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Abstract

Coastal marine ecosystems can be managed by actions undertaken both on the land and in

the ocean. Quantifying and comparing the costs and benefits of actions in both realms is

therefore necessary for efficient management. Here, we quantify the link between terrestrial

sediment runoff and a downstream coastal marine ecosystem and contrast the cost-effec-

tiveness of marine- and land-based conservation actions. We use a dynamic land- and sea-

scape model to determine whether limited funds should be directed to 1 of 4 alternative con-

servation actions—protection on land, protection in the ocean, restoration on land, or resto-

ration in the ocean—to maximise the extent of light-dependent marine benthic habitats

across decadal timescales. We apply the model to a case study for a seagrass meadow in

Australia. We find that marine restoration is the most cost-effective action over decadal time-

scales in this system, based on a conservative estimate of the rate at which seagrass can

expand into a new habitat. The optimal decision will vary in different social–ecological con-

texts, but some basic information can guide optimal investments to counteract land- and

ocean-based stressors: (1) marine restoration should be prioritised if the rates of marine

ecosystem decline and expansion are similar and low; (2) marine protection should take pre-

cedence if the rate of marine ecosystem decline is high or if the adjacent catchment is rela-

tively intact and has a low rate of vegetation decline; (3) land-based actions are optimal

when the ratio of marine ecosystem expansion to decline is greater than 1:1.4, with terres-

trial restoration typically the most cost-effective action; and (4) land protection should be

prioritised if the catchment is relatively intact but the rate of vegetation decline is high. These
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rules of thumb illustrate how cost-effective conservation outcomes for connected land–

ocean systems can proceed without complex modelling.

Author summary

Many coastal marine ecosystems are threatened by anthropogenic activities, but often, the

best way to restore and protect these important ecosystems is unclear. Conventional wis-

dom suggests that the 2 most effective conservation actions to benefit coastal marine eco-

systems are implementation of marine protected areas or, alternatively, reduction of land-

based threats. Active marine restoration is typically considered a low-priority option, in

part due to high costs and low success rates. But does this conventional wisdom hold up

to closer scrutiny? We developed a model to ask: should we restore or protect, on either

the land or in the ocean, to maximise the extent of coastal marine ecosystems? We based

the model on seagrass meadows and adjacent catchments in Queensland, Australia. Sur-

prisingly, we found that direct, active marine restoration can be the most cost-effective

approach to maximising extent of marine ecosystems over longer (decades-long) time-

scales. There is, however, substantial uncertainty in our understanding of the dynamics of

complex linked land–sea ecosystems. Further, geomorphological and ecological condi-

tions vary geographically. Therefore, we also used the model to investigate how uncer-

tainty in key parameters affects decision-making outcomes. Our results can be used to

guide investment into coastal marine conservation in the absence of complex, region-spe-

cific modelling.

Introduction

Widespread degradation and loss of coastal marine ecosystems has occurred over the previous

centuries and has accelerated in recent decades [1–5]. These changes compromise the delivery

of important ecosystem services to human society [6]. Coastal marine ecosystems pose a par-

ticular challenge to environmental managers because they are exposed to threats occurring

both in the ocean (e.g., overfishing, direct damage) and on land. The conversion of native ter-

restrial vegetation for agriculture, urbanization, and industry increases runoff [7], causing deg-

radation and die-offs of coastal ecosystems such as coral reefs [8] and seagrass meadows [2].

These declines threaten the functional integrity of coastal and marine ecosystems and the ser-

vices they provide, such as food supplies, coastal protection, and climate regulation [9–11].

Consequently, the conservation of coastal species and ecosystems requires a mixture of both

marine and terrestrial conservation actions [12–16].

Conservation prioritisation of marine ecosystems and adjacent landscapes traditionally

focuses on protecting intact habitats, in either marine and or terrestrial realms, from future

degradation [e.g. 17, 18–20] [but see 21]. Ecological restoration is commonly considered a less

preferred management strategy than protection [22], particularly in marine environments,

where restoration costs are high and success rates are low [23]. However, restoration can

deliver better ecological outcomes than protection, depending on existing land uses, conserva-

tion intervention costs, and ecosystem expansion rates [24]. Compared to other actions, resto-

ration is rarely considered [25], and trade-offs between restoration and protection actions

have never been evaluated across complex land–sea systems.

Modelling costs and benefits of land- and ocean-based conservation on marine ecosystems

PLOS Biology | https://doi.org/10.1371/journal.pbio.2001886 September 6, 2017 2 / 22

Funding: The University of Queensland www.uq.

edu.au (grant number UQFEL1717597;

2013002850). Received by MIS, AM, and CJK. The

funder had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript. Science for Nature And People

Partnership (SNAPP) Ridges to Reef Fisheries

Working Group http://snappartnership.net/.

Received by CJK and HP. SNAPP is a collaboration

of The Nature Conservancy, the Wildlife

Conservation Society and the National Center for

Ecological Analysis and Synthesis (NCEAS). The

funder had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript. Natural Sciences and Engineering

Research Council of Canada (NSERC) http://www.

nserc-crsng.gc.ca/ (grant number RGPIN/222932-

2011). Received by AM. The funder had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Australian Research Council http://www.arc.gov.

au/. The authors received support from the ARC

Centre of Excellence for Environmental Decisions

(CEED). The funder had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript. Australian Research

Council http://www.arc.gov.au/ (grant number

FL130100090). Received by HP. The funder had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: MPA, Marine Protected Area.

https://doi.org/10.1371/journal.pbio.2001886
http://www.uq.edu.au
http://www.uq.edu.au
http://snappartnership.net/
http://www.nserc-crsng.gc.ca/
http://www.nserc-crsng.gc.ca/
http://www.arc.gov.au/
http://www.arc.gov.au/
http://www.arc.gov.au/


Comparing the costs of conservation actions, both on land and in the ocean, with the bene-

fits accrued in the marine ecosystem (‘cost-effectiveness’) is at the forefront of conservation

planning for land–sea ecosystems [e.g. 17]. Incorporating exchanges across the land–sea inter-

face is challenging, requiring the integration of data and models across the terrestrial, freshwa-

ter, and marine realms [12–14, 20]. Recent advances have allowed the benefits of terrestrial

actions on marine ecosystems to be estimated [17–20, 26–33], but in practice, land–sea conser-

vation planning has rarely explicitly quantified how the management of terrestrial threats

impacts marine ecosystems. For instance, recent implementations of the ‘Reef 2050 Long-term

Sustainability Plan’ for the Great Barrier Reef and the ‘Chesapeake Bay Total Maximum Daily

Load’ programs aim to minimise sediment, nutrient, and pollutant delivery to the ocean and

assume that marine ecosystems will respond positively [34, 35] but do not predict the effect

size of the marine ecosystem response. As a result, it is not clear that their terrestrial focus will

outperform actions in the marine environment, which have the advantage of directly affecting

the management goal. To compare and prioritise actions across the land–sea interface, we

need to identify the links between (1) the amount of land-based actions required to reduce a

threat on receiving marine environments and (2) the amount of change in the marine ecosys-

tem triggered by such a reduction.

We propose that integrated land–sea planning must compare the cost-effectiveness of 4

broad conservation actions: protect habitat on the land, protect habitat in the ocean, restore

habitat on the land, and restore habitat in the ocean. Here, we develop a repeatable and trans-

ferable approach to determine which of those 4 actions maximises the extent of intact marine

habitat for a given budget and project timeframe (Fig 1). The model extends an existing terres-

trial model [24] across the land–sea interface. It is general in structure and could potentially

apply to any marine system that is affected by sediment runoff and marine-based threats. In

the original terrestrial model [24], the landscape is divided into 4 states describing the condi-

tion of the native vegetation—intact and unprotected, intact and protected, cleared, or restor-

ing. The act of restoring or protecting habitat moves it between these different states. In our

expanded model, we consider the state of habitat in both a landscape and adjacent seascape,

which are connected by sediment runoff from the land into the ocean. Cleared terrestrial

Fig 1. Conceptual diagram of the dynamic land- and sea-scape model used to identify how investment in conservation actions

(restoration or protection) on land or in the ocean affects the extent of marine habitats. The Cleared (C), Available (A), Restoring (R),

and Protected (P) categories on land and ocean indicate habitat area as a proportion of the land- and sea-scape, respectively, such that C

+ A + R + P = 1 and CS + AS + RS + PS = 1. The area of suitable habitat in the seascape changes in each time step as a function of the area of

intact (Available or Protected) land in the landscape, which in turn modifies sediment loads delivered to the ocean.

https://doi.org/10.1371/journal.pbio.2001886.g001
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habitat increases sediment loads, which reduces water clarity in the adjacent ocean. The result-

ing decrease in light reaching the seafloor reduces the amount of habitat suitable for light-

dependent species [13]. We focus on suspended sediments because they are a key driver of

marine ecosystem condition in many inshore areas [2, 8, 36] but acknowledge the importance

of the other components of runoff more broadly, including toxicant and nutrient loads.

Importantly, our model assumes that the marine ecosystem is sensitive to both sediment run-

off [37] and marine-based threats and that there is habitat in appropriate condition for marine

restoration; if these conditions are not met, then approaches targeted towards either land- or

ocean-based threats would be required. The model is spatially implicit, i.e., it is parameterised

by spatial data (see Materials and methods, S1 Text, S1 Table).

We apply this model to a case study of seagrass meadows in Moreton Bay and riparian

areas in adjacent catchments in Queensland, Australia (Fig 2). Seagrass meadows are an excel-

lent test system because they provide a suite of ecosystem services and are strongly influenced

by both land-based processes and direct local impacts in the ocean [2, 38–40]. The catchments

draining into Moreton Bay are heavily modified, with only 20% intact remnant vegetation.

Historical and ongoing land-clearing has significantly increased soil erosion, primarily

through the process of gully erosion [41–42]. Suspended sediment delivery has negatively

impacted marine ecosystems in the region [43–45]. The site is therefore representative of the

wider global challenges posed to marine ecosystems by increased sediment runoff [14, 15, 39].

Fig 2. Study site in Queensland, Australia used to quantify how investment in conservation actions (restoration or

protection) on land or in the ocean affects the extent of marine habitats (seagrass). See Materials and methods for

data sources.

https://doi.org/10.1371/journal.pbio.2001886.g002
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We ultimately aim to identify key factors that determine which broad conservation action

is most effective under different circumstances. Therefore, we use the model output and sensi-

tivity analyses to answer 2 questions. One, which of the 4 conservation actions maximises the

extent of intact seagrass after 30 years? And two, under which conditions would our decision-

making vary? Using the results from this and other studies [24, 37], we propose simple ‘rules

of thumb’ that can help decision makers identify whether restoration or protection, either on

the land or in the ocean, will be the most cost-effective approach to improving the state of

marine ecosystems. These rules of thumb are likely specific to our study system but may be

used as guidelines (or, alternatively, viewed as hypotheses) to inform decision-making in other

regions until models are parametrised for those sites.

Results

Using our dynamic model of seagrass meadows and riparian areas in adjacent catchments in

Southeast Queensland, Australia, we investigated the effect of investment of $50 million (all

costs are in 2015 USD unless otherwise stated) per year over 30 years into each of 4 separate

conservation actions. The model was used to quantify the area of intact seagrass habitat result-

ing from marine restoration, marine protection, terrestrial restoration or terrestrial protection

(see below, Materials and methods and S1 Text, for detailed descriptions). We found that if the

objective is to increase the amount of habitat suitable for (but not necessarily occupied by)

light-sensitive species (in this case, seagrass), then restoration of riparian areas on land is the

most cost-effective strategy (Fig 3A). However, this will not necessarily maximise the area of

Fig 3. Effects of $50 million per year investment in each of 4 conservation actions, restoration or protection on land or in the

ocean, on marine ecosystems. (A) area of suitable (but not necessarily occupied) marine habitat; (B) area of intact marine habitat; (C)

area of protected intact marine habitat; (D) annual sediment load. Y-axis is proportional to values which would have been achieved with no

investment. Lines have varying thicknesses so that overlapping lines are visible.

https://doi.org/10.1371/journal.pbio.2001886.g003
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occupied (‘intact’) marine habitat immediately, as that depends on how fast the marine ecosys-

tem can recover and expand into habitat which was previously unsuitable due to low light

availability; there is substantial uncertainty in this parameter (S2 Table). Controversially, we

find that the most cost-effective way to maximise the extent of intact marine habitat over

decadal timescales is to directly restore the marine ecosystem, despite the higher cost [23] (Fig

3B). Obviously, this conclusion depends on the availability of suitable, unoccupied habitat. If

all marine habitat is unsuitable for marine restoration due to low water clarity, then revegeta-

tion of riparian vegetation to minimise sedimentation stress is required [46]. Below, we discuss

the costs and benefits of each specific conservation action in turn for our study system and

then examine how these decisions may vary for other systems.

Marine restoration was defined as planting seagrass transplants into habitat that is suitable

for, but not presently occupied by, seagrass and was the most cost-effective action for achieving

the highest coverage of seagrass habitat after 30 years (Fig 3B). Our modelling assumes that:

(1) it takes 3 years for seagrass transplants to grow, fill in meadow gaps, and become a ‘healthy’,

self-sustaining meadow [47]; (2) it costs $418,000 per ha [23] to source, transplant, and moni-

tor the seagrass; (3) restoration has a high failure rate (62%) [23]; and (4) a maximum of 0.1%

of the existing meadow can be in a restoring state in any year. Surprisingly, despite an expected

cost of over $1 million per ha for successful restoration, restoring seagrass is a better strategy

to maximise seagrass coverage than marine protection or land-based actions. Larger areas of

intact seagrass are achieved if the area of seagrass that is in a restoring state in any year is less

conservative (e.g., 1% [S1 Fig]). Our results imply that, given sufficient funding, effort, and

suitable habitat, large-scale marine restoration projects could achieve significant gains in eco-

system extent, as recently assessed [46].

Marine protection was defined as the installation of environmentally friendly moorings,

which avoid seafloor damage caused by traditional moorings and minimise the effects of drag-

ging anchor chains [48]. In other regions, where trawling or dredging are the main threats to

seagrass, the implementation of Marine Protected Areas (MPAs), which minimise seafloor

damage by excluding destructive activities, may be a more appropriate conservation action

[49]. Our study area is a Marine Park where seafloor destructive fishing techniques are for-

bidden and environmentally friendly moorings are the approach currently used to increase

seagrass protection [50]. Our model predicts that marine protection yields the fastest initial

increase and greatest total area of protected seagrass habitat (Fig 3C), because it is relatively

cheap compared to the other actions. Marine protection increased the overall area of seagrass

through time by a small amount (Fig 3B), because seagrass habitat decline rates are propor-

tional to the amount of unprotected habitat. At $131,000 per ha, the 8.8% of seagrass habitat

that is suitable for protection in the study region (S1 Text) can be protected in the first year so

that, over decadal scales, the impact of marine protection on seagrass habitat area is limited.

Land restoration was defined as using revegetation and other actions in the riparian zone to

reduce erosion in riverine locations where native vegetation had been previously cleared, at a

cost of $17,310 per ha and with a probability of success of 50% (personal communication, J.

O’Mara, SEQ Catchments). The resulting reduction in runoff (Fig 3D) increases the area of suit-

able marine habitat (Fig 3A), as the increased water clarity improves light availability on the sea-

floor. Our model advances and operationalises our understanding of the impacts of sediment

input on light-dependent benthic marine species by factoring in an ‘action–response curve’

[51] describing the relationship between sediment loads and illuminated seafloor area that is

suitable for light-dependent species (S1 Text). This relationship was generated using modelled

daily sediment loads, monthly observed water clarity, and a species distribution model of sea-

grass habitat (S1 Text) [52] and is applicable in geomorphic and ecological contexts where sedi-

ment runoff impacts marine ecosystems [37]. Our results show that land restoration only offers

Modelling costs and benefits of land- and ocean-based conservation on marine ecosystems
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small increases in seagrass coverage (Fig 3B) because there is a substantial 10-year time lag

between restoration actions and the mitigation of sediment erosion and because we estimate

that seagrass colonises newly available areas slowly (1.13% per year, [53]) (see S1 Text). Varying

this parameter changes the results substantially, which we explore further below.

Land protection was defined as purchasing privately held land containing intact native veg-

etation and designating it as a nature reserve, at a relatively low cost of $3,530 per ha (S1 Text).

Land protection only provides second-order benefits to marine habitat (Fig 3D): It reduces ter-

restrial habitat decline rates, leading to relatively less erosion and less sediment within the riv-

ers. It therefore had relatively little impact on any metric of seagrass habitat (Fig 3A, 3B and

3C). Land protection therefore offers little benefit to catchments that are already highly

degraded and where riparian habitat decline rates are low, such as in our case study.

While the model presented here can in theory be applied to any sensitive marine ecosystem

affected by both land- and ocean-based threats, it is not straightforward to source the data

needed for accurate parameterisation. We therefore varied key model parameters to identify

contexts where the optimal conservation strategy may differ from our results, including rates

of marine ecosystem decline and expansion, rates of terrestrial ecosystem decline, and the

magnitude of previous land clearing. For instance, we can find the optimal investment strategy

for landscapes with extensive historic and ongoing land clearing, such as parts of Malaysia and

Indonesia [54], or high magnitudes of degradation but lower rates of ongoing land clearing,

such as our study system [41] and Mediterranean countries including Albania, Algeria, and

Bosnia [55]. Similarly, we can identify optimal approaches to marine ecosystems with different

rates of habitat decline and expansion. For instance, kelp beds can undergo rapid declines yet

can also recover rapidly when conditions are suitable [56]. In contrast, Posidonia oceanica sea-

grass meadows in some Mediterranean regions, such as Corsica, are declining slowly [57] but

also have slow expansion rates [58].

We discovered that the relative rates of decline and expansion in the marine ecosystem, as

well as the rate and magnitude of degradation on land, are key factors in our decision-making

(See Fig 4, S2, S3 and S4 Figs). When marine habitat can recover more quickly than the rate of

marine habitat decline, then land-based conservation can yield optimal results. Specifically, if

the ratio of marine habitat expansion to decline rates is greater than approximately 1:1.4 (ratio

of x- and y-axis values indicated by red dashed line in Fig 4A), then actions on land typically

deliver the greatest cost-effectiveness (Fig 4, A-3, B-3, D-3, but see C-3 below). In that case,

land restoration is the best option (Fig 4A and 4B, A-3, B-3), unless the catchment is relatively

intact and the rate of land decline is high, in which case land protection is most cost-effective

(Fig 4D, D-3). If the catchment is relatively intact with a low rate of loss, then marine protec-

tion is optimal (Fig 4C, C-3). Conversely, if marine habitat decline rates are greater than

expansion rates, we should act in the ocean, essentially regardless of what occurs on land. Spe-

cifically, if the ratio between expansion and decline rates for the marine ecosystem is less than

approximately 1:1.4 (Fig 4, A-1, A-2, B-1, B-2, C-1, C-2, D-1, D-2), then we should act in the

ocean. If the rates of marine ecosystem decline and expansion are similar and relatively low

(less than 1% per year), then restoration in the ocean is the most cost-effective strategy (Fig 4,

A-1, B-1, C-1, D-1). Marine protection is the most cost-effective action for our system when

rates of seagrass decline outside MPAs are high (Fig 4, A-2, B-2, C-2, D-2).

The findings from our analyses are factored into a generic decision-making protocol for

conservation investment in marine ecosystems influenced by both land- and ocean-based

threats (Fig 5). A number of conditions must be met for land-based stressors to critically

impact marine ecosystems [37]. In addition to the assumptions outlined previously, the near-

shore marine region must be within the impact radius of 1 or more rivers and be in an

enclosed or shallow region, and land uses within the catchments must have increased the

Modelling costs and benefits of land- and ocean-based conservation on marine ecosystems
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erosion of sediments or nutrients on a large scale [37] (Fig 5). If these criteria are met, then the

results from our model can be used as a first step to guide decision-making, without the need

for complex modelling.

Discussion

The conservation dynamics of coastal ecosystems are driven by a combination of terrestrial

and marine drivers. Efficient conservation investment will require decision-support tools that

are repeatable, transparent, and that quantitatively describe the connections between the land-

and sea-scape. The optimisation model we describe here provides a robust and extendable

method to support these decisions.

Our study drew an unexpected conclusion: Despite high costs and low success rates, direct

restoration of marine ecosystems may be the most cost-effective method to maximise marine

habitat extent over decadal timescales. If marine restoration is not likely to succeed due to

poor water quality, lack of suitable substrate, or other factors, then this conclusion will clearly

Fig 4. Impact of $50 million per year investment in land- or ocean-based conservation actions on marine ecosystems affected by land-

and ocean- based impacts after 30 years. Panels A–D give results for 4 different ecological contexts for the catchment and marine ecosystems.

Two parameters representing the landscape are varied: percentage of the catchment that is intact (e.g., % remnant vegetation) and the background

rate of decline of habitats on land (percent per year). X- and Y-axes indicate the rate of expansion (recovery) and decline (percent per year) of the

marine ecosystem. In A, ‘A-1’ is thought to best represent the study system (marine restoration is predicted to be the most cost-effective action),

whereas ‘A-2’ and ‘A-3’ highlight contexts where marine protection and terrestrial restoration would be the most cost-effective actions, respectively.

Letter–number pairs are used to guide Fig 5.

https://doi.org/10.1371/journal.pbio.2001886.g004
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not hold true. Nonetheless, we propose that a paradigm shift is occurring, whereby restoration

is being recognised in particular contexts as an important option for the recovery of biodiver-

sity [24, 59]. This is supported by recent findings that marine restoration is more likely to suc-

ceed if it is conducted on larger spatial scales [46] and if care is taken to select appropriate sites

and techniques [23].

Our study highlights several factors that are essential elements in determining the most

cost-effective management action but which are not often present in decision-support tools.

These include the effects of time lags and the complex, nonlinear relationship between activi-

ties on the land and benefits in the sea. Land-based impacts are key drivers of seagrass extent

and condition, suggesting that terrestrial protection should be a high-priority conservation

action [40]. However, from a management perspective, it is essential to compare the outcomes

of actions against a specific objective and timeframe and to factor in economic constraints.

Our findings align broadly with those of Klein et al. [60], who report that the cost-effectiveness

of marine conservation was almost always higher than that of terrestrial conservation within

any ecoregion in the Coral Triangle. Our findings differ from those of Gilby et al. [21], whose

findings support the more commonly held view that the most effective actions to benefit

inshore coral reefs in Moreton Bay, Australia, would be expansion of the marine reserve net-

work and reductions in sediment inputs from land, without considering variation in the costs

of management actions or time lags. Other studies have focused on quantifying the effects of

land-based impacts or protection on marine ecosystems but have not compared the results to

those obtained from protection from ocean-based threats or have not quantified the effects of

restoration in either marine or terrestrial realms [18, 19, 31].

Fig 5. Flow chart of decision-making process for whether to take actions on land or in the ocean to best benefit marine

ecosystems. Guidelines are based on [24, 37] and the modelling results in Fig 4 obtained using a dynamic landscape model.

https://doi.org/10.1371/journal.pbio.2001886.g005
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In reality, a combination of approaches—on land and in the ocean—will be required to

achieve ecological improvements in many marine regions. For instance, land-based actions

would be required first if there was no suitable marine habitat available for restoration (e.g.,

Fig 5). For our study system, all seagrass that is suitable for protection using environmentally

friendly moorings could be achieved using the budget in the first year. Similarly, the budget

for marine restoration was not completely allocated in a given year when we assume that only

small areas of marine restoration can be achieved at one time. This means that marine protec-

tion or restoration could be implemented first and that the budget could be used for other

strategies concurrently or in later years. In practice, budget and regulatory agencies often do

not span the land–sea interface, which means land- and ocean-based actions will likely proceed

independently of one another.

Our model predicts the area of seagrass habitat change resulting from management actions

on either side of the land–sea interface. The modelling framework provides a substantial

advance in our ability to quantify the costs and benefits associated with conservation actions

on land and in the ocean. In the present study, our objective was to maximise the extent of sea-

grass, but, there are multiple benefits from catchment restoration that are unrelated to marine

ecosystems, such as enhanced freshwater biodiversity, reduced drinking water treatment costs,

and increased public amenity. If we instead aim to maximise the delivery of ecosystem services

provided by both seagrass and riparian habitats, which are worth $26,226 per ha per year and

$27,021 per ha per year in 2007 USD, respectively, based on [61], then the optimal decision

would always be to restore the catchment (S1 Text, S5 Fig). Although we used habitat area as a

proxy for the delivery of ecosystem functions and services by a habitat, metrics of habitat con-

dition (e.g., cover, biomass, species composition) could be explored in the future. The ultimate

aim of this approach is to identify the most cost-effective ways of maximising ecosystem func-

tions and services (e.g., food or habitat for other species, water filtration, and wave

attenuation).

There are a number of uncertainties and assumptions that affect model outputs and inter-

pretation. First, we quantify the seagrass decline rate from satellite imagery in a clear water

region [62], which is likely less impacted than nearshore areas and therefore may underrepre-

sent the decline rate. Second, the rates at which marine organisms can colonise new areas vary

among species and regions (S2 Table), are scale-dependent, and the factors influencing expan-

sion rates are not well understood. Low seagrass expansion rates may indicate bistability of sea-

grass and base substratum systems, where feedback mechanisms hinder the re-establishment

of vegetation [63]. High seagrass expansion rates following improvement of environmental

conditions can occur in some contexts [64], typically when seagrass seed banks are present

[65]. The influence of rates of seagrass decline and expansion are explored in the sensitivity

analyses. Predicting the area that is suitable for restoration in marine habitats requires a habitat

distribution model, the results of which contain several uncertainties, including whether all

relevant environmental variables have been included in the model, whether the species is in

equilibrium with environmental variables, and which method is used to select the threshold

value delineating species presence and absence [52]. The effectiveness of catchment restoration

is also uncertain; erosion may in fact temporarily increase following riparian restoration before

eventually diminishing [66], although our uncertainty in the parameter representing time lags

in restoration is not likely to impact whether we should be acting on land or in the ocean (S2

Fig). There is large variability in the costs and success rates of restoration [23], yet we do not

find these to be the most important factors affecting whether actions should occur on land or

in the ocean (S3 Fig). Furthermore, the costs and success rates of conservation actions will

vary across the land- and sea-scape; when costs vary spatially, managers can target lower-cost

areas preferentially, which reduces the average cost of management activities. Lastly, our
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analysis does not factor in the impact of nutrient runoff, pesticides and herbicides, climatic

variability, extreme events, or climate change, the impacts of which are extremely challenging

to predict [67] and therefore beyond the scope of our work but which are important areas of

future research.

Further uncertainty lies in the impacts of sediment runoff from the catchment on marine

habitat dynamics. Previous studies linking land and the ocean have used simple distance-

based relationships between sediment load and marine habitat metrics, such as ‘relative condi-

tion’ of coral reefs [e.g., 17, 31]. Advancing this approach, Tulloch et al. [19] used a sediment

plume model that accounted for depth, bathymetry, currents, and particle size of modelled

sediment runoff [28] to quantify reduction in relative coral condition due to sediment. Here,

we apply a model that uses spatial empirical time series data of water clarity to estimate habitat

suitability for light-dependent species; it would be interesting to compare how results vary

based on the different approaches. Our approach is developed for seagrass but is applicable to

other benthic marine habitats that are influenced by light availability, such as algae and coral

reefs, although the link between sediment loads and the marine ecosystem would need to be

modified to represent the dynamics of other ecosystems. We also tested how sensitive our

model was to the functional form of the relationship between sediment loads and suitable

marine habitat area by running the model with a separate linear relationship between sediment

loads and suitable marine habitat area (S1 Text). Surprisingly, while the amount of seagrass

habitat that can be achieved by each conservation action varies depending on which relation-

ship is used, the optimal management action does not (S4 and S6 Figs). This is a relatively

well-known finding in environmental decision theory, where uncertainties in the input param-

eters alter predictions but do not change the relative priority of management options [68, 69].

Finally, reductions in sediment supplies, such as those resulting from the construction of

dams, negatively influence marine ecosystems such as mangroves [70]; discrepancies in eco-

logical impacts of increases versus decreases in sediment supplies to coasts is a challenge for

managers.

Despite structural and parametric uncertainty in the model, a quantitative optimisation

framework that explicitly links conservation across the land–ocean interface provides a major

conceptual advance. Specifically, it provides a quantifiable and repeatable structure for under-

standing the costs and benefits of taking different conservation actions and a transparent justi-

fication for acting either on the land or in the ocean. Thus, not only are we able to argue that

marine conservation actions deliver the best outcomes for marine ecosystems, but this frame-

work also offers a mechanistic explanation for why land-based management may be inferior:

Multiple time lags separate terrestrial restoration projects from marine conservation outcomes.

Although there are documented instances of land-based actions delivering measurable

improvements in coastal water clarity and marine habitat extent [53], these have only material-

ised following delays in the effect of land-based management on runoff, further delays in the

improvement of coastal water clarity, and final delays in the expansion of those marine habi-

tats. Following decades or centuries of land- and ocean-based impacts on marine ecosystems

globally [1], the challenge now is to reverse the resultant declines. Using transparent, transfer-

able, and cost-effective approaches is critical to this process.

Materials and methods

Study system

The study was parameterised for seagrass meadows in Moreton Bay, Queensland, Australia,

and adjacent riparian areas below dams, which are considered the primary sources of sedi-

ments to the ocean in the region [42] (Lat: -27.0–28.3; Lon: 151.9–153.4) (Fig 2). Moreton Bay

Modelling costs and benefits of land- and ocean-based conservation on marine ecosystems

PLOS Biology | https://doi.org/10.1371/journal.pbio.2001886 September 6, 2017 11 / 22

https://doi.org/10.1371/journal.pbio.2001886


is a shallow coastal embayment adjacent to Brisbane, the capital city of Queensland. It is home

to 18,000 ha of seagrass comprised of 7 species, which provide grazing areas for iconic, vulner-

able, and threatened species such as green sea turtles, dugongs, and migratory shorebirds.

Riparian areas in the catchment have been heavily cleared since European colonisation in the

mid-1800s, mainly for agriculture and urbanisation, causing ongoing increased sedimentation

in riverways and marine environments [41–42, 45]. Local direct threats to seagrass are mainly

from physical damage from anchoring and mooring [71].

Model—Basic framework

We extended the dynamic landscape modelling methodology of [24] to apply to both a sea-

scape and adjacent landscape, which are connected together by sediment runoff from

degraded landscapes into the ocean (Fig 1). Cleared terrestrial habitat increases sediment

loads, which reduces water clarity in the adjacent ocean. The resulting decrease in light reach-

ing the seafloor reduces the area suitable for light-dependent species. Model parameters were

obtained from a variety of sources, including raster or shapefile spatial datasets (see below and

S1 Table), but the dynamic landscape model is not spatially explicit. See below for additional

details.

Initial conditions

Each area of land at time t is classified as being in 1 of 4 states: intact and unprotected, A(t);
intact and protected, P(t); degraded or cleared, C(t); or undergoing restoration, R(t), with the

total amount in each state described as a proportion of the landscape, and with A(t) + P(t) + C
(t) + R(t) = 1 at all times (Fig 1). The landscape area is constrained to riparian habitats, because

those are the major determinant of sediment input to the ocean in Queensland and the pri-

mary target of current restoration projects [42, 72, 73]. The seascape is split into suitable habi-

tat (sufficient light, soft sediments, and suitable wave energy, based on [52]) and unsuitable

(US) habitat. While the total area is constant, the amount of each habitat changes in each time

step based on sediment loads. The area that is suitable for seagrass is divided into the same cat-

egories as on land, but denoted by the subscript S, with AS(t) + PS(t) + CS(t) + RS(t) = 1 at all

times. These categories can be considered available and suitable, protected and suitable, etc.

When an increase in sediment causes a decrease in suitable habitat, that decrease is taken in

the appropriate proportions from each category of suitable habitat, which then becomes

unsuitable. When sediment decreases allow for an increase in suitable habitat, this newly suit-

able habitat is added to the cleared and suitable state (CS(t)). Transitions between habitat cate-

gories are determined by 4 rates (degradation and revegetation on land and in the ocean) and

6 processes (restoration and protection on land and in the ocean, expansion in the ocean, and

change in suitable habitat area in the ocean), which are described below.

Relationship between terrestrial and marine habitat state

A major challenge to integrated land–sea planning is quantifying the relationship between

actions undertaken on land and their effects on the marine environment. For seagrass mead-

ows in Moreton Bay, this relationship is primarily defined by the effects of terrestrial sediment

runoff on the amount of illuminated seafloor available in the ocean. We used an ‘action–

response’ curve [sensu 51] describing the relationship between sediment loads and seagrass-

suitable habitat area calculated in (S1 Text), which in turn uses the habitat distribution model

published in [52], monthly water quality data, and monthly sediment load data (S1 Text, S10

Data). This relationship predicts the area of habitat that is suitable for seagrass in each year

based on the sediment loads delivered from the catchment in the previous year. This approach
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provides a simplification of a complex system, whereby sediment distribution and resuspen-

sion are affected by sediment composition, rainfall, and oceanographic processes, among

other factors. Factoring in spatially explicit hydrodynamic modelling of sediment distribution

would be an important next step to this research.

Changes in area of seagrass suitable habitat

Transitions in the area of suitable and unsuitable marine habitat are determined by the amount

of intact land (A + P) in the previous time step, which affects the quantity of sediment deliv-

ered to the ocean and the area of habitat available for light-dependent marine species, like sea-

grass. If the area of suitable habitat is greater in t than in t−1, then the newly suitable habitat

area is added to the Cleared (Cs) fraction, since this habitat would not contain seagrass at the

outset. If the area of suitable habitat decreases in t compared to t−1, then habitat is removed

proportionally from AS, PS, CS, and RS.

Conservation actions

Information on the definitions of the 4 conservation actions (marine restoration, marine pro-

tection, land restoration, and land protection), as well as on their costs and probabilities of suc-

cess, are given in the Results, S1 Text and S1 Table.

Rates, processes, and initial conditions

Here, we provide a summary of the model parameters describing the rates, processes, and ini-

tial conditions. Further information is given in S1 Text and S1 Table.

Sediment loads. At present, an average of 280,000 tonnes of sediment are delivered to

Moreton Bay each year [74] from a catchment containing 20% intact riparian areas [42]. Pre-

European colonisation, the annual sediment load was approximately 100,000 tonnes [75].

Based on these values and a linear relationship between the percent of intact riparian areas and

sediment load, we estimated that the average yearly sediment load would be 350,000 tonnes if

the catchment were completely cleared. This does not account for temporal variation in sedi-

ment delivery driven by climate change and environmental stochasticity, which is an impor-

tant area of future research.

Habitat area in each state. Initial conditions for the area of cleared and available riparian

and seagrass habitats and the area of marine habitat unsuitable for seagrass were derived from

[42, 52, 76, 77]. The area of protected riparian habitats was derived from [76]. There are cur-

rently over 200 environmentally friendly moorings in Moreton Bay protecting an estimate 20

ha of seagrass. We assumed that none of the seagrass or riparian habitats were in restoring

condition in the initial timestep. The total area of seagrass which could be in restoring condi-

tion at any time was limited to 0.1% of the existing meadow to reflect logistical limitations on

our ability to restore seagrass. The upper limit on the area of protected seagrass habitat was

8.8%, because of the 33,520 ha suitable for seagrass in Moreton Bay, 2,966 ha are appropriate

for moorings (based on results in [52]).

Transition rates. The current rates of decline for riparian and seagrass habitats were

0.75% per year (derived from [76, 78, 81] using GIS analysis) and 0.5% per year [62], respec-

tively. The rates of revegetation (the time lags before newly restored habitat become intact hab-

itat) were 3 and 10 years for seagrass and riparian habitats, respectively [47, 82]. In reality,

sediment loads take variable lengths of time to decline and, in some instances, increase follow-

ing restoration [66, 83]. The rate of expansion of seagrass habitats was 1.13% per year, based

on the observed rate of expansion of seagrass in Tampa Bay, Florida, over 22 years, achieved

by reductions in nitrogen from land [53]. Tampa Bay has a similar climate and size to Moreton
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Bay, and we therefore expect that seagrass in Moreton Bay could respond similarly to a reduc-

tion in land-based impact. However, there is considerable uncertainty in this parameter (S2

Table), and this estimate is conservative. Accordingly, we examine how our decision-making

varies under various estimates for rate of seagrass expansion (See Fig 4).

Scenarios

We run the model for 2 scenarios. For both scenarios, we run 4 allocation simulations,

where the budget is allocated to each of the actions in isolation. Each simulation expends a

budget of $50 million per year over 30 years in 0.1-year time intervals, for a total of $1.5 bil-

lion (not accounting for inflation and discount rates). By comparison, it will cost $5–$10 bil-

lion over 10 years to mitigate sedimentation issues in the Great Barrier Reef catchments

[84]. The time horizon of 30 years aligns with other management policies aimed at mitigat-

ing sediment issues, e.g., the ‘Reef 2050 Long-term Sustainability Plan’ for the Great Barrier

Reef [34]. All results are standardised to the outcomes achieved with no investment. For the

first scenario, we invest the budget according to the parameters that we believe best describe

the system. For the second scenario, we run a sensitivity analysis to examine uncertainty or

variability in some of the key parameters identified in the model development process. Spe-

cifically, the model is run for rates of marine ecosystem decline and expansion varying by

0%–7% and 0%–10% per year, respectively. This approach is replicated for 4 different eco-

logical and resource use contexts, encompassing historic land clearing extent = 20 or 80%

and rate of land clearing = 0.75 or 7% per year. Further sensitivity analyses on the effects of

time lags in restoration success, costs of actions, and the maximum area suitable for marine

restoration or protection are provided in the Supporting Information and are outlined in

S3 Table.

Model equations

At the beginning of each time step, the area of suitable marine habitat is calculated according

to the area of intact (A + P) habitat on land. Next, changes in land and ocean habitat in each

time step Δt are modelled as described by the following equations, where B is the annual bud-

get, S is the area of marine habitat, and L is the area of land habitat. Subscripts to S and L
describe the proportional areas of different habitat categories transitioning between fractions.

A representative model output describing the land–sea dynamics through time is provided in

S7 Fig, and additional detail is given in S1 Text.

Marine restoration. The area of marine habitat transitioning from the cleared (CS(t)) to

the restoring fraction (RS(t)) at time t as a result of restoration (SR(t)) is:

SR ¼ Dt:FSR:B=CSR

where FSR is the feasibility (percentage) of marine restoration, and CSR is the per unit cost of

marine restoration.

Marine revegetation. The area of marine habitat transitioning from the restoring (RS(t))
to the protected fraction (PS(t)) due to revegetation (SV) is:

SV ¼ Dt:gS:RSðtÞ

where gs is the proportional marine revegetation rate in percent per year and RS(t) is the pro-

portional area of marine habitat that has undergone restoration actions.
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Marine protection. The area of marine habitat transitioning from the available AS(t) to the

protected (PS(t)) fraction (SP) is:

SP ¼ Dt:B=CSP

where CSP is the per unit cost of marine protection.

Marine degradation. The area of marine habitat transitioning from the available AS(t) to

the cleared CS(t) fraction (SD) is:

SD ¼ Dt:ds:ASðtÞ

where ds is the proportional rate of marine habitat degradation in percent per year and AS(t) is

the proportional area of intact unprotected marine habitat at time t.
Marine expansion. The area of marine habitat transitioning from the cleared (Cs(t)) to

the available (As(t)) fraction at time t due to expansion into suitable habitat (natural recovery,

SE) is:

SE ¼ dt:gs:ðAsðtÞ þ PsðtÞÞ

where gs is the proportional expansion rate of seagrass in percent per year, AS(t) is the propor-

tional area of intact unprotected marine habitat at time t, and PS(t) is the proportional area of

protected seagrass at time t. Note that SE is limited by the amount of cleared marine habitat.

Land restoration. The area of land changing from the cleared (C(t)) to the restoring (R(t))
fraction at time t as a result of restoration actions (LR) is:

LR ¼ Dt:FLR:B=CLR

where FLR is the feasibility (percentage) of land restoration and CLR is the cost of land

restoration.

Land revegetation. The area of land transitioning from the restoring (R(t)) to the pro-

tected (P(t)) fraction due to revegetation (LV) is:

LV ¼ Dt:gL:RðtÞ

where gL is the proportional revegetation rate of land in percent per year and R(t) is the pro-

portional area of restoring habitat on land at time t.
Land protection. The area of riparian habitat transitioning from the available A(t) to pro-

tected PS(t) fraction (LP) is:

LP ¼ Dt:B=CP

where CP is the cost of land protection.

Land degradation. The area of land transitioning from the available A(t) to the cleared C
(t) fraction due to degradation on land (LD) is:

LD ¼ Dt:dl:AðtÞ

where dl is the proportional rate of land degradation in percent per year and A(t) is the propor-

tional area of intact land at time t.
In each time step, after accounting for changes in marine habitat areas caused by sedimen-

tation from the previous time step, the habitat areas described above were added or subtracted

from the fractions within the land- and sea-scape to achieve the new land- and sea-scape for

that time step according to the following equations:
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Transitions in the sea:

RSðtÞ ¼ RSðt� 1Þ þ SR � SV

CSðtÞ ¼ CSðt� 1Þ � SR þ SD � SE

PSðtÞ ¼ PSðt� 1Þ þ SV þ SP

ASðtÞ ¼ SSðt� 1Þ � SP � SD þ SE

Transitions on land:

RðtÞ ¼ Rðt� 1Þ þ LR � LV

CðtÞ ¼ Cðt� 1Þ � LR þ LD

PðtÞ ¼ Pðt� 1Þ þ LV þ LP

AðtÞ ¼ Sðt� 1Þ � LP � LD

Supporting information

S1 Fig. Sensitivity analysis. Intact seagrass area obtained using a cap of (A) 0.1% and (B) 1%

of the existing seagrass meadows which may be in “restoring” condition in a given year.

(TIF)

S2 Fig. Sensitivity analysis. Effect of the rate of revegetation of seagrass and riparian habitats

following restoration actions on the optimal conservation decision after 30 years. Results are

reported for two rates of seagrass expansion: A) 1% yr-1; and B) 5% yr-1.

(TIF)

S3 Fig. Sensitivity analysis. Effect of the costs of seagrass and riparian restoration on the opti-

mal conservation decision after 30 years. Results are reported for two rates of seagrass expan-

sion: A) 1.13% yr-1; and B) 5% yr-1.

(TIF)

S4 Fig. Sensitivity analysis. Effect of seagrass expansion and decline rates on the (A,B) optimal

action, and (C,D) relative area of seagrass habitat, compared to a no investment strategy, after

30 years. Two functional relationships between sediment load and habitat area were used: (A,

C) linear relationship; and (B,D) convex relationship. The convex relationship was generated

using a habitat distribution model and time varying sediment loads (1). The linear relationship

was derived using a linear approximation instead of a polynomial fit.

(TIF)

S5 Fig. Sensitivity analysis. Effect of seagrass decline and expansion rates on the optimal con-

servation strategy if the objective is to maximise the value of ecosystem services returned by

both seagrass and riparian habitats over a 30 year investment period.

(TIF)

S6 Fig. Sensitivity analysis. Results obtained using a linear relationship between sediment

load and seagrass area, compared to a convex relationship used in Fig 3. Areas of A) habitat

Modelling costs and benefits of land- and ocean-based conservation on marine ecosystems

PLOS Biology | https://doi.org/10.1371/journal.pbio.2001886 September 6, 2017 16 / 22

http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2001886.s001
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2001886.s002
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2001886.s003
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2001886.s004
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2001886.s005
http://journals.plos.org/plosbiology/article/asset?unique&id=info:doi/10.1371/journal.pbio.2001886.s006
https://doi.org/10.1371/journal.pbio.2001886


suitable for seagrass; B) protected seagrass; C) intact seagrass; and D) tons per year of sediment

run-off. Values are standardised to the values achieved with no investment.

(TIF)

S7 Fig. Model dynamics. Dynamics of the land- and sea-scape model of seagrass meadows

(ocean) and riparian habitats (land) over 30 years based on the actions of restoration or protec-

tion in both systems.

(TIF)

S1 Table. Model parameters. Model parameters used to assess the cost effectiveness of conser-

vation actions (restoration or protection) taken on land or sea to maximize extent of marine

habitat (seagrass) in Moreton Bay, Southeast Queensland, Australia. Justification for the para-

meterisation is provided in the supplemental methods.

(XLSX)

S2 Table. Seagrass expansion rates. Studies from which estimates of areal expansion of sea-

grass beds were obtained. �: study measured gap size.

(XLSX)

S3 Table. Summary of sensitivity analyses. Table outlining sensitivity analyses.

(XLSX)

S1 Text. Supplementary methods.

(DOCX)

S1 Data. Data used to generate Fig 3.

(XLS)

S2 Data. Data used to generate Fig 4.

(XLS)

S3 Data. Data used to generate S1 Fig. Data used to generate S1 Fig panel B. Data for S1 Fig

panel A are found in in S1 Data.

(XLS)

S4 Data. Data used to generate S2 Fig.

(XLS)

S5 Data. Data used to generate S3 Fig.

(XLS)

S6 Data. Data used to generate S4 Fig.

(XLS)

S7 Data. Data used to generate S5 Fig.

(XLS)

S8 Data. Data used to generate S6 Fig.

(XLS)

S9 Data. Data used to generate S7 Fig.

(XLS)

S10 Data. Total suspended sediment (TSS) data output from the Source model of South-

east Queensland, Australia.

(XLSX)
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