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Preface

The foundations of modern transport theory were laid 150 years ago in
a seminal paper presented to the Royal Society of London by J. Clerk
Maxwell. He formulated the equations of change for the physical prop-
erties of a gas, represented as moments or averages over a velocity distri-
bution function and paid particular attention to the influence of collisions.
Six years later, Ludwig Boltzmann, undoubtedly influenced by Maxwell’s
results, presented a kinetic equation to the German Physical Society in
Berlin, whose solution furnished the required distribution function. In
spite of early criticism and subsequent intense scrutiny, Boltzmann’s equa-
tion has withstood the test of time and has gone on to become a main-
stay in the field of non-equilibrium statistical mechanics, in general, and
charged particle transport, in particular, the subject of this book. The key
to the success and longevity of Boltzmann’s equation is not only its ability
to furnish accurate theoretical values of experimentally measured quan-
tities, but also its remarkable flexibility and adaptability to systems and
physics that Boltzmann could not possibly have foreseen. Thus, there are
generalizations of the kinetic equation to condensed matter, as discussed
in this book, and to quantum and relativistic systems, discussed elsewhere.
In addition, there are many adaptations and applications of Boltzmann’s
equation to traditional and contemporary areas of basic physics research
and technology. To take just one example of cutting edge science: laser
acceleration of particles to very high energies over distances several orders
of magnitude smaller than conventional accelerators has been modelled
through methods which are similar, at least in principle, to the ideas of
Boltzmann and Maxwell. It would take several volumes to do justice to
all of the fields on which the Boltzmann equation has had an impact and
any single exposition, like the present, is necessarily circumscribed. Nev-
ertheless, the scope of this book is broad and, moreover, the treatment is
unique in that we provide a unified approach to the transport theory of
particles of various types (electrons, ions, atoms, positrons, and muons) in
various media (gases, soft-condensed matter, and amorphous materials).
The applications are many and diverse, ranging from traditional drift tube
experiments, positron emission tomography, and muon-catalyzed fusion,
through to recent developments in materials physics.

One of the problems in writing a book such as this has been to over-
come the perception that transport theory, beyond the simplistic mean free
path arguments of some undergraduate books and courses, is somehow

xix
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excessively difficult. On the one hand, it is true that a rigorous solution
of the Boltzmann kinetic equation in phase space requires sophisticated
mathematics and numerical procedures, and even the senior author of a
well-known, formidable treatise on kinetic theory is reputed to have com-
pared the exercise to “chewing glass.” On the other hand, the original
approach of Maxwell, using moment or “fluid” equations in configuration
space, provides a complementary, semi-quantitative picture from which
it is possible to obtain physical understanding while maintaining rigour.
Both methods are employed in this book to provide a comprehensive treat-
ment of charged particle transport phenomena.

The material has formed the basis of lecture courses given over the
past 10 years in Australia and the United States at the senior undergradu-
ate and graduate student level.

We thank Professor Michael Morrison of the University of Oklahoma;
Professor Zoran Petrovic of the Institute of Physics, Belgrade; Professor
Toshiaki Makabe of Keio University; and Dr. Bernhard Schmidt, orig-
inally at the University of Heidelberg and nowadays at DESY, Ham-
burg, for stimulating discussions and encouragement over many years.
The dedication and contributions of the past and current staff, post-
doctoral researchers, and post-graduate students at James Cook Univer-
sity cannot be understated. Particular thanks go to Kevin Ness, Bo Li,
Sasa Dujko, Daniel Cocks, Gregory Boyle, Bronson Philippa, Wade Tat-
tersall, Peter Stokes, Madalyn Casey, and Nathan Garland. The support of
the Alexander von Humboldt Foundation, the Paul Scherrer Institut, the
Australian Research Council, and James Cook and Griffith Universities is
gratefully acknowledged.

The authors thank the publishers of “Introductory Transport Theory
for Charged Particles in Gases,” by R.E. Robson, Copyright 2006, World
Scientific Publishing Company Pty. Ltd, for granting us permission to
adapt and reproduce parts of this publication in the present book.
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Glossary of Symbols and Acronyms

Symbol Meaning

a external force per unit mass

α scaling factor for velocity
√

m
kBT

b impact parameter
χ scattering angle in centre of mass
D diffusion tensor (starred quantities are “flux” while

non-starred are “bulk”)
ϵ energy
ε spatially uniform energy
Ee or Eeff equivalent of effective electric field
f (v), f0(v0) particle and neutral velocity distribution functions
ϕ(τ) relaxation function for de-trapping
ϕ(ν,l)m (v) Burnett function
g, G relative and centre-of-mass velocities
γ gradient energy parameter
Γ particle flux
I, U electric current and applied voltage
J, J† collision operator and its adjoint
Jq heat flux vector
K,  mobility and reduced mobility coefficients
Kj spectral wave number
λD Debye length
m, m0 particle and neutral molecular masses
n, n0 particle and neutral number densities
N total particle number
νm, νe momentum and energy-transfer collision frequencies
⃖⃗νi, ⃖⃖νi inelastic and superelastic collision frequencies
νI ionization collision frequency
ν∗ reactive loss collision frequency
ν̃m structure-modified collision frequency
ω, ΩL angular frequency of applied electric field, gyrofrequency of

magnetic field
Ω inelastic collision transfer term
P pressure tensor
σ(g, χ) differential cross section
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xxiv Glossary of Symbols and Acronyms

Symbol Meaning

σ(l), σm lth partial and momentum-transfer cross sections
S(K,Ω) structure function
T, T0, Tb particle, neutral, and basis temperatures
v, v0 velocities of particles and neutrals
⟨⟩ , ⟨⟩0 averages over particle and neutral velocities
⟨v⟩ average particle velocity
vd, v∗d bulk and flux drift velocities
v̂ unit vector in direction of v
⟨vv⟩ second rank tensor with components

⟨

vivj
⟩

V(r) interaction potential
w(α, v) Maxwellian distribution function
Y(l)m (v̂) spherical harmonic
Z plasma dispersion function

BGK Bhatnagar–Gross–Krook
μCF muon-catalyzed fusion
PET positron emission tomography
MTT momentum transfer theory
GER generalized Einstein relation
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CHAPTER 1

Introduction

1.1 Boltzmann’s Equation

1.1.1 A little history

In 1872, Ludwig Boltzmann proposed a kinetic equation of the form

( ∂
∂t
+L

)

f =
(∂f
∂t

)

col
(1.1)

for the velocity distribution function f of a low density gas, where L is a lin-
ear “streaming” operator in phase space, and

(

∂f
∂t

)

col
accounts for binary,

elastic collisions between the constituent atoms [1]. The expression for the
latter was formulated on the basis of an Ansatz (or hypothesis), which
effectively introduces an arrow of time into the evolution of the system,
leading to the H-theorem and establishing a connection with the second
law of thermodynamics. Although Boltzmann suffered criticism from his
contemporaries, and the Ansatz has been the subject of considerable crit-
ical scrutiny since then, no satisfactory alternative has emerged, and the
Boltzmann equation, modified by Wang Chang et al. to include inelastic
collisions [2,3] remains to this day the preferred means of investigating
gases in a non-equilibrium state.

Boltzmann’s equation and the distribution function f play the same
role in kinetic theory as do Schrödinger’s equation and the wave function
ψ in quantum mechanics. Once f is obtained from solution of Equation 1.1
all quantities of physical interest can be obtained as appropriate velocity
“moments,” similar to expectation values formed with |ψ|2 in quantum
physics (see Appendix A).

The centenary of Boltzmann’s work was marked by a special publi-
cation [4] of both a biographical and scientific nature, which illustrated
the extent of the influence that this remarkable equation has had on many
areas of physics, involving both gases and condensed matter. Indeed,
Boltzmann’s contributions to the wider field of statistical mechanics are
profound and are remembered in a special way (see Figure 1.1).

1.1.2 From the “golden” era of gas discharges to modern times

The emergence of Boltzmann’s equation in the latter part of the nineteenth
century coincided with an era of great interest in electrical discharges

1
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Figure 1.1 The equation S= k logW linking entropy S with the number of
microstates W of a system appears on Boltzmann’s memorial headstone in Vienna.

in gases, though mutual recognition took some time. These investiga-
tions were motivated by the earlier observation of striations (alternating
light and dark bands in the discharge) by Abria [5] (and more recently
[6]), and culminated in the seminal drift tube experiments around the
turn of the century and in the early 1900s. For example, Kaufmann and
Thomson independently determined the elementary charge-to-mass ratio,
e∕m, which in turn led to Thomson’s discovery of the electron, while the
seminal experiment of Franck and Hertz confirmed Bohr’s predictions
of the quantized nature of atoms. As a result, there has been tremen-
dous progress in science and technology, and it is not surprising that
in the first three decades of the twentieth century, the field produced
more than its fair share of Nobel laureates. Historical surveys of the
“golden era” of drift tube experiments have been given by a number
of authors, including Brown [7], Müller [8], Loeb [9], and Huxley and
Crompton [10].
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Investigations of gaseous discharges also spawned the field of plasma
physics, with applications ranging from hot, fusion plasmas (T∼ 106K or
more), with the promise of virtually limitless clean energy, to low temper-
ature (T∼ 104K) plasmas, of such importance in the microchip fabrication
industry [11–13] and finally through to low density, low energy “swarms”
of electrons and ions in gases [14], with applications in such diverse areas
as fundamental atomic and molecular physics [15] and gaseous radia-
tion detectors [16]. In the course of time, Equation 1.1 has come to be
regarded as de rigueur for analyzing experiments involving charged par-
ticles in gases and condensed matter [17], along with applications of both
a technological and scientific nature.

1.1.3 Transport processes: Traditional and modern descriptions

In general, non-equilibrium systems are characterized by non-uniformity
and gradients in properties which result in an irreversible flow or “flux”
of these properties in such a direction as to restore uniformity and equilib-
rium. Such transport processes are traditionally represented by well-known
empirical linear flux-gradient relations, such as Fourier’s law of heat con-
duction, and Fick’s law of diffusion of matter, in which the constants of
proportionality define transport coefficients, namely, the thermal conduc-
tivity and diffusion coefficient tensor, respectively. These coefficients can
be calculated theoretically from approximate solution of the Boltzmann’s
equation, through linearizing in temperature and density gradient, respec-
tively. However, one should be cautious in applying these traditional ideas
to interpret drift tube experiments, for two reasons:

• Experiments are traditionally analyzed using the diffusion equa-
tion, which represents overall particle balance in the bulk of the
system, and the coefficients in the diffusion equation differ from
those defined by Fick’s law when particles are created or lost, for
example, by ionization and attachment, respectively. In these cir-
cumstances, experiments do not measure the traditional transport
coefficients.

• Flux-gradient relations and the diffusion equation are valid only
for systems which have attained a state called the hydrody-
namic regime. Some systems never get to that state and are
intrinsically non-hydrodynamic, for example, the steady state
Townsend and Franck-Hertz experiments. Neither Fick’s law
nor the diffusion equation are physically tenable in these cases,
and neither is description in terms of transport coefficients
(however defined) possible. Measurable properties can be calcu-
lated theoretically only by solving Boltzmann’s equation without
approximation.
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1.1.4 Theme of this book

In essence, Boltzmann’s equation takes us from the laws of physics govern-
ing behaviour on the microscopic (atomic) scale, collisions in particular,
to the level of macroscopically measurable quantities. The microscopic–
macroscopic connection is the theme of our discussion, and explaining
just how the connection is made provides the substance of this book.
Put succinctly, the program is to solve Equation 1.1 for f , and then
form velocity averages to find the macroscopic quantities of interest, for
example, electric currents, or total particle number, which are measured in
experiment.

1.2 Solving Boltzmann’s Equation

1.2.1 The path to solution

• Chapman–Enskog method: The Chapman–Enskog method [18] is a
perturbative procedure which was developed about 100 years ago
to solve Boltzmann’s equation for systems close to equilibrium. It
was applied to gaseous ions in the 1950s by Kihara [19] and Mason
and Schamp [20] but, by virtue of the limitations of the procedure,
results could be obtained for only the weak field regime. Given
that the systems of interest are often driven far from equilibrium
by strong fields, this procedure is inadequate for most purposes.

• Light particles, Lorentz approximation: It was recognized early on
that

(

∂f
∂t

)

col
could be approximated in differential form for elec-

trons undergoing elastic collisions in gases [18,21]. This simplifica-
tion, together with an assumption of near-isotropy of f in velocity
space, originally attributed to Lorentz [22], enables Boltzmann’s
equation to be solved, sometimes analytically, without any restric-
tion on the magnitude of the field. These ideas underpin the field
of gaseous electronics [23], which has maintained a distinct iden-
tity over many decades.

• Light particles in liquids and soft matter: Cohen and Lekner [24] mod-
ified

(

∂f
∂t

)

col
to account for coherent scattering of electrons in liq-

uids and, as for gaseous media, f was also assumed to be nearly
isotropic in velocity space. Nevertheless, Cohen and Lekner’s
results have become well established in the literature and provide
the basis for more sophisticated transport analysis of both elec-
trons and positrons in liquids and soft-condensed matter.

• Light particles, inelastic processes: In many cases of interest, elec-
trons also undergo inelastic collisions with the molecules of the
medium, and consequently

(

∂f
∂t

)

col
no longer assumes a simplified
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differential form. The Lorentz approximation is also questionable
if inelastic processes are significant and, all in all, solution of
Boltzmann’s equation becomes more difficult. In fact, the degree
of difficulty is on a par with heavier ions, for which there is sig-
nificant anisotropy in velocity space even if inelastic processes are
absent. This points towards the need for a general procedure for
solving Boltzmann’s equation for particles of all masses and types.

• Wannier’s theory: In the 1950s, Wannier [25] solved Boltzmann’s
equation for dilute ions in gases in the strong field regime, though
specifically for special models of interaction. He also formulated
a relationship between the mean ion energy and average velocity,
and sowed the seeds of an idea for a semi-quantitative alternative
to rigorous numerical solution of Boltzmann’s equation, which is
nowadays called “momentum-transfer theory.”

• The Viehland–Mason solution for ions: Around the time of the
Boltzmann centenary in 1972, computing power had reached a
level where rigorous numerical solution of the Boltzmann equa-
tion for ions had become possible for realistic forms of interac-
tion, and without resorting to any perturbation method. In a series
of papers commencing in 1975, Viehland, Mason, and collabora-
tors developed a general method of solution of Boltzmann’s equa-
tion for dilute ions in gases in electric fields of arbitrary strength
[26–28]. The modern era of charged particle kinetic theory can be
traced from this time.

• Towards a unified kinetic theory: Lin et al. [29] combined the essen-
tials of the Viehland–Mason approach with Kumar’s tensor for-
malism, adapted from atomic and nuclear physics [30], to develop
a rigorous solution of Boltzmann’s equation, modified to include
inelastic collisions for light particles, avoiding the traditional a pri-
ori assumption of near-isotropy of f in velocity space. The method
has been refined over the years, and nowadays provides the basis
of a comprehensive kinetic theory of charged particles, ions, elec-
trons, positrons, muons, and so on, in both gases and condensed
matter. The reader can find a number of reviews and books detail-
ing developments from the immediate post-Viehland–Mason era
to more modern times [31–35].

• Charge carriers in semiconductors: The kinetic theory of free charge
carriers (electrons and holes) scattered by phonons (lattice vibra-
tions) in crystalline semiconductors was developed in paral-
lel to gases [17]. It is sometimes remarked that there exists
a one-to-one correspondence with scattering of charged parti-
cles from molecules and atoms in gases, even though the col-
lision term

(

∂f
∂t

)

col
in the kinetic equation (still referred to as
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“Boltzmann’s equation”) is different. The role of transport the-
ory in understanding experiments related to the development of
solid-state devices including the transistor has a long history [36].
On the other hand, charge carriers are said to exhibit anomalous
behaviour in disordered, non-crystalline amorphous media, such
as organic semiconductors, due to trapping effects. These mate-
rials are being intensely investigated [37] and it appears that yet
another technological revolution is underway [38,39]. The kinetic
theory associated with these processes is, however, a “work in
progress,” with only simple forms of

(

∂f
∂t

)

col
having so far been

employed [40,41].

1.2.2 A complementary approach: Fluid modelling

After solving the Boltzmann equation as described above, quantities of
physical interest are formed by taking appropriate velocity averages of f .
An alternative approximate, more computationally economical and phys-
ically appealing alternative is to find the averages directly by solving
approximate moment or fluid equations in configuration space. These
equations can be formed either by taking velocity moments of Boltzmann’s
equation, or from first principles, as Maxwell [42] did 6 years before Boltz-
mann formulated his kinetic equation. In fact, the roles can be completely
reversed, as we show in this book, and Boltzmann’s equation can be
obtained (and later solved) using the moment equation method.

Maxwell paid particular attention to the collision terms in the moment
equations and showed that they could be evaluated exactly for a particu-
lar model, in which the interaction varied inversely as the fifth power of
the distance. The Maxwell model, which corresponds to a point-charge,
induced dipole interaction, is particularly suitable as a first approxima-
tion when discussing charged particles in gases. It provides the basis for
“momentum transfer” theory [33], which has proved particularly success-
ful in semi-quantitative fluid modelling of charged particle transport phe-
nomena [43].

1.3 Experiment and Simulation

1.3.1 An idealized apparatus

Although this book focuses on theory, we touch briefly on experiments
[10,15,34,36,44,45] though it is not possible to discuss technical details. We
instead focus on principles of operation, following the style of Kumar [14],
using as an example the idealized experimental arrangement shown in
Figure 1.2.
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Figure 1.2 A schematic representation of an experiment in which particles of
charge q are emitted by the source electrode and travel through a medium of
known properties to a collecting electrode a distance d away under the influence
of an electric field. Collisions are represented by the vertices of the trajectory and
are characterized by appropriate scattering cross sections σ.

Particles of charge q emitted by a source electrode are forced by a uni-
form electric field E to move a distance d through a chamber containing
a medium of known properties (gas or condensed matter) to a collecting
electrode. Particle number density n is assumed sufficiently small so that
mutual interactions are negligible in comparison with interactions of par-
ticles with the constituents of the medium. Such collisions are assumed to
be local, that is, to take place in a region small compared with any macro-
scopic dimension, effectively at a point, and are represented by the vertices
in the particle trajectory shown in the figure.

The source may operate in a pulsed or continuous mode. In some
experiments, particles incident on the collecting electrode form the current
measured in an external circuit. In the Franck–Hertz experiment [46], there
is a modulating grid in front of the collecting electrode. In the Cavalleri
experiment [10], it is the total number of particles within the chamber that
is determined as a function of time. In yet other experiments, the radiation
emitted by atoms and molecules returning to a lower energy level after
excitation in a collision may be used as a diagnostic tool, as in the photon
flux technique [47].

For a gaseous medium, particles may be considered to collide with
individual atoms and molecules and the various processes (elastic, inelas-
tic, ionizing, reacting, etc.) are characterized by a corresponding binary
scattering cross section σ. Collisions take place on a time scale small com-
pared with any relevant macroscopic scale, and to all intents and purposes
are instantaneous. In the time-of-flight experiment, an initial sharp pulse of
particles injected at the source spreads at a constant rate about its centre-
of-mass, which moves with constant velocity vd through the medium, as
shown in Figure 1.3. Although the pulse spreads in the course of time,
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vd

vd t z

n

q E

Figure 1.3 The number density n of charged particles as a function of distance z
from the source at a time t after injection into the medium, initially as a sharp pulse.
After a sufficient number of collisions, the pulse has spread out and its centre-of-
mass travels with constant velocity vd, determined by field, the scattering cross
sections, and the properties of the medium. The width of the pulse increases with
time t in proportion to the (longitudinal) diffusion coefficient.

it still retains its identity, and its two main properties (centre-of-mass
velocity and width) are readily measurable. The same properties may be
calculated from solution of Boltzmann’s equation. Naturally, the theoreti-
cal values should be calculated to at least the same accuracy as the exper-
imentally measured counterparts. Typically, the accuracy in swarm drift
tube experiments is 0.1%–1.0% for the drift velocity vd [10].

The picture is similar for charge carriers scattered from phonons in a
crystalline semiconductor, and there too the time-of-flight experiment is the
canonical experiment.

For a soft matter medium with short-range order, particles are scattered
simultaneously (diffracted) by many constituent molecules. Nevertheless,
the picture of local, instantaneous interactions at the vertices of Figure 1.2
prevails, and a pulse in a time-of-flight experiment in this medium gener-
ally maintains its distinct identity. There are cases, however (e.g., electrons
in neon), where this is not the case [48], where electrons can get caught and
released from “bubble” states.

For amorphous materials, such as organic semiconductors, this is gen-
erally not the case, where particles are trapped for finite times in local-
ized states. The picture shown in Figure 1.2 still holds, but vertices now
represent “collisions” (trapping/de-trappings) lasting finite times, rather
than taking place instantaneously. Particles may be trapped for significant
times over the entire length of the chamber; consequently, the particle den-
sity profile in a time-of-flight experiment is qualitatively quite different. In
particular, there is no distinct travelling pulse in a time-of-flight experi-
ment [37].
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1.4 About this Book

In this book, we focus on non-relativistic, low density charged particles
which interact predominantly with the background medium, and neglect
mutual Coulomb interactions and self-consistent fields. The main aims
are to:

• Formulate kinetic and fluid equations for charged particles in
gases, soft-condensed matter, and amorphous materials, allowing
for coherent scattering and/or trapping in localized states where
necessary,

• Outline the basic techniques for solving the kinetic equation and
for calculating transport properties,

• Understand the link between the microscopic processes and the
macroscopic transport properties,

• Apply the theory to traditional and new areas of science, technol-
ogy, and medical diagnostic techniques.

While rigour is a watchword, we use short arguments and simplified
mathematics wherever possible to elucidate the physics.

The structure is as follows:

Part I: Fundamentals of kinetic theory, derivation of Boltzmann’s
related kinetic equations, as well as calculation of classical cross
sections.

Part II: Simplified treatment of transport processes through a fluid equa-
tion analysis, in which Boltzmann’s kinetic equation in phase space is
replaced by a set of approximate “moment” equations in configuration
space.

Part III: Procedures and techniques for solution of Boltzmann’s equation.
Part IV: Applications include boundary effects and diffusion cooling,

Franck–Hertz experiment, anomalous transport in amorphous semi-
conductors, calculation of positron range in positron emission
tomography (PET), muon-catalyzed fusion, and gaseous radiation
detectors.

Part V: Gives a series of appendices providing extra information, miscel-
laneous proofs and values of numerical constants, together with a set
of exercises aimed at reinforcing the material in the text, and a compre-
hensive list of references to books and original papers.

Additional General Reading Materials

• A good introductory text on statistical mechanics: D.V. Schroeder,
“Thermal Physics” (Addison-Wesley, Longman, 2000).
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• A good introductory background to kinetic theory can be found
in the following article: E.D.G. Cohen, Amer. J. Phys. 61:524, 1993
(Sections I and II A,B,C only).

• A widely used text for graduate level statistical mechanics: K.
Huang, “Statistical Mechanics” 2nd Edition (Wiley, 1987), espe-
cially Chapters 3–5.

• A favourite classical mechanics text: H. Goldstein, “Classical
Mechanics”, 2nd Edition (Addison-Wesley, 1980).

• Graduate level texts dealing with charged particles in gases:
– R.E. Robson, “Introductory Transport Theory for Charged Par-

ticles in Gases” (World Scientific Singapore, 2006).
– M. Charlton and J.W. Humberston, “Positron Physics” (Cam-

bridge University Press, 2001).
– E.H. Holt and R.E. Haskell, “Plasma Dynamics” (Macmillan,

1965).
– E.W. McDaniel, “Collision Phenomena in Ionized Gases”

(Wiley, New York, 1964).
– M.A. Uman, “Introduction to Plasma Physics” (McGraw-Hill,

1964).
– D.C. Montgomery and D.A. Tidman, “Plasma Kinetic Theory”

(McGraw-Hill, 1964).
• Books dealing with transport processes in semiconductors and

solid-state devices include:
– H. Haug and A. Jauho, “Quantum Kinetics in Transport and

Optics of Semiconductors” (Springer, Berlin, 2008).
– S.M. Sze and K.K. Ng, “Physics of Semiconductor Devices” 3rd

Edition (Wiley, New York, 2007).
– K. Seeger, “Semiconductor Physics” (Springer, Berlin, 1989).
– E. Conwell, “High field transport in semiconductors,” Suppl.

No. 9 to “Solid State Physics,” editors H. Ehrennreich, F. Seitz
and D. Turnbull (Academic Press, New York, 1967).

– C. Kittel, “Elementary solid state physics” 8th Edition, (Wiley,
New York, 2005).

• A good introduction to charge carriers in amorphous materials is
given by R. Zallen, “The Physics of Amorphous Solids” (Wiley,
New York, 1983).

• Although not directly related to the theme of this book, the mono-
graph by M.M.R. Williams “Mathematical Methods in Particle
Transport Theory” (Butterworths, London, 1971), contains much
useful information, along with important theorems of a general
nature and details of mathematical techniques.



e-Book 2017/8/10 15:40 Page 11 #11

Introduction 11

• Advanced general kinetic theory references:
– R. L. Liboff, “Kinetic Theory,” 2nd edition (Wiley, New York,

1998), Chapters 3 and 4.
– A.R. Hochstim and G. Massell, “Kinetic Processes in Gases

and Plasmas” (Academic Press, New York, 1969).
• A useful reference on thermodynamics and its relation to Boltz-

mann’s equation: S.R. de Groot and P. Mazur, “Non-equilibrium
Thermodynamics” (North Holland, Amsterdam, 1969).
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