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Abstract

Background: Pathways coordinated by innate pattern recognition receptors like mannose-binding lectin (MBL) and
nucleotide-binding oligomerization domain 2 (NOD2) are among the first immune responses to Staphylococcus
aureus (S. aureus) bloodstream infections (BSI) in animal models, but human data are limited. Here, we investigated
the role of MBL deficiency and NOD2 mutations in the predisposition to and severity of S. aureus BSI.
Patients and Methods: A matched case-control study was undertaken involving 70 patients with S. aureus BSI and
70 age- and sex-matched hospitalized controls. MBL levels, MBL2 and NOD2 polymorphisms were analyzed.
Results: After adjusting for potential confounders, MBL deficiency (<0.5 µg/ml) was found less frequently in cases
than controls (26 vs. 41%, OR 0.4, 95% confidence interval (CI) 0.20-0.95, p=0.04) as were low producing MBL
genotypes (11 vs. 23%, OR 0.2, 95% CI 0.08-0.75, p=0.01), whereas NOD2 polymorphisms were similarly
distributed. Cases with NOD2 polymorphisms had less organ dysfunction as shown by a lower SOFA score (median
2.5 vs. 4.5, p=0.02), whereas only severe MBL deficiency (<0.1 µg/ml) was associated with life-threatening S. aureus
BSI (OR 5.6, 95% CI 1.25-24.85, p=0.02).
Conclusions: Contrary to animal model data, our study suggests MBL deficiency may confer protection against
acquiring S. aureus BSI. NOD2 mutations were less frequently associated with multi-organ dysfunction. Further
human studies of the innate immune response in S. aureus BSI are needed to identify suitable host targets in sepsis
treatment.
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Introduction

Staphylococcus aureus (S. aureus) is a major cause of
nosocomial and community-acquired bloodstream infections
(BSI) accounting for up to 20% of hospital isolates [1]. S.
aureus BSI is associated with a high morbidity and mortality
compared to other BSI pathogens [2] and when it is caused by
methicillin resistant isolates the mortality is even greater [3].
These infections place a huge burden on health care systems
due to a longer duration of hospital stay and higher total
treatment cost compared to bacteremia caused by any other
pathogen [4]. In addition, the incidence of S. aureus BSI has

steadily increased over the past 30 years as a consequence of
frequent use of intravascular devices and invasive procedures
[5]. General host risk factors for the acquisition of S. aureus
BSI include staphylococcal colonization, surgical site infection,
injection drug use, presence of immunosuppressive conditions
and liver disease [2]. Central to the pathogenicity and immune
evasion of S. aureus is the coordinated activity of several
virulence factors including surface-expressed adhesins,
complement inhibitors, exotoxins and exoenzymes that
facilitate direct tissue destruction while avoiding activation of
the innate immune system, particularly the complement system
[6]. However, human studies examining the impact of the
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innate immune system on the susceptibility to and the severity
of S. aureus BSI are limited [7,8].

Pattern recognition receptors (PRR) are crucially involved in
the initial and immediate immune response against S. aureus
(reviewed in [9]). In particular, nucleotide-binding
oligomerization domain 2 (NOD2) and mannose-binding lectin
(MBL) have been implicated in the pathogenesis of S. aureus
infections in several experimental models. NOD2 is an
intracellular sensor for both gram-positive and -negative
bacterial cell wall components leading to a pro-inflammatory
NF-κB and IL-1β mediated cytokine response (reviewed in
[10]), although the exact mechanism and regulation of
response in bacterial infections still remain to be fully
elucidated. Animal model data on S. aureus and NOD2 are
conflicting [11–13]. Results from two studies involving critically-
ill sepsis patients suggest an increased risk of bacteremia and
mortality in individuals with at least one NOD2 variant [14,15].

MBL, a liver-derived circulating lectin contributes to the
efficient removal of pathogens and apoptotic cells by activating
the lectin pathway of complement and promoting
opsonophagocytosis [16], and has been implicated as an
important defense mechanism in various infectious diseases
[17]. Functional MBL deficiency is common in humans and is
caused by polymorphisms within the coding and promoter
regions of the MBL2 gene on chromosome 10 [18]. In vitro,
MBL is able to bind to S. aureus [19] and evidence from animal
models suggests that MBL deficiency significantly increases
the susceptibility to and severity of S. aureus bacteremia
[20,21]. However, its contribution to S. aureus induced
complement activation and phagocytosis of S. aureus in adults
is probably less than the antibody-mediated classical pathway
activation [22–24]. Several clinical studies have reported a
correlation between MBL deficiency and increased
susceptibility to bacterial sepsis in children and adults [25–27].

Given these data on the potential role of NOD2 and MBL in
human innate immune defences against severe S. aureus
infection we hypothesized that MBL deficiency and NOD2
mutations might be associated with increased susceptibility to
and severity of S. aureus BSI.

Patients and Methods

Ethics statement
The study had been approved by the Melbourne Health

Human Research and Ethics Committee and all participants
gave written informed consent for the study.

Participants
We conducted a matched prospective case-control study at

two major tertiary hospitals involving 70 patients with S. aureus
BSI and 70 age- and sex-matched hospitalized controls.
Investigators were notified of all blood cultures positive for S.
aureus by the central microbiology laboratory during the study
period (September 2009 to September 2011). Case patients
were enrolled with their first S. aureus BSI if they were >18
years old and had at least 1 positive blood culture for S.
aureus. Hospitalised control patients were selected on the
absence of infection as the cause for admission and were

matched for age (within 2 years) and sex. Controls had to be
admitted within 2 months of the case patient. To increase the
power for the analysis of severity after S. aureus BSI, 30
patients with S. aureus BSI with similar epidemiology from a
previous study were included only in this component of the
study [25]. MBL levels and MBL2 genotype have been
previously reported for these patients, and demographic and
clinical data similar to the patients recruited in this study was
available. We were able to use stored genomic DNA samples
from these patients to determine NOD2 polymorphisms.

Risk factors for staphylococcal BSI
Demographic, clinical and microbiological data were

collected by investigators blinded to MBL and/or NOD2 results
including comorbidities and presence of intravenous (IV) lines
or urinary catheters before the episode of S. aureus BSI. Liver
disease was defined as cirrhosis, chronic hepatitis B and C,
hepatocellular carcinoma or any other significant acute or
chronic liver disease. Renal disease included acute and
chronic renal impairment of various reasons excluding
hemodialysis. Patients were regarded as immunosuppressed if
they were receiving chemotherapy, corticosteroids (>7.5mg
prednisolone equivalent per day), methotrexate, cyclosporine,
tacrolimus, azathioprine or biologics such as TNF-α inhibitors.

The Sequential Organ Failure Assessment (SOFA) score
was calculated for case patients on the day when the first
positive blood culture was taken. A SOFA score of >7 was
regarded as very severe disease being the mean score of non-
survivors in the validation study of this score [28].

Determination of MBL plasma levels
EDTA blood samples which had been taken one to three

days prior to the diagnosis of S. aureus BSI were accessed for
further testing. Quantification of MBL plasma levels was
performed by an investigator blinded to any patient data using
a mannan-binding enzyme-linked immunosorbent assay as
previously described [25,29]. Briefly, mannan-coated microtitre
plates were incubated with samples at 1:25 and 1:100 dilutions
for 90 min at room temperature followed by detection of bound
MBL with a biotinylated monoclonal anti-MBL antibody (HYB
131-01, BioPorto Diagnostics, Denmark). MBL deficiency was
defined as serum level < 0.5 µg/ml and, severe as < 0.1 µg/ml,
respectively.

MBL2 and NOD2 genotyping
MBL2 promoter and first exon and NOD2 polymorphisms

were determined by allele specific polymerase chain reaction
(PCR) using TaqMan fluorescent probes (TaqMan genotyping
assays, Life Technologies, Australia). For assay details, see
Table S1. DNA lysates were prepared from 2µl of stored buffy
coat according to the manufacturer’s instruction (TaqMan
Sample-to-SNP, Life Technologies, Australia), and stored
genomic DNA was used for 30 patients included in a previous
study [25]. For all TaqMan assays, DNA amplification was
carried out in 5µL volume reactions containing 1µl of DNA
lysate or 20ng of genomic DNA, 0.25µl TaqMan genotyping
assay mix, 2.5µl TaqMan GTXpress Master Mix (Life
Technologies, Australia) and 1.25µl DNase-free water. All
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reactions were performed in 384-well plates and in the ViiA 7
thermocycler (Life Technologies, Australia) according to the
manufacturer’s instructions. For allelic discrimination end-point
fluorescence was read at 25°C, and the ViiA 7 software was
used to analyze the results (Life Technologies, Australia).

MBL2 genotypes were classified as low (XA/YO, YO/YO),
intermediate (XA/XA, YA/YO) or high (YA/YA, XA/YA)
producing genotypes according to published literature [26] with
exon variant alleles collectively designated as O and the wild-
type gene as A, and the promoter variant allele and the wild-
type gene designated as X and Y, respectively.

Definition of aims
The main aim of this study used to determine the sample

size, was to compare the frequency of MBL deficiency in
patients with S. aureus BSI with age/sex-matched, hospitalized
control patients. We recruited 70 cases and controls in order to
have an 80% chance of detecting an odds ratio of 3, with an
expected frequency of MBL deficiency (defined as plasma
concentration <0.5 µg/ml) in the control population of 24% [29]
at the 5% level of significance. Additional aims included
measuring the effect of NOD2 mutations on the risk of
acquiring S. aureus BSI in cases compared to controls, and in
cases alone, the influence of MBL levels and MBL2 and NOD2
mutations on the severity of S. aureus BSI as evaluated by the
SOFA score and crude in-hospital mortality.

Statistical analysis
To investigate potential risk factors for acquiring S. aureus

BSI, matched univariate analysis was performed by running
conditional logistic regression on one variable at a time with S.
aureus BSI as the dependent variable. In addition, Wilcoxon
signed-rank test was applied to compare MBL levels in cases
and matched controls. Multivariate conditional logistic
regression models were used to estimate the effect of MBL
deficiency on the risk of acquiring S. aureus BSI while adjusting
for covariables with univariate p values less than 0.1 and which
have been described in previous studies.

Regarding the severity of S. aureus BSI differences in
outcome measures of cases according to patient
characteristics, MBL levels and MBL2 or NOD2 mutations were
first analyzed using the Fisher’s exact, the χ2 or the Mann-
Whitney-U-Test where appropriate. Subsequently, stepwise
binary logistic regression models were calculated to estimate
the association of MBL levels and MBL2 or NOD2 mutations
with predefined endpoints in multivariate analyses after
adjustment for covariables with univariate p values less than
0.1. The Hardy-Weinberg equilibrium for MBL2 and NOD2
genotype frequencies was assessed by χ2 statistics. All testing
was two-tailed. All analyses were performed using SPSS
statistics, version 17.0 (SPSS Inc., USA).

Results

Demographic and clinical characteristics of cases and
controls

The analyzed study population consisted of 70 S. aureus BSI
cases and 70 age- and sex-matched, hospitalized controls. S.
aureus BSI were nosocomially acquired (60%) and related to
endovascular sources (49%) in the majority of cases. Controls
were mainly admitted for trauma or elective surgery (Table 1).
A median of 2 blood culture bottles were positive for S. aureus,
and cultured isolates were methicillin resistant in 12/70 (17%)
of cases (2/12 community-acquired). Antibiotic therapy
appropriate for the susceptibility of the infective organism was
received within 24 hours after blood cultures had been drawn in
59/70 (84%) cases.

In terms of risk factors, S. aureus BSI cases were more likely
to suffer from liver disease, to require hemodialysis and to have
long-term IV lines when compared to controls (Table 2). In
contrast, controls were more likely to have undergone recent
surgery, with peripheral IV lines and urinary catheters used
more frequently at the time of recruitment. There was no
difference in terms of prevalence of diabetes mellitus, heart
disease, cancer or immunosuppression.

Association of MBL and NOD2 variants with the risk of
acquiring S. aureus BSI

MBL2 and NOD2 allele frequencies at all 7 positions were in
agreement with the predicted Hardy-Weinberg equilibrium
(data not shown). There was significant correlation between
MBL2 genotypes and MBL levels (Kruskal-Wallis test, p<0.001,

Table 1. Clinical characteristics of S. aureus BSI cases and
controls.

 Cases (n=70)
 n (%)
Infective source  
Intravascular line 16 (23)
Skin or soft tissue 11 (16)
Bone or joint 13 (19)
Endocarditis 7 (10)
Pneumonia 8 (11)
Hemodialysis associated 11 (16)
No source identified 4 (6)

Microbiology  
PSSA 15 (21)
MRSA 12 (17)
 Controls (n=70)
 n (%)
Admission diagnosis, n (%)  
Trauma 18 (26)
Medical condition 29 (41)
Surgery (not trauma related) 23 (33)

Abbreviations: BSI, bloodstream infection; MRSA, methicillin-resistant S. aureus;
PSSA, penicillin-sensitive S. aureus; S. aureus, Staphylococcus aureus.
doi: 10.1371/journal.pone.0076218.t001
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data not shown). As expected, patients with low producing
genotypes all had MBL levels <0.5 µg/ml. The frequency
distribution of MBL2 genotypes differed significantly among
cases and controls with higher number of intermediate and low
genotypes in controls (Table 3). In line with MBL2 genotypes,
median MBL levels were significantly lower in controls
compared to cases (0.9 (IQR 0.2-2.4) vs. 2.7 (IQR 0.5-4.6)
µg/ml, p<0.001, Figure 1), and 18/70 of cases vs. 29/70 of
controls had MBL levels <0.5 µg/ml. NOD2 mutations were
exclusively heterozygous and were found in 10/70 and seven-
seventieths of cases and controls, respectively (p=0.4). Only
three individuals had both low producing MBL2 genotypes and
a NOD2 mutation (2 cases, 1 control).

Contrary to our a priori hypothesis, MBL deficiency defined
by low producing genotypes or lower MBL plasma levels
(continuous variable) along with recent surgery, indwelling
urinary catheters, and peripheral IV lines were associated with
protection from S. aureus BSI. Previously described factors
were associated with increased risk of S. aureus BSI (Tables 2
and 3).

Three risk factors that were highly correlated with protection
from S. aureus BSI were not included in the multivariate model
(recent surgery, indwelling urinary catheter and peripheral IV
line) as their associations were in contrast with current
literature and likely related to selection bias in the control group
(trauma or elective surgical patients were more likely to be
recruited as controls with urinary and peripheral IV catheters
more frequently present in those patients at recruitment). After
adjusting for potential confounders MBL deficiency as defined

Table 2. Analysis of clinical characteristics as predisposing
risk factors for S. aureus BSI.

Variables ControlsCases  Univariate matched analysis
 (n=70) (n=70) OD (95% CI) P valuea

Age, mean (SD) 61 (17) 61 (18) 1.09 (0.9-1.32) 0.4
Male sex, n (%) 49 (70) 51 (73) 65 (0.01-5x106) 0.45
Diabetes, n (%) 15 (21) 20 (29) 1.63 (0.67-3.92) 0.28
Heart disease, n (%) 36 (51) 30 (43) 0.46 (0.16-1.31) 0.14
Cancer, n (%) 10 (14) 13 (19) 1.36 (0.55-3.42) 0.5
Immunosuppressive treatment
n (%)

8 (11) 15 (21) 2.2 (0.82-5.70) 0.12

Liver disease, n (%) 0 (0) 15 (21) 65 (1.03-4148.5) <0.05
Kidney disease, n (%) 6 (9) 10 (14) 2.0 (0.60-6.64) 0.26
Hemodialysis, n (%) 3 (4) 16 (23) 5.33 (1.55-18.3) <0.01
Illicit IV drug use, n (%) 2 (3) 6 (9) 65 (0.02-2x105) 0.31
Recent surgery, n (%) 41 (59) 7 (10) 0.08 (0.03-0.26) <0.001
Urinary catheter, n (%) 30 (43) 9 (13) 0.22 (0.09-0.54) 0.001
Vascular lines, n (%)     
Long-term IV line 14 (20) 28 (40) 2.1 (1.1-4.0) 0.03
Peripheral IV line 57 (81) 26 (37) 0.11 (0.04-0.32) <0.001
Abbreviations: BSI, bloodstream infection; CI, confidence interval; IQR,
interquartile range; IV, intravenous; OD, odds ratio; SD, standard deviation; S.

aureus, Staphylococcus aureus. Long-term IV line refers to a central, tunneled or
peripherally inserted central intravenous catheter.
a univariate conditional logistic regression analysis.
doi: 10.1371/journal.pone.0076218.t002

by MBL levels <0.5 µg/ml (OR 0.44, 95% confidence interval
(CI) 0.20-0.95, p=0.04) or low producing genotypes (OR 0.24,
95% CI 0.08-0.75, p=0.01) remained independently associated
with a decreased risk of acquiring a S. aureus BSI. Otherwise,
only hemodialysis was an independent predictor of S. aureus
BSI in a multivariate analysis (OR 6.01, 95% CI 1.70-21.54,
p<0.01).

Table 3. Analysis of MBL2 and NOD2 genotypes in S.
aureus BSI cases and controls.

Variables Controls Cases
Univariate matched
analysis

 (n=70) (n=70) OD (95% CI) P valuea

MBL2 exon variants, n
(%)

    

A/A 30 (43) 44 (63) Reference  
A/B 22 16   
A/C 5 1   
A/D 8 5   
Total A/O 35 (50) 22 (31) 0.44 (0.22-0.90) 0.024
B/B 2 1   
B/C 1 1   
B/D 1 1   
C/D 1 0   
Total O/O 5 (7) 4 (6) 0.42 (0.10-1.79) 0.24
MBL2 promoter
variants, n (%)

    

Y/Y 42 (60) 52 (74) Reference  
Y/X 25 (36) 17 (24) 0.47 (0.20-1.12) 0.09
X/X 3 (4) 1 (1) 0.27 (0.03-2.70) 0.27
MBL2 genotypes, n (%)     
YA/YA 13 30   
XA/YA 14 13   
Total high producing 27 (39) 43 (61) Reference  
XA/XA 3 1   
YA/YO 24 18   
Total intermediate
producing

27 (39) 19 (27) 0.43 (0.20-0.94) 0.034

XA/YO 11 4   
YO/YO 5 4   
Total low producing 16 (23) 8 (11) 0.31 (0.11-0.84) 0.021
MBL levels (µg/ml),
median (IQR)

0.9 (0.2-2.4) 2.7 (0.5-4.6) 1.32 (1.10-1.58)b 0.002

MBL <0.5µg/ml, n (%) 29 (41) 18 (26) 0.50 (0.24-1.03) 0.06
NOD2 mutations, n (%) 7 (10) 10 (14) 1.5 (0.53-4.21) 0.44
R702W C>T 4 4   
G908R G>C 2 2   
L1007fsinsC -/C 1 4   

Abbreviations: BSI, bloodstream infection; CI, confidence interval; IQR,
interquartile range; MBL, mannose-binding lectin; NOD2, nucleotide-binding
oligomerization domain 2; OD, odds ratio; SD, standard deviation; S. aureus,
Staphylococcus aureus. Y and A denote MBL2 promoter and exon wildtype alleles,
respectively.
a univariate conditional logistic regression analysis. b per 1 µg/ml increase in MBL
serum levels.
doi: 10.1371/journal.pone.0076218.t003
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Association of MBL and NOD2 variants with severity of
S. aureus BSI

One hundred cases were analyzed for associations between
MBL2 or NOD2 mutations and severity of S. aureus. Clinical
characteristics are displayed in Table 4. Regarding severity of
S. aureus BSI the median SOFA score was 4 (IQR 2-6) and in-
hospital mortality was 10% overall.

Organ dysfunction was less pronounced in patients with
NOD2 mutations indicated by significantly lower SOFA scores
(median 2.5 (IQR 0-3.75) vs. 4.5 (IQR 2-6), p=0.02) and the
fact that the majority (8/16 (50%)) demonstrated a SOFA score
of less than 3 and only 1/16 (6%) patient with a SOFA score >7
compared to 24/84 (29%) and 15/84 (18%) patients with NOD2
wild-type genotype, respectively (p=0.19). MBL deficiency
(<0.5 µg/ml) had no influence on the severity overall as
evaluated by the SOFA score (data not shown). However,
severe MBL deficiency (<0.1 µg/ml) significantly increased the
odds of a patient having severe organ dysfunction as defined
by a SOFA score >7 (OR 5.57, 95% CI 1.25-24.85, p=0.02)
after adjusting for age and gender. A similar non-significant
trend was observed regarding severe MBL deficiency or NOD2
mutations and frequency of admission to ICU (4/10 (40%) vs.

Figure 1.  Plasma mannose-binding lectin levels in S.
aureus BSI cases and controls.  Differences in plasma
mannose-binding lectin levels in S. aureus BSI cases and
controls. Short horizontal lines (whiskers) represent minimum
and maximum levels whereas horizontal lines inside the box-
plot represent medians. Abbreviations: BSI, bloodstream
infection; MBL, mannose-binding lectin. S. aureus,
Staphylococcus aureus.
doi: 10.1371/journal.pone.0076218.g001

18/90 (20%) and 2/16 (13%) vs. 20-84 (24%), respectively),
whereas in-hospital mortality was not different.

Discussion

MBL and NOD2, two PRR of the innate immune system,
have been implicated in the pathogenesis of S. aureus BSI in
several experimental models [11–13,20,21]. This is the first
human study designed to examine the effect of these two
important first-line defense mechanisms on predisposition and
severity of infection in S. aureus BSI patients, exclusively.

Despite previous experimental studies that were the basis for
our a priori hypotheses, we did not demonstrate that MBL
deficiency or NOD2 mutations predispose to S. aureus BSI.
Interestingly, we found that rather the opposite is true in terms
of MBL deficiency. MBL deficiency was associated with less
than half the risk of acquiring S. aureus BSI. Previous studies

Table 4. Clinical characteristics and outcomes in S. aureus
BSI cases (n=100).

Variables
S. aureus
BSI SOFA score

 (n=100) <2 (n=32) 3-7 (n=52) >7 (n=16) P value

Age, mean (SD)
60.7
(18.7)

63.7 (18.5) 59.5 (19.0) 58.5 (18.8) 0.54

Male sex, n (%) 72 26 (81) 38 (73) 8 (50) 0.07
MBL2 genotypes,
n (%)

     

high (YA/YA,
XA/YA)

60 18 (56) 33 (64) 9 (56) 0.84

intermediate
(YA/YO, XA/XA)

29 9 (28) 15 (29) 5 (31)  

low (YO/YO,
XA/YO)

11 5 (16) 4 (8) 2 (13)  

MBL levels (µg/
ml), median(IQR)

2.4
(0.5-4.1)

3.0
(0.7-6.0)

2.4
(0.5-3.6)

1.0
(0.1-4.0)

0.38

MBL <0.5µg/ml, n
(%)

25 7 (22) 13 (25) 5 (31) 0.78

MBL <0.1µg/ml, n
(%)

10 4 (13) 2 (4) 4 (25) 0.04

NOD2 mutation, n
(%)

16 8 (25) 7 (14) 1 (6) 0.19

Outcomes      
SOFA score,
median (IQR)

4 (2-6)     

ICU admission, n
(%)

22 1 (3) 11 (21) 10 (63) <0.001

In-hospital
mortality, n (%)

10 2 (6) 5 (10) 3 (19) 0.4

Abbreviations: BSI, bloodstream infection; CI, confidence interval; ICU, intensive
care unit; IQR, interquartile range; MBL, mannose-binding lectin; NOD2,
nucleotide-binding oligomerization domain 2; OD, odds ratio; SD, standard
deviation; S. aureus, Staphylococcus aureus; SOFA, sequential organ failure
assessment; Y and A denote MBL2 promoter and exon wild type alleles
respectively.
doi: 10.1371/journal.pone.0076218.t004
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which failed to demonstrate an effect of MBL deficiency [25,30]
were likely underpowered as they had only examined a limited
number of S. aureus BSI patients as part of larger sepsis trials,
and controls were not matched. Recent data may help to
resolve this apparent contradiction. It has been demonstrated
that wildtype MBL2 genotypes are associated with persistent S.
aureus nasal carriage in adults, a well known predictor for
subsequent invasive disease [31]. Additionally, studies suggest
that binding of MBL to S. aureus might be restricted to infancy
due to inhibitory anti-wall teichoic acid antibodies in adults [23]
and subsequently that anti-staphylococcal complement
activation and opsonophagocytosis is dominated by the C1q-
dependent classical pathway independent of MBL [22]. Finally,
data that suggest a non-redundant role of MBL in
staphylococcal infections in infancy come from two recent
clinical studies that show that infants with MBL2 mutations are
more susceptible to S. aureus colonization [32] and fatal
invasive methicillin-resistant S. aureus co-infections after
influenza [33].

It is unlikely that an acute phase elevation of MBL accounts
for the higher levels in cases as the degree of elevation is
usually mild and restricted to wild-type patients [34], and more
importantly, genotypic data of our case patients were
consistent with MBL levels demonstrating high producing
haplotypes in a significantly greater proportion compared to
controls (61 vs. 39%).

We also found no difference in the prevalence of NOD2
mutations in S. aureus BSI cases and controls with the
frequency and presence of only heterozygous mutations being
in line with previous reports from an Australian control
population [35]. This finding is consistent with the clinical
observation (and preliminary evidence [36]) that (untreated)
Crohn’s disease patients, who have a higher prevalence of
NOD2 mutations than healthy controls, are not at an increased
risk of S. aureus BSI.

Overall then it seems that physical factors (hemodialysis or
intravenous catheters) or comorbidities (liver failure) account
more for susceptibility to S. aureus BSI than genetic defects in
the innate immune proteins we studies, at least in an adult
population.

Although MBL deficiency or NOD2 mutations had no
significant impact on mortality, we could demonstrate important
associations with our other a priori measure, the severity of S.
aureus BSI as evaluated by the SOFA score. Interestingly,
patients with NOD2 mutations had significantly lower SOFA
scores and admissions to ICU with 50% showing a SOFA
score <3 as compared to only 29% of patients lacking tested
NOD2 polymorphisms. Less pulmonary inflammation and faster
recovery has been shown in NOD2 knockout mice during S.
aureus pneumonia [13]. Similarly, a diminished initial
inflammatory response was demonstrated in NOD2 knockout
mice after subcutaneous challenge with S. aureus [12]
although the mice developed significantly larger ulcerations
later on possibly related to an impaired bacterial clearance. In
contrast, NOD2 knockout mice were more susceptible to S.
aureus infection in a peritoneal challenge model [11]. Currently
available data on human sepsis associations with NOD2
mutations indicate more prevalent bacteremia and higher

sepsis-related mortality in ICU studies [14,15]. However, both
human studies included only a minority of patients with S.
aureus BSI, hence the ability to compare with our study is
limited. In theory, heterozygous NOD2 mutations might impair
the recognition of S. aureus to a limited degree but also
attenuate the initial excessive and dysfunctional inflammatory
response [37,38]. In summary, this might effectively result in
less host damage overall in S. aureus BSI assuming removal of
the pathogen by timely administration of effective antibiotic
treatment.

Only severe MBL deficiency (<0.1 µg/ml) was associated
with critical disease as evaluated by the SOFA score and
admission to ICU, which is in line with knockout animal models
[20,21] and previous sepsis studies including a variety of
infections [25,26,39]. However, the significance of this
observation is limited by the small sample size of patients with
severe MBL deficiency.

Our study has some limitations including the fact that
microbial virulence factors shown to influence the severity of
community-acquired invasive S. aureus infections recently [40]
were not examined. In addition, data on S. aureus colonization
rate, a recognized risk factor for invasive infections were not
available in cases and controls. Severity according to the
SOFA score was only evaluated once on the day the first
positive blood culture was drawn before antibiotic therapy was
initiated. However, this approach eliminates possible
confounders introduced later by differences in treatment (e.g.
antibiotic management, timing of surgical intervention or
infectious diseases consultation). We limited our analysis of the
innate immune system to two key PRR, which have been
shown to be significantly involved in S. aureus infection,
previously. Ideally, future studies should include other
important PRR like TLR-2 [41] which are also involved in the
pathogenesis of S. aureus infections. Although our analysis of
the importance of MBL and NOD2 in S. aureus BSI is the
largest to date, its significance is limited in terms of mortality
due to low event numbers.

In conclusion, this study does not support an important role
for either MBL or NOD2 in protecting adults from acquiring S.
aureus BSI. In fact, contrary to previous animal model data our
results show that MBL deficiency seems to confer significant
protection from S. aureus BSI. In addition, heterozygous NOD2
polymorphisms were less frequently associated with organ
dysfunction in S. aureus BSI consistent with the notion that
outcomes of infections are more driven by the host response to
microorganisms than by their direct toxic effects [37,38]. Our
present state of knowledge indicates that possible effects of
innate immune system abnormalities are likely overwhelmed by
conventional risks factors for staphylococcal BSI.
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