This is the Accepted Version of a paper published in the journal Ore Reviews

http://dx.doi.org/10.1016/j.oregeorev.2017.12.012

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

http://creativecommons.org/licenses/by-nc-nd/4.0/
Intermediate sulfidation type base metal mineralization at Aliabad-Khanchy, Tarom-Hashtjin metallogenic belt, NW Iran

Hossein Kouhestani, Mir Ali Asghar Mokhtari, Zhaoshan Chang, Craig A. Johnson

PII: S0169-1368(17)30660-1
DOI: https://doi.org/10.1016/j.oregeorev.2017.12.012
Reference: OREGEO 2432

To appear in: Ore Geology Reviews

Received Date: 27 August 2017
Revised Date: 7 December 2017
Accepted Date: 11 December 2017

Please cite this article as: H. Kouhestani, M.A.A. Mokhtari, Z. Chang, C.A. Johnson, Intermediate sulfidation type base metal mineralization at Aliabad-Khanchy, Tarom-Hashtjin metallogenic belt, NW Iran, Ore Geology Reviews (2017), doi: https://doi.org/10.1016/j.oregeorev.2017.12.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Intermediate sulfidation type base metal mineralization at Aliabad-Khanchy, Tarom-Hashtjin metallogenic belt, NW Iran

Hossein Kouhestani a,*, Mir Ali Asghar Mokhtari a, Zhaoshan Chang b, Craig A. Johnson c

a Department of Geology, Faculty of Sciences, University of Zanjan, Zanjan 45195–313, Iran

b EGRU (Economic Geology Research Centre) and Academic Group of Geosciences, College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia

c U.S. Geological Survey, Denver Federal Center, Denver, CO 80225, USA

*Corresponding author at: Department of Geology, Faculty of Sciences, University of Zanjan, Zanjan 45195–313, Iran. Tel: +98 24 33054039.
E-mail address: kouhestani@znu.ac.ir (H. Kouhestani)

ABSTRACT

The Aliabad-Khanchy epithermal base metal deposit is located in the Tarom-Hashtjin metallogenic belt (THMB) of northwest Iran. The mineralization occurs as Cu-bearing brecciated quartz veins hosted by Eocene volcanic and volcaniclastic rocks of the Karaj Formation. Ore formation can be divided into five stages, with most ore minerals, such as pyrite and chalcopyrite being formed in the early stages. The main wall-rock alteration is silicification, and chlorite, argillic and propylitic alteration. Microthermometric measurements of fluid inclusion assemblages show that the ore-forming fluids have eutectic temperatures between −30° and −52°C, trapping temperatures of 150° to 290°C, and salinities of 6.6 to 12.4 wt.% NaCl equiv. These data demonstrate that the ore-forming fluids were medium- to high-temperature, medium- to low-salinity, and low-density H₂O–NaCl–CaCl₂ fluids. Calculated δ¹⁸O values indicate that ore-forming hydrothermal fluids had δ¹⁸O_water ranging from +3.6 to +0.8‰, confirming that the ore–fluid system evolved from dominantly magmatic to dominantly meteoric. The calculated ³⁴S_H₂S values range from −8.1 to −5.0‰, consistent with derivation of the sulfur from either magma or possibly from local volcanic wall-rock. Combined, the fluid inclusion and stable isotope data indicate that the Aliabad-Khanchy deposit formed from magmatic-hydrothermal fluids. After rising to a depth of between 790 and 500 m, the fluid boiled and subsequent hydraulic fracturing may have led to inflow and/or mixing of early magmatic fluids with circulating groundwater causing deposition of base metals due to dilution and/or cooling. The Aliabad-Khanchy deposit is interpreted as an intermediate-sulfidation style of epithermal mineralization.
Our data suggest that the mineralization at Aliabad-Khanchy and other epithermal deposits of the THMB formed by hydrothermal activity related to shallow late Eocene magmatism. The altered Eocene volcanic and volcaniclastic rocks, especially at the intersection of subvolcanic stocks with faults were the most favorable sites for epithermal ore bodies in the THMB.

Keywords: Intermediate-sulfidation; fluid inclusions; stable isotopes; Aliabad-Khanchy; Tarom-Hashtjin metallogenic belt; Iran

1. Introduction

The Aliabad-Khanchy epithermal base metal deposit, a small-sized (0.2 Mt averaging 1.3% Cu) deposit, is located in the Tarom-Hashtjin metallogenic belt (THMB) approximately 30 km east of the city of Zanjan, northwestern Iran (Fig. 1). The THMB, which is 50–150-km-wide and 300-km-long, is a part of the Alborz magmatic arc (Alavi, 1991) and appears to be related to a waning phase of the Eocene to late Eocene magmatism. The magmatic rocks are high-K calc-alkaline to alkaline (Moayyed, 2001; Aghazadeh et al., 2011; Asiabanha and Foden, 2012; Castro et al., 2013; Nabatian et al., 2014a, 2016), and are tectonically linked to subduction of Khoy-Zanjan oceanic crust beneath the Alborz-Azarbaijan plate (Azizi and Jahangiri, 2008).

Besides the Aliabad-Khanchy deposit, several other epithermal deposits of precious and base metal are found in the THMB (Fig. 1B) including Chodarchay (0.5 Mt averaging 0.9% Cu and 2 g/t Au; Yasami et al., 2017); Gulojeh (2.3 Mt averaging 3% Pb, 2.2% Zn, 1.5% Cu, 2.9 g/t Au, and 350 g/t Ag; Mehrabi et al., 2010, 2016; Ghasemi Siani et al., 2015); Khalyfehlou (60,000 tonnes averaging 8% Cu, 6 g/t Au, and 7 g/t Ag; Esmaeli et al., 2015; Hosseinzadeh et al., 2016), Lohneh (Rahmani, 2010; Zamanian et al., 2016), Rashtabad, Jalilabad and Aqkand (Feizi et al., 2016; Kouhestani et al., 2017), and the iron oxide-apatite deposits at Sorkhe-Dizaj, Aliabad, Morvarid and Zaker (Nabatian and Ghaderi, 2013; Nabatian et al., 2013, 2014b). These deposits are controlled by normal faults and temporally and spatially associated with late Eocene magmatism. 40Ar/39Ar ages presented by Ghasemi Siani et al. (2015) and Mehrabi et al. (2016) indicated that Gulojeh deposit is formed at 42.20 ± 0.34 Ma which is temporally coincident with that of granodiorite stocks emplacement at 41.87 ± 1.58 Ma.

Except for small-scale geological maps of the area, i.e., 1:250,000 geological map of Zanjan (Stöcklin and Eftekheärnezhäd, 1969) and 1:100,000 geological map of Tarom (Amini et al., 2001) and a number of unpublished company exploration reports (Kan Iran Exploration Co., 1999; Kouhestani and Mokhtari, 2013a), studies of the Aliabad-Khanchy mineralization have been limited and include publications by
Kouhestani and Mokhtari (2013b), Mokhtari et al. (2016) and Saeedi et al. (2017). However, these studies provide little insight into the origin of the deposit. In this paper, we describe the geological setting and geochemical characteristics of the Aliabad-Khanchy deposit, including fluid inclusions and stable isotopic characteristics, propose a genetic model for the deposit and guidelines for future exploration in the THMB. Our results extend knowledge of the epithermal mineralization processes at the THMB, and provide exploration criteria for similar epithermal ores in this area and other parts of the Alborz magmatic arc in northwestern Iran.

2. Geological setting

Magmatism in the THMB began during the Eocene and continued through the late Eocene (Amini et al., 2001; Nabatian and Ghaderi, 2013; Nabatian et al., 2014a, 2016). This belt comprises mostly Eocene volcanic and sedimentary rocks intruded by late Eocene plutonic rocks (Fig. 1B). The Eocene submarine volcanism consists of pyroclastic rocks with interbedded limestone and sandstone towards the base, and lava flows of trachyte, trachyandesite, andesite, basaltic andesite, olivine basalt, and porphyritic and non-porphyritic rhyodacite towards the top. Hirayama et al. (1966) grouped all the Eocene volcanic and sedimentary rocks in the THMB as “Karaj Formation”, and Verdel et al. (2011) dated the rocks at 49.3±2.9 Ma to 41.1±1.6 Ma based on zircon U-Pb dating of tuff units. The plutonic rocks vary in composition from microdiorite, quartz-monzodiorite, and quartz-monzonite to syenogranite and monzogranite (Amini et al., 2001; Azizi et al., 2009; Nabatian et al., 2014a, 2016) and have metaluminous, high-K calc-alkaline (shoshonitic) and I-type geochemical characteristics (Irannezhadi et al., 2007; Azizi et al., 2009; Nabatian et al., 2014a, 2016). Contact metamorphism surrounding these intrusions is weak. They were emplaced mostly along favorable structures, such as faults and fold axes. Zircon U–Pb dating by Nabatian et al. (2014a, 2016) and Aghazadeh et al. (2015) gave an age of ~40 to 36 Ma for the emplacement of the intrusions at THMB.

The host rocks at Aliabad-Khanchy consist of Eocene volcanic and volcaniclastic rocks that were intruded by late Eocene quartz-monzonite to quartz-monzogabbro intrusions (Figs. 2 and 3). Volcanic rocks are mostly andesite with local olivine basalt lava flows. Andesitic lava flows with porphyritic texture consist predominantly of distinctive zoned phenocrysts of generally chlorite-epidote altered plagioclase and hornblende with accessory apatite, opaque and rare small zircon crystals. The basalts consist of olivine, plagioclase, and clinopyroxene phenocrysts with rare opaque minerals set in an intersertal and fine-grained groundmass. The volcaniclastic sequence is largely composed of tuff (i.e., crystal tuff, crystal lithic tuff, lithic crystal tuff, ash tuff, tuff breccia, pumiceous tuff and welded tuff),
sandy tuff and tuffaceous sandstone, up to 2000 m in thickness (Fig. 3). Andesite-basaltic andesite lava flows occur at the top of the volcaniclastic sequence (Fig. 2). Lavas and tuffs are intercalated with sandstone, siltstone and shale. The plutonic bodies (including Aliabad and Khanchy intrusions, Fig. 2) have sharp contacts with the volcanic and volcaniclastic rocks and contain few mafic microgranular enclaves. The intrusions range in composition from quartz-monzonite to quartz-monzogabbro and show similar textures and mineral assemblages. These intrusions are mainly coarse- to medium-grained rocks with porphyritic and granular textures; ophitic, subophitic and seriate textures are locally observed. They consist essentially of large phenocrysts of idiomorphic plagioclase (up to 5 cm), clinopyroxene, quartz, K-feldspar, and hornblende, with accessory apatite, biotite, opaque minerals, and zircon. The plutonic rocks are mainly calc-alkaline in composition (Saeedi et al., 2017). The host Eocene volcaniclastic rocks are locally metamorphosed to albite-epidote hornfels facies near contact intrusions.

3. Geological characteristics of the deposit

3.1. Characteristics of the mineralized veins

The Aliabad-Khanchy deposit consists of four epithermal Cu-bearing brecciated quartz veins that occupy N40E-trending faults in the Eocene volcanic (andesitic lavas) and volcaniclastic (crystal tuff, lithic crystal tuff) rocks (Figs. 2 and 4). Stockwork quartz veinlets are focused around larger veins and in zones of structural intersection. The veins display similar morphological and textural characteristics, and have regular sharp contact with host rocks, indicating that they formed by open-space filling. Base metal grades decrease gradually from the main quartz veins through stockwork quartz veinlets to argillic-altered wall-rock. The Aliabad veins (Fig. 4A-C) reach up to 600 m in length and average 1.5 m in width, reaching a maximum of 3 m. They generally dip 60 to 70° NW with a known down-dip extension of about 100 m. The Khanchy veins (Fig. 4D-E) have a strike length of 150 m, an average 1 m width, reach a maximum of 2 m and range in dip from 55 to 65° NW with a down-dip extension of about 50 m. The veins are dominated by fine- to coarse-grained quartz crystals that locally reach 2 cm in size. Vug infill and comb textures have been observed in some samples; faint crustiform banding occurs locally in the veins. Chalcopyrite content in the veins and in adjacent wall-rock commonly exceeds 5%. The veins range up to 2.2% Cu, and have an average grade of 8 g/t Ag.

3.2. Mineralization stages and wall-rock alteration

On the basis of the mineral assemblages, ore textures and crosscutting relationships of ore veins, the ore-forming process at Aliabad-Khanchy can be divided into five stages (Table 1). Stage 1 is a pre-ore stage
and is represented by zones of argillic alteration with minor disseminated and locally quartz-chalcopyrite-pyrite veinlets in andesitic lavas and lithic crystal tuffs. Clasts of this stage and associated wall-rock alteration have been recognized in the stage 2 breccias (Fig. 5A, B). Stage 2 is the most abundant, widespread, and economically important mineralization stage at Aliabad-Khanchy. This stage is characterized by 1.5 cm wide colloform/crustiform banded quartz veins and breccias that contain variable amounts of pyrite, and chalcopyrite (Fig. 5C, D). The veins are dominated by fine- to coarse-grained (up to 2 mm) quartz crystals with well-developed growth zones, comb and vug infill textures. Stage 2 veins are usually cut by stages 3, 4 and/or 5 (Fig. 5E, F). Stage 3 is represented by sets of 2 mm wide quartz veinlets that are, in turn, cut by stage 4 quartz-hematite veins and veinlets (Fig. 5E). No sulfide minerals are recognized in stage 3. Quartz typically occurs as fine-grained chalcedony with medium-grained crystals in vugs. Stage 4 is marked by 2 cm wide hematite-quartz veins and veinlets (Fig. 5F) that formed during the late stages of hydrothermal activity. Stage 5 is dominated by chlorite as veins, veinlets, and vug infill (Fig. 5G, H).

Wall-rock alteration is mainly developed along and in the vicinity of mineralized fracture zones. Alteration was recognized by variations in color, grain size, mineralogy, hardness, and style of weathering, as well as by thin section study and whole-rock geochemistry. Altered rocks are enriched in Si, Cu, Pb, Zn, Ag, V, Sr, Ta, Ba, Rb, and REE, and depleted in Na, K, Sc, and Ca (Mokhtari et al., 2016). The main wall-rock alteration types at Aliabad-Khanchy are silicification, as well as chlorite, argillic and propylitic alteration; silicification is dominant. Silica, chlorite and argillic alteration mainly occur within the mineralized zones, whereas propylitic alteration affects the wall-rock, thereby showing a clear zoning. Overall, ore grades increase gradually with increasing intensities of wall-rock alteration.

Silicification occurs next to mineralized veins and is associated with breccia cements and stockwork (up to 2 cm width) quartz veins (Fig. 6A, B). Copper mineralization is mostly in zones where silicification is most intense. Chlorite alteration usually shows a spatial relationship with zones of silicification. It occurs as vug infill and as 1 mm wide chlorite veinlets (Fig. 6C). Argillic alteration zones, with a width of about 2 m, are strongly fracture controlled and form envelopes around the quartz veins. It consists of a large quantity of sericite, illite, and minor quartz minerals (Fig. 6D). Propylitic alteration is the most distal type of alteration and is dominated by sericite, chlorite, calcite, epidote, and subordinate quartz. This alteration is typically weak to moderate intensity and generally is not texturally destructive. Plagioclase is partially to totally replaced by sericite, chlorite and calcite; pyroxene is partially to completely replaced by epidote, calcite and chlorite (Fig. 6E, F). Small amounts of quartz are present in the groundmass. Supergene
alteration is commonly focused along joints, fractures and faults. This alteration is characterized by iron oxides-hydroxides and copper carbonates, such as goethite, and malachite and azurite.

3.3. Ore mineralogy and paragenetic sequence

The hypogene ore assemblage of the Aliabad-Khanchy deposit consists of chalcopyrite (>50 vol. %), pyrite (≤15 vol. %), and hematite (≤10 vol. %) with supergene malachite, azurite, covellite, digenite and goethite. The ore minerals occur as disseminations, veinlets, and massive accumulations within veins and cements in hydrothermal breccias.

Chalcopyrite is the main ore mineral in the deposit. It typically occurs as disseminated, coarse-grained subhedral to anhedral crystals (up to 2 cm in size), or as massive aggregates in veins and in the breccia cement. In the main part of the ore zones, chalcopyrite is replaced by goethite and covellite; locally islands of relict chalcopyrite are observed (Fig. 7A, B). Pyrite is mainly disseminated, fine- to coarse-grained subhedral to anhedral crystals that range from 100 µm to 1 mm in diameter and are usually replaced by goethite (Fig. 7C). Pyrite is generally irregularly distributed in the ores, in sparse disseminated crystals, in scattered veinlets, veins or irregular aggregates with chalcopyrite. Hematite is an accessory mineral that forms bladed euhedral to subhedral crystals (specularite) with 0.5 mm to 1 cm long (Fig. 7D). It is mainly associated with quartz in stage 4 veins. Malachite occurs as vein-veinlets and vug infill. It usually fills open spaces interstitial to chalcopyrite, quartz, and chlorite (Fig. 7E).

Gangue minerals are mainly quartz and chlorite. Quartz is the most important gangue mineral. At least two quartz generations are recognized. The first one consists of crystalline quartz that is cemented or cut by microcrystalline quartz (Fig. 7E). Early quartz usually shows comb and vug infill textures (Fig. 7F). In some parts of the ore zones, cockade, colloform, and crustiform textures are observed in quartz breccia cements (Fig. 7G, H). Chlorite occurs in 1 mm wide veinlets, and also fills open spaces of quartz-sulfide breccia cement of stage 2. Chlorite is green to brown in tin section and locally shows spheroidal textures.

The mineral paragenesis of the vein and breccia cements can be subdivided into pre-ore, ore stage I, ore stage II and supergene stages (Fig. 8). The pre-ore stage is represented by minor chalcopyrite, pyrite and quartz along with sericite. Ore stage I is characterized by deposition of fine- to coarse-grained quartz, pyrite, and major chalcopyrite. Sulfide-bearing quartz veins commonly exhibit colloform/crustiform banding, cockade, as well as comb and vug infill textures. Ore stage II is characterized by deposition of microcrystalline quartz, hematite and chlorite. The alteration assemblage accompanying pre-ore stage and
ore stages I and II is quartz, sericite and illite whereas chlorite formed in the later part of ore stage II. The supergene mineral assemblage consists of malachite, azurite, covellite, digenite, and goethite.

4. Fluid inclusion studies

4.1. Sampling and analytical methods

Doubly polished plates (~150 µm thick) were prepared from 20 samples taken from outcrops for fluid inclusion studies. Quartz crystals are usually fine- to medium-grained and trapped few fluid inclusions that can be studied. This is a common feature for epithermal deposits (e.g., Bodnar et al., 1985a; Yilmaz et al., 2010). Therefore, only 5 of 20 sections had inclusions suitable for microthermometric study. Most of the fluid inclusions were trapped in coarse-grained quartz from colloform/crustiform bands of stage 2, and fewer in coarse-grained quartz of the quartz-hematite veins (stage 4). Due to small size, no workable fluid inclusions were found in microcrystalline quartz of stage 3, and inclusions were too small for microthermometry.

Fluid inclusion data represent measurements along individual planes or in groups of inclusions, i.e., fluid inclusion assemblages (Goldstein, 2003), having constant vapor to liquid ratios and that yielded consistent data. Homogenization (T_h) and ice-melting (T_{m-ice}) temperatures were obtained for 50 fluid inclusions representing 10 fluid inclusion assemblages in the 5 samples. Microthermometric studies were performed using a Linkam THMSG-600 heating–freezing stage (−196° to +600°C) attached to a ZEISS microscope in the fluid inclusion laboratory of Iranian Mineral Processing Research Center (IMPRC), Tehran, Iran. Calibrations were performed using cesium nitrate (melting point of +414°C), n-Hexane (freezing point of −94.3°C) and synthetic fluid inclusion standards. The heating rate was 5-10°C/min at higher temperatures (>100°C), with a reproducibility of ±1°C, but was reduced to 0.1-0.5 °C/min near phase transformation, with a reproducibility of ±0.1°C. Salinities of liquid-rich fluid inclusions were calculated from the measured last ice-melting temperatures using the equation of Hall et al. (1988). For the H_2O-NaCl-CaCl_2 system, salinities were calculated as NaCl (wt.%) and CaCl_2 (wt.%) equivalents, for which the final melting temperatures of ice and hydrohalite were needed (after Steele-MacInnis et al., 2011). The identity of the species in solution was determined from eutectic temperatures (Shepherd et al., 1985; Prokofiev et al., 2010). The interpretation of microthermometric data (composition, densities, and pressures) was performed using the software package FLUIDS (Bakker, 2003). Equations of Zhang and Frantz (1987) were used for aqueous fluids.

4.2. Petrography and fluid inclusion types
Fluid inclusions were classified as primary, secondary, and pseudosecondary using the criteria of Roedder (1984) and Goldstein (2003). Most fluid inclusions studied were primary and pseudosecondary, distributed in groups or isolated, locally in internal fractures of quartz. Inclusions ranged from 5 to 20 µm in elliptical, negative, irregular, triangular, and rounded shapes. Secondary inclusions are present, mainly in healed microfractures that extend across quartz crystals.

Four types of fluid inclusions were recognized in quartz associated with the ore according to their phase-transformations (Fig. 9): (1) Liquid-rich two-phase (LV) inclusions: liquid-phase aqueous solution and vapor bubble are both present at room temperature, with vapor phase less than 50 vol.% (mostly 10 to 35 vol.%) (Fig. 9A, D). When heated, the vapor phase disappeared and homogenized to liquid. None of the LV inclusions contain daughter minerals, and upon cooling (< –100°C), no clathrate was observed, which rules out the presence of CO$_2$; (2) Vapor-rich, two-phase (VL) inclusions: a liquid phase and vapor bubble are visible at room temperature, but the vapor phase is >50% in volume (usually >70 vol.%) (Fig. 9C, D). This kind of fluid inclusion generally coexists with two-phase, LV aqueous inclusions, but such inclusions are relatively rare. VL inclusions homogenized to vapor on heating; (3) Liquid-phase (L) aqueous inclusions: only one phase of liquid solution is visible at room temperature, without any vapor phase (Fig. 9A, D); (4) Vapor-phase (V) inclusions: only one phase of vapor bubble is present without any visible liquid solution at room temperature (Fig. 9B). Neither liquid CO$_2$ nor CH$_4$ was observed during the freezing experiments.

Among the four types of fluid inclusions, the first two are dominant; LV dominates over the VL with about 70 vol.% of the total inclusion population. Quartz in different hydrothermal ore stages contains different combinations of fluid inclusions. Stage 2 and 3 quartz contains fluid inclusion assemblages of LV, VL, L and/or V types; whereas stage 4 quartz contains only two-phase fluid inclusion assemblages. Coexistence of the four types of fluid inclusions in the Aliabad-Khanchy ores indicates that the fluid inclusions captured heterogeneous fluids and suggests that phase separation (i.e., boiling) occurred during mineralization.

4.3. Microthermometry

Microthermometric analyses were conducted on primary LV fluid inclusions. Most of the LV aqueous inclusions froze at temperatures between –70° and –90°C. Upon heating, first ice-melting (T_e) and final ice-melting temperatures (T_{m-ice}) were recorded for most of the aqueous inclusions, whereas only few hydrohalite melting temperatures (T_{m-hh}) were recorded in stage 2 quartz due to the metastable behavior of this phase. In inclusions where melting temperatures of both ice and hydrohalite were measured, the fluid
compositions were determined using the approach of Steele-MacInnis et al. (2011). During the freezing–heating process, it is very difficult to observe the final ice-melting for VL inclusions; hence the $T_{m-\text{ice}}$ values could not be measured. In addition, because of decrepitation, the homogenization temperatures of VL inclusions with <10 vol.% liquid could not generally be determined. However, two isolated VL inclusions were measured and their salinities and homogenization temperatures are similar to those of the adjacent LV inclusions.

To avoid problems associated with inclusion necking, heating-freezing measurements were made only on inclusions with uniform L:V ratios. Because boiling is indicated by coexisting LV and VL inclusions, the homogenization temperatures require no pressure corrections. The microthermometric data are summarized in Table 2 and plotted in Figure 10.

First ice-melting and final ice-melting temperatures of LV inclusions in fluid inclusion assemblages of stage 2 quartz veins range from –45° to –52°C and –3° to –16.4°C, respectively (Table 2, Fig. 10A). This is consistent with the presence of mixed chloride species such as NaCl, KCl, CaCl$_2$, MgCl$_2$, and FeCl$_2$ in the trapped fluids (e.g., Roedder, 1984; Shepherd et al., 1985; Van Den Kerkhof and Hein, 2001; Prokofiev et al., 2010). Clathrate was never observed in LV inclusions upon cooling, indicating that these inclusions contain negligible carbon species (e.g., Rosso and Bodnar, 1995; Ouyang et al., 2014). Hydrohalite melting (T_{m-hh}) in the stage 2 quartz-hosted LV inclusions was between –23° and –32°C. For the H$_2$O–NaCl–CaCl$_2$ system, these results indicate bulk salinities from 8.3 to 24.5 wt.% NaCl+CaCl$_2$ equiv., with NaCl contents of 5.3 to 14 wt.%, CaCl$_2$ content from 3 to 18.3 wt.%, and NaCl/(NaCl+CaCl$_2$) ratios in the range of 0.2 to 1 (Fig. 10B). The average homogenization temperature (T_h) of LV inclusions in fluid inclusion assemblages of stage 2 quartz (homogenize to the liquid state) ranges from 190° to 290°C, with the majority of T_h varying from 230° to 270°C (Table 2, Fig. 10C). Bulk salinities of fluid inclusions range from 5.1 to 19.7 (with a mode of 12.4) wt.% NaCl+CaCl$_2$ equiv. (Table 2, Fig. 10D). The bulk density of such fluids is from 0.84 to 1 g/cm3 (Fig. 11). The T_{m-hh} results are shown in the H$_2$O–NaCl–CaCl$_2$ ternary diagram in Figure 12.

All LV inclusions in stage 4 quartz also homogenized to the liquid state. The average T_h of LV inclusions in fluid inclusion assemblages of this stage ranges from 150° to 230°C; with the majority of T_h varying from 190° to 220°C (Table 2, Fig. 10C). For these inclusions, T_e values were from –30° to –35°C, indicating the presence of Na, K, and Ca chlorides (Shepherd et al., 1985; Prokofiev et al., 2010). The $T_{m-\text{ice}}$ values are in the range of –3° to –8.5°C (Fig. 10A). The calculated bulk salinity is 5.1 to 12.4 (with a mode of 6.6) wt.% NaCl equiv. (Table 2, Fig. 10D) and the bulk density is 0.91 to 0.98 g/cm3 (Fig. 11).
5. Stable isotopes

5.1. Sampling and analytical methods

Samples were collected from both the Aliabad and Khanchy mineralized brecciated quartz veins. Samples were selected to represent the five-stage evolution of the mineralization. Mineral aggregates were removed from the samples using tweezers and then were crushed and sieved to 0.1–0.5 mm. After panning, clean mineral grains (quartz and sulfides) were then handpicked under a binocular microscope. As a further purification step, quartz separates were washed in hot (ca. 90°C) 6 M HCl several times with a final rinse in hot (ca. 90°C) Milli Q water to remove ‘soluble’ impurities adhering to grain surfaces (e.g., iron oxides). This was followed by ultrasonic cleaning in cold Milli Q water for 5 minutes to remove ‘insoluble’ surface impurities (e.g., clay minerals). The samples were then dried in an oven at 80°C. For sulfides, approximately 10 to 50 mg were leached in acetone to remove surface contamination and then washed in distilled water and dried at 60°C. Mineral separates were at least 99% pure.

Six chalcopyrite samples from stage 2 quartz veins were analyzed for sulfur isotopes. Sulfur isotopes were measured at the laboratories of the USGS Southwest Isotope Research Laboratory in Denver, USA. Sulfides were combined with V$_2$O$_5$ and combusted in a Thermo Scientific Flash 2000 Elemental Analyzer; the resulting SO$_2$ flowed directly into a Thermo Finnigan Delta Plus XP™ continuous flow mass spectrometer for the sulfur isotope measurement (Johnson et al., in press); with a precision of ±0.5‰ (2σ). Analytical precision was based on replicate analyses. Calibration was based on the internationally distributed standards NBS123 +17.44‰ and IAEA-S-3 –32.55 ± 0.12‰ (Coplen et al., 2002). The δ$_{34}$S values are reported relative to the Vienna Cañon Diablo Troilite (VCDT) standard.

Oxygen isotopic analysis was conducted on 2 handpicked quartz mineral separates from stage 2 and 4 veins and breccia cement. Oxygen isotope analyses were performed at the National Isotope Centre, New Zealand, using a laser-based extraction technique with BrF$_5$ as the reagent, and isotope analyses were performed on molecular oxygen, modified after the technique of Sharp (1990). Samples were heated using CO$_2$-laser fluorination, and the isotope analyses were performed using a Europa Geo 20-20 stable isotope ratio mass spectrometer in dual inlet mode. Samples and standards were heated overnight to 150°C prior to loading into the vacuum extraction line. These were then evacuated for ~6 hours. Blank BrF$_5$ runs were carried out until yield was less than 0.2 µmoles oxygen. Results are reported in δ18O notation relative to Vienna-Standard Mean Ocean Water (V-SMOW) using values of +9.6‰ and +5.8‰ for standards NBS-28 and UWG-2 Garnet, respectively. The reproducibility was below 0.15‰.
The δ^{34}S values of reduced sulfur (H$_2$S) in equilibrium with the chalcopyrite were calculated using the fractionation equation of Li and Liu (2006), whereas oxygen isotopic compositions of hydrothermal waters in equilibrium with quartz were calculated using the fractionation equation of Méheut et al. (2007). The isotopic compositions were calculated using the mean value of the homogenization temperatures.

5.2. Results

The isotopic compositions of oxygen and sulfur for the Aliabad-Khanchy samples are listed in Table 3. The δ^{18}O$_{\text{quartz}}$ value of quartz in stage 2 veins is $+13\%e$, and that for quartz in stage 4 quartz-hematite veins is $+13.6\%e$. For the average temperature of fluid inclusion assemblages, the fluids of stage 2 quartz have a δ^{18}O$_{\text{water}}$ value of about $+3.6\%e$ (Table 3). The calculated δ^{18}O$_{\text{water}}$ value of stage 4 quartz-hematite veins is $+0.8\%e$ (Table 3), which is lower than δ^{18}O$_{\text{water}}$ of stage 2 quartz. The δ^{34}S$_{\text{sulfide}}$ values of chalcopyrite in stage 2 veins range from -7.9 to $-4.8\%e$ (Table 3). The average calculated δ^{34}S values of hydrothermal fluid in equilibrium with the sulfides range from -8.1 to $-5.0\%e$ (Table 3).

6. Discussion

6.1. Ore-forming fluids and sulfur sources

The lack of hydrogen isotope values, as well as lack of knowledge of the isotopic composition of meteoric fluids in THMB at the time of mineralization, prevents definitive identification of fluid sources (e.g., Mehrabi et al., 2016). Studies of fluid-mineral isotopic equilibrium in geothermal systems have shown that quartz is very resistant to isotopic exchange and preserves its original isotopic signature (Clayton et al., 1968; Taylor, 1968; Blattner, 1975; Clayton and Steiner, 1975; Fifarek and Rye, 2005; Corral et al., 2017). If the hydrothermal fluids had uniform oxygen isotopic composition, the increase in δ^{18}O would reflect decreasing temperatures of mineral precipitation, which is in agreement with the decrease in the homogenization temperatures obtained from fluid inclusions.

Oxygen isotope values and estimated oxygen isotope composition of the ore fluids for stage 2 quartz (Table 3) are similar to those of epithermal deposits in volcano-plutonic environments (e.g., Vallance et al., 2003, 2004), suggesting that the fluids were dominantly magmatic, although one can never fully rule out water–rock reaction between meteoric water and surrounding altered volcanic wall-rocks (e.g., Field and Fifarek, 1985; Hedenquist and Lowenstern, 1994; Simmons, 1995; Zhai et al., 2009; Zhang et al., 2013). The stage 4 fluids are more depleted in 18O suggesting a significant input of meteoric water into the fluid system, which is a characteristic of other epithermal deposits (e.g., Rye, 1993; Hedenquist and Lowenstern, 1994; Wang et al., 1999; Cooke and McPhail, 2001).
Estimates of fluid salinities show that the ore-forming fluids were diluted from early to late, which are in accord with the oxygen isotope evidence for dilution by meteoric water. Salinities of the LV fluid inclusions in quartz of stages 2 and 4 are as high as 19.7 wt.% NaCl+CaCl$_2$ equiv., and up to 12.4 wt.% NaCl equiv., respectively. This indicates that the initial ore-fluids were likely sourced from a magmatic system progressively diluted by meteoric water during later ore stages. This interpretation is similar to interpretations of other magmatic-hydrothermal systems, such as those in Canada, Mexico and Mongolia (e.g., Thiersch et al., 1997; Camprubi and Albinson, 2007; Zhai et al., 2013).

δ^{34}S values of about 0‰ are usually interpreted as the result of magmatic sulfur escaping from a crystallizing magma (Ohmoto and Rye, 1979; Faure, 1986; Rye, 1993; Kouzmanov and Ramboz, 2003; Moritz et al., 2003). The sulfur values for the Aliabad-Khanchy deposit are significantly below 0‰. Such low δ^{34}S$_{\text{sulfide}}$ values are consistent with either a magmatic source of sulfur under conditions sufficiently oxidizing to stabilize SO$_4^{2-}$ or a sedimentary component (Ohmoto and Rye, 1979; Kouzmanov and Ramboz, 2003; Moritz et al., 2003; Yilmaz et al., 2010). A vast amount of δ^{34}S$_{\text{sulfide}}$ data ranging from 3 to –10‰ is reported for Andean epithermal/magmatic systems (e.g., Carrillo-Rousa et al., 2008). Considering the volcanic nature of the host rocks at the Aliabad-Khanchy, it is more likely that the sulfur in the ore fluids originated by scavenging from volcanic host rocks or, less probably, from a magma driving the system (e.g., Cooke and Simmons, 2000; Yilmaz et al., 2010).

6.2. Evolution of ore-forming fluids

A fluid evolution diagram for the Aliabad-Khanchy deposit is shown in Figure 13 on a T_h-salinity plot with boundaries of magmatic and meteoric waters (Lattanzi, 1991; Hedenquist and Arribas, 1998; Naden et al., 2005). The evolutionary trend is interpreted to be the product of mixing between a saline, moderate to high temperature fluid (290°C, 19.7 wt.% NaCl+CaCl$_2$ equiv.) and a dilute, cooler fluid of meteoric origin (e.g., Richards et al., 1997; Yilmaz et al., 2010; Canet et al., 2011). Conversely, the trend could be the result of boiling (e.g., Hedenquist and Henley, 1985; Wilkinson, 2001; Klemm et al., 2007; Canet et al., 2011; Ouyang et al., 2014). Inclusions of trapped boiling fluids commonly show the characteristics of high-density brine, low-density vapor and intermediate-density solution that occur in the same regions of the same samples (e.g. Ramboz et al., 1982; Simmons and Browne, 2000; Rusk et al., 2008; Ouyang et al., 2014). This explanation has been used to account for other epithermal systems such as those in Japan, New Zealand and Mexico (e.g., Sherlock et al., 1995; Scott and Watanabe, 1998; Simpson et al., 2001; Camprubi and Albinson, 2007; Kouhestani et al., 2015).
Analyses of fluid inclusions of the Aliabad-Khanchy deposit revealed that the fluids can be divided into two groups: (1) moderate to high temperature and salinity with average of ca. 245°C and 12.4 wt.% NaCl+CaCl₂ equiv. (stage 2), and (2) slightly lower temperature (ca. 185°C) with much lower salinities of 6.6 wt.% NaCl equiv. (stage 4). Variations in the salinity content of fluids can be explained in terms of multiple fluid sources, fluid boiling and fluid mixing. On a fluid evolution diagram (Fig. 13), fluid salinity shows a positive correlation with the homogenization temperatures implying that there is mixing between hydrothermal solutions with different sources and compositions, for example, magmatic fluid and meteoric water, during mineralization at Aliabad-Khanchy. Previous studies have shown that homogenization temperature and fluid salinity show positive correlations during the process of fluid mixing, whereas these data show negative correlation trends during fluid boiling (e.g., Shepherd et al., 1985; Zhai et al., 2009; Zhai et al., 2013).

The oxygen isotope data also suggest that more than one fluid existed during the formation of the Aliabad-Khanchy deposit. The sulfur isotope compositions of sulfides imply that metallogenic materials at Aliabad-Khanchy ultimately originated from magmatic activity. Quartz oxygen isotope data indicate that the source of hydrothermal fluids was dominantly magmatic waters. These data also indicate that in addition to the contribution of magmatic fluids, meteoric water played a role in the mineralization processes. Based on these arguments, it is suggested that fluid mixing occurred during the fluid evolution, as well as fluid boiling, and it seems clear for the Aliabad-Khanchy deposit that fluid mixing played a more important role than fluid boiling.

6.3. Trapping pressure and mineralization depth

Fluid inclusion petrography for the Aliabad-Khanchy deposit shows that the LV and VL inclusions are usually within same quartz growth zones during precipitation of ore veins (Fig. 9). This is usually interpreted as a consequence of trapping of a heterogeneous boiling fluid (e.g., White and Hedenquist, 1995; Thiersch et al., 1997; Ronacher et al., 2000; Simmons et al., 2005; Prokofiev et al., 2010; Ouyang et al., 2014). However, this can also occur through sequential trapping of different fluids at different times by necking down or by leakage (e.g., Ramboz et al., 1982; Rusk et al., 2008). Important evidence for trapping of boiling fluids is that the inclusions must be trapped contemporaneously (Ramboz et al., 1982; Ouyang et al., 2014). The opposite modes of homogenization of LV and VL fluids (LV→L and VL→V) within the same range of temperatures suggest that boiling of the ore fluid could have occurred during vein formation at Aliabad-Khanchy. Boiling is also consistent with the presence of colloform and chalcedonic quartz (e.g., White and Hedenquist, 1990; Hedenquist et al., 2000; Kouhestani et al., 2015,
2017; Mehrabi et al., 2016) within the ore zones. Deposition of chalcedonic quartz points to rapid
deposition of SiO$_2$, possibly due to the rapid cooling accompanying boiling, and caused by the loss of heat
carried away by water vapor (e.g., Thiersch et al., 1997). Furthermore, the ore veins in the Aliabad-
Khanchy commonly have regular, sharp contacts with their volcanic host rocks. These characteristics may
suggest that the veins/veinlets formed by open-space filling under a hydrostatic pressure (e.g., Hedenquist
et al., 1998; Liu et al., 2014; Ouyang et al., 2014; Siahcheshm et al., 2014). Indeed, the presence of
hydrothermal breccias in stage 2 veins with base metal mineralization is evidence for periods of sharp
pressure drops. These may have led to at least intermittent boiling in a hydrothermal system.

Recognition of fluid inclusions trapped under boiling conditions is valuable for P-T estimations, because
pressure correction is not needed and the homogenization temperature is equal to the trapping temperature
(e.g., Roedder and Bodnar, 1980; Simeone and Simmons, 1999; Ouyang et al., 2014). Following Albinson
(1988) and Hedenquist et al. (1998), the highest temperatures of the LV inclusions are used for pressure
and depth estimation for the Aliabad-Khanchy deposit. The trapping pressures of these inclusions are
estimated using the experimental data of Bodnar et al. (1985b), Haas (1971), and Urusova (1975), as is
shown in Figure 14. The calculated entrapment pressures of fluid inclusions from stage 2 through stage 4
quartz at Aliabad-Khanchy range from about 79 to 50 bar, equivalent to hydrostatic depths of about 790 to
500 m below the paleowater table. The calculated depth range is consistent with the estimated
mineralization depths of the epithermal deposits worldwide (Simmons et al., 2005; Pirajno, 2009).

6.4. Mineralization model and genetic type

The Aliabad-Khanchy base metal deposit is an epithermal deposit as described by White and Hedenquist
(1990), Hedenquist et al. (2000), Sillitoe and Hedenquist (2003), Einaudi et al. (2003), Moritz et al.
(2003), Gemmell (2004) and Simmons et al. (2005). This is evidenced by the recognition of: (1)
epithermal textures, such as hydrothermal veins and breccias with vug infill, comb, cockade, colloform,
and crustiform textures; and (2) hydrothermal alteration represented by sericite, illite, epidote, calcite, and
chlorite. In addition, the medium- to high-temperature, moderate-salinity, and low-density of ore fluids at
Aliabad-Khanchy are typical of epithermal precious and base metal systems noted in the THMB of
northwestern Iran (e.g., Mehrabi et al. 2010, 2016; Kouhestani et al., 2017) and elsewhere (e.g., Albinson
et al., 2001; John, 2001; Yilmaz et al., 2010; Sabeva et al., 2017). The general absence of adularia, alunite
and carbonates in mineralized quartz veins, and the absence of vuggy quartz, lattice-textured and bladed
calcite as well as advanced argillic alteration in the Aliabad-Khanchy deposit distinguish the Aliabad-
Khanchy base metal veins from low- and high-sulfidation epithermal deposits. Such a mineralization style
was termed intermediate-sulfidation by Hedenquist et al. (2000). In addition, paleodepths of ~500 m are characteristic of silver- and base metal-rich of epithermal systems of the intermediate-sulfidation category (Hedenquist et al., 2000; Albinson et al., 2001).

Cooling, mixing, boiling and water–rock reaction are the main factors that can promote the precipitation of precious and base metals from an ore fluid in the epithermal environment (e.g., Giggenbach and Stewart, 1982; Heald et al., 1987; Hayba, 1997; Hedenquist et al., 2000; Federico et al., 2002; Zhai et al., 2009; Corral et al., 2017). Boiling is considered to be the main factor leading to deposition of precious metals in many epithermal deposits (e.g., Izawa et al., 1990; Simon et al., 1999; Simmons et al., 2000; Faure et al., 2002; John et al., 2003), whereas the dilution and/or cooling resulting from fluid mixing are key mechanisms for base metal precipitation (e.g., Sypcher and Reed, 1989; Yilmaz et al., 2007, 2010; Kouhestani et al., 2015, 2017).

Oxygen isotope data for quartz and fluid inclusions from mineralized quartz veins indicate that at least two fluids existed during the formation of the Aliabad-Khanchy deposit. The early ore-forming fluids had relatively higher temperature and salinity, and were dominantly magmatic in origin (Fig. 15). Copper was likely transported by chloride complexes, and due to low sulfur fugacity of the fluids, most of Cu remained in solution until there was an increase in sulfur fugacity during stage 2. It is also assumed that chlorine was magmatic in origin because of the lack of evaporites and connate brines in the region (e.g., Mehrabi et al., 2016; Kouhestani et al., 2017). The occurrence of colloform and chalcedonic quartz along with fluid inclusion data indicates that boiling was one of the processes affecting hydrothermal fluids. It is thus probable that the deposition of chalcopyrite was caused by destabilization of chloride complexes as a result of partitioning of H\textsubscript{2}S into the vapor phase associated with boiling (e.g., Drummond and Ohmoto, 1985; Henley, 1985). This process led to decrease in sulfur fugacity and increase in pH, both enhanced chalcopyrite deposition (e.g., Thiersch et al., 1997).

Magmatic ore-forming fluids ascended along favorable structures and fracture zones and reacted with wall-rocks, changing the physicochemical conditions and isotopic compositions of the fluids. It seems that the fluids have ascended to a sufficiently shallow depth to allow efficient fluid mixing with meteoric waters (Fig. 15; e.g., Cooke and McPhail, 2001; Fan et al., 2011; Gu et al., 2011). Through the reaction of mineralizing magmatic fluids with wall-rocks and heat recharge by magma, fluids could have extracted significant amounts of metallogenic materials from host rocks. Fluid mixing changed the conditions of the ore-forming fluid system, destroying the chemical equilibrium of solutions and initiating important chemical reactions, ultimately resulting in the precipitation of copper from solution during the
mineralization process. Consequently, the fluid mixing hypothesis is the main mechanism that could explain the deposition of chalcopyrite in stage 2 quartz veins (e.g., Henley et al., 1984; Drummond and Ohmoto, 1985; Henley, 1985; Kouhestani et al., 2015, 2017; Mehrabi et al., 2016). The relatively lower temperature and salinity of stage 4 quartz-hosted fluid inclusions suggest that the ore-forming fluids during this stage are predominantly meteoric waters that have reacted with the host rocks (e.g., Giggenbach et al., 1990; Giggenbach, 1992; Cooke and Simmons, 2000). Significant increase in the oxygenated meteoric water component would eventually increase oxygen fugacity, which agrees with the presence of specular hematite in stage 4 quartz veins. This interpretation is consistent with models for the formation of other epithermal precious and base metal deposits in the THMB, such as those described by Mehrabi et al. (2010, 2016), Hosseinzadeh et al. (2016) and Kouhestani et al. (2017).

7. Exploration implications

During the early to middle Eocene, intense magmatic activity in the THMB resulted in the deposition of up to a 2000 m thick volcaniclastic succession. Northwest- and northeast-striking normal faults formed during this magmatism. Late Eocene high-K to shoshonitic granitoid stocks that exhibit a close temporal and spatial relationship with epithermal mineralization were emplaced along favorable structures, such as faults, and fold axes.

Oxygen and sulfur isotopic signatures along with fluid inclusion data indicate that the Aliabad-Khanchy deposit is the product of a magmatic-hydrothermal system. The style of the wall-rock alterations and the patterns related to mineralization in the Aliabad-Khanchy deposit are similar to those of other precious and base metal deposits present in the THMB, i.e., Chodarchay, Gulojeh, Khalyfehlou, Lohneh, Rashtabad, Jalilabad, and Aqkand. Considering the close temporal and spatial association of the granitoid intrusions with epithermal mineralization, it may be inferred that these intrusions are genetically related to the epithermal mineralization in the THMB. Furthermore, the location of the hydrothermal alteration and mineralization zones in dilational sites along the fault systems at Aliabad-Khanchy and other epithermal mineralization in the THMB suggests that the fault structures provided a focus for upward migration of magmatic fluids (e.g., Yasami et al., 2017) to depths shallow enough for boiling and/or mixing with meteoric water, thereby causing precious and base metal precipitation. Investigation of fault zones within altered Eocene volcanic and volcaniclastic rocks, particularly close to granitoid intrusions, therefore has important implications for exploration targeting of epithermal ores at THMB and possibly in the other parts of the Alborz magmatic arc.

8. Conclusions
The Aliabad-Khanchy base metal deposit in THMB, northwestern Iran, is hosted by volcanic and volcaniclastic rocks of the Karaj Formation and was controlled primarily by normal faults. Fluid inclusion data and oxygen and sulfur isotope geochemistry reveal that the ore-forming fluid was sourced from dominantly magmatic water in the early stages and evolved to dominantly meteoric water in the late stage. The positive correlation between homogenization temperature and fluid salinity, combined with isotope compositions and ore deposit geology, provides evidence that fluid mixing was an important process in the evolution of the ore-forming fluids at Aliabad-Khanchy. This process resulted in cooling, breakdown of metal-Cl complexes, and reduced Cu solubility in the metal-bearing fluids. These changes were the main factors for the precipitation of chalcopyrite in the ore zones. Nevertheless, the opposite modes of homogenization of LV and VL fluids within the same range together with presence of hydrothermal breccias, colloform and chalcedonic quartz also suggests that boiling could have been important in controlling ore deposition at Aliabad-Khanchy deposit.

Mineralization at Aliabad-Khanchy is an intermediate-sulfidation type of epithermal precious and base metal system similar to other hydrothermal deposits of the THMB. These epithermal deposits have temporal, spatial, and plausible genetic links with late Eocene magmatism, and are associated with hydrothermal activity controlled by fault and fracture systems. The magmatic activity provided not only ore-forming fluids but also conduits for transport of ore-bearing fluids and structural sites for ore deposition. Thus, altered Eocene volcanic and volcanioclastic rocks, especially at the intersection of subvolcanic stocks and faults, are the most favorable locus for epithermal ore bodies at THMB.

Acknowledgments

This research was made possible by the grant of the office of vice chancellor for research and technology, University of Zanjan. We acknowledge their support. S. Aghajani (IMPRC) is thanked for carrying out fluid inclusion analyses. Appreciation is also extended to D. John for his constructive suggestions on the earlier draft of the manuscript. The manuscript has benefited from helpful comments by A. Maghsoudi, H. Mirnejad and careful editorial work by F. Pirajno. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

References

Alavi, M., 1991. Tectonic map of the Middle East (scale 1:5,000,000): Geol. Surv. Iran.

FIGURE CAPTIONS:

Fig. 1. A. Sketch map showing the position of the Alborz magmatic arc (modified after Alavi, 1991; Aghanabati, 2004), together with the location of the THMB. B. Regional geology of the THMB (modified from Ghorbani, 2013) showing location of the Aliabad-Khanchy and other epithermal precious and base metal deposits. 1- Gulojeh, 2- Rashtabad, 3- Aqkand, 4- Jalilabad, 5- Aliabad-Khanchy, 6- Lohneh, 7- Chodarchay, 8- Khalyfehlou.

Fig. 2. Simplified geological map of the Aliabad-Khanchy area (modified after Kouhestani and Mokhtari, 2013a); inset shows schematic cross-section through the deposit.

Fig. 3. Stratigraphic column of the host rock lithologies at Aliabad-Khanchy area.

Fig. 4. Field photographs showing the Cu-bearing brecciated quartz veins at the Aliabad-Khanchy epithermal base metal deposit. A, B. The Cu-bearing quartz veins at Aliabad that crosscut the volcaniclastic (crystal tuff, lithic crystal tuff) host rocks. C. Parallel sheeted mineralized quartz veins at Aliabad cutting volcaniclastic host rocks. D. The NE-trending mineralized vein at Khanchy that crosscut the crystal tuff host rocks. E. Stockwork Cu-bearing quartz veinlets within the altered host andesitic lava at Khanchy.

Fig. 5. Photomicrographs (transmitted polarized-light, XPL) illustrating mineralization stages at Aliabad-Khanchy epithermal base metal deposit. A. Rounded clast of stage 1 chalcopyrite in host crystal tuff. B. Subrounded clast of stage 1 mineralization in quartz-sulfide cement of stage 2. The clast contains quartz-chalcopyrite veinlets; chalcopyrite altered to malachite. C. Stage 2 quartz-sulfide veinlet. D. Stage 2 breccia with quartz and chalcopyrite cement. E. Subparallel sheeted stage 3 quartz veins crosscutting stage 2 quartz-sulfide veinlet and in turn, cut by stage 4 veinlets. F. Stage 4 mineralization as hematite-bearing quartz veins crosscutting stage 2 veins. G. Stage 5 chlorite veinlets cutting stage 2 quartz-chalcopyrite veins. H. Stage 5 chlorite filling the vugs of stage 2 quartz-chalcopyrite cement. A-L: andesitic lava lithic, C-Qz: crystalline quartz, Ccp: chalcopyrite, Chl: chlorite, Cv: covellite, Ep: epidote,

Fig. 6. Photomicrographs (transmitted polarized-light, XPL) of wall-rock alteration types at Aliabad-Khanchy epithermal base metal deposit. A, B. Silica alteration occurs as breccia cement (A) and stockwork quartz veins (B). C. Brown chlorite with spheroidal texture in chlorite alteration. D. Alteration of plagioclase to sericite in argillic zone. E, F. Alteration of plagioclase and pyroxene to sericite, calcite and epidote in propylitic zone. Chloritized groundmass can be observed in F. Abbreviations as in Fig. 5.

Fig. 7. Reflected light (A-D) and plane polarized transmitted light (E-F) photomicrographs of ore and gangue mineralogy and textures at the Aliabad-Khanchy epithermal base metal deposit. A and B. Anhedral crystals of chalcopyrite replaced by supergene goethite (A) and covellite (B). C. Anhedral crystals of pyrite replaced by goethite. D. Bladed crystals of hematite. E. Malachite with vug infill texture. Two episodes of quartz deposition are also observed. F-H. Microcrystalline and crystalline quartz with comb (F), colloform/crustiform (G) and cockade (H) textures. Abbreviations as in Fig. 5.

Fig. 8. Paragenetic sequence showing the relative abundance, structure and texture of gangue and ore minerals at the Aliabad-Khanchy epithermal base metal deposit.

Fig. 9. Photomicrographs (at room temperature in plane-polarized light, PPL) of the fluid inclusions in quartz from the Aliabad-Khanchy deposit. A and B. Coexisting primary LV, L and V fluid inclusions. C. Isolated primary VL fluid inclusion. D. Coexisting primary VL and LV fluid inclusions, implying for fluid boiling. L = liquid, V = vapor, PS = pseudosecondary fluid inclusions.

Fig. 10. Frequency histograms of final ice-melting temperatures (A), weight ratio of NaCl/(NaCl+CaCl₂) (B), homogenization temperatures (C), and salinities (D) for the primary LV inclusions in internally consistent fluid inclusion assemblages from the Aliabad-Khanchy deposit. The relative proportions of Na and Ca are derived from the H₂O–NaCl–CaCl₂ system (Steele-MacInnis et al., 2011), see Fig. 12.

Fig. 11. T-salinity diagram for LV fluid inclusion assemblages from the Aliabad-Khanchy deposit. The dashed lines show densities (g/cm³) of fluid inclusions (after Wilkinson, 2001).

Fig. 12. Ternary plot of phase relations in the H₂O–NaCl–CaCl₂ system, with the composition of the fluid inclusions from Aliabad-Khanchy deposit calculated by the methodology of Steele-MacInnis et al. (2011). The solid lines represent cotectic curves that separate the stability fields of ice (I), halite (H), hydrohalite (HH), and antarcticite (A). Shown are NaCl/(NaCl+CaCl₂) weight fractions for fluid inclusions obtained from final hydrohalite melting temperatures.
Fig. 13. T$_h$-salinity diagram for fluid inclusion data at the Aliabad-Khanchy deposit showing mixing and/or boiling trend during evolution of hydrothermal fluids. The hypothetical compositions of magmatic and meteoric waters are plotted according to Lattanzi (1991), Hedenquist and Arribas (1998) and Naden et al. (2005).

Fig. 14. Pressure estimates for fluid inclusions in the Aliabad-Khanchy deposit that exhibited final homogenization by vapor disappearance of LV fluid inclusions (modified after Bouzari and Clark, 2006).

Fig. 15. Schematic genetic model for the Aliabad-Khanchy deposit (see Figs. 2 and 3 for lithology). The model shows magmatic fluids derived from magma that mix with deeply circulating meteoric water, forming the Cu-bearing quartz veins.

TABLE CAPTIONS:

Table 1. Summary table describing the main characteristics of each mineralization stages at Aliabad-Khanchy epithermal base metal deposit.

Table 2. Microthermometric data summary of LV fluid inclusion assemblages from Aliabad-Khanchy epithermal base metal deposit.

Table 3. Stable isotope data ($\%$e) for the Aliabad-Khanchy epithermal base metal deposit.
Highlights:

- New data on ore mineralogy and genesis of the Aliabad-Khanchy deposit, Tarom-Hashtjin metallogenic belt (THMB), northwest Iran.
- Hydrothermal fluid was characterized by fluid mixing and dilution.
- Stable isotopes suggest the ore–fluid system evolved from magmatic to meteoric.
- The Aliabad-Khanchy deposit could be classified as intermediate-sulfidation style of epithermal mineralization.
- Genetic links between epithermal mineralization and late Eocene magmatism at THMB.
Fig. 1
Fig. 2

EVT4: Andesite-basaltic andesite with sandstone and green tuff at the base
EVT3: Dark gray to gray tuff, sandy tuff, sandstone, mudstone with intercalations of andesite lava flow
EVT3: Gray to greenish gray andesite-basaltic andesite with intercalations of tuff, sandy tuff and sandstone
EVT2: Light gray to pink tuff breccia, lapilli tuff, pumiceous tuff and lithic crystal tuff
EVT2: Dark gray basalt-olivine basalt lava flow
EVT1: Dark gray to violet tuff, sandstone, siltstone with shale and siltstone at base
EVT1: Dark to pink andesite lava flow

qm: quartz-monzonite to quartz-monzogabbro (late Eocene)
D: Trachyandesitic dyke

Cu-bearing quartz breccia veins
Fault
Village

0 km
Fig. 3
Fig. 4
<table>
<thead>
<tr>
<th></th>
<th>Pre-ore Stage</th>
<th>Ore Stage I</th>
<th>Ore Stage II</th>
<th>Supergene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malachite-Azurite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covellite-Digenite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goethite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sericite/Illite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disseminations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brecciated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vein-Veinlets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vug Infill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cockade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colloform</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustiform</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 8
Fig. 10
Fig. 13
Fig. 14
Fig. 15
Table 1

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Stage 4</th>
<th>Stage 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ore mineralogy</td>
<td>Minor pyrite and chalcopyrite</td>
<td>Major chalcopyrite and pyrite</td>
<td>-</td>
<td>Hematite</td>
<td>-</td>
</tr>
<tr>
<td>Alteration assemblages</td>
<td>Quartz, sericite/illite</td>
<td>Quartz, sericite/illite</td>
<td>Quartz</td>
<td>Quartz</td>
<td>Chlorite</td>
</tr>
<tr>
<td>General occurrences/textures</td>
<td>Disseminated, veinlet</td>
<td>Vein-veinlet and breccia cements</td>
<td>Vein-veinlet, vug infill</td>
<td>Vein-veinlet, vug infill</td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Mineral</th>
<th>T_e (°C)</th>
<th>$T_{m_{-\text{ice}}}$ (°C)</th>
<th>$T_{m_{-\text{hh}}}$ (°C)</th>
<th>T_h range (°C)</th>
<th>Salinity (wt.% NaCl+CaCl$_2$ equiv.)</th>
<th>ρ (g/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage-2 quartz</td>
<td>−45 to −52</td>
<td>−3 to −16.4</td>
<td>−23 to −32</td>
<td>190/200/210 (5)</td>
<td>5.1–19.7 (12.4)</td>
<td>0.84–1</td>
</tr>
<tr>
<td>Stage-4 quartz</td>
<td>−30 to −35</td>
<td>−3 to −8.5</td>
<td>-</td>
<td>150/160/170 (5)</td>
<td>5.1–12.4 (6.6)</td>
<td>0.91–0.97</td>
</tr>
</tbody>
</table>

Note: number of measured inclusions in each fluid inclusion assemblage shown in parenthesis. T_e = first ice-melting, $T_{m_{-\text{ice}}}$ = final ice-melting, $T_{m_{-\text{hh}}}$ = hydrohalite melting, T_h = homogenization temperature.

Table 3

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Stage of mineralization</th>
<th>Mineral</th>
<th>δ^{18}O$_{\text{quartz}}$</th>
<th>δ^{18}O$_{\text{water}}$</th>
<th>δ^{34}S$_{\text{sulfide}}$</th>
<th>δ^{34}S$_{\text{H}_2\text{S}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL-01</td>
<td>2</td>
<td>Chalcopyrite</td>
<td>−7.9</td>
<td>−8.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL-02</td>
<td>2</td>
<td>Chalcopyrite</td>
<td>−5.3</td>
<td>−5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL-03</td>
<td>2</td>
<td>Chalcopyrite</td>
<td>−4.8</td>
<td>−5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL-04</td>
<td>2</td>
<td>Chalcopyrite</td>
<td>−6.7</td>
<td>−6.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL-05</td>
<td>2</td>
<td>Chalcopyrite</td>
<td>−6.7</td>
<td>−6.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL-06</td>
<td>2</td>
<td>Chalcopyrite</td>
<td>−6.9</td>
<td>−7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL-07</td>
<td>2</td>
<td>Quartz</td>
<td>13</td>
<td>3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL-08</td>
<td>4</td>
<td>Quartz</td>
<td>13.6</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a The δ^{18}O$_{\text{water}}$ values were calculated using the fractionation equation of Méheut et al. (2007). b The δ^{34}S$_{\text{H}_2\text{S}}$ values were calculated using the fractionation equation of Li and Liu (2006). The mean values of T_h of fluid inclusions (Table 2) were used for calculation of isotopic compositions.