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Abstract

Obesity develops when caloric intake exceeds metabolic needs. Promoting energy expendi-

ture represents an attractive approach in the prevention of this fast-spreading epidemic.

Here, we report a novel pharmacological strategy in which a natural compound, narciclasine

(ncls), attenuates diet-induced obesity (DIO) in mice by promoting energy expenditure.

Moreover, ncls promotes fat clearance from peripheral metabolic tissues, improves blood

metabolic parameters in DIO mice, and protects these mice from the loss of voluntary physi-

cal activity. Further investigation suggested that ncls achieves these beneficial effects by

promoting a shift from glycolytic to oxidative muscle fibers in the DIO mice thereby enhanc-

ing mitochondrial respiration and fatty acid oxidation (FAO) in the skeletal muscle. More-

over, ncls strongly activates AMPK signaling specifically in the skeletal muscle. The

beneficial effects of ncls treatment in fat clearance and AMPK activation were faithfully

reproduced in vitro in cultured murine and human primary myotubes. Mechanistically, ncls

increases cellular cAMP concentration and ADP/ATP ratio, which further lead to the activa-

tion of AMPK signaling. Blocking AMPK signaling through a specific inhibitor significantly

reduces FAO in myotubes. Finally, ncls also enhances mitochondrial membrane potential

and reduces the formation of reactive oxygen species in cultured myotubes.
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Author summary

Obesity results from the imbalance of food intake and energy expenditure. Since the

restriction of food intake is difficult and inefficient in maintaining long-term weight loss,

enhancing energy expenditure is now an attractive approach in combating obesity. Here,

we analysed the role in this process of a natural compound called narciclasine. We showed

that narciclasine treatment reduces excess fat accumulation in peripheral metabolic tis-

sues, improves blood metabolic parameters and insulin sensitivity in obese mice, and

protects these mice from the loss of voluntary physical activity. Further investigation sug-

gested that narciclasine enhances mitochondrial respiration and fatty acid consumption

in the skeletal muscle. In addition, narciclasine strongly activates the AMP-activated pro-

tein kinase (AMPK) signaling, which is a central sensor of the cellular energy status and a

key player in maintaining energy homeostasis, specifically in the skeletal muscle. Mecha-

nistically, we found that narciclasine increases cAMP concentration and ADP/ATP ratio

in muscle cells, which further lead to AMPK activation. Finally, we observed that narcicla-

sine increases mitochondrial membrane potential and reduces the production of reactive

oxygen species in muscle cells. Our findings suggest that narciclasine is a natural com-

pound that attenuates diet-induced obesity in mice by promoting energy expenditure.

Introduction

Obesity continues to spread in both industrial and developing countries, thus necessitating

efficient therapeutic approaches to prevent this epidemic. In line with thermodynamics, any

treatments for obesity must either reduce energy intake and/or increase energy expenditure

[1–3]. Given that only 20% of individuals with dietary restrictions are able to maintain long-

term weight loss [4], increasing energy expenditure is becoming an attractive approach to

combat obesity. Towards this end, much effort has been focused on the search for novel phar-

macological approaches that enhance energy expenditure to reduce adiposity and introduce

beneficial metabolic effects in humans.

Obesity is associated with a number of metabolic dysfunctions including reduced fatty acid

oxidation (FAO), increased lipid storage in peripheral tissues, and enhanced anaerobic glyco-

lytic activity [2]. All of these negative impacts on metabolism can be counteracted by endur-

ance exercise training. The beneficial metabolic adaptation upon endurance training mainly

occurs in skeletal muscle, which is composed of myofibers that differ in their metabolic and

contractile properties. These myofibers can be broadly divided into oxidative slow-twitch and

glycolytic fast-twitch fibers [5], and conversion between the two fiber types occurs in response

to contractile demands. For example, endurance exercise training promotes the formation of

oxidative slow-twitch myofibers and enhances FAO in skeletal muscle, which contributes

largely to the lipid oxidation among peripheral tissues involved in lipid homeostasis [6]. One

of the major regulators of FAO that senses cellular energy status in skeletal muscle is the AMP-

activated protein kinase (AMPK) [7, 8]. Activation of AMPK by phosphorylation at Thr172 of

the catalytic subunit (α) promotes FAO by direct phosphorylation and inhibition of its down-

stream target acetyl-CoA carboxylase (ACC) [9]. During this process, AMPK activation also

leads to the induction of transcriptional coactivator PGC1α [10, 11], which acts as a principle

regulator that promotes the formation of oxidative slow-twitch myofibers [12], mitochondrial

biogenesis [13, 14], electron transport chain function, and oxidative metabolism [15]. PGC1α
exerts these functions by inducing an array of genes involved in oxidative metabolism and

mitochondrial biogenesis, including mitochondrial transcription factor A (Tfam), cytochrome
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c oxidases (Cox2 and Cox4), peroxisome proliferator-activated receptor alpha (Ppara), carni-

tine palmitoyltransferase 1B (Cpt1b), and many slow-twitch fiber markers [5, 12, 16, 17].

Several small molecules possess the capability of reducing fat accumulation and improving

metabolic profiles by activating the AMPK signaling pathway. For example, resveratrol, a natu-

ral compound found in grapes, enhances mitochondrial biogenesis, metabolic rate, physical

endurance, and attenuates high-fat diet (HFD)-induced obesity in rodents [18]. These benefi-

cial effects are at least partially mediated through the activation of AMPK signaling, as in the

AMPK-deficient mice, resveratrol failed to induce such metabolic improvements [19]. In addi-

tion, 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMP analog and hence

an agonist of AMPK, promotes the expression of a panel of oxidative metabolism genes in

quadricep muscles, increases running endurance, and reduces epididymal white fat mass [20].

Moreover, Metformin, the most widely used drug for type 2 diabetes worldwide, lowers lipid

contents in liver, reduces blood glucose levels, and improves glucose tolerance through AMPK

activation [21, 22]. In addition to its wide usage for diabetes, Metformin has also been pro-

posed for polycystic ovary syndrome treatment and clinical trials for longevity and cancer pre-

vention [23]. Indeed, cancer drug treatments often lead to alterations in energy metabolism of

cancer patients [24], suggesting the potential application of these drugs in treating metabolic

dysfunctions. In this study, we report that at physiological doses, narciclasine (ncls), a natural

compound that displays marked anticancer activity in vitro [25, 26] and, in experimental pre-

clinical models including melanoma and gliomas [27, 28], protects mice from diet-induced

obesity (DIO) by enhancing energy expenditure without affecting food intake. We also showed

that ncls reduces fat accumulation in peripheral metabolic tissues including liver, white adi-

pose tissue (WAT), brown adipose tissue (BAT), and skeletal muscle, improves blood meta-

bolic parameters, and protects HFD mice from the loss of voluntary physical activity. These

beneficial metabolic effects were achieved by a shift from glycolytic to oxidative muscle fibers

in the DIO mice leading to increased mitochondrial respiration and FAO likely through

AMPK activation in skeletal muscle. Moreover, ncls promotes fat clearance and AMPK activa-

tion in a cell-autonomous manner in cultured murine and human primary myotubes. Mecha-

nistically, ncls increases cAMP concentration and adenosine diphosphate (ADP)/ATP ratio in

myotubes, leading further to the activation of AMPK signaling. In summary, our results indi-

cated the therapeutic potential of ncls in combating obesity by increasing energy expenditure

through enhancing FAO in skeletal muscle.

Results

Ncls attenuates DIO in mice without affecting growth

To assess the effect of ncls on whole-body metabolism, we gavaged the mice weekly with either

vehicle (veh) or ncls at 1 mg per kg of body weight for seven consecutive weeks, according to

the previous in vivo studies [26, 28, 29]. When the mice were fed a normal chow diet (NCD),

ncls exhibited no notable effect on body weight (Fig 1A), lean mass (Fig 1B), or fat mass (Fig

1C), suggesting that ncls did not affect normal growth when mice were under an energy-bal-

anced condition. In contrast, ncls significantly reduced the body weight gain (Fig 1A) and fat

mass accumulation (Fig 1C) after only 2 wk of treatment in mice intaking excess energy

through HFD feeding. Nuclear magnetic resonance (NMR) analysis of body composition

revealed that, in NCD mice, ncls treatment had no effect on the percentage of either fat mass

or lean mass; however, in HFD mice, ncls significantly reduced the percentage of fat mass

(S1A and S1B Fig). Further magnetic resonance imaging (MRI) analysis of fat distribution

revealed that the reduction in fat mass by ncls treatment in HFD mice was mainly reflected

by reductions in the visceral and, to a lesser extent, subcutaneous fat (Fig 1D and 1E). In
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accordance with the increased adiposity in HFD mice, histological assessment of epididymal

WAT revealed that these mice contained larger adipocytes compared with the NCD mice (Fig

1F) [30, 31]. Notably, ncls treatment led to a substantial decrease in the adipocyte size in HFD

mice (Fig 1F). The mean adipocyte area was also dramatically reduced by ncls treatment, from

5,419 ± 296 μm2 (HFD-veh mice) to 2,287 ± 141 μm2 (HFD-ncls mice, p< 0.0001) (Fig 1G).

Concomitantly, there was a significant decrease in the population of large-sized adipocytes

(Fig 1H).

In addition to the WAT, we also examined liver, BAT, and skeletal muscle for the impact of

7 wk’s ncls treatment on lipid accumulation. As shown by the hematoxylin & eosin (H&E)

staining, hepatosteatosis, excess fat accumulation in BAT, and ectopic fat deposits in skeletal

muscle, which are normally observed in HFD mice, were almost completely abolished by ncls

Fig 1. Ncls protects mice from DIO. (A) Total body weight, (B) lean mass, and (C) fat mass of ncls- or veh-treated

mice fed on either an HFD or an NCD. (D) Representative MRI cross-sectional images showing the distribution of

visceral and subcutaneous fat in the mice described in (A). (E) Quantitative analysis of the abdominal fat tissue

volume (visceral and subcutaneous) by MRI. (F) Representative hematoxylin & eosin (H&E)-stained epididymal

WAT sections from the mice described in (A). Scale bar, 100 μm. (G) Mean area of adipocytes from the H&E

sections shown in (F). (H) Frequency distribution of adipocyte sizes from the H&E sections shown in (F). * p < 0.05,

** p < 0.01, *** p < 0.001, **** p < 0.0001. Underlying data and method of statistical analysis are provided in S1

Data.

doi:10.1371/journal.pbio.1002597.g001
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treatment (Fig 2A). We also found significantly lower triglyceride (TG) content in the liver,

BAT, and quadricep muscles (Fig 2B) of HFD-ncls mice compared with HFD-veh mice, indi-

cating a beneficial effect of ncls on fat clearance in those organs. Moreover, HFD feeding leads

to increased cholesterol, leptin, fasting insulin, and glucose levels in the blood, and these

adverse effects were dramatically reduced by ncls treatment (Fig 2C–2F). In addition, ncls

treatment slightly ameliorated the glucose intolerance in HFD mice (Fig 2G). Further analysis

revealed that ncls treatment significantly reduced glucose-stimulated insulin secretion (GSIS)

in HFD mice (Fig 2H). While insulin sensitivity was also improved by ncls in HFD mice (Fig

2I). Given that fat accumulation represents a net balance between energy expenditure and

caloric intake, the marked decrease in adiposity in the HFD-ncls mice prompted us to examine

the effects of ncls treatment on whole-body energy homeostasis in HFD mice using metabolic

chambers.

Ncls protects the HFD mice from reduced energy expenditure and

physical activity

To assess the effect of ncls on energy homeostasis, we monitored the metabolic parameters of

ncls-treated mice by indirect calorimetry. As expected, HFD mice displayed significantly

decreased oxygen consumption compared with NCD mice [32]. Strikingly, ncls administration

restored oxygen consumption in HFD mice to the level of NCD mice (Fig 3A and 3B). This

result was consistent with a significant increase in energy expenditure throughout both the

light and dark cycles in HFD-ncls mice (Fig 3C). We next asked what the main energy source

was in these HFD-ncls mice. To address this question, we calculated the respiratory exchange

ratio (RER) based on oxygen consumption (Fig 3A) and carbon dioxide production (S2A Fig).

As expected, HFD mice showed a lower RER compared with NCD mice (Fig 3D). Intriguingly,

HFD-ncls mice exhibited an even lower RER (0.730 ± 0.001, n = 12, p< 0.0001) than HFD-

veh mice (0.765 ± 0.001, n = 13) (Fig 3D and S2B Fig), indicating greater fat utilization upon

ncls treatment (92% for HFD-ncls group versus 77% for the HFD-veh group, according to the

energy equivalence of respiratory gas volumes [33]). To further investigate the substrate utili-

zation, lipid and glucose oxidation rates were calculated according to the formulas of Ferran-

nini from the indirect calorimetric data [34, 35]. Our results showed that glucose and lipid

utilization (Fig 3E and 3F) were inversely correlated between NCD- and HFD-fed groups, and

ncls significantly increased lipid oxidation (Fig 3F) where it reduced glucose utilization (Fig

3E) in HFD mice. This is in agreement with the lower RER observed for HFD-ncls mice. In

addition, the remarkable reduction in adiposity in HFD-ncls mice could not be accounted for

by hypophagia, as the food intake and absolute caloric intake (S3A–S3C Fig) did not differ sig-

nificantly between the ncls- and veh-treated HFD mice. To rule out the possibility that ncls

treatment led to higher energy loss in feces and subsequent reduction of body weight and fat

mass, we also examined feces production, fecal energy content, and total fecal energy output in

all four groups of mice. And we found these three parameters did not differ much between

ncls- and veh-treated groups (S3D–S3F Fig). These results provided evidences for equal energy

absorption in ncls- and veh-treated mice and suggested that the increase in lipid oxidative

metabolism was accounted for ncls’s function in reducing fat mass in HFD mice.

HFD feeding in mice leads to reduced voluntary physical activity mainly due to the

increased adiposity. We found ncls treatment also protected the HFD mice from loss of physi-

cal activity during both the light (resting) and dark (active) cycles (Fig 3G and 3H). In contrast,

ncls had no effect on physical activity in NCD mice (Fig 3G and 3H). These observations sug-

gested that the protective effect of ncls on voluntary physical activity in HFD mice was second-

ary to the reduced adiposity in these mice (Fig 1). To examine the impact of ncls treatment on

Narciclasine attenuates diet-induced obesity
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Fig 2. Ncls promotes fat clearance and improves blood metabolic parameters in HFD mice. (A)

Representative H&E-stained sections of liver, BAT, and skeletal muscle (quadriceps) from mice treated for 7

wk with ncls or veh on either an HFD or an NCD. Scale bars, 100 μm. (B) TG contents in liver, BAT, and

quadricep muscles of the mice described in (A). Blood metabolic parameters were determined after 6 wk of

ncls or veh administration. (C) Cholesterol, (D) fasting plasma leptin, (E) fasting plasma insulin, and (F) fasting

plasma glucose levels were shown as bar graphs. (G) Oral glucose tolerance test (GTT), (H) GSIS assay and

Narciclasine attenuates diet-induced obesity
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central nervous system, we performed a number of mouse behavior tests. In the limb clasping

test, we noted no observable phenotype of limb clasping in HFD mice after ncls treatment

(S4A Fig). This is in contrast to the observation made in the hyperactive PGC-1α null mice

[36], which demonstrated frequent limb clasping. In the open field test, the HFD-ncls mice

exhibited no difference in the time spent in the center and number of entries into the center as

compared to HFD-veh mice (S4B Fig), indicating no anxiety phenotype in these mice. In the

elevated plus maze test, again, we observed no difference between HFD-ncls and HFD-veh

mice in the time spent in the open arms (S4C Fig). In summary, we observed no changes in

anxiety after ncls treatment in HFD mice through these behavior tests. Moreover, ncls did not

affect the normal circadian rhythms in terms of oxygen consumption (Fig 3A), carbon dioxide

production (S2A Fig), or ambulatory movement (Fig 3G) in both NCD and HFD mice, again

suggesting that ncls did not exert a major impact on the central nervous system.

Ncls targets skeletal muscle to promote the expression of slow-twitch

fiber marker genes

To determine the major in vivo target of ncls in promoting oxidative metabolism and inducing

beneficial metabolic changes, we performed transcriptomic analyses using RNA-seq in WAT,

BAT, liver, and skeletal muscle (quadriceps), the four major metabolic organs. Through hierar-

chical clustering analyses of the 1,532 differentially expressed genes (DEGs, > 2-fold change)

across the four organs, we found that the gene expression patterns in WAT, BAT, and liver of

HFD-ncls mice better resembled the patterns of HFD-veh mice than those of NCD-veh mice

(Fig 4A), suggesting that ncls treatment did not have a profound effect on global gene expres-

sion in liver or adipose tissues. Intriguingly, in skeletal muscle, the gene expression profile of

HFD-ncls mice better correlated with that of NCD-veh mice than that of HFD-veh mice (Fig

4A). This result demonstrated that ncls treatment largely restored the gene expression signa-

ture of HFD mice to that of NCD mice and indicated that skeletal muscle is a major in vivo tar-

get of ncls treatment. To decipher the molecular mechanism by which ncls treatment led to

beneficial effects in HFD mice, we further analyzed the 258 DEGs identified by the hierarchical

clustering in skeletal muscle (S1 Table). We found that 160 of these genes were up-regulated

by ncls treatment in HFD mice, and 150 of them were also expressed at higher levels in NCD-

veh mice than in HFD-veh mice (Fig 4B). Conversely, 98 genes were down-regulated by ncls

treatment in HFD mice, among which 86 genes were also expressed at lower levels in NCD-

veh mice (Fig 4C), reaffirming that ncls treatment largely restored the gene expression signa-

ture in skeletal muscle of HFD mice to that of NCD mice. We then performed functional

annotation analysis using the web-based program DAVID to characterize the up- and down-

regulated genes by ncls treatment. Of the 150 commonly up-regulated genes (Fig 4B), we

found that “muscle protein” was the most enriched category (Fig 4D). The genes in this

enriched category and their corresponding expression levels (fragments per kilobase of exon

per million fragments mapped; FPKM) were provided in S2 and S3 Tables, respectively. We

also found a few enriched categories from the 86 commonly down-regulated genes (Fig 4E).

Strikingly, among the seven up-regulated genes in the “muscle protein” category (S2 Table),

six of them were markers of oxidative slow-twitch muscle fibers (Tnnt1, Tnni1, Tnnc1, Myl2,

Myl3, and Myh7, Fig 4F). This observation suggested that ncls treatment specifies the gene

expression signature of oxidative muscle fibers and promotes oxidative metabolism in skeletal

(I) insulin tolerance test (ITT) were performed in mice with ncls or veh treatment on either an HFD or an NCD.

Area under curve (AUC) was calculated and shown as bar graphs in the right panels. * p < 0.05, ** p < 0.01,

*** p < 0.001, **** p < 0.0001. Underlying data and method of statistical analysis are provided in S1 Data.

doi:10.1371/journal.pbio.1002597.g002
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Fig 3. Ncls restores energy expenditure and physical activity of HFD mice to the levels of NCD mice. (A)

Oxygen consumption (VO2) over a 48-h period of mice treated for 6 wk with ncls or veh on either an HFD or an

NCD. (B) Averages of VO2 in light and dark cycles. (C) Energy expenditure (EE) of the mice described in (A) over

a 48-h period. (D) Mean RER of the mice described in (A) during light and dark cycles. Whole body (E) glucose

and (F) lipid oxidation rates of the mice described in (A). (G) Physical activity plots of the mice described in (A)

Narciclasine attenuates diet-induced obesity
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muscle. We also compared the transcriptomes of skeletal muscle from NCD-veh and NCD-

ncls mice, and we observed a very high correlation in their gene expression profiles (Pearson

correlation coefficient, R = 0.999) (S5 Fig). These results suggest that ncls only protects skeletal

muscle in HFD mice from decreased oxidative gene expression and damage to oxidative

capacity, but has little effect on muscle under normal growth conditions (NCD mice).

Ncls enhances oxidative metabolism in the skeletal muscle of HFD mice

To validate the RNA-seq data, we used quantitative reverse transcription polymerase chain

reaction (qRT-PCR) to examine the expression of the signature genes of slow-twitch muscle

fibers in quadriceps muscle from all groups of mice. Notably, ncls significantly up-regulated a

number of slow-twitch fiber markers such as Myl2, Myh7, Tnni1, Myl3, Tnnt1, and Tnnc1, and

down-regulated the signature genes of fast-twitch fibers, including Myh1 and Tnni2, in the

over two light and dark cycles. (H) Mean ambulatory counts of the mice described in (A) during light and dark

cycles. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Underlying data and method of statistical analysis

are provided in S1 Data.

doi:10.1371/journal.pbio.1002597.g003

Fig 4. Ncls targets skeletal muscle to up-regulate signature genes of slow-twitch fibers in HFD mice. (A) Hierarchical clustering of the 1,532

DEGs (> 2-fold change) in liver, WAT, BAT, and quadricep muscles of NCD-veh, HFD-veh, and HFD-ncls mice. (B) Most of the ncls up-regulated

genes in quadricep muscles of HFD mice were also highly expressed in NCD-veh mice. (C) Most of the ncls down-regulated genes in quadricep

muscles of HFD mice were also expressed at a lower level in NCD-veh mice as compared with HFD-veh mice. The percentages of overlapping

genes among the up- and down-regulated genes in HFD-ncls mice were indicated in (B) and (C). Gene ontology analyses of the overlapping (D)

150 up-regulated and (E) 86 down-regulated genes in quadricep muscles. (F) Expression patterns of the ncls up-regulated genes in the “muscle

protein” category in NCD-veh, HFD-veh and HFD-ncls mice. Underlying data and method of statistical analysis are provided in S1 Data.

doi:10.1371/journal.pbio.1002597.g004
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quadricep muscles from HFD mice (Fig 5A). These results suggested that ncls treatment

induced a shift from glycolytic fast-twitch fibers toward oxidative slow-twitch fibers in quadri-

cep muscles of HFD mice. Regarding this observation, we investigated the effects of ncls on

muscle function. For muscle function, we first measured the grip strength of the mice from all

four groups. We found that HFD feeding led to reduced skeletal muscle strength, and ncls par-

tially restored muscle strength in HFD mice to the level of NCD mice (S6A Fig). We then

examined the mass of extensor digitorum longus (EDL), soleus, tibialis anterior (TA), gastroc-

nemius (Gastr.) and quadricep muscles and found no difference in individual muscle mass

between the ncls-treated and veh-treated groups of mice (S6B–S6F Fig).

To further confirm the shift from glycolytic fast-twitch fibers toward oxidative slow-twitch

fibers, H&E cross-sections of quadricep muscles from HFD-ncls mice were compared with

sections from NCD-veh, NCD-ncls, and HFD-veh mice. As shown in Fig 5B, ncls treatment

led to a significant increase in the number of oxidative slow-twitch fibers, which are smaller in

size and redder in color as compared to glycolytic fast-twitch fibers in quadriceps muscle of

HFD mice. Immunostaining of the slow-twitch fiber marker Myh7 further confirmed this phe-

notype as a significant increase in Myh7-positive fibers was observed in the quadricep muscles

from ncls-treated HFD mice (Fig 5B). Moreover, muscle fiber-typing experiments further

showed that both the oxidative myosin heavy chain (MHC) I and MHC IIa fibers increased

after ncls treatment in HFD mice, while the glycolytic MHC IIb fiber decreased (S7B and S7C

Fig). The changes in muscle fiber types were in agreement with decreased muscle fiber cross-

sectional areas (CSAs) in HFD-ncls mice (S7A Fig), as MHC I and MHC IIa fibers are smaller

in CSAs when compared to MHC IIb fibers [37–39]. To clarify whether the fiber-type switch

caused by ncls treatment was accompanied by changes in energy metabolism pathways, we

reanalyzed the RNA-seq data using a 1.4-fold change cutoff to allow the identification of less

significantly changed DEGs in skeletal muscle. We found that, indeed, “metabolic process”

was identified as the most enriched category from the genes affected by ncls treatment (S8A

Fig). According to the RNA-seq (S8B Fig) and qRT-PCR data in WAT, BAT, liver, heart (S9

Fig), and muscle (Fig 5C), genes involved in mitochondrial activity (Tfam, Cox2 and Cox4)

and FAO (fatty acid transport protein 1 (Fatp1), acyl-CoA synthetase long-chain family mem-

ber 1 (Acsl1), acyl-CoA dehydrogenase, long chain (Acadl), and Cpt1b) were markedly up-reg-

ulated by ncls, specifically in muscle of HFD mice, whereas genes involved in fatty acid

synthesis (stearoyl-CoA desaturase (Scd1) and fatty acid synthase (Fasn)) were significantly

down-regulated by ncls only in muscle. Notably, PGC1α and PPARα, two transcription regu-

lators that specify the gene expression program of oxidative metabolism in skeletal muscle,

were also up-regulated by ncls in HFD mice (p< 0.01, n = 12) (Fig 5C and S8B Fig). These

results were in line with the lower RER in HFD-ncls mice shown earlier in Fig 3D, confirming

that fatty acids are the main fuel source for mitochondria in muscle of HFD-ncls mice. Given

that there was a switch from glycolytic fast-twitch fibers to oxidative slow-twitch fibers in HFD

mice upon ncls treatment (Fig 5A and 5B, S7B and S7C Fig), it was not surprising to observe a

decreased expression of glycolytic genes such as phosphofructokinase (Pfkl) in HFD-ncls mice

(Fig 5C). To directly address the question of whether ncls enhances mitochondrial respiration

in the skeletal muscle of mice, we measured the mitochondrial oxygen consumption rates

(OCRs) in intact EDL muscles isolated from all groups of mice ex vivo using the Seahorse

extracellular flux analyzer. We observed significantly higher mitochondrial respiration in EDL

muscles from HFD-ncls mice than those from HFD-veh mice (Fig 5D), confirming an

increased oxidative metabolism in the skeletal muscle of HFD-ncls mice.

Excess energy is mainly stored in adipose tissues in the form of TGs; when needed, TGs are

mobilized through lipolysis to supply free fatty acid (FFA) to skeletal muscle. We showed that

ncls promoted the formation of oxidative muscle fibers and, presumably, there would be an
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Fig 5. Ncls promotes slow-twitch fiber formation and oxidative metabolism in the skeletal muscle of HFD mice. (A) Relative mRNA

expression of slow-twitch and fast-twitch fiber marker genes in quadricep muscles in ncls- or veh-treated mice on either an HFD or an NCD.

The values of the NCD-veh mice were arbitrarily set as one. (B) Representative H&E staining (top panels) and Myh7 immunostaining (lower

panels) of quadricep muscles from the mice described in (A). Oxidative slow-twitch fibers are indicated by arrows, and they are smaller in

size and redder in color as compared to glycolytic fast-twitch fibers. Myh7-positive fibers are also indicated by arrows. Scale bar, 50 μm. (C)

qRT-PCR analysis of the selected metabolic genes in quadricep muscles from all groups of mice. (D) Mitochondrial respiration rate of intact

EDL muscle assayed on a Seahorse extracellular flux analyzer from all four groups of mice. Quantification of serum free fatty acid (FFA) (E)

and TG (F) in ncls- or veh-treated mice. (G) Relative mRNA expression of Atgl gene in quadricep muscles, WAT, and BAT. (H) Core body

temperatures of the mice described in (A). (I) Ucp2 mRNA and (J) UCP2 protein levels in quadriceps muscle of veh- and ncls-treated mice

were evaluated by qRT-PCR and western blotting. The asterisk denotes an unspecific band in the western blot, and the UCP2 band is

indicated by an arrow. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was included as a loading control. (K) Mitochondrial DNA

copy numbers in muscle, BAT, liver, and WAT were determined by qPCR and shown as bar graphs. * p < 0.05, ** p < 0.01, *** p < 0.001,

**** p < 0.0001. Underlying data and method of statistical analysis are provided in S1 Data.

doi:10.1371/journal.pbio.1002597.g005
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increase in FFA demands in skeletal muscle. Indeed, we observed similarly high levels of

serum FFA (Fig 5E) and TG (Fig 5F) in HFD-ncls mice as compared to HFD-veh mice, despite

the reduced adiposity in these mice. In addition, these changes were accompanied by increased

expression of the key lipolytic enzyme, Atgl [40] (also known as Pnpla2), in both WAT and

BAT upon ncls treatment (Fig 5G). Moreover, Atgl was also significantly induced by ncls in

the quadricep muscles of HFD mice (Fig 5G). These results were in agreement with the

enhanced fat clearance from these tissues (Figs 1 and 2A). In summary, we conclude that ncls

enhances oxidative metabolism in skeletal muscle, and the main fuel source is FFA derived

from lipolysis in peripheral tissues.

Next, we asked where the extra energy produced from enhanced oxidative metabolism in

HFD-ncls mice was spent. One answer is that part of the energy was used for increased physi-

cal activities (Fig 3G and 3H) in these mice. In addition, we also asked whether HFD-ncls mice

spent more energy on nonshivering thermogenesis than HFD-veh mice. In this regard, we

measured the core body temperatures of all groups of mice and, indeed, we found HFD-ncls

mice have higher rectal temperatures than HFD-veh mice (Fig 5H), suggesting enhanced ther-

mogenesis. Moreover, we detected increased Ucp2 mRNA and UCP2 protein levels in the skel-

etal muscle from HFD-ncls mice by qRT-PCR and western blotting (Fig 5I and 5J). In parallel,

we also found an increase in mitochondrial DNA copy number, specifically in the skeletal

muscle of HFD mice after ncls treatment, indicating enhanced mitochondrial biogenesis in the

muscle, but not in the BAT, liver, or WAT (Fig 5K). Together, we conclude that the increased

energy supply from enhanced oxidative metabolism in HFD-ncls mice was utilized for both

physical activity as well as nonshivering thermogenesis in the skeletal muscle.

Ncls enhances mitochondrial respiration and FAO in murine and human

primary myotubes

To further validate the effects of ncls treatment on skeletal muscle, we used in vitro-differenti-

ated myotubes from murine C2C12 cells and human 36C15Q primary myoblasts [41, 42]. To

mimic the HFD feeding used in the animal study, we treated differentiated myotubes with 0.1

mM palmitate (PA) for 48 h in either the presence or absence of 20 nM ncls. As shown in Fig

6A and 6B, ncls treatment induced the expression of an array of genes involved in oxidative

metabolism such as Tnni1, Pgc1a, Ppara, Acsl, and Cpt1b in both cell lines. Intriguingly, citrate

synthase (Cs), which is significantly activated in well-trained athletes [43], was also up-regu-

lated by ncls treatment. Consistent with the in vivo results, expression of the lipolytic gene Atgl
increased in myotubes treated with ncls. In contrast, genes involved in fatty acid storage (Scd1)

or glucose metabolism (Hk2) were down-regulated (Fig 6A and 6B). These changes in gene

expression were mirrored by a marked decrease in the lipid content [44] in ncls-treated C2C12

and human primary myotubes, as determined by BODIPY staining (Fig 6C and 6D). To ask

whether the expression changes in metabolic genes were associated with changes in mitochon-

drial oxidative metabolism, we used the Seahorse extracellular flux analyzer to monitor mito-

chondrial functions [45, 46]. We found that the mitochondrial respiration was indeed

enhanced by ncls treatment and the stimulation of the mitochondrial OCR in ncls-treated

myotubes following carbonilcyanide p-triflouromethoxyphenylhydrazone (FCCP) injection

(maximal respiration; MR) was the most obvious difference between PA- and PA-ncls—

treated myotubes (Fig 6E and 6F). To further confirm that the enhanced mitochondrial respi-

ration by ncls treatment was due to an increase of lipid oxidation as previously observed in

HFD-ncls mice (Figs 3F and 5D), we evaluated FAO in myotubes using the Seahorse analyzer.

As shown in Fig 6G and 6H, ncls significantly enhanced FAO in both murine and human

myotubes. These effects were blocked by the treatment of etomoxir, a CPT1 inhibitor,
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Fig 6. Ncls enhances mitochondrial respiration and FAO in both murine and primary human

myotubes. Relative mRNA expression of selected metabolic genes in (A) murine myotubes (C2C12) and (B)

primary human myotubes (36C15Q) after exposure to 0.1 mM PA ± 20 nM ncls for 48 h. The values of the PA-

treated myotubes were arbitrarily set as one. (C) C2C12 and (D) 36C15Q myotubes were stained with

BODIPY (green) for lipid droplets and DAPI (blue) for nuclei (40x magnification). Mitochondrial respiration was

evaluated with a Seahorse extracellular flux analyzer. The OCR output for the basal rate (BR), proton leak
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confirming that the increased oxygen consumption was indeed derived from the oxidation of

exogenous fatty acids. On the other hand, we also observed that ncls significantly reduced the

extracellular acidification rate (ECAR) in C2C12 and 36C15Q myotubes (Fig 6I and 6J), indi-

cating decreased glycolysis in these cells. In myotubes without PA treatment, ncls also

increased the expression of some of the oxidative metabolism genes (S10A and S10B Fig), as

well as mitochondrial respiration (S10C–S10F Fig), albeit to a much lesser extent as compared

to PA-treated myotubes (Fig 6), especially in human 36C15Q myotubes. We interpret these

results to mean PA treatment damages the metabolic function of myotubes and ncls signifi-

cantly protects the cells from these negative impacts, while in healthy myotubes, these protec-

tive effects are less obvious. This is also in agreement with the effects of ncls treatment in

animal models, which showed that ncls had less obvious effects in NCD mice but significantly

protected HFD mice from a number of metabolic dysfunctions. Taken together, these data

demonstrated that ncls promotes FAO and reduces glycolytic capacity in differentiated myo-

tubes in vitro, as previously suggested by the gene expression changes in Figs 5C, 6A and 6B.

Ncls activates AMPK signaling pathway in vitro and in vivo

It is well established that the activation of AMPK signaling pathway leads to increased FAO in

skeletal muscle by phosphorylating and inhibiting ACC2, thereby promoting fatty acid uptake

by mitochondria [3, 47]. To ask whether ncls acts through the AMPK pathway to stimulate

FAO, we examined AMPKα and ACC2 phosphorylation levels in PA-treated C2C12 myotubes

with or without ncls treatment. We observed that ncls stimulated phosphorylation of AMPKα
at Thr172 and its downstream target ACC2 (Fig 7A), demonstrating the activation of the

AMPK signaling pathway. AMPK activation by ncls further led to enhanced FAO as examined

by a Seahorse extracellular flux analyzer (Fig 7B). Preincubation of myotubes with Compound

C, a specific AMPK inhibitor, significantly reduced AMPKα phosphorylation, ACC2 phos-

phorylation (Fig 7A), and ncls-induced FAO (Fig 7B). These results demonstrated that ncls

promotes FAO, at least partially, through AMPK activation in cultured myotubes in vitro. We

also noted that Compound C treatment did not fully block the ncls-induced FAO (Fig 7B).

This observation suggested that ncls may enhance mitochondrial respiration through both

AMPK dependent and independent mechanisms. In C2C12 myotubes not subjected to PA

treatment, ncls still had an effect in activing AMPK signaling (S11A Fig), albeit to a lesser

extent as compared to PA-treated C2C12 myotubes (Fig 7A).

We next examined the effects of ncls on AMPK signaling in vivo. We first evaluated the

protein expression of AMPKα and ACC2 in skeletal muscle, liver, WAT, and BAT, the four

major metabolic organs using western blotting. As shown in Fig 7C, AMPKα and ACC2 were

robustly expressed in muscle, liver, and BAT. In contrast, they were expressed at negligible lev-

els in WAT. We thus focused the subsequent analyses on muscle, liver, and BAT. In agreement

with the elevated expression of FAO genes in quadricep muscles of HFD-ncls mice (Fig 5C),

(PL), ATP production (AP), MR, and spare respiratory capacity (SRC) of ncls-treated (E) C2C12 and (F)

36C15Q myotubes were shown as bar graphs. The OCR was normalized to the total protein per well. FAO

profiles of (G) C2C12 and (H) 36C15Q myotubes were determined by a Seahorse extracellular flux analyzer.

Myotubes were incubated in substrate-limited medium overnight to prime the myotubes for utilization of

exogenous fatty acids and assayed on the following day with 0.125 mM PA. Etomoxir (Eto, 40 μM) was used

to inhibit FAO and to confirm the assay specificity. Vertical dashed lines indicate the time points of oligomycin

(Oligo, 1 μM), FCCP (1.6 μM), and Rotenone/Antimycin A (Ret/A, 1 μM) injection. The ECAR of (I) C2C12 and

(J) 36C15Q myotubes were determined by a Seahorse analyzer after treatment with 0.1 mM PA ± 20 nM ncls

for 48 h. Vertical dashed lines indicate the time points of oligomycin (1.5 μM), FCCP (1.5 μM), and

2-deoxyglucose (2-DG, 100 mM) injection. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Underlying

data and method of statistical analysis are provided in S1 Data.

doi:10.1371/journal.pbio.1002597.g006
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Fig 7. Ncls activates the AMPK signaling pathway in vitro and in vivo. Ncls treatment led to (A)

increased phospho-AMPKα (pAMPKα), increased phospho-ACC2 (pACC2), and (B) enhanced FAO in PA-

treated C2C12 myotubes. These effects were significantly reduced by treatment of Compound C (Comp. C), a

specific AMPK inhibitor. Western blots of total AMPKα and ACC2 (A) were used as controls for equal loading.

Ratios of phospho- to total- AMPKα and ACC2 were shown as bar graphs below the representative

immunoblotting images of two independent experiments performed in duplicates. Vertical dashed lines

indicate the time points of oligomycin (Oligo, 1 μM), FCCP (1.6 μM), and Rotenone/Antimycin A (Ret/A, 1 μM)

injection (B). OCRs were determined by a Seahorse extracellular flux analyzer. **** p < 0.0001. (C) Protein

levels of AMPKα and ACC2 were evaluated by western blotting in quadricep muscles, liver, WAT, and BAT
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we observed increased phosphorylation of AMPKα and ACC2 in the same tissue from ncls-

treated HFD mice (Fig 7D and 7G). This phenotype was not observed in liver or BAT (Fig 7E–

7G), suggesting that ncls specifically activated AMPK signaling in skeletal muscle. We also

examined the effects of ncls on AMPK activation in the quadricep muscles of NCD mice.

Results revealed no obvious differences in phospho-AMPKα (pAMPKα) and phospho-ACC2

(pACC2) between NCD-veh and NCD-ncls groups of mice (S11B Fig). In summary, ncls acti-

vates AMPK signaling pathway in vitro in C2C12 myotubes and in vivo in skeletal muscle of

HFD mice.

Ncls enhances mitochondrial membrane potential, increases cAMP

concentration and ADP/ATP ratio, and reduces reactive oxygen species

production

It is known that AMPK activation leads to the up-regulation of mitochondrial function [48].

After demonstrating the effect of ncls treatment on AMPK activation, we next investigated the

impact of ncls treatment on mitochondrial transmembrane potential. Mitochondrial mem-

brane potential (MMP) is an important parameter of mitochondrial function, and it indicates

the status of cell health. Using the membrane-permeant JC-1 dye, we monitored MMP in both

ncls- and veh-treated C2C12 myotubes. We found that ncls treatment strongly increased the

concentration of JC-1 dye in mitochondria, which led to the formation of J-aggregates (Red

color) in C2C12 myotubes as assayed by both flow cytometry and fluorescence microscopy

(Fig 8A), suggesting enhanced MMP after ncls treatment. The increases in MMP upon ncls

treatment were observed in both PA-treated and untreated myotubes, suggesting ncls

improves MMP status in both settings. As an attempt to decipher the biochemical mechanism

underlying AMPK activation by ncls, we also measured the cellular concentration of cAMP

and the ADP/ATP ratio in C2C12 myotubes [49–54]. As shown in Fig 8B and 8C, ncls treat-

ment up-regulated both cAMP concentration and ADP/ATP ratio in C2C12 myotubes with or

without PA treatment. And a larger increase in cAMP concentration and ADP/ATP ratio was

observed in PA-treated C2C12 myotubes after ncls treatment. This pattern is consistent with

the observation of stronger AMPK activation in PA-treated C2C12 myotubes (Fig 7A) as com-

pared to the untreated myotubes (S11A Fig). Together, these results provided biochemical

basis for the effect of ncls on AMPK activation. In addition, we also examined the effect of ncls

treatment on reactive oxygen species (ROS) production. In this assay, hydrogen peroxide con-

centration was determined in C2C12 myotubes with or without ncls treatment. We found that

ncls significantly reduced the H2O2 concentration in both PA-treated and untreated C2C12

myotubes (Fig 8D), suggesting a prominent role for ncls in regulating ROS production.

Discussion

Obesity is caused by excess caloric intake and/or insufficient energy usage. Therefore, enhanc-

ing energy expenditure, especially through pharmacological approaches, could have a major

impact in combating obesity and its associated metabolic dysfunctions. In this study, we show

that ncls treatment introduces a number of protective effects in mice against the metabolic

damages caused by HFD feeding. These beneficial effects include ameliorated adiposity,

increased energy expenditure, enhanced FAO, increased fat clearance from peripheral tissues,

from HFD-veh mice. GAPDH was included as a loading control. Ncls treatment led to increased pAMPKα and

pACC2 specifically in (D) muscle, but not in (E) liver or (F) BAT from HFD mice. (G) Ratios of phospho- to

total- AMPKα and ACC2 were shown as bar graphs. ** p < 0.01, *** p < 0.001. Underlying data and method

of statistical analysis are provided in S1 Data.

doi:10.1371/journal.pbio.1002597.g007
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Fig 8. Biochemical basis for AMPK activation by ncls and the impact of ncls treatment on mitochondrial functions. (A) Ncls

treatment led to increased MMP in C2C12 myotubes with or without PA treatment. The membrane-permeant JC-1 dye was used to monitor

MMP in myotubes subjected to indicated treatments. Both flow cytometry and fluorescence microscopy results were shown for comparison.

(B) cAMP concentration and (C) ADP/ATP ratio were examined in both ncls- and veh-treated C2C12 myotubes with or without PA treatment.

(D) Hydrogen peroxide (H2O2) concentration was determined by an Amplex Red based assay kit in ncls- and veh-treated C2C12 myotubes

with or without PA treatment. Data are presented as mean ± standard error of the mean (SEM). * p < 0.05, ** p < 0.01, **** p < 0.0001.

Underlying data and method of statistical analysis are provided in S1 Data.

doi:10.1371/journal.pbio.1002597.g008
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improved blood metabolic parameters, insulin sensitivity, and voluntary physical activity.

Through transcriptomic analysis, we found that the global gene expression pattern of HFD

mice reverted back to that of NCD mice only in skeletal muscle but not in the other three

major metabolic organs WAT, BAT, and liver after ncls treatment, suggesting skeletal muscle

is a major in vivo target of ncls. In quadricep muscles, ncls promoted the expression of

PGC1α, the shift from glycolytic fast-twitch fibers to oxidative slow-twitch fibers, and the oxi-

dation of FA. By increasing fatty acid consumption in skeletal muscle, ncls triggered a series of

gene expression changes in various metabolic organs. These changes include increased expres-

sion of the key lipolytic enzyme Atgl in WAT, BAT, and skeletal muscle, along with decreased

expression of the fatty acid storage genes Scd1 and Fasn in skeletal muscle. Moreover, the

enhanced oxidative metabolism and gene expression changes that we observed in skeletal mus-

cle in vivo were largely reproduced in differentiated myotubes of both murine and human ori-

gin in vitro, indicating these effects were cell-autonomous. Based on these observations, we

conclude that ncls enhances fatty acid utilization in skeletal muscle, thereby driving the mobili-

zation of fatty acid and TG from other metabolic organs, and thus attenuates DIO in the DIO

animal model.

Mechanistically, we found that ncls promotes oxidative metabolism in muscle likely

through the activation of the AMPK signaling pathway. It is well documented that in skeletal

muscle, the activation of the AMPK pathway by phosphorylation of AMPKα Thr172 leads to

phosphorylation of ACC2, which inhibits the activity of this enzyme and reduces the conver-

sion of acetyl-CoA to malonyl-CoA [8, 9]. Given malonyl-CoA is a potent inhibitor of CPT-1,

a key enzyme for mitochondrial fatty acid uptake, the reduced level of malonyl-CoA leads to

increased fatty acid uptake and oxidation in mitochondria [55]. Thus, activation of the AMPK

pathway as manifested by increased pAMPKα and pACC2 promotes oxidative metabolism.

AMPK activation introduces a number of metabolic effects that lead to increased ATP produc-

tion and decreased ATP consumption in various tissues [7]. For example, activation of AMPK

inhibits fatty acid synthesis in both liver and adipose tissues, while in skeletal muscle it

enhances mitochondrial biogenesis and fatty acid uptake and oxidation. The stimulation of

FAO is central to the beneficial effects of AMPK activation on reducing fat accumulation in

peripheral tissues [7]. Consistent with this idea, the AMPKα2 knockout mice exhibit increased

adiposity as compared to wild-type animals when given an HFD [56], while the ACC2 knock-

out, which mimics the constitutive activation of AMPK, leads to increased FAO in skeletal

muscle and leanness [57]. Ncls administration enhances the expression of a panel of metabolic

genes involved in mitochondrial biogenesis (especially Pgc1a) and FAO (Fig 5C) in skeletal

muscle of HFD mice. As a result, we observed increased mitochondrial biogenesis (Fig 5K) in

quadricep muscles of HFD-ncls mice. Ncls also prevents fat accumulation in peripheral tissues

and improves blood metabolic profiles including fasting glucose and insulin levels. These ben-

eficial effects are reminiscent of those introduced by AMPK activation, suggesting the involve-

ment of AMPK signaling in ncls function. We thus investigated along this line and found that

ncls treatment indeed led to significant increases in pAMPKα and pACC2 in C2C12 myotubes

(Fig 7A), indicating strong activation of the AMPK pathway. This effect was significantly

reduced by the treatment of Compound C, an AMPK inhibitor. Moreover, consistent with the

observations in vivo (Fig 5D), ncls treatment enhanced FAO in myotubes as determined by

the Seahorse extracellular flux analyzer (Fig 6G and 6H). This effect was at least partially

dependent on the AMPK signaling, as Compound C treatment largely compromised the ncls-

induced FAO (Fig 7B). In vivo studies further revealed elevated levels of pAMPKα and

pACC2, hence increased AMPK activation, in the skeletal muscle of HFD mice, but not in

BAT or the liver, where AMPKα and ACC2 are also robustly expressed (Fig 7). Previous stud-

ies showed that AMPK can be phosphorylated by upstream kinases including liver kinase B1
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(LKB1) and Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) [7]. Moreover,

LKB1 has been suggested to be constitutively active, which indicates the existence of alternative

regulatory mechanisms involved in AMPK phosphorylation. Whether ncls directly targets

these kinases to activate AMPK or acts through alternative mechanisms warrants further

investigation. Regarding the biochemical basis for ncls-mediated activation of AMPK signal-

ing, we found that ncls treatment significantly up-regulated cAMP and increased ADP/ATP

ratio in C2C12 myotubes (Fig 8B and 8C). These observations suggested that ncls may activate

AMPK signaling via a similar mechanism as resveratrol [49]. Based on the data obtained

through this study, we would like to propose the following model of ncls action: ncls treatment

leads to increases in cAMP concentration and ADP:ATP ratio (Fig 8B and 8C), which pro-

motes AMPK activation (Fig 7 and S11A Fig). The activation of AMPK signaling enhances

PGC1α expression (Figs 5C and 6A and S10A Fig). As the principle regulator of mitochondrial

biogenesis, activated PGC1α increases mitochondrial mass (Fig 5K), which then increases

MMP as measured by JC1 staining (Fig 8A). In summary, we demonstrated a positive impact

of ncls on the whole-body energy metabolism in HFD mice and have further unraveled a

major signaling pathway through which ncls enhances oxidative metabolism. These findings

propose ncls administration as a potential pharmacological strategy for obesity treatment.

Materials and methods

Animal studies

All animal procedures were performed according to the approved protocol (IACUC#130829)

from Institutional Animal Care and Use Committee of the Agency for Science, Technology,

and Research (A�STAR) of Singapore. All mice were male, of the C57BL/6J genetic back-

ground and housed in a 12-hour light-dark cycle with access ad libitum to water and an NCD

(Harlan 2018 Teklab Global 18% Protein Rodent Diet). For the DIO study, mice were fed an

HFD with 60% of the calories from fat (D12492, Research Diets) from 8 wk to 17 wk of age, as

indicated in the text.

Ncls treatment

Ncls (Cat# N9789, Sigma-Aldrich) (1 mg/kg body weight) or veh was administered weekly by

oral gavage consecutively for 7 wk to both NCD and HFD mice starting at 10 wk of age. Ncls

treatment in HFD mice starts 2 wk later after the onset of HFD feeding to examine the effects

of ncls on animals that are already slightly overweight. The veh solution consisted of 5% hydro-

xypropyl cyclodextrin (Sigma-Aldrich). The solutions were freshly prepared before each

administration.

Indirect calorimetry

Mice were placed in the Oxymax/Comprehensive Lab Animal Monitoring System (Columbus

Instruments, Ohio, USA) consecutively for 3 d, including a 24-h acclimatization period, to

determine VO2, VCO2, food intake, and spontaneous locomotor activity. The RER was calcu-

lated as the ratio of VCO2 / VO2. Energy expenditure was calculated according to the equation

provided by Columbus Instruments at www.colinst.com. All values presented were normalized

to the body weight or lean mass (for VO2). We used the mean value for each light and dark

period to analyze statistical significance.
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Gene expression analysis

Total RNA was extracted from the indicated tissues using TRIzol reagent after the connective

and surrounding tissues were removed. The RNA samples were then further purified using the

RNeasy mini kit (Qiagen) and eluted in RNAsecure reagent (Ambion). Subsequently, RNA

samples were quantified using a NanoDrop 1000 spectrophotometer (Thermo Scientific), and

the RNA integrity was determined by an Agilent 2100 Bioanalyzer (Agilent Technologies).

Quantitative PCR was performed (after reverse transcription of RNA) using Power SYBR

Green PCR master mix (Applied Biosystems) with the 7900HT Fast Real-Time PCR System

(Applied Biosystems). All gene expression data were normalized to PPIA. All primer sequences

used in this study can be found in S4 Table. RNA sequencing (RNA-seq) was performed on

the Illumina HiSeq 2000 platform at BGI (BGI Tech Solutions Co., China).

RNA-Seq data analysis

All RNA-Seq datasets from the four major metabolic organs were aligned to the mouse

genome (mm9) using the TopHat program (version 2.0.11). Alignments were performed as

described [58]. The mapped reads were further analyzed using the Cufflinks program as previ-

ously described [59]. The expression levels of each transcripts were quantified as the FPKM

based on the RefSeq database. To identify the DEGs across the four metabolic organs, we input

the RNA-seq datasets (BAM files) into the Partek Genomic Suite program and set the follow-

ing selection criteria in the program: Fold change > 2-fold, p value < 0.05, False Discovery

Rate (FDR) < 0.05. In total, 1,532 DEGs were identified across the four metabolic organs and

then a hierarchical clustering of these DEGs was performed according to their expression pat-

terns. From the cluster enriched in skeletal muscle, we found in total 258 DEGs and listed

these genes in S1 Table and used them for subsequent Gene Ontology (GO) analysis. GO anal-

yses were performed with the online program DAVID [60] and the Partek Genomic Suite and

Pathway programs.

Cell culture

Mouse C2C12 myoblasts (American Type Culture Collection) were maintained in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 20% fetal bovine serum and 0.5%

chicken embryo extract. Human primary 36C15Q myoblasts were maintained in DMEM sup-

plemented with 20% fetal bovine serum, 10% horse serum and 1% chicken embryo extract. To

induce differentiation, myoblasts were incubated in DMEM containing 2% horse serum, and

the induction medium was changed every 2 d.

In vitro mitochondrial respiration measurement by Seahorse

extracellular flux analyzer

Mitochondrial OCRs and ECARs were measured using the Seahorse extracellular flux analyzer

XF24e (Seahorse Bioscience). C2C12 and 36C15Q cells were seeded at a density of 25,000 cells

per cm2 in 24-well plates and differentiated as described in the main text. At day 3 of differenti-

ation, 0.125 mM PA was added with or without 20 nM ncls for 48 h. On the day of the experi-

ment, the cells were equilibrated for 1 h with 1x KHB buffer supplemented with 50 μM L-

carnitine, 5 mM HEPES, and 2.5 mM D-glucose. OCR measurements were obtained before

and after sequential additions of the ATPase inhibitor oligomycin (1.5 μM), the inner mem-

brane uncoupler FCCP (1.5 μM), and the inhibitors of complex I and III—rotenone (1 μM)

and antimycin A (1 μM). For measurement of FAO profiles, C2C12 and 36C15Q myotubes

were incubated in substrate-limited medium overnight to prime the myotubes for utilization
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of exogenous fatty acids and assayed on the following day with the addition of 125 μM

PA-BSA. Eto (40 uM) was used to inhibit FAO and to confirm the assay specificity. Oligomy-

cin (1 μM), FCCP (1.6 μM), and Rotenone/Antimycin A (1 μM) were injected sequentially

during the assay. ECAR glycolytic measurements were performed before and after sequential

additions of oligomycin (1μM), FCCP (1 μM), and the glycolysis inhibitor 2-deoxy-D-glucose

(100 mM). The OCR was normalized to the total protein in each well.

Ex vivo mitochondrial respiration measurement in intact muscle fibers

The measurement of mitochondrial respiration in intact muscle fibers was performed accord-

ing to the protocol entitled “Measuring mitochondrial respiration in intact skeletal muscle

fibers” available from the Seahorse Bioscience website. Specifically, EDL muscle from all four

groups of mice was carefully dissected to ensure that no mechanical damage was introduced to

the muscle fibers. The muscle samples were then weighted and rinsed in prewarmed PBS.

Each muscle was individually incubated in 2 ml of dissociation medium (Dulbecco’s Modified

Eagle Medium (D-MEM) high glucose, no sodium pyruvate or phenol red (Invitrogen,

#21063–029), gentamycin [50 μg/ml] (Sigma, #G1397), FBS [2%], and collagenase A [0.5 mg/

ml] (Roche #11088785103) pH 7.2.) for 15 min at 37˚C to slightly dissociate muscle fibers

without separating them from each other (that would allow better plating in the well). Then,

each individual muscle was plated on an XF24e islet capture microplate (Seahorse Bioscience)

using a dissecting microscope to ensure no damage was introduced to the muscle fibers during

the transfer. Islet capture screen was then placed on top of the muscle in the well. Then, the

rate of FAO was determined according to the protocol entitled “Conducting a Fatty Acid Oxi-

dation Assay on the XF Analyzer” also available from the Seahorse Bioscience website. In the

assay, EDL muscle fibers from all four groups of mice were rinsed twice with assay medium

without collagenase (1x KHB assay medium: NaCl, 111 mM; KCl, 4.7 mM; MgSO4, 2 mM;

Na2HPO4, 1.2 mM; Glucose, 2.5 mM; Carnitine 0.5 mM), then the OCRs were measured after

the addition of PA-BSA (125 μM). Assay was performed with 500 μl of assay medium per well

for 35 min. The value of the OCR was normalized to the mass of EDL muscle in mg.

cAMP concentration

cAMP quantification was performed at 48 h post ncls treatment using the cAMP Complete

ELISA Kit (#ADI-900-163, Enzo) as indicated by manufacturer’s protocol with minor modifi-

cations. Briefly, ncls- or veh-treated C2C12 myotubes were lysed in 0.1 M HCl containing

0.1% Triton X-100 for 5 min at room temperature, centrifuged at 1,000 g for 3 min to pellet

the cellular debris, and then 100 μl of cell lysate (supernatant) was used for the subsequent

ELISA assay. cAMP concentration was determined by ELISA assay through measuring optical

densities at 405 nm using a spectrometry plate reader (Tecan), followed by calculations based

on cAMP standard utilizing a four-parameter logistic curve fitting program (GraphPad Soft-

ware, Inc., San Diego, CA, USA). Data were normalized to the amount of protein present in

the supernatant as measured by the BCA assay.

ADP/ATP ratio

ADP/ATP ratio was measured at 48 h post ncls treatment using the ADP/ATP Ratio Assay Kit

(#ab65313, Abcam) as per the manufacturer’s instructions with minor changes. Briefly, ncls-

or veh-treated C2C12 myotubes were lysed in nucleotide-releasing buffer for 5 min at room

temperature, centrifuged at 10,000 g for 1 min to pellet insoluble materials, and then the super-

natant was used for subsequent measurement. ATP or ADP levels in C2C12 myotubes were

determined by measuring luminescence in the absence or presence of ADP converting enzyme
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using a luminometer (Tecan). ADP/ATP ratio was calculated and normalized to the amount

of protein present in the supernatant as measured by the BCA assay.

MMP

The membrane-permeant JC-1 dye (Molecular probe) was used to monitor MMP in ncls- or

veh-treated C2C12 myotubes at 72 h post ncls treatment. In brief, myotubes after various treat-

ments were stained with 1 μM of JC-1 for 30 min at 37˚C and then examined using fluores-

cence microscopy at Ex 540 nm / Em 570 nm and Ex 485 nm / Em 535 nm. Quantitative

changes of MMP after ncls treatment were determined by measuring fluorescence intensities

of JC-1 aggregates (Ex 535 nm / Em 595 nm) and JC-1 monomer (Ex 485 nm / Em 535 nm).

For flow cytometric analysis, C2C12 myotubes (106 cells / ml) were stained with 1 μM of JC-1

for 30 min at 37˚C, trypsinized, and washed with PBS before JC-1 signals were analyzed on a

flow cytometer (Beckman Coulter) using 488 nm excitation with 530 nm and 585 nm bandpass

emission filters.

Hydrogen peroxide concentration

H2O2 concentration was determined at 48 h post ncls treatment using the Amplex Red

Hydrogen Peroxide/Peroxidase Assay Kit (#A22188, Invitrogen) in ncls- or veh-treated C2C12

myotubes. Briefly, C2C12 myotubes (106 cells / ml) were incubated with 50 μM Amplex Red

reagent plus 0.1 U / ml horseradish peroxidase for 30 min in darkness, and then the concentra-

tion of H2O2 was measured as per manufacturer’s instructions on a fluorescence plate reader

(Tecan).

Statistical analysis

Results are expressed as the mean values ± SEM or the averages ± standard deviation. The

datasets were analyzed for statistical significance between groups using either two-tailed Stu-

dent’s t-test or 2-way ANOVA. Methods of statistical analysis are provided in S1 Data. Statisti-

cal analyses (except RNA-seq) were performed using GraphPad software, version 5 or Excel. A

p-value< 0.05 was considered significant.

Accession numbers

RNA-seq datasets were deposited into the Gene Expression Omnibus under accession number

GSE63268.

Supporting information

S1 Fig. Effects of ncls treatment on the fat mass and lean mass in HFD and NCD mice. (A)

Percentages of fat mass in total body weight of the ncls- or veh-treated mice on either an HFD

or an NCD over a 9-wk period. (B) Percentages of fat mass and lean mass in total body weight

of the mice after 6 wk of ncls or veh treatment (Week 8). � p< 0.05, �� p< 0.01, ��� p< 0.001.

Underlying data and method of statistical analysis are provided in S1 Data.

(TIF)

S2 Fig. Ncls promotes fatty acid metabolism in HFD mice. (A) Carbon dioxide production

(VCO2) of HFD and NCD mice after 6 wk of ncls or veh administration. (B) RER of the mice

described in (A). Ncls treatment significantly reduced the RER in HFD mice, indicating

increased fatty acid metabolism in HFD-ncls mice. ���� p< 0.0001. Underlying data and

method of statistical analysis are provided in S1 Data.

(TIF)
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S3 Fig. Ncls does not affect food intake and fecal energy output in mice. (A) Cumulative

food intake of HFD and NCD mice over a 48-h period after 6 wk of ncls or veh administration.

(B) Average daily food intake of the mice described in (A). (C) Absolute daily caloric intake of

the mice described in (A). (D) Feces production, (E) fecal energy content as determined by

bomb calorimeter, and (F) total fecal energy output per day of the mice described in (A).
���� p< 0.0001. Underlying data and method of statistical analysis are provided in S1 Data.

(TIF)

S4 Fig. Effects of ncls treatment on mouse behavior. Mouse anxiety was evaluated by behav-

ior tests including the (A) limb clasping test, (B) open field test, and (C) elevated plus maze

test. Representative mouse trajectories for HFD-veh and HFD-ncls mice in the open field test

were shown in panel (B). Values represent means ± SEM. Underlying data and method of sta-

tistical analysis are provided in S1 Data.

(TIF)

S5 Fig. Correlation of skeletal muscle RNA-seq datasets between NCD-veh and NCD-ncls

mice. The transcriptomic profiles of skeletal muscle of NCD-veh and NCD-ncls mice showed

very high positive correlation (Pearson correlation coefficients, R = 0.999), suggesting ncls

treatment did not lead to major transcriptional changes in NCD mice at the genomic level.

Underlying data and method of statistical analysis are provided in S1 Data.

(TIF)

S6 Fig. Effects of ncls on muscle strength and muscle mass. (A) Grip strength performance

of mice at the beginning of the study (Baseline) and after 7 wk of ncls or veh treatment (Week

7). (B-F) Mass of (B) EDL, (C) soleus, (D) TA, (E) Gastr., and (F) quadricep muscles from

mice treated for 7 wk with ncls or veh on either an HFD or an NCD. � p< 0.05, �� p< 0.01,
��� p< 0.001, ���� p< 0.0001. Underlying data and method of statistical analysis are provided

in S1 Data.

(TIF)

S7 Fig. Effects of ncls on muscle fiber area and fiber type in quadriceps of NCD and HFD

mice. (A) Quadricep muscles were harvested from mice treated with ncls or veh on either an

HFD or an NCD. Muscle sections were H&E stained, and the CSA of muscle fibers were quan-

tified using ImageJ. (B) Muscle fiber type transition in the quadriceps upon ncls treatment in

both HFD and NCD mice. Serial cryosections of quadricep muscles were immunostained with

specific MHC antibodies and the percentages of each fiber type (MHC I, MHC IIa, and MHC

IIb) were determined. � P< 0.05. (C) Representative images for MHC immunostaining of

quadriceps muscle from mice treated with ncls or veh on either an HFD or an NCD. Scale bar,

100 μm. Underlying data and method of statistical analysis are provided in S1 Data.

(TIF)

S8 Fig. Ncls promotes the expression of oxidative metabolism genes but represses glyco-

lytic and fatty acid synthesis genes in quadriceps muscle of HFD mice. (A) The top 3 highly

enriched categories of DEGs (>1.4-fold change) in quadricep muscles from HFD-ncls, NCD-

veh and HFD-veh mice. (B) Expression patterns of representative genes from the “metabolic

process” category, as described in (A). Underlying data and method of statistical analysis are

provided in S1 Data.

(TIF)

S9 Fig. Effects of ncls on metabolic gene expression in WAT, BAT, liver, and heart. Relative

mRNA expression of metabolic genes in (A) WAT, (B) BAT, (C), liver and (D) heart from
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mice treated with ncls or veh on either an HFD or an NCD. Underlying data and method of

statistical analysis are provided in S1 Data.

(TIF)

S10 Fig. Ncls slightly enhances mitochondrial respiration in both murine myotubes and

primary human myotubes in the absence of PA treatment. Relative mRNA expression of

selected metabolic genes in (A) murine myotubes (C2C12) and (B) primary human myotubes

(36C15Q) after treatment with or without 20 nM ncls for 48 h. The values of the untreated

myotubes were arbitrarily set as one. Mitochondrial respiration was evaluated with a Seahorse

extracellular flux analyzer. The OCR output for the BR, PL, AP, MR, and SRC of ncls-treated

(C) C2C12 and (D) 36C15Q myotubes were shown as bar graphs. The OCR was normalized to

the total protein per well. OCR profiles of (E) C2C12 and (F) 36C15Q myotubes with or with-

out 20 nM ncls treatment were determined by a Seahorse extracellular flux analyzer. Vertical

dashed lines indicate the time points of oligomycin (Oligo, 1 μM), FCCP (1.6 μM) and Rote-

none/Antimycin A (Ret/A, 1 μM) injection. � p< 0.05, ��� p< 0.001. Underlying data and

method of statistical analysis are provided in S1 Data.

(TIF)

S11 Fig. Ncls partially activates AMPK signaling in C2C12 myotubes without PA treat-

ment but exerts no detectable effects on AMPK signaling in the skeletal muscle of NCD

mice. (A) Ncls treatment led to slight increases in pAMPKα and pACC2 in C2C12 myotubes

without PA treatment. Western blots of total AMPKα and ACC2 were used for loading con-

trols and subsequent densitometry measurement. Ratios of phospho- to total- AMPKα and

ACC2 were shown as bar graphs below the representative immuno-blotting images of two

independent experiments performed in duplicates. (B) Ncls treatment had no detectable effects

on pAMPKα and pACC2 as evaluated by western blotting in quadricep muscles from NCD

mice. Protein levels of AMPKα and ACC2 were evaluated by western blotting in parallel. glyc-

eraldehyde 3-phosphate dehydrogenase (GAPDH) was included as a loading control. Underly-

ing data and method of statistical analysis are provided in S1 Data.

(TIF)

S1 Table. List of the 258 DEGs in the skeletal muscle of HFD-veh, NCD-veh, and HFD-ncls

mice (>2-fold change).

(XLSX)

S2 Table. Gene list of the enriched “Muscle protein” category in the up-regulated genes in

the skeletal muscle of HFD-ncls mice (>2-fold change).

(DOCX)

S3 Table. Expression levels of the genes described in S2 Table from the RNA-seq analysis.

(DOCX)

S4 Table. Primers for qRT-PCR.

(DOCX)

S1 Text. Supporting materials and methods.

(DOCX)

S1 Data. Contains underlying data for Figs 1A–1C,1E, 1H; 2B–2I; 3B, 3D–3F, 3H; 4D–4E;

5A, 5C–5I, 5K; 6A, 6B, 6E–6J; 7A, 7B, 7G and 8A–8D; S1A, S1B; S2A,S2B; S3A–S3F; S4B,

S4C; S5; S6A–S6F; S7A,S7B; S8A; S9A–S9D; S10A–S10F and S11A Figs.

(XLSX)
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