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Abstract. Water depletion is critical in the dry tropics due to drought, increased 

development and demographic or economic shifts.  Although educational 

initiatives have improved urban indoor water-use, excessive outdoor wastage still 

occurs because in most urban areas residential users only have a biannual reading 

of quantity available to make informed or educated decisions on necessary or 

unnecessary consumption.  For example, the average consumer will water lawns 

during a designated non-restricted time.  The amount of water they use is 

determined arbitrarily (i.e., either by sight or by blocks of time).  In many cases, 

water is wasted due to over saturation, automated sprinklers that cannot sense 

precipitation, poor placement of sprinkler direction, etc.  Outdoor water use 

efficiency could be maximized if water flow was shut off when an area of lawn 

has had sufficient water based on a more intelligent monitoring system.  This 

paper describes the development of an intelligent water management and 

information system that integrates real-time sensed data (soil moisture, etc) and 

Web-available information to make dynamic decisions on water release for lawns 

and fruit trees.  The initial pilot-prototype combines Semantic Technologies with 

Internet of Things to decrease urban outdoor water-use and educate residents on 

best water usage strategies. 

Keywords: Semantic Technologies, Internet of Things, Water Conservation 

1 Introduction 

The key drivers to develop sustainable urban water management are external factors 

such as climate change, drought, population growth and consolidation in urban centers 

[1, 2].  As the era of cheap water fades, these drivers have increased the need for water 

industry providers to implement more sustainable strategies in urban water 

management and conservation.  Consumer education on household water use is a 

strategy used to decrease excessive water consumption [3].   

The current focus has been on improving water use inside the home but a large part 

of the problem exists in outdoor use of water and unintelligent watering systems.  The 

methods to motivate the public to change bad water use habits are driven primarily by 

mandated water restrictions and initiatives to install water efficient devices (e.g., 

shower heads).  However, to change behaviour, awareness and deeper understanding 
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of the underlying variables, such as soil saturation, soil type, timing and quantity, must 

be part of the education process [1, 3].  However, to make informed decisions or to 

automate water consumption processes in smarter ways, one source of data to gauge 

home use - the water metre - is not adequate.  To be successful, a conservation program 

must get the data to the consumer and make the change financially beneficial to them 

[3].  People must be given the “geo-temporal” and fiscal context of their consumption:  

• How much water do I use or should I use, how much money can I save?  

• How do I fare compared to my street, my neighbourhood, my city?  

• Based on weather data and evapotranspiration calculations – how much should I 

have used outside? [3] 

Intelligent water metreing (IWM) can transform urban water management and 

determine, in real-time or near real-time, water consumption to provide local or remote 

data on water consumption [4].  There are municipal initiatives to install smart water 

metres across wider communities (e.g., Townsville, Mackay and Gold Coast in 

Queensland) that logs a resident’s water usage hourly and streams the data via wireless 

technologies to a main server, which can be accessed by the home owner via a Web 

browser to visualize daily water-use.  These initiatives are building awareness of water 

consumption at the user level and alerts to leaks and wastage.  However, the data only 

shows the quantity of water consumed and not whether the water was unnecessarily 

used in the first place.  

The promotion of smarter urban water use will require more extensive data than that 

currently available to household residents (i.e., total quantity in a 6-month period).  For 

example, the average consumer will water lawns during the designated non-restricted 

times.  The amount of water they use is determined arbitrarily (i.e., either by sight or 

by blocks of time).  In many cases, water is wasted due to over saturation, automated 

sprinklers that cannot sense precipitation, poor placement of sprinkler direction, etc.  If 

that consumer were alerted or the water flow stopped when an area of lawn has had 

sufficient water based on a more intelligent monitoring system, outdoor water use 

efficiency could be maximized.  There has been much work in creating smarter homes 

via internal Internet of Things (IoT) sensor networks for efficient power consumption 

 

Fig. 1. – Architecture for pilot semantically enabled urban irrigation 
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[5-7].  Semantic technologies (i.e., linked data) combined with IoT could also be 

applied to better manage water usage in the garden.   

The Lawnbot pilot study aimed to advance efficient autonomous irrigation by 

developing an intelligent system of aggregated data to make decisions on necessary 

versus unnecessary water use in outdoor watering systems (i.e., water is only used when 

it is required).  The Lawnbot project entails a pilot irrigation management system that 

makes intelligent decisions on water release based on data from various in situ sensors 

integrated with external Web available data and information (Fig. 1).  Specifically, the 

research objectives of this project are to 1) infer alerts and trigger autonomous decisions 

in residential outdoor irrigation systems to minimize waste, 2) maximize plant and fruit 

growth and 3) build consumer awareness for better water use habits. 

2 Background 

2.1 Current Watering Paradigms 

North Queensland has been under water restrictions since 1987 following a prolonged 

dry season and recently in heavy water restrictions since 2015.  In Townsville, these 

restrictions limit watering lawns and gardens up to a maximum of four hours per week 

per household and in accordance to a strict schedule.  In response, local municipal 

authorities have encouraged residences to adopt plant species with lower water 

requirements and less wasteful watering behaviours [4]. 

The Townsville Municipal Council introduced a recommended weekly lawn 

watering volume of 25mm .  By this recommendation, a small lawn in North 

Queensland of 150 square metres should receive approximately 3750 litres per week to 

promote healthy growth.  Common sprinklers use up to 2100 litres per hour and low-

flow sprinklers use under 600 litres per hour [8].  The water pressure would determine 

how long a sprinkler would take to reach this desired litre capacity.  Notably, in a 

majority of this city, an amount of 3750 litres would be reached in approximately two 

hours using a common sprinkler.  However, residents have been observed to take 

advantage of the four hours of weekly watering time by running sprinklers for the entire 

duration.  With a single, typical sprinkler, this undesired behaviour can result in a 

weekly water consumption of 4800 – 8640 litres, which is in excess of what is actually 

needed by most lawns.   

2.2 Factors that Influence Required Water Volume 

The watering recommendation given by the Townsville Municipal Council represent 

a general estimate of lawn watering requirements. However, the actual amount of water 

required for grass depends on many factors, some include: species, sunshine, humidity, 

evapotranspiration, ground soil moisture, rainfall, etc [9].  Information on these factors 

can come from three various sources: the sensed environment, inferred from external 

sources, or from user input. 

Real-time information about the surrounding environment, collected by sensors or 

regular surveillance, is useful for finding the current conditions of the plants and 
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surrounding soil.  The current conditions can be employed and tracked mostly to 

determine if it is an appropriate time to water, as well as the actual amount of water that 

has been supplied, and how much is needed.  For example, the best times to water plants 

are during cool and humid periods to minimize the amount of water lost to evaporation 

[10].  Therefore, ambient temperature and relative humidity sensors would be used to 

determine the best watering times.  Further, soil moisture sensors can determine the 

saturation level of the soil to ensure the soil is not over-watered, which can lead to 

nutrient depletion in soil and root death from oxygen starvation [11].  Ambient light 

levels can assist in tracking shade and cloud cover and predicting weather events. 

Plants in loose or granular soils tend to drain quickly, which means that plants must 

be watered for longer, as they only have a short amount of time to take in water.  

Conversely, cohesive soils such as clay have poor drainage, which gives more time to 

take in water, but put roots at higher risk of waterlogging if water is supplied too 

quickly.  Vertical soil sensors can monitor and track how water moves through the soil 

to determine its drainage rate.   

Environmental conditions beyond the immediate watering area/s can be inferred 

using external information.  One of the most impactful factors that affects the required 

watering volume is the weather, especially rainfall, which can eliminate the need for 

watering entirely.  A purely-sensed control system would be able to detect rainfall to 

halt watering, but would unable to anticipate rainfall.  This lack of awareness could 

lead to wasted water by not taking advantage of natural resources and may put the soil 

at risk of waterlogging.  However, this scenario can be avoided by aggregating weather 

forecasts, localized sensing equipment, and nearby monitoring stations to track rainfall 

and predict where and when rain will occur, then adjusting the watering schedule 

accordingly to leverage natural watering.  Similarly, the physical and chemical makeup 

of the soil can be inferred from real-time sensor information and geographical surveys, 

given the approximate location of the residence [12].  

Another factor that affects the water requirements of plants is evapotranspiration, 

which is the combined water loss through evaporation and transpiration.  

Evapotranspiration is specific to plant species, the surrounding environment and 

represents the optimum amount of water that the plant should receive for healthy 

growth.  Calculating evapotranspiration is a complex procedure that must take multiple 

factors into account such as ambient temperature, relative humidity, and solar radiation 

[9].  However, this value, along with drainage rate of the soil and rainfall volume, 

informs how much water must be supplied through irrigation to meet the needs of the 

plants in the watering quadrant [13]. 

2.3 Resident specific Information 

Some information that affects watering volume that a garden or lawn requires cannot 

be easily inferred or detected and must be supplied by the user.  The three user-defined 

factors in this study were the species of plants in the watering area, the size and location 

of the quadrant and the sprinkler type used for watering.   

Different species of grass have different water requirements for healthy growth and 

can enter dormant stages during frigid or drought conditions and can enter dormant 
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stages where they are more susceptible to over-watering.  The exact location, size, and 

shape of the watering area can be used to infer the amount of shade cast on the watering 

quadrant at different points during the day, which can affect the times when watering 

is appropriate.   

The sprinkler type, such as common, low-flow sprinklers or misters, also has an 

impact on selecting the best time to water plants and lawns.  Airborne watering systems, 

such as sprayers and misters, deliver water to the entire plants including its stem and 

leaves.  These sprinkler types are better suited to watering in the morning as leaves are 

susceptible to fungal infection if they are watered at a time when they are not able to 

dry [8]. 

2.4 Related Work 

Recently developed automated irrigation systems emphasize “do-it-yourself”, low-cost, 

and web accessibility enabled by platforms such as Arduino and Raspberry Pi.  For 

example, Vinduino [14] uses multiple moisture sensors at different depths to determine 

when to water, and prevent overwatering, in vineyards.  The developers of the Vinduino 

project claim 25% water savings across their vineyards [14].  OpenSprinkler provides 

smart watering control based on historic, current, and forecast weather data [15].  

Neither of these projects incorporate Semantic Technologies to introduce a range of 

data that could enrich the outcomes of the knowledge base.  

There are related work that does incorporate semantic technologies such as 

AGROVOC [16], Agri-IoT [17], CSIRO’s Kirby Farm project [18] and the ThinkHome 

smart home system [6].  AGROVOC is a formal vocabulary in RDF form that allows 

for the linking of agricultural data.  AGROVOC has evolved into a SKOS-XL linked 

dataset that includes hierarchies of agricultural concepts such as organisms, methods, 

events, and processes and links to other vocabularies about fisheries, environment, and 

biotechnology [16].  As such, the Agrontology is a potential resource to integrate within 

the Lawnbot ontology.  The ThinkHome project is “smart-home” initiative that 

incorporates semantic technologies with IoT for improved resource management.  

However, the focus is predominantly on energy consumption and power management 

as opposed to water conservation.  The Agri-IoT project and CSIRO’s Kirby Farm 

project are semantic web and IoT-based frameworks that are capable of processing 

multiple data streams for more effective agricultural management [17, 18].  These 

projects incorporates linked data from multiple data points, including sensed, 

government and environmental web-based data, for informed and accurate event 

detection and decision making by farmers.  The Agri-IoT and the Kirby Farm projects 

differ to this study because the focus is in the wider agricultural field rather than the 

smaller domain of urban lawn management.   

3 Semantic Knowledge Base and Control Agent 

Semantic technology data models aim to capture the meaning of data to represent real 

world situations for data integration and manipulation [19, 20].  Formal logical 
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paradigms are applied to automate classifications of concepts and the inference of new 

information.  The computer can make intelligent decisions based on conclusions 

derived through predicate and propositional logic systems embedded in explicit 

ontological definitions [19, 20]. 

The Lawnbot ontology (Appendix A) is built on top of the Semantic Sensor Network 

(SSN) ontology [21, 22].  The SSN ontology includes concepts for sensing the 

environment and making changes through logic-controlled actuators.  That is, Sensors 

make Observations of ObservedProperties belonging to FeaturesOfInterest and 

Actuators cause Actuations that modify ActuableProperties of FeaturesOfInterest.  For 

example, the Observations of specific areas would infer the WaterValveActuator would 

open the valve to release water. 

The FeaturesOfInterest relevant to intelligent water management are Yards, 

Quadrants, and WeatherAreas.  That is, each Yard consists of several Quadrants (Fig. 

2) and would fall within a wider WeatherArea.  Each Yard may have distinct watering 

requirements depending on its properties, for example: different SoilComposition, 

different MicroClimateFactors based on the timing and amount of shading, etc.   

Quadrants contain Plants, each of which has a PlantSpecies.  The dimensions and 

life cycle status of plants are data-type properties for use in the inference rules to model 

size and possible impact on shade.  PlantSpecies determines the crop coefficient, which 

combined with the dimensions and life cycle status, can together help infer 

evapotranspiration and determine the watering requirements for the Quadrant.   

Local sensors gather data at the Yard and Quadrant levels.  At the Yard level, sensors 

measure the ObservedProperties that include temperature (ambient and soil), humidity 

(ambient and soil) and illuminance.  At the Quadrant level, soil moisture (both 

 

Fig. 2. Lawnbot test layout showing individual watering quadrants 
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superficial and deep) is observed.  The sensed data is collected via the control agent 

and converted to RDF form and ingested to the knowledge base.  

Each Quadrant contains a Plant of a PlantSpecies, which determines 

WateringRequirements.  Quadrant has SoilComposition, with properties that can affect 

watering or fertilization.  We further model Quadrant size and shading information.  

PlantSpecies has a crop coefficient for determining evapotranspiration.  Quadrant has 

a MicroClimateFactor affected by shading to determine evapotranspiration.   

A Sprinkler in each Quadrant (or across quadrants) is supplied water by opening a 

water valve, which is represented as a WaterValveOnState.  The SprinklerType 

determines the data property WaterVolumePerMinute, which is applied in the inference 

rules to toggle the WaterValveOnState for each Quadrant/s.  Forecast weather data for 

a WeatherArea is modelled by PredictedProperties including probability of 

precipitation, quantity of precipitation, high and low temperature, average windspeed, 

and average humidity.  The concept of WateringRestrictions is applied to Yards to avoid 

illegal watering.  

The Stardog graph triplestore1 was used to develop the semantic knowledge base.  

Stardog was selected as it provides OWL 2 support, SWRL reasoning, and a standard 

HTTP SPARQL endpoint.  For the prototype, climatic data was drawn from 

CLIMWAT [23], which is an application to share weather data such as rainfall, 

humidity and temperature, and was used to provide reference data for 

evapotranspiration calculations.  Weather forecasting data is extracted via the Weather 

                                                           
1  http://www.stardog.com/ 

 

Fig. 3. The Control Agent architecture. 
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Underground2 portal, which combines citizen science data (personal weather stations) 

with government data (e.g., Bureau of Meteorology) to automate weather predictions.  

The probability of precipitation, millimetres of forecast rain, high and low 

temperatures, average humidity and average windspeed were extracted from the 

forecast data.  JSON data for weather forecasts and sensor readings are converted into 

RDF by the control agent using RDFLib3 and inserted into the knowledge base via the 

SPARQL endpoint.  For the pilot study, raw sensory and weather was stored in the 

Stardog triple-store.  Custom Python scripts with RDFLib are applied to create 

SPARQL queries that map the raw data to ontological instances. 

The control agent continually polls the base station for sensor data using the requests 

module for Python and sends it to database (Fig. 3).  Each night, the control agent 

calculates the net water gain or loss for each plant based on watering, precipitation, and 

evapotranspiration.  The Weather Underground portal is also polled for updated 

forecasts, which means the expected evapotranspiration can be calculated, and so 

expected gains or losses in water in the coming days can be determined.   

Based on the needs of the plants and lawn, the forecast evapotranspiration and 

precipitation, and watering restrictions, the system can infer whether to turn the water 

on and for how long (i.e., how many litres of water is required for each quadrant) (Fig. 

4).  For example, grass on a given quadrant may require 25mm of water per week under 

typical conditions in summer due to proximity of a shading object such as a house or 

tree.  If six dry days have passed, but a 90% chance of 40mm of precipitation is 

predicted in the next three days, the system will determine that it should not water the 

quadrant, but instead wait for the expected rain.  The soil moisture sensors will 

determine if the expected rain has occurred to ground truth the inference outcome. 

                                                           
2  https://www.wunderground.com/ 
3  https://github.com/RDFLib 

 

Fig. 4. The inference rule schema. 
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4 Hardware Implementation 

Lawnbot is a prototype sensor and control platform for residential water management 

(Fig 5).  The platform is installed in an outdoor environment, where it uses multiple 

sensors to gather information on the soil conditions to help optimise the water 

consumption.  The localised weather conditions such as ambient temperature, relative 

humidity and ambient light levels to ascertain the localised weather conditions such as 

rain or overcast skies are determined from the environmental sensors installed in each 

yard.  The platform is also capable of interfacing with watering systems to switch the 

water supply on and off, based on the outcome of the Lawnbot ontology inference rules, 

and to precisely monitor water usage during watering times. 

Two sensor types measure soil saturation at two different depths: a surface-level soil-

moisture probe, and a buried gypsum hygrometre.  The soil-moisture probe is a device 

that sits in the topsoil and measures the saturation of the superficial layer of the soil, 

which is useful for detecting precipitation or when water is otherwise pooling on the 

ground.  The gypsum hygrometre is buried deeper in the soil to monitor moisture levels 

at root level and is used in conjunction with the soil-moisture probe to track the rate 

that water moves through the soil during differing environmental conditions, 

surrounding different plant species, and soil types.  Multiple pairs of these sensors can 

effectively split up a lawn or garden into quadrants, which can be monitored and 

watered individually.  This separation of quadrants is particularly advantageous if they 

have differing circumstances, such as shade, changing soil types and/or proximity to 

 

Fig. 5. Lawnbot hardware system showing soil sensors and water control system. 
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external water sources such as rivers or dams.  Similarly, the system uses multiple 

valves and flow metres to track how much water is supplied to each watering quadrant 

(Fig. 2). 

The platform can run in a standalone configuration, but its limited awareness of the 

surrounding area reduces its potential effectiveness.  For example, the system may 

waste water by watering before a rainstorm.  By incorporating linked data, the control 

agent transmits the sensor data to the semantic knowledge base for combination with 

external data sources such as local weather information to take advantage of natural 

rainfall and conditions for better water efficiency.  In this configuration, no standalone 

switching occurs and all water management is handled by commands received from the 

semantic knowledge base. 

5 Implementation and Discussion 

Lawnbot was trialed on a residential property using four watering quadrants (Fig. 2).  

All four quadrants were spatially separated by the reach of the sprinkler type to avoid 

water spilling in from other quadrants, but were subject to the same weather conditions.  

Soil and grass types were consistent for all quadrants, but two quadrants received shade 

for most of the afternoon, while the other two were in full sun for most of the day. 

For direct comparison between Lawnbot and conventional watering schemes, one 

shaded and one non-shaded watering quadrant were managed by the Lawnbot system, 

while the remaining areas were watered by typical water usage under locally-imposed 

timed water restrictions.  These restrictions limited watering to only three days per week 

and for limited times during the morning or afternoon.  Water metre readings before 

and after each hand watering period were used to calculate the total volume used during 

each session. 

Lawnbot watering was enabled throughout the week drawing data from local and 

external sources to infer water use.  Both the soil probe and gypsum hygrometre were 

installed at the center of each watering quadrant managed by Lawnbot, with 

hygrometres buried at a depth of 0.5 metres.  After a testing period of 30 days, the water 

usage of each of the quadrants were compared, as well as a visual check of the grass in 

each quadrant to observe if the grass appeared healthy.  On a daily average, the Lawnbot 

system used less water than the manual system because it stopped the water flow after 

an inferred period while the manual watering occurred for the full four-hour council 

allotment.  

The outcome is an anticipated decrease in the quantity of water used in outdoor 

irrigation at the residential level.  Table 1 shows a six month simulation over the 2016 

January to June period in Townsville and Cairns, which contrasts a dry tropical zone to 

a wet tropical zone.  The control yards are watered 25mm every 7 days on schedule 

regardless of actual rain.  The lawnbot yards are watered so as to maintain 25mm over 

7 days while calculating past rain and predicted rain up to three days out.  Cairns shows 

32% water savings and Townsville shows 21%.  Notably, a real-time long term trial is 

not possible at present due to drought level watering restrictions. 
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Table 1. Simulated inference in Townsville and Cairns, North Queensland 

Month Predicted 

average 

Cairns 

Rain 

Cairns 

control 

quadrant 

Cairns 

lawnbot 

qaudrant 

Townsville 

rain 

Townsville 

control 

quadrant 

Townsville 

lawnbot 

qaudrant 

Jan 10.35 4.66 3.57 2.46 1.83 3.57 2.25 

Feb 9.11 3.20 3.57 2.29 2.23 3.57 1.96 

Mar 6.29 5.50 3.23 2.29 8.84 3.23 2.29 

April 8.58 3.11 4.17 1.57 0.22 4.17 3.23 

May 7.53 2.73 3.23 2.81 0.02 3.23 3.42 

June 6.26 1.21 3.33 2.97 0.52 3.33 3.40 

Total  20.41 21.09 14.38 13.66 21.09 16.56 

        

The immediate benefits of the system are to the council's water management 

program, residents who pay for water and/or users who are concerned with water 

depletion.  The proposed output will be a pilot system that will be demonstrated by 

automatically managing residential outdoor irrigation for lawns and fruit trees based on 

various disparate data input sources and a semantic system that “understands” how the 

variables interact.   

Automating the release of water (the system manipulates the valve) will further 

benefit the resident and promote use of the system.  The residents will visually see when 

water should or should not be used and money saved based on the aggregate of available 

data and inferred output, which are relevant to changing water consumption behaviour 

[3].   

6 Conclusions 

This paper presented the prototype Lawnbot water management platform, which is an 

automated watering system for residential lawns and gardens that applies Semantic and 

IoT technologies.  The resulting system incorporates real-time sensor data, weather 

forecasts, geological and environmental information to infer the precise amount of 

water needed to minimize water wastage without compromising the health and 

wellbeing of the lawn or garden.  The prototype combines a sensor-actuator system that 

automatically manages the water flow in yards based on semantic inference.  The 

combination of data from multiple sources with a sensor-actuator system has the 

potential to make better watering decisions than other systems of its kind.  A method to 

evaluate the system was discussed that compared the watering performance of the 

semantic-controlled platform to manual watering under council water restriction 

guidelines. 

Future work of the Lawnbot semantic knowledge base includes the refinement of the 

Lawnbot ontology, a user dashboard and extending controls to fertilisers.  The spatial 

accuracy of weather predictions and rainfall tracking can also be augmented by 

gathering information from nearby urban sensor installations, and from other IoT 
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platforms.  A visualisation tool such as a user dashboard would better inform users of 

their water usage habits and compare with nearby properties.  The residents will 

visually see when water should or should not be used and money saved based on the 

aggregate of available data and inferred output.  Users will also be able to define their 

own watering quadrants with specific shade areas and plants to input into the 

knowledge base.  Further, there are plans to expand the system to manage controls of 

liquid fertilisers and pH balancing for improved plant health. 
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