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ABSTRACT
Tropical savannas cover over 20% of land surface. They sustain a high diversity of mammalian 
herbivores and promote frequent fires, both of which are dependent on the underlying grass 
composition. These habitats are typically dominated by relatively few taxa, and the evolutionary 
origins of the dominant grass species are largely unknown. Here, we trace the origins of the 
genus Themeda, which contains a number of widespread grass species dominating tropical 
savannas. Complete chloroplast genomes were assembled for seven samples and supplemented 
with chloroplast and nuclear ITS markers for 71 samples representing 18 of the 27 Themeda 
species. Phylogenetic analysis supports a South Asian origin for both the genus and the 
widespread dominant T. triandra. This species emerged ~1.5 Ma from a group that had lived in 
the savannas of Asia for several million years. It migrated to Australia ~1.3 Ma and to mainland 
Africa ~0.5  Ma, where it rapidly spread in pre-existing savannas and displaced other species. 
Themeda quadrivalvis, the second most widespread Themeda species, is nested within T. triandra 
based on whole chloroplast genomes, and may represent a recent evolution of an annual growth 
form that is otherwise almost indistinguishable from T. triandra. The recent spread and modern-
day dominance of T. triandra highlight the dynamism of tropical grassy biomes over millennial 
time-scales that has not been appreciated, with dramatic shifts in species dominance in recent 
evolutionary times. The ensuing species replacements likely had profound effects on fire and 
herbivore regimes across tropical savannas.

Introduction

Tropical savannas are among Earth’s most produc-
tive biomes and cover around 20% of global land area 
(Lehmann and Parr 2016). Throughout the tropics and 
subtropics, these grassy biomes are dominated by C4 
grass species, which displaced C3 species across these 
regions during the Late Miocene and Pliocene as Earth’s 
environment warmed and dried (3–8 Ma; Cerling et al. 
1997; Edwards et al. 2010). Consumer centred feed-
backs related to fire and grazing have been invoked as 
underlying determinants of the globally synchronised 
rapid expansion of tropical grassy biomes (Beerling 
and Osborne 2006; Edwards et al. 2010; Scheiter et al. 
2012). Indeed, there is evidence for the co-evolution of 
grazing mammals with the grass species they consume 
(Bouchenak-Khelladi et al. 2009; Sage and Stata 2015), 
just as there is palaeo-evidence of a global increase in 
fire with the expansion of C4 grass-dominated savan-
nas (Edwards et al. 2010). Today, these tropical grassy 

biomes both sustain large numbers of grazing mammals 
and promote frequent fire (Archibald and Hempson 
2016), and feedbacks between both fire and herbivory 
have been demonstrated as central to the modern 
dynamics of tropical grassy biomes over much of their 
range (Archibald and Hempson 2016; Lehmann et al. 
2014). Similarly, at local scales, many grass species rely 
on fire and herbivory for their persistence and dispersal 
(Bond et al. 2003). The origins of these co-dependency 
feedbacks remain, however, poorly understood.

While the timing of the origin of C4 grass domi-
nated biomes is relatively well resolved, many questions 
regarding the composing flora are unanswered. Today, 
a number of C4 grass species from these habitats have 
exceptional geographic ranges that span multiple con-
tinents. This is in stark contrast to the woody flora of 
savannas, which are typically derived from local forest 
ancestors in response to the novel ecological conditions 
generated by the development of a C4 grass ground layer 
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(Maurin et al. 2014; Simon et al. 2009). Establishing why 
savannas are dominated by relatively few species requires 
considering the origins of the grass species that domi-
nate these habitats, in terms of space, time and ancestral 
conditions. Among C4 grass species, variation in flam-
mability is phylogenetically constrained, and the traits 
of the grassy ground layer have ecosystem-level impacts 
on fire frequency and intensity (Archibald et al. 2013; 
Simpson et al. 2016). A key question is therefore whether 
grass traits underlying savanna dynamics existed before 
the colonisation of these ecosystems, or whether they 
evolved in situ. This problem needs to be addressed 
by elucidating the history of groups that are nowadays 
involved in the fire/herbivore feedbacks in these systems.

In this study, we reconstruct the phylogeography 
of the genus Themeda Forssk. (Poaceae, Panicoideae, 
Andropogoneae). This genus includes one of world’s 
most widespread C4 grasses species, Themeda triandra 
Forssk., along with a modern invasive, Themeda quadri-
valvis (L.) Kuntze, a grassy weed common in disturbed 
areas worldwide (Keir and Vogler 2006). In total, there 
are 27 recognised Themeda species with both annual and 
perennial lifeforms (Clayton et al. 2014). The range of the 
genus is defined by the range of T. triandra and all other 
species are either regionally or locally restricted. The 
highest concentration of species diversity is located in 
Asia, in particular India (Morales 2014). Despite ongo-
ing phylogenetic work in Andropogoneae (Giussani et al. 
2001; Mathews et al. 2002; Sánchez-Ken and Clark 2010; 
Burke, Wysocki et al. 2016; Arthan et al. 2017), the tribe 
that includes Themeda, detailed analyses of this ecolog-
ically important genus are lacking.

Today, T. triandra is central to the ecological dynam-
ics of palaeotropical savannas (Gibbs Russell et al. 1991; 
Jessop, Dashorst, and James 2006; Snyman, Ingram, and 
Kirkman 2013), where the absence of this particular spe-
cies has been used as an indicator of reduced ecosystem 
function and soil quality (Mills et al. 2005; du Preez and 
Snyman 1993). T. triandra is generally abundant where it is 
found, with both fire and grazing by mammals necessary 
for its persistence (Snyman, Ingram, and Kirkman 2013). 
Indeed, the ecological dominance of T. triandra relies on 
periodic burning and its ability to rapidly resprout post fire 
(Bond et al. 2003; Morgan and Lunt 1999). For example, in 
Serengeti region T. triandra comprises approximately 50% 
of grass cover in areas of light to moderate grazing (Vuorio 
et al. 2014), but is lost from a system where both fire and 
grazing are excluded (Danckwerts 1993). Themeda trian-
dra is also a crucial food source for domestic livestock and 
wildlife in both Africa and Australia (McNaughton 1985; 
Morgan and Lunt 1999). Despite the ecological impor-
tance of T. triandra, the timing and rate of its geographic 
spread remain unknown.

Here, we investigate the evolutionary origins of the 
Themeda genus and T. triandra in particular via phyloge-
netic reconstructions. The developed phylogeographic 
framework is used to (i) infer the order of migrations 

through geographical and ecological spaces across the 
whole genus, (ii) date the different dispersal events and 
(iii) retrace the spread of T. triandra through space and 
time. Our analyses of this paleotropical savanna domi-
nant sheds new light on the biogeographic factors under-
lying the assembly of new ecosystems during recent 
geological times.

Methods

Sampling and sequencing

Leaf samples for Themeda (n = 71; species = 18) and 
other closely related Andropogoneae (n = 7; species = 6) 
were collected from the field or obtained from the her-
baria at the Royal Botanic Gardens Kew and Edinburgh 
(Table S1). The sampling strategy optimised the morpho-
logical, ecological and geographic diversity within the 
genus given the sample availability. DNA was extracted 
from silica dried leaves and herbarium material using 
the DNeasy Plant Mini Kit (Qiagen, Texas, USA), fol-
lowing the manufacturer’s protocol. PCR and Sanger 
sequencing of five plastid regions (trnK-matK, rpl16, 
ndhF, rpoC2 and trnL-trnF) and the nuclear-encoded 
ITS marker (i.e. internal transcribed spacers of the ribo-
somal DNA) were performed as described in Lundgren 
et al. (2015). In brief, 25 μl PCR reactions were ampli-
fied with a 48°C annealing temperature, subsequently 
cleaned using the Exo-SAP treatment (Affymetric, 
High Wycombe, UK) and finally sequenced using the 
Big Dye 3.1 Terminator Cycle Sequencing chemistry 
(Applied Biosystems, California, USA). Multiple sets of 
PCR primers were used (Table S2). The older herbarium 
specimens yielded degraded DNA, and markers were 
consequently amplified in short overlapping fragments. 
The resultant chromatographs were manually corrected 
in Geneious v.5.3.6. All Sanger sequences were deposited 
in the NCBI GenBank database (KY991068-KY991366).

Four Themeda triandra, two Heteropogon Pers. and 
one Themeda quadrivalvis accessions were subjected 
to low-coverage whole-genome sequencing (genome- 
skimming), as described in Lundgren et al. (2015). In 
brief, samples were individually barcoded, pooled and 
sequenced on an Illumina HiSeq-2500 or HiSeq-3000 at 
the Genopole platform of Toulouse. In total, 1/24th of a 
lane paired-end data were generated per sample, with all 
raw data deposited in the NCBI Sequence Read Archive 
(project identifier PRJNA377519; Table S3).

Assembly, alignment and phylogenetic inference

A complete chloroplast genome (hereafter plastome) 
was assembled de novo for one sample using the 
genome-walking method described in Besnard et al. 
(2013). In brief, a combination of extractread2 (included 
in the OBITools package, http://metabarcoding.org/obi-
tools) and velvet (Zerbino and Birney 2008) was used to 
identify overlapping chloroplast reads in the raw data and 

http://metabarcoding.org/obitools
http://metabarcoding.org/obitools
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subsequently assemble them. For each sample, we then 
mapped the paired-end Illumina data back to this initial 
reference using bowtie2 v.2.2.9 (Langmead and Salzberg 
2012). Indels and SNPs were called with SAMtools mpi-
leup function v.1.2 (Li et al. 2009) and filtered using the 
accompanying vcfutils.pl script (parameters: d  =  10, 
a = 5 and Q = 30). Plastome sequences for each sample 
were generated using vcftools v.0.1.11 (Danecek et al. 
2011). To remove sequencing errors from SNP calls, we 
discarded minor alleles that had a within sample fre-
quency of < 0.2. Plastome sequences were submitted to 
GenBank (accession numbers: KY707767-KY707773).

The newly generated plastomes were aligned with 
others publicly available for Andropogoneae and 
Arundinella Raddi using MAFFT v. 7.123b (Arthan 
et al. 2017; Katoh and Standley 2013). The alignment 
was manually refined and the inverted repeat region 
removed. The Sanger sequencing data, and additional 
data retrieved from GenBank, were aligned to the plas-
tome matrix using MAFFT and then concatenated 
by sample. A phylogeny was obtained using Bayesian 
inference, as implemented in MrBayes version 3.2.0 
(Huelsenbeck and Ronquist 2001) with the GTR + G + I 
substitution model. Two analyses, each composed of 
four chains, were run for 10 million generations, sam-
pling a tree every thousand generations. Convergence 
was evaluated with Tracer v. 1.5.0 (Drummond and 
Rambaut 2007), and a consensus was computed using all 
the trees sampled after a relative burn-in period of 10%. 
To verify the effect of missing data on phylogenetic infer-
ence, we also constructed a phylogeny using a trimmed 
alignment containing five chloroplast genes (trnK-matK, 
rpl16, ndhF, rpoC2 and trnL-trnF) either obtained via 
Sanger sequencing or extracted from plastomes. The ITS 
sequences were similarly aligned with MAFFT, and a 
Bayesian phylogeny was inferred as above.

Molecular dating

Divergent groups within Themeda were identified from 
the plastid and ITS phylogenies, and the accessions 
from each clade with the most complete sequences were 
retained for molecular dating analysis as implemented 
in BEAST v. 1.8.4 (Drummond and Rambaut 2007). 
Arundinella deppeana Nees was used as the outgroup, 
based on the results of Grass Phylogeny Working Group 
II (2012) that demonstrate the monophyly of the ingroup 
(Andropogoneae). Dating subgroups of grasses is com-
plicated by the limited fossil record, and no informative 
fossil is available for the group studied here. We conse-
quently adopted a secondary calibration approach, with 
a calibration point extracted from a previous, angio-
sperm-wide dating analysis (Christin et al. 2014). The 
age of grasses has been hotly debated, with controversial 
fossils potentially pushing the origin of the group back in 
time (Prasad et al. 2011; Burke, Lin et al. 2016), although 
their effect is reduced when the evidence for non-grass 

groups is incorporated (Christin et al. 2014). Because 
this debate affects only the scale of the dating analyses 
and not the ages relative to each other, we decided to fix 
the calibration point to values previously estimated and 
present the results of our dating analyses under two dif-
ferent scenarios; with only macrofossils and with macro-
fossils plus phytoliths, in both cases using the dates that 
take into account the evidence for groups outside grasses 
(Christin et al. 2014). Our approach has the advantage of 
showing the uncertainty resulting from the genetic data 
(confidence intervals around the age estimates) inde-
pendently of the calibration density (uncertainty about 
the scale). The divergence of Zea mays L. and Sorghum 
bicolor was fixed at 15.26 Ma (or 22.38 when taking into 
account controversial microfossils; Christin et al. 2014), 
which was achieved with a normal distribution that had 
a mean of 15.26 and standard deviation of 0.0001. Two 
different analyses were run for 50,000,000 generations, 
sampling a tree every 1,000 generations with a GTR + G 
model, a Yule process speciation prior and a relaxed 
log-normal clock. After evaluating the convergence of 
the runs in Tracer v. 1.5.0 (Drummond and Rambaut 
2007), the burn-in period was set to 10%, and the max-
imum credibility tree was identified from all trees sam-
pled from both runs after the burn-in period, mapping 
median ages on nodes. To check the effect of missing 
data on our results, we repeated this analysis using only 
the samples with full chloroplast genomes.

Genome-wide phylogenetic tree

The seven genome-skimmed individuals were also geno-
typed across the nuclear genome as described in Olofsson 
et al. (2016). In brief, the reads were cleaned using NGS 
QC Toolkit v.2.3.3 (Patel and Jain 2012) and mapped 
onto the chromosomes of the closest available model 
species (Sorghum bicolor (L.) Moench, version Sorbi1; 
Paterson et al. 2009) using Bowtie2 v. 2.2.3 (Langmead 
et al. 2009). Only reads uniquely aligned in pairs were 
subsequently used for SNP calling using SAMtools 
v.0.1.19 and previously published scripts (Olofsson et al. 
2016). The low-coverage genome-skimming data mean 
that some alleles are likely missed, leading to an overes-
timation of homozygosity. However, no bias is expected 
in the missing allele, so that the low coverage is unlikely 
to lead to spurious groupings (Olofsson et al. 2016). 
A Bayesian phylogeny was inferred for the SNP data 
using MrBayes as described above, run for three million 
generations.

Results

Phylogenetic relationships within Themeda 
based on plastid markers

In this study, we sequenced and assembled seven plas-
tomes, which were supplemented with a further 26 
publicly available plastomes from Andropogoneae 
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incorrectly identified individual as it is nested within 
T. triandra (Figure 1) and is subsequently treated as 
such. Themeda triandra then forms a monophyletic 
group with T. quadrivalvis (clade H; posterior proba-
bility = 1; Figure 1). The T. triandra clade is sister to 
T. tremula (Nees ex Steud.) Hack. (clade F; Figure 1), 
with the two being sister to clade G (Figure 1), which 
includes species from Australia and Papua New Guinea 
(Figure 1). Some of the other clades include multiple 
morphological species without variation in the genetic 
markers (clades C and D; Figure 1). Within the T. tri-
andra / T. quadrivalvis clade, there appears to be three 

(including five Themeda accessions), and the plastome 
of Arundinella deppeana. Sanger-sequenced chloro-
plast data were obtained for a further 62 samples with 
a mean of 3,572 bp per sample (SD = 1623 bp; Table 
S1). These were aligned to the reference chloroplast 
genome, trimmed of the inverted repeat, and the phy-
logeny inferred from this 125,270 bp alignment included 
18 of the 27 Themeda species (Table S1).

The Bayesian chloroplast tree identified seven major 
Themeda clades (clades A–H; Figure 1, Table 1). A 
previously published chloroplast genome attributed 
to Themeda arguens (L.) Hack. may come from an 

Figure 1. Bayesian chloroplast tree inferred with MrBayes. Posterior probabilities are indicated near nodes when greater than 0.8. 
the major clades within Themeda are delimited on the right (a–H). Within T. triandra, branches are coloured based on geographical 
origin. scale bar shows the expected number of substitutions per site.
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here) and 17 of the 27 Themeda species (Fig. S2). One 
notable exception is the division of T. novoguineensis 
(Reeder) Jansen from T. arguens, which was not achieved 
with the chloroplast markers. Based on ITS, T. triandra, 
T. quadrivalvis and T. australis (R.Br.) Stapf (not sampled 
for chloroplast markers and hypothesised as a synonym 
of T. triandra) form a clade with no distinction among 
the morphological species, nor the clades identified 
based on plastid markers (Figure 1).

Molecular dating

Based on our dating analyses, the divergence between 
Themeda and its sister group occurred at 7.98 Ma (95% 
HPD 5.01–12.78), which is largely congruent with pre-
vious estimates (Estep et al. 2014; Spriggs, Christin, and 
Edwards 2014). Within Themeda, the divergence of T. 
triandra from its sister group (T. arguens) occurred at 
3.50 Ma (95% HPD 2.16–5.02 Ma) and the first diver-
gence within T. triandra (crown node) at 1.48 Ma (95% 
HPD 0.79–3.45; Figure 2). This first divergence within 
T. triandra corresponds to the divergence of mainland 
African accessions (H.1) from those from Madagascar 
(H.2) and Australia/Thailand (H.3; Figure 2). The 
Madagascan samples split from the Australian and Thai 

groups, which match the geographic regions (H.1, H.2 
and H.3; Figure 1 and Fig. S1). Clade H.1 includes all 
the mainland African samples, in addition to those from 
Turkey and Yemen (Figure 1). Clade H.2 contains all 
the T. quadrivalvis samples, whether they come from 
Madagascar or Asia (Figure 1). Finally, clade H.3 encom-
passes all the Australian accessions, in addition to those 
from Bhutan, Nepal and Thailand (Figure 1). In clade 
H.3, there is a division between some of the Australian 
samples and the rest. Note that the overall diversity 
among T. triandra plastomes (defined as clade H) is low. 
Across the plastomes of T. triandra (mean length with 
one inverted repeat = 116,090 bp, SD = 35 bp), 99.2% 
of sites were conserved, for a 99.8% pairwise identity 
between the eight T. triandra plastomes. There is some 
effect of reducing the data-set on the topology, but the 
relationships within T. triandra remain the same when 
only the four densely sampled markers are used (Fig. S1).

Phylogenetic relationships based on the nuclear 
ITS

A majority of the clades from the plastid phylogeny were 
congruent with the phylogeny inferred from the 625-
bp ITS alignment containing 71 samples (59 sequenced 

Table 1. Themeda species used in this study and their distribution. In total, we sequenced 18 out of the 27 known species. the 
clade assignment is based on chloroplast and nuclear markers, with the number of samples sequenced indicated (n), and ecologi-
cal information derived from Morales (2014).

Clade Species Range Ecology based on specimen labels n
a Themeda mooneyi Bor eastern Ghats, India Granite cliffs 1

Themeda saxicola Bor eastern Ghats, India Forest edges and hillsides; in shallow soil over granite gneiss 1
B Themeda anathera (nees ex steud.) 

Hack.
Himalayas: afghanistan, 

India, Pakistan & nepal
open and shaded areas with dry or wet soil (near watercourses); 

grassland and forest on mountain slopes, stream banks, road-
sides and cultivated fields

2

C Themeda hookeri (Griseb.) a. Camus Himalayas: China, India & 
nepal

open and shaded areas; mountain slopes, rocky places and 
cultivated fields

2

Themeda huttonensis Bor nagaland Mountains; India Hillsides, near watercourses and stream banks 1
D Themeda arundinacea (roxb.) a. Camus India & southeast asia open areas; grassland, open forest, swamp and forest edges, 

mountain slopes; stream banks, roadsides, cultivated fields
2

Themeda avenacea (F. Muell.) t. Durand 
& B. D. Jacks.

australia open and shaded areas near watercourses; grassland slopes, 
open forest and stream banks

2

Themeda caudata (nees ex Hook. & arn.) 
a. Camus

India & southeast asia open areas with dry or wet soil; savanna, forest edges, hillsides, 
stream banks, roadsides, railroads, cultivated fields

1

Themeda intermedia (Hack.) Bor Maluku Islands, Philippines 
& solomon Islands

open exposed places, secondary forest, sea shores 2

Themeda trichiata s. L. Chen & t. D. 
Zhuang

China: Guangxi, Hainan & 
yunnan

open and dry areas; grasslands and mountain slopes 1

Themeda villosa (Lam.) a. Camus India & southeast asia open areas near watercourses; savanna, swamp and forest edges, 
hillsides, stream banks, roadsides and margins of cultivated 
fields

4

e Themeda cymbaria Hack. Western Ghats: India & sri 
Lanka

open areas; grassland, forest edges, hillsides and stream banks 1

F Themeda tremula (nees ex steud.) Hack. Western Ghats: India & sri 
Lanka

open areas with dry or wet soil (near watercourses); grassland, 
forest edges, steep cliffs and slopes near mountain tops, swamp 
banks, waste ground, roadsides and cultivated fields

2

Themeda pseudotremula Potdar, 
 salunkhe & s. r. yadav

Maharashtra, India similar to Themeda tremula 1

G Themeda arguens (L.) Hack. australia & Malesia open and shaded areas with dry or wet soil (near watercourses); 
grassland, savanna, open forest, swamp and forest edges, schist 
cliffs, stream banks, roadsides, railroads, cultivated fields.

2

Themeda novoguineensis (reeder) 
Jansen

Papua new Guinea open areas; grassland, savanna, forest edges, stream banks 2

H Themeda quadrivalvis (L.) Kuntze africa & asia open and shady areas with dry or wet soil (near watercourses); 
grassland, open forest, hillsides, stream banks, roadsides

8

Themeda triandra Forssk. africa, asia & australia open areas near watercourses; grassland, savanna, open forest, 
swamp edges, hillsides, stream banks, roadsides, cultivated 
fields, plantations

36
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SNPs were used to infer a Bayesian phylogeny, with a 
mean of 11% missing data per samples. All nodes were 
fully supported (Figure 3). The tree was rooted on the 
branch separating Heteropogon from Themeda. Unlike in 
the chloroplasts and ITS phylogenies (Figures 1, 2, S2), 
T. quadrivalvis collected from Madagascar is strongly 
supported as sister to T. triandra in this tree (Figure 3). 
Within T. triandra, the Australian sample separates first, 
with the three African samples forming a derived mono-
phyletic group (Figure 3).

Discussion

Based on the phylogenetic relationships and species 
distributions, Themeda triandra spread to its current 
cosmopolitan distribution surprisingly recently. This 
ecologically important species began to diversify approx-
imately one and a half million years ago and has since been 
able to colonise the grassy biomes of Africa, Madagascar 
and Australia, long after these biomes initially assembled 

ones at 1.37 Ma (95% HPD 0.73–3.07), and this repre-
sents the divergence of clades H.1 and H.2 (Figure 1). 
Australia was colonised over 1 Ma, and the two Thailand 
samples diverged 0.69 Ma (95% HPD 0.21–1.22). The 
African lineage began diversifying relatively recently, 
with the Uganda sample splitting from the South African 
ones 0.52 Ma (95% HPD 0.19–1.30; Figure 2). Note that 
the three African samples capture the earliest split within 
clade H.1 (Figure 1). While all date estimates are older 
when considering microfossils, the diversification of T. 
triandra is still placed within the last two million years 
(Figure 2). Missing data appeared to have little effect on 
the dates, since removing partially sequenced individu-
als does not alter the results (Fig. S3).

Genome-wide nuclear phylogeny

A nuclear phylogeny was inferred from the genome- 
skimming data generated here, using the methods 
described in Olofsson et al. (2016). A total of 753,190 

Figure 2. Dating the divergence within Themeda using chloroplast data. Posterior probabilities are indicated near nodes (>0.8), and 
bars represent the 95% HPD of the estimated dates. the clade that each Themeda species represents is indicated (a–H; table 1). nCBI 
GenBank accession numbers are given for samples sequenced in previous studies. Within T. triandra, branches are coloured based 
on geographical origin. the scale is given at the bottom for a scenario that incorporates or ignores the microfossils. the origins of C4 
grasslands are plotted based on each scenario.
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perennial. Previously, T. quadrivalvis has been consid-
ered as a potential synonym of T. triandra (Veldkamp 
2016). However, if speciation is relatively recent, we 
would predict similar patterns for savanna species to 
what we observe in our phylogenies (Pennington and 
Lavin 2016) with a monophyletic daughter species (T. 
quadrivalvis) nested within a paraphyletic ancestor (T. 
triandra). This scenario is supported by the whole chlo-
roplast genomes and ITS phylogenies (Figures 1, 2, S1, 
S2, S3), and it may be concluded that T. quadrivalvis 
represents a recent evolution of an annual growth form 
from a perennial ancestor. Switching between these two 
life histories may be a surprisingly simple transition in 
grasses (Linder and Rudall 2005), being controlled by 
only two genes (Hu et al. 2003). However, the nuclear 
phylogeny identifies T. quadrivalvis as sister to T. triandra 

(Figure 4). Therefore, T. triandra replaced other C4 grass 
species already established in these habitats, rather than 
being one of the founding species. Themeda trianda is 
a major component of modern day savannas and has 
rapidly become a key component of the ground flora 
of these ecosystems (Snyman, Ingram, and Kirkman 
2013). This highlights the dynamic turn-over of tropical 
grassy biomes, with dramatic shifts in species dominance 
occurring in relatively recent evolutionary times

Is Themeda quadrivalvis a synonym of Themeda 
triandra?

Both species are extremely similar and often dominate 
savannas. The key morphological difference between the 
two is that T. quadrivalvis is annual, and T. triandra is 

Figure 3.  nuclear genome relationships within Themeda. a Bayesian tree was inferred from genome-wide snPs with MrBayes. 
Posterior probabilities are indicated near nodes. Branches are coloured based on geographical origin.

Figure 4.  Inferred putative dispersal routes for Themeda. Dates are from a dated Beast phylogeny based on chloroplast markers 
(Figure 1).
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accessions compared to the divergence of the mainland 
African accessions sampled (South Africa and Uganda). 
Our dating analyses show that the lineage containing 
the mainland African accession diverged from those that 
remained in Asia approximately one and a half million 
years ago. Individuals from this group subsequently col-
onised mainland Africa, with the first split within this 
lineage estimated at half a million years ago (South Africa 
and Uganda), further supporting a recent and rapid 
spread throughout Africa (Figure 4). The fact that this 
species was able to conquer multiple continents while its 
congeners remained geographic restricted is intriguing.

The capacity for wind dispersal of T. triandra seeds 
is poor, with most landing <1.75 m from a parent plant 
(Everson, Yeaton, and Everson 2009), but they can travel 
epizoochorously potentially over long distances (Agnew 
and Flux 1970; Milton 1993; Reynolds and Cumming 
2016). Hydroscopic awns might aid their attachment 
to animal fur or feathers, but such awns are found in 
numerous Andropogoneae genera (Kellogg and Watson 
1993) and in all Themeda species (Morales 2014). It is 
therefore possible that the impressive spread of T. tri-
andra is not the result of a higher dispersal ability, but 
instead reflects an enhanced survival after occasional 
long distance dispersal.

Evolving from a genus already associated with tropical 
grassy biomes over a long period means that T. triandra is 
inherently adapted to these habitats. Its height and rapid 
growth enable T. triandra to out compete neighbouring 
species for light, water and nutrients. Fire also plays an 
important role in its dominance, with T. triandra being 
highly flammable relative to co-occurring grass species 
(Simpson et al. 2016) and its persistence reliant on burn-
ing (Danckwerts 1993). These characteristics are, however, 
at least partially shared across the genus (Morales 2014).

Polyploidy may also play a role in the success of T. 
triandra following dispersal, with the species recognised 
as having numerous populations of different ploidy lev-
els (Birari 1980; Hayman 1960). Ploidy has been asso-
ciated with the invasive potential of species, through 
improving the capacity to colonise new environments, 
via maintaining genetic diversity as new populations 
establish (te Beest et al. 2011). However, other species 
within the genus also include polyploids (Birari 1981). 
Furthermore, previous studies investigating allopoly-
ploidy and diversification during Miocene grassland 
expansion showed that there is no correlation with the 
origin of novel morphological characters (Estep et al. 
2014). We therefore conclude that the success of T. tri-
andra cannot be attributed to a single characteristic, 
but probably reflects the combined action of multiple 
traits favouring dispersal and survival, but also poten-
tially contingency. Indeed, a handful of chance dispersal 
events over long distances would have been sufficient 
to bring the species to the African continent, where its 
characteristics would have allowed a rapid colonisation 
of C4 grassy biomes that already existed there.

(Figure 3). The inconsistencies between the plastome and 
nuclear phylogenies might stem from incomplete lineage 
sorting or hybridisation during the early diversification 
of the species complex, in which case T. quadrivalvis 
and T. triandra represent recently diverged sister taxa. 
Either way, both species are extremely closely related, 
and whether the two forms do interbreed in the wild or 
represent distinct species will require dedicated analyses 
in the future.

A long history in Asian savannas

Both the chloroplast and nuclear phylogenies place a 
series of Asian species as successive sister groups to the 
T. triandra clade (Figs. 1, 2, S2), clearly suggesting Asia 
as the ancestral area for the group. The earliest division 
within the genus divides clades A–D from E–H (Figure 2). 
Broadly speaking, this separates the predominately 
savanna species (clades E–H; including T. triandra and 
its close relatives) from the taller wetland species (clade 
D; e.g. T. villosa (Lam.) A.Camus and T. caudata (Nees 
ex Hook. & Arn.) A.Camus; Morales 2014; Veldkamp 
2016) and those found in dry and/or high altitude envi-
ronments (clade A–C; e.g. T. anathera (Nees ex Steud.) 
Hack.; Table 1). The sister taxa of Themeda are also 
savanna species (e.g. Bothriochloa alta (Hitchc.) Henrard, 
Capillipedium venustum (Thwaites) Bor, Iseilema mac-
ratherum Domin, Heteropogon contortus (L.) P.Beauv. 
ex Roem. & Schult., Heteropogon triticeus (R.Br.) Stapf 
ex Craib, Diheteropogon amplectens (Nees) Clayton and 
Hyparrhenia subplumosa Stapf). We therefore conclude 
that the savanna ecology, with its suite of associated traits, 
predates the genus. The Andropogoneae tribe as a whole 
contains many of the species typical of grassy biomes 
in the paleotropics (Osborne 2008). The group evolved 
C4 photosynthesis more than 17  Ma (Christin et al. 
2008), a trait that, in association with their capacity to 
quickly accumulate biomass between fires (Bond et al. 
2003; Morgan and Lunt 1999), might have favoured their 
spread in novel grassy biomes as they expanded around 
the world. The savanna Themeda species themselves 
(clade E–H) began to diversify approximately 5  Ma 
(Figure 2), during the global expansion of C4 grassy 
biomes (Cerling et al. 1997; Edwards et al. 2010). This 
means that the ancestors of T. triandra spent millions 
of years in the extensive and diverse grassy habitats of 
Asia (Dixon et al. 2014), and therefore T. triandra was 
probably well suited for the African savannas when it 
was eventually able to colonise this continent.

Paleotropical spread of Themeda triandra

From its Asian origin, T. triandra has spread to Australia 
and Africa (Figure 4). It is likely that T. triandra arrived in 
Australia before mainland Africa, as supported by higher 
genetic diversity within Australia and to a lesser extent, 
the earlier divergence of Madagascan and Australian 
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