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Supplementary Information 1 

The following sections provide further information on the methods used in this study. Here we 2 

reproduce extracts of Williams (2013), Williams et al. (2013, 2015) and Lewis et al. (2013) 3 

from where many of the methods were adopted, and elaborate on new methods employed in 4 

this study.  5 

 6 

Sea-level  7 

Developing a sea-level curve 8 

To determine the timing and extent of sea-level change, we used the line-of-best fit through a 9 

combined dataset of Lewis et al. (2013) and Lambeck et al. (2002) (see also Yokoyama et al., 10 

2001a, 2001b) (Figure S1). These values generally took the midpoint of data within the 11 

envelope developed at any given time interval to provide a single value with which to explore 12 

changing continental landmass. Specific sea-level values determined from this approach are 13 

presented in Table S1.  14 

 15 

Figure S1: Sea-level data from Lewis et al. (2013) showing the line of best fit use for this 16 

analysis.  17 
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Table S1: Sea-level data (metres below PMSL) used in this analysis.  18 

Age (ka) 
Metres 
PMSL Age (ka) 

Metres 
PMSL Age (ka) 

Metres 
PMSL Age (ka) 

Metres 
PMSL 

8000 0 16800 -101.5 25600 -125 34400 -65 

8200 -2 17000 -103 25800 -125 34600 -65 

8400 -3 17200 -106 26000 -125 34800 -65 

8600 -6 17400 -106 26200 -125 35000 -65 

8800 -12 17600 -107 26400 -125 

9000 -14 17800 -110 26600 -125 

9200 -16 18000 -110 26800 -125 

9400 -18 18200 -110 27000 -125 

9600 -24 18400 -111 27200 -125 

9800 -27 18600 -111 27400 -125

10000 -28 18800 -122 27600 -125 

10200 -31 19000 -114 27800 -125 

10400 -34 19200 -114 28000 -125 

10600 -35 19400 -117 28200 -125 

10800 -38 19600 -123 28400 -125 

11000 -42 19800 -123 28600 -125 

11200 -46 20000 -123 28800 -125 

11400 -50 20200 -122 29000 -125 

11600 -53 20400 -122 29200 -125 

11800 -54 20600 -119.5 29400 -125 

12000 -55 20800 -117 29600 -125

12200 -56 21000 -119 29800 -125 

12400 -58 21200 -121 30000 -125 

12600 -60 21400 -123 30200 -120 

12800 -62 21600 -125 30400 -116 

13000 -64 21800 -125 30600 -112 

13200 -70 22000 -125 30800 -108 

13400 -72 22200 -125 31000 -104 

13600 -74 22400 -125 31200 -100 

13800 -76 22600 -125 31400 -95 

14000 -78 22800 -125 31600 -90 

14200 -80 23000 -125 31800 -85

14400 -87 23200 -125 32000 -80 

14600 -96 23400 -125 32200 -75

14800 -95 23600 -125 32400 -70 

15000 -100 23800 -125 32600 -65 

15200 -105 24000 -125 32800 -65 

15400 -105 24200 -125 33000 -65 

15600 -105 24400 -125 33200 -65 

15800 -105 24600 -125 33400 -65 

16000 -105 24800 -125 33600 -65 

16200 -105 25000 -125 33800 -65 

16400 -109 25200 -125 34000 -65 

16600 -100 25400 -125 34200 -65 

 19 

 20 
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Changing Land Mass 21 

As outlined in the manuscript, we used GIS analysis of bathymetric data at given time intervals 22 

to identify the amount of crustal shelf gained or lost. A summary of the changes is provided in 23 

the manuscript, with the complete record at 200 year intervals presented in Table S2.  24 

 25 

Table S2: Changing continental landmass, sea-level, Aboriginal populations and density 26 

for selected time periods. Aboriginal populations are based on data in Williams (2013) 27 

(uncorrected radiocarbon data; founding population of 2,500 at 50 ka; and a smoothing 28 

spline with 50 degrees of freedom). 29 

Date 
(ka) 

Relative 
Sea-level (m 
PMSL) 

Continental 
Landmass 
(km2) 

Change from 
previous presented 
time interval (km2) 

Change from 
previous presented 
time interval (%) 

Population 
(n) 

Population 
(1/ n km2) 

35,000 -65  9,113,772 0.00 0.00  13,922.39  655 

34,800 -65  9,113,772 0.00 0.00  13,313.22  685 

34,600 -65  9,113,772 0.00 0.00  12,855.12  709 

34,400 -65  9,113,772 0.00 0.00  12,388.69  736 

34,200 -65  9,113,772 0.00 0.00 11,762.25  775

34,000 -65  9,113,772 0.00 0.00  10,999.91  829 

33,800 -65  9,113,772 0.00 0.00  10,297.73  885 

33,600 -65  9,113,772 0.00 0.00  9,861.10  924 

33,400 -65  9,113,772 0.00 0.00  9,758.44  934 

33,200 -65  9,113,772 0.00 0.00  9,915.19  919 

33,000 -65  9,113,772 0.00 0.00  10,239.46  890 

32,800 -65  9,113,772 0.00 0.00  10,654.26  855 

32,600 -65  9,113,772 0.00 0.00  11,111.53  820 

32,400 -70  9,241,439 127,666.40 1.40  11,698.73  790 

32,200 -75  9,327,152 85,712.95 0.93  12,606.92  740 

32,000 -80  9,412,929 85,776.93 0.92  13,868.83  679 

31,800 -85  9,480,088 67,159.15 0.71  15,320.73  619 

31,600 -90  9,537,990 57,902.21 0.61  16,714.30  571 

31,400 -95  9,591,060 53,070.52 0.56  17,611.58  545 

31,200 -100  9,638,459 47,398.91 0.49  17,538.21  550 

31,000 -104  9,672,960 34,500.81 0.36  16,590.43  583 

30,800 -108  9,701,229 28,269.30 0.29  15,403.03  630 

30,600 -112  9,727,288 26,058.83 0.27  14,604.17  666 

30,400 -116  9,751,396 24,107.85 0.25  14,375.77  678 

30,200 -120  9,773,718 22,322.13 0.23  14,432.30  677 

30,000 -125  9,799,737 26,018.26 0.27  14,422.20  679 

29,800 -125  9,799,737 0.00 0.00  14,221.49  689 

29,600 -125  9,799,737 0.00 0.00  13,919.19  704 

29,400 -125  9,799,737 0.00 0.00  13,564.17  722 
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Date 
(ka) 

Relative 
Sea-level (m 
PMSL) 

Continental 
Landmass 
(km2) 

Change from 
previous presented 
time interval (km2) 

Change from 
previous presented 
time interval (%) 

Population 
(n) 

Population 
(1/ n km2) 

29,200 -125  9,799,737 0.00 0.00  13,121.54  747 

29,000 -125  9,799,737 0.00 0.00  12,593.48  778 

28,800 -125  9,799,737 0.00 0.00 12,250.71  800

28,600 -125  9,799,737 0.00 0.00  12,560.15  780 

28,400 -125  9,799,737 0.00 0.00  13,568.41  722 

28,200 -125  9,799,737 0.00 0.00  14,790.66  663 

28,000 -125  9,799,737 0.00 0.00  15,687.34  625 

27,800 -125  9,799,737 0.00 0.00  16,081.07  609 

27,600 -125  9,799,737 0.00 0.00  16,133.50  607 

27,400 -125  9,799,737 0.00 0.00  16,015.59  612 

27,200 -125  9,799,737 0.00 0.00  15,844.77  618 

27,000 -125  9,799,737 0.00 0.00  15,695.39  624 

26,800 -125  9,799,737 0.00 0.00  15,481.13  633 

26,600 -125  9,799,737 0.00 0.00  15,004.06  653 

26,400 -125  9,799,737 0.00 0.00  14,262.52  687 

26,200 -125  9,799,737 0.00 0.00  13,474.73  727 

26,000 -125  9,799,737 0.00 0.00  12,881.65  761 

25,800 -125  9,799,737 0.00 0.00  12,632.63  776 

25,600 -125  9,799,737 0.00 0.00  12,785.43  766 

25,400 -125  9,799,737 0.00 0.00 13,318.73  736

25,200 -125  9,799,737 0.00 0.00  13,896.87  705 

25,000 -125  9,799,737 0.00 0.00  13,992.54  700 

24,800 -125  9,799,737 0.00 0.00  13,571.92  722 

24,600 -125  9,799,737 0.00 0.00 13,123.49  747

24,400 -125  9,799,737 0.00 0.00  13,174.97  744 

24,200 -125  9,799,737 0.00 0.00  13,947.94  703 

24,000 -125  9,799,737 0.00 0.00  15,310.92  640 

23,800 -125  9,799,737 0.00 0.00  16,954.93  578 

23,600 -125  9,799,737 0.00 0.00  18,473.36  530 

23,400 -125  9,799,737 0.00 0.00  19,548.11  501 

23,200 -125  9,799,737 0.00 0.00  20,351.43  482 

23,000 -125  9,799,737 0.00 0.00  21,443.48  457 

22,800 -125  9,799,737 0.00 0.00  23,023.62  426 

22,600 -125  9,799,737 0.00 0.00  24,826.61  395 

22,400 -125  9,799,737 0.00 0.00  26,484.88  370 

22,200 -125  9,799,737 0.00 0.00  27,624.63  355 

22,000 -125  9,799,737 0.00 0.00  27,932.12  351 

21,800 -125  9,799,737 0.00 0.00  27,372.45  358 

21,600 -125  9,799,737 0.00 0.00  26,169.58  374 

21,400 -123  9,789,429 -10,307.23 -0.11  24,590.29  398 
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Date 
(ka) 

Relative 
Sea-level (m 
PMSL) 

Continental 
Landmass 
(km2) 

Change from 
previous presented 
time interval (km2) 

Change from 
previous presented 
time interval (%) 

Population 
(n) 

Population 
(1/ n km2) 

21,200 -121  9,778,959 -10,470.00 -0.11  22,922.75  427 

21,000 -119  9,768,281 -10,678.56 -0.11  21,484.69  455 

20,800 -117  9,757,184 -11,096.56 -0.11  20,584.69  474 

20,600 -120  9,773,718 16,534.09 0.17  20,423.21  479 

20,400 -122  9,784,197 10,478.93 0.11  21,149.51  463 

20,200 -122  9,784,197 0.00 0.00  23,229.18  421 

20,000 -123  9,789,429 5,232.11 0.05  27,540.38  355 

19,800 -123  9,789,429 0.00 0.00  34,795.99  281 

19,600 -123  9,789,429 0.00 0.00  43,832.22  223 

19,400 -117  9,757,184 -32,245.12 -0.33  51,790.98  188 

19,200 -114  9,739,302 -17,881.75 -0.18  56,767.96  172 

19,000 -114  9,739,302 0.00 0.00  58,204.03  167 

18,800 -122  9,784,197 44,894.76 0.46  56,056.70  175 

18,600 -111  9,720,946 -63,251.21 -0.65 51,337.03  189

18,400 -111  9,720,946 0.00 0.00  45,817.67  212 

18,200 -110  9,714,493 -6,453.44 -0.07  40,543.12  240 

18,000 -110  9,714,493 0.00 0.00  35,712.73  272 

17,800 -110  9,714,493 0.00 0.00 31,381.18  310

17,600 -107  9,694,370 -20,122.23 -0.21  27,702.01  350 

17,400 -106  9,687,522 -6,848.81 -0.07  24,920.43  389 

17,200 -106  9,687,522 0.00 0.00  23,237.56  417 

17,000 -103  9,665,164 -22,357.09 -0.23  22,791.09  424 

16,800 -102  9,656,831 -8,333.28 -0.09  23,685.78  408 

16,600 -100  9,638,459 -18,371.79 -0.19  25,851.30  373 

16,400 -109  9,707,821 69,361.58 0.72  29,010.41  335 

16,200 -105  9,680,365 -27,455.83 -0.28  32,649.16  296 

16,000 -105  9,680,365 0.00 0.00  35,444.77  273 

15,800 -105  9,680,365 0.00 0.00  35,764.22  271 

15,600 -105  9,680,365 0.00 0.00  33,665.67  288 

15,400 -105  9,680,365 0.00 0.00  30,792.04  314 

15,200 -105  9,680,365 0.00 0.00  28,827.40  336 

15,000 -100  9,638,459 -41,905.74 -0.43  28,629.66  337 

14,800 -95  9,591,060 -47,398.91 -0.49  30,094.07  319 

14,600 -96  9,601,093 10,032.21 0.10  32,303.07  297 

14,400 -87  9,503,745 -97,347.34 -1.01 33,723.75  282

14,200 -80  9,412,929 -90,816.74 -0.96  33,083.76  285 

14,000 -78  9,380,670 -32,258.96 -0.34  30,576.16  307 

13,800 -76  9,345,575 -35,094.68 -0.37  27,559.33  339 

13,600 -74  9,308,409 -37,165.77 -0.40 25,012.05  372

13,400 -72  9,274,597 -33,811.71 -0.36  23,367.13  397 
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Date 
(ka) 

Relative 
Sea-level (m 
PMSL) 

Continental 
Landmass 
(km2) 

Change from 
previous presented 
time interval (km2) 

Change from 
previous presented 
time interval (%) 

Population 
(n) 

Population 
(1/ n km2) 

13,200 -70  9,241,439 -33,158.75 -0.36  22,928.25  403 

13,000 -64  9,079,658 -161,781.01 -1.75  23,731.70  383 

12,800 -62  9,015,755 -63,902.46 -0.70  25,496.14  354 

12,600 -60  8,951,490 -64,265.14 -0.71  27,858.48  321 

12,400 -58  8,878,702 -72,787.62 -0.81  30,534.79  291 

12,200 -56  8,796,978 -81,724.81 -0.92  33,315.52  264 

12,000 -55  8,754,285 -42,692.17 -0.49  35,904.24  244 

11,800 -54  8,718,718 -35,567.24 -0.41  37,905.16  230 

11,600 -53  8,688,353 -30,365.67 -0.35  39,123.81  222 

11,400 -50  8,614,163 -74,189.37 -0.85  40,401.02  213 

11,200 -46  8,521,759 -92,404.32 -1.07  43,303.11  197 

11,000 -42  8,436,419 -85,340.10 -1.00  47,874.45  176 

10,800 -38  8,362,487 -73,932.07 -0.88  52,327.88  160 

10,600 -35  8,310,729 -51,757.66 -0.62 54,866.54  151

10,400 -34  8,294,144 -16,585.36 -0.20  55,412.60  150 

10,200 -31  8,244,144 -50,000.14 -0.60  55,367.08  149 

10,000 -28  8,190,877 -53,266.53 -0.65  55,810.30  147 

9,800 -27  8,173,931 -16,946.11 -0.21 57,238.68  143

9,600 -24  8,121,137 -52,793.95 -0.65  59,906.99  136 

9,400 -18  8,013,754 -107,383.21 -1.32  63,363.01  126 

9,200 -16  7,981,573 -32,180.86 -0.40  66,673.50  120 

9,000 -14  7,952,360 -29,212.84 -0.37  69,967.82  114 

8,800 -12  7,922,133 -30,227.52 -0.38  74,603.18  106 

8,600 -6  7,839,223 -82,909.06 -1.05  81,892.00  96 

8,400 -3  7,794,815 -44,408.91 -0.57  91,396.86  85 

8,200 -2  7,778,369 -16,445.44 -0.21  100,842.20  77 

8,000 0  7,684,306 -94,062.72 -1.21  107,936.79  71 

Average   9,392,435 -10,510.78 -0.12  28,148.6   467.9 

Total   -142,9465.88 -16.93   
 30 

Analysis of Shore-line change 31 

To determine the pace of sea-level change, we adopted methods from Anderson and Bissett 32 

(2015). Specifically, we measured a series of transects distributed across Australia (Figures S2-33 

S20), and encompassing the crustal shelf. The transects were selected to provide a broad spread 34 

across the continent. We then measured the distances of the changing coastline along each 35 

transect during the selected time intervals. The data recovered from this process are presented 36 

in Table S3, with the summary information developed from these transects presented in Table 37 

2.   38 
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 39 

Figure S2: Overall location map of sea-level transect data presented in Figures S3-S13 inclusive.  40 



8 
 

 41 

Figure S3: Sea-level transects and cross sections 1-4 inclusive, located along the NSW coast.  42 



9 
 

 43 

Figure S4: Sea-level and cross section transects 5-9 inclusive, located across Bass Strait.  44 
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 45 

Figure S5: Sea-level and cross section transects 10-13 inclusive, located along the Australian Bight.  46 
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 47 

Figure S6: Sea-level and cross section transects 14-16 inclusive, located in southwest western Australia.  48 
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 49 

Figure S7: Sea-level transects 17-19 inclusive, located along the Pilbara Coast. Cross sections are presented in Figure S17. 50 

 51 
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 52 

Figure S8: Sea-level and cross section transects 20 and 21, located near Broome and Cape Leveque.   53 
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 54 

Figure S9: Sea-level and cross section transects 22-24 inclusive, encompassing Joseph Bonaparte Gulf, Tiwi Islands and Darwin.   55 
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 56 

Figure S10: Sea-level and cross section transects 25-27 inclusive, encompassing the Gulf of Carpentaria.  57 
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 58 

Figure S11: Sea-level and cross section transects 28-30 inclusive, encompassing Princess Charlotte Bay and Cooktown.  59 
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 60 

Figure S12: Sea-level transects 31-33 inclusive, encompassing the Whitsunday Islands and Yeppoon. Cross sections are presented in Figure S20. 61 
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 62 

Figure S13: Sea-level and cross section transects 34 and 35, including Fraser Island and Brisbane.  63 
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Table S3:	Shore-line movements (metres) between 35-8 ka, calculated from 35 transects 64 

around the continent. Details of the shore-line changes within each transect are presented 65 

below by time period. Transects are shown in Figure S3 – S20. Average, maximum, and 66 

minimum values are presented, along with changes per generation (25-years) and 67 

annually. 68 

Transect Time interval (ka) Total 
(35-8 
ka) 

Total 
(29-8 
ka) 

Total 
(15-8 
ka) 35-29 29-21 21-17 17-15 15-13 13-11 11-8 

1 26,183 -1,612 -11,489 -2,077 -11,966 -3,746 -2,641 -7,348 -33,531 -18,353 

2 15,256 -6,570 -2,586 -809 -4,904 -2,659 -7,295 -9,567 -24,823 -14,858 

3 12,240 -5,989 -3,710 -325 -4,076 -2,667 -5,895 -10,422 -22,662 -12,638 

4 11,253 -2,673 -2,845 -174 -6,272 -4,353 -8,072 -13,136 -24,389 -18,697 

5 23,877 -5,184 -8,924 -789 -9,130 -12,629 -5,693 -18,472 -42,349 -27,452 

6 50,455 -212 -659 -267 -52,018 -35,536 -26,212 -64,449 -114,904 -113,766 

7 14,457 -2,167 -5,149 -2,145 -6,932 -12,163 -17,224 -31,323 -45,780 -36,319 

8 33,608 -502 -2,146 -1,380 -28,548 -1,985 -4,701 -5,654 -39,262 -35,234 

9 185,704 -11,268 -31,714 -7,261 -144,258 -2,595 -5,545 -16,937 -202,641 -152,398 

10 70,957 -593 -1,753 -796 -71,994 -36,901 -36,642 -77,722 -148,679 -145,537 

11 65,125 -1,712 -23,131 -4,597 -42,282 -61,172 -182,957 -250,726 -315,851 -286,411 

12 103,918 -4,566 -34,908 -2,775 -90,934 -62,442 -2,712 -94,419 -198,337 -156,088 

13 119,231 -7,266 -19,657 -7,912 -95,261 -48,048 -4,602 -63,515 -182,746 -147,911 

14 16,168 -1,004 -2,481 -662 -11,949 -17,570 -8,212 -25,710 -41,878 -37,731 

15 5,488 -1,245 -1,660 -189 -1,924 -17,616 -4,792 -21,938 -27,426 -24,332 

16 9,414 -1,300 -3,248 -786 -4,467 -2,653 -29,656 -32,696 -42,110 -36,776 

17 3,104 -289 -599 -211 -1,212 -1,010 -1,842 -2,059 -5,163 -4,064 

18 39,043 -1,983 -9,549 -2,475 -32,148 -4,520 -63,092 -74,724 -113,767 -99,760 

19 46,704 -8,274 -8,479 -627 -34,463 -51,549 -43,475 -100,163 -146,867 -129,487 

20 94,465 -8,903 -26,966 -3,158 -56,997 -35,793 -31,721 -69,073 -163,538 -124,511 

21 123,090 -391 -4,301 -1,413 -117,302 -52,526 -108,855 -161,698 -284,788 -278,683 

22 290,833 -1,008 -16,456 -5,922 -260,566 -19,813 -7,767 -20,699 -311,532 -288,146 

23 174,792 -15,308 -58,801 -17,552 -83,717 -49,835 -70,854 -121,275 -296,067 -204,406 

24 111,537 -13,765 -12,286 -1,615 -82,964 -102,060 -64,014 -165,167 -276,704 -249,038 

25 136,179 -6,605 -51,706 -4,692 -73,550 -151,326 -79,798 -231,498 -367,677 -304,674 

26 87,381 - - - -136,287 -241,271 -83,060 -373,237 -460,618 -460,618 

27 41,840 - - - -44,709 -50,945 -57,196 -111,010 -152,850 -152,850 

28 540 - -359 - -420 - -31,146 -31,385 -31,925 -31,566 

29 303 - - - -316 - -53,272 -53,285 -53,588 -53,588 

30 323 - - - -393 -14,606 -47,936 -62,612 -62,935 -62,935 

31 11,289 -300 -652 - -30,730 -73,359 -88,100 -181,852 -193,141 -192,189 

32 22,983 -746 -1,838 -237 -27,769 -59,398 -118,371 -185,376 -208,359 -205,538 
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Transect Time interval (ka) Total 
(35-8 
ka) 

Total 
(29-8 
ka) 

Total 
(15-8 
ka) 35-29 29-21 21-17 17-15 15-13 13-11 11-8 

33 3,705 -521 -695 -3,300 - -36,523 -91,391 -128,725 -132,430 -127,914 

34 22,821 -242 -778 -259 -24,246 -43,154 -7,921 -53,779 -76,600 -75,321 

35 17,937 -691 -1,507 -490 -14,674 -12,344 -9,665 -21,434 -39,371 -36,683 

Minimum (m) 303 -212 -359 -174 -316 -1,010 -1,842 -2,059 -5,163 -4,064 

Maximum (m) 290,833 -15,308 -58,801 -17,552 -260,566 -241,271 -182,957 -373,237 -460,618 -460,618 

Average (m) 56,920 -3,763 -11,324 -2,583 -47,335 -40,144 -40,352 -82,660 -139,580 -124,185 

Average 
movement per 
generation (m) 

203.29 -11.76 -70.77 -32.28 -591.68 -501.81 -336.27 -76.54 -166.17 -443.52 

Average 
movement per 

year (m) 

8.13 -0.47 -2.83 -1.29 -23.67 -20.07 -13.45 -3.06 -6.65 -17.74 

 69 

Past Hunter-Gatherer Demography 70 

Radiocarbon Data as a Proxy for Human Activity  71 

Note that the use of radiocarbon data as a proxy for human activity and associated issues related to time-72 

series analysis have been exhaustively explored in Williams (2012) and (2013), and Williams and Ulm 73 

(2016). Extracts of these publications have been included below, but we direct readers with concerns in 74 

relation to the application of radiocarbon data as such a proxy to these publications for further details. 75 

 76 

One of the key aims of Williams (2012) was to determine how reliable the radiocarbon dataset was in 77 

providing a proxy for prehistoric human activity. It is a fundamental assumption that radiocarbon dates 78 

used in these analyses derive from occupation events.  79 

 80 

This assumption is intrinsic to selection of archaeological samples for dating. A direct association is 81 

clearly evident for (a) dated hearths and fireplaces, burials, and shell middens but is less secure for (b) 82 

detrital charcoal from occupation deposits (which provide the majority of dates in archaeological 83 

datasets). The latter are generally assumed to be charcoal from human activity (e.g. from dispersed 84 

fireplaces). This is supported by the correlation between charcoal concentration and the density of other 85 

occupation debris (such as lithics and faunal bone) observed in most sites (e.g. Smith (2006): Figure 86 

19). Further support is provided by comparison and statistical correlation of summed probability plots 87 

for dated features (group (a) above) and detrital charcoal (Figure S14) showing that both record similar 88 

trends in Australian data. Pearson correlation coefficients of these data showed a significant correlation 89 

between trends shown in radiocarbon plots for occupation features and detrital charcoal over the last 90 
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20,000 years (Table S4 and Figure S14). The correlation was weaker prior to 20,000 years, reflecting 91 

the smaller number of dates in these samples, rather than necessarily a de-coupling of the relationship. 92 

 93 

Table S4: Pearson correlation coefficient and significance for various time intervals, comparing 94 

radiocarbon data for occupation features and detrital charcoal.  95 

 96 

Period (cal. yrs BP) Pearson correlation (r) P-value 

0 –  9,999 0.686 0.000 

10,000 – 19,999 0.341 0.000 

20,000 – 29,999 -0.290 0.069 

30,000 – 40,000 0.349 0.025 

Overall 0.341 0.000 

 97 

Williams (2013) re-explored this issue with the continental wide radiocarbon dataset (n=4,575). The 98 

aim was again to identify whether the entire dataset or a subset from (a) above would provide the most 99 

reliable results for reconstructing prehistoric population. It was also undertaken using several new 100 

procedures proposed by Peros et al. (2010) to address similar issues in their dataset. These investigations 101 

consisted of three different approaches:  102 

1. Comparison of the entire dataset with a subset of those dates containing laboratory errors <100 103 

years. Peros et al. proposed this approach to determine whether unusually large errors in some 104 

data significantly impacted the eventual probability distributions/histograms produced.   105 

2. Comparison of the entire dataset with a subset of dates that could be directly correlated to 106 

human activity (e.g. burials, hearths, midden material, etc). This comparison was similar to 107 

those undertaken in Williams (2012) described above and was undertaken to address the 108 

concerns over the large number of detrital charcoal dates in archaeological sequences.  109 

3. Comparison of the entire dataset with a subset of ‘occupation events’. These events were coined 110 

by Peros et al. (2010) to avoid the common issue of archaeological site duplication, and remove 111 

artificial peaks from the data due to multiple dates of the same archaeological feature, etc. The 112 

method involved the counting of each site only once per 200-year data bin, regardless of the 113 

number of times it appeared, and thereby remove multiple dates from the same stratigraphic 114 

unit or feature.  115 

 116 

Comparison of the overall dataset with filtered subsets (1-3 above) show good correlation (Figure S15). 117 

Each subset contains at least 50% of the overall data and demonstrates similar trends. The occupation 118 

event subset contains the highest number of dates within a single subset (n=3,711 or 81%) and indicates 119 

that archaeological sample duplication is not a significant issue within the data. A Lin’s Concordance 120 

Coefficient test between the overall dataset and each subset indicates r values between 0.77 and 0.97, 121 
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with reduced r values stemming from lack of early data (>20 ka) in some subsets, rather than necessarily 122 

de-coupling of the relationship. This correlation suggests that removing dates with >100-year laboratory 123 

errors, or from detrital charcoal has little effect on the overall shape of the curve. For this reason, we 124 

used the entire dataset in subsequent analysis. 125 

 126 

 127 

Figure S14: Number of radiocarbon dates for the Williams (2012) dataset (solid line), detrital 128 

charcoal subset (dot and dashed line) and a subset of known occupation features such as hearths, 129 

midden, burials, etc (dashed line), corrected in accordance with taphonomic correction outlined 130 

in Williams (2012). Data presented as 3-point moving average (equivalent to 750 years). A 131 

statistical analysis of the overall dataset and the two subsets reveal close correlation over the last 132 

20,000 years. This can be seen most clearly in the Holocene where all data shows similar trends, 133 

albeit at different magnitudes. 134 

 135 

  136 
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 137 

Figure S15. Plots showing only those radiocarbon data that: A) demonstrate errors less than 100 138 

years; B) demonstrate a direct link to occupation activities (e.g. hearths, burials, middens, etc); 139 

and C) could be identified as ‘occupation events’ after Peros et al. (2010). The insets show linear 140 

regression between each subset and the overall uncorrected dataset. A Lin’s concordance 141 

coefficient analysis of these data indicate good correlation (r values as follows: A = 0.977; B = 142 

0.770; C = 0.925) and demonstrate that the overall dataset provides a reliable curve for prehistoric 143 

activity. 144 

 145 
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Radiocarbon Calibration 146 

All radiocarbon data were calibrated using using Oxcal (version 4.1) (Bronk Ramsey, 2009). 147 

Terrestrial dates were calibrated using INTCAL13 and marine dates using MARINE13 (Reimer et al., 148 

2013) with ΔR values after (Ulm, 2002, 2006). Oxcal was used to both obtain a median value for each 149 

radiocarbon date (95.4% confidence) and to create sum probabilities. To remove some of the calibration 150 

anomalies and allow subsequent analysis, each calibrated date was then ‘data binned’ into 200-year 151 

intervals based on its median value. We acknowledge that when calibrating a radiocarbon date, the age 152 

may occur anywhere within the minimum and maximum values provided by the calibration program 153 

(rather than the median value). However, on average, calibrated ages in the dataset had less than a 452-154 

year range, and would have remained within the same broad time slices applied in the dataset, regardless 155 

of which part of the calibrated age range was selected  156 

 157 

Taphonomic correction  158 

Where taphonomic correction is referenced in relation to radiocarbon data, it is based on procedures in 159 

Williams (2012, 2013). This procedure involves correction of the actual number of dates per 200-yr bin 160 

using a decay curve created from a volcanic radiocarbon dataset. The correction equation is:  161 

 162 

nc = na/(2.107 x 107(t +2754)-1.526)       (S1) 163 

 164 

where nc = taphonomically corrected number of radiocarbon dates for the dataset of interest, na is the 165 

actual number of radiocarbon dates present at a specific time (t) in the dataset of interest. After Williams 166 

(2013), we combined ‘corrected’ open site data and ‘uncorrected’ data from rockshelters to develop the 167 

overall curves. 168 

 169 

Development of annual average growth rates and palaeo-populations 170 

Peros et al. (2010) used radiocarbon data to develop quantitative palaeo-Indian population estimates for 171 

North America. Using more than 25,000 radiocarbon dates spread across the continent, Peros et al. 172 

(2010) developed a method of converting numbers of radiocarbon dates into an average annual change 173 

in population through time (GRAnn). They then applied this equation to a range of founding populations 174 

to estimate the population of palaeo-Indians through time. Here the same approach was used to develop 175 

similar prehistoric population estimates in Australia. 176 

 177 

The method developed by Peros et al., first included the calibration of all radiocarbon data. Using the 178 

median value, each date was then divided into 200-year data bins of ‘number of dates’. (Data-binning 179 

is a form of quantization – mapping a large set of input values into a smaller set and reducing minor 180 

observational error). A smoothing spline was then run through the data bins, with subsequent analysis 181 
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using interpolated values from this spline. The reason for the introduction of the spline and use of 182 

interpolated values was two-fold: 1) it removed extreme values and outliers from the data-bins; and 2) 183 

most importantly it removed zero values from the data, which are problematic when applying Eq. (S2). 184 

In relation to (1), this was controlled by the degrees of freedom (df) used to develop the spline; a lower 185 

df reducing the extreme values in the data. Peros et al. adopted a df value- of 25 for their analysis, 186 

whereas for this analysis a range of df values (15-200) were explored and considered: both 25 and 50 187 

provided a good balance between data variability and coherent results. Using the values interpolated by 188 

the spline, Peros et al. applied an equation to determine annual percentage growth rate (GRAnn) as 189 

follows:  190 

 191 

GRAnn = 0.5((d2 – d1)/d1)       (S2) 192 

 193 

where in a given pair of consecutive 200-yr data bins, d2 is the number of radiocarbon dates in the 194 

younger bin, and d1 is the number of dates in the older bin. Each GRAnn value was multiplied by 0.5 to 195 

convert to a percentage (i.e. multiply the value by 100) and to produce an annual rate from the 200-year 196 

bins (i.e. divide each 200-year bin by 200 to obtain an annual value). In its simplest form Eq. (S2) 197 

simply shows the change between each data bin (i.e. number of radiocarbon data per 200 year period 198 

divided into annual periods); Peros et al. assumed that the number of radiocarbon dates directly 199 

correlated with population, and therefore the changes identified through this equation reflected 200 

differences in population growth or decline. Here, we also consider the change in data to reflect a 201 

population signal.  202 

 203 

While Peros et al. use the GRAnn to re-create quantitative palaeo-Indian populations, they do not 204 

elaborate on the methods used to convert the GRAnn into actual population values. Population estimated 205 

used in this paper were taken from Williams (2013) who adopted a simple compound interest equation 206 

used commonly in the fields of banking and economics to the GRAnn values:  207 

 208 

P = f(1+GRAnn)t         (S3) 209 

 210 

where P is final population, f is initially the founding population followed by the P value from each 211 

preceding 200-year data bin, the GRAnn is the relevant Eq. (S2) associated with each 200-year bin, and 212 

t is number of years. The equation was then applied to each 200-year data bin and associated GRAnn 213 

value through time to create population change from 50 ka to Contact. So once an initial founding 214 

population (see below) was entered into the equation at 50-49.8 ka (the first 200-year data bin in this 215 

analysis) and the relevant GRAnn applied, the result of this analysis is then placed into the same equation 216 

as f for the 49.8-49.6 ka data-bin (the second 200-year data bin in this analysis) and the relevant GRAnn 217 

value applied, and so on until 0ka is reached. Using a hypothetical example: Introducing a founding 218 
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population of 100 at 50-49.8 ka data bin and applying a GRAnn of 5% would equate to a final population 219 

value of 105 [P=100(1+0.05)200] for this data bin. (Note the GRAnn is presented here as a decimal.) 220 

Continuing the example, applying population of 105 to the next data bin (49.8-49.6 ka) with a GRAnn of 221 

-10% would result in a final population of 94.5 [P=105(1+-0.10)200]. This approach is applied to each 222 

data bin until 0 ka is reached to produce the final population figures outlined in Williams (2013).  223 

 224 

Based on a range of factors, Williams (2013) considered colonisation of Australia to occur between 46-225 

50 ka, and developed estimates using this starting point. For founding populations, early researchers 226 

considered a small family group or band (<50) was considered likely, whereas recent DNA analysis 227 

suggests numbers in the hundreds and probably low thousands were required. Williams (2013) therefore 228 

used a range of founding populations (50, 500, 1000, 2000, 3000, 5000) to apply Eq. (S3). Following, 229 

a detailed review of demographic literature, Williams (2013) considered that values of between 300,000 230 

to 1 million at European Contact were the most likely, and therefore the founding populations applied 231 

to Eq. (S3) were used to reproduce values that fell within this range at 0ka. He found that values in 232 

excess of 5,000 people at 50 and 46 ka reproduced Contact populations well in excess (>2 million) of 233 

recorded values, and this therefore provided a maximum founding population. Conversely, a founding 234 

population of 50 produced very low numbers at time of Contact; and this value therefore formed the 235 

lowest founding population tested. The remaining values provided a range between 50 and 5,000 with 236 

which to best reproduce Contact populations in accordance with the observed range above (Figure S16). 237 

Ultimately, Williams (2013) concluded that founding populations of between 2000-3000 were most 238 

likely. A summary of population estimates at key time interval based on these founding populations is 239 

presented in Table S5. 240 
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 241 

Figure S16. A plot of population estimates from 50 – 0 ka using uncorrected radiocarbon data 242 

reproduced from Williams (2013). Each graph was developed by implementing founding 243 

populations at 50 ka and applying Eq. (S3). A) Population estimates based on GRAnn values 244 

developed using a spline with a df = 25; and B) as A but using a spline with df = 50.  245 

 246 

 247 
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Table S5. Selected time slices of population estimates from Williams (2013). These values were 248 

based on the application of equation (S3) to GRAnn values and a smoothing spline with df = 25 249 

(values in brackets used a smoothing spline with df = 50). (Founding populations of 1000, 2000, 250 

and 3000, and colonization dates of 50 and 46 ka are shown.)  251 

Age (ka) 

Population estimates after Eq. (S3) applied 
from 50 ka 

Population estimates after Eq. (S3) applied 
from 46 ka 

Founding 
Population – 

1,000 

Founding 
Population 

– 2,000

Founding 
Population – 

3,000

Founding 
Population – 

1,000

Founding 
Population 

– 2,000 

Founding 
Population – 

3,000

30 4,784 (5,793) 
9,568 

(11,586)
14,352 

(17,379)
2,523 (2,959) 

5,047 
(5,919) 

7,571 (8,878) 

16 
8,235 

(13,800) 
16,471 

(27,601) 
24,707 

(41,402) 
4,344 (7,050) 

8,689 
(14,101) 

13,304 
(21,152) 

8 
25,389 

(42,086) 
50,778 

(84,173) 
76,168 

(126,259) 
13,393 

(21,501) 
26,787 

(43,003) 
40,180 

(64,504) 

4 
53,915 

(102,213) 
107,831 

(204,427) 
161,746 

(306,641) 
28,442 

(52,220) 
56,884 

(104,440) 
85,326 

(156,661) 

0.5 
341,604 

(598,211) 
683,209 

(1,196,423) 
1,024,814 

(1,794, 634) 
180,206 

(305,623) 
360,412 

(611,246) 
540,619 

(916,869) 
 252 

Development of Hunter-Gatherer ‘Territories’ 253 

The investigation of the amount of land used by hunter-gatherers in the past is based on the 254 

works in Williams et al. (2013) and (2015). The analysis in these publications used calibrated 255 

radiocarbon data and cluster analysis to identify the spatial area of land that was used by past 256 

populations at any given time period. The procedure in these publications is reproduced below. 257 

 258 

Spatial analysis of the median calibrated radiocarbon values was undertaken in ArcGIS, R and 259 

Geospatial Modelling Environment (GME) software using a three-step process after the 260 

method outlined by Chilès and Delfiner (2012). These steps are 1) allocating points to over-261 

lapping time slices, 2) K-means cluster analysis, and 3) cluster centroid and point dispersal 262 

pattern analysis.  263 

 264 

The purpose of using over-lapping time slices was to divide the dataset into discrete time slices 265 

for use in K-means analysis, by removing points associated with radiocarbon ages that were 266 

considered statistically distinct. Given the low number of data available for the analysis, it was 267 

considered that the loss of data through the use of firm slices was unacceptable and over-268 

lapping ones were instead adopted. In addition, trials indicated that using firm time slices would 269 

have increased the number of dates with calibration age ranges outside their respective slice, 270 

and increased uncertainty in the results. (It is highlighted that the two publications use slightly 271 
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different time-slice intervals, with more abundant data in the Holocene allowing a finer 272 

resolution and 500-year firm time-slices adopted).  273 

 274 

Over-lapping time slices were created by using Moran’s Local I test (Anselin, 1995) to remove 275 

any spatial outliers within a 2,000-year time slice, commencing with all calibrated radiocarbon 276 

dates between 25 – 23 ka BP. Subsequently, the mean and standard deviation of calibrated 277 

dates at the same location was calculated and any points with values greater than mean ± 1 SD 278 

were removed and re-evaluated within the next chronologically younger time slice. Following 279 

this assignment of data to individual time slices, all points were converted into a 10km2 grid 280 

and then back into points in order to ‘average’ calibrated data values within local 281 

neighbourhoods, and to de-cluster the dataset removing bias from the subsequent K-means 282 

analysis. This stage was used to ensure that areas where archaeological research has been 283 

extensive, multiple LGM dates have been obtained from the same site, and/or Pleistocene 284 

landscapes are readily apparent (e.g. Murray Darling Depression) did not overwhelm the 285 

analysis and mask any real trends. 10km2 was considered the optimum size, with a range of 286 

larger grid sizes continuing to retain bias in subsequent stages of the analysis. No point was 287 

used more than once in the entire analysis. 288 

 289 

After data were allocated to the time slices, a partitioning clustering technique, K-means, was 290 

implemented (Hartigan, 1975, 1977). K-means clustering is a statistical method for grouping 291 

data. It aims to partition n observations into k clusters in which each observation belongs to the 292 

cluster with the nearest mean (in our case the latitude and longitude position of the point). The 293 

output of the analysis is a centroid representing the centre point (mean latitude and longitude) 294 

of the observations included in the cluster, along with a rectangle that represents the minimum 295 

bounding extent of all observations included in that cluster. K-means is an iterative process in 296 

which points are assigned to a predetermined number of clusters (k) beginning with an initial 297 

‘seeding point’ selected by automated stochastic process (Connolly and Lake, 2006). Points 298 

are subsequently allocated to the cluster they are nearest to and as new points are added, the 299 

centre of the cluster is re-defined and the point-cluster relationship re-evaluated to a maximum 300 

number of iterations (n=100). The results are evaluated by studying the squared Euclidean 301 

distances between each point and their respective cluster centroid. Williams et al. (2013) and 302 

(2015) used the ‘elbow’ method to determine the optimum number of clusters to explain the 303 

data. In statistical terms the elbow represents the point where percentage variance against the 304 

number of clusters reaches a threshold where adding another cluster does not reduce overall 305 
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variance, and therefore ceases to give a much better model of the data (see Chiang and Mirkin 306 

2007 for an evaluation of techniques). Relative to other clustering techniques, K-means 307 

strength is faster and produces more discrete clusters. However, it is a stochastic process, so it 308 

may not yield the same results on each model run (the stochasticity arises as the initial seeding 309 

point is generated randomly in dimensionless space). This is addressed by re-running the model 310 

with the same parameters and performing diagnostic checks on any systematic inconsistencies. 311 

Ultimately the analyst must exercise judgement in relation to the number of clusters. 312 

 313 

Using the K-means results, the final stage of the analysis was to evaluate changes to the cluster 314 

centroid and point dispersal pattern. The point dispersal pattern is visualised by creating 315 

minimum bounding rectangles (MBR) - the rectangle demonstrates which points are assigned 316 

to which cluster centroid. From an archaeological perspective, these rectangles theoretically 317 

represent the range of human groups associated with each cluster centroid. Additional 318 

exploration of convex hull approaches were also undertaken. This approach explores the 319 

relationship of a point with the cluster centroid through direct measurement of each point back 320 

to the centre producing irregular polygons or bounding boxes. The analysis indicated that the 321 

convex hull approaches produced very similar trends to the MBRs. 322 

 323 

Location and references within the publication  324 

Figure S17 shows the location of archaeological sites and geographic locations mentioned in 325 

the publication. References for the archaeological sites are presented in Table S6.  326 
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 327 

Figure S17. Map of archaeological sites and geographic locations referenced in text. Archaeological sites are presented as unique numbers, which are 328 

presented with further details in Table S6. 329 
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Table S6. Archaeological site information from Figure S17.  330 

Site ID 
(Figure 

S17) 

Site Reference 

1 Bass Point Hughes, P.J., Djohadze, V., 1980, Radiocarbon Dates From Archaeological 
Sites on the South Coast of New South Wales and the Use of Depth/Age 
Curves. Occasional Papers in Prehistory 1. Canberra, Department of 
Prehistory, Australian National University. 

2 Boodie Cave Veth, P., Ward, I., Manne, T., Ulm, S., Ditchfield, K., Dortch, J., Hook, F., 
Petchey, F., Hogg, A., Questiaux, D., Demuro, M., Arnold, L., Spooner, N., 
Levchenko, V., Skippington, J., Byrne, C., Basgall, M., Zeanah, D., Belton, 
D., Helmholz, P., Bajkan, S., Bailey, R., Placzek, C., Kendrick, P., 2017. 
Early human occupation of a maritime desert, Barrow Island, north-west 
Australia. Quat. Sci. Rev. 168, 19-29. 

3 C99 
rockshelter 

Przywolnik, K., 2002. Patterns of Occupation in Cape Range Peninsula 
(WA) over the last 36,000 years. Unpublished PhD thesis, Centre for 
Archaeology, University of Western Australia, Perth. 

4 Carpenter's 
Gap 

rockshelter 1 

O'Connor, S., 1995. Carpenter's Gap Rockshelter 1: 40,000 years of 
Aboriginal occupation in the Napier Ranges, Kimberley, WA. Aust. 
Archaeol. 40, 58-59.

5 Cliff Cave Sim, R., 1994. Prehistoric human occupation in the King and Furneaux 
Island regions, Bass Strait, in: Sullivan, M., Brockwell, S., Webb, A., (Eds.), 
Archaeology in the North. Proceedings of the 1993 Australian Association 
Conference. Northern Australia Research Unit, The Australian National 
University, Darwin, pp. 358-374 

7 Gledswood 
rockshelter 1 

Wallis, L., Keys, B., Moffat, I, Fallon, S., 2009, Gledswood Rockshelter 1: 
Initial Radiocarbon Dates from a Pleistocene Rockshelter Site in Northwest 
Queensland. Aust. Archaeol. 69, 71-74. 

8 Gordolya 
rockshelter 

Clarkson, C., 2007. Lithics in the Land of the Lightning Brothers: The 
Arhaeology of Wardaman Country, Northern Territory. Terra Australis 25. 
Canberra, The Australian National University E-Press 

9 Gregory River 
8 

Slack, M.J., Fullagar, R.L.K., Field, J.H., Border, A., 2004. New Pleistocene 
ages for backed artefact technology in Australia. Archaeol. in Ocean. 39(3), 
131-137. 

10 Jansz 
rockshelter 

Przywolnik, K., 2002. Patterns of Occupation in Cape Range Peninsula 
(WA) over the last 36,000 years. Unpublished PhD thesis, Centre for 
Archaeology, University of Western Australia, Perth. 

11 JSN Site  Smith, M.A., Williams, E., Wasson, R.J., 1991, The Archaeology of the JSN 
Site: Some Implications for the dynamics of Human Occupation in the 
Strezelecki Desert during the late Pleistocene. Records of the South 
Australian Museum, 25: 175-192. 
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Site ID 
(Figure 

S17) 

Site Reference 

12 Juukan-1 
rockshelter 

Slack, M., Fillios, M., Fullagar, R., 2009. Aboriginal Settlement during the 
LGM in Brockman, Pilbara Region, Western Australia. Archaeol. in Ocean. 
44, 32-39. 

13 Mickey 
Springs 34 

Morwood, M., 1990. The prehistory of Aboriginal landuse on the upper 
Flinders River, north Queensland highlands. Queensland Archaeol. Res. 7, 
3-56. 

14 Native Well 1 Morwood, M., 1979, Art and Stone: Towards a Prehistory of Central 
Western Queensland. 2 vols. Unpublished PhD thesis, Department of 
Archaeology and Anthropology, Faculty of Arts, Australian National 
University, Canberra. 

15 Noala 1 
rockshelter 

Veth, P., 1995. Aridity and settlement in northwest Australia. Antiquity 69, 
733-746. 

16 Pilgonaman 
Creek 

rockshelter 

Morse, K., 1993. Who can see the sea? Prehistoric Aboriginal occupation of 
the Cape Range Peninsula, in: Humphreys, W.F., (Ed.), The Biogeography 
of Cape Range, Western Australia. Records of the Western Australian 
Museum 45. Perth, Western Australian Museum, pp. 227-242. 

17 PT-12 open site Williams, A.N., Atkinson, F., Lau, M., Toms, P., 2014. A Glacial cryptic 
refuge in southeast Australia: Human occupation and mobility from 36,000 
years ago in the Sydney Basin, New South Wales. J. of Quat. Sci. 29(8), 
735-748.  

18 Puntutjarpa 
rockshelter 

Gould, R.A., 1977. Puntutjarpa Rockshelter and the Australian Desert 
Culture. American Museum of Natural History. Anthropological Papers 54. 

19 Rosemary 
Island 

McDonald, J., Berry, M., 2016. Murujuga, Northwestern Australia: When 
Arid Hunter-Gatherers Became Coastal Foragers. J. of Island and Coastal 
Archaeol. DOI: 10.1080/15564894.2015.1125971. 

20 Seton Site Lampert, R.J., 1977. Kangaroo Island and the antiquity of Australians, in: 
Wright, R.V.S., (Ed.) Stone Tools as Cultural Markers: Change, Evolution 
and Complexity. Canberra, Australian Institute of Aboriginal Studies, pp. 
213-218. 

21 Walga Rock 
rockshelter 

Bordes, F, Dortch, C., Thibault, C., Raynal, J.P., Bindon, P., 1983. Walga 
Rock and Billibong Spring: Two archaeological sequences from the 
Murchison Basin, Western Australia. Aust. Archaeol. 17, 1-26. 

22 Warratyi 
rockshelter 

Hamm, G., Mitchell, P., Arnold, L.J., Prideaux, G.J., Questiaux, D., 
Spooner, N.A., Levchenko, V.A., Foley, E.C., Worthy, T.H., Stephenson, 
B., Coulthard, V., Coulthard, C., Wilton, S., Johnston, D., 2016. Cultural 
innovation and megafauna interaction in the early settlement of arid 
Australia. Nat. 539, 280-283. 

 331 

 332 
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