MONOGRAPH SERIES IN PHYSICAL SCIENCES

Fundamentals of Charged Particle Transport in Gases and Condensed Matter

Robert Robson Ronald White Malte Hildebrandt

Fundamentals of Charged Particle Transport in Gases and Condensed Matter

Monograph Series in Physical Sciences

Recent books in the series: Exchange Bias: From Thin Film to Nanogranular and Bulk Systems Surender Kumar Sharma

Fundamentals of Charged Particle Transport in Gases and Condensed Matter

Robert Robson, Ronald White, and Malte Hildebrandt

Fundamentals of Charged Particle Transport in Gases and Condensed Matter

^{By} Robert E. Robson, Ronald D. White and Malte Hildebrandt

CRC Press is an imprint of the Taylor & Francis Group, an informa business

Cover Image: Simulations of energy deposition of positrons in liquid water, often used in modeling as a surrogate for human tissue. Points of higher (lower) energy deposition are indicated by blue (red) spheres, while trajectories of positrons between collisions, represented by black lines, are biased towards the direction of an applied electric field. Eventually the positrons slow down sufficiently to annihilate with the electrons of the medium, producing two back-to-back gamma rays, as in PET (positron emission tomography) investigations. (Courtesy of Wade Tattersall)

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

©2018 by Taylor & Francis Group CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-4987-3636-7 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Robson, R. (Robert), 1946- author. | White, Ronald, author. | Hildebrandt, Malte, author. Title: Fundamentals of charged particle transport in gases and condensed matter / Robert Robson, Ronald White, Malte Hildebrandt. Description: Boca Raton, FL : CRC Press, Taylor & Francis Group, [2017] | Series: Monograph series in physical sciences Identifiers: LCCN 2017011666| ISBN 9781498736367 (hardback ; alk. paper) | ISBN 149873636X (hardback ; alk. paper) Subjects: LCSH: Kinetic theory of gases. | Transport theory. | Fluid dynamics. | Condensed matter. Classification: LCC QC175.13 .R63 2017 | DDC 533/.7–dc23 LC record available at https://lccn.loc.gov/2017011666

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at

http://www.crcpress.com

This book is dedicated to Carola, Marcella and Isabelle,

and

to the memory of Bhala Paranjape, Edward A. Mason, Kurt Suchy and Peter Nicoletopoulos

Contents

Mo	nograp	h Series	in Physical Sciences	xvii
Prej	face			. xix
Abo	out the	Authors		. xxi
Glo	ssary o	of Symbo	ls and Acronyms	xxiii
1	Intro	duction		1
	1.1	Boltzm	ann's Equation	1
		1.1.1	A little history	1
		1.1.2	From the "golden" era of gas discharges to	
			modern times	1
		1.1.3	Transport processes: Traditional and modern	_
			descriptions	3
	1.0	1.1.4 C - 1	I heme of this book	4
	1.2	501V1ng	The weth to colution	4
		1.2.1	A complementary approach: Eluid modelling	4
	13	T.Z.Z Expori	mont and Simulation	6
	1.5	131	An idealized apparatus	6
	1.4	About	this Book	9
	Addi	itional C	General Reading Materials	9
I	Kine	tic The	ory Foundations	13
2	Basic	Theore	tical Concepts: Phase and Configuration Space	15
-	2.1	Prelimi	inaries	15
		2.1.1	Configuration and velocity space	15
		2.1.2	Distribution function and averaging	16
		2.1.3	Polar coordinates and symmetries	18
	2.2	Phase S	Space and Kinetic Equation	20
		2.2.1	Trajectories in phase space	20
		2.2.2	Kinetic equation in phase space	21
		2.2.3	Equilibrium	23

	2.3	Kinetic	Equations for a Mixture	23
		2.3.1	The general kinetic equation	23
		2.3.2	Dilute particles in a neutral medium	23
		2.3.3	Locality, instantaneity, and linearity	24
	2.4	Momen	t Equations	24
		2.4.1	The general moment equation	24
		2.4.2	Equation of continuity	25
	2.5	Conclu	ding Remarks	25
			0	
3	Boltz	mann C	ollision Integral, H-Theorem, and Fokker–Planck	
	Equa	tion		27
	3.1	Classica	al Collision Dynamics	27
		3.1.1	Conservation laws	27
		3.1.2	Transformation of coordinates	28
	3.2	Differen	ntial Cross Section	28
		3.2.1	Basic collision parameters	28
		3.2.2	Symmetries in space and time	30
		3.2.3	Partial cross sections	32
		3.2.4	Calculation of cross sections	32
	3.3	Boltzma	ann Collision Integral	33
		3.3.1	Collision moment	33
		3.3.2	Fundamental assumptions	34
		3.3.3	Calculating $\left(\frac{\partial f}{\partial t}\right)^{(1,2)}$	35
	34	Simple	Gas	36
	0.1	341	Classical Boltzmann kinetic equation	36
		3.4.2	Summational invariants	36
		343	H-theorem equilibrium and the Maxwellian	00
		0.1.0	distribution	37
	3.5	Fokker-	-Planck Kinetic Equation	39
	0.0	3.5.1	Small deflection collisions	39
		352	Coulomb scattering	40
	36	Conclu	ding Remarks	41
	0.0	conciu		11
4	Inter	action Po	otentials and Cross Sections	.43
	4.1	Introdu	ction	43
	4.2	Classica	al Scattering Theory	43
		4.2.1	Differential and partial cross sections	43
		4.2.2	Inverse power law potentials	45
	4.3	Inverse	Fourth-Power Law Potential	47
		4.3.1	Polarization potential	47
		4.3.2	Constant collision frequency	48
	4.4	Realisti	c Interaction Potentials	48
		4.4.1	The Mason–Schamp potential	48
		4.4.2	Momentum transfer collision frequency	49
			······································	

	4.5	Calcula	ation of Cross Sections for a General Interaction	
		Potent	ial	50
		4.5.1	Transformation of variables	50
		4.5.2	Orbiting, critical energy, and cross sections	51
		4.5.3	Determination of ϵ_c	52
	4.6	Cross S	Sections for Specific Interaction Potentials	53
		4.6.1	Numerical methods and techniques	53
		4.6.2	Power law potentials	54
		4.6.3	Mason–Schamp (12-6-4) potential	55
	4.7	Conclu	ading Remarks	58
5	Kine	tic Equa	ations for Dilute Particles in Gases	59
0	51	Low D	Jensity Charged Particles in Gases	59
	0.1	511	Free diffusion or swarm limit	59
		512	The linear Boltzmann kinetic equation	50
		512	Moment equations	61
	5 2	Charge	Fychange	61
	5.2	5 2 1	Colligion model	61
		5.2.1	Delarization notantial and	01
		3.2.2	Photosoan Cross Krash excetion	()
	ΕQ	Calliai	Dhathagar–Gross–Krook equation	62
	5.3		On Term for Extremes of Mass Ratio	63
		5.3.1	Fractional energy exchange	63
		5.3.2	Heavy ions and Kayleigh limit	64
	- 1	5.3.3	Light charged particles and Lorentz gas	66
	5.4	Inelast	1c Collisions	71
		5.4.1	Wang Chang–Uhlenbeck–de Boer collision	
			term	71
		5.4.2	Semi-classical and quantum collision operators	73
		5.4.3	Inelastic collision term for light particles	75
	5.5	Non-C	onservative, Reactive Collisions	76
		5.5.1	Classification of reactive collisions	76
		5.5.2	Notation	77
		5.5.3	Particle loss collision term	78
		5.5.4	Electron impact ionization	79
	5.6	Two-Te	erm Kinetic Equations for a Lorentz Gas	79
	5.7	Conclu	iding Remarks	80
6	Char	ged Par	ticles in Condensed Matter	81
	6.1	Charge	e Carriers in Crystalline Semiconductors	81
	6.2	Amorr	phous Materials	81
		6.2.1	Trapping and the relaxation function	81
		6.2.2	The kinetic equation for amorphous materials	82
	6.3	Cohere	ent Scattering in Soft-Condensed Matter	84
		6.3.1	A model of coherent scattering	84

		6.3.2	Scattering theory	86
		6.3.3	Structure function	88
		6.3.4	Non-polar molecules	91
		6.3.5	Cross sections	92
	6.4	Kineti	c Equation for Charged Particles in Soft-Condensed	
		Matter		93
		6.4.1	The general expression for collisional rate of	
			change	93
		6.4.2	Kinetic and moment equations	95
		6.4.3	Dilute gas limit	96
		6.4.4	Light particles	97
	6.5	Conclu	uding Remarks	104
II	Flui	d Mod	elling in Configuration Space	105

7	Fluid	l Modelli	ing: Foundations and First Applications	107
	7.1	Momen	It Equations for Gases	107
		7.1.1	General moment equation	107
		7.1.2	Equation of continuity	108
		7.1.3	Momentum balance equation	108
		7.1.4	Energy balance equation	110
		7.1.5	External force terms	111
		7.1.6	Notation and terminology	111
		7.1.7	The problem of closure	112
	7.2	Constar	nt Collision Frequency Model	112
		7.2.1	The fundamental equations	112
		7.2.2	Convective time derivative	113
		7.2.3	Alternate form of the fluid equations	113
	7.3	Momen	tum Transfer Approximation	114
	7.4	Stationa	ary, Spatially Uniform Case	115
		7.4.1	Drift velocity and Wannier relation	115
	7.5	Transpo	ort in an Electric Field	116
		7.5.1	Mobility coefficient	116
		7.5.2	Solution of the moment equations	117
		7.5.3	Scaling	118
		7.5.4	Sample calculations	118
		7.5.5	Higher order moments	121
		7.5.6	Simplifications for very light particles	122
		7.5.7	A short note on tensor representation	123
	7.6	Spatial	Variations, Hydrodynamic Regime, and Diffusion	
		Coeffici	ents	123
		7.6.1	Linearized moment equations, generalized	
			Einstein relations	123
		7.6.2	Example for light particles	126

		7.6.3	Anisotropy in configuration and velocity	
			spaces	126
		7.6.4	Fick's law and the diffusion equation	127
		7.6.5	Local field approximation	128
	7.7	Diffusio	on of Charge Carriers in Semiconductors	128
8	Fluid	Models	with Inelastic Collisions	129
	8.1	Introdu	ction	129
	8.2	Momen	t Equations with Inelastic Collisions	129
		8.2.1	The general moment equation	129
		8.2.2	Equation of continuity	130
		8.2.3	Momentum balance	130
		8.2.4	Energy balance equation	132
	8.3	Represe	entation of the Average Inelastic Collision	
		Frequer	ncies	135
		8.3.1	Definition of averages	135
		8.3.2	Relationship between inelastic and superelastic	
			collision frequencies	135
		8.3.3	The smoothing function	136
	8.4	Hydrod	lynamic Regime	138
		8.4.1	Weak-gradient fluid equations	138
		8.4.2	Spatially uniform case	138
		8.4.3	Light particles, cold gas	139
	8.5	Negativ	ve Differential Conductivity	140
		8.5.1	NDC criterion	140
		8.5.2	Model calculation	141
		8.5.3	GERs in the presence of NDC	142
9	Fluid	Modelli	ing with Loss and Creation Processes	143
	9.1	Sources	and Sinks of Particles	143
		9.1.1	Non-conservative collisions in gases	143
		9.1.2	Non-conservative processes in condensed	
			matter	144
	9.2	Reactin	g Particle Swarms in Gases	145
		9.2.1	Balance equation including non-conservative	
			collisions	145
		9.2.2	Basic balance equations	147
		9.2.3	Approximation of the reactive terms	147
		9.2.4	Full set of fluid equations	149
		9.2.5	Closing the moment equations	149
	9.3	Spatiall	y Homogeneous Systems	150
		9.3.1	Notation	150
		9.3.2	Hot atom chemistry	151
		9.3.3	Reactive heating and cooling	152

	9.4	Reactiv	ve Effects and Spatial Variation	156
		9.4.1	Hydrodynamic regime	156
		9.4.2	Diffusion equation and the two types of transport	
			coefficients	157
		9.4.3	Light particles	160
10	Fluid	Model	ling in Condensed Matter	. 163
	10.1	Introdu	uction	163
	10.2	Mome	nt Equations Including Coherent and Incoherent	
		Scatter	ing Processes	163
		10.2.1	Basic fluid equations	163
		10.2.2	Structure-modified momentum transfer collision	
			frequency	164
	10.3	Structu	re-Modified Empirical Relationships	166
		10.3.1	Mobility and Wannier energy relations	167
		10.3.2	Structure-modified GERs	169
	0.1			
ш	Sol	utions	of Kinetic Equations	173
11	Strate	egies an	d Regimes for Solution of Kinetic Equations	. 175
	11.1	The Ki	netic Theory Program	175
		11.1.1	General statement of the problem	175
		11.1.2	Fluid analysis versus rigorous solution	176
		11.1.3	Strategies for reducing complexity	177
		11.1.4	Roadmap to solution of the kinetic equation	177
	11.2	Identif	ying Symmetries	177
		11.2.1	Plane-parallel geometry	178
		11.2.2	Spherical geometry	179
		11.2.3	Cylindrical geometry	179
	11.3	Kinetic	Theory Operators	180
		11.3.1	The collision operator and its adjoint	180
		11.3.2	Phase space operator and adjoint	182
	11.4	Bound	ary Conditions and Uniqueness	183
		11.4.1	Uniqueness theorem	183
		11.4.2	Approximations	185
	11.5	Eigenv	alue Problems in Kinetic Theory	186
	11.6	Hydro	dynamic Regime	188
		11.6.1	Weak fields and Chapman–Enskog	
			approximation scheme	188
		11.6.2	Beyond weak fields	188
		11.6.3	The hierarchy of velocity space equations	189
		11.6.4	Diffusion equation and transport coefficients	191
	–	11.6.5	Limitations of the density gradient expansion	192
	11.7	Benchr	nark Models	192
		11.7.1	Constant collision frequency (Maxwell) model	193

		11.7.2	Light particles (quasi-Lorentz gas)	193
		11.7.3	Relaxation time model	193
12	Num	nerical Te	echniques for Solution of Boltzmann's Equation	. 195
	12.1	Introdu	action	195
	12.2	The Bu	rnett Function Representation	195
		12.2.1	Representation of the directional dependence in	
			velocity space	196
		12.2.2	Representation in speed space	196
		12.2.3	Decomposition in velocity space	197
		12.2.4	Moments of the Boltzmann equation in the	
			Burnett representation	198
		12.2.5	Burnett function representation of Boltzmann's	
			equation	199
	12.3	Summa	ary of Solution Procedure	201
	12.4	Convei	rgence and the Choice of Weighting Function	202
		12.4.1	Convergence in the <i>l</i> -index	202
		12.1.1	Choice of weighting function	202
	12.5	Ion Tra	nsport in Gases	203
	12.0	12 5 1	Convergence in the <i>l</i> -index	203
		12.5.2	Convergence in the mass ratio expansion	207
		12:0:2	convergence in the mass rate expansion minimum	207
13	Bour	ndarv Co	onditions, Diffusion Cooling, and a Variational	
	Meth	nod	<i>o</i> ,	. 209
	13.1	Influen	ce of Boundaries	209
		13.1.1	Boundary effects, diffusion cooling, and	
			heating	209
		13.1.2	Pressure variation and practical considerations	210
		1313	Theoretical considerations	211
	13.2	Plane-F	Parallel Geometry	212
	13.3	The Ca	valleri Experiment	214
	10.0	13.3.1	Influence of boundaries	214
		13.3.2	Kinetic theory	214
		1333	Diffusion coefficient as an eigenvalue	216
	134	Variatio	onal Method	217
	10.1	1341	Kinetic equation and variational principle	217
		13.4.1	Minimizing the functional	217
		13.4.2	Model calculations and diffusion cooling	210
	135	Diffuei	on Cooling in an Alternating Electric Field	217
	15.5	13 5 1	Variational principle for the time-averaged kinetic	<u> </u>
		15.5.1	oguation	221
		1352	Model calculations and diffusion cooling in an	441
		10.0.2	alternating field	222
	13.6	Conclu	ding Romarke	220
	10.0	Conciu		223

14	An A	Analytically Solvable Model	. 227
	14.1	Introduction	227
	14.2	Relaxation Time Model	227
	14.3	Weak Gradients and the Diffusion Equation	228
		14.3.1 Near-equilibrium case	228
		14.3.2 Arbitrary fields, density gradient expansion	229
		14.3.3 Solution of the diffusion equation	230
	14.4	Solution of the Kinetic Equation	230
		14.4.1 Transformed equation	230
		14.4.2 Asymptotic expressions	233
		14.4.3 Calculation of averages	234
		14.4.4 Validity of the diffusion equation	235
	14.5	Relaxation Time Model and Diffusion Equation for an	
		Amorphous Medium	236
		14.5.1 Modified BGK kinetic equation with memory	236
		14.5.2 Solution for the time-of-flight experiment	237
	14.6	Concluding Remarks	240
TT 7	C	· 1	0.4.1
IV	Spe	ecial lopics	241
15	Temp	ooral Non-Locality	. 243
	15.1	Introduction	243
	15.2	Symmetries and Harmonics	243
	15.3	Solution of Boltzmann's Equation for Electrons in AC	
		Electric Fields	246
	15.4	Moment Equations for Electrons in AC Electric Fields	248
	15.5	Transport Properties in AC Electric Fields	250
		15.5.1 Anomalous anisotropic diffusion	251
	15.6	Concluding Remarks	253
4.6			
16	The	Franck–Hertz Experiment	. 255
	16.1	Introduction	255
	16.2	The Experiment and Its Interpretation	255
		16.2.1 The original arrangement	255
		16.2.2 Traditional model	257
		16.2.3 Results and interpretation	258
	16.3	Periodic Structures—The Essence of the Experiment	263
	16.4	Fluid Model Analysis	264
	16.5	Kinetic Theory	265
		16.5.1 The kinetic equation	265
		16.5.2 Eigenvalue analysis	266
	16.6	Numerical Results	269
		16.6.1 Numerical procedure	269

		16.6.3	Neon	271
	16.7	Conclu	ding Remarks	271
			0	
17	Posit	ron Trar	sport in Soft-Condensed Matter with Application	
	to PF	T	-1	273
	17.1	Why A	nti-Matter Matters	273
	17.2	Positro	n Emission Tomography	274
		17.2.1	The nature of PET	274
		17.2.2	Calculation of positron range	275
	17.3	Kinetic	Theory for Light Particles in Soft Matter	276
		17.3.1	Structure-modified cross sections	276
		17.3.2	Two-term analysis	276
		17.3.3	Multi-term analysis	277
		17.3.4	Fluid analysis	277
	17.4	Kinetic	Theory of Positrons in a PET Environment	277
	11	17.4.1	The model	277
		17.4.2	Two-term equations	278
		17.4.3	Solution for spherical symmetry	280
		17.4.4	Complete solution	283
	17.5	Calcula	tion of the Positron Range	284
	17.10	17.5.1	Definition of positron range	284
		17.5.2	Evaluation of the summation	284
		17.5.3	Numerical example	286
		17.5.4	Concluding remarks	287
			0	
18	Trans	sport in]	Electric and Magnetic Fields and Particle Detectors	. 289
	18.1	Introdu	iction	289
	18.2	Single,	Free Particle Motion in Electric and Magnetic	
		Fields	~ 	289
	18.3	Transpo	ort Theory in E and B Fields	290
	18.4	Symme	tries	292
		18.4.1	Hydrodynamic regime: Transport coefficients	292
		18.4.2	Symmetries in velocity space: A numerical	
			example	293
	18.5	The Flu	iid Approach	296
		18.5.1	Spatially homogeneous conditions: Wannier	
			relation, extended Tonk's theorem, and	
			equivalent field concept	298
		18.5.2	Spatially inhomogeneous conditions: GERs,	
			gradient energy vector	300
	18.6	Gaseou	s Radiation Detectors	302
		18.6.1	Basic processes	302
		18.6.2	Choice of gas filling	303
		18.6.3	Working principle of a drift chamber	308

19	Muo	ns in Ga	ases and Condensed Matter	311
	19.1	Muon	versus Electron Transport	311
	19.2	Muon	Beam Compression	312
	19.3	Aliasir	ng of Muon Transport Data	313
		19.3.1	Why aliasing is necessary	313
		19.3.2	The general prescription for aliasing	314
		19.3.3	Calculation of the mobility of μ^+ in H_2	315
	19.4	Muon-	Catalyzed Fusion	316
		19.4.1	Cold versus hot fusion	316
		19.4.2	μCF cycle	317
		19.4.3	Factors limiting the efficiency of µCF	318
		19.4.4	Kinetic and fluid analysis	319
		19.4.5	Observations and challenges for µCF	321
20	Con	luding	Romarka	272
20	20.1	Summ		272
	20.1	Furtho	r Challongoo	525
	20.2	20.2.1	Hoavy particles in soft matter	324
		20.2.1	Powerd neint neuticles	324
		20.2.2	Belatiziatia himatia theory	325
		20.2.3	Relativistic kinetic theory	325
	00.0	20.2.4	Partially ionized plasmas	326
	20.3	Unresc	lved Issues	327
		20.3.1	The (e, H_2) controversy	327
		20.3.2	Striations	328
V	Exer	rcises a	nd Appendices	331
Exe	rcises			333
Арр	vendix	A Com	parison of Kinetic Theory and Quantum Mechanics	361
App	vendix	B Inela	stic and Ionization Collision Operators for Light	
		Part	icles	363
App	vendix	C The	Dual Eigenvalue Problem	369
App	vendix	D Deri	vation of the Exact Expression for $\hat{n}_p(k)$	373
App	vendix	E Phys	sical Constants and Useful Formulas	375
יי הר		5		277
Kefe	erences	5		3//
Ind	ex			393

Monograph Series in Physical Sciences

This monograph series brings together focused books for researchers and professionals in the physical sciences. They are designed to offer expert summaries of cutting edge topics at a level accessible to non-specialists. As such, authors are encouraged to include sufficient background information and an overview of fundamental concepts, together with presentation of state of the art theory, methods, and applications. Theory and experiment are both covered. This approach makes these titles suitable for some specialty courses at the graduate level as well. Subject matter addressed by this series includes condensed matter physics, quantum sciences, atomic, molecular, and plasma physics, energy science, nanoscience, spectroscopy, mathematical physics, geophysics, environmental physics, and other areas.

Proposals for new volumes in the series may be directed to Lu Han, senior publishing editor at CRC Press/Taylor & Francis Group (lu.han@ taylorandfrancis.com).

Preface

The foundations of modern transport theory were laid 150 years ago in a seminal paper presented to the Royal Society of London by J. Clerk Maxwell. He formulated the equations of change for the physical properties of a gas, represented as moments or averages over a velocity distribution function and paid particular attention to the influence of collisions. Six years later, Ludwig Boltzmann, undoubtedly influenced by Maxwell's results, presented a kinetic equation to the German Physical Society in Berlin, whose solution furnished the required distribution function. In spite of early criticism and subsequent intense scrutiny, Boltzmann's equation has withstood the test of time and has gone on to become a mainstay in the field of non-equilibrium statistical mechanics, in general, and charged particle transport, in particular, the subject of this book. The key to the success and longevity of Boltzmann's equation is not only its ability to furnish accurate theoretical values of experimentally measured quantities, but also its remarkable flexibility and adaptability to systems and physics that Boltzmann could not possibly have foreseen. Thus, there are generalizations of the kinetic equation to condensed matter, as discussed in this book, and to quantum and relativistic systems, discussed elsewhere. In addition, there are many adaptations and applications of Boltzmann's equation to traditional and contemporary areas of basic physics research and technology. To take just one example of cutting edge science: laser acceleration of particles to very high energies over distances several orders of magnitude smaller than conventional accelerators has been modelled through methods which are similar, at least in principle, to the ideas of Boltzmann and Maxwell. It would take several volumes to do justice to all of the fields on which the Boltzmann equation has had an impact and any single exposition, like the present, is necessarily circumscribed. Nevertheless, the scope of this book is broad and, moreover, the treatment is unique in that we provide a unified approach to the transport theory of particles of various types (electrons, ions, atoms, positrons, and muons) in various media (gases, soft-condensed matter, and amorphous materials). The applications are many and diverse, ranging from traditional drift tube experiments, positron emission tomography, and muon-catalyzed fusion, through to recent developments in materials physics.

One of the problems in writing a book such as this has been to overcome the perception that transport theory, beyond the simplistic mean free path arguments of some undergraduate books and courses, is somehow excessively difficult. On the one hand, it is true that a rigorous solution of the Boltzmann kinetic equation in phase space requires sophisticated mathematics and numerical procedures, and even the senior author of a well-known, formidable treatise on kinetic theory is reputed to have compared the exercise to "chewing glass." On the other hand, the original approach of Maxwell, using moment or "fluid" equations in configuration space, provides a complementary, semi-quantitative picture from which it is possible to obtain physical understanding while maintaining rigour. Both methods are employed in this book to provide a comprehensive treatment of charged particle transport phenomena.

The material has formed the basis of lecture courses given over the past 10 years in Australia and the United States at the senior undergraduate and graduate student level.

We thank Professor Michael Morrison of the University of Oklahoma; Professor Zoran Petrovic of the Institute of Physics, Belgrade; Professor Toshiaki Makabe of Keio University; and Dr. Bernhard Schmidt, originally at the University of Heidelberg and nowadays at DESY, Hamburg, for stimulating discussions and encouragement over many years. The dedication and contributions of the past and current staff, postdoctoral researchers, and post-graduate students at James Cook University cannot be understated. Particular thanks go to Kevin Ness, Bo Li, Sasa Dujko, Daniel Cocks, Gregory Boyle, Bronson Philippa, Wade Tattersall, Peter Stokes, Madalyn Casey, and Nathan Garland. The support of the Alexander von Humboldt Foundation, the Paul Scherrer Institut, the Australian Research Council, and James Cook and Griffith Universities is gratefully acknowledged.

The authors thank the publishers of "Introductory Transport Theory for Charged Particles in Gases," by R.E. Robson, Copyright 2006, World Scientific Publishing Company Pty. Ltd, for granting us permission to adapt and reproduce parts of this publication in the present book.

About the Authors

Robert Robson obtained his PhD in theoretical physics in 1972 at the Australian National University, Canberra. After a postdoctoral fellowship at the University of Alberta, Canada, he went on to lecture and research in physics and meteorology in Australia, the United States, Japan, and Europe. He was an Alexander von Humboldt Fellow at the University of Düsseldorf, Germany and held the Hitachi Chair of Electrical Engineering at Keio University, Japan. His most recent research has been on soft-condensed

matter and amorphous semiconductors at James Cook University, Australia, and modelling relativistic electron beams in plasma-based accelerators at Deutsches Elektronen-Synchrotron (DESY), Hamburg. He is a distinguished member of the Australian Association of von Humboldt Fellows, and a Fellow of the American Physical Society and the Royal Meteorological Society.

Ronald White obtained his PhD in theoretical physics in 1997 with a study of electron transport in gases relevant to plasma processing studies at James Cook University. After research appointments in Australia, Japan, and the United States, he returned to James Cook University where he took up a lectureship in 2002 in the Mathematics Department. He was promoted to full Professor in 2015 and is cur-

rently the Head of Physical Sciences at James Cook University, which encompasses the Mathematics, Physics, and Chemistry Departments. His research interests are focused on the non-equilibrium transport of charged particles in gases, soft-condensed matter, liquids, and organic matter.

Malte Hildebrandt studied physics at the University of Heidelberg, Germany, and worked for his diploma thesis on electron swarm experiments. In 1999, he completed his PhD on the development of particle detectors for high energy physics experiments. He went on to a postdoctoral position at the University of Zürich, Switzerland, and moved later to the Paul Scherrer Institut, Switzerland. Since 2009, he has been Head of the Detector Group of the Laboratory for Par-

ticle Physics at the Paul Scherrer Institut. His work focuses on particle detectors, in particular, gaseous detectors, for charged particles and neutrons.

Glossary of Symbols and Acronyms

Symbol	Meaning
a	external force per unit mass
α	scaling factor for velocity $\sqrt{\frac{m}{k_{P}T}}$
b	impact parameter
χ	scattering angle in centre of mass
D	diffusion tensor (starred quantities are "flux" while non-starred are "bulk")
e	energy
ε	spatially uniform energy
$E_{\rm e}$ or $E_{\rm eff}$	equivalent of effective electric field
$f(\mathbf{v}), f_0(\mathbf{v}_0)$	particle and neutral velocity distribution functions
$\phi(\tau)$	relaxation function for de-trapping
$\phi_m^{(\mathbf{v},t)}(\mathbf{v})$	Burnett function
g, G	relative and centre-of-mass velocities
γ	gradient energy parameter
I'	particle flux
1, U	electric current and applied voltage
J, J'	collision operator and its adjoint
J _q V V	neat flux vector
К, К	mobility and reduced mobility coefficients
κ_j	Spectral wave number
ν _D	Debye length
<i>m</i> , <i>m</i> ₀	particle and neutral number densities
n, n ₀ N	total particle number
1 N	momentum and energy-transfer collision frequencies
\vec{v}_m, \vec{v}_e \vec{v}_e, \vec{v}_e	inelastic and superelastic collision frequencies
ν_l, ν_l	ionization collision frequency
ν_{\star}	reactive loss collision frequency
$\widetilde{\nu}_{m}$	structure-modified collision frequency
ω, Ω_L	angular frequency of applied electric field, gyrofrequency of
Ω	inelastic collision transfer term
 Р	pressure tensor
$\sigma(q, \gamma)$	differential cross section
10 / M/	

Symbol Meaning

$\sigma^{(l)}, \sigma_m$	<i>l</i> th partial and momentum-transfer cross sections
$S(K, \Omega)$	structure function
T, T_0, T_b	particle, neutral, and basis temperatures
v , v ₀	velocities of particles and neutrals
$\langle \rangle, \langle \rangle_0$	averages over particle and neutral velocities
$\langle \mathbf{v} \rangle$	average particle velocity
$\mathbf{v}_d, \mathbf{v}_d^*$	bulk and flux drift velocities
v	unit vector in direction of v
$\langle vv \rangle$	second rank tensor with components $\langle v_i v_j \rangle$
V(r)	interaction potential
$w(\alpha, v)$	Maxwellian distribution function
$\Upsilon_m^{(l)}(\widehat{\mathbf{v}})$	spherical harmonic
Z	plasma dispersion function
BGK	Bhatnagar-Gross-Krook
μCF	muon-catalyzed fusion
, PET	positron emission tomography
MTT	momentum transfer theory
GER	generalized Einstein relation
	0

CHAPTER 1

Introduction

1.1 Boltzmann's Equation

1.1.1 A little history

In 1872, Ludwig Boltzmann proposed a kinetic equation of the form

$$\left(\frac{\partial}{\partial t} + L\right)f = \left(\frac{\partial f}{\partial t}\right)_{\text{col}} \tag{1.1}$$

for the velocity distribution function f of a low density gas, where L is a linear "streaming" operator in phase space, and $\left(\frac{\partial f}{\partial t}\right)_{col}$ accounts for binary, elastic collisions between the constituent atoms [1]. The expression for the latter was formulated on the basis of an Ansatz (or hypothesis), which effectively introduces an arrow of time into the evolution of the system, leading to the *H*-theorem and establishing a connection with the second law of thermodynamics. Although Boltzmann suffered criticism from his contemporaries, and the Ansatz has been the subject of considerable critical scrutiny since then, no satisfactory alternative has emerged, and the Boltzmann equation, modified by Wang Chang et al. to include inelastic collisions [2,3] remains to this day the preferred means of investigating gases in a non-equilibrium state.

Boltzmann's equation and the distribution function *f* play the same role in *kinetic theory* as do Schrödinger's equation and the wave function ψ in quantum mechanics. Once *f* is obtained from solution of Equation 1.1 all quantities of physical interest can be obtained as appropriate velocity "moments," similar to expectation values formed with $|\psi|^2$ in quantum physics (see Appendix A).

The centenary of Boltzmann's work was marked by a special publication [4] of both a biographical and scientific nature, which illustrated the extent of the influence that this remarkable equation has had on many areas of physics, involving both gases and condensed matter. Indeed, Boltzmann's contributions to the wider field of statistical mechanics are profound and are remembered in a special way (see Figure 1.1).

1.1.2 From the "golden" era of gas discharges to modern times

The emergence of Boltzmann's equation in the latter part of the nineteenth century coincided with an era of great interest in electrical discharges

Figure 1.1 The equation $S = k \log W$ linking entropy *S* with the number of microstates *W* of a system appears on Boltzmann's memorial headstone in Vienna.

in gases, though mutual recognition took some time. These investigations were motivated by the earlier observation of striations (alternating light and dark bands in the discharge) by Abria [5] (and more recently [6]), and culminated in the seminal drift tube experiments around the turn of the century and in the early 1900s. For example, Kaufmann and Thomson independently determined the elementary charge-to-mass ratio, e/m, which in turn led to Thomson's discovery of the electron, while the seminal experiment of Franck and Hertz confirmed Bohr's predictions of the quantized nature of atoms. As a result, there has been tremendous progress in science and technology, and it is not surprising that in the first three decades of the twentieth century, the field produced more than its fair share of Nobel laureates. Historical surveys of the "golden era" of drift tube experiments have been given by a number of authors, including Brown [7], Müller [8], Loeb [9], and Huxley and Crompton [10]. Investigations of gaseous discharges also spawned the field of plasma physics, with applications ranging from hot, fusion plasmas ($T \sim 10^6 K$ or more), with the promise of virtually limitless clean energy, to low temperature ($T \sim 10^4 K$) plasmas, of such importance in the microchip fabrication industry [11–13] and finally through to low density, low energy "swarms" of electrons and ions in gases [14], with applications in such diverse areas as fundamental atomic and molecular physics [15] and gaseous radiation detectors [16]. In the course of time, Equation 1.1 has come to be regarded as *de rigueur* for analyzing experiments involving charged particles in gases and condensed matter [17], along with applications of both a technological and scientific nature.

1.1.3 Transport processes: Traditional and modern descriptions

In general, non-equilibrium systems are characterized by non-uniformity and gradients in properties which result in an irreversible flow or "flux" of these properties in such a direction as to restore uniformity and equilibrium. Such *transport processes* are *traditionally* represented by well-known empirical linear flux-gradient relations, such as Fourier's law of heat conduction, and Fick's law of diffusion of matter, in which the constants of proportionality define *transport coefficients*, namely, the thermal conductivity and diffusion coefficient tensor, respectively. These coefficients can be calculated theoretically from approximate solution of the Boltzmann's equation, through linearizing in temperature and density gradient, respectively. However, one should be cautious in applying these traditional ideas to interpret drift tube experiments, for two reasons:

- Experiments are traditionally analyzed using the *diffusion equation*, which represents overall particle balance in the bulk of the system, and the coefficients in the diffusion equation differ from those defined by Fick's law when particles are created or lost, for example, by ionization and attachment, respectively. In these circumstances, experiments do not measure the traditional transport coefficients.
- Flux-gradient relations and the diffusion equation are valid only for systems which have attained a state called the *hydrodynamic regime*. Some systems never get to that state and are intrinsically non-hydrodynamic, for example, the steady state Townsend and Franck-Hertz experiments. Neither Fick's law nor the diffusion equation are physically tenable in these cases, and neither is description in terms of transport coefficients (however defined) possible. Measurable properties can be calculated theoretically only by solving Boltzmann's equation without approximation.

1.1.4 Theme of this book

In essence, Boltzmann's equation takes us from the laws of physics governing behaviour on the microscopic (atomic) scale, collisions in particular, to the level of macroscopically measurable quantities. The microscopicmacroscopic connection is the theme of our discussion, and explaining just *how* the connection is made provides the substance of this book. Put succinctly, the program is to solve Equation 1.1 for f, and then form velocity averages to find the macroscopic quantities of interest, for example, electric currents, or total particle number, which are measured in experiment.

1.2 Solving Boltzmann's Equation

1.2.1 The path to solution

- *Chapman–Enskog method:* The Chapman–Enskog method [18] is a perturbative procedure which was developed about 100 years ago to solve Boltzmann's equation for systems close to equilibrium. It was applied to gaseous ions in the 1950s by Kihara [19] and Mason and Schamp [20] but, by virtue of the limitations of the procedure, results could be obtained for only the weak field regime. Given that the systems of interest are often driven far from equilibrium by strong fields, this procedure is inadequate for most purposes.
- *Light particles, Lorentz approximation:* It was recognized early on that $\left(\frac{\partial f}{\partial t}\right)_{col}$ could be approximated in differential form for electrons undergoing elastic collisions in gases [18,21]. This simplification, together with an assumption of near-isotropy of *f* in velocity space, originally attributed to Lorentz [22], enables Boltzmann's equation to be solved, sometimes analytically, without any restriction on the magnitude of the field. These ideas underpin the field of gaseous electronics [23], which has maintained a distinct identity over many decades.
- Light particles in liquids and soft matter: Cohen and Lekner [24] modified $\left(\frac{\partial f}{\partial t}\right)_{col}$ to account for coherent scattering of electrons in liquids and, as for gaseous media, *f* was also assumed to be nearly isotropic in velocity space. Nevertheless, Cohen and Lekner's results have become well established in the literature and provide the basis for more sophisticated transport analysis of both electrons and positrons in liquids and soft-condensed matter.
- *Light particles, inelastic processes:* In many cases of interest, electrons also undergo inelastic collisions with the molecules of the medium, and consequently $\left(\frac{\partial f}{\partial t}\right)_{col}$ no longer assumes a simplified

differential form. The Lorentz approximation is also questionable if inelastic processes are significant and, all in all, solution of Boltzmann's equation becomes more difficult. In fact, the degree of difficulty is on a par with heavier ions, for which there is significant anisotropy in velocity space even if inelastic processes are absent. This points towards the need for a general procedure for solving Boltzmann's equation for particles of all masses and types.

- *Wannier's theory:* In the 1950s, Wannier [25] solved Boltzmann's equation for dilute ions in gases in the strong field regime, though specifically for special models of interaction. He also formulated a relationship between the mean ion energy and average velocity, and sowed the seeds of an idea for a semi-quantitative alternative to rigorous numerical solution of Boltzmann's equation, which is nowadays called "momentum-transfer theory."
- *The Viehland–Mason solution for ions:* Around the time of the Boltzmann centenary in 1972, computing power had reached a level where rigorous numerical solution of the Boltzmann equation for ions had become possible for realistic forms of interaction, and without resorting to any perturbation method. In a series of papers commencing in 1975, Viehland, Mason, and collaborators developed a general method of solution of Boltzmann's equation for dilute ions in gases in electric fields of arbitrary strength [26–28]. The modern era of charged particle kinetic theory can be traced from this time.
- *Towards a unified kinetic theory:* Lin et al. [29] combined the essentials of the Viehland–Mason approach with Kumar's tensor formalism, adapted from atomic and nuclear physics [30], to develop a rigorous solution of Boltzmann's equation, modified to include inelastic collisions for light particles, avoiding the traditional *a priori* assumption of near-isotropy of *f* in velocity space. The method has been refined over the years, and nowadays provides the basis of a comprehensive kinetic theory of charged particles, ions, electrons, positrons, muons, and so on, in both gases and condensed matter. The reader can find a number of reviews and books detailing developments from the immediate post-Viehland–Mason era to more modern times [31–35].
- *Charge carriers in semiconductors:* The kinetic theory of free charge carriers (electrons and holes) scattered by phonons (lattice vibrations) in crystalline semiconductors was developed in parallel to gases [17]. It is sometimes remarked that there exists a one-to-one correspondence with scattering of charged particles from molecules and atoms in gases, even though the collision term $\left(\frac{\partial f}{\partial t}\right)_{col}$ in the kinetic equation (still referred to as

"Boltzmann's equation") is different. The role of transport theory in understanding experiments related to the development of solid-state devices including the transistor has a long history [36]. On the other hand, charge carriers are said to exhibit anomalous behaviour in disordered, non-crystalline amorphous media, such as organic semiconductors, due to trapping effects. These materials are being intensely investigated [37] and it appears that yet another technological revolution is underway [38,39]. The kinetic theory associated with these processes is, however, a "work in progress," with only simple forms of $\left(\frac{\partial f}{\partial t}\right)_{col}$ having so far been employed [40,41].

1.2.2 A complementary approach: Fluid modelling

After solving the Boltzmann equation as described above, quantities of physical interest are formed by taking appropriate velocity averages of *f*. An alternative approximate, more computationally economical and physically appealing alternative is to find the averages directly by solving approximate moment or fluid equations in configuration space. These equations can be formed either by taking velocity moments of Boltzmann's equation, or from first principles, as Maxwell [42] did 6 years before Boltzmann formulated his kinetic equation. In fact, the roles can be completely reversed, as we show in this book, and Boltzmann's equation can be obtained (and later solved) using the moment equation method.

Maxwell paid particular attention to the collision terms in the moment equations and showed that they could be evaluated exactly for a particular model, in which the interaction varied inversely as the fifth power of the distance. The Maxwell model, which corresponds to a point-charge, induced dipole interaction, is particularly suitable as a first approximation when discussing charged particles in gases. It provides the basis for "momentum transfer" theory [33], which has proved particularly successful in semi-quantitative fluid modelling of charged particle transport phenomena [43].

1.3 Experiment and Simulation

1.3.1 An idealized apparatus

Although this book focuses on theory, we touch briefly on experiments [10,15,34,36,44,45] though it is not possible to discuss technical details. We instead focus on principles of operation, following the style of Kumar [14], using as an example the idealized experimental arrangement shown in Figure 1.2.

Figure 1.2 A schematic representation of an experiment in which particles of charge q are emitted by the source electrode and travel through a medium of known properties to a collecting electrode a distance d away under the influence of an electric field. Collisions are represented by the vertices of the trajectory and are characterized by appropriate scattering cross sections σ .

Particles of charge q emitted by a source electrode are forced by a uniform electric field E to move a distance d through a chamber containing a medium of known properties (gas or condensed matter) to a collecting electrode. Particle number density n is assumed sufficiently small so that mutual interactions are negligible in comparison with interactions of particles with the constituents of the medium. Such collisions are assumed to be local, that is, to take place in a region small compared with any macroscopic dimension, effectively at a point, and are represented by the vertices in the particle trajectory shown in the figure.

The source may operate in a pulsed or continuous mode. In some experiments, particles incident on the collecting electrode form the current measured in an external circuit. In the Franck–Hertz experiment [46], there is a modulating grid in front of the collecting electrode. In the Cavalleri experiment [10], it is the total number of particles within the chamber that is determined as a function of time. In yet other experiments, the radiation emitted by atoms and molecules returning to a lower energy level after excitation in a collision may be used as a diagnostic tool, as in the photon flux technique [47].

For a *gaseous* medium, particles may be considered to collide with individual atoms and molecules and the various processes (elastic, inelastic, ionizing, reacting, etc.) are characterized by a corresponding binary scattering cross section σ . Collisions take place on a time scale small compared with any relevant macroscopic scale, and to all intents and purposes are instantaneous. In the *time-of-flight experiment*, an initial sharp pulse of particles injected at the source spreads at a constant rate about its centre-of-mass, which moves with constant velocity v_d through the medium, as shown in Figure 1.3. Although the pulse spreads in the course of time,

Figure 1.3 The number density *n* of charged particles as a function of distance *z* from the source at a time *t* after injection into the medium, initially as a sharp pulse. After a sufficient number of collisions, the pulse has spread out and its centre-of-mass travels with constant velocity v_d , determined by field, the scattering cross sections, and the properties of the medium. The width of the pulse increases with time *t* in proportion to the (longitudinal) diffusion coefficient.

it still retains its identity, and its two main properties (centre-of-mass velocity and width) are readily measurable. The same properties may be calculated from solution of Boltzmann's equation. Naturally, the theoretical values should be calculated to at least the same accuracy as the experimentally measured counterparts. Typically, the accuracy in swarm drift tube experiments is 0.1%–1.0% for the drift velocity v_d [10].

The picture is similar for charge carriers scattered from phonons in a *crystalline semiconductor,* and there too the time-of-flight experiment is the canonical experiment.

For a *soft matter* medium with short-range order, particles are scattered simultaneously (diffracted) by many constituent molecules. Nevertheless, the picture of local, instantaneous interactions at the vertices of Figure 1.2 prevails, and a pulse in a time-of-flight experiment in this medium generally maintains its distinct identity. There are cases, however (e.g., electrons in neon), where this is not the case [48], where electrons can get caught and released from "bubble" states.

For *amorphous materials*, such as organic semiconductors, this is generally not the case, where particles are trapped for finite times in localized states. The picture shown in Figure 1.2 still holds, but vertices now represent "collisions" (trapping/de-trappings) lasting finite times, rather than taking place instantaneously. Particles may be trapped for significant times over the entire length of the chamber; consequently, the particle density profile in a time-of-flight experiment is qualitatively quite different. In particular, there is no distinct travelling pulse in a time-of-flight experiment [37]. In this book, we focus on non-relativistic, low density charged particles which interact predominantly with the background medium, and neglect mutual Coulomb interactions and self-consistent fields. The main aims are to:

- Formulate kinetic and fluid equations for charged particles in gases, soft-condensed matter, and amorphous materials, allowing for coherent scattering and/or trapping in localized states where necessary,
- Outline the basic techniques for solving the kinetic equation and for calculating transport properties,
- Understand the link between the microscopic processes and the macroscopic transport properties,
- Apply the theory to traditional and new areas of science, technology, and medical diagnostic techniques.

While rigour is a watchword, we use short arguments and simplified mathematics wherever possible to elucidate the physics.

The structure is as follows:

- **Part I:** Fundamentals of kinetic theory, derivation of Boltzmann's related kinetic equations, as well as calculation of classical cross sections.
- **Part II:** Simplified treatment of transport processes through a fluid equation analysis, in which Boltzmann's kinetic equation in phase space is replaced by a set of approximate "moment" equations in configuration space.
- Part III: Procedures and techniques for solution of Boltzmann's equation.
- **Part IV:** Applications include boundary effects and diffusion cooling, Franck–Hertz experiment, anomalous transport in amorphous semiconductors, calculation of positron range in positron emission tomography (PET), muon-catalyzed fusion, and gaseous radiation detectors.
- **Part V:** Gives a series of appendices providing extra information, miscellaneous proofs and values of numerical constants, together with a set of exercises aimed at reinforcing the material in the text, and a comprehensive list of references to books and original papers.

Additional General Reading Materials

• A good introductory text on statistical mechanics: D.V. Schroeder, "Thermal Physics" (Addison-Wesley, Longman, 2000).

10 Fundamentals of Charged Particle Transport in Gases and Condensed Matter

- A good introductory background to kinetic theory can be found in the following article: E.D.G. Cohen, *Amer. J. Phys.* 61:524, 1993 (Sections I and II A,B,C only).
- A widely used text for graduate level statistical mechanics: K. Huang, "Statistical Mechanics" 2nd Edition (Wiley, 1987), especially Chapters 3–5.
- A favourite classical mechanics text: H. Goldstein, "Classical Mechanics", 2nd Edition (Addison-Wesley, 1980).
- Graduate level texts dealing with charged particles in gases:
 - R.E. Robson, "Introductory Transport Theory for Charged Particles in Gases" (World Scientific Singapore, 2006).
 - M. Charlton and J.W. Humberston, "Positron Physics" (Cambridge University Press, 2001).
 - E.H. Holt and R.E. Haskell, "Plasma Dynamics" (Macmillan, 1965).
 - E.W. McDaniel, "Collision Phenomena in Ionized Gases" (Wiley, New York, 1964).
 - M.A. Uman, "Introduction to Plasma Physics" (McGraw-Hill, 1964).
 - D.C. Montgomery and D.A. Tidman, "Plasma Kinetic Theory" (McGraw-Hill, 1964).
- Books dealing with transport processes in semiconductors and solid-state devices include:
 - H. Haug and A. Jauho, "Quantum Kinetics in Transport and Optics of Semiconductors" (Springer, Berlin, 2008).
 - S.M. Sze and K.K. Ng, "Physics of Semiconductor Devices" 3rd Edition (Wiley, New York, 2007).
 - K. Seeger, "Semiconductor Physics" (Springer, Berlin, 1989).
 - E. Conwell, "High field transport in semiconductors," Suppl. No. 9 to "Solid State Physics," editors H. Ehrennreich, F. Seitz and D. Turnbull (Academic Press, New York, 1967).
 - C. Kittel, "Elementary solid state physics" 8th Edition, (Wiley, New York, 2005).
- A good introduction to charge carriers in amorphous materials is given by R. Zallen, "The Physics of Amorphous Solids" (Wiley, New York, 1983).
- Although not directly related to the theme of this book, the monograph by M.M.R. Williams "Mathematical Methods in Particle Transport Theory" (Butterworths, London, 1971), contains much useful information, along with important theorems of a general nature and details of mathematical techniques.

- Advanced general kinetic theory references:
 - R. L. Liboff, "Kinetic Theory," 2nd edition (Wiley, New York, 1998), Chapters 3 and 4.
 - A.R. Hochstim and G. Massell, "Kinetic Processes in Gases and Plasmas" (Academic Press, New York, 1969).
- A useful reference on thermodynamics and its relation to Boltzmann's equation: S.R. de Groot and P. Mazur, "Non-equilibrium Thermodynamics" (North Holland, Amsterdam, 1969).

References

L. Boltzmann . Weitere Studien ber das Wrmegleichgewicht unter Gasmoleklen. Wiener Berichte, 66:275, 1872.

C. S. Wang Chang , G. E. Uhlenbeck . and J. de Boer . The heat conductivity and viscosity of polyatomic gases. In Studies in Statistical Mechanics, edited by J. de Boer and G. E. Uhlenbeck , vol. 2, pp. 241268, New York, NY: Wiley, 1964.

L. S. Frost and A. V. Phelps . Rotational excitation and momentum transfer cross sections for electrons in H2 and N2 from transport coefficients. Physical Review, 127(5):16211633, 1962. E. G. D. Cohen and W. Thirring . The Boltzmann Equation: Theory and Applications. Vienna: Springer, 1973.

M. Abria . Investigations of the enigmatic phenomenon of striations. Annales de Chimi et de Physique, 7:462, 1843.

V. I. Kolobov . Striations in rare gas plasmas. Journal of Physics D: Applied Physics, 39(24):R487R506, December 2006.

S. C. Brown . A summary of the numerous articles published by Brown et al., on high-frequency breakdown. Handbuch der Physik, 21:531, 1956.

A. Mller . The background of Rntgen's discovery. Nature, 157:119, 1946.

L. B. Loeb . Basic Processes of Gaseous Electronics. CA: University of California Press, 1955. L. G. H. Huxley and R. W. Crompton . The Diffusion and Drift of Electrons in Gases. New York, NY: Wiley, 1974.

V. A. Rozhansky and L. D. Tsendin . Transport Phenomena in Partially Ionized Gases. London: Taylor and Francis, 2001.

M. A. Lieberman and D. L. Lichtenberger . Principles of Plasma Discharges and Materials Processing, 2nd edition, New York, NY: Wiley, 2005.

T. Makabe and Z. Lj. Petrovi . Plasma Electronics, 2nd edition, Boca Raton, FL: CRC Press, 2015.

378 K. Kumar . The physics of swarms and some basic questions of kinetic theory. Physics Reports, 112(5):319375, 1984.

R. W. Crompton . Benchmark measurements of cross sections for electron collisions: Electron swarm methods. Advances in Atomic, Molecular, and Optical Physics, 33:97148, 1994.

F. Sauli . Gaseous Radiation Detectors: Fundamentals and Applications. Cambridge: Cambridge University Press, 2014.

L. Reggiani . Hot Electron Transport in Semiconductors. Berlin: Springer-Verlag, 1985.

S. Chapman and T. G. Cowling . The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases. Cambridge Mathematical Library. Cambridge: Cambridge University Press, 1970.

T. Kihara . The mathematical theory of electrical discharges in gases. B. Velocity-distribution of positive ions in a static field. Reviews of Modern Physics, 25:844, 1953.

E. A. Mason and H. W. Schamp . Mobility of gaseous ions in weak electric fields. Annals of Physics, 4:233, 1958.

B. I. Davydov . Diffusion equation with taking into account of molecular velocity. Physikalische Zeitschrift der Sowjetunion, 8:59, 1935.

H. A. Lorentz . The motion of electrons in metallic bodies. In Proceedings of the Royal Netherlands Academy of Arts and Sciences, 7:438453, 1905.

W. P. Allis . Motions of ions and electrons. In Handbuch der Physik, vol. 21, ed. S. Flgge . Berlin, Heidelberg: Springer, p. 383, 1959.

M. Cohen and J. Lekner . Theory of hot electrons in gases, liquids, and solids. Physical Review, 158(2):305309, June 1967.

G. H. Wannier . Motion of gaseous ions in strong electric Fields. Bell System Technical Journal, 32(1):170254, 1953.

S. L. Lin , L. A. Viehland , and E. A. Mason . Three-temperature theory of gaseous ion transport. Chemical Physics, 37(3):411424, 1979.

L. A. Viehland and E. A. Mason . Gaseous ion mobility in electric fields of arbitrary strength. Annals of Physics, 91(2):499533, 1975.

L. A. Viehland and E. A. Mason . Gaseous ion mobility and diffusion in electric fields of arbitrary strength. Annals of Physics, 110(2):287328, 1978.

379 S. L. Lin , R. E. Robson , and E. A. Mason . Moment theory of electron drift and diffusion in neutral gases in an electrostatic field. Journal of Chemical Physics, 66:435, 1979.

K. Kumar . The Chapman-Enskog solution of the Boltzmann equation: A reformulation in terms of irreducible tensors and matrices. Australian Journal of Physics, 20:205, 1967.

K. Kumar , H. R. Skullerud , and R. E. Robson . Kinetic theory of charged particle swarms in neutral gases. Australian Journal of Physics, 33:343448, 1980.

L. A. Viehland . Comparison of theory and experiment for gaseous ion transport involving molecular species. Physica Scripta, T53:53, 1994.

E. A. Mason and E. W. McDaniel . Transport Properties of Ions in Gases. New York, NY: Wiley, 1988.

Z. Lj. Petrovi , M. uvakov , . Nikitovi , S. Dujko , O. ai , J. Jovanovi , G. Malovi , and V. Stojanovi . Kinetic phenomena in charged particle transport in gases, swarm parameters and cross section data. Plasma Sources Science and Technology, 16(1):S1S12, February 2007.

R. D. White , R. E. Robson , S. Dujko , P. Nicoletopoulos , and B. Li . Recent advances in the application of Boltzmann equation and fluid equation methods to charged particle transport in non-equilibrium plasmas. Journal of Physics D: Applied Physics, 42:194001, 2009.

J. R. Haynes and W. Shockley . Investigation of hole injection in transistor action. Physical Review, 75(4):691, 1949.

I. M. Sokolov , J. Klafter , and A. Blumen . Fractional kinetics. Physics Today, 55:4854, 2002. M. Muccini . A bright future for organic field-effect transistors. Nature Materials, 5(8):605613, 2006.

P. Peumans , S. Uchida , and S. R. Forrest . Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature, 425(6954):158162, September 2003. B. Philippa , R. E. Robson , and R. D. White . Generalized phase-space kinetic and diffusion equations for classical and dispersive transport. New Journal of Physics, 16(7):073040, July 2014.

P. W. Stokes , B. Philippa , D. Cocks , and R. D., White . Solution of a generalised Boltzmann's equation for non-equilibrium charged particle transport via localised and delocalised states. Physical Review E, 93:032119, 2015.

380 J. C. Maxwell . On the dynamical theory of gases. Philosophical Transactions of the Royal Society of London, 157:49, 1867.

R. E. Robson , R. D. White , and Z. Lj. Petrovi . Colloquium: Physically based fluid modeling of collisionally dominated low-temperature plasmas. Reviews of Modern Physics, 77:1303, 2005.

Z. Lj. Petrovi , S. Dujko , D. Mari , G. Malovi , . Nikitovi , O. ai , J. Jovanovi , V. Stojanovi , and M. Radmilovi-Radenovi . Measurement and interpretation of swarm parameters and their application in plasma modelling. Journal of Physics D: Applied Physics, 42(19):194002, October 2009.

B. Philippa , M. Stolterfoht , P. L. Burn , G. Juka , P. Meredith , R. D. White , and A. Pivrikas . The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells. Scientific Reports, 4:5695, January 2014.

J. Franck and G. Hertz . ber Zusammenste zwischen Elektronen und Moleklen des Quecksilberdampfes und die Ionisierungsspannungen desselben. Verhandlungen der Deutschen Physikalischen Gesellschaft, 16:457, 1914.

J. Fletcher and P. H. Purdie . Spatial non-uniformity in discharges in low pressure helium and neon. Australian Journal of Physics, 40:383, 1987.

Y. Sakai and W. F. Schmidt . High and low mobility electrons in liquid neon. Chemical Physics, 164:139152, 1992.

K. Huang . Statistical Mechanics, 2nd edition, Hoboken, NJ: Wiley, 1987.

K. F. Ness , Kinetic theory of charged particle swarms with applications to electrons, PhD Thesis, James Cook University, 1986.

K. F. Ness and R. E. Robson . Velocity distribution function and transport coefficients of electron swaiiiis in gases. II. Moment equations and applications. Physical Review A, 34(3):2185, 1986.

R. E. Robson , R. Winkler , and F. Sigeneger . Multiterm spherical tensor representation of Boltzmann's equation for a nonhydrodynamic weakly ionized plasma. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 65:056410, 2002.

R. E. Robson , T. Mehrling , and J. Osterhoff . Phase-space moment-equation model of highly relativistic electron-beams in plasma-wakefield accelerators. Annals of Physics, 356:306319, 2015.

H. Goldstein . Classical Mechanics. Boston, MA: Addison-Wesley, 1964.

381 Y. Chang and R. D. White . Linearized Boltzmann collision integral with the correct cutoff. Physics of Plasmas, 21:072304, 2014.

D. C. Montgomery and D. A. Tidman . Plasma Kinetic Theory. New York, NY: McGraw-Hill, New York, 1964.

K. Miyamoto . Plasma Physics for Nuclear Fusion. London: MIT Press, 1989.

E. A. Mason and E. W. McDaniel . Transport Properties of Ions in Gases. New York, NY: Wiley, 1988.

E. W. McDaniel . Collision Phenomena in Ionized Gases. New York, NY: Wiley, 1964.

A. S. Davydov . Quantum Mechanics. London: Pergamon, 1965.

M. J. Brunger and S. J. Buckman . Electronmolecule scattering cross-sections. I. Experimental techniques and data for diatomic molecules. Physics Reports, 357(35):215458, January 2002. M. A. Morrison . Near threshold electron-molecule scattering. Advances in Atomic Molecular and Optical Physics, 24:51, 1988.

P. L. Bhatnagar , E. P. Gross , and M. Krook . A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical. Review, 94(3):511516, 1954.

R. D. White , R. E. Robson , B. Schmidt , and M. A. Morrison . Is the classical two-term approximation of electron kinetic theory satisfactory for swarms and plasmas? Journal of Physics D: Applied Physics, 36:3125, 2003.

J. Ross , J. C. Light , and K. E. Schuler . Kinetic processes in gases and plasmas. In Kinetic Processes in Gases and Plasmas, edited by A. R. Hochsttm . New York, NY: Academic Press, p. 281, 1969.

L. Waldmann . Transport phenomena in gases at moderate pressure. In Handbuch der Physik , S. Flgge (ed.), Berlin: Springer, 295514, 1958.

R. F. Snider . Quantum mechanical modified Boltzmann equation for degenerate internal states. Journal of Chemical Physics, 32:1051, 1960.

R. F. Snider . Relaxation and transport of molecular systems in the gas phase. International Reviews in Physical Chemistry, 17(2):185225, 1998.

G. J. Boyle , W. J. Tattersall , D. G. Cocks , S. Dujko , and R. D. White . Kinetic theory of positron-impact ionization in gases. Physical Review A, 91(5):113, 2015.

382 R. Zallen . The Physics of Amorphous Solids. New York, NY: John Wiley & Sons, 1983. H. Bssler . Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Physica Status Solidi (B), 175(1):1556, January 1993.

R. E. Robson and B. V. Paranjape . Interaction of plasma and lattice waves in piezoelectric semiconductors. Physica Status Solidi, 59:641, 1973.

C. N. Likos . Effective interactions in soft condensed matter physics. Physics Report, 348:267439, 2001.

Y. Sakai . Quasifree electron transport under electric field in nonpolar simple-structured condensed matters. Journal of Physics D: Applied Physics, 40(24):R441R452, December 2007. G. J. Boyle , R. P. McEachran , D. Cocks , and R. D. White . Electron scattering and transport in liquid Argon. Journal of Chemical Physics, 142:154507, 2015.

L. Van Hove . Correlations in space and time and Born approximation scattering in systems of interacting particles. Physical Review, 95(1):249262, 1954.

E. B. Wagner , F. J. Davis , and G. S. Hurst . Time of flight investigations of electron transport in some atomic and molecular gases. Journal of Chemical Physics, 47:3138, 1967.

R. D. White , R. E. Robson , and K. F. Ness . Anomalous anisotropic diffusion of electron swarms in ac electric fields. Australian Journal of Physics, 48(6):925937, 1995.

Z. Lj. Petrovi , R. W. Crompton , and G. N. Haddad . Model calculations of negative differential conductivity in gases. Australian Journal of Physics, 37:2334, 1984.

R. E. Robson . Generalized Einstein relation and negative differential conductivity in gases. Australian Journal of Physics, 37:35, 1984.

B. Philippa , C. Vijila , R. D. White , P. Sonar , P. L. Burn , P. Meredith , and A. Pivrikas . Timeindependent charge carrier mobility in a model polymer: Fullerene organic solar cell. Organic Electronics, 16:205211, November 2014.

B. Philippa , M. Stolterfoht , R. D. White , M. Velusamy , P. L. Burn , P. Meredith , and A. Pivrikas . Molecular weight dependent bimolecular recombination in organic solar cells. Journal of Chemical Physics, 141:054903, 2014.

383 R. E. Robson . Physics of reacting particle swarms in gases. Journal of Chemical Physics, 85(8):4486, 1986.

R. E. Robson and K. F. Ness . Physics of reacting particle swarms. III. Effects of ionization upon transport coefficients. Journal of Chemical Physics, 89(8):4815, 1988.

P. Nicoletopoulos and R. Robson . Periodic electron structures in gases: A fluid model of the window phenomenon. Physical Review Letters, 100: 124502, 2008.

K. D. Knierim . Time-dependent moment theory of hot-atom reactions. Journal of Chemical Physics, 75(3):1159, 1981.

J. Lucas and H. T. Saelee . A comparison of a Monte Carlo simulation and the Boltzmann solution for electron swarm motion in gases. Journal of Physics D: Applied Physics, 8(6):640, 1975.

L. Verlet and J. J. Weis . Equilibrium theory of simple liquids. Physical Review A, 5:939, 1972. W. Van Megen and P. N. Pusey . Dynamic light-scattering study of the glass transition in a colloidal suspension. Physical Review A, 43(10):54295441, 1991.

G. J. Boyle , R. D. White , R. E. Robson , S. Dujko , and Z. Lj. Petrovi . On the approximation of transport properties in structured materials using momentum-transfer theory. New Journal of

Physics, 14(4):045011, April 2012.

R. D. White and R. E. Robson . Multiterm solution of a generalized Boltzmann kinetic equation for electron and positron transport in structured and soft condensed matter. Physical Review E, 84(3):031125, September 2011.

R. E. Robson and K. F. Ness . Velocity distribution function and transport coefficients of electron swarms in gases: Spherical-harmonics decomposition of Boltzmann's equation. Physical Review A, 33(3):20682077, 1986.

R. E. Robson , K. F. Ness , G. E. Sneddon , and L. A. Viehland . Comment on the discrete ordinate method in the kinetic theory of gases. Journal of Computational Physics, 92(1):213229, January 1991.

K. Kumar . Talmi transformation for unequal mass particles and related formulas. Journal of Mathematical Physics, 7:671, 1966.

R. D. White , R. É. Robson , K. F. Ness , and B. Li . Charged-particle transport in gases in electric and magnetic fields crossed at arbitrary 384angles: Multiterm solution of Boltzmann's equation. Physical. Review E, 27(5):1249, 1999.

L. A. Viehland . Velocity distribution functions and transport coefficients of atomic ions in atomic gases by a Gram-Charlier approach. Chemical Physics, 179(1):7192, 1994.

R. D. White , R. E. Robson , and K. F. Ness . Computation of electron and ion transport properties in gases. Computer Physics Communications, 142:349355, 2001.

C. Mark . The spherical harmonics methods, II (application to problems with plane & spherical symmetry). Atomic Energy of Canada Limited, CRT-338, Chalk River, Ontario, 196, 1957.

J. H. Parker and J. J. Lowke . Theory of electron diffusion parallel to electric fields. I. Theory. Physical Review, 181(1):290301, 1969.

M. M. R. Williams . Mathematical Methods in Particle Transport Theory. London: Butterworths, 1971.

F. B. Hildebrandt . Methods in Applied Mathematics. Upper Saddle River, NJ: Prentice-Hall, 1965.

R. E. Robson . Nonlinear diffusion of ions in a gas. Australian Journal of Physics, 28:523531, 1975.

J. H. Parker . Position- and time-dependent diffusion modes for electrons in gases. Physical Review, 139(6A):A1792, 1965.

B. D. Fried and S. D. Conte . The Plasma Dispersion Function: The Hilbert Transform of the Gaussian. New York, NY: Academic Press, 1961.

B. Philippa , R. White , and R. Robson . Analytic solution of the fractional advection-diffusion equation for the time-of-flight experiment in a finite geometry. Physical Review E, 84(4):041138, October 2011.

R. Robson and A. Blumen . Analytically solvable model in fractional kinetic theory. Physical Review E, 71(6):61104, 2005.

H. Margeneau . Conduction and dispersion of ionized gases at high frequencies. Physical Review, 69:508, 1946.

R. E. Robson , R. D. White , and T. Makabe . Charged particle transport in harmonically varying electric fields: Foundations and phenomenology. Annals of Physics, 261:74113, 1997.

R. D. White , R. E. Robson , and K. F. Ness . Nonconservative charged-particle swarms in ac electric fields. Physical Review E, 60(6 Pt B):74577472, December 1999.

385 Z. Lj. Petrović , Z. M. Raspopovi , S. Dujko , T. Makabe , and Z. M. Raspopović . Kinetic phenomena in electron transport in radio-frequency fields. Applied Surface Science, 192(14):125, May 2002.

R. D. White . Mass effects of light ion swarms in ac electric fields. Physical Review E, 64(5):56409, 2001.

H. R. Skullerud . Longitudinal diffusion of electrons in electrostatic fields in gases. Journal of Physics B: Atomic and Molecular Physics, 2(6):696705, 1969.

R. D. White , Kinetic theory of charged particle swarms in a.c. fields. PhD Thesis, James Cook University, 1997.

R. E. Robson , R. D. White , and M. Hildebrandt . One hundred years of the Franck-Hertz experiment. European Physical Journal D, 68(7):188, July 2014.

J. Franck and G. Hertz . Die Besttigung der Bohrschen Atomtheorie im optischen Spektrum durch Untersuchungen der unelastischen Zusammenste langsamer Elektronen mit Gasmoleklen. Physikalische Zeitschrift, 20:132, 1919.

J. Fletcher . Non-equilibrium in low pressure rare gas discharges. Journal of Physics D, 18:221, 1985.

R. E. Robson , B. Li , and R. D. White . Spatially periodic structures in electron swarms and the Franck-Hertz experiment. Journal of Physics B: Atomic, 33:507520, 2000.

R. D. White , R. E. Robson , P. Nicoletopoulos , and S. Dujko . Periodic structures in the FranckHertz experiment with neon: Boltzmann equation and Monte-Carlo analysis. European

Physical Journal D, 66(5):117, May 2012.

G. F. Hanne . What really happens in the FranckHertz experiment with mercury? American Journal of Physics, 56:696, 1988.

P. Magyar , I. Korolov , and Z. Donk . Photoelectric FranckHertz experiment and its kinetic analysis by Monte Carlo simulation. Physical Review EStatistical, Nonlinear, and Soft Matter Physics, 85(5):110, 2012.

F. Sigeneger, N. A. Dyatko, and R. Winkler. Spatial electron relaxation: Comparison of Monte Carlo and Boltzmann equation results. Plasma Chemistry and Plasma Processing, 23(1):103116, 2003.

G. Rapior , K. Sengstock , and V. Baev . New features of the Franck-Hertz experiment. American Journal of Physics, 74(5):423428, 2006.

B. Li , Hydrodynamic and non-hydrodynamic swarms. PhD Thesis, James Cook University, 1999.

386 M. Charlton and J. W. Humberston . Positron Physics. Cambridge: Cambridge University Press, 2001.

M. Charlton . Positron transport in gases. Journal of Physics: Conference Series, 162:012003, April 2009.

R. D. White and R. E. Robson . Positron kinetics in soft condensed matter. Physical Review Letter, 102(23):230602, 2009.

G. Garcia , Z. Lj. Petrovic , R. D. White , and St. J. Buckman . Monte carlo model of positron transport in water: Track structures based on atomic and molecular scattering data for positrons. IEEE Transactions on Plasma Science, 39(11):2962, 2011.

Z. Lj. Petrovi , S. Marjanovi , S. Dujko , A. Bankovi , G. Malovi , S. Buckman , G. Garcia , R. White , and M. Brunger . On the use of Monte Carlo simulations to model transport of positrons in gases and liquids. Applied Radiation and Isotopes, 83:148154, 2013.

R. D. White , M. J. Brunger , N. A. Garland , R. E. Robson , K. F. Ness , G. Garcia , J. de Urquijo , S. Dujko , and Z. Lj. Petrovi . Electron swarm transport in THF and water mixtures. European Physical Journal D, 68(5):125, May 2014.

S. R. Cherry , J. A. Sorensen , and M. E. Phelps . Physics in Nuclear Medicine. Philadelphia, PA: Saunders, 2003.

M. Ahmadi , B. X. R. Alves , C. J. Baker , W. Bertsche , E. Butler , A. Capra , C. Carruth , C. L. Cesar , M. Charlton , S. Cohen , R. Collister , S. Eriksson , A. Evans , N. Evetts , J. Fajans , T. Friesen , M. C. Fujiwara , D. R. Gill , A. Gutierrez , J. S. Hangst , W. N. Hardy , M. E. Hayden , C. A. Isaac , A. Ishida , M. A. Johnson , S. A. Jones , S. Jonsell , L. Kurchaninov , N. Madsen , M. Mathers , D. Maxwell , J. T. K. McKenna , S. Menary , J. M. Michan , T. Momose , J. J. Munich , P. Nolan , K. Olchanski , A. Olin , P. Pusa , C. Rasmussen , F. Robicheaux , R. L. Sacramento , M. Sameed , E. Sarid , D. M. Silveira , S. Stracka , G. Stutter , C. So , T. D. Tharp , J. E. Thompson , R. I. Thompson , D. P. van der Werf , and J. S. Wurtele . Observation of the

1S2S transition in trapped antihydrogen. Nature, 541:506510, 2016. W. Tattersall , R. D. White , R. E. Robson , J. P. Sullivan , and S. J. Buckman . Simulations of

pulses in a buffer gas positron trap. Journal of Physics: Conference Series, 262:012057, January 2011.

W. Tattersall , L. Chiari , J. R. Machacek , E. Anderson , R. D. White , M. J. Brunger , S. J. Buckman , G. Garcia , F. Blanco , and J. P. Sullivan . Positron interactions with watertotal elastic, total inelastic, and elastic 387differential cross section measurements. Journal of Chemical Physics, 140(4):044320, 2014.

S. Marjanovi , A. Bankovi , R. D. White , S. J. Buckman , G. Garcia , G. Malovi , S. Dujko , and Z. Lj. Petrovi . Chemistry induced during the thermalization and transport of positrons and secondary electrons in gases and liquids. Plasma Sources Science and Technology, 24:025016, 2015.

A. Bankovi, S. Dujko, R. D. White , J. P. Marler , S. J. Buckman , S. Marjanovi , G. Malovi , G. Garca , and Z. Lj. Petrovi . Positron transport in water vapour. New Journal of Physics, 14:035003, 2012.

Y. S. Badyal , M. L. Saboungi , D. L. Price , S. D. Shastri , D. R. Haeffner , and A. K. Soper . Electron distribution in water. Journal of Chemical Physics, 112(21):9206, 2000.

G. J. M. Hagelaar and L. C. Pitchford . Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Science and Technology, 14(4):722733, November 2005.

R. D. White, R. E. Robson, and K. F. Ness. Visualization of ion and electron velocity distribution functions in electric and magnetic fields. Journal of Physics D: Applied Physics, 34:22052210, 2001.

S. F. Biagi . A multiterm Boltzmann analysis of drift velocity, diffusion, gain and magnetic-field effects in argon-methane-water-vapour mixtures. Nuclear Instruments and Methods in Physics Research Section A, 283:716, 1989.

D. Loffhagen and R. Winkler . Temporal relaxation of plasma electrons acted upon by direct current electric and magnetic fields. IEEE Transactions on Plasma Science, 27:12621270, 1999.

R. D. White , K. F. Ness , and R. E. Robson . Velocity distribution functions for electron swarms in methane in electric and magnetic fields. Journal of Physics D: Applied Physics, 32:1842, 1999.

R. E. Robson . Approximate formulas for ion and electron transport coefficients in crossed electric and magnetic fields. Australian Journal of Physics, 47(2):279304, 1994.

G. F. Knoll . Radiation Detection and Measurement. New York, NY: John Wiley & Sons, 2010. W. R. Leo . Techniques for Nuclear and Particle Physics Experiments. Berlin: Springer-Verlag, 1994.

388 E. Rutherford and H. Geiger . An electrical method of counting the number of -particles from radio-active substances. Proceedings of the Royal Society A, 81:141161, 1908.

H. Geiger . ber eine einfache Methode zur Zhlung von - und -Teilchen. Verhandlungen der Deutschen Physikalischen Gesellschaft, 15:534539, 1913.

H. Geiger and W. Mller . Elektronenzhlrohr zur Messung schwchster Aktivitten. Naturwissenschaften, 16:617618, 1928.

H. Geiger and W. Mller . Das ElektronenzhlrohrWirkungsweise und Herstellung eines Zhlrohres. Physikalische Zeitschrift, 29:839841, 1928.

H. Geiger and W. Mller . Technische Bemerkungen zum Elektronenzhlrohr. Physikalische Zeitschrift, 30:489493, 1929.

H. Geiger and W. Mller . Demonstration des Elektronenzhlrohrs. Physikalische Zeitschrift, 30:523, 1929.

G. Charpak . The use of multiwire proportional counters to select and localize charged particles. Nuclear Instruments and Methods, 62:262268, 1968.

A. H. Walenta , J. Heintze , and B. Schrlein . The multiwire drift chamber - A new type of proportional wire chamber. Nuclear Instruments and Methods, 92:373380, 1971.

J. N. Marx and D. R. Nygren . The time projection chamber. Physics Today, 31:4653, 1978. V. V. Parkhumchuk , Yu . N. Pestov , and N. N. Petrovykh . A spark counter with large area. Nuclear Instruments and Methods, 93:269270, 1971.

F. Sauli and A. Sharma . Micropattern gaseous detectors. Annual Review of Nuclear and Particle Science, 49:341388, 1999.

W. Blum , W. Riegler , and L. Rolandi . Particle Detection with Drift Chambers. Berlin Heidelberg: Springer-Verlag, 2008.

E. Nappi and V. Peskov . Imaging Gaseous Detectors and their Applications. Weinheim: Wiley-VCH Verlag GmbH & Co KGaA, 2013.

T. Francke and V. Peskov . Innovative Applications and Developments of Micro-Pattern Gaseous Detectors. Hershley: IGI Global, 2014.

C. Grupen and B. Shwartz . Particle Detectors. Cambridge: Cambridge University Press, 2008. 389 F. Sauli . GEM: A new concept for electron amplification in gas detectors. Nuclear Instruments and Methods in Physics Research A, 386:531534, 1997.

L. Malter . Thin film field emission. Physical Review, 50:4858, 1936.

H. Raether . Electron Avalanches and Breakdown in Gases. London: Butterworths, 1964. W. D. B. Spatz . The factors influencing the plateau characteristics of self-quenching Geiger-Mller counters. Physical Review, 64:236240, 1943.

S. S. Friedland . On the life of self-quenching counters. Physical Review, 74:898901, 1948. E. C. Farmer and S. C. Brown . A study of the deterioration of methane-filled Geiger-Mller counters. Physical Review, 74:902905, 1948.

J. Va'vra . Review of wire chamber aging. Nuclear Instruments and Methods in Physics Research A, 252:547563, 1986.

J. A. Kadyk . Wire chamber aging. Nuclear Instruments and Methods in Physics Research A, 300:436479, 1991.

J. Va'vra . Physics and chemistry of aging-early developments. Nuclear Instruments and Methods in Physics Research A, 515:114, 2003.

H. Yasuda . New insights into aging phenomena from plasma chemistry. Nuclear Instruments and Methods in Physics Research A, 515:1530, 2003.

G. Charpak , F. Sauli , and W. Duinkre . High-accuracy drift chambers and their use in strong magnetic fields. Nuclear Instruments and Methods, 108:413426, 1973.

T. E. O. Ericson , V. W. Hughes , and D. E. Nagle . The Meson Factories. Berkeley, CA: University of California Press, 1991.

Los Alamos National Laboratory (LANL) , Los Alamos, USA (http://www.lanl.gov/); Paul Scherrer Institut (PSI), Villigen, Switzerland (https://www.psi.ch/); Tri University Meson Facility (TRIUMF), Vancouver, Canada (http://www.triumf.ca/); ISIS Science & Technology Facilities Council (ISIS), Harwell Oxford, UK (http://www.isis.stfc.ac.uk/); Japan Proton Accelerator Research Complex (J-PARC), Tokai, Japan (https://j-parc.jp/)

D. Taqqu . Compression and extraction of stopped muons. Physical Review Letters, 97(19):1013, 2006.

390 Y. Bao , A. Antognini , W. Bertl , M. Hildebrandt , K. Siang Khaw , K. Kirch , A. Papa , C. Petitjean , F. M. Piegsa , S. Ritt , K. Sedlak , A. Stoykov , and D. Taqqu . Muon cooling: Longitudinal compression. Physical Review Letters, 112(22):15, 2014.

V. A. Andreev, T. I. Banks, R. M. Caray, T. A. Case, S. M. Clayton, K. M. Crowe, J. Deutsch, J. Egger, S. J. Freedman, V. A. Ganzha, T. Gorringe, F. E. Gray, D. W. Hertzog, M. Hildebrandt, P. Kammel, B. Kiburg, S. Knaack, P. A. Kravtsov, A. G. Krivshich, B. Lauss, K. L. Lynch, E. M. Maev, O. E. Maev, F. Mulhauser, C. Petitjean, G. E. Petrov, R. Prieels, G. N. Schapkin, G. G. Semenchuk, M. A. Soroka, V. Tishchenko, A. A. Vasilyev, A. A. Vorobyov, M. E. Vznuzdaev, and P. Winter. Measurement of the muon capture on the proton to 1% precision and determination of the pseudoscalar coupling gP. Physical Review Letters, 110:15, 2013.

J. Egger , D. Fahrni , M. Hildebrandt , A. Hofer , L. Meier , C. Petitjean , V. A. Andreev , T. I. Banks , S. M. Clayton , V. A. Ganzha , F. E. Gray , P. Kammel , B. Kiburg , P. A. Kravtsov , A. G. Krivshich , B. Lauss , E. M. Maev , O. E. Maev , G. Petrov , G. G. Semenchuk , A. A. Vasilyev , A. A. Vorobyov , M. E. Vznuzdaev , and P. Winter . A high-pressure hydrogen time projection chamber for the MuCap experiment. European Physical Journal A, 50(10):116, 2014. E. A. Mason , S. L. Lin , and I. R. Gatland . Mobility and diffusion of protons and deuterons in helium-a runaway effect. Journal of Physics B, 12:4179, 1979.

S. E. Jones . Muon-catalysed fusion revisited. Nature, 321:127, 1989.

S. E. Jones . Observation of unexpected density effects in muon-catalyzed d-t fusion. Physical Review Letters, 56:588591, 1986.

K. Nagamine . Introductory Muon Science. Cambridge: Cambridge University Press, 2007. C. Petitjean . The CF experiments at PSIA conclusive review. Hyperfine Interactions, 138:191201, 2001.

R. E. Robson . Physics of reacting particle swarms. II. The muon-catalyzed cold fusion cycle. Journal of Chemical Physics, 88(1):198, 1988.

K. F. Ness and R. E. Robson . Motion of muons in heavy hydrogen in an applied electrostatic field. Physical Review A, 39(12):65966599, 1989.

R. E. Robson and C. L. Mayocchi . Turbulent countergradient flow as a problem in kinetic theory. AIP Conference Proceedings, 414:255267, 1997.

391 L. A. Viehland . Ionatom interaction potentials and transport properties. Computer Physics Communication, 142:7, 2001.

L. A. Cottrill , A. B. Langdon , B. F. Lasinski , S. M. Lund , K. Molvig , M. Tabak , R. P. J. Town , and E. A. Williams . Kinetic and collisional effects on the linear evolution of fast ignition relevant beam instabilities. Physics of Plasmas, 15(8):082108, 2008.

J. P. England , M. T. Elford , and R. W. Crompton . A study of the vibrational excitation of H2 by measurements of the drift velocity of electrons in H2 mixtures. Australian Journal of Physics, 41(4):573, 1988.

R. W. Crompton and M. A. Morrison . Analyses of recent experimental and theoretical determinations of e-H2 vibrational excitation cross sections: Assessing a long-standing controversy. Australian Journal of Physics, 46:203, 1993.

M. A. Morrison and W. K. Trail . Importance of bound-free correlation effects for vibrational excitation of molecules by electron impact: A sensitivity analysis. Physical Review A, 48(4):28742886, 1993.

S. J. Buckman , M. J. Brunger , D. S. Newman , G. Snitchler , S. Alston , D. W. Norcross , M. A. Morrison , B. C. Saha , G. Danby , and W. K. Trail . Near-threshold vibrational excitation of H2 by electron impact: Resolution of discrepancies between experiment and theory stephen. Physical Review Letters, 65:32533256, 1991.

M. J. Brunger , S. J. Buckman , D. S. Newman , and D. T. Alle . Elastic scattering and rovibrational excitation of H2 by low-energy electrons. Journal of Physics B: Atomic, Molecular and Optical Physics, 24(6):14351448, March 1991.

S. J. Buckman and M. J. Brunger . A critical comparison of electron scattering cross sections measured by single collision and swarm techniques. Australian Journal of Physics, 50:483509, 1997.

M. A. Morrison , R. W. Crompton , B. C. Saha , and Z. Lj. Petrovic . Near-threshold rotational and vibrational excitation of H2 by electron impact: Theory and Experiment. Australian Journal of Physics, 40:238281, 1987.

A. G. Robertson , M. T. Elford , R. W. Crompton , M. A. Morrison , W. Sun , and W. K. Trail . Rotational and vibrational excitation of nitrogen by electron impact. Australian Journal of Physics, 50:441, 1997. G. D. Morgan , Origin of Striations in Discharges. Nature, 172:542, 1953.
392 T. Wada and G. R. Freeman . Temperature, density, and electric-field effects on electron mobility in nitrogen vapor. Physical Review A, 24(2):10661076, 1981.
R. E. Robson and A. Prytz . The discrete ordinate/pseudo-spectral method: Review and application from a physicist's perspective. Australian Journal of Physics, 46:465496, 1993.
T. Makabe and R. White . Expression for momentum-transfer scattering in inelastic collisions in electron transport in a collisional plasma. Journal of Physics D: Applied Physics, 48(48):485205, 2015.