetics.rate(z,r); 
 
            # Axial and Radial Diffusion term included: 
#            $C_T_Mg(z,r)    = -v_z(r)*PARTIAL(C_T_Mg(z,r),Axial) + D*PARTIAL(C_T_Mg(z,r),Axial,Axial) + 
D*PARTIAL(C_T_Mg(z,r),Radial,Radial) + v_Mg*Kinetics.rate(z,r); # [Molar/min] = [m/min]*[Molar/m] + 
[m^2/s]*[Molar/m^2]*[60s/min] 
#            $C_T_NH4(z,r)   = -v_z(r)*PARTIAL(C_T_NH4(z,r),Axial) + D*PARTIAL(C_T_NH4(z,r),Axial,Axial) + 
D*PARTIAL(C_T_NH4(z,r),Radial,Radial) + v_NH4*Kinetics.rate(z,r); 
#            $C_T_PO4(z,r)   = -v_z(r)*PARTIAL(C_T_PO4(z,r),Axial) + D*PARTIAL(C_T_PO4(z,r),Axial,Axial) + 
D*PARTIAL(C_T_PO4(z,r),Radial,Radial) + v_PO4*Kinetics.rate(z,r); 
#            $C_Na(z,r)      = -v_z(r)*PARTIAL(C_Na(z,r), Axial) + D*PARTIAL(C_Na(z,r),Axial,Axial) + 
D*PARTIAL(C_Na(z,r),Radial,Radial); 
#            $C_Cl(z,r)      = -v_z(r)*PARTIAL(C_Cl(z,r), Axial) + D*PARTIAL(C_Cl(z,r),Axial,Axial) + 
D*PARTIAL(C_Cl(z,r),Radial,Radial); 
#            $C_MAP(z,r)     = -v_z(r)*PARTIAL(C_MAP(z,r), Axial) + D*PARTIAL(C_MAP(z,r),Axial,Axial) + 
D*PARTIAL(C_MAP(z,r),Radial,Radial) + v_MAP*Kinetics.rate(z,r); 
        END #FOR 
    END #FOR 
 
#-------------------             OUTLET CONDITIONS           -------------------  
    {Average molar flow rates of each component exiting the reactor (integrated over the radius)} 
    C_NH4_out   =   INTEGRAL( r := 0:ReactorRadius ; 
v_z(r)*2*pi*r*C_T_NH4(ReactorLength,r))*1000*1/Flow_T*60; # 
[m/min]*[m]*[mol/L]*[m]*[L/m^3]*[h/L]*[min/h] = [mol/L] 



335 
 

    C_Mg_out    =   INTEGRAL( r := 0:ReactorRadius ; 
v_z(r)*2*pi*r*C_T_Mg(ReactorLength,r))*1000*1/Flow_T*60; # 
[m/min]*[m]*[mol/L]*[m]*[L/m^3]*[h/L]*[min/h] = [mol/L] 
    C_PO4_out   =   INTEGRAL( r := 0:ReactorRadius ; 
v_z(r)*2*pi*r*C_T_PO4(ReactorLength,r))*1000*1/Flow_T*60; # 
[m/min]*[m]*[mol/L]*[m]*[L/m^3]*[h/L]*[min/h] = [mol/L] 
    C_Na_out    =   INTEGRAL( r := 0:ReactorRadius ; 
v_z(r)*2*pi*r*C_Na(ReactorLength,r))*1000*1/Flow_T*60; # 
[m/min]*[m]*[mol/L]*[m]*[L/m^3]*[h/L]*[min/h] = [mol/L] 
    C_Cl_out    =   INTEGRAL( r := 0:ReactorRadius ; 
v_z(r)*2*pi*r*C_Cl(ReactorLength,r))*1000*1/Flow_T*60; # 
[m/min]*[m]*[mol/L]*[m]*[L/m^3]*[h/L]*[min/h] = [mol/L] 
    C_MAP_out   =   INTEGRAL( r := 0:ReactorRadius ; 
v_z(r)*2*pi*r*C_MAP(ReactorLength,r))*1000*1/Flow_T*60; # 
[m/min]*[m]*[mol/L]*[m]*[L/m^3]*[h/L]*[min/h] = [mol/L] 
 
    # MAP concentration profile 
    FOR z := 0 TO ReactorLength DO 
        C_MAP_int(z)   =   INTEGRAL( r := 0:ReactorRadius ; v_z(r)*2*pi*r*C_MAP(z,r))*1000*1/Flow_T*60; 
# [m/min]*[m]*[mol/L]*[m]*[L/m^3]*[h/L]*[min/h] = [mol/L] 
    END # FOR 
 
 
    # Instantaneous mass conc. (not time averaged over the interval) 
    C_MAP_out_g         =   C_MAP_out*245.41; # [mol/min]*[h/L]*[min/h]*[g/mol] = [g/L] 
 
    {Integrated flow term at the exit to check conservation of volume} 
    # This may be the cause of outlet concentration integration not giving the correct result 
    Flow_T_out  =   INTEGRAL( r := 0:ReactorRadius ; v_z(r)*2*pi*r ) * 1000 * 60; # [m/min]*[m]*[m] = 
[m^3/min];[m^3/min]*[1000L/m^3]*[60min/h]=[L/h] 
    C_Mg_out_2  =   INTEGRAL( r := 0:ReactorRadius ; 
v_z(r)*2*pi*r*C_T_Mg(ReactorLength,r))*1000*1/Flow_T_out*60; # 
[m/min]*[m]*[mol/L]*[m]*[L/m^3]*[h/L]*[min/h] = [mol/L] 
 
    {Saturation Index at the outlet} 
    Thermo_out.C_T_Mg   =   C_Mg_out; # [mol/min]*[1min] assume a 1min basis 
    Thermo_out.C_T_PO4  =   C_PO4_out; # [mol/min]*[1min] assume a 1min basis 
    Thermo_out.C_T_NH4  =   C_NH4_out; # [mol/min]*[1min] assume a 1min basis 
    Thermo_out.C_Na     =   C_Na_out; # [mol/min]*[1min] assume a 1min basis 
    Thermo_out.C_Cl     =   C_Cl_out; # [mol/min]*[1min] assume a 1min basis 
    Thermo_out.SI       =   SI_out; 
    Thermo_out.pH       =   pH_out; 
 
    {Thermodynamic yield - needs adjustment for each initial concentration} 
    Yield_thermo        =   (C_T_PO4(0,0) - C_PO4_out)/(C_T_PO4(0,0)-C_T_P_satd);   #from EES for SI=1.0. 
0.008335 for SI=0.8; 0.007515 for SI=1.4; 
 
    {Percentage overshoot of the crystal relative to the PO4 removal.} 
    C_MAP_out            = MAP_MB_percent_overshoot   * (C_T_PO4_in - C_PO4_out); # Rearrange to avoid 
div0 error during simulation 
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# TIME INTEGRATED MASS CONCENTRATION OF STRUVITE EXITING THE REACTOR - Only necessary for 
parameter regression 
    {Average concentration of MAP exiting the reactor between 10min samples} 
    # internal time variable to continuously calculate integrating variable: 
    $my_time = 1; 
{ 
    FOR i := 1 TO NoSamples DO 
#        # WHY IS integrating not = 0? break up the terms: 
#        # for i=2: 0 until t=10, 1 after.  
#        first_term(i) = MAX(0, SGN(my_time-10*(i-1)) );  
#        # for i=2: 1 before t=20, 0 after 
#        second_term(i) = MAX(0, SGN(10*i-my_time) );  
#        integrating(i) = first_term(i) * second_term(i); 
 
        # integrating original: 
        integrating(i)          =   MAX(0, SGN(my_time-10*(i-1)) ) * MAX(0, SGN(10*i-my_time) ); 
#        integrating(i) = (TANH(1E10*(my_time-10*(i-1)))+1)/2 * (TANH( -1E10*(my_time-10*i) )+1)/2; 
 
#        # integrating ALTERNATIVE 1: 
#            IF my_time < 10*i AND my_time >= 10*(i - 1) THEN  
#                integrating(i) = 1 ;  
#                ELSE  
#                integrating(i) = 0 ;  
#            END 
 
        # Samples time of sample i starts counting when integrating = 1 
        $SampleTime(i)          =   integrating(i); 
        # The average concentration over sample i is given by: 
        SampleTime(i) * $C_MAP_out_g_bar(i)     =   integrating(i)*C_MAP_out_g;  
 
    END # FOR 
} 
 
# Eliminate time integrated sampling: 
        first_term       = 0;  
        second_term      = 0;  
        integrating      = 0; 
        SampleTime       = 0; 
        C_MAP_out_g_bar  = 0;  
     
 
INITIAL 
    tau = 0; 
    my_time = 0; 
#    C_MAP_out_g_bar = 0; 
#    SampleTime = 0; 
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E.2.2. CAT implicit nucleation growth kinetics 

{ This model uses the implicit numerical NCG model only.  
Solution description: 
 - Within the reactor:  
    - particle number changes are described by an advection and reaction (DPB) model 
    - molar rate of MAP production/ species consumption is the sum of particle number changes 
    - liquid species concentrations are described by an advection and reaction model 
 - At the boundaries (as advised by all texts including Rice & Do): 
    - inlets are defined using type 1/ dirichlet boundary conditions i.e. the feeds 
    - others are defined using type 2/ Neumann boundary condition (dC/dz=0), which gives 
homogeneous problem definition (only one solution) 
    - symetry condition is applied to the centreline dC/dr=0 
        - From what i can tell from Rice & Do, dC/dr @ R is linked to this symetry condition 
            Nick also said that this is physically correct due to no slip condition 
    - outlet boundary dC/dz=0 stops numerical accumulation upstream (especially relevant when 
diffusion is included) 
    - rate terms defined within the model are set to zero at all boundaries as they are not used in the 
problem description  
        and N & C are defined by the boundary conditions. This is confirmed by running the boundary 
rate at different values. 
} 
 
UNIT 
    Thermo AS Thermodynamics_dist   # Axially and radially distributed thermo model 
 
PARAMETER 
    PI                  AS  REAL DEFAULT 3.14159265  #Pi 
    # NEQ selected such that particles do not grow to the last cell size  
    NEQ                 AS  INTEGER #The number of discrete size domains 
    rho_struvite        AS  REAL    # kg/m^3 
    rho_water           AS  REAL    # kg/m^3 
    mu_water            AS  REAL    # Pa.s 
    ReactorLength       AS  REAL    # [m] 
    ReactorRadius       AS  REAL    # [m] 
    number_scaling      AS  REAL     
 
 
DISTRIBUTION_DOMAIN 
Axial       AS  [ 0 : ReactorLength ] 
Radial      AS  [ 0 : ReactorRadius ] 
 
 
VARIABLE 
    N_out               AS  Distribution(NEQ)                   OF NDENSITY # [1E6 xtl/L];        Total number of 
particles exiting the reactor 
    N                   AS  Distribution(NEQ,Axial,Radial)      OF NDENSITY # [1E6 xtl/L];        Total number of 
particles at each node. Use NDENSITY variable type - same bounds 
    n_density           AS  Distribution(NEQ,Axial,Radial)      OF NDENSITY # [1E6 xtl/um^3.L];   Number 
density of particles for each node 
    n_density_length    AS  Distribution(NEQ,Axial,Radial)      OF NDENSITY # [1E6 xtl/um.L];     length 
based discretisation number density 
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    v                   AS  Distribution(NEQ)                   OF Volume   # [um^3];       representative volume of 
each node 
    L                   AS  Distribution(NEQ)                   OF Length   # [um];         representative length of each 
node 
    W                   AS  Distribution(NEQ+1)                 OF NOTYPE   # [um^3];       width of volume distributed 
cells 
    W_L                 AS  Distribution(NEQ+1)                 OF NOTYPE   # [um];         width of length distributed 
cells 
    G                   AS  Distribution(NEQ,Axial,Radial)      OF NOTYPE   # [um^3/min];   constant volume 
growth rate 
    G_L                 AS  Distribution(Axial,Radial)          OF NOTYPE   # [um/min];     constant length based 
growth rate - size independent growth 
    LOWER               AS  Distribution(NEQ+2)                 OF NOTYPE   # [um^3];       Lower bound on cell i.  
    LOWER_L             AS  Distribution(NEQ+2)                 OF NOTYPE   # [um];         Lower length bound on 
cell i.  
    q                   AS  NOTYPE                                          #               geometric progression coarseness factor 
    MOM                 AS  Distribution(2,Axial,Radial)        OF NOTYPE   # [1E6 xtl/L]; [um^3/L]; Moments of 
the particle size distribution 
    B_nuc               AS  Distribution(Axial,Radial)          OF NOTYPE   # [1E6 xtl/L.min];    Nucleation rate 
varies through reactor but only exists in the first size range. 
    D_4_3               AS  Distribution(Axial,Radial)          OF Length   # [um]          Volume weighted median 
diameter 
    D_3_0               AS  Distribution(Axial,Radial)          OF Length   # [um]          Number weighted median 
diameter 
    v_z                 AS  Distribution(Radial)                OF Velocity # [m/min];      discrete fluid velocity at a 
given radius 
    rate                AS  Distribution(Axial,Radial)          OF rate     # [Molar/min];  refers to the molar 
production rate of struvite 
    rate_g              AS  Distribution(Axial,Radial)          OF rate     # [Molar/min]; 
    NDASH_xtl           AS  Distribution(NEQ,Axial,Radial)      OF rate     # [1E6 xtl/L.min];    change in particle 
number in a size due to crystallisation 
    NDASH_tot           AS  Distribution(NEQ,Axial,Radial)      OF rate     # [1E6 xtl/L.min];    total change in 
particle number including advection 
    VP_out              AS ARRAY(NEQ)                   OF Dimensionless    # [%];          volume % exiting the 
reactor 
    VPC_out             AS ARRAY(NEQ)                   OF Dimensionless    # [%];          cumulative volume % 
exiting the reactor 
    VMD_out             AS                                 Length           # [um];         the VMD exiting the reactor = 
SIGMA(VMD_out) 
    VMD_cell_out        AS ARRAY(NEQ-1)                 OF Length           # [um];         an array of particle sizes 
where all elements are zero accept that where the VMD lies  
    D10_cell_out        AS ARRAY(NEQ-1)                 OF Length           # [um];         an array of particle sizes 
where all elements are zero accept that where the D10 lies 
    D90_cell_out        AS ARRAY(NEQ-1)                 OF Length           # [um];         an array of particle sizes 
where all elements are zero accept that where the D90 lies 
    PSD_width_out       AS                                 Length           # [um];         the PSD width exiting the reactor 
    particulate_num     AS  NOTYPE 
    induction_fcn       AS  Distribution(Axial,Radial)  OF  NOTYPE 
    t_ind               AS  NOTYPE 
 
    # PARAMETERS TO BE ESTIMATED 
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    k_g                 AS  NOTYPE 
    n_g                 AS  NOTYPE 
    k_nuc               AS  NOTYPE 
    n_nuc               AS  NOTYPE 
 
    # ALTERNATIVE GROWTH KINETICS 
    k_g_avg             AS  NOTYPE 
    n_g_avg             AS  NOTYPE 
    S_r                 AS  Distribution(Axial,Radial) OF Dimensionless 
 
    # ALTERNATIVE NUCLEATION KINETICS 
    tension             AS  NOTYPE 
    A_factor            AS  NOTYPE 
    omega               AS  Distribution(Axial,Radial) OF Dimensionless 
    G_L_2               AS  Distribution(Axial,Radial)          OF NOTYPE   # [um/min];     constant length based 
growth rate - size independent growth 
    B_nuc_2             AS  Distribution(Axial,Radial)          OF NOTYPE   # [1E6 xtl/L.min];    Nucleation rate 
varies through reactor but only exists in the first size range. 
    Null_Sat            AS                            NOTYPE 
 
 
#SELECTOR 
    # Use a selector to turn off the growth and nucleation rate at saturation. Make sure saturation is 
positive initially first 
#    Saturation AS (Oversat, Undersat) DEFAULT Oversat 
 
SET 
    rho_struvite        :=  1740; #kg/m^3 
    rho_water           :=  998; #kg/m^3 
    mu_water            :=  0.001002; #Pa.s 
#    k_d                 :=  0; #12.49; # set as the same as growth rate via galbraith model 
#    n_d                 :=  5.06; # set as the same as growth rate via galbraith model 
    NEQ                 :=  87; #87; #101; #35 was previously 35 but PFC only achieves 24, simulation will fail 
if bound is hit 
#    number_scaling      :=  1E-6; # [Mxtl/1E6xtl] - scale particle number to avoid integration errors 
 
BOUNDARY 
# ALL POSSIBLE BOUNDARIES: 
    # rate_g @ r=R for 0|+ - L|- 
FOR z := 0|+ TO ReactorLength|- DO 
    rate_g(z,ReactorRadius) = 1; 
    # rate_g @ r=0 for 0|+ - L|- 
    rate_g(z,0) = 1; 
END #FOR 
    # rate_g @ z=0 for 0 - R 
    rate_g(0,) = 1; 
    # rate_g @ z=L for 0 - R 
    rate_g(ReactorLength,) = 1; 
 
FOR z := 0|+ TO ReactorLength|- DO 
    # rate @ r for 0|+ - L|- 
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    rate(z,ReactorRadius) = 0; 
    # rate @ r=0 for 0|+ - L|- 
    rate(z,0) = 0; 
END #FOR 
    # rate @ z=0 for 0 - R 
    rate(0,) = 0; 
    # rate @ z=L for 0 - R 
    rate(ReactorLength,) = 0; 
 
FOR z := 0|+ TO ReactorLength|- DO 
    # NDASH_tot @ r for 0|+ - L|- 
    NDASH_tot(,z,ReactorRadius) = 0; 
    # NDASH_tot @ r=0 for 0|+ - L|- 
    NDASH_tot(,z,0) = 0; 
    # NDASH_xtl @ r for 0|+ - L|- 
    NDASH_xtl(,z,ReactorRadius) = 0; 
    # NDASH_xtl @ r=0 for 0|+ - L|- 
    NDASH_xtl(,z,0) = 0; 
END #FOR 
    # NDASH_tot @ z=0 for 0 - R 
    NDASH_tot(,0,) = 0; 
    # NDASH_tot @ z=L for 0 - R 
    NDASH_tot(,ReactorLength,) = 0; 
    # NDASH_xtl @ z=0 for 0 - R 
    NDASH_xtl(,0,) = 0; 
    # NDASH_xtl @ z=L for 0 - R 
    NDASH_xtl(,ReactorLength,) = 0; 
 
    # @ z=0, for all r, @ NEQ = 1, N = 1 - one particle of the smallest size enters the reactor at all radii 
    # INLET 
    # @ z=0, for all r: 
        FOR r := 0 TO ReactorRadius DO 
            N(1,0,r) = number_scaling*particulate_num; # always 1E6 particles coming in in the first size 
bracket - avoids div0 errors 
            N(2:NEQ,0,r) = 0; 
        END 
 
    # OUTLET 
    # @ z = ReactorLength, for all r, for all NEQ, dN/dz = 0 - number of particles does not change axially 
at the exit 
        FOR r := 0 TO ReactorRadius DO 
            PARTIAL(N(,ReactorLength,r),Axial)   =    0; 
        END 
     
    # CENTRELINE 
    # @ r = 0, for all z (except the ends), for all NEQ, dN/dr = 0 - number of particles does not vary 
radially at the centreline 
        FOR z := 0|+ TO ReactorLength|- DO 
            PARTIAL(N(,z,0),Radial)         =   0; 
        END #FOR 
    # WALL 
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    # @ r = ReactorRadius, for all z (except the ends), for all NEQ, dN/dr = 0 - number of particles does 
not vary radially at the boundary 
        FOR z := 0|+ TO ReactorLength|- DO 
            PARTIAL(N(,z,ReactorRadius),Radial)         =   0; 
        END #FOR 
 
 
EQUATION 
#--------------           PSD DISCRETISATION (Malvern)           --------------- 
    # Discretisation factor - define just to make the model work: 
    q = 4;   
    # Length-Volume relationship 
    v = pi/6*L^3; 
 
    # Lower bounds: 
    LOWER(1) = 0; 
    LOWER_L(1) = 0; 
    # lower bound of 2nd to NEQ+1 cell (determined by width discretisation) 
    FOR i := 2 TO NEQ+2 DO 
    # Both of these can be defined at the same time as they are independent 
        LOWER(i) = LOWER(i-1) + W(i-1); # (4) 
        LOWER_L(i) = LOWER_L(i-1) + W_L(i-1); # (2) 
    END 
    # Widths: 
    W(1) = 2*v(1); 
    W_L(1) = 2*L(1); #know L(1) from the v/L relationship above 
    # Width of 2nd to NEQ cell determined by geo discretisation 
    FOR i := 2 TO NEQ+1 DO 
        W_L(i) = LOWER_L(i+1) - LOWER_L(i); # (1) 
        W(i) = LOWER(i+1) - LOWER(i); # (3) 
    END 
 
    # Malvern cell sizes (Particle diameter) 
    L(1)= 0.01 ; 
    L(2)= 0.0114 ; 
    L(3)= 0.0129 ; 
    L(4)= 0.0147 ; 
    L(5)= 0.0167 ; 
    L(6)= 0.0189 ; 
    L(7)= 0.0215 ; 
    L(8)= 0.0244 ; 
    L(9)= 0.0278 ; 
    L(10)= 0.0315 ; 
    L(11)= 0.0358 ; 
    L(12)= 0.0407 ; 
    L(13)= 0.0463 ; 
    L(14)= 0.0526 ; 
    L(15)= 0.0597 ; 
    L(16)= 0.0679 ; 
    L(17)= 0.0771 ; 
    L(18)= 0.0876 ; 
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    L(19)= 0.0995 ; 
    L(20)= 0.113 ; 
    L(21)= 0.128 ; 
    L(22)= 0.146 ; 
    L(23)= 0.166 ; 
    L(24)= 0.188 ; 
    L(25)= 0.214 ; 
    L(26)= 0.243 ; 
    L(27)= 0.276 ; 
    L(28)= 0.314 ; 
    L(29)= 0.357 ; 
    L(30)= 0.405 ; 
    L(31)= 0.46 ; 
    L(32)= 0.523 ; 
    L(33)= 0.594 ; 
    L(34)= 0.675 ; 
    L(35)= 0.767 ; 
    L(36)= 0.872 ; 
    L(37)= 0.991 ; 
    L(38)= 1.13 ; 
    L(39)= 1.28 ; 
    L(40)= 1.45 ; 
    L(41)= 1.65 ; 
    L(42)= 1.88 ; 
    L(43)= 2.13 ; 
    L(44)= 2.42 ; 
    L(45)= 2.75 ; 
    L(46)= 3.12 ; 
    L(47)= 3.55 ; 
    L(48)= 4.03 ; 
    L(49)= 4.58 ; 
    L(50)= 5.21 ; 
    L(51)= 5.92 ; 
    L(52)= 6.72 ; 
    L(53)= 7.64 ; 
    L(54)= 8.68 ; 
    L(55)= 9.86 ; 
    L(56)= 11.2 ; 
    L(57)= 12.7 ; 
    L(58)= 14.5 ; 
    L(59)= 16.4 ; 
    L(60)= 18.7 ; 
    L(61)= 21.2 ; 
    L(62)= 24.1 ; 
    L(63)= 27.4 ; 
    L(64)= 31.1 ; 
    L(65)= 35.3 ; 
    L(66)= 40.1 ; 
    L(67)= 45.6 ; 
    L(68)= 51.8 ; 
    L(69)= 58.9 ; 
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    L(70)= 66.9 ; 
    L(71)= 76 ; 
    L(72)= 86.4 ; 
    L(73)= 98.1 ; 
    L(74)= 111 ; 
    L(75)= 127 ; 
    L(76)= 144 ; 
    L(77)= 163 ; 
    L(78)= 186 ; 
    L(79)= 211 ; 
    L(80)= 240 ; 
    L(81)= 272 ; 
    L(82)= 310 ; 
    L(83)= 352 ; 
    L(84)= 400 ; 
    L(85)= 454 ; 
    L(86)= 516 ; 
    L(87)= 586 ; 
 
 
#-------------------               KINETICS                -------------------  
    # Kinetics can be defined over the whole reactor and not used at the boundaries 
    # Nucleation kinetics 
    FOR z := 0 TO ReactorLength DO 
        FOR r := 0 TO ReactorRadius DO 
            induction_fcn(z,r) = (tanh(1E10*(z - v_z(r)*t_ind))+1)/2; # zero when length is less than 
induction length 
        END 
    END 
 
    B_nuc = number_scaling*induction_fcn*(k_nuc*(Thermo.SI* ( (tanh(1E20*Thermo.SI)+1) / 2) 
)^n_nuc); # [Mxtl/L/min]=[Mxtl/1E6 xtl][xtl/L.min] 
    G_L = induction_fcn*k_g*(Thermo.SI*(tanh(1E20*Thermo.SI)+1)/2)^n_g; # [um/min] 
 
    # ALTERNATIVE GROWTH KINETICS (comment in and change to G_L as required): 
        # Screw dislocation model: 
        omega = 10^Thermo.SI ; 
        S_r = (omega)^(1/3)-1; 
    #    G_L_2 = induction_fcn*k_g_avg*(S_r*(tanh(1E20*Thermo.SI)+1)/2)^n_g_avg; 
 
        # Birth and spread model: 
        G_L_2 = induction_fcn*k_g_avg*(S_r*(tanh(1E20*Thermo.SI)+1)/2)^2 * exp(-
((10^Null_Sat)^(1/3)-1)/(S_r*(tanh(1E20*Thermo.SI)+1)/2)); 
        Null_Sat = 0.3; 
 
        # Theoretical nucleation rate - should be in the range of 1E7 at inlet to 1E-4 at outlet 
        B_nuc_2 = induction_fcn*number_scaling*A_factor*exp(-16.75*(tension/1000)^3*(7.94655E-
23/1E6)^2/(1.38E-23^3*298^3*(log(omega))^2)); 
 
    # Converting to volumetric growth rate: 
    FOR z := 0 TO ReactorLength DO 
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        FOR r := 0 TO ReactorRadius DO 
            # Number/ number density relation for all cells 
            FOR i := 1 TO NEQ DO 
                # GROWTH RATE - Define the growth rate in the DPB in terms of the SI 
                # ignore rate constants for purposes of model validation 
                G(i,z,r) = pi/2*(6*v(i)/pi)^(2/3)*G_L(z,r); # [um^3/min] = [um^3]^(2/3) * [um/min] 
            END #FOR 
        END #FOR 
    END #FOR 
 
#-------------------               NCG DPB                -------------------  
# DPB exists to give rate 
# Definition of rate terms through reactor volume: 
FOR z := 0|+ TO ReactorLength|- DO 
        FOR r := 0|+ TO ReactorRadius|- DO 
            # SEPARATE POP BAL AND PARTICLE ADVECTION: 
                # NDASH is the rate of change of particles due to particle interactions: 
            # ODE for first cell - derived assuming N(i-1)=0 as i-1 cell does not exist 
            NDASH_xtl(1,z,r) = B_nuc(z,r) - G(1,z,r)*N(1,z,r)/(v(2)-v(1)) ; # [Mxtl/L.min] = [Mxtl/L.min] - 
[um^3/min]*[Mxtl/L]/[um^3] 
            # ODE for 2nd to NEQ-1 cell 
            FOR i := 2 TO NEQ-1 DO 
                NDASH_xtl(i,z,r) = G(i-1,z,r)*N(i-1,z,r)/(v(i)-v(i-1)) - G(i,z,r)*N(i,z,r)/(v(i+1)-v(i)); # [Mxtl/L.min] 
= [um^3/min]*[Mxtl/L]/[um^3] - [um^3/min]*[Mxtl/L]/[um^3] 
            END 
            # ODE for last cell - derived to include a calculation for average cell volume 
            NDASH_xtl(NEQ,z,r) = G(NEQ,z,r)*(N(NEQ-1,z,r)/(v(NEQ)-v(NEQ-1)) - 
N(NEQ,z,r)/((pi/6)*((2*LOWER(NEQ+1)+W(NEQ+1))/2)^3-v(NEQ))); # [Mxtl/L.min] = 
[um^3/min]*[Mxtl/L]/[um^3] - [um^3/min]*[Mxtl/L]/[um^3] 
 
            #ADVECTION TERM 
            FOR i := 1 TO NEQ DO 
                NDASH_tot(i,z,r) = -v_z(r)*PARTIAL(N(i,z,r),Axial) + NDASH_xtl(i,z,r); # [Mxtl/L.min] = 
[m/min]*[Mxtl/L.m] + [Mxtl/L.min] 
            END 
            rate_g(z,r) = SIGMA(NDASH_xtl(,z,r)*1/number_scaling*v)*1E-18*1E3*1710/245.41; # 
[Molar/min] = [Mxtl/L.mim]*[1E6xtl/Mxtl]*[micron^3/xtl.L]*[1E-
18m^3/micron^3]*[1000L/m^3]*[1710g/L]*[1mol/245.41g] 
            # Molar rate of MAP production: 
            rate(z,r) = rate_g(z,r); # + rate_d(z,r); # [Molar/min] 
            # NDASH 
            $N(,z,r) = NDASH_tot(,z,r); # [Mxtl/L.min];    combination of number change due to 
crystallisation and advection 
        END #FOR 
    END #FOR 
 
#-------------------             PSD PROPERTIES              -------------------  
# Distribution descriptions can occur over whole reactor. 
    FOR z := 0 TO ReactorLength DO 
        FOR r := 0 TO ReactorRadius DO 
            # Number/ number density relation for all cells 



345 
 

            FOR i := 1 TO NEQ DO 
                #n_density(i) = N(i)/(LOWER(i+1)-LOWER(i)); 
                n_density(i,z,r) = N(i,z,r)/W(i); # [1/um^3.L] = [1/L]/[um^3] 
                # Number density Length-Volume relationship 
                n_density_length(i,z,r) = n_density(i,z,r)*pi/2*L(i)^2; # [1/um.L] = [1/um^3.L]*[um^2] 
            END #FOR 
 
            # Numerical zeroth and first moments 
            MOM(1,z,r) = SIGMA(N(,z,r)/number_scaling);  #ZEROTH MOMENT - total particle number 
            MOM(2,z,r) = SIGMA(v*N(,z,r)/number_scaling);  #FIRST MOMENT - total volume [micron^3/L] 
            # Volume weighted mean diameter: 
            D_4_3(z,r) = SIGMA(N(,z,r)*L^4)/SIGMA(N(,z,r)*L^3);  
            #will sigma operator work or do i need to define N(,z,r)? 
            # when referring to a 3D array i think you need to refer to the whole row - check 
            # Number volume mean diameter: 
            D_3_0(z,r) = (SIGMA(N(,z,r)*L^3)/SIGMA(N(,z,r)))^(1/3); 
        END #FOR 
    END #FOR 
 
# VOLUME % @ OUTLET 
    FOR i := 1 TO NEQ DO  
    # for every size range, volume% [%] * total crystal volume at reactor exit [um^3/L] = volume of the 
size range [um^3] * total number of particles in that range exiting the reactor [1/L] 
        VP_out(i)*SIGMA(MOM(2,ReactorLength,)) = 
v(i)*SIGMA(N(i,ReactorLength,)/number_scaling)*100; # has to be written this way to avoid div0 at 
t=0 
        N_out(i) = SIGMA(N(i,ReactorLength,)); 
    END 
 
# CUMULATIVE VOLUME % @ OUTLET 
    VPC_out(1) = VP_out(1); 
    FOR i := 2 TO NEQ DO 
        VPC_out(i) = VPC_out(i-1) + VP_out(i); 
    END #FOR 
 
# D[10], D[90] & VOLUME MEDIAN DIAMETER @ OUTLET 
    FOR i := 1 TO NEQ-1 DO 
        VMD_cell_out(i) = MAX( 0,SGN(VPC_out(i+1) - 50) ) * MAX(0,SGN(50 - VPC_out(i)) ) * ( (50-
VPC_out(i))/((VPC_out(i+1) - VPC_out(i))/(L(i+1) - L(i))) + L(i) ) ;  
        D10_cell_out(i) = MAX( 0,SGN(VPC_out(i+1) - 10) ) * MAX(0,SGN(10 - VPC_out(i)) ) * ( (10-
VPC_out(i))/((VPC_out(i+1) - VPC_out(i))/(L(i+1) - L(i))) + L(i) ) ;  
        D90_cell_out(i) = MAX( 0,SGN(VPC_out(i+1) - 90) ) * MAX(0,SGN(90 - VPC_out(i)) ) * ( (90-
VPC_out(i))/((VPC_out(i+1) - VPC_out(i))/(L(i+1) - L(i))) + L(i) ) ;  
    END  
    VMD_out = SIGMA(VMD_cell_out); 
    PSD_width_out = SIGMA(D90_cell_out) - SIGMA(D10_cell_out); 
E.2.3. CAT explicit nucleation, growth and aggregation kinetics 

{ This model uses the implicit numerical NCG model only.  
 
Solution description: 
 - Within the reactor:  
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    - particle number changes are described by an advection and reaction (DPB) model 
    - molar rate of MAP production/ species consumption is the sum of particle number changes 
    - liquid species concentrations are described by an advection and reaction model 
 - At the boundaries (as advised by all texts including Rice & Do): 
    - inlets are defined using type 1/ dirichlet boundary conditions i.e. the feeds 
    - others are defined using type 2/ Neumann boundary condition (dC/dz=0), which gives 
homogeneous problem definition (only one solution) 
    - symetry condition is applied to the centreline dC/dr=0 
        - From what i can tell from Rice & Do, dC/dr @ R is linked to this symetry condition 
            Nick also said that this is physically correct due to no slip condition 
    - outlet boundary dC/dz=0 stops numerical accumulation upstream (especially relevant when 
diffusion is included) 
    - rate terms defined within the model are set to zero at all boundaries as they are not used in the 
problem description  
        and N & C are defined by the boundary conditions. This is confirmed by running the boundary 
rate at different values. 
 
SCALING: 
 - scale to have units of N be [million crystals] 
    - scale: B_nuc; N; n_density; n_density_length; MOM(1) 
        -> NDASH_xtl and NDASH_tot will be reduced accordingly 
    - reverse scale: rate_g; rate 
} 
 
UNIT 
    # Insert an instance of the thermo model into this one to refer to the Sa variable 
    Thermo AS Thermodynamics_dist 
 
PARAMETER 
    PI                  AS  REAL DEFAULT 3.14159265  #Pi 
    NEQ                 AS  INTEGER #The number of discrete size domains. Selected such that particles do 
not grow to the last cell size 
    rho_struvite        AS  REAL    # kg/m^3 
    rho_water           AS  REAL    # kg/m^3 
    mu_water            AS  REAL    # Pa.s 
    ReactorLength       AS  REAL    # [m] 
    ReactorRadius       AS  REAL    # [m] 
    number_scaling      AS  REAL     
    k_H     AS REAL DEFAULT 1E30 #1E7 # see analytic H-step function for explanation 
 
 
DISTRIBUTION_DOMAIN 
Axial       AS  [ 0 : ReactorLength ] 
Radial      AS  [ 0 : ReactorRadius ] 
 
 
VARIABLE 
# PSD properties 
    N_out               AS  Distribution(NEQ)                   OF NDENSITY 
    N                   AS  Distribution(NEQ,Axial,Radial)      OF NDENSITY # [1E6 xtl/L];        Total number of 
particles at each node. Use NDENSITY variable type - same bounds 
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    n_density           AS  Distribution(NEQ,Axial,Radial)      OF NDENSITY # [1E6 xtl/um^3.L];   Number 
density of particles for each node 
    n_density_length    AS  Distribution(NEQ,Axial,Radial)      OF NDENSITY # [1E6 xtl/um.L];     length 
based discretisation number density 
    MOM                 AS  Distribution(2,Axial,Radial)        OF NOTYPE   # [1E6 xtl/L]; [um^3/L]; Moments 
of the particle size distribution 
    D_4_3               AS  Distribution(Axial,Radial)          OF Length   # [um]          Volume weighted median 
diameter 
    D_3_0               AS  Distribution(Axial,Radial)          OF Length   # [um]          Number weighted 
median diameter 
    VP_out              AS ARRAY(NEQ)                   OF Dimensionless    # [%];          volume % exiting the 
reactor 
    VPC_out             AS ARRAY(NEQ)                   OF Dimensionless    # [%];          cumulative volume % 
exiting the reactor 
    VMD_out             AS                                 Length           # [um];         the VMD exiting the reactor = 
SIGMA(VMD_out) 
    VMD_cell_out        AS ARRAY(NEQ-1)                 OF Length           # [um];         an array of particle sizes 
where all elements are zero accept that where the VMD lies  
    D10_cell_out        AS ARRAY(NEQ-1)                 OF Length           # [um];         an array of particle sizes 
where all elements are zero accept that where the D10 lies 
    D90_cell_out        AS ARRAY(NEQ-1)                 OF Length           # [um];         an array of particle sizes 
where all elements are zero accept that where the D90 lies 
    PSD_width_out       AS                                 Length           # [um];         the PSD width exiting the reactor 
    particulate_num     AS  NOTYPE 
 
# PSD discretisation: 
    v                   AS  Distribution(NEQ)                   OF Volume   # [um^3];       representative volume of 
each node 
    L                   AS  Distribution(NEQ)                   OF Length   # [um];         representative length of each 
node 
    W                   AS  Distribution(NEQ+1)                 OF NOTYPE   # [um^3];       width of volume 
distributed cells 
    W_L                 AS  Distribution(NEQ+1)                 OF NOTYPE   # [um];         width of length 
distributed cells 
    LOWER               AS  Distribution(NEQ+2)                 OF NOTYPE   # [um^3];       Lower bound on cell i.  
    LOWER_L             AS  Distribution(NEQ+2)                 OF NOTYPE   # [um];         Lower length bound 
on cell i.  
    q                   AS  NOTYPE                                          #               geometric progression coarseness factor 
 
# Nucleaiton kinetics: 
    B_nuc               AS  Distribution(Axial,Radial)          OF NOTYPE   # [1E6 xtl/L.min];    Nucleation rate 
varies through reactor but only exists in the first size range. 
    V_nuc               AS  Distribution(Axial,Radial)          OF NOTYPE   # [1E6 xtl/L.min];    Nucleation rate 
varies through reactor but only exists in the first size range. 
    induction_fcn       AS  Distribution(Axial,Radial)  OF  NOTYPE 
    t_ind               AS  NOTYPE 
 
# Growth kinetics: 
    G_v                 AS Distribution(NEQ,Axial,Radial)      OF NOTYPE   # [um^3/min];   constant volume 
growth rate 
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    G_L                 AS Distribution(Axial,Radial)          OF NOTYPE   # [um/min];     constant length based 
growth rate - size independent growth 
    B_growth            AS Distribution(NEQ,Axial,Radial)   OF NumRate # [particles/min] {0 to 1E25} Total 
birth rate of particles due to growth at each node 
    D_growth            AS Distribution(NEQ,Axial,Radial)   OF NumRate # [particles/min] {0 to 1E25} Total 
birth rate of particles due to growth at each node 
    V_growth            AS Distribution(NEQ,Axial,Radial)   OF VolRate # [um^3/min] {0 to 1E25} Volume 
contribution due to growth in each cell 
    v_0_g               AS Volume # [um^3] Volume of small particles agglomerating to represent growth. 
 
# Aggregation kinetics: 
    agg_size                        AS ARRAY(NEQ,NEQ)       OF VOLUME # agg volume due to collisions 
between 
    AGG_INDEX                       AS ARRAY(NEQ,NEQ,NEQ)   OF ARGUMENT # binary multiplier indicating 
whether aggregation between cells j and k result in an aggregate in cell i. 
    MODIFIER                        AS ARRAY(NEQ,NEQ)       OF ARGUMENT # modify aggregation for i=j so 
collisions aren't counted twice 
    # Distributed: 
    Beta_agg                        AS Distribution(Axial,Radial)               OF NOTYPE 
    agg_rate                        AS Distribution(NEQ,NEQ,NEQ,Axial,Radial)   OF RATE # rate of births in i 
due to collisions between j and k 
    agg_vol_i                       AS Distribution(NEQ,NEQ,NEQ,Axial,Radial)   OF VOLUME # volume of births 
in i due to collisions between j and k 
    B_agg                           AS Distribution(NEQ,Axial,Radial)           OF RATE # total birth rate in cell i 
    D_agg                           AS Distribution(NEQ,Axial,Radial)           OF RATE # total death rate in cell i 
    V_agg                           AS Distribution(NEQ,Axial,Radial)           OF VOLUME # total volume of 
particles born into cell i 
 
 
# Combined kinetics: 
    v_z                 AS  Distribution(Radial)                OF Velocity # [m/min];      discrete fluid velocity at a  
given radius 
    v_set               AS  Distribution(NEQ)                   OF Velocity # [m/min];       representative volume of 
each node 
    rate                AS  Distribution(Axial,Radial)          OF rate     # [Molar/min];  refers to the molar 
production rate of struvite 
    rate_g              AS  Distribution(Axial,Radial)          OF rate     # [Molar/min]; 
#    rate_d              AS  Distribution(Axial,Radial)          OF rate     # [Molar/min]; 
    NDASH_xtl           AS  Distribution(NEQ,Axial,Radial)      OF rate     # [1E6 xtl/L.min];    change in 
particle number in a size due to crystallisation 
    NDASH_tot           AS  Distribution(NEQ,Axial,Radial)      OF rate     # [1E6 xtl/L.min];    total change 
in particle number including advection 
 
# Cell Average reassignment: 
    v_bar               AS Distribution(NEQ,Axial,Radial)   OF VOLUME # average volume of particles born 
into cell i 
    V_TOT               AS Distribution(NEQ,Axial,Radial)   OF VolRate # [um^3/min] {0 to 1E25} Total 
volume added to each cell 
    B_TOT               AS Distribution(NEQ,Axial,Radial)   OF NumRate # [particles/min] {0 to 1E25} Total 
number of particles added to each cell 
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    D_TOT               AS Distribution(NEQ,Axial,Radial)   OF NumRate # [particles/min] {0 to 1E25} Total 
death rate due to all mechanisms 
    v_h                             AS Distribution(NEQ,4,Axial,Radial)         OF ARGUMENT # four different 
arguments to be used in  
    H                               AS Distribution(NEQ,4,Axial,Radial)         OF HYPERBOLIC # result of argument 
after being assessed using the heaviside step function 
    LAMBDA_1, LAMBDA_4              AS Distribution(NEQ,Axial,Radial)           OF LAMBDA_1_4 #(Defined 
differently due to different parameter constraints) 
    LAMBDA_2, LAMBDA_3              AS Distribution(NEQ,Axial,Radial)           OF LAMBDA_2_3 # lambda 
function to be combined with result of 
    Lambda_scaling                  AS Distribution(NEQ,Axial,Radial)           OF NOTYPE 
    Lambda_offset                   AS Distribution(NEQ,Axial,Radial)           OF NOTYPE 
    Term_1, Term_2, Term_3, Term_4  AS Distribution(NEQ,Axial,Radial)           OF TOT_RATE     # each 
heaviside step function in the final cell average equation 
    d_N_dt                          AS Distribution(NEQ,Axial,Radial)           OF TOT_RATE # [particles/min] {-
1E25 to 1E25} combined total particle number change per cell 
 
 
# PARAMETERS TO BE ESTIMATED 
    k_g                 AS  NOTYPE 
    n_g                 AS  NOTYPE 
    k_nuc               AS  NOTYPE 
    n_nuc               AS  NOTYPE 
    k_agg               AS  NOTYPE 
    n_agg               AS  NOTYPE 
 
    # ALTERNATIVE GROWTH KINETICS 
    k_g_avg             AS  NOTYPE 
    n_g_avg             AS  NOTYPE 
    S_r                 AS  Distribution(Axial,Radial) OF Dimensionless 
    # ALTERNATIVE NUCLEATION KINETICS 
    tension             AS  NOTYPE 
    A_factor            AS  NOTYPE 
    omega               AS  Distribution(Axial,Radial) OF Dimensionless 
    G_L_2               AS  Distribution(Axial,Radial)          OF NOTYPE   # [um/min];     constant length based 
growth rate - size independent growth 
    B_nuc_2             AS  Distribution(Axial,Radial)          OF NOTYPE   # [1E6 xtl/L.min];    Nucleation rate 
varies through reactor but only exists in the first size range. 
    Null_Sat            AS                            NOTYPE 
 
SET 
    rho_struvite        :=  1740; #kg/m^3 
    rho_water           :=  998; #kg/m^3 
    mu_water            :=  0.001002; #Pa.s 
#    k_d                 :=  0; #12.49; # set as the same as growth rate via galbraith model 
#    n_d                 :=  5.06; # set as the same as growth rate via galbraith model 
    NEQ                 :=  3; #87; #101; #35 was previously 35 but PFC only achieves 24, simulation will fail 
if bound is hit 
#    number_scaling      :=  1E-6; # [Mxtl/1E6xtl] - scale particle number to avoid integration errors 
 
BOUNDARY 
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# ONLY R BOUNDARY - arbitrary and doesn't affect the final solution 
    # rate_g @ r=R for 0|+ - L|- 
FOR z := 0|+ TO ReactorLength|- DO 
    rate_g(z,ReactorRadius) = 1; 
    # rate_g @ r=0 for 0|+ - L|- 
    rate_g(z,0) = 1; 
END #FOR 
    # rate_g @ z=0 for 0 - R 
    rate_g(0,) = 1; 
    # rate_g @ z=L for 0 - R 
    rate_g(ReactorLength,) = 1; 
 
FOR z := 0|+ TO ReactorLength|- DO 
    # rate @ r for 0|+ - L|- 
    rate(z,ReactorRadius) = 0; 
    # rate @ r=0 for 0|+ - L|- 
    rate(z,0) = 0; 
END #FOR 
    # rate @ z=0 for 0 - R 
    rate(0,) = 0; 
    # rate @ z=L for 0 - R 
    rate(ReactorLength,) = 0; 
 
# NDASH can be defined at the boundary as it's not used here 
# Give the same definitions for total and crystallisation NDASH 
FOR z := 0|+ TO ReactorLength|- DO 
    # NDASH_tot @ r for 0|+ - L|- 
    NDASH_tot(,z,ReactorRadius) = 0; 
    # NDASH_tot @ r=0 for 0|+ - L|- 
    NDASH_tot(,z,0) = 0; 
    # NDASH_xtl @ r for 0|+ - L|- 
    NDASH_xtl(,z,ReactorRadius) = 0; 
    # NDASH_xtl @ r=0 for 0|+ - L|- 
    NDASH_xtl(,z,0) = 0; 
END #FOR 
    # NDASH_tot @ z=0 for 0 - R 
    NDASH_tot(,0,) = 0; 
    # NDASH_tot @ z=L for 0 - R 
    NDASH_tot(,ReactorLength,) = 0; 
    # NDASH_xtl @ z=0 for 0 - R 
    NDASH_xtl(,0,) = 0; 
    # NDASH_xtl @ z=L for 0 - R 
    NDASH_xtl(,ReactorLength,) = 0; 
 
    # PARTICLE NUMBER BOUNDARY CONDITIONS: 
    # @ z=0, for all r, @ NEQ = 1, N = 1 - one particle of the smallest size enters the reactor at all radii 
    # INLET 
    # @ z=0, for all r: 
        FOR r := 0 TO ReactorRadius DO 
            N(1,0,r) = number_scaling*particulate_num; # always 1E6 particles coming in in the first size 
bracket - avoids div0 errors 
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            N(2:NEQ,0,r) = 0; 
        END 
 
    # OUTLET 
    # @ z = ReactorLength, for all r, for all NEQ, dN/dz = 0 - number of particles does not change 
axially at the exit 
        #does this need an iterator? Unlikely - others boundaries are just explicitly defined over all r. 
        FOR r := 0 TO ReactorRadius DO 
            PARTIAL(N(,ReactorLength,r),Axial)   =    0; 
        END 
     
    # CENTRELINE 
    # @ r = 0, for all z (except the ends), for all NEQ, dN/dr = 0 - number of particles does not vary 
radially at the centreline 
        FOR z := 0|+ TO ReactorLength|- DO 
            PARTIAL(N(,z,0),Radial)         =   0; 
        END #FOR 
    # WALL 
    # @ r = ReactorRadius, for all z (except the ends), for all NEQ, dN/dr = 0 - number of particles does 
not vary radially at the boundary 
        FOR z := 0|+ TO ReactorLength|- DO 
            PARTIAL(N(,z,ReactorRadius),Radial)         =   0; 
        END #FOR 
 
EQUATION 
#--------------           PSD DISCRETISATION (Malvern)           --------------- 
    # Discretisation factor - define just to make the model work: 
    q = 4;   
    # Length-Volume relationship 
    v = pi/6*L^3; 
 
    # Lower bounds: 
    LOWER(1) = 0; 
    LOWER_L(1) = 0; 
    # lower bound of 2nd to NEQ+1 cell (determined by width discretisation) 
    FOR i := 2 TO NEQ+2 DO 
    # Both of these can be defined at the same time as they are independent 
        LOWER(i) = LOWER(i-1) + W(i-1); # (4) 
        LOWER_L(i) = LOWER_L(i-1) + W_L(i-1); # (2) 
    END 
    # Widths: 
    W(1) = 2*v(1); 
    W_L(1) = 2*L(1); #know L(1) from the v/L relationship above 
    # Width of 2nd to NEQ cell determined by geo discretisation 
    FOR i := 2 TO NEQ+1 DO 
        W_L(i) = LOWER_L(i+1) - LOWER_L(i); # (1) 
        W(i) = LOWER(i+1) - LOWER(i); # (3) 
    END 
 
    # Malvern cell sizes (Particle diameter) 
    L(1)= 0.01 ; 
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    L(2)= 0.0114 ; 
    L(3)= 0.0129 ; 
#    L(4)= 0.0147 ; 
#    L(5)= 0.0167 ; 
#    L(6)= 0.0189 ; 
#    L(7)= 0.0215 ; 
#    L(8)= 0.0244 ; 
#    L(9)= 0.0278 ; 
#    L(10)= 0.0315 ; 
#    L(11)= 0.0358 ; 
#    L(12)= 0.0407 ; 
#    L(13)= 0.0463 ; 
#    L(14)= 0.0526 ; 
#    L(15)= 0.0597 ; 
#    L(16)= 0.0679 ; 
#    L(17)= 0.0771 ; 
#    L(18)= 0.0876 ; 
#    L(19)= 0.0995 ; 
#    L(20)= 0.113 ; 
#    L(21)= 0.128 ; 
#    L(22)= 0.146 ; 
#    L(23)= 0.166 ; 
#    L(24)= 0.188 ; 
#    L(25)= 0.214 ; 
#    L(26)= 0.243 ; 
#    L(27)= 0.276 ; 
#    L(28)= 0.314 ; 
#    L(29)= 0.357 ; 
#    L(30)= 0.405 ; 
#    L(31)= 0.46 ; 
#    L(32)= 0.523 ; 
#    L(33)= 0.594 ; 
#    L(34)= 0.675 ; 
#    L(35)= 0.767 ; 
#    L(36)= 0.872 ; 
#    L(37)= 0.991 ; 
#    L(38)= 1.13 ; 
#    L(39)= 1.28 ; 
#    L(40)= 1.45 ; 
#    L(41)= 1.65 ; 
#    L(42)= 1.88 ; 
#    L(43)= 2.13 ; 
#    L(44)= 2.42 ; 
#    L(45)= 2.75 ; 
#    L(46)= 3.12 ; 
#    L(47)= 3.55 ; 
#    L(48)= 4.03 ; 
#    L(49)= 4.58 ; 
#    L(50)= 5.21 ; 
#    L(51)= 5.92 ; 
#    L(52)= 6.72 ; 
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#    L(53)= 7.64 ; 
#    L(54)= 8.68 ; 
#    L(55)= 9.86 ; 
#    L(56)= 11.2 ; 
#    L(57)= 12.7 ; 
#    L(58)= 14.5 ; 
#    L(59)= 16.4 ; 
#    L(60)= 18.7 ; 
#    L(61)= 21.2 ; 
#    L(62)= 24.1 ; 
#    L(63)= 27.4 ; 
#    L(64)= 31.1 ; 
#    L(65)= 35.3 ; 
#    L(66)= 40.1 ; 
#    L(67)= 45.6 ; 
#    L(68)= 51.8 ; 
#    L(69)= 58.9 ; 
#    L(70)= 66.9 ; 
#    L(71)= 76 ; 
#    L(72)= 86.4 ; 
#    L(73)= 98.1 ; 
#    L(74)= 111 ; 
#    L(75)= 127 ; 
#    L(76)= 144 ; 
#    L(77)= 163 ; 
#    L(78)= 186 ; 
#    L(79)= 211 ; 
#    L(80)= 240 ; 
#    L(81)= 272 ; 
#    L(82)= 310 ; 
#    L(83)= 352 ; 
#    L(84)= 400 ; 
#    L(85)= 454 ; 
#    L(86)= 516 ; 
#    L(87)= 586 ; 
 
#-------------------               KINETICS                -------------------  
    # NOTE: Kinetics can be defined over the whole reactor and not used at the boundaries 
 
    # Induction time: 
    FOR z := 0 TO ReactorLength DO 
        FOR r := 0 TO ReactorRadius DO 
            induction_fcn(z,r) = (tanh(1E10*(z - v_z(r)*t_ind))+1)/2; # zero when length is less than 
induction length 
        END 
    END 
 
    # NUCLEATION RATE: 
    B_nuc = number_scaling*induction_fcn*(k_nuc*(Thermo.SI* ( (tanh(1E20*Thermo.SI)+1) / 2) 
)^n_nuc); # [Mxtl/L/min]=[Mxtl/1E6 xtl][xtl/L.min] 
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    # AGGREGATION RATE: 
    Beta_agg = induction_fcn*k_agg*(Thermo.SI*(tanh(1E20*Thermo.SI)+1)/2)^n_agg; # [um/min] 
 
    # GROWTH RATE: 
    # size of a very small particle considered in CAT growth 
    v_0_g = v(1)*0.01; # As this value becomes progressively smaller than the first cell, the number of 
nuclei (appearing in the first cell) which remain in the first cell diminishes 
    # Growth rate: 
    G_L = induction_fcn*k_g*(Thermo.SI*(tanh(1E20*Thermo.SI)+1)/2)^n_g; # [um/min] 
 
    # Alternative growth kinetics: (comment in and change to G_L as required): 
        # Screw dislocation model: 
        omega = 10^Thermo.SI ; 
        S_r = (omega)^(1/3)-1; 
    #    G_L_2 = induction_fcn*k_g_avg*(S_r*(tanh(1E20*Thermo.SI)+1)/2)^n_g_avg; 
 
        # Birth and spread model: 
        G_L_2 = induction_fcn*k_g_avg*(S_r*(tanh(1E20*Thermo.SI)+1)/2)^2 * exp(-
((10^Null_Sat)^(1/3)-1)/(S_r*(tanh(1E20*Thermo.SI)+1)/2)); 
        Null_Sat = 0.3; 
 
        # Theoretical nucleation rate - should be in the range of 1E7 at inlet to 1E-4 at outlet 
        B_nuc_2 = induction_fcn*number_scaling*A_factor*exp(-16.75*(tension/1000)^3*(7.94655E-
23/1E6)^2/(1.38E-23^3*298^3*(log(omega))^2)); 
 
    # Converting to volumetric growth rate: 
    FOR z := 0 TO ReactorLength DO 
        FOR r := 0 TO ReactorRadius DO 
            # Number/ number density relation for all cells 
            FOR i := 1 TO NEQ DO 
                # GROWTH RATE - Define the growth rate in the DPB in terms of the SI 
                # ignore rate constants for purposes of model validation 
                G_v(i,z,r) = pi/2*(6*v(i)/pi)^(2/3)*G_L(z,r); # [um^3/min] = [um^3]^(2/3) * [um/min] 
            END #FOR 
        END #FOR 
    END #FOR 
 
 
#-------------------               SETTLING                -------------------  
 
# Stokes Settling velocity (<40microns) 
    FOR i := 1 TO 17 DO 
        v_set(i) = 2/9*(1740-998)/0.001002*9.81*(L(i)/2/1E6)^2*60; # [m/min] = 
[2/9]*[kg/m^3]/[kg.m/s]*[m/s^2]*[m^2] 
    END 
# Settling velocity (>40 microns) 
    FOR i := 18 TO NEQ DO 
        v_set(i) = 8*(1740-998)*9.81*(L(i)/2/1E6)/(3*998*0.44)*60; # [m/min] = 
[2/9]*[kg/m^3]/[kg.m/s]*[m/s^2]*[m^2] 
        # where an iterative solution is avoided by using C_D = 0.44: 
        #C_D = 0.44; #(24/Re_p)*(1+0.14*Re_p^0.7); 
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        #Re_p = L(i)*v_set(i)*998/0.001002; 
    END 
 
#-------------------               NCGA DPB                -------------------  
# DPB exists to give rate 
 
# AGGREGATION: 
    {AGGREGATE SIZES} 
    # Set up array of all possible aggregate sizes due to collisions between particles 
    # for two particles (j and k) aggregating to form a particle in the range i-1/2 and i+1/2 i.e. v_i-1/2 
<= (v_j + v_k) < v_i+1/2 where j>=k 
    FOR j := 1 TO NEQ DO 
        FOR k := 1 TO NEQ DO 
            agg_size(j,k) = v(j)+v(k); # vector of all sizes produced by v_j + v_k 
            MODIFIER(j,k) = 1-((0.5+0.5*tanh(1E3*(j-k))) * (0.5+0.5*tanh(1E3*(k-j))))/0.5; 
        END #FOR 
    END #FOR 
 
    {AGGREGATION INDEX} 
    # Matrix indicating whether the combination of particles j and k results in a birth 
    # in cell i. This remains constant through time. 
    FOR i := 1 TO NEQ DO 
        FOR j := 1 TO NEQ DO 
            FOR k := 1 TO NEQ DO 
                 # checked - works. Halves solution time. 
                 AGG_INDEX(i,j,k) = (0.5+0.5*tanh((LOWER(i+1)-(agg_size(j,k)+1E-
10))*1E10))*(0.5+0.5*tanh(((agg_size(j,k)+1E-10)-LOWER(i))*1E10));  
            END #FOR 
        END #FOR 
    END #FOR 
 
# WITHIN THE WHOLE REACTOR: 
    FOR z := 0|+ TO ReactorLength|- DO 
        FOR r := 0|+ TO ReactorRadius|- DO 
            #---------------- NUCLEATION KINETICS ------------------------------------------ 
            V_nuc(z,r) = B_nuc(z,r)*v(1); # [um^3/min] {0 to 1E25} 
 
            #---------------- GROWTH KINETICS ---------------------------------------------- 
 
            ## Birth rate due to growth 
            # Assuming that G=Beta*n(v_0_g)*v_0_g gives the first order upwind discretisation of growth. 
            FOR i := 1 TO NEQ DO 
                B_growth(i,z,r) = G_v(i,z,r)*N(i,z,r)/v_0_g; # [particles/min] {0 to 1E25} v_0_g is the volume 
of the discrete nuclei contributing to the growth process 
 
                ## Death rates due to growth (none due to nucleation) 
                D_growth(i,z,r) = G_v(i,z,r)*N(i,z,r)/v_0_g; # [particles/min] {0 to 1E25} 
 
                # Volume change of a particle size range due to growth 
                V_growth(i,z,r) = B_growth(i,z,r)*(v(i)+v_0_g); # [um^3/min] {0 to 1E25} 
            END 
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            # AGGREGATION BIRTH RATE - Number & Volume - NO LOGIC 
            FOR i := 1 TO NEQ DO 
                FOR j := 1 TO NEQ DO 
                    FOR k := 1 TO NEQ DO 
                        # NUMBER RATE - dN(i)/dt - using aggregation index to calculate the aggregation rate 
for every co-ordinate - most will be 0 
                        agg_rate(i,j,k,z,r) = AGG_INDEX(i,j,k) * MODIFIER(j,k) * Beta_agg(z,r) * N(j,z,r) * N(k,z,r); 
#SGN(N(i)) *  
                        # VOLUME RATE -#dV(i)/dt 
                        agg_vol_i(i,j,k,z,r) = agg_rate(i,j,k,z,r) * agg_size(j,k); # Don't need to include 
AGG_INDEX because it's part of agg_rate 
                    END #FOR 
                END #FOR 
            END #FOR 
 
            FOR i := 1 TO NEQ DO 
                B_agg(i,z,r) = SIGMA(agg_rate(i, 1:NEQ, 1:NEQ, z, r));  # Total number rate of aggregates 
formed in i = sum of all aggregation rates associated with cell i. Many are zero. 
                V_agg(i,z,r) = SIGMA(agg_vol_i(i, 1:NEQ, 1:NEQ, z, r));  # Total volume rate of aggregates 
formed in i = sum of all volume rates of aggregation contributing to cell i.   
            END #FOR 
 
            FOR i := 1 TO NEQ DO 
                D_agg(i,z,r) = N(i,z,r)*SIGMA(Beta_agg(z,r)*N(1:NEQ,z,r)); 
            END #FOR 
 
            #---------------- COMBINED KINETICS -------------------------------------------- 
            {TOTAL VOLUME AND NUMBER RATES} 
            B_TOT(,z,r) = B_nuc(z,r) + B_agg(,z,r)  + B_growth(,z,r) ; # can B_growth be negative irl? Add 
offset or adjust limits. 
            D_TOT(,z,r) = D_agg(,z,r)  + D_growth(,z,r) ; 
            V_TOT(,z,r) = V_nuc(z,r) + V_agg(,z,r)  + V_growth(,z,r) ; 
            # NOTE: The death rate due to agglomeration is lower when growth is occurring.  
 
            {AVERAGE AGGREGATE VOLUME - v_bar} 
            # Using below formulation with offset to avoid div-0 works ok but can cause numerical 
problems - a better solution should be implemented in future. 
            v_bar(,z,r) = (V_TOT(,z,r)+1E-12)/(B_TOT(,z,r) + 1E-12); # IF B_TOT becomes slightly negative, 
so does V_TOT. This offsets this. Try remove once all scaling is complete 
 
            #---------------- CELL AVERAGE REASSIGNMENT ------------------------------------ 
            {HEAVISIDE STEP FUNCITON:} 
            # NOTE: 
            # We can't evaluate the input to the heaviside step function at the first term in the first cell or 
the last term in the last cell - these are adjusted manually. 
            # During Manual adjustment, let the input v_h(i,j) be less than 1 (-1) so that the heaviside 
output is 0. This is ok because this contributes to the birth rate in the (i-1)th and (i+1)th cell which 
are 0 at the boundaries. 
 
            # First Cell 
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            # H function input arguments: 
            v_h(1,1,z,r) = -1; # see above for justification 
            v_h(1,2,z,r) = v(1) - v_bar(1,z,r); 
            v_h(1,3,z,r) = v_bar(1,z,r) - v(1); 
            v_h(1,4,z,r) = v(1+1) - v_bar(1+1,z,r); 
            # Mid Cells 
            FOR i := 2 TO NEQ-1 DO # do we need to define v_h at the boundaries? 
                v_h(i,1,z,r) = v_bar(i-1,z,r) - v(i-1); # how do we address the first cell? 
                v_h(i,2,z,r) = v(i) - v_bar(i,z,r); 
                v_h(i,3,z,r) = v_bar(i,z,r) - v(i); 
                v_h(i,4,z,r) = v(i+1) - v_bar(i+1,z,r); # how do we address the last cell? 
            END #FOR 
            # Last Cell 
            v_h(NEQ,1,z,r) = v_bar(NEQ-1,z,r) - v(NEQ-1); 
            v_h(NEQ,2,z,r) = v(NEQ) - v_bar(NEQ,z,r); 
            v_h(NEQ,3,z,r) = v_bar(NEQ,z,r) - v(NEQ); 
            v_h(NEQ,4,z,r) = -1; 
 
            # H function continuous approximation: 
            FOR i := 1 TO NEQ DO # for all cell sizes: 
                FOR a := 1 TO 4 DO # for all four possible H-step input arguments: 
                    H(i,a,z,r) = 0.5+0.5*tanh(k_H*(v_h(i,a,z,r))); 
                END # FOR 
            END # FOR 
 
            {LAMBDA FUNCTION} 
            # First Cell 
            LAMBDA_1(1,z,r) = 0; # combines to make a birth multiplier for the (i-1)th cell. There is no 
birth in the (i-1)th cell so let this term equal zero 
            LAMBDA_2(1,z,r) = v_bar(1,z,r)/v(1); # if v_bar=v(1) i.e. first nucleation, the 2nd term 
Heaviside step function output is 0.5 and combines with this term to assign hlaf the nuclei at this 
point. If v_bar(1)>v(1), H-step=0. 
            LAMBDA_3(1,z,r) = (v_bar(1,z,r) -   v(1+1))/(v(1)-v(1+1)); # same 
            LAMBDA_4(1,z,r) = (v_bar(1+1,z,r) - v(1+1))/(v(1)-v(1+1)); # same 
            # Middle Cells 
            FOR i := 2 TO NEQ-1 DO 
                    LAMBDA_1(i,z,r) = (v_bar(i-1,z,r) - v(i-1))/(v(i)-v(i-1)); # H=v_bar(i-1) - v(i-1) 
                    LAMBDA_2(i,z,r) = (v_bar(i,z,r) -   v(i-1))/(v(i)-v(i-1)); # H=v(i) - v_bar(i) 
                    LAMBDA_3(i,z,r) = (v_bar(i,z,r) -   v(i+1))/(v(i)-v(i+1)); # H=v_bar(i) - v(i) 
                    LAMBDA_4(i,z,r) = (v_bar(i+1,z,r) - v(i+1))/(v(i)-v(i+1)); # H=v(i+1) - v_bar(i+1) 
            END #FOR 
            # Last Cell 
            LAMBDA_1(NEQ,z,r) = (v_bar(NEQ-1,z,r) - v(NEQ-1))/(v(NEQ)-v(NEQ-1)); # same 
            LAMBDA_2(NEQ,z,r) = (v_bar(NEQ,z,r) -   v(NEQ-1))/(v(NEQ)-v(NEQ-1)); # same 
            LAMBDA_3(NEQ,z,r) = 0; 
            LAMBDA_4(NEQ,z,r) = 0; 
 
 
            #---------- ODE FOR AGGREGATION USING CELL AVERAGE TECHNIQUE ------------------- 
            # Term_1 - birth into cell i from lower cell 
            # Term_2 - birth in cell i when v_bar is lower than v 
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            # Term_3 - birth in cell i when v_bar is greater than v - this is becoming negative - why? not 
B_TOT.  
            # Term_4 - birth in cell i from upper cell 
                # First Cell 
                Term_1(1,z,r) = 0; #remove first term because for i=1, birth in B_TOT(i-1) = 0 
                Term_2(1,z,r) = B_TOT(1,z,r)*LAMBDA_2(1,z,r)*H(1,2,z,r); 
                Term_3(1,z,r) = B_TOT(1,z,r)*LAMBDA_3(1,z,r)*H(1,3,z,r); 
                Term_4(1,z,r) = B_TOT(2,z,r)*LAMBDA_4(1,z,r)*H(1,4,z,r); 
                NDASH_xtl(1,z,r) = Term_1(1,z,r) + Term_2(1,z,r) + Term_3(1,z,r) + Term_4(1,z,r) - 
D_TOT(1,z,r); 
                #$N(1) = B_TOT(1)*LAMBDA(1,2)*H(1,2) + B_TOT(1)*LAMBDA(1,3)*H(1,3) + 
B_TOT(1+1)*LAMBDA(1,4)*H(1,4) - D_agg(1); 
 
                # Middle Cells 
                FOR i := 2 TO NEQ-1 DO 
                    Term_1(i,z,r) = B_TOT(i-1,z,r)*LAMBDA_1(i,z,r)*H(i,1,z,r); 
                    Term_2(i,z,r) = B_TOT(i,z,r)*LAMBDA_2(i,z,r)*H(i,2,z,r); 
                    Term_3(i,z,r) = B_TOT(i,z,r)*LAMBDA_3(i,z,r)*H(i,3,z,r); 
                    Term_4(i,z,r) = B_TOT(i+1,z,r)*LAMBDA_4(i,z,r)*H(i,4,z,r); 
                    NDASH_xtl(i,z,r) = Term_1(i,z,r) + Term_2(i,z,r) + Term_3(i,z,r) + Term_4(i,z,r) - 
D_TOT(i,z,r); 
                    #$N(i) = B_TOT(i-1)*LAMBDA(i,1)*H(i,1) + B_TOT(i)*LAMBDA(i,2)*H(i,2) + 
B_TOT(i)*LAMBDA(i,3)*H(i,3) + B_TOT(i+1)*LAMBDA(i,4)*H(i,4) - D_agg(i); 
                END 
 
                # Last Cell 
                Term_1(NEQ,z,r) = B_TOT(NEQ-1,z,r)*LAMBDA_1(NEQ,z,r)*H(NEQ,1,z,r); 
                Term_2(NEQ,z,r) = B_TOT(NEQ,z,r)*LAMBDA_2(NEQ,z,r)*H(NEQ,2,z,r); 
                Term_3(NEQ,z,r) = B_TOT(NEQ,z,r)*LAMBDA_3(NEQ,z,r)*H(NEQ,3,z,r); 
                Term_4(NEQ,z,r) = 0; #remove last term because birth in B_TOT(i+1) = 0 
                NDASH_xtl(NEQ,z,r) = Term_1(NEQ,z,r) + Term_2(NEQ,z,r) + Term_3(NEQ,z,r) + 
Term_4(NEQ,z,r) - D_TOT(NEQ,z,r); 
                #$N(NEQ) = B_TOT(NEQ-1)*LAMBDA(NEQ,1)*H(NEQ,1) + 
B_TOT(NEQ)*LAMBDA(NEQ,2)*H(NEQ,2) + B_TOT(NEQ)*LAMBDA(NEQ,3)*H(NEQ,3); 
 
            #ADVECTION TERM 
 
            FOR i := 1 TO NEQ DO 
                NDASH_tot(i,z,r) = -(v_z(r)+v_set(i))*PARTIAL(N(i,z,r),Axial) + NDASH_xtl(i,z,r); # 
[Mxtl/L.min] = [m/min]*[Mxtl/L.m] + [Mxtl/L.min] 
            END 
 
            # REAGENT CONSUMPTION RATE 
            rate(z,r) = SIGMA(NDASH_xtl(,z,r)*1/number_scaling*v)*1E-18*1E3*1710/245.41; # 
[Molar/min] = [Mxtl/L.mim]*[1E6xtl/Mxtl]*[micron^3/xtl.L]*[1E-
18m^3/micron^3]*[1000L/m^3]*[1710g/L]*[1mol/245.41g] 
            # NDASH Differential 
            $N(,z,r) = NDASH_tot(,z,r); # [Mxtl/L.min];    combination of number change due to 
crystallisation and advection 
        END #FOR 
    END #FOR 
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#-------------------             PSD PROPERTIES              -------------------  
#Distribution descriptions can occur over whole reactor. Is rate also defined over whole reactor? It 
can't be because it depends on NDASH 
    FOR z := 0 TO ReactorLength DO 
        FOR r := 0 TO ReactorRadius DO 
            # Number/ number density relation for all cells 
            FOR i := 1 TO NEQ DO 
                #n_density(i) = N(i)/(LOWER(i+1)-LOWER(i)); 
                n_density(i,z,r) = N(i,z,r)/W(i); # [1/um^3.L] = [1/L]/[um^3] 
                # Number density Length-Volume relationship 
                n_density_length(i,z,r) = n_density(i,z,r)*pi/2*L(i)^2; # [1/um.L] = [1/um^3.L]*[um^2] 
            END #FOR 
 
            # Numerical zeroth and first moments 
            MOM(1,z,r) = SIGMA(N(,z,r)/number_scaling);  #ZEROTH MOMENT - total particle number 
            MOM(2,z,r) = SIGMA(v*N(,z,r)/number_scaling);  #FIRST MOMENT - total volume 
[micron^3/L] 
            # Volume weighted mean diameter: 
            D_4_3(z,r) = SIGMA(N(,z,r)*L^4)/SIGMA(N(,z,r)*L^3);  
            #will sigma operator work or do i need to define N(,z,r)? 
            # when referring to a 3D array i think you need to refer to the whole row - check 
            # Number volume mean diameter: 
            D_3_0(z,r) = (SIGMA(N(,z,r)*L^3)/SIGMA(N(,z,r)))^(1/3); 
        END #FOR 
    END #FOR 
 
# VOLUME % @ OUTLET 
# split terms to see which one causes a an integration failure in the VP_out calc below. same failure, 
both new variables involved. Log scale doesn't work because of zero particles in cells. 
FOR i := 1 TO NEQ DO  
# for every size range, volume% [%] * total crystal volume at reactor exit [um^3/L] = volume of the 
size range [um^3] * total number of particles in that range exiting the reactor [1/L] 
    VP_out(i)*SIGMA(MOM(2,ReactorLength,)) = 
v(i)*SIGMA(N(i,ReactorLength,)/number_scaling)*100; # has to be written this way to avoid div0 at 
t=0 
    N_out(i) = SIGMA(N(i,ReactorLength,)); 
END 
 
# CUMULATIVE VOLUME % @ OUTLET 
VPC_out(1) = VP_out(1); 
FOR i := 2 TO NEQ DO 
    VPC_out(i) = VPC_out(i-1) + VP_out(i); 
END #FOR 
 
# D[10], D[90] & VOLUME MEDIAN DIAMETER @ OUTLET 
FOR i := 1 TO NEQ-1 DO 
    VMD_cell_out(i) = MAX( 0,SGN(VPC_out(i+1) - 50) ) * MAX(0,SGN(50 - VPC_out(i)) ) * ( (50-
VPC_out(i))/((VPC_out(i+1) - VPC_out(i))/(L(i+1) - L(i))) + L(i) ) ;  
    D10_cell_out(i) = MAX( 0,SGN(VPC_out(i+1) - 10) ) * MAX(0,SGN(10 - VPC_out(i)) ) * ( (10-
VPC_out(i))/((VPC_out(i+1) - VPC_out(i))/(L(i+1) - L(i))) + L(i) ) ;  
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    D90_cell_out(i) = MAX( 0,SGN(VPC_out(i+1) - 90) ) * MAX(0,SGN(90 - VPC_out(i)) ) * ( (90-
VPC_out(i))/((VPC_out(i+1) - VPC_out(i))/(L(i+1) - L(i))) + L(i) ) ;  
#    VMD_cell_out(i) = 0 ;  
#    D10_cell_out(i) = 0 ;  
#    D90_cell_out(i) = 0 ;  
END  
VMD_out = SIGMA(VMD_cell_out); 
PSD_width_out = SIGMA(D90_cell_out) - SIGMA(D10_cell_out); 
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E.2.4. GMH nucleation, growth and aggregation kinetics 

A basic version of this model can be found in the PhD thesis of Galbraith (Galbraith, 2011) 

E.2.5. Thermodynamics 

{ This model describes non-ideal thermodynamics over the radial and axial domains 
of the PFR. It includes various species formed by the aqueous combination of 
magnesium, ammonium, phosphorus and chlorine. A charge balance is used so that pH 
is predicted. 
} 
 
PARAMETER 
    # Distribution domains 
    ReactorLength       AS REAL 
    ReactorRadius       AS  REAL 
 
    {log equilibrium constants} 
    log_K_NH4           AS REAL 
    log_K_HPO4          AS REAL 
    log_K_H2PO4         AS REAL 
    log_K_MgOH          AS REAL 
    log_K_MgH2PO4       AS REAL 
    log_K_MgHPO4        AS REAL 
    log_K_MgPO4         AS REAL 
    log_K_so            AS REAL 
    log_K_w             AS REAL 
 
    {DeBye Huckle eqn with Davies modification - DeBye Huckle constant A} 
    A               AS REAL 
 
    {ionic charges for calculating ionic strength} 
    Z1              AS REAL 
    Z2              AS REAL 
    Z3              AS REAL 
 
    {activity coefficient for neutrally charged compounds} 
    log_Gamma0      AS REAL 
 
    {charge balance} 
    CB              AS REAL 
 
 
DISTRIBUTION_DOMAIN 
    Axial   AS [ 0 : ReactorLength ] 
    Radial  AS  [ 0 : ReactorRadius ] 
 
VARIABLE 
    {total concentrations in solution} 
    C_T_Mg          AS Distribution(Axial,Radial) OF Concentration 
    C_T_NH4         AS Distribution(Axial,Radial) OF Concentration 
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    C_T_PO4         AS Distribution(Axial,Radial) OF Concentration 
 
    {free ion concentrations} 
    C_Mg            AS Distribution(Axial,Radial) OF Concentration 
    C_MgOH          AS Distribution(Axial,Radial) OF Concentration 
    C_MgPO4         AS Distribution(Axial,Radial) OF Concentration 
    C_MgHPO4        AS Distribution(Axial,Radial) OF Concentration 
    C_MgH2PO4       AS Distribution(Axial,Radial) OF Concentration 
    C_NH4           AS Distribution(Axial,Radial) OF Concentration 
    C_NH3           AS Distribution(Axial,Radial) OF Concentration 
    C_PO4           AS Distribution(Axial,Radial) OF Concentration 
    C_HPO4          AS Distribution(Axial,Radial) OF Concentration 
    C_H2PO4         AS Distribution(Axial,Radial) OF Concentration 
    C_H             AS Distribution(Axial,Radial) OF Concentration 
    C_OH            AS Distribution(Axial,Radial) OF Concentration 
    C_Cl  AS Distribution(Axial,Radial) OF Concentration 
    C_Na            AS Distribution(Axial,Radial) OF Concentration 
 
    {log free ion concentrations} 
    log_C_Mg            AS Distribution(Axial,Radial) OF LogConcentration 
    log_C_MgOH          AS Distribution(Axial,Radial) OF LogConcentration 
    log_C_MgPO4         AS Distribution(Axial,Radial) OF LogConcentration 
    log_C_MgHPO4        AS Distribution(Axial,Radial) OF LogConcentration 
    log_C_MgH2PO4       AS Distribution(Axial,Radial) OF LogConcentration 
    log_C_NH4           AS Distribution(Axial,Radial) OF LogConcentration 
    log_C_NH3           AS Distribution(Axial,Radial) OF LogConcentration 
    log_C_PO4           AS Distribution(Axial,Radial) OF LogConcentration 
    log_C_HPO4          AS Distribution(Axial,Radial) OF LogConcentration 
    log_C_H2PO4         AS Distribution(Axial,Radial) OF LogConcentration 
    log_C_H             AS Distribution(Axial,Radial) OF LogConcentration 
    log_C_OH            AS Distribution(Axial,Radial) OF LogConcentration 
    log_C_Cl     AS Distribution(Axial,Radial) OF LogConcentration 
    log_C_Na            AS Distribution(Axial,Radial) OF LogConcentration 
 
    {ion activities} 
    A_Mg            AS Distribution(Axial,Radial) OF Activity 
    A_MgOH          AS Distribution(Axial,Radial) OF Activity 
    A_MgPO4         AS Distribution(Axial,Radial) OF Activity 
    A_MgHPO4        AS Distribution(Axial,Radial) OF Activity 
    A_MgH2PO4       AS Distribution(Axial,Radial) OF Activity 
    A_NH4           AS Distribution(Axial,Radial) OF Activity 
    A_NH3           AS Distribution(Axial,Radial) OF Activity 
    A_PO4           AS Distribution(Axial,Radial) OF Activity 
    A_HPO4          AS Distribution(Axial,Radial) OF Activity 
    A_H2PO4         AS Distribution(Axial,Radial) OF Activity 
    A_H             AS Distribution(Axial,Radial) OF Activity 
    A_OH            AS Distribution(Axial,Radial) OF Activity 
    A_Cl  AS Distribution(Axial,Radial) OF Activity 
    A_Na            As Distribution(Axial,Radial) OF Activity 
 
    {log ion activities} 
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    log_A_Mg            AS Distribution(Axial,Radial) OF LogActivity 
    log_A_MgOH          AS Distribution(Axial,Radial) OF LogActivity 
    log_A_MgPO4         AS Distribution(Axial,Radial) OF LogActivity 
    log_A_MgHPO4        AS Distribution(Axial,Radial) OF LogActivity 
    log_A_MgH2PO4       AS Distribution(Axial,Radial) OF LogActivity 
    log_A_NH4           AS Distribution(Axial,Radial) OF LogActivity 
    log_A_NH3           AS Distribution(Axial,Radial) OF LogActivity 
    log_A_PO4           AS Distribution(Axial,Radial) OF LogActivity 
    log_A_HPO4          AS Distribution(Axial,Radial) OF LogActivity 
    log_A_H2PO4         AS Distribution(Axial,Radial) OF LogActivity 
    log_A_H             AS Distribution(Axial,Radial) OF LogActivity 
    log_A_OH            AS Distribution(Axial,Radial) OF LogActivity 
    log_A_Cl     AS Distribution(Axial,Radial) OF LogActivity 
    log_A_Na            AS Distribution(Axial,Radial) OF LogActivity 
 
    {Activity coefficients} 
    log_Gamma1          AS Distribution(Axial,Radial) OF LogActivityCoeff 
    log_Gamma2          AS Distribution(Axial,Radial) OF LogActivityCoeff 
    log_Gamma3          AS Distribution(Axial,Radial) OF LogActivityCoeff  
 
    Gamma1          AS Distribution(Axial,Radial) OF ActivityCoeff 
    Gamma2          AS Distribution(Axial,Radial) OF ActivityCoeff 
    Gamma3          AS Distribution(Axial,Radial) OF ActivityCoeff 
 
    {Ionic Strength} 
    I               AS Distribution(Axial,Radial) OF IonicStrength 
 
    {saturation index} 
    SI              AS Distribution(Axial,Radial) OF Dimensionless 
    Sa              AS Distribution(Axial,Radial) OF Dimensionless 
 
    {pH} 
    pH              AS Distribution(Axial,Radial) OF pH 
 
    {Ion Activity Product} 
    log_IAP             AS Distribution(Axial,Radial) OF Dimensionless 
 
SET 
    {log equilibrium constants} 
    log_K_NH4           :=  -9.25; 
    log_K_HPO4          :=  -12.35; 
    log_K_H2PO4         :=  -7.20; 
    log_K_MgOH          :=  -2.56; 
    log_K_MgH2PO4       :=  -0.45; 
    log_K_MgHPO4        :=  -2.91; 
    log_K_MgPO4         :=  -4.80; 
    log_K_so            :=  -13.26; 
    log_K_w             :=  -14; 
 
    {Davies equation with DeBye Huckle modification} 
    A               :=    0.509; 
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    {ionic charges for calculating ionic strength} 
    Z1              :=  1; 
    Z2              :=  2; 
    Z3              :=  3; 
 
    {charge balance} 
    CB              :=  0; 
 
    {activity coefficient for neutrally charged compounds} 
    log_Gamma0          :=  0; 
 
 
    # BOUNDARY 
    # Boundary condition equations 
 
 
EQUATION 
    {mass balances - the total amount of each element of interest is the amount  
    added or measured in solution} 
    {Define in process} 
    {how do you write the mass balances for dynamic situations} 
    C_T_Mg =   C_Mg + C_MgOH + C_MgPO4 + C_MgHPO4 + C_MgH2PO4; # [moles/L] 
    C_T_NH4     =   C_NH4 + C_NH3; # [moles/L] 
    C_T_PO4     =   C_PO4 + C_HPO4 + C_H2PO4 + C_MgPO4 + C_MgHPO4 + C_MgH2PO4; # [moles/L] 
 
    # Model equations 
    {free ion concentrations} 
    C_Mg            =  10^log_C_Mg; # [moles/L] 
    C_MgOH          =  10^log_C_MgOH; # [moles/L] 
    C_MgPO4         =  10^log_C_MgPO4; # [moles/L] 
    C_MgHPO4        =  10^log_C_MgHPO4; # [moles/L] 
    C_MgH2PO4       =  10^log_C_MgH2PO4; # [moles/L] 
    C_NH4           =  10^log_C_NH4; # [moles/L] 
    C_NH3           =  10^log_C_NH3; # [moles/L] 
    C_PO4           =  10^log_C_PO4; # [moles/L] 
    C_HPO4          =  10^log_C_HPO4; # [moles/L] 
    C_H2PO4         =  10^log_C_H2PO4; # [moles/L] 
    C_H             =  10^log_C_H; # [moles/L] 
    C_OH            =  10^log_C_OH; # [moles/L] 
    C_Cl            =  10^log_C_Cl; # [moles/L] 
    C_Na            =  10^log_C_Na; # [moles/L] 
 
    {ion activities} 
    A_Mg            =  10^log_A_Mg; # [moles/L] 
    A_MgOH          =  10^log_A_MgOH; # [moles/L] 
    A_MgPO4         =  10^log_A_MgPO4; # [moles/L] 
    A_MgHPO4        =  10^log_A_MgHPO4; # [moles/L] 
    A_MgH2PO4       =  10^log_A_MgH2PO4; # [moles/L] 
    A_NH4           =  10^log_A_NH4; # [moles/L] 
    A_NH3           =  10^log_A_NH3; # [moles/L] 
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    A_PO4           =  10^log_A_PO4; # [moles/L] 
    A_HPO4          =  10^log_A_HPO4; # [moles/L] 
    A_H2PO4         =  10^log_A_H2PO4; # [moles/L] 
    A_H             =  10^log_A_H; # [moles/L] 
    A_OH            =  10^log_A_OH; # [moles/L] 
    A_Cl            =  10^log_A_Cl; # [moles/L] 
    A_Na            =  10^log_A_Na; # [moles/L] 
 
    {Log Equilibrium Equations} 
    log_A_NH4 + log_K_NH4            =  log_A_NH3   + log_A_H; 
    log_A_HPO4 + log_K_HPO4          =  log_A_H     + log_A_PO4; 
    log_A_H2PO4 + log_K_H2PO4        =  log_A_H     + log_A_HPO4; 
    log_A_MgOH + log_K_MgOH          =  log_A_Mg    + log_A_OH; 
    log_A_MgH2PO4 + log_K_MgH2PO4    =  log_A_Mg    + log_A_H2PO4; 
    log_A_MgHPO4 + log_K_MgHPO4      =  log_A_Mg    + log_A_HPO4; 
    log_A_MgPO4 + log_K_MgPO4        =  log_A_Mg    + log_A_PO4; 
 
    {log activities} 
    log_A_Mg            =   log_C_Mg        + log_Gamma2; 
    log_A_MgOH          =   log_C_MgOH      + log_Gamma1; 
    log_A_MgPO4         =   log_C_MgPO4     + log_Gamma1; 
    log_A_MgHPO4        =   log_C_MgHPO4    + log_Gamma0; 
    log_A_MgH2PO4       =   log_C_MgH2PO4   + log_Gamma1; 
    log_A_NH4           =   log_C_NH4       + log_Gamma1; 
    log_A_NH3           =   log_C_NH3       + log_Gamma0; 
    log_A_PO4           =   log_C_PO4       + log_Gamma3; 
    log_A_HPO4          =   log_C_HPO4      + log_Gamma2; 
    log_A_H2PO4         =   log_C_H2PO4     + log_Gamma1; 
    log_A_H             =   log_C_H         + log_Gamma1; 
    log_A_OH            =   log_C_OH        + log_Gamma1; 
    log_A_Cl            =   log_C_Cl        + log_Gamma1; 
    log_A_Na            =   log_C_Na        + log_Gamma1; 
 
    {Activity Co-efficients - Davies eqn with DeBye Huckle approximation} 
    log_Gamma1 =    -A*(Z1^2)*((I^0.5)/(1+(I^0.5))-0.3*I); 
    Gamma1 = 10^log_Gamma1; 
 
    log_Gamma2 =    -A*(Z2^2)*((I^0.5)/(1+(I^0.5))-0.3*I); 
    Gamma2 = 10^log_Gamma2; 
 
    log_Gamma3 =    -A*(Z3^2)*((I^0.5)/(1+(I^0.5))-0.3*I); 
    Gamma3 = 10^log_Gamma3; 
 
    {Ionic Strength} 
    I   =   0.5*( 
    C_Mg*(Z2^2) +  
    C_MgOH*(Z1^2) +  
    C_MgPO4*(Z1^2) +  
    C_MgH2PO4*(Z1^2) +  
    C_NH4*(Z1^2) +  
    C_PO4*(Z3^2) +  
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    C_HPO4*(Z2^2) +  
    C_H2PO4*(Z1^2) +  
    C_H*(Z1^2) +  
    C_OH*(Z1^2) +  
    C_Cl*(Z1^2) + 
    C_Na*(Z1^2)); 
 
    {Charge Balance} 
    CB   = 
    C_Mg * Z2 +  
    C_MgOH * Z1 +  
    C_MgPO4 * (-Z1) +  
    C_MgH2PO4 * Z1 +  
    C_NH4 * Z1 +  
    C_PO4 * (-Z3) +  
    C_HPO4 * (-Z2) +  
    C_H2PO4 * (-Z1) +  
    C_H * Z1 +  
    C_OH * (-Z1) +  
    C_Cl * (-Z1) + 
    C_Na * Z1; 
 
    {pH} 
    pH = -log_A_H; 
    log_K_W = log_A_H + log_A_OH; 
 
    {Solubility Index} 
    log_IAP = log_A_Mg + log_A_NH4 + log_A_PO4; 
    SI = log_IAP - log_K_so; 
    Sa = (10^(log_IAP - log_K_so))^(1/3) - 1; 
E.2.6. Stochastic simulation 

{ --------- STOCHASTIC UNCERTAINTY PROPAGATION ----------------- 
Stochastic simulations assess the uncertainty of key process 
variables as a result of distributed uncertainties in selected variables. 
 
This model is called by the process 'StochasticSimulation', which feeds required 
variables to run the simulation.  
 
The following variables will be analysed by stochastic uncertainty analysis: 
 
Output variables of interest: 
 - VMD - volume median diameter/ D[50] 
 - SI - saturation index 
 - Thermo_Yield - thermodynamic yield 
 
Input variables of interest (measured variables most likely to change during  
experiments) - feed concentrations, feed flows, reactor total flow 
} 
 
PARAMETER 
    # Number of scenarios in the stochastic simulation 
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        NoScenarios             AS  INTEGER 
 
 
UNIT 
    # An array of the mass balance model (which calls necessary sub-models) to  
    # simultaneously obtain a solution for each scenario 
    ScenarioMB      AS  ARRAY(NoScenarios)    OF  PFR_Mass_Balance_industrial 
 
 
VARIABLE 
    # INPUTS: 
    # Whatever inputs are included here, they must be removed from the assigned  
    # variables list in the deterministic process model.  
        Flow_NaOH_Batch     AS  ARRAY(NoScenarios)  OF  FlowRate # [L/h] flow rate of NaOH entering 
the reactor 
        Flow_Reagent_Batch  AS  ARRAY(NoScenarios)  OF  FlowRate # [L/h] 
        C_NaOH_batch        AS  ARRAY(NoScenarios)  OF  Concentration # [mol/L] 
        C_NH4_batch         AS  ARRAY(NoScenarios)  OF  Concentration # [mol/L] 
        C_PO4_batch         AS  ARRAY(NoScenarios)  OF  Concentration # [mol/L] 
        C_MgCl26H2O_batch   AS  ARRAY(NoScenarios)  OF  Concentration # [mol/L] 
        Flow_T              AS  ARRAY(NoScenarios)  OF  FlowRate 
        # GROWTH KINETICS 
        k_g             AS  ARRAY(NoScenarios)  OF  NOTYPE 
        n_g             AS  ARRAY(NoScenarios)  OF  NOTYPE 
        # NUCLEATION KINETICS 
        k_nuc             AS  ARRAY(NoScenarios)  OF  NOTYPE 
        n_nuc            AS  ARRAY(NoScenarios)  OF  NOTYPE 
 
    # OUTPUTS: 
        VMD_out         AS  ARRAY(NoScenarios)  OF  Length # volume median diameter exiting the reactor 
        PSD_width_out   AS  ARRAY(NoScenarios)  OF  Length 
        SI_out          AS  ARRAY(NoScenarios)  OF  Dimensionless 
        Yield_thermo    AS  ARRAY(NoScenarios)  OF  Notype 
        pH_out          AS  ARRAY(NoScenarios)  OF  Notype 
 
EQUATION 
#-------------- Assigning variables in this simulation to values from each scenario -------------# 
    FOR i := 1 TO NoScenarios DO 
        # INPUTS (which will be varied): 
        Flow_NaOH_Batch(i)      = ScenarioMB(i).Flow_NaOH_Batch ; # Flow_NaOH_Batch in each 
scenario is set based on the corresponding value defined by the normal distribution function in the 
process. 
        Flow_Reagent_Batch(i)   = ScenarioMB(i).Flow_Reagent_Batch ; 
        Flow_T(i)               = ScenarioMB(i).Flow_T; 
 
        C_NaOH_batch(i)         = ScenarioMB(i).C_NaOH_batch ; 
        C_PO4_batch(i)          = ScenarioMB(i).C_PO4_batch ; # RHS assigned by process 
        C_MgCl26H2O_batch(i)    = ScenarioMB(i).C_MgCl26H2O_batch ; 
        C_NH4_batch(i)          = ScenarioMB(i).C_NH4_batch ; # Assigning C_NH4_batch(i) in this model to 
that in the scenario model 
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        k_g(i)                  = ScenarioMB(i).Kinetics.k_g_avg; 
        n_g(i)                  = ScenarioMB(i).Kinetics.n_g_avg; 
        k_nuc(i)                = ScenarioMB(i).Kinetics.tension; 
        n_nuc(i)                = ScenarioMB(i).Kinetics.A_factor; 
         
        # OUTPUTS: 
        VMD_out(i)          =   ScenarioMB(i).Kinetics.VMD_out ; # The VMD_out in the stochastic model is 
equated to that calculated by the lower models 
        PSD_width_out(i)    =   ScenarioMB(i).Kinetics.PSD_width_out; 
        SI_out(i)           =   ScenarioMB(i).SI_out ; 
        Yield_thermo(i)     =   ScenarioMB(i).Yield_thermo ; 
        pH_out(i)           =   ScenarioMB(i).pH_out ; 
    END
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 Grid convergence methods 
F.1. Grid convergence order 

Grid fineness was increased using methods taken from (Roache, 1998), described below. The convergence 

order was calculated to identify which grids converge faster and to identify the approximate number of 

grid elements in which convergence is likely to occur. A power law model (equation 0.97) was used to 

model the relationship between the error in a selected variable 𝑓𝑓, termed 𝐼𝐼𝑓𝑓 ,and the grid spacing, ℎ 

(defined by equation 0.99). The order of this power law model indicates the rate at which a variable will 

converge with increasing grid fineness, indicating the sensitivity of the selected variable to the grid. 

𝐼𝐼𝑓𝑓 = 𝑓𝑓�ℎ𝑗𝑗� − 𝑓𝑓𝑠𝑠𝑚𝑚𝑎𝑎𝑛𝑛𝑠𝑠 = 𝐶𝐶ℎ𝑝𝑝 + 𝐻𝐻.𝐶𝐶.𝑇𝑇. 0.97 

 

Where 𝑓𝑓(ℎ) is the numerical solution, 𝑓𝑓𝑠𝑠𝑚𝑚𝑎𝑎𝑛𝑛𝑠𝑠 is the exact solution, 𝑝𝑝 and 𝐶𝐶 are the grid convergence rate 

constant and order, respectively, and 𝐻𝐻.𝐶𝐶.𝑇𝑇  denotes possible higher order terms which are not 

considered here (a common practice). When 𝑓𝑓𝑠𝑠𝑚𝑚𝑎𝑎𝑛𝑛𝑠𝑠  is unknown (i.e. for output concentration), it is 

assumed as the numerical solution to 𝐼𝐼 at which a decrease in ℎ yields no further change in 𝑓𝑓(ℎ). The 

value of 𝑝𝑝 can then be determined by fitting to a log-log chart using equation 0.98 

log�𝐼𝐼𝑓𝑓� = log(𝐶𝐶) + 𝑝𝑝 log(ℎ) 0.98 

 

The selection of variable 𝑓𝑓 used to determine the grid dependence is important. This variable should have 

the following characteristics: (1) Its value and uncertainty can be measured, (2) it is sensitive to the grid 

coarseness, and (3) it is a key indicator of process performance. Key process variables identified were: (1) 

flow rate exiting the reactor and (2) total phosphate concentration near the beginning, middle and end 

of the reactor. Conservation of phosphorus mass over the reactor was also used as an indication of grid 
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independence. The variation of grid spacing (ℎ ) is determined by equation 0.99 via the number of 

elements, 𝐼𝐼, in each dimension for the 𝑛𝑛𝑠𝑠ℎ simulation.  

𝐼𝐼 = 2𝑛𝑛𝜇𝜇 + 1 0.99 

where 𝜇𝜇 is an integer which can vary for each dimension (assumed to be 1 here). The axial and radial grid 

spacing are related to the number of elements by ℎ𝑧𝑧 = 𝑍𝑍/𝐼𝐼 and ℎ𝑠𝑠 = 𝑅𝑅/𝐼𝐼, respectively,  where 𝑍𝑍 and 

𝑅𝑅 are the total reactor length and radius, respectivley. For this work, ℎ𝑧𝑧 and ℎ𝑠𝑠 each remain constant.  
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 Supplementary batch 
experiment procedure 

 

Batch experiments were conducted with 5-L batches of nutrient solution with an elemental 

phosphorus concentration of 0.02 M and elemental Mg:N:P molar ratios of 1.5:1:1. Stock nutrient 

solutions were made using 𝐼𝐼𝐻𝐻4𝐻𝐻2𝐶𝐶𝐶𝐶4  and 𝑀𝑀𝑛𝑛𝐶𝐶𝑚𝑚2·6𝐻𝐻2𝐶𝐶  and SI values of 0.8, 1.0 and 1.4 were 

achieved by the addition of 16.5, 17.6 and 19.3 mM caustic (𝐼𝐼𝑎𝑎𝐶𝐶𝐻𝐻) solution, achieving predicted non-

equilibrium pH values of 7.172, 7.351 and 7.727 respectively. Solutions were made with Sigma-Aldrich 

analytical grade reagents and RO filtered water, subsequently filtered through 0.2-µm cellulose nitrate 

membrane filter. All solutions were stored in sealed vessels to minimise CO2 intrusion, which can 

impact solution thermodynamics through carbonate chemistry. Experiments ran for an equivalent 

residence time to the PFR (23.26 min) in an 0.5 L beaker, with no sonication, mixed with a 20mm 

diameter propeller at 1200 rpm (the minimum stirring rate to ensure particle suspension during PSD 

measurements). For ease of PSD measurements, experiments were conducted using the sample 

mixing device of the Malvern Mastersizer3000, as shown in Figure 0.1. 
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Figure 0.1 – Apparatus used for batch experiments 

18 PSD samples and 6 phosphorus concentration samples were taken. Sample residence times were 

selected to equal average residence times of axial elements in the Poiseuille flow reactor for 

comparative purposes. Phosphate concentration was determined with an Agilent 8453 UV-Vis 

spectro-photometer using the molybdo-vanado-phosphoric acid method (APHA et al., 1999). PSD 

analysis was performed by laser diffraction (LD) using a Malvern Mastersizer3000. Samples were 

sonicated at 40 W and 40 kHz for 5 min at the conclusion of each experiment to separate nucleation 

and crystal growth from aggregation mechanisms – aggregation was found to play an insignificant 

role. 
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