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Abstract

Web 2.0 technology has changed the way users use the web. In Web

2.0, users can create their own data and upload to the web. The new web

technology promotes the evolution of social media applications built on Web

2.0. Social media allow the creation and exchange of user-generated content.

One main type of social media is photo-sharing websites where the main

objective is the sharing of photo media content between users. Through these

websites users store and manage their photos, and share and communicate

with friends, families and colleagues.

The development of mobile devices facilitates people’s easy usage of the

Internet. This has lead to dramatic growth in the number of user-generated

photos in the website. This massive collection of photo data may enclose

people’s movement behaviours, which are useful to domain experts and areas

such as traffic management and tourism. However, this large and complex

dataset requires advanced techniques to extract the hidden useful knowledge

from the big data.

Some previous studies have been conducted, and various approaches have

been proposed to extract people’s movement behaviours from online geo-

tagged photos. These studies are mainly about three topics. The first topic

is to reveal the spatial behaviours of people that the approaches detect the

spatial locations that people prefer to visit (Kisilevich, Mansmann, and Keim

2010; Lee, Cai, and Lee 2013). The second topic is to find out the spatial

viii



place association rules that determine the sets of places visited together in

people’s movements. The third topic is to discover people’s dynamic spatio-

temporal movement behaviours including the spatio-temporal traffic flow (Gi-

rardin et al. 2008b) and frequent spatio-temporal movement patterns (Zheng,

Zha, and Chua 2012; Cai et al. 2014; Bermingham and Lee 2014).

However, previous approaches lack consideration of the additional aspa-

tial semantics information of trajectories. They are traditional geometric-

feature analyses. The main drawback of previous methods is that their

result patterns contain only pure geometric data, without meaningful se-

mantics information about the mobility. Most applications analyses require

complementing trajectory with additional information from the application

context. The contextual information provides useful knowledge about mov-

ing behaviours with richer and more meaningful semantic information and

the semantic-level patterns.

This thesis aims to develop a systematic framework for extraction of peo-

ple’s movement patterns with meaningful and understandable semantics in-

formation. We add the aspatial semantics annotations to trajectories and

analyse trajectories with spatial, temporal and aspatial features together.

We aim to find the semantics-enhanced movement patterns, including seman-

tic sequential patterns, semantic common patterns and semantic trajectory

patterns. Finally, this thesis also aims to build an itinerary recommender

system based on the extracted trajectory patterns.

In this thesis, we propose a systematic framework for discovery of people’s

semantic mobility patterns from geotagged photos. The framework has four

main functions for extraction of the three semantic patterns and for build-

ing the recommender system, respectively. At the first step, the framework

builds spatio-temporal trajectory data from the geotagged photos. Then, we

add background geographic information, place type annotation and multiple

environmental contextual data to the raw trajectories to generate people’s

semantic trajectories.
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From the semantic trajectories, the framework’s first main function is to

find out the frequent semantic sequential patterns. This thesis proposes a

sequential pattern mining method to extract semantic sequential patterns,

which are sequences of stops that frequently occur in people’s trajectories.

This method can deal with multi-dimensional semantic trajectories. The ex-

tracted groups of patterns include not only the basic patterns, which contain

geographic place category information only, but also the multi-dimensional

semantic patterns, which are associated with flexible combinations of fre-

quent environmental contextual information.

The framework’s second main function is to reveal the semantic common

patterns. This thesis proposes a semantic trajectory clustering approach to

find semantic common patterns in the semantic trajectories. The common

pattern shows the common track drawn from many people having similar

trajectories. A distance function is designed and proposed for the multi-

dimensional semantic trajectories.

The third main function of the framework is to extract the semantic tra-

jectory patterns. This thesis presents a semantic trajectory pattern mining

method to find frequent trajectory patterns from semantic trajectories. A

semantic trajectory pattern demonstrates a frequently visited sequence of

stops with typical transition time information. The transition time shows

the time interval between two stops that indicates temporal behaviour of

people’s mobility.

Finally, this framework builds a recommendation system based on the

extracted semantically enhanced movement patterns. The system provides

users with suggestions about travel itineraries including travel route and

time interval information between two stops. The system is semantic-aware,

allowing users to customise sets of place types that they want to visit in the

trip and to set up travel duration.

We conduct experiments to evaluate proposed methods using real photo

x



dataset from Flickr1. The experimental results prove the effectiveness of our

framework. The results show that the proposed semantics added trajectory

analysis methods can extract detailed and semantically enhanced semantic

patterns that not only show people’s semantic-level mobility patterns, but

also provide rich meaningful information and better understanding of people’s

movements. The results also demonstrate that our recommender system ef-

fectively generates a set of customised and targeted semantic-level itineraries

that meet the user-specified constraints and with an efficiency itinerary gen-

eration property. In addition, our system produces higher place type-layer

itineraries with richer meaningful information about travel contexts.

1Flickr: https://www.flickr.com/
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Chapter 1

Introduction

1.1 Background

Massive user-generated content is publicly available online with the advance

of Web 2.0 technology. Web 2.0 is a platform in which applications deliver

software as a continually updated service (O’reilly 2005). Data on Web 2.0

is from multiple sources, including not only the service providers, but also

individual users who provide their own data. This is compared to Web 1.0,

where online data is mainly created, uploaded and published by website

providers. In Web 1.0, the vast majority of users simply act as consumers of

content; in Web 2.0, all users can create their own data and upload online.

There are now thousands of websites and applications built on Web 2.0.

Especially, Web 2.0 is the platform for the evolution of social media – such

as Wikipedia, Facebook, YouTube – that allow the creation and exchange

of user-generated content (Kaplan and Haenlein 2010). Tens of millions of

users are providing data every day. These data are about users’ experiences,

ideas, events, activities and life, and are used to share and communicate

with their friends, communities and families. Meanwhile, network-enabled

mobile devices, such as smart phones, make it convenient for users to visit

social media services and generate content. The enormous amount of online

1
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data provides a potential data-rich environment for the discovery of people’s

behaviours (Pang and Lee 2008; Papadopoulos et al. 2009; Agarwal et al.

2011; Zafarani, Abbasi, and Liu 2014) .

One important type of social media is the photo-sharing website. The

main objective of this type of website is the sharing of photo media content

between users. Photo-sharing sites provide users with a large space for stor-

age of photo collections, and services to organise and manage their photos

and share with their groups. As an example, Instagram 1 and Flickr are two

of the most popular photo-sharing sites. These sites are a great resource

for photography enthusiasts, and increasingly for travellers. Following the

increasing number of photos that are manually geotagged by users, these

photo-sharing sites have recently launched their own services for adding lati-

tude and longitude information to a photo. Flickr provides a tool that allows

a user to select the location on a map in which a picture was taken, and then

the corresponding latitude and longitude information is added as metadata

to the picture. In addition, many photos are geotagged automatically using

global positioning system (GPS) logs or location-aware devices. Therefore,

the location and time data associated with photos and other related text

tags can be considered as useful geographically annotated materials on the

web. Millions of photo data are created and uploaded to photo-sharing web-

sites. These user-generated photo data may contain useful knowledge about

people’s behaviours, which are valuable and useful to domain experts and

applications.

The data on the photo-sharing websites are large, unstructured and com-

plex. As a result, domain experts and decision makers cannot directly find

useful information and knowledge from the big data by using traditional

analysis methods. It requires advanced analysis tools and techniques to deal

with big data. “Data mining” encompasses the processes and technologies

developed to extract the valuable knowledge embedded in the vast amounts

1Instagram: https://www.instagram.com/
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of data. Data mining uses a series of techniques to discover interesting pat-

terns and knowledge from large amounts of data (Han, Pei, and Kamber

2011). Data mining focuses on the properties of methods for handling large

datasets, including accuracy, efficiency and scalability, as well as on ways to

handle complex types of data. There are several data mining functionalities

and tasks used to specify the kinds of patterns that can be mined, including

characterisation and discrimination, the mining of frequent patterns, asso-

ciations, and correlations, classification and regression, cluster analysis and

outlier analysis (Han, Pei, and Kamber 2011). Data mining techniques are

popular tools used to discover useful patterns and knowledge from the mas-

sive social media data (Thelwall, Wilkinson, and Uppal 2010; Barbier and Liu

2011; Jin et al. 2011; Chen, Vorvoreanu, and Madhavan 2014) and specific

online photo data (Kennedy et al. 2007; Girardin et al. 2008a; Papadopoulos

et al. 2011; Zheng, Zha, and Chua 2012; Lee, Cai, and Lee 2014).

1.2 Motivations

Making sense of large online geotagged photo datasets is of significant im-

portance to derive more thorough movement behaviour information, partic-

ularly of informative patterns which are valuable to various domains, such

as city planning, traffic management and tourism. However, there is no ex-

isting systematic data mining framework for extracting people’s movement

behavioural patterns with meaningful and understandable semantic informa-

tion from the geotagged photos. This research aims to fill that gap.

Many studies were interested in analysing geotagged photos and some

approaches have been proposed to discover knowledge about movement be-

haviours from the photo data. Most of the studies cover the following three

topics:

• spatial interest of places and events;

3
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• place association rules;

• spatio-temporal trajectory behaviours.

The first topic is discovering the spatial behaviour of people, that is,

detecting the spatial locations, places and events they find of interest: the

places where people prefer to gather. Another topic is to find out the associa-

tion rules of spatial places – a rule indicates certain association relationships

among a set of spatial places. The proposed approaches find out sets of places

that frequently occur together in people’s movements.

The third topic is to extract the spatio-temporal movement behaviours of

people. Though these previous methods were useful and recognisable in terms

of spatial locations and location association rules, there is a lack of studies

on discovering people’s dynamic spatio-temporal movement patterns. Few

recent studies have attempted to discover dynamic spatio-temporal trajectory

behaviours from geotagged photos (Girardin et al. 2008b; Zheng, Zha, and

Chua 2012; Cai et al. 2014). Instead, the existing studies use spatial features

of trajectories to find movement knowledge, in terms of geographical spatial

shapes and patterns. Their results show purely geometric information about

movement.

However, these previous traditional spatial-geometric-feature-only trajec-

tory analysis approaches are insufficient. Many specific applications require

richer application-related semantic information and meanings in people’s mo-

bility. In many application domains, useful knowledge about moving be-

haviour or moving patterns can only be extracted from trajectories if the

background geographic information where trajectories are located is consid-

ered (Alvares et al. 2007b). Thus, trajectory analysis needs to be integrated

with aspatial semantics information (Parent et al. 2013). Aspatial semantics

information is mobility-related background contextual data in which move-

ment takes place.

Integrating trajectory analysis with aspatial semantics data is important

4



Chapter 1. Introduction

because it provides applications with richer and more meaningful knowledge

about movement and indicates semantic-level patterns. Detailed and seman-

tically enhanced patterns provide better understanding of people’s move-

ment. The importance of semantics in trajectory data mining has received

attention in recent years as in GPS data (Alvares et al. 2007b) and in geo-

tagged photos (Kisilevich et al. 2013). However, there has been little research

with geotagged photo with semantics until very recently.

In summary, massive online collections of shared photos with geographic

data indicate people’s movement trajectories and contain potential behavioural

movement patterns that are valuable for various domains. However, previ-

ous approaches have not been able to extract the semantic mobility patterns

in the trajectories. A few past studies analyse trajectories with traditional

geometric-feature-only methods, but they lack of consideration of the impor-

tant aspatial semantic features. The traditional analysis could miss the inter-

esting and meaningful semantically enhanced patterns. Some recent studies

have paid attentions on analysing trajectory data incorporating semantics.

However, there has been little research with geotagged photo with semantics.

These motivate this research to discover people’s movement behavioural pat-

terns with the meaningful aspatial application of semantic information from

online geotagged photos.

1.3 Research aim

The aim of this research is to develop a systematic data mining framework to

extract semantic trajectory behavioural patterns from geotagged photos and

to build an itinerary recommender system based on the patterns. Specifically,

this research aims to find out four kinds of patterns that scope the four aims

of this research, which are:

1. To find meaningful and understandable semantic sequential patterns

from geotagged photos;

5
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Figure 1.1: Overall research of this thesis.

2. To find meaningful and understandable semantic common patterns

from geotagged photos;

3. To find meaningful and understandable semantic trajectory patterns

from geotagged photos;

4. To build a semantic itinerary recommender system using the extracted

trajectory patterns from geotagged photos.

Figure 1.1 briefly shows the overall work of this thesis. There is a more de-

tailed description of our work in Chapter 3. This study is to add aspatial

semantics information to raw trajectories formed from the geotagged photos,

and then to extract three semantic mobility patterns – semantic sequential

patterns, semantic common patterns and semantic trajectory patterns – and

finally to build an itinerary recommender system based on trajectory pat-

terns. The sequential pattern indicates a frequent sequence of stops in the

6
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trajectories. The common pattern shows the common track of people’s tra-

jectories. The trajectory pattern presents the frequent sequence of stops with

transit time information. There are many semantics information databases,

but in this study, we use certain semantics information only, including a

geographic information database, which is used to add basic place type an-

notation and city area information to geo-objects, and a weather observation

database, which is used to add contextual weather conditions to the trajec-

tories. Note that users can add more aspatial and semantic databases to our

framework with ease for domain specific applications.

A semantic trajectory is a raw trajectory with semantic annotations. In

particular, in this study, it is with place-type and weather semantic annota-

tions. More details will be covered in Section 3.4. Given semantic trajecto-

ries, the definitions of the three kinds of patterns are as follows:

1. Semantic sequential pattern is a sequence of stops that frequently oc-

curs in semantic trajectories;

2. Semantic common pattern is a clustered pattern that is common in

semantic trajectories;

3. Semantic trajectory pattern is a sequence of stops with relevant time

interval that frequently occurs in semantic trajectories.

Figure 1.2 illustrates the differences between the three kinds of patterns.

Semantic sequential pattern shows a sequence of stops frequently occurring

in semantic trajectories indicating a sequential order of frequent movements.

Semantic common pattern refers to a cluster of similar patterns in semantic

trajectories. Semantic trajectory pattern indicates a sequence of frequent

stops with relevant time interval.

This research is based on four hypotheses:

• Semantic trajectories from geotagged photos indicate meaningful and

understandable semantic sequential patterns;

7
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Figure 1.2: Differences of semantic sequential pattern, semantic common

pattern and semantic trajectory pattern.

• Semantic trajectories from geotagged photos indicate meaningful and

understandable semantic common patterns;

• Semantic trajectories from geotagged photos indicate meaningful and

understandable semantic trajectory patterns;

• Semantically enhanced patterns from geotagged photos are good indi-

cations for travel itinerary recommendations.

Based on the hypotheses, this research seeks to answer four questions:

• How can we detect more meaningful and understandable sequential

patterns from geotagged photos-based semantic trajectories?

• How can we discover more meaningful and understandable common

patterns from geotagged photos-based semantic trajectories?

8
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• How can we find more meaningful and understandable common pat-

terns from geotagged photos-based semantic trajectories?

• How can we use the semantically enhanced patterns from geotagged

photos to provide users with travel itinerary recommendations?

Table 1.1 presents four specific research aims and the related objectives.

These four aims will answer the four research questions.

This thesis aims to develop a systematic framework to extract people’s se-

mantic trajectory behavioural patterns from geotagged photos. Overall, the

framework generates trajectories from geotagged photos, creates semantic

trajectories, extracts three kinds of mobility patterns from trajectories and

builds an itinerary recommender system based on the extracted patterns.

At the beginning, this framework first constructs people’ raw movement tra-

jectories from their geotagged photos. A raw trajectory is a sequence of

geographical points with time stamps. Then the framework generates peo-

ple’s semantic trajectories. A semantic trajectory is a sequence of stops with

background geographic information semantics annotations, using place cat-

egory in this study. This research uses region of interest (RoI) as the stops

and this study proposes a semantic RoI mining algorithm to detect RoIs with

semantics annotation from raw trajectories. This study also adds multiple

environmental context semantics data to trajectories including city name,

day type, day time and weather conditions in which the movement takes

place.

From the semantic trajectories, the first function of the framework is

mining semantic sequential patterns. A semantic sequential pattern mining

approach is proposed to find out frequent sub-sequences of stops in semantic

trajectories based on the projection-based PrefixSpan algorithm (Pei et al.

2001). These frequent sub-sequences are semantic sequential patterns in

people’s trajectories. The proposed approach is able to deal with multi-

dimensional semantic trajectories: the results are sets of semantic sequential

9
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Table 1.1: Research aims and related objectives.

Aims Objectives

Aim 1: to find out meaningful and

understandable semantic sequential

patterns from geotagged photos

Objective 1: reconstructing

trajectories from geotagged photo

data

Objective 2: building semantic

trajectories from geotagged photos

Objective 3: mining semantic

sequential patterns from semantic

trajectories

Aim 2: to find out meaningful and

understandable semantic common

patterns from geotagged photos

Objective 4: mining semantic

common patterns from semantic

trajectories

Aim 3: to find out more meaningful

and understandable semantic

trajectory patterns from geotagged

photos

Objective 5: mining semantic

trajectory patterns from semantic

trajectories

Aim 4: to build a semantic

itinerary recommender system

using the extracted trajectory

patterns from geotagged photos

Objective 6: building itinerary

recommender system using

semantic trajectory patterns

10
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patterns and each pattern is a sequence of stops integrated with a frequent

combination of multiple dimensions where a combination could contain a

subset or all of the original environmental context data.

The second function of the framework is extracting semantic common

patterns from semantic trajectories. This study presents a semantic tra-

jectory clustering method to group similar semantic trajectories and each

cluster indicates a common track of people: the common pattern. The pro-

posed clustering method adopts a density-based OPTICS algorithm scheme

(Ankerst et al. 1999). It produces an ordering list of objects based on distance

and extracts clusters from the ordering list. To deal with multi-dimensional

semantic trajectories, this study introduces a distance function with a strat-

egy of assigning different weight values to multiple dimensions. Distance

function first finds out the commonality of two trajectories by using the

Longest Common Sub-Sequence (LCSS) algorithm, then calculates the sim-

ilarity score between two trajectories, and at last utilises the dissimilarity

score as the distance between two trajectories.

The third function of the framework is finding out frequent semantic tra-

jectory patterns in people’s semantic trajectories. A trajectory pattern is

a frequent sequence of stops with time intervals between two stops. The

frequently repeated time intervals show temporal relations between stops.

A semantic-trajectory-pattern-mining algorithm is introduced to extract the

patterns based on the temporally annotated sequential pattern T AS algo-

rithm (Giannotti, Nanni, and Pedreschi 2006). The proposed method can

find basic semantic patterns, which are sequences of basic geographic se-

mantics only; it is also able to find multi-dimensional semantic trajectory

patterns, which are basic geographic semantic patterns with additional se-

mantic annotations. These additional annotations could be combinations of

arbitrary subset of the initial semantics.

Finally, the framework builds a semantic itinerary recommender system

based on semantic trajectory patterns to provide users with suggestions for

11
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travel itineraries. The system generates a set of customised and targeted

semantic-level itineraries that meet the user-specified constraints. The rec-

ommender system is an offline–online architecture. In the offline component,

the system extracts people’s previous semantic trajectory patterns from geo-

tagged photos and stores the patterns into a database. In the online compo-

nent, the system receives users’ queries, verifies the queries, searches appro-

priate patterns from the pattern database and returns the final patterns to

generate appropriate travel itineraries, including travel route sequences and

transition time information. The user query includes a set of user-customised

place types and travel duration. The system generates appropriate itineraries

that satisfy the user’s request.

1.4 Contributions of study

This study contributes to the literature of data mining and analysis of online

geographic referenced photo data, by investigating the analysis of the trajec-

tory feature of geotagged photos and the extraction of trajectory behavioural

patterns. Moreover, this study considers the aspatial semantics features in

the analysis of trajectory data to learn about meaningful and understandable

semantically enhanced movement patterns. This study proposes a system-

atic data mining framework with a series of techniques and approaches for

extracting people’s semantic trajectory patterns from geotagged photos and

building a semantic itinerary recommender system. The following is a sum-

marised list of contributions made in this thesis.
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Table 1.2: Contributions of this thesis.

Chapter Publications Contributions

3

1. Analysis of trajectories with

consideration of spatial, temporal and

aspatial semantics features. This

research is a novel investigation into

trajectory analysis using additional

important aspatial semantics features to

find semantic-level trajectory

behaviours. We find semantic-level

trajectory behavioural patterns from

geotagged photos by considering

multiple semantic annotations in

addition to raw trajectories.

Trajectories are enriched with multiple

background geographic information and

environmental context data that provide

richer meanings to understandings of

people’s mobility;
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4

• “Mining Semantic

Sequential Patterns

from Geo-tagged

Photos”. HICSS

2016

2. Semantic RoI detection. The

semantic RoI mining method is

proposed to detect stops in raw

trajectories. This method uses spatial

and aspatial semantics features together

that show a natural process for

generating semantically enhanced stops.

This method can find fine and accurate

semantic RoIs;

3. Semantic sequential pattern mining.

This thesis proposes a semantic

sequential pattern mining method to

find frequent semantic sequential

patterns in trajectories. The method

has the ability to deal with

multi-dimensional sequences. The

method produces frequent patterns with

flexible combinations of various frequent

dimensions, including basic sequential

patterns with only basic geographic data

and multi-dimensional patterns with

sets of additional semantics information;
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5

• “Discovering

Common Semantic

Trajectories from

Geo-tagged Social

Media”. IEA/AIE

2016

• “Mining Mobility

Patterns from

Geotagged Photos

through Semantic

Trajectory

Clustering”.

Submitted to

Journal: Cybernetics

and Systems

4. Semantic common pattern mining.

This research proposes a semantic

trajectory clustering method for finding

the common semantic trajectories. This

study presents a novel similarity

measure for multi-dimensional semantic

trajectories for semantic trajectory

clustering. The proposed semantic

trajectory clustering is exploratory,

allowing users to explore diverse

combinations of semantic dimensions.

This flexibility enables users to refine

patterns, and supports what-if analysis;

6

• “A Framework for

Mining

Semantic-Level

Tourist Movement

Behaviours from

Geo-tagged Photos”.

AusAI 2016

• “Mining Semantic

Trajectory Patterns

from Geo-tagged

Photos”. Submitted

to Journal of

Computer Science

and Technology

5. Semantic trajectory pattern mining.

This thesis proposes a semantic

trajectory pattern mining algorithm for

discovering frequent semantic trajectory

patterns in semantic trajectories. The

algorithm generates frequent

sub-sequences with frequently occurring

time intervals in people’s trajectories. It

also produces basic patterns and

multi-dimensional patterns with diverse

combinations of frequent dimensions;
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7

• “Itinerary

Recommender System

with Semantic

Trajectory Pattern

Mining from

Geo-tagged Photos”.

Submitted to Journal:

Expert Systems with

Applications

6. Semantic itinerary recommendation

system. This research presents a

semantic-aware offline–online travel

itinerary recommender system. The

proposed method generates these

semantic itineraries from historic

people’s movements by mining frequent

travel patterns from geotagged photos.

It effectively generates a set of

customised and targeted semantic-level

itineraries that meet the user-specified

constraints. The system generates

appropriate higher place type-layer

itineraries with rich, meaningful

information about travel contexts and

with an efficient itinerary generation

property.

1.5 Organisation of the thesis

This thesis has eight chapters including this introduction. The other seven

chapters of this thesis are described briefly as follows.

• Chapter 2 presents the background and related work. It first illus-

trates typical studies on mining knowledge of people’s behaviours from

online social media data. Then it presents previous work on mining and

analysing geotagged photo data. In the next part, it describes previous

approaches and studies on pattern mining from trajectories for geo-

tagged photo data and GPS data. Specifically, it reviews and discusses
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previous studies on sequential patterns, trajectory clustering and tra-

jectory patterns. Last, it presents a review of the studies on building

travel recommendation systems using online geotagged photos.

• Chapter 3 describes the overall framework of this thesis. It briefly sum-

marises the framework and describes each component and function of

the framework. Next, the data collection and apatial semantics infor-

mation databases used in this thesis are introduced. In this chapter, we

also present detailed definitions and terminologies used in this thesis.

• Chapter 4 presents the study of extracting semantic sequential pat-

tern, which is the first research aim. In this chapter, we describe the

basic steps and approaches for building people’s trajectories from geo-

tagged photos and generating semantic trajectories with a proposed

semantic RoI mining algorithm. Then, from the semantic trajectories,

this study finds frequent sequences of stops with meaningful seman-

tics information that show semantic sequential patterns by using the

proposed semantic sequential pattern mining method.

• Chapter 5 demonstrates the study of mining semantic common pat-

terns, which is the second research aim. This study proposes a semantic

trajectory clustering method for finding people’s common tracks in tra-

jectories. A distance function is also presented for multi-dimensional

semantic trajectories.

• Chapter 6 illustrates the study of discovering semantic trajectory pat-

terns, which is the third research aim. This study is about finding out

the frequent sequences of stops with typical transition time between

stops in people’s semantic trajectories. We propose a semantic trajec-

tory pattern mining method to reveal the frequent patterns.

• Chapter 7 shows the study of building a semantic itinerary recom-

mender system, which is the fourth research aim. The system is devel-
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oped as offline–online architecture. It generates itineraries by using the

extracted semantic trajectory pattern. The system is semantics-aware

– allowing users to customise a set of preferred place types and travel

duration. The system produces sets of appropriate travel itineraries

including sequences of stops with transition time between stops and

rich information on travel environmental contexts.

• Chapter 8 concludes this thesis by summarising the content and contri-

butions obtained in this research. It also summarises potential future

work that could be explored following on from the research work in this

thesis.
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Chapter 2

Literature review

This chapter surveys previous studies on analysing online social media data

and reviews previous research relating to extraction of people’s mobility pat-

terns and building itinerary recommender systems from geotagged photo data.

The abundance of online user-generated content provides a data-rich environ-

ment for many areas and applications. In Chapter 2.1, we briefly introduce

diverse studies on using, analysing and mining online social media data.

Chapter 2.2 reviews past studies exploring online geotagged social data and

mining people’s movement behaviour. Then, in Chapter 2.3, we present ex-

isting work on extracting people’s dynamic mobility behavioural patterns from

geotagged photos. We describe work related to each objective and task of our

study. Chapter 2.4 describes previous research on building travel itinerary

recommender systems using geotagged photo data. Finally, Chapter 2.5 sum-

marises the literature review in relation to our research topic and work.

2.1 Social media data mining

Social media data mining extracts useful information, patterns, rules and

trends from large-scale online user-generated social media data. There are

many categories of social media and various types of social data including
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records of events, social activities, and people’s presentations of ideas and

daily life. Online social media data is growing fast with the pervasive use

of social media. Consequently, the enormous amount of online data attracts

various research communities’ investigations into valuable information and

knowledge about human behaviours for specific applications and aims (Tang

and Liu 2010; Pang and Lee 2008; Rattenbury, Good, and Naaman 2007;

Lee, Cai, and Lee 2014).

One of the most popular research areas is using social data entities to

discover social structure, relationships and transformation of information in

the online virtual world. This information helps our understandings of peo-

ple’s social activities, relations and behaviours in the social networking sites.

Zafarani, Abbasi, and Liu (2014) extracted information about interactions

between individuals and entities that shows how individuals interact with

others about the contents (Tang, Wang, and Liu 2009). Kempe, Kleinberg,

and Tardos (2003) investigated influence modelling to understand the pro-

cess of influence or information diffusion. Tang and Liu (2010) studied the

formation and detection of community and users’ behaviours in social media

websites, showing that individuals in the group interact with each other more

frequently than with those people outside the group. Community detection is

an important tool for the analysis of complex networks by enabling the study

of microscopic structures that are often associated with organisational and

functional characteristics of the underlying networks (Papadopoulos et al.

2012). Papadopoulos et al. (2009) proposed a method to detect communities

from complex networks. Figure 2.1, cited from (Papadopoulos et al. 2009),

presents the communities around the tags “computers” from a collaborative

question/answering application, LYCOS iQ.

Another active research area is to learn and obtain people’s ideas, opinions

and sentiments about events, goods, products and services, using online user-

generated content. The rich online public data is a significant data source

for research communities on sentiment analysis and opinion mining. Senti-
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Figure 2.1: Communities around “computer” (Papadopoulos et al. 2009).

ment analysis (Pang and Lee 2008) extracts people’s opinions on events and

topics, as expressed in user-generated contents such as blogs. Consequently,

various applications and services are built based on the opinions extracted.

Ye, Zhang, and Law (2009) proposed a method of sentiment classification

for online reviews to travel destinations that assigns sentiment class labels to

the unlabelled reviews. Agarwal et al. (2011) classified overall sentiment of

Twitter data. Sobkowicz, Kaschesky, and Bouchard (2012) mined citizens’

opinions on elections. Liang and Dai (2013) determined people sentiment di-

rections from micro-blogs data in Twitter. Figure 2.2, cited from (Sobkowicz,

Kaschesky, and Bouchard 2012), presents the two online opposing commu-

nication networks (Opensource logic vs. Proprietary logic) opinions on the

issue of governance of the Java software standard in 2002, showing that Java

Opensource software was an issue that attracted some interest.

Folksonomies (Trant 2009) have become another rich data repository for

researchers to mine useful information. Tagging services in social networking

platforms allow users to add tags that enhance description of online content.
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Figure 2.2: Topics, centrality, momentum and cross-references of important

issues (Sobkowicz, Kaschesky, and Bouchard 2012).

Folksonomies are the bodies of tagged data. The information retrieval re-

search community studied folksonomy from the perspective of its ability to

support information retrieval (Mathes 2004; Hotho et al. 2006; Zhou et al.

2008). Kennedy et al. (2007) used the concept of representative tags and

a tag-driven approach to extract place and event semantics, and to retrieve

representative images using visual features. Rattenbury, Good, and Naaman

(2007) conducted research investigating ways to extract place and event se-

mantics from folksonomies. Another analysis of folksonomies seeks to build a

tag recommender application based on the collective tags to find good tags for

any resource as it is uploaded by the user (Jäschke et al. 2007; Sigurbjörnsson

and Van Zwol 2008). Figure 2.3, cited from (Kennedy et al. 2007), shows a

sample set of representative tags for San Francisco using Flickr data.

However, the above popular studies do not focus on the use and analysis

of the abundant online geographic data associated with social media data
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Figure 2.3: Representative tags for San Francisco (Kennedy et al. 2007).

entities. They mainly focus on the behaviours of social networks and rela-

tionships, sentiment and opinion on events and products using online textual

tags, content entities and social networking data. Social media websites host

sheer volume of geographically referenced data including documents, photos

and videos (Zheng, Zha, and Chua 2011). Geographic-data-enriched online

resources open up a new world of opportunities to discover the geographic-

related knowledge and information of human society. These georeferenced

data provide the information about events, activities and people that help

understand geographic knowledge of objects, and behaviours of people. This

study analyses the geotagged data to explore people’s geographic-related be-

haviours.

2.2 Geotagged social media data mining

A recent novel research area is learning knowledge about physical geographic

objects from online user-generated geographic referenced data. Online social

media data contain massive amounts of geographic information benefiting

from geo-tagging services. Geo-tagging enables users to add geographical

identification metadata to media data. Moreover, location-based services en-
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abled in cell phones or geo-tagging services on the sharing websites let users

annotate geographic information to media data for sharing personal location

information. Thus, the volume of geotagged social data provides a poten-

tial data-rich environment for geography (Sui and Goodchild 2011). These

massive amounts of volunteered geographic information data are important

repositories and play a critical role in understanding of geographic objects in

the world (Goodchild 2007). Mining and analysing geotagged social media

data aims to extract useful knowledge about geographic objects and to learn

and understand geographic objects.

A recent useful analysis is using online geotagged data as immediate real-

time geographical location information for emergency management. The

geographic data is used to map online geographic data to the physical world

for various areas. In particular, user-generated geographic information is

crucial to fields of natural disaster and crisis management. Real-time geo-

tagged social media data provide immediate location and diverse geographic

information that are important and valuable in disaster management (Ha-

worth and Bruce 2015). Goodchild and Glennon (2010) presented an early

frontier study of using online user-contributed geographic information to as-

sist official organisations with the response management for wildfire in Santa

Barbara, US. In the same year, Zook et al. (2010) published a study on using

volunteered geographic information for disaster mapping in the response to

the 2010 Haiti earthquake. McDougall (2011) used the online geographic

information from users’ social media data to assist in mapping the flood ex-

tents in regions where there was little or no mapping available. Figure 2.4,

cited from (McDougall 2011), shows a crowdmap of the Queensland floods

based on the Ushabidi platform in January 2011 using individuals’ generated

geographic information data. These studies use rich online user-generated

geographic information as extra volunteered data to learn about physical

geographic objects and events. In contrast, this research study focuses on

discovery of knowledge about people’s geographical movement behaviours.
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Figure 2.4: Map of Queensland flood (McDougall 2011).

Some studies exploit geotagged social media data to extract information

on spatial locations to assist in exploration and understanding of spatial areas

and objects. Ahern et al. (2007) used Flickr photo data to build a World

Explorer tool to visualise tags representative of the spatial areas. Xie et al.

(2013) detected the events that happened in a specific location. Other studies

have a different application: building useful online applications to help users

organise their content. Crandall et al. (2009) and Serdyukov, Murdock, and

Van Zwol (2009) built a map model of users’ content, predicted the location of

users’ photos according to the tags of photos, and helped place photos on the

map. Some other interesting studies investigated people’s social relationships

in relation to physical locations. Crandall et al. (2010) learnt the social ties

and Cranshaw et al. (2010) learnt the social networks between people from

their physical geographic location of posted social media data.

Discovery of people’s movement behaviours is another popular topic in

mining online geotagged data. Geotagged data are people’ footprints that

point out the locations visited. These data are records of people’s historical

movement that provide opportunities to learn people’s movement behaviours.

Some studies have been conducted to extract the attractive and functional

locations in urban areas from geotagged data, and people’s preferences for
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spatial locations. Kisilevich, Mansmann, and Keim (2010) extracted the

attractive areas that are characterised by high photo activity in a specific

area from geotagged photos. Lee, Cai, and Lee (2014) presented a study

identifying points of interest (PoI) where a great number of people gathered,

from mining geotagged photo data, and further found out the association

rules of visiting PoIs, to show which PoIs are visited together. Similarly, Hu

et al. (2015) extracted urban areas of interest by clustering geotagged photos.

Shirai et al. (2013) detected the areas of interest and shooting hotspots from

geotagged photos by spatial clustering. An area of interest is tourist spots,

whilst a shooting hotspot is a location where people take photos related to

an event. Figure 2.5, cited from (Lee, Cai, and Lee 2013), presents a sample

set of PoIs mined from Flickr geotagged photos. Figure 2.6, cited from (Lee,

Cai, and Lee 2014), shows a sample association rule about two PoIs.

Figure 2.5: Sample set of point of interest (Lee, Cai, and Lee 2013).

However, previous studies on mining online geotagged data mainly focus

on the extraction of spatial information and knowledge; there is a lack of

studies analysing people’s dynamic movement behaviour. The geotagged so-

cial data contains people’s mobility data, including dynamic spatio-temporal

trajectories. A geotagged entry is a person’s footprint in the physical world.

Consequently, a series of geotagged data, connected in time order, indicate
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Figure 2.6: Association rule for PoIs (Lee, Cai, and Lee 2014).

a user’s spatial trajectory during a certain time period. The vast amount of

online geotagged data provides a potential data repository of people’s trajec-

tories, which may contain useful knowledge of people’s mobility behaviours

and patterns that are useful to various specific applications.

Our study aims to extract dynamic and mobile information from trajec-

tories of geotagged photo data to help learn and understand human trajec-

tory phenomena. Photo data is a rich online geotagged social data resource.

Abundant photos are publicly available on the Internet with the advance of

Web 2.0. Flickr is one of the most popular photo-sharing sites. Flickr allows

people to upload and manage their photos, and communicate with others.

It also provides rich Application Program Interfaces (APIs) to users that

allow users to collect and explore photo data from their site. This study

uses geotagged photos as examples of geotagged social media data to ex-

tract people’s dynamic trajectory behavioural patterns. Figure 2.7 shows

the geo-tagging interface in Flickr that allows users to drag and drop photos

to a position on the map to geo-tag them. Figure 2.8, cited from (Zheng,

Zha, and Chua 2012), shows the travel movement trajectories generated from

geotagged photos in London.
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Figure 2.7: Geo-tagging in Flickr.

Figure 2.8: Moving trajectories generated from geotagged photos (Zheng,

Zha, and Chua 2012).
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2.3 Trajectory data mining

Few studies have investigated methods for extracting people’s dynamic move-

ment behaviours from geotagged photos. Girardin et al. (2008b) and Girardin

et al. (2008a) presented early novel studies of explicit spatio-temporal data

mined from online user-generated content to provide insights into human dy-

namics that illustrate understandings of visitors’ dynamic movement flows

in an urban space. Vu et al. (2015) investigated tourists’ historical move-

ment data from geotagged photo data to discover travel flows and directions

for different tourist groups. Gao et al. (2014) detected people’s regional

spatio-temporal original-destination mobility flows from individual geotagged

tweets. These studies investigated extraction and understanding of people’s

dynamic movement flow and structure from a potential trajectory repository

generated from online geotagged social media data. Figure 2.9, cited from

(Girardin et al. 2008b), shows the flow of visitors among main areas of tourist

activity in Florence, Italy.

Figure 2.9: Trajectory flow of visitors (Girardin et al. 2008b).

However, they are not able to find out the frequent collective patterns

over multiple people’s moving trajectories. The aggregate patterns describe

a group of moving objects sharing similar movement patterns. Successfully
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mining movement patterns has many significant applications in human mobil-

ity understanding, urban planning and transportation (Li 2014). Especially,

this research discovers sequential patterns, frequent transition sequences of

stops; common patterns, common paths shared by trajectories; trajectory

patterns, and frequent sequences of stops with the typical transition time

between stops.

2.3.1 Sequential trajectory pattern mining

Sequential pattern mining (SPM) from trajectories aims to find out sequences

of locations that appear frequently in trajectories (Cao, Mamoulis, and Che-

ung 2005). A sequential pattern is formed by frequently occurring sequential

movements from one location to the next location.

A sequential pattern mining problem is initially introduced to discover

sub-sequences of transaction data that appear frequently in market transac-

tion data (Agrawal and Srikant 1995), and then has been extended to explore

sequential relationships from other sequence data. In this context, “frequent”

means that the number of occurrences of a sequential pattern in the trajec-

tory database is no smaller than the user-defined support threshold minSup.

A transaction data represents a collection of item sets. Many efficient al-

gorithms have been proposed to find sequential patterns from datasets, in-

cluding GSP algorithm (Srikant and Agrawal 1996), Spade algorithm (Zaki

2001), FreeSpan algorithm (Han et al. 2000) and PrefixSpan algorithm (Pei

et al. 2001).

Tsoukatos and Gunopulos (2001) first proposed a study on mining spatio-

temporal patterns to find sequences of events that occur frequently in spatio-

temporal datasets. They found ordered sequences of events that occur in the

spatial locations. Similarly, Huang, Zhang, and Zhang (2008) discovered fre-

quent sequence patterns of events. Most previous sequential pattern studies

mainly aimed to find out frequent sequences of visit locations from trajecto-

ries. This study is different because it focuses on mining semantic people’s
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trajectories and is interested in extracting people’s semantic movement pat-

terns.

Traditional sequential trajectory pattern mining

A trajectory shows a spatial mobility. It contains a spatial feature, which is

spatial position, and a temporal feature, which is the time stamp when the

spatial position is recorded. The spatial feature plays a principal role in the

analysis of trajectories. Traditional studies on mining sequential patterns

from trajectories are divided into two categories: those that consider spatial

features only in 2-D spatial space; and those that consider both spatial and

temporal features in 3-D spatio-temporal space.

The main group of studies uses spatial geometric features only of trajec-

tories, while the time feature is used to order the spatial positions in the

computing of trajectories. The final result is a sequence of spatial loca-

tions. As location coordinates do not typically match exactly at the same

geographic coordinates in a pattern instance, most of these studies need a

spatial neighbour function to determine whether two spatial positions are in

the same meaningful spatial area or location. Cao, Mamoulis, and Cheung

(2005) extracted frequent periodic sequential patterns from a long individ-

ual trajectory that appear repeatedly and periodically in the long trajectory.

Using online geotagged photo data, Kisilevich, Keim, and Rokach (2010)

generated people PoI-based travel sequences and found out tourists’ frequent

PoI sequential patterns. Majid et al. (2015) mined frequent visit sequences

of locations from geotagged photos.

Another group of trajectory analyses applies spatial and temporal at-

tributes. They consider the time dimension of spatial trajectories to compute

the trajectories in a spatio-temporal 3-D space. The aim of considering the

temporal dimension is to determine whether the spatial sequential patterns

occur within the same specified time range. Bermingham and Lee (2014)

found people’s spatio-temporal sequential patterns from geotagged photos
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for tourism.

However, the main drawback of previous studies on mining sequential

patterns is lack of aspatial semantics information, that is, they focus on

traditional spatial geometric-only trajectory analysis. Trajectories can be

enriched with additional application background and contextual semantics

representing useful information about movement, and enhance some novel

unknown semantic-level behaviours whose predicates bear on contextual se-

mantics (Parent et al. 2013).

Semantic sequential pattern mining

Semantic trajectory aims to provide applications with semantic contextual

knowledge about the movement. A few recent studies focus on mining of

semantic trajectories (Alvares et al. 2007b; Zhang et al. 2014; Chen and Chi-

ang 2016; Chakri, Raghay, and El Hadaj 2017). Alvares et al. (2007a) tried

to enrich trajectories with semantic geographical information called seman-

tic trajectories. They define the semantic trajectory as a sequence of stops

with semantics annotations. Specifically, Alvares et al. (2007b) first found

a set of stops in geometric trajectories, then matched the stops to seman-

tic places, and finally mined frequent place sequences as sequential patterns.

These semantic sequential patterns provide meaningful semantics informa-

tion to better understand people’s mobility. Zhang et al. (2014) added place

category features to people’s trajectories to extract frequently occurring se-

quences of visited place categories. These category-based sequential patterns

show people’s behaviours of visiting and moving among place categories.

However, semantic trajectories in previous studies only consider basic

place type semantics of spatial location. There has been no similar study

dealing with multi-dimensional semantics until now. This study concerns

multi-dimensional semantic trajectories. Specifically, we add basic place

type semantics and several additional environmental semantics to trajec-

tories. The aim of this research is to find finer patterns and provide more

32



Chapter 2. Literature review

meaningful semantics information. Previous methods for computing single

dimensional semantic trajectory are not suitable for our multi-dimensional

semantic trajectories.

Multi-dimensional sequential pattern mining has been studied for tradi-

tional market transaction data. Pinto et al. (2001) first tried dealing with

several dimensions in the framework of sequential patterns. Different from

traditional transaction data, in (Pinto et al. 2001) multiple customer in-

formation, such as category and age, is added to a sequence of purchased

items. They focus on frequent sequences containing the additional profile

information of customer and other information about the purchase. They

use a combination of methods including PrefixSpan algorithm (Han et al.

2001), which is for finding frequent item-purchased sequences, and Bottom-

up Cube computation (BUC) algorithm (Beyer and Ramakrishnan 1999),

which is for computing frequent multi-dimensional value combinations, to

find the multi-dimensional patterns. While the item of sequences used in

(Pinto et al. 2001) is dealt with only in a single dimension, our study uses a

multi-dimensional sequence where we consider several dimensions combined

over time. Plantevit et al. (2005) displayed an approach for multi-dimensional

sequences. Their study introduces a generalised multi-dimensional sequential

pattern called jokerised patterns in which some dimension values may not be

instantiated. But they focus on finding sequential patterns in inter-reference

dimensions that describe the whole transaction sequence, while in our work,

every stop entry is trajectory is enriched with several semantic annotations.

We concentrate on the multi-dimensional trajectory.

2.3.2 Common trajectory pattern mining

Common trajectory pattern mining (CTP) aims to find the common trajec-

tory tracks of any moving objects that have similar trajectories. A common

trajectory pattern shows popular movements of people. A common trajectory

pattern is indicated and triggered by a group of similar trajectories. That
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is, to find out the common trajectory patterns in a trajectories database, we

need to gather similar trajectories into clusters, and then a group of similar

trajectories reveals one common movement track.

Clustering is the task of grouping objects so that objects similar to each

other are in the same cluster but dissimilar objects are in different clus-

ters (Han, Pei, and Kamber 2011). Clustering is one of the most popu-

lar data mining techniques, which has been widely used in various applica-

tions, such as geographic data (Miller and Han 2009). There exist many

classic clustering algorithms, including partitioning-based k -means and k -

medoids, hierarchical-based BIRCH (Zhang, Ramakrishnan, and Livny 1996)

and CURE (Guha, Rastogi, and Shim 1998), density-based DBSCAN (Ester

et al. 1996) and OPTICS (Ankerst et al. 1999). Several traditional clustering

methods have been applied to geographic spatial points data for geographic

data analysis in various specific applications, including crime hot-spot anal-

ysis (Estivill-Castro and Lee 2000).

Traditional common pattern mining

Several studies have been undertaken on trajectory clustering for extracting

common patterns of moving object in different applications. Many cluster-

ing methods for trajectory data have been proposed. In the previous studies,

trajectory data are modelled in varied representations by different methods

for specific purposes. There are two groups of trajectory clustering anal-

ysis: whole trajectory or sub-trajectory. In whole trajectory analysis the

whole trajectory is the analysed object. Such work clusters whole trajecto-

ries. Gaffney and Smyth (1999) proposed a model-based method to cluster

whole trajectories. An individual trajectory was represented as mixtures of

regression models and then the EM algorithm applied to cluster trajectories.

Nanni and Pedreschi (2006) proposed a density-based T-OPTICS algorithm,

adopting the OPTICS clustering algorithm, for trajectory clustering. A tra-

jectory is represented as a sequence of locations. The distance between two
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trajectories used in the method is defined as the average distance between ob-

jects that is based on the Euclidean distance between spatial points. Another

group is to find local trajectory patterns. Lee, Han, and Whang (2007) claim

that some portions of trajectories show a common behaviour. This kind of

work focuses on clustering similar sub-trajectories. Lee, Han, and Whang

(2007) proposed the TRACLUS method for detecting similar portions of

trajectories. The method represents each trajectory as a line and clusters

the spatially nearby line segments with similar shape using DBSCAN algo-

rithm. Overall, these methods use different similarity measure approaches

that are based on spatial or spatio-temporal and other features of trajectory

data. Most previous studies employ traditional spatial trajectory analysis.

This analysis method groups trajectories into a cluster using the basic spa-

tial geometric attribute, so that trajectories that have similar geometrics are

grouped together.

Some studies take into account the important temporal dimension in their

trajectory clustering, especially for finding local spatio-temporal common

patterns. The temporal feature of trajectory is the time stamp of spatial

points in the trajectory. The time stamps are used to define a local com-

mon pattern, moving together in a specific consecutive time duration, from

trajectories. Gudmundsson, Kreveld, and Speckmann (2004) used the abso-

lute time condition to find trajectory flock patterns. A flock pattern refers

to a group of a frequent number of trajectories moving spatially close for

a specific consecutive timestamp. Using a loose requirement of consecutive

timestamps, Jeung et al. (2008) extracted the convoy patterns from trajecto-

ries. Moreover, Li et al. (2010) detected the swarm patterns from trajectories

without requirement of consecutive timestamps. To cluster trajectories only

in meaningful time intervals, Nanni and Pedreschi (2006) proposed the TF-

OPTICS for temporal focusing trajectory clustering. It finds the moving

clusters in a set of objects that move close to each other for a long time

interval.
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However, previous traditional spatial feature-focused common pattern

mining lacks the aspatial semantics features of trajectories. As mentioned

above, the semantics feature provides opportunities to reveal potential semantic-

level common movements of people, which are useful to specific applications.

Moreover, these aspatial semantics provide trajectories with meaningful back-

ground contextual information that is helpful to understanding people’s tra-

jectory behaviours. This research is discovering the semantic common pat-

terns from trajectories by using spatial, temporal and aspatial semantics

features.

Semantic common pattern mining

Recently, a few studies have presented attempts to consider aspatial seman-

tics information for trajectory data mining reflecting the importance of as-

patial semantic information (Parent et al. 2013). But there is no such study

for mining semantic common patterns from trajectories with consideration of

additional aspatial semantics features. Bermingham and Lee (2015) develop

an ND-TRACLUS method for multiple-dimension trajectory clustering. It

is an extension of TRACLUS method (Lee, Han, and Whang 2007), which

is a well-known spatial trajectory clustering method, to multi-dimensional

trajectories. ND-TRACLUS has an ability to uncover new, previously un-

known, higher dimensional trajectory patterns. This method considers ad-

ditional speed and direction semantics features of the geographic trajectory.

However, it is originally designed for GPS trajectories. The GPS trajectory

data is different from the trajectory generated from geotagged photos as the

latter trajectory data is neither continuous nor regular. Similar to the origi-

nal method, ND-TRACLUS groups similar spatial trajectories according to

a spatio-temporal geographic proximity measure but takes additional speed

and direction aspects into account. It is spatial-trajectory oriented, whilst

our study is both spatial- and aspatial- oriented.
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2.3.3 Trajectory pattern mining

Trajectory patterns consider the typical time information in people’s mo-

bility. A trajectory pattern is a frequent sequence of locations with typical

interval time information between two locations (Giannotti et al. 2007). The

trajectory pattern not only indicates the sequential features of the visited

locations, but also discloses important information about time relations be-

tween locations. The time information in the trajectory pattern shows a

typical time interval from one location to another that frequently occurs in

individual trajectories. As mentioned in (Yoshida et al. 2000), the interval

time provides people with information of the “specific time after” (a period)

whilst sequential pattern without interval time only tells “after” (a succes-

sion in time), and the order information of locations in the sequence. This

interval time included patterns useful to understanding of human movement.

It provides the important time information about when the locations are

visited.

Mining frequent sequential patterns with interval time annotations has

been studied for transactional sequence dataset in the recent decades. Yoshida

et al. (2000) presented an early investigation in data mining frequent se-

quential patterns including time intervals, named delta patterns, from mar-

ket purchasing data. A delta pattern is an ordered list of item sets with

the time intervals between two neighbouring item sets. Each time interval

is a range including several values. Vautier, Cordier, and Quiniou (2005)

also extracted sequential patterns with time intervals from events sequences.

They call the interval times “chronicles”. Unlike (Yoshida et al. 2000), the

chronicles can be intervals with negative bounds. Similarly, Chen, Chiang,

and Ko (2003) propose a method to extract time-interval sequential pat-

terns from purchasing datasets. These patterns reveal not only the order of

items purchased, but also the time intervals between successive items. Hirate

and Yamana (2006) discovered sequential patterns with time intervals from

real earthquake events, demonstrating that the time-integrated patterns are
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more useful than conventional sequential patterns without time information.

Giannotti, Nanni, and Pedreschi (2006) proposed a prefix-projection-based

algorithm to mine the temporally annotated sequences, giving a sequential

pattern with typical transition time.

Traditional trajectory pattern mining

Several investigations have been undertaken into mining the time-annotated

trajectory patterns from geographic spatio-temporal trajectories. Giannotti

et al. (2007) first extracted spatial location sequential patterns with tem-

poral relations between locations from trajectory data. They proposed the

trajectory pattern mining (TPM) method for mining trajectory patterns.

Later, Lee, Chen, and Ip (2009) proposed a graph-based method to find the

frequent trajectory patterns from trajectories. The method refers spatial

points to square spatial space and builds graph for trajectories with ver-

tex as the label of spatial location. The trajectory patterns – sequences of

locations with time spans – are then generated with a condition of max-

imum time-span threshold. Focusing on a different temporal aspect, Kang

and Yong (2010) extracted frequent spatio-temporal patterns with a duration

time spent in the spatial location from trajectories. The method first finds

spatio-temporal regions in a spatio-temporal 3-D space, and then mines fre-

quent spatio-temporal patterns based on a prefix-projection approach from

the sequences of these regions.

Few studies have found the time-interval-enhanced trajectory patterns

from trajectories of online geotagged photo data. Cai et al. (2014) ex-

tracted people’s trajectory patterns from geotagged photos by using the TPM

method with an advanced RoI mining method. An RoI shows a dense region

that many trajectories visit. The extracted trajectory patterns show how

people collectively visit sequences of RoIs, and the popular transition times

between two neighbouring RoIs. Arase et al. (2010) detected people’s trips

from geotagged photos. They model people’s trip sequences based on geo-
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graphic information from photos and then mine the frequent visit sequences

of cities and the typical duration between two consecutive cities.

These previous studies explore traditional trajectory pattern mining that

mainly focuses on spatial features of trajectories. The extracted spatial

trajectory patterns provide order information of visited locations in the se-

quence, the interval time information and spatial information of movement.

However, these spatial patterns are not able to provide meaningful seman-

tics information. Parent et al. (2013) emphasized the importance of aspatial

semantic information in trajectory data mining. The aspatial semantics in-

formation was recently considered for trajectory analysis to reflect the impor-

tance of aspatial semantic information (Ying et al. 2011; Wang et al. 2013).

For trajectory patterns, the traditional spatial feature-only methods could

not trigger the application background semantic-level behaviour of people’s

movement patterns. And these spatial-geometric methods are not specific

for semantic trajectory patterns. This study, however, considers the aspatial

semantics feature of trajectory to extract patterns with both semantic and

temporal features.

Semantic trajectory pattern mining

The main aim of semantic trajectory mining is to provide applications with

semantic knowledge about movement, going beyond geographic-feature-only

trajectories. Recently, some research (Chen, Kuo, and Peng 2015; Chen

and Chiang 2016) attempts to extend PrefixSpan to incorporate seman-

tics and time information by transforming trajectory sequences into sym-

bolised sequences before using PrefixSpan. However, the transformation of

spatio-temporal trajectories into symbolised sequences can mask off impor-

tant spatio-temporal trajectory patterns, and these studies do not consider

various spatial and aspatial semantic databases as we investigate in this

study. The task of semantic trajectory pattern mining takes into account

time information to extract semantic patterns, which are sequences of se-
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mantic stops with typical interval time between stops.

2.3.4 Comparisons of geotagged photo-based trajecto-

ries and GPS-based trajectories

In the trajectory data mining area, many research studies have been done

for GPS-related trajectory data, due to the increasing prevalence of GPS de-

vices and fast growing availability of trajectory data. Some of these studies

have been discussed above. In particularly, Zheng et al. (2009) mined the

interesting locations and travel sequences from GPS trajectories. Lee, Han,

and Whang (2007) developed a partition-and-group framework in which tra-

jectories are partitioned into a set of quasi-linear segments and DBSCAN

algorithm is applied to cluster these segments to find the common sub-

trajectories. Giannotti et al. (2007) presented a trajectory pattern mining

algorithm to extract frequent movement patterns, which are the sequences

of places visited by different objects with similar time intervals. Kang and

Yong (2010) proposed a method to find spatio-temporal trajectory patterns

by partitioning trajectories into segments and clustering the segments.

(a) Geotagged photo trajectory (b) GPS trajectory

Figure 2.10: Examples of geotagged photo-based trajectory data and GPS-

based trajectory data.

Though various approaches have been proposed and applied on GPS-

related data to extract trajectory patterns, we cannot directly adopt those

methodologies to analyse the trajectory data of online geotagged photo data,

due to two main reasons. The first reason is the significant difference in

features between GPS log data and geotagged photo data. GPS logging
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Table 2.1: Comparisons of characteristics for geotagged photos data and GPS

data.

Geotagged photos GPS

Characteristics

• Manual disclosure

of location

• Irregular recording

• Automatic captur-

ing of trace

• Regular recording

Characteristics of

trajectory data

1. Trajectory in geo-

tagged photos can

only show the order

of positions visited

2. Spatial information

between two con-

nected points in in-

dividual trajectory

can be non-closed

3. Temporal informa-

tion is irregular

1. Trajectory in GPS

can illustrate the de-

tail of route the ob-

ject is taking

2. Spatial information

between two con-

nected points in in-

dividual trajectory

is closed

3. Temporal informa-

tion is regular
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devices can record the movement continuously, while trajectories generated

from geotagged photo data only contain sporadic spatial and temporal in-

formation. Figure 2.10 shows examples of trajectory data generated from

geotagged photos and GPS-related data in Figure 2.10 (a) and Figure 2.10

(b), respectively. Table 2.1 summarises the main differences between the spa-

tial features, temporal features, size of points and techniques for processing

trajectories from the two data sources. The second reason is the difference

in dimensions and features of trajectory that the methods focus on. Previ-

ous methods are designed for traditional spatial geometric feature trajectory

analysis whilst our study considers additional aspatial semantics features of

trajectory. Therefore, those techniques originally designed for and used in

GPS log data mining cannot be directly applied to this research project. For

these two reasons, the initial goal of this project aims to propose a data

mining framework to analyse geotagged photo-generated trajectories and to

extract semantic trajectory behavioural patterns.

2.4 Travel itinerary recommender system

Building travel recommender systems using the vast online geotagged datasets

is another popular research area. Recommendation systems aim to assist

people with their travel planning. Online social media data plays an in-

creasingly important role as information sources for travellers (Xiang and

Gretzel 2010). Especially, the geographic information-annotated data con-

tains rich experience data about destinations. The previous trajectory data

formed from geotagged data also provided information on movement during

travel. Using online data to build applications for travel information search

and retrieval is one important research area (Xiang and Gretzel 2010). These

applications make people search for travel information from the huge amount

of online travel experiences of people who have already visited the locations.

The recommender system research community focuses on building a use-
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ful recommendation tool and application that aims to suggest products and

provide users with information to facilitate their decision-making processes

(Schafer, Konstan, and Riedl 2001). A popular travel recommender system

gives location-focused recommendations that provide people with assistance

on ways to travel to the destination, including location recommendations,

route recommendations and itinerary recommendations. These recommen-

dations suggest where to go and what to visit, offering the sequential routes

and useful time information.

Location recommender systems suggest to travellers the best locations in

the destinations. Personalised recommendation considers user’s preferences

and recommends locations that match user’s interests learned from their on-

line travel history. Popescu and Grefenstette (2011) recommended landmarks

to users based on destinations that had been visited by similar users, who are

measured based on the landmark histories. Yamasaki, Gallagher, and Chen

(2013) recommended personalised landmarks to users in inter-city. Shi et

al. (2011) measured the similarity between users by using an additional cate-

gory of landmarks. Chen, Cheng, and Hsu (2013) recommended personalised

next destinations to users based on their gender, age, and travel group types,

which are detected from the photo image features. Majid et al. (2013), and

Memon et al. (2015) recommended personalised tourist locations, which are

relevant to the temporal and weather context environments. There are sev-

eral other services considered in various location recommender systems. One

function is context-aware recommendation. This kind of system generates

more appropriate locations that are relevant to the environmental context

of the travel (Adomavicius and Tuzhilin 2015), like spatial, temporal and

weather conditions. Temporal context of movements is about the time the

user visits a destination. Some popular temporal contexts used are monthly,

weekly and daily. Van Canneyt et al. (2011) recommended popular POIs

in the specific time context. Similarity, Bhargava et al. (2015) considered

the time context in addition to recommendations of location and activities.
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Yamasaki, Gallagher, and Chen (2013) considered the seasonal and temporal

contexts to recommend the next landmarks in intra-city travel. Majid et al.

(2013), and Memon et al. (2015) recommended personalised tourist locations

which are relevant to the temporal and weather conditions. Another func-

tion is considering semantics information of locations, especially the type or

category of location. Shi et al. (2011) measured the similarity between users

by using an additional category of landmarks.

A good route recommender system suggests to people specific travel

routes for appropriate locations. The travel route and visit sequence of

locations provide useful information about visit order of these places and

an appropriate integrated route. Okuyama and Yanai (2013) recommended

travel routes to the target destinations that were reconstructed from trajec-

tory data formed from geotagged photos. Sun et al. (2015) recommended

most popular landmarks, with the best travel routings between the land-

marks based on road network. However, these route recommendations lack

time information. Time is significant information for travellers, telling people

how much time they will spend. It will provide better advice to people who

have predefined travel duration time and let them plan their travel itinerary

better. This study is to recommend routes with interval time information

between stops: the itinerary recommendation.

2.4.1 Traditional itinerary recommender system

Itinerary recommender systems recommend movement routes with important

associated travel time information to help people plan a travel itinerary.

These recommender systems provide appropriate itineraries, in which the

total cost time of the itinerary fits the time budget constraint that users

pre-define. One kind of time information is the typical transit time between

neighbourhood locations of the route. Kurashima et al. (2013) generated

sequences of locations with both stay time and transit time. Lu et al. (2010)

and Lim et al. (2015) generated recommendations of sequences of locations
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with stay times at each location. Both methods built a graph-based travel

sequence model and then generated appropriate candidate itineraries from

the model. De Choudhury et al. (2010) generated sequence of locations with

both stay time and transit time.

These previous studies consider various users’ travel requirements and

constraints, like travel duration, distance, and recommend sequence of spe-

cific geographic spatial locations. But, they are lack of function for dealing

with requirement of semantic type of place that users want to visit. Rather

than specific geographical locations, travellers who plan to visit an unfamil-

iar area where they do not know any specific places, are still likely to want

to visit some place types in certain weather conditions, and to customise

these requirements as a constraint, like beach in good weather, restaurant in

any weather, and cultural park in wet weather. Previous itinerary systems

are lack of consideration of the semantic query. Symeonidis, Ntempos, and

Manolopoulos (2014) considered an additional semantic category of land-

mark, but they focused on landmark recommendation. This study considers

users’ semantic type-of-place query for itinerary recommendations.

2.4.2 Semantic itinerary recommender system

A higher semantic-level itinerary is also important for users’ travel planning.

Chen et al. (2011) and Gionis et al. (2014) let users customise the category

visit sequence they preferred, and then generated specific geographic routes

that matched the sequence and were appropriate to users’ actual situation,

including their actual position. These studies prove that the higher semantic-

level itinerary is useful. But there is no such work to recommend a higher

semantic-level itinerary to users. Previous itinerary recommender systems

produce final specific geographic itineraries that could not solve the semantic-

level itinerary problem. This study focuses on semantic-level itinerary rec-

ommendations. Moreover, our system produces an itinerary with additional

useful recommendations for rich and meaningful contextual information.
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2.5 Summary

An enormous amount of online social media data provides a data-rich envi-

ronment available to various research communities for specific research pur-

poses and applications. In particular, the online user-generated geographic

information, geotagged social data, becomes a potential geographic data

repository for understanding of objects in the physical geographic world.

Several studies have analysed the online geographic information referenced

social data to learn geographic objects and people’s behaviours, including

reconstructions of maps, spatial hotspot detection, and detection of PoIs.

Unlike past work, this study aims to extract people’s dynamic semantic tra-

jectory patterns from the geotagged photo data.

Some studies have discovered people’s dynamic movement behaviours and

patterns from geotagged photo data, such as people’s trajectory flow in cities

(Girardin et al. 2008a). As listed in Table 2.2, this study will extract three

types of mobility patterns from geotagged photos: sequential patterns, com-

mon patterns and trajectory patterns. SPM is to extract the visit sequences

of stops that frequently occur in people’s trajectories. CTP is to mine the

common trajectory tracks of a group of people who have similar trajectories.

TPM is to find out the frequent visit sequences of stops with important inter-

val time information between consecutive stops. These patterns help domain

experts understand people’s movement behaviours including common path

and time information. As the online data contains rich travel experiences,

travel recommender system communities try to use these repositories to sug-

gest itineraries to users and assist users with travel planning. An itinerary is

a visit sequence of stops with transition time information between two stops.

IRS provides useful suggestions to travellers about travel routes and time

planning.

However, there are two important problems motivating this study. One

motivation is a comprehensive framework for a set of important processes.
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Table 2.2: Comparison of literatures.

Important features Important functions

spatial temporal aspatial SPM CTP TPM IRS

Traditional

SPM
yes yes yes

Semantic

SPM
yes yes yes yes

Traditional

CTP
yes yes yes

Semantic

CTP
yes yes yes yes

Traditional

TPM
yes yes yes

Semantic

TPM
yes yes yes yes

Traditional

IRS
yes yes yes

Semantic

IRS
yes yes yes yes

Our

proposed

framework

yes yes yes yes yes yes yes
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There are four tasks, including analysis of three kinds of mobility patterns

and construction of the itinerary recommender system. There were studies

for each of these tasks, but no framework proposed to undertaken all four

tasks. The other motivation is consideration of three important features

for geotagged photos: spatial (since they are geotagged), temporal (since

they are time stamped) and aspatial (semantic metadata to add additional

information to trajectories). Whilst there were some studies considering

spatio-temporal aspects, there was nothing considering these three together

for geotagged photos. Aspatial semantics features are important in trajec-

tory analysis for many applications. Table 2.2 summarises and highlights

the differences between our study and past studies in considerations of these

important three features and functions. In summary, there were some studies

but none satisfies the three important features, and four important functions.

The aim of this thesis is to propose a semantic trajectory framework for geo-

tagged photos considering three important features – spatial, temporal and

aspatial – and also providing four important functions for decision-making.
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Overall framework

This chapter introduces the overall framework proposed in this thesis. It

first summarises the framework for mining semantic trajectory behavioural

patterns from online geotagged photos in Chapter 3.1. The photo dataset col-

lection used in this study is introduced in Chapter 3.2. This research uses two

external aspatial semantics information databases for semantics information

enrichment, which are described in Chapter 3.3. Finally, Chapter 3.4 lists

and introduces the general definitions and terms used in this thesis.

3.1 Framework

This thesis proposes a systematic data mining framework for extracting peo-

ple’s dynamic trajectory behavioural patterns from geotagged photos. Enor-

mous amounts of publicly available online photo data, which are already

referenced with geographic information, provide a movement data repository

of great potential to various research communities and applications. This

research study aims to mine people’s movement patterns from the geotagged

photos, as shown in Figure 1.1 in Chapter 1.3. A methodical framework is

proposed in this thesis to achieve the aim. Overall, the framework, shown in

Figure 3.1, extracts people’s collective semantic trajectory behavioural pat-
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terns that show their mobility behaviours in semantic level and are enriched

with meaningful semantics information. This data is then used to build a

system to recommend travel itineraries to users based on the extracted tra-

jectory patterns. This framework contains four main functions that solve the

four specific research aims: mining meaningful semantic sequential patterns,

discovering understandable semantic common patterns, finding meaningful

semantic trajectory patterns and building the itinerary recommender system

using extracted patterns.

Figure 3.1: Overall framework of proposed semantic data mining.

Figure 3.2 presents the detailed main framework proposed in this thesis.

The main framework contains six modules linking to each of six objectives:

(1) building raw trajectories from photo data; (2) building semantic trajecto-

ries; (3) mining semantic sequential patterns; (4) discovering semantic com-

mon patterns; (5) extracting semantic trajectory patterns; and (6) building

an itinerary recommender system. In summary, this research collects photo

data from Flickr website, which is a popular photo-sharing application. From

the photo data, we build people’s geographic trajectories and then generate

semantic trajectories. The semantic trajectories are generated using an exter-

nal aspatial semantics database to enhance the trajectories with application

contextual aspatial semantics. We then extract three kinds of trajectory

patterns from the semantic trajectories: semantic sequential patterns, se-

mantic common patterns and semantic trajectory patterns. Finally, we build

a semantic itinerary recommender system based on the extracted semantic

trajectory patterns. A more detailed summary of each module follows.
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Figure 3.2: Main framework of proposed semantic data mining.

3.1.1 Modules of framework

Building trajectories

The first module in the framework is to build people’s trajectories from geo-

tagged photos. The trajectory data of geotagged photos are the focused data

in this research study. We extract people’s mobility patterns from the trajec-

tory data. A geotagged photo indicates the spatial point and time stamp of a

visit. Given a set of geotagged photos from a single photo-taker, we identify

a raw geographic trajectory. Each raw trajectory is represented as a sequence

of spatial points with time stamps that show the dynamic spatio-temporal

mobility. The detailed process of building trajectory data is presented in

Chapter 4.
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Building semantic trajectories

The second module is to build people’s semantic trajectories. The raw geo-

graphic trajectory data contains only spatial and temporal information. In

this study, we focus on mining people’s meaningful semantically annotated

mobility patterns. To find such patterns, we enrich raw spatial trajecto-

ries with additional contextual aspatial semantics information. Later, we

use this trajectory data with spatial, temporal and aspatial semantics fea-

tures to discover the semantic patterns. We generate semantic trajectories

from raw trajectories using external aspatial semantics databases for seman-

tic enrichment. A semantic trajectory is defined as a sequence of stops with

contextual aspatial semantic annotations. In this study, a stop is a RoI that

many trajectories passed through. We annotate each RoI with basic back-

ground contextual aspatial semantics, which is the type-of-place annotation

of geo-object in the RoI in this study. In addition, we enrich stops with

multiple extra contextual environmental semantics including spatial, tempo-

ral and weather conditions. Finally, the format of the semantic trajectory

is a sequence of type-of-place annotations with a set of additional environ-

mental semantics. We generate semantic trajectories from raw trajectories

by using the proposed semantic RoI mining algorithm and a further seman-

tics enrichment process. Detailed information about generating the semantic

trajectories is set out in Chapter 4.

Semantic sequential pattern mining

Semantic sequential pattern mining is the first main function of the frame-

work. The function is to extract the semantic sequential patterns from the

semantic trajectories. A sequential pattern is a frequent sequence of vis-

ited stops that is shared by a group of people. At the basic semantic level, a

semantic sequential pattern is a sequence of basic type-of-place semantics an-

notations. This basic pattern shows people’s sequential trajectory behaviour
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in visiting types of places. We find not only basic patterns, which contain

only type-of-place semantics, but also multi-dimensional sequential patterns,

which are basic patterns with sets of additional semantics. The study of

semantic sequential pattern mining is further introduced in Chapter 4.

Semantic common pattern mining

The second main function of the framework is semantic common pattern

mining. This task is to discover, from the semantic trajectories, people’s

similar trajectories that show a common track pattern. At the semantic level,

a semantic common pattern is a semantic trajectory compiled from a group of

similar trajectories undertaken by different people. A common pattern refers

to a cluster of similar trajectories. This study proposes a semantic trajectory

clustering approach to disclose all the semantic common patterns in people’s

semantic trajectories. Specific content on mining semantic common patterns

is presented in Chapter 5.

Semantic trajectory pattern mining

The third task is mining frequent semantic trajectory patterns. A set of tra-

jectories may share the property of visiting the same sequence of stops with

similar interval times. This property shows a frequent trajectory pattern of

people. Trajectory patterns consider the important interval time knowledge

that indicates time relations between stops. A basic semantic trajectory pat-

tern is a sequence of stops integrated with type-of-place annotations with

interval time between two stops. We find out both basic semantic trajectory

patterns and multi-dimensional semantic trajectory patterns, which are ba-

sic semantic trajectory patterns with sets of additional semantics. Chapter

6 describes thoroughly the study of semantic trajectory pattern mining.
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Semantic itinerary recommender system

Finally, the framework builds a semantic itinerary recommender system to

assist people with travel planning based on extracted semantic trajectory

patterns. The system recommends travel itineraries as a route of stops with

typical interval time information. The recommender system is developed as

an offline–online structure. In the offline component, frequent semantic tra-

jectory patterns in previous photo-takers are extracted. The trajectory pat-

terns represent the frequent stop visit sequences and the typical interval time

between stops. In the online component, the system receives users’ queries

and generates recommendations using the trajectory patterns. This itinerary

recommender system also enables users to customise a set of preferred types

of place and the total travel duration constraint. When someone plans to visit

one destination, given a set of required types of places and travel duration,

this system produces and lists possible itineraries with multiple additional

valuable contextual environmental information. Details about building the

semantic itinerary recommender system are presented in Chapter 7.

3.2 Photo dataset collection

This research study uses geotagged photo data collected from Flickr photo-

sharing platform. Flickr is one of the best-known photo-hosting websites.

Users share their stories with photos, and add other relevant information

using tags (folksonomy). In particular, Flickr has been a popular way of

communication for tourists to share their travelling stories and moments with

their personal links and social networks. Flickr also works with online maps

such as OpenStreetMap to provide geo-spatial references. Michel (2017)

reported in January 2017 that by 2016 Flickr had a total 5.87 billion public

photos and 1.68 million public photos were uploaded daily, on average, in

2016.

We collect photo data using the Flickr API. The Flickr API allows devel-
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opers to access and collect Flickr data, and is available for non-commercial

use by outside developers. In particular, we use flickrpy API kit1, a Python

library for the Flickr API, to collect photo data and the metadata associated.

We use the ‘photo.search’ API method to query photo data. In this study,

we set up parameter “bbox”, a comma-delimited list of four values defining

the bounding box of the area that will be searched, and the parameters “min

taken data” and “max taken data”, which are minimum and maximum dates

when photos were taken, This search method returns a list of photos in the

search area and time period. Returned photo data contains some metadata,

including upload date, taken date, latitude, longitude, owner id, owner name,

place id, tags, title, and description, etc.

This study uses the data of user id, photo id, latitude, longitude and

taken-time of photos. The format of photo data used in this study is shown

in Table 3.1 with a sample photo data. A user id is a user ID of the photo

owner assigned by Flickr. A photo id is the id of a photo. Latitude and

longitude are the geographic coordinates a photo referenced. Time is the

time stamp of when a photo was taken.

Table 3.1: Format of photo data for this study.

user id photo id latitude longitude time

67908321@N02 8703168606 -25.286436 152.883521
2014-05-13

17:20:35

The photo taken time information used in this study is captured directly

from the Flickr photo metadata. The time information is set by either the

photo taking device’s time or the photo upload time. Users’ photo taking

devices, such as cameras or mobile phones, could be set to their own time

zones where the users are from, and the time on their photo taking devices

may not be adjusted correctly to local time. That is, the time of photo could

1https://code.google.com/archive/p/flickrpy/
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not be the correct local time of the visit. Since this study mainly focuses on

the pattern mining framework and methods for finding semantic patterns,

our pre-processing phase does not correct the time information in different

time zones. However, we leave this one as one of our future work.

This study collects photos in Queensland, Australia, from 1 April 2014 to

30 March 2015. Australia is one of the biggest tourist destination countries in

the world. Its beautiful scenery and competitive industries attract numerous

people to travel there. Queensland is a state of many landscapes that range

from sunny tropical coastal areas, through lush rainforests to dry inland

areas. Queensland is blessed by natural beauty, especially along the eastern

coastline and it is home to many well-known amusement parks. The tourism

industry plays a key role in the economies of regional areas and supports

thousands of small businesses. This study analyses the photo data to mine

people’s trajectory patterns in Queensland, Australia, providing information

on people’s movement behaviours to tourism-related organisations.

As the raw Flickr geotagged photo dataset contains noise and redundancy,

data cleaning is required to remove faults and redundancy from the dataset.

Since the temporal dimension is an important factor for trajectory, it is cru-

cial to ensure that the data has the correct time attached, thus stripping

incorrect time annotations from the photo dataset is an important clean-

ing process. After pre-processing, we have a total of 64,733 cleaned photo

records. Figure 3.3 presents the photo points on NASA earth. Most of the

photos are located on the coastlines, where the big cities are.

We classify the photo-takers into tourists and non-tourists based on the

time span of trajectory. A geotagged photo is associated with geographic lo-

cation and time information, and all photos when connected chronologically

result in a spatio-temporal trajectory. The time span of a trajectory is calcu-

lated by using the time gap between the last photo and the first photo. We

consider a photo-taker as a tourist if the time span of trajectory is less than

31 days, otherwise, this photo-taker is defined as a non-tourist. However,
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Figure 3.3: Flickr photo points in study region.

users are able to reset this value for exploratory data analysis.

3.3 Aspatial semantics databases

This study requires external aspatial semantics information databases to en-

rich trajectories with contextual semantic annotations. One semantics in-

formation database is the geographic information database. This database

is used to annotate the type-of-place semantics to a spatial place. Another

database is weather observation information database. It is used to annotate

the weather condition environmental semantics in which each visit to a place

occurred.

Background geographic information database is collected from GeoN-

ames2. The GeoNames geographical database covers all countries and con-

tains over ten million place names that are available for download freely. It

2Geonames: http://www.geonames.org/
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consists of over 9 million unique features, and all features are categorised

into one of nine feature classes and further sub-categorised into one of 645

feature codes. This study uses the feature codes as the type-of-place seman-

tics information for trajectories. In particular, this work uses the GeoNames

Australia Gazetteer database. We use the main ‘geoname’ table, including

fields of latitude, longitude and feature code. The GeoNames Australia ge-

ographical database is used to do the reverse geocoding that receives the

feature code of the nearest place based on queried geographic coordinates.

Reverse geocoding technique is the process of back coding of a point lo-

cation (latitude, longitude) to a physical place. However, there are some

possible limitations of the proposed approach using reverse geocoding. One

limitation is the multiple geo-objects retrieval in crowded urban areas. That

is, several places could have the same nearest distance to a point location,

and the reverse geocoding technique could return all these places. Another

possible limitation is the uncertain geo-objects retrieval due to spatial uncer-

tainty (Goodchild 2008; Zheng 2015). These two are inherent limitations with

reverse coding, and in this study we utilise the first type of place found from

databases in order to overcome these limitations as in other studies (Cao,

Cong, and Jensen 2010).

The weather information database is collected from Bureau of Meteorol-

ogy Australia3. This database contains both an observation stations database

and a daily weather observations database. This study uses only the stations

in Queensland, using data from the stationID, stationName, latitude and

longitude attributes. This study collects the daily weather observations data

for Queensland from 1 April 2014 to 30 March 2015. At last, 121 records are

stored for the station list for Queensland, and 47,949 records of daily weather

observations are collected and stored for Queensland, Australia.

3http://www.bom.gov.au/climate
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3.4 Preliminaries

This section introduces some basic definitions and terms used in this thesis.

This study uses geotagged photo data, and a geotagged photo is associated

with geographic location information and a time stamp. As described in

Chapter 3.2, this study uses the data of user id, photo id, latitude, longitude

and timestamp of photos. A photo data is represented in Definition 3.1.

Definition 3.1 A geotagged photo data is represented as a record of (photo id,

owner id, latitude, longitude, time), where owner id is the id number of the

photo owner, latitude and longitude shows spatial geographic coordinates po-

sition and time shows the timestamp of when the photo was taken.

A photo data points out the location the photo-taker visited. Conse-

quently, a series of photos, connected in time order, show dynamic changes

of location that reflect a person’s spatio-temporal trajectory. A trajectory is

a sequence of geographic points as defined in Definition 3.2.

Definition 3.2 A trajectory, raw geographic trajectory, is a sequence of geo-

graphic points with time information T = 〈(lat1, lon1, t1), (lat2, lon2, t2), · · · ,
(latn, lonn, tn)〉, where (latn, lonn) is the geographical coordinates of a photo

n that shows the visited geographic position, and tn is the corresponding time.

A raw geographic trajectory shows the distribution of geographic sam-

pling points. In the specific geographic space or applications, a trajectory

may pass through a set of specific targeted spatial areas, destinations or geo-

objects. These episodes are considered as the stops in the trajectory. Thus,

the raw trajectory can be transformed into a sequence of stops that provide

a meaningful expression of the movement in specific scenes and applications.

In this study, a stop is defined by a RoI, which is a spatial area that a num-

ber of trajectories visit. An RoI consists of several square grid cells, which

compose a RoI with an approximate and arbitrary shape. So a structured

trajectory is a sequence of RoIs that people have visited.
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Definition 3.3 A RoI is a spatial area, defined as (R id, CELLS) where

R id is the id number of RoI, and CELLS is a set of square cells c and each

cell c has a record of geographic coordinates that points out the specific spatial

position.

Definition 3.4 A structured-trajectory is a sequence of RoIs Structured−T
= 〈 (R id, t1), (R id, t2), · · · , (R id, tm)〉, where R id is the id number of

a visited RoI and tk is the visit time of the kth visited RoI.

A RoI has specific spatial location data, but can also be enriched with

application contextual information, such as data related to the geo-object

in the spatial region. A geo-object is located in the spatial RoI, such as a

PoI, a Chinese restaurant or a gift shop. The type of place presents a basic

category information of the geo-object, like restaurant or shop. The type of

place provides the contextual semantics information in which a visit takes

place. This study defines a semantics-enhanced RoI, named semantic RoI,

as a spatial RoI with basic type-of-place annotation.

Definition 3.5 A semantic RoI (SemRoI) is a spatial RoI with basic type-

of-place annotation of geo-objects SemRoI = (R id, CELLS, Type), Type is

the type of place reference to the geo-object in the spatial area.

A trajectory can be enriched with application contextual data and an-

notations in which such a movement takes place. The semantics-enhanced

trajectory provides more meaningful application-dependent semantics infor-

mation. In the case of adding basic type-of-place annotation, a semantic

trajectory, in this study, is a structured trajectory with basic type-of-place

annotations where spatial data (RoI) is replaced by basic geographic object

information annotations.

Definition 3.6 Basic semantic trajectory is a sequence of place type anno-

tations. basicSemT = 〈(type1, t1), (type2, t2), · · · , (typen,tn)〉, where each

typek is a place type annotation indicating the category of RoIk in the tra-

jectory.
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A trajectory can be further enriched with multiple semantic annotations.

Specifically, besides the place type, a visited RoI can also be tagged with

additional contextual environmental information in which a visit takes place.

For instance, we may enrich RoI with annotations of city name where the

RoI is located, days of the week, and the time period of a day when the visit

occurred. These multiple annotations provide richer semantic descriptions

and meanings about the movement trajectory.

Definition 3.7 Multi-dimensional semantic trajectory (SemT): a sequence

of place type annotations with a set of additional semantics SemT = 〈(SemA0, t0),

· · · , (SemAn, tn)〉, where SemA is semantic annotations of RoI SemA =

(e, V ) where e is the basic semantics, V is a set of additional semantic an-

notations, and t is the time stamp.

This study utilises the multi-dimensional semantic trajectory. We enrich

trajectories with additional city name, day of week, time of day and weather

condition annotations. For brevity, we refer to the final multi-dimensional

semantic trajectory as the “semantic trajectory” in the rest of the thesis.
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Semantic sequential pattern

mining

This chapter presents the study of semantic sequential pattern mining from

geotagged photos. Chapter 4.1 introduces the semantic sequential pattern

mining. In Chapter 4.2, we summarise literature related to our study. We

present previous studies on mining people’s sequential patterns from photo

data, and existing work about modelling and generating semantic trajecto-

ries. Chapter 4.3 describes the problem statement of our semantic sequential

pattern mining. In Chapter 4.4, we provide details of the proposed framework

and method for mining people’s semantic sequential patterns. We develop a

RoI mining method and a sequential pattern mining algorithm to mine se-

quential patterns from multi-dimensional semantic trajectories. Chapter 4.5

shows the experimental evaluations of our proposed method. The conclusion

of this chapter is in Chapter 4.6.

4.1 Introduction

Sequential movement patterns represent the movement sequence of visited

stops (Cao, Mamoulis, and Cheung 2005) that exist in a significant number

62



Chapter 4. Semantic sequential pattern mining

of people’s trajectories. A trajectory presents a time-ordered visit sequence

of locations. It delivers sequential features of a list of visited locations that

provide the temporal order relations between objects. In people’s trajec-

tories, a frequently occurring sequence of locations provides one frequent

trajectory pattern comprised of a set of locations visited together and the

time at which they were visited, thus showing the order of relations between

locations. Massive repositories of online geotagged photos provide opportu-

nities to mine knowledge about people’s trajectory behaviours. Sequential

behaviour of mobility is one type of information that can be obtained from

trajectories. Several studies have investigated the extraction of frequent se-

quential mobility patterns (Kisilevich, Keim, and Rokach 2010; Bermingham

and Lee 2014) from geotagged photos as discussed in Chapter 2.3.1. People’s

trajectories are built and then their sequential trajectory patterns are mined,

including frequent sequential PoI sequences (Kisilevich, Keim, and Rokach

2010) and frequent spatio-temporal RoI sequences (Bermingham and Lee

2014).

However, previous studies of geometric feature only trajectory analysis are

insufficient. Most applications require more semantics information on peo-

ple’s mobility patterns, and past studies lack semantics information. Adding

the type-of-place data, for instance, at the type-of-place semantics level, re-

veals a sequential pattern of visiting the beach first and then going to restau-

rants. This provides useful knowledge of people’s frequent mobility among

different types of place. This type-of-place semantic-level sequential pattern

is more useful to applications that care about human semantic-level move-

ment behaviour than the pattern with only geometric information. Past stud-

ies of mining sequential patterns from geotagged photos lack consideration of

aspatial semantics of trajectory data. Annotating semantics to trajectories

can provide better understanding and more useful information to the re-

sults and enhance some novel unknown knowledge of people’s semantic-level

trajectory behaviours (Parent et al. 2013). This study will analyse aspa-
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tial semantically enhanced trajectories to find people’s frequent sequential

mobility pattern at a semantic level and with meaningful information.

In this chapter, we propose a framework to find semantic sequential pat-

terns from geotagged photos. We use spatial, temporal and aspatial seman-

tics features of trajectories and mine semantic patterns from the aspatial

semantically enhanced trajectories. To generate each semantic trajectory,

we propose a semantic RoI mining method to detect semantic RoIs with

basic place type annotation from raw trajectories in which each semantic

RoI is considered as a stop in the semantic trajectories. We build people’s

semantic trajectories as a sequence of semantic RoIs with sets of additional

environmental semantics. We develop a sequential pattern mining method to

deal with multi-dimensional semantic trajectories to find frequent semantic

sequential patterns. The semantic sequential pattern result of the proposed

method provides more information for understanding human behaviours that

are valuable to various domains, for instance, tourism industry understands

tourists moving among place types at different weather conditions and day

time periods. Interesting RoIs with fine, precise, place type semantics are

found, and sets of useful semantic trajectory patterns are extracted.

4.2 Related work

4.2.1 Sequential pattern mining on trajectory data for

geotagged photos

The standard sequential pattern mining problem is to find all the frequent

sub-sequences whose occurrence frequency in the sequence database is no

less than the given minimum support (Agrawal and Srikant 1995). Cao,

Mamoulis, and Cheung (2005) mined sequential patterns from spatio-temporal

trajectories, that is, to extract frequent sequences of stops from a set of tra-

jectory data. A stop is a spatial region, area or a specific geo-object in the
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area.

Several pioneering studies have investigated mining people’s sequential

mobility patterns from massive online collections of photo data that already

include geographic information (Bermingham and Lee 2014; Kisilevich,

Keim, and Rokach 2010). Knowledge of human frequent sequential patterns

is beneficial to various applications especially tourism (Bermingham and Lee

2014). Kisilevich, Keim, and Rokach (2010) extracted tourists’ frequent visit

sequence of PoIs. Bermingham and Lee (2014) added a temporal dimension

into trajectories to extract spatio-temporal trajectory patterns for tourism

science. All previous studies focus on the analysis of geometric-feature-only

trajectories for spatial-level patterns without considering contextual aspa-

tial semantics information in the trajectory analysis and patterns. However,

most application analyses require raw data complemented with additional

information from the application context (Parent et al. 2013). This study

aims to find out people’s semantic-level sequential patterns by investigating

aspatial semantics-enhanced trajectories.

4.2.2 Analysis of semantic trajectory for geotagged pho-

tos

Alvares et al. (2007a) added semantic geographical information to trajectories

for analysis of mobility pattern with meaningful semantics knowledge. The

semantic trajectory is modelled as a sequence of semantic annotated stops.

Their method for building semantic trajectory was to find spatial stops first

and then annotate semantics to the stops. It is a kind of post-process method

that divides detection of semantic stops into two separate steps. The main

drawback of the post-process method is that the results contain some false

areas thus these areas are actually different place types. This is mainly due

to considering only spatial features without semantics.

To detect spatial stops from trajectories, Giannotti et al. (2007) proposed
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a grid-based RoI mining algorithm. The main strength of grid-based RoI

mining algorithm is its time efficiency. It requires O(m) time where m is

the number of grid cells. But the RoIs found are always rectangular shapes

that could contain false positives. To improve the method, Hio et al. (2013)

proposed a more effective hybrid grid-based RoI mining algorithm that is

able to detect arbitrary shapes of RoIs with almost the same time efficiency.

This study defines a semantic trajectory as a series of semantic RoIs. We

adopt the idea of hybrid grid-based RoI mining algorithm (Hio et al. 2013)

to find spatial RoIs while we apply a new strategy to generate semantic

RoIs. This new strategy is different from the post-process method proposed

in (Alvares et al. 2007a). The proposed algorithm can find semantic RoIs

with fine accurate semantics.

Recently, a few novel studies attempted to investigate mining sequential

patterns from semantic trajectories (Alvares et al. 2007b; Zhang et al. 2014).

Alvares et al. (2007b) discovered place-level stop-move sequence patterns.

More spatial compactness and temporal continuity features are considered

and the fine-grained sequential patterns in semantic trajectories are extracted

in (Zhang et al. 2014). Semantic trajectories in these studies only consider a

single dimension (the spatial dimension) and the methods could not deal with

the multi-dimensional semantic trajectories, in which each RoI has multiple

semantics.

4.2.3 Multi-dimensional sequential pattern mining for

geotagged photos

Multi-dimensional analysis can extract patterns with more information that

are more useful. Pinto et al. (2001) tried a frontier investigation on mining

sequential patterns in multi-dimensional circumstances. They use a single

dimension for item of sequence whilst our study uses multiple dimensions for

item of trajectories. Another kind of study on multi-dimensional sequential
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pattern mining was proposed by (Plantevit et al. 2005). This study intro-

duces jokerised patterns that are not fully instantiated multi dimensional

patterns.

4.3 Problem statement

This section presents the terminologies and problem statement of sequential

pattern mining. As explained in Definition 3.2 in Chapter 3.4, a trajectory

is represented as a sequence of time-ordered geographic points. It shows

people’s movements in a geographic area.

The raw geographic trajectories are then enriched with application-dependent

contextual data to build meaningful, and semantically enhanced trajectories.

A semantic trajectory is a sequence of stops with contextual environmental

annotations. The semantic trajectory indicates people’s movement at the

semantic-level. A detailed definition of semantic trajectory is presented in

Definition 3.7 in Chapter 3.4.

From the semantic trajectories, we aim to find out the sequence of se-

mantic stops that frequently occurred in a density of individual trajectories.

This frequent visit sequence is named semantic sequential pattern. A seman-

tic sequential pattern contains a sequence of semantic elements.

Definition 4.1 A semantic sequential pattern (SemSPattern) is a sequence

of place type annotations with set of additional semantics SemSPattern =

〈(E0), · · · , (En)〉, where E is a multi-dimensional element E = (e, V ) where

e is basic semantics, and V is a set of additional semantic annotations.

When an element contains the basic place type annotations only, SemSPat-

tern will be called basic SemSPattern; when the element is associated with

multiple semantics, SemSPattern will be called multi-dimensional SemSPat-

tern.

Figure 4.1 shows an example of a semantic sequential pattern. It shows

mobility at the basic type-of-place semantics layer. The movement pattern
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starts at a hotel, then goes to a shop, visits a restaurant in the next step

and moves to a park at the end. Figure 4.2 shows an example of a multi-

dimensional semantic sequential pattern. It integrates a basic type-of-place

semantic pattern with additional information of weather and temporal day

type and day time.

Figure 4.1: Example of basic SemSPattern.

Figure 4.2: Example of multi-dimensional SemSPattern.

The determination of a semantic sequential pattern is based on the fre-

quency and support of such patterns, that is, the number of trajectories that

contain the pattern.

In standard sequence mining, a key step is the equality test for matching

two elements of two compared sequences. In our study, it requires matching

the basic type-of-place annotation label and tests for containment of multiple

additional semantics annotations. Specifically, each element of semantic tra-

jectory is multi-dimensional consisting of a place type annotation and a set

of additional annotations. Thus, for two compared elements, the matching

test is not to check the matching. In summary, for semantic trajectories,
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the containment requires that RoIs are matching in dimensions of semantics

that the set of additional semantics of a RoI is full or partial match the set

of semantics of the other RoI, defined as follows:

Definition 4.2 Dimensional containment (�d): Given two semantic tra-

jectories SemT1 = 〈(e′1, V ′1), · · · , (e′m, V
′
m)〉, and SemT2 = 〈(e1, V1), · · · ,

(en, Vn)〉, m ≤ n we say that SemT1 is contained in SemT2, denoted as

SemT1 �d SemT2, if ∀0≤k≤m, e′k = ei, and V ′k ⊆ Vi.

Definition 4.3 Support of a semantic sequential pattern SemSPattern as

supp(SemSPattern) =
|SemT ∗ ∈ D|SemSPattern �d SemT ∗|

|D|
.

Definition 4.4 Semantic sequential pattern mining: Given a database of

input semantic trajectories D, and a minimum support threshold minSup, the

semantic sequential pattern mining problem is to find all frequent semantic

sequential patterns whose support is no less than minSup.

In this study, the problem is to find out all of frequent semantic sequential

patterns from semantic trajectories which are built from a given database of

geotagged photos.

4.4 Semantic SPM framework and methods

Our proposed framework for extracting human semantic sequential patterns

from georeferenced photos, shown in Figure 4.3, consists of three main steps.

First, raw geotagged photos are pre-processed, including data cleaning, and

reconstruction of raw trajectories. The next step is to generate semantic

trajectories from raw trajectories.

Step 2 – the semantic trajectories generating stage – includes two sub-

steps: first semantic RoI mining, and then trajectory transformation and

additional semantics enrichment. Spatial RoIs with place type semantics
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Figure 4.3: Framework for semantic sequential pattern mining.

are extracted from the raw trajectories during the semantic RoI mining sub-

step. Based on these extracted semantic RoIs, those raw trajectories are

then transformed into RoI-based structured trajectories. A structured tra-

jectory is a sequence of RoIs. During this process, place type semantic RoIs

are first used as basic contextual semantics, and then further environmental

semantics, including temporal and weather condition information, are added

to generate multi-dimensional semantic trajectories. To finish, the semantic

sequential pattern mining algorithm is applied to the semantic trajectories

to find frequent semantic sequential patterns.

4.4.1 Building trajectories

In the first step, we reconstruct people’s raw trajectories from geotagged pho-

tos. As presented in Chapter 3.2, photo data are cleaned and redundancies

are removed in the pre-processing process. A record of photo data includes

these fields: owner id, latitude, longitude and time. We group photos by

photo owner id as each photo-taker has several photos. For each photo-taker,

geotagged photos are ordered by timestamp and then connected to form a
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trajectory. Each element in the trajectory is a photo data record including

latitude and longitude, which refer to the spatial location, and timestamp

of the photo, which refers to time information. Trajectories with more than

two points are considered useful in this research.

4.4.2 Semantic RoI mining method

We then generate people’s semantic trajectories. This process includes min-

ing semantic RoIs from trajectories, and additional semantics enrichment

using external aspatial semantics databases. We describe semantic RoI min-

ing methods in this part.

The core concept behind the semantic RoI mining is that areas with place

type information that contain a high density of moving entities are both inter-

esting and significant. We apply the hybrid grid-based RoI mining algorithm

to calculate dense spatial cells and generates RoI (Cai et al. 2014). To ob-

tain semantic RoIs, we enrich these spatial areas with place type contextual

semantics. Two methods are proposed to find the semantic RoIs: a post-

process method (Figure 4.4 ) and an inter-process method (Figure 4.5). The

post-process method first finds spatial RoIs and then annotates them with

place type. The inter-process method works by generating semantic RoIs

directly from the semantic dense cell. This post-process method generates

loosely coupled semantic RoIs, and also could produce false positive RoIs

whilst the inter-process method generates tightly coupled semantic RoIs.

Post-process method

The post-process method contains two main steps. At the first step, the

hybrid grid-based RoI mining algorithm is applied to raw trajectory datasets

to find spatial RoIs. At the next step, spatial RoIs are assigned with place

type semantics by using the place type of its nearest PoI searched from a

geographic information database. A detected spatial RoI has a record of all
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the points within it. At first, for each point, we annotate it with place name

and place type. To do the annotating work, we search for the nearest place

to the point from a background geographic information database. The PoI

geographic information database is used in this research. And, the reverse

geocoding technique is used to search for the nearest place that corresponds

to the place information for a given latitude and longitude. After all points

inside the spatial RoI have been annotated with place type, the spatial RoI

has a list of annotations of place types. Next, we calculate the most frequent

annotation, of place type for the spatial RoI by applying Term Frequency-

Inverse Document Frequency (TF-IDF) method to the list of annotations.

The most frequent place type is considered the place type of the RoI. RoIs

with place type annotation are semantic RoIs.

Figure 4.4: Post-process semantic RoI mining method.

The post-process semantic RoI mining algorithm extracts semantic RoIs

from raw trajectories. However, the post-processed semantic RoIs may con-

tain some false areas that are different place types. In particular, considering

only spatial features, some neighbouring dense spatial cells are merged into

a spatial RoI and assigned the same place type at the post-processing step.

This becomes invalid when those dense cells are actually different place types.

Moreover, these different place type cells need to be considered as different

semantic RoIs, but the post-process method can only find a single big RoI

from neighbouring dense cells, even if they are all different place types.
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Inter-process method

The inter-process method fixes the false area problem that post-process

method has. Compared to the post-process method, this approach integrates

the semantics discovery process into the intermediate part of the grid-based

RoI mining algorithm. This approach is a derivative algorithm from the hy-

brid grid-based RoI mining algorithm. It includes three steps. First, dense

cells are computed. Second, using the same technique that is used to find

semantic RoIs in the post-process method, we calculate semantics for the

dense cells. Third, we merge neighbouring dense semantic cells to construct

semantic RoIs. From this process, different place type areas can be found as

several independent semantic RoIs.

Figure 4.5: Inter-process semantic RoI mining method.

4.4.3 Additional semantics enrichment

After semantic RoI mining, raw trajectories are then transformed into multi-

dimensional semantic trajectories. The transformation is completed in two

steps which are generating single-dimensional semantic trajectories and an-

notating multiple additional semantics. Firstly, based on the semantic RoIs,

the result of the inter-process method, a raw trajectory is transformed into

a sequence of semantic RoIs called a single-dimensional semantic trajectory.

These semantic RoIs contain only place type semantics. Then, in the sec-

ond step, RoIs are enriched with temporal and weather condition, and be-
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come multi-dimensional RoIs. At last, semantic trajectories become multi-

dimensional.

First, RoIs are enriched with two temporal features (day type and day

time) based on their timestamp values. For day type, one RoI’s visit time is

converted into the day of week, and it is then grouped into weekday type or

weekend type. For day time, based on the RoI’s timestamp, the hour time

is found, and it is can then be grouped into different temporal concepts as

defined in Table 4.1

Table 4.1: Time of day concepts for this research.

Time period (12h) Context concept

2:00am - 6:59am Dawn

7:00am - 11:59am Morning

12:00pm - 5:59pm Afternoon

6:00pm - 9:59pm Evening

10:00pm - 1:59am Midnight

Then RoIs are enriched with weather condition features based on their

geographical location and timestamp values. We use daily weather obser-

vation databases to query climate information. At first, based on the RoI’s

geographical location value, we find the nearest observation station. Using

the observation station found and the RoI’s timestamp value, we query the

rainfall and temperature values from the daily weather observation database.

Based on the rainfall and temperature, the weather condition is calculated

and added to the RoIs.

At the end of this process, raw trajectories are transformed into semantic

trajectories that include basic type-of-place semantics and additional tempo-

ral and weather condition information.
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4.4.4 Semantic sequential pattern mining

This step finds semantic sequential patterns from the multi-dimensional se-

mantic trajectories. After the semantic trajectories have been converted from

raw trajectories, our sequential pattern mining method is then applied to the

semantic trajectories. The main method used for the sequential pattern min-

ing in this step is based on the PrefixSpan algorithm (Han et al. 2001), in

conjunction with the BUC algorithm (Beyer and Ramakrishnan 1999).

The PrefixSpan algorithm is used to find frequent single-dimensional

items and frequent single–dimensional item sequences. The BUC algorithm is

used to find frequent multi-dimensional value combinations for each frequent

single item. During the PrefixSpan algorithm process, when a frequent single-

dimensional item is found, values of its multiple dimensions are collected as

a value tuple. For all the sequences containing the item, all the item value

tuples are obtained and used to create a dimension value database. Then,

the BUC algorithm is applied to the dimension value database to find fre-

quent value combinations. Each value combination and the item composes a

frequent multi-dimensional item. Each frequent multi-dimensional item is a

1-length prefix in this current recursion. Based on the dimension combina-

tion, these new 1-length prefixes are added to the previous prefixes, which are

received from the last recursion, to generate new multi-dimensional prefixes.

These new multi-dimensional prefixes are then sent to the next recursion as

parameters. As the PrefixSpan algorithm runs recursively, multi-dimensional

sequences are extended continuously. At last, all the different length, fre-

quent multi-dimensional sequences are found. Benefits of the BUC algo-

rithm and semantic sequential pattern mining algorithm include their ability

to handle sequences with multi-dimensional items and to find frequent multi-

dimensional sequential patterns.

Example 1 A level 1 projection p1. Basic semantics is type of place, and

3 additional semantics are day time, day type and weather condition. Existing
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prefix is: Restaurant; three multi-dimensional prefixes are Restaurant[afternoon],

Restaurant[weekday] and Restaurant[morning][rainy].

1. There is a newly found frequent basic item: Park. There are three se-

quences that contain item Park and the three involved item are

I1 : Park[morning][weekend][clear], I2 : Park[morning][weekday][rainy] and

I3 : Park[afternoon][weekend][clear] respectively.

2. Start to find frequent multi-dimensional item for Park.

1) Collecting initial semantics values and creating value matrix.

a. morning, weekend, clear;

b. morning, weekday, rainy;

c. afternoon, weekend, clear.

2) Applying the BUC algorithm on value matrix. The results are four

frequent combinations of values: {[morning]},{[weekend]}, {[clear]}, and

{[weekend][clear]}.
3) frequent multi-dimensional items are: Park[morning], Park[weekend],

Park[clear], Park[weekend][clear].

3. Generating new extended level 2 projection p2 with basic prefix:

Restaurant → Park. There are two multi-dimensional prefixes:

a)(dimension: day time): Restaurant[afternoon] → Park[morning];

b)(dimension: day type): Restaurant[weekday] → Park[weekend].

Example 1 shows the process of generating projection steps. For a 1st

level projection database, a basic prefix is Restaurant and the other three

multi-dimensional prefixes with frequent dimensions day time, day type and

weather condition, respectively. In the first step, we found a frequent item

Park. In the second step, we are going to find multi-dimensional items. By

applying the BUC algorithm to the initial value set of three additional se-
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mantics, we obtain four frequent values of dimension combinations: value

morning for day time dimension; value weekend for day type dimension;

value clear for weather condition dimension; and value weekend and clear

for combination of day type and weather condition dimensions. In the third

step, based on the consistency of dimension combinations, we generate two

2-length multi-dimensional prefixes.

A Pseudocode of the semantic sequential pattern mining algorithm is

shown in Algorithm 4.1. First step is to find all the frequent single-dimensional

items (Line 2). Line 3 iterates through frequent single-dimensional items.

Each single-dimensional item holds a record of belonging sequences that con-

tain the item. Line 5 scans through these belonging sequences, and finds

the first such item (Line 8). Values of all dimensions of such item are ob-

tained and made into values tuples (Line 9). After these sequences have been

scanned, all the dimension values become the database for the BUC algo-

rithm. The BUC algorithm is then applied to the dimension values database

(Line 11) to generate the frequent dimension values combinations. Single-

dimensional items with frequent dimension values combinations become a

frequent 1-length multi-dimensional sequence (Line 14). These 1-length se-

quences are added to previous sequences to generate new and longer frequent

sequences. The combination of dimensions is used as the determination con-

dition for the sequences prolonging process (Lines 16–21). If the number of

the same sequences meets the minimum support threshold, this new 1-length

sequence is added to the previous sequence to make a new and longer se-

quence (Line 21) and saved (Lines 22–23). Finally, for this single-dimension

item, a projected database is built from the initial sequence database (Line

24). The next recursion of the semantic sequential pattern mining algorithm

starts with the projected database as its initial sequence database and all

the new longer sequences as previous sequences (Line 25).
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Algorithm 4.1 Semantic Sequential Pattern Mining algorithm

Input: A set of semantic trajectories Dt, a minimum sup minSup;

Output: Semantic sequential patterns;

1: Pmd ← ∅, Psd ← ∅;
2: Find out all unique items Items;

3: for all item ∈ Items do

4: if item.support ≥ minSup then

5: Psd ← Psd ∪ item, Dbuc ← ∅;
6: for all sequence ∈ Dt do

7: if sequence contains item then

8: fitem = sequence.getFirstItem(item.basicSemantics);

9: Tuple ← fitem.additionalSemantics;

10: Dbuc ← Dbuc ∪ Tuple;
11: freDims = BUC-Algorithm(Dbuc);

12: newPmd ← ∅;
13: for all cdimvalue ∈ freDims do

14: curPmd ← item + cdimvalue.values;

15: dims← cdimvalue.dimensions;

16: if Pmd contains dims then

17: prePmd ← Pmd.get(dims);

18: for all pattern p ∈ prePmd do

19: sameSeqs← P.sequences ∧ curPmd.sequences;
20: if sameSeqs ≥ minSup then

21: P ← append(P , curPmd);

22: newPmd ← newPmd ∪ P ;

23: Save newPmd;

24: Dproj = projectedDatabase(item,Dt);

25: Semantic Sequential Pattern Mining algorithm(Dproj, newPmd,

Psd, minSup);
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4.5 Experiments

We conducted experiments to validate the proposed method in terms of: (1)

effectiveness of proposed semantic RoI mining method; and (2) effectiveness

of semantic sequential pattern mining method to find interesting semantic-

level sequential patterns.

4.5.1 Dataset

This study collected geotagged photos taken in Queensland, Australia, from

1 April 2014 to 30 March 2015. After pre-processing, we have 64,733 cleaned

photo records, and 1,404 trajectories including, 61,322 points, as shown in

Figure 4.6

Figure 4.6: Raw trajectories in Queensland (|n|=1,404).

79



Chapter 4. Semantic sequential pattern mining

4.5.2 Parameters selection

The hybrid grid-based RoI mining algorithm and sequential pattern mining

algorithm are sensitive to parameter selections. Both algorithms rely heavily

on the minimum support (minSup) value for a cell to become a RoI and also

on the size of cell (CellSize) that is used to partition the study region. It

is a non-trivial problem to choose the best values of parameters to produce

meaningful and insightful RoIs and patterns. Thus, the approach adopted

during experimentation was a systematic trial and error approach, in which

the minSup, CellSize and resultant number of RoI were recorded.

Table 4.2: Values of parameters tested for SPM.

Parameter Values

MinSup 0.01, 0.008, 0.005

CellSize 0.008, 0.005, 0.003

To estimate best values for these two parameters, several experiments

have been performed and parameter values chosen for this study are shown

in Table 4.2. For parameter CellSize, value 0.005 means 0.5km whilst for

parameter minSup 0.005 equals to 0.5%.

4.5.3 Semantic RoIs

The two semantic RoI mining algorithms work in different ways after the

dense spatial cells have been calculated. Using 0.005 for parameter minSup

and 0.005 for parameter CellSize, a total 173 cells are dense.

Post-process semantic RoI mining method

For the post-process semantic RoI mining algorithm, spatial RoIs were gen-

erated. The number of spatial RoIs we found is 89. Then these spatial

RoIs were annotated with place type semantics. Finally, 89 semantic RoIs

80



Chapter 4. Semantic sequential pattern mining

were constructed. Among the 89 semantic RoIs, there were 30 different place

types. Table 4.3 shows the five most frequent place types. There are detailed

descriptions for codes HTL, PPL and PIER in Table 4.4. Feature code BDG

is for bridge, and RCH is for reach: that is, a straight section of a navigable

stream or channel between two bends.

Table 4.3: Five most frequent type of place semantic RoIs from the post-

process method.

Type of place Support

HTL 1,484

PPL 213

BDG 200

PIER 181

RCH 137

Figure 4.7 displays a set of spatial cells in Cairns city area. Minimum

support is 8, giving a total of 1,404 trajectories. Using the post-process RoI

mining algorithm, spatial RoIs are then found as shown in Figure 4.8. Then

these RoIs are enriched with place type, as shown in Figure 4.9, based on

the GeoNames feature codes description. Place types shown in Figure 4.9

are explained in Table 4.4.

Inter-process semantic RoI mining method

After calculation of spatially dense cells, the inter-process semantic RoI min-

ing algorithm first enriches place type annotations to generate semantic cells,

and then merges neighbouring dense semantic cells to generate semantic RoIs.

Applying 0.005 for parameter minSup and 0.005 for parameter CellSize, 173

spatially dense cells are calculated. Then semantic cells are produced. Fi-

nally, we found 136 semantic RoIs containing 36 different place types. Table
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Figure 4.7: Spatial cells in Cairns area (minSup = 0.005, CellSize = 0.005).

4.5 displays the five most frequent place types. Codes HTL, PPL and RSTN

are described in Table 4.4. BDG is for bridge and BCH means beach.

Figure 4.7 shows spatially dense cells in Cairns city area, and the semantic

cells are displayed in Figure 4.10. Each semantic cell is shown with support

number and place type annotation. Figure 4.11 presents the semantic RoIs

generated from these semantic cells by merging neighbouring cells containing

same place type. Table 4.4 displays the description of feature codes shown

in Figure 4.11.

Discussions

The post-process method and the inter-process method extract semantic RoIs

in different ways. Both methods can find semantic RoIs from trajectories by

cooperating with a contextual geographic information database. However,

experimental results show that the inter-process method produces better re-

sults in terms of quality, and also quantity than the post-process method. In
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Figure 4.8: Post-process method: spatial RoIs in Cairns city area (minSup

= 0.005, CellSize = 0.005).

detail, for quality, the inter-process technique produces more accurate seman-

tic RoIs. For example, in Figure 4.11, bottom semantic RoIs have different

place types generated from the inter-process technique that are well sepa-

rated and grouped, but in Figure 4.9 semantic RoIs generated from the post-

process technique are grouped as one bigger semantic RoI, which is incorrect.

The reason for different quality is explained in Chapter 2.3: the post-process

method generates RoIs containing false areas, but the inter-process method

can fix this problem. As a result of the increased accuracy, for quantity, the

inter-process method finds more semantic RoIs. The inter-process method

found 136 semantic RoIs, while the post-process method found 89 semantic

RoIs.

Using the same parameter values, 0.005 for parameter minSup and 0.005

for parameter CellSize, the two methods cost similar running time. The post-

process method costs 742,092ms to find semantic RoIs, and the inter-process

method costs 738,398ms. Both running times include the query time from
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Figure 4.9: Post-process method: semantic RoIs in Cairns city area (minSup

= 0.005, CellSize = 0.005).

the geographical database.

4.5.4 Semantic sequential patterns

We use semantic RoIs results of the inter-process method to transform raw

trajectories into semantic trajectories. There are 1,404 raw trajectories, and

136 semantic RoIs. At last, we have 916 multi-dimensional semantic trajec-

tories. Example 2 shows a 2-length semantic trajectory, beginning with the

trajectory id (567) and next the description of length (2), meaning 2 RoIs in

the trajectory. This trajectory shows that the photo-taker went to a beach

on a rainy weekday evening and then went to an island on a weekday clear

morning.
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Table 4.4: Description of feature codes for SPM study.

Feature code Description

HTL Hotel

PPL Populated place

BDG Bridge

PIER
Pier (a structure built out into navigable water on

piles providing berthing for ships and recreation)

RCH
Reach (a straight section of a navigable stream or

channel between two bends)

PT
Point (a tapering piece of land projecting into a

body of water, less prominent than a cape)

RSTN Railroad station

Example 2 A 2-length semantic trajectory

567 : 2 < (BCH[weekday][Lightrain][evening])

(ISL[weekday][Clear][morning]) > .

Using parameter values defined in Chapter 4.5.2, we finally obtained

52,163 frequent semantic patterns including 1-length patterns. These re-

sults contain sequences with only place type semantics and sequences with

any combination of other temporal and weather semantic dimensions. The

longest pattern is 16 in length. The two longest patterns have only the place

type semantics, and both end with a 14-length sequence moving among hotels

only. Some other long patterns also have sub-sequences with only hotel place

types. These could be caused by those raw trajectories that each trajectory

includes some hotel stops, and because of using only place type semantics.

For 2-length patterns, the most frequent pattern is from hotel to hotel with

support 229. With only basic place-type semantics, 229 trajectories con-

tain sub-sequences moving from hotel to hotel. There are also patterns from
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Table 4.5: Five most frequent type of place semantic RoIs from the inter-

process method.

Type of place Support

HTL 1,026

PPL 308

BDG 240

BCH 212

RSTN 208

hotel to hotel with many frequent value combinations. Table 4.6 shows a

pattern, hotel to hotel with dimension combinations of weather condition

and day time. As each dimension has several values, there are 7 patterns

with different value combinations.

With only place type semantics, the second most frequent 2-length pat-

tern is from hotel to bridge. This pattern also has many further multi-

dimensional patterns. Table 4.7 shows the number of patterns of every fre-

quent dimension combination for patterns from hotel to bridge. There are

4 frequent dimension value combinations for patterns with the day type di-

mension and 3 patterns for both day time and weather condition dimensions.

For the combination of all 3 dimensions, 2 patterns are listed in Table 4.8.

Similarly, various numbers of frequent patterns various dimension combi-

nations can also be found for other length patterns.

Our method can find interesting semantic-level sequential patterns. Also,

our patterns provide rich and meaningful semantics information. Experimen-

tal results demonstrate that our proposed method is able to find semantic

sequential trajectory patterns from geotagged photos. From the results, we

find that trajectory analysis integrated with semantic information provides

understanding of people’s semantic behaviours. For example, a frequent place

type movement is hotel to bridge, as listed in Table 4.7 that is followed by
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Table 4.6: 2-length SemSPatterns from hotel to hotel (dimensions: weather

condition and day time).

Pattern Support

〈(HTL[Clear][midnight]) → (HTL[Clear][midnight])〉 56

〈(HTL[Clear][dawn]) → (HTL[Clear][dawn])〉 44

〈(HTL[Clear][morning]) → (HTL[Clear][morning])〉 23

〈(HTL[Clear][afternoon]) → (HTL[Clear][afternoon])〉 18

〈(HTL[Clear][evening]) → (HTL[Clear][evening])〉 28

〈(HTL[Lightrain][midnight]) → (HTL[Lightrain][midnight])〉 19

〈(HTL[Lightrain][dawn]) → (HTL[Lightrain][dawn])〉 14

Table 4.7: Number of SemSPatterns for each dimension combination (pat-

tern: hotel to bridge).

Dimension combination Number of patterns

Day Type 4

Weather 3

Day Time 3

Day Type + Weather 2

Day Type + Day Time 2

Weather + Day Time 3

Day Type + Day Time + Weather 2

Table 4.8: SemSPatterns for combination of 3 dimensions Day Type,

Weather and Day Time (pattern: hotel to bridge).

Pattern Support

〈(HTL[weekday][Clear][midnight]) → (BDG[weekday][Clear][midnight])〉 13

〈(HTL[weekday][Clear][dawn]) → (BDG[weekday][Clear][dawn])〉 8
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Figure 4.10: Inter-process method: semantic cells in Cairns city area (minSup

= 0.005, Cellsize = 0.005).

a number of photo-takers. Such patterns of tourist behaviour are valuable

to various domains, including tourism. Compared to place-level, which is

presented in (Cai et al. 2014), these semantic patterns can provide more

meaningful behaviours and understanding of the movement.

Another important finding from the outcomes of experiments is that by

adding more semantics, more novel patterns can be found. By adding place

type, weather condition and temporal semantics, our method finds frequent

movement of place types with more information. Moreover, all the experi-

mental results show that our method can process multi-dimensional semantic

trajectories that find patterns with various combinations. As listed in Table

4.8, several patterns of hotel to bridge with various dimension combinations

are found. If all dimensions appear together, when the support threshold is

high, we could not obtain patterns. But with a flexible combination strategy,

we can derive useful patterns with subsets of dimensions.

In summary, experimental results demonstrate that semantic trajectory
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Figure 4.11: Inter-process method: semantic RoIs in Cairns city area (min-

Sup = 0.005, Cellsize = 0.005).

patterns can be mined from geotagged photo data by applying our method.

Moreover, adding multiple semantics provides rich information with good

understanding of trajectory behaviours. Results also show that our method

is able to deal with multi-dimensional trajectories and can find patterns with

a flexible combination of dimensions.

The extracted semantic sequential pattern results can be used in tourism.

For example, a pattern of “from hotel to Harbour bridge” indicates one fre-

quent travel pattern from previous tourists visiting Harbour bridge in Sydney

from their hotels. In fact, Harbour Bridge is one of the most popular desti-

nations that attracts numerous people to visit and cross it. It is located in

the heart of Sydney with Opera house, and there are many hotels around.

This travel pattern can be used as a suggestion for potential tourists who

plan to travel to Sydney and book nearby hotels.

89



Chapter 4. Semantic sequential pattern mining

4.6 Conclusion

This chapter presents the study of converting geotagged photos into seman-

tic trajectories for providing information about people’s movement especially

their sequential trajectory patterns on semantic level. We propose a multi-

dimensional sequential pattern mining method to extract frequent semantic

patterns, and introduce an inter-process semantic RoI mining method to find

semantic RoIs. Experimental results show that the inter-process method is

able to find RoIs with finer accuracy on place type semantics, when com-

pared with a post-process method. We found numerous people’s sequential

trajectory patterns on a semantic level. Such semantic patterns provide more

meaningful knowledge and understanding of human mobility behaviours that

are valuable to tourism industry (Alvares et al. 2007b) than those have been

previously available. By adding multiple semantics to trajectories, including

weather condition and temporal information, we found more novel knowledge

about trajectory patterns with several contextual semantics. Our method

also generated patterns with various combinations of dimensions from multi-

dimensional trajectories, demonstrating the ability of the proposed method

to deal with multi-dimensional semantic trajectories.
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Semantic common pattern

mining

This chapter describes the study of semantic common pattern mining from

geotagged photos. The introduction to this study is presented in Chapter 5.1.

Chapter 5.2 surveys previous studies related to common trajectory pattern

mining and briefly reviews existing techniques for trajectory clustering and

methods for measuring similarity of trajectories. Then in Chapter 5.3 we

describe the research problem. Chapter 5.4 illustrates the overall framework

and presents the proposed semantic trajectory clustering method. The details

of experimental design are explained in Chapter 5.5, and the experimental

results are presented and discussed in Chapter 5.6. Finally, the conclusions

of this chapter are set out in Chapter 5.7.

5.1 Introduction

Common trajectory pattern is the approximate track shown in many objects’

historical movements. It shows collective common mobility behaviours (Lee,

Han, and Whang 2007). With the advances of Web 2.0 and geo-tagging tech-

nologies, georeferenced photos containing location information, have become
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a potential repository for discovering people’s common trajectories (Zheng,

Zha, and Chua 2012). Tourists’ common popular travel movements are useful

to tourism domains and urban management. Zheng, Zha, and Chua (2012)

extracted people’s spatial or spatio-temporal common trajectory patterns.

Figure 5.1: Geometric-feature-based trajectory clustering.

However, past studies use only spatial geographic features (location infor-

mation) in analysis of mobility trajectories, while ignoring aspatial semantics

features (Alvares et al. 2007b). But some specific applications require more

meaningful aspatial semantic information, which these trajectories cannot

provide. This chapter proposes a common trajectory pattern mining method

that is based on both geographic and aspatial semantic features. Figure 5.1

and Figure 5.2 present an example of clustering based on different features

of trajectories to highlight the limitation of the geographic-feature-only ap-

proach. Specifically, using the geographic-feature-only approach shown in

Figure 5.1, trajectories T1 and T2, having similar geographic information,

are grouped into the same cluster, whilst these two trajectories are not con-

sidered to be similar when the type-of-place semantic feature is considered,

as shown in Figure 5.2. Considering the type-of-place semantic feature, tra-
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jectories T2 and T3 are grouped into the same cluster since they exhibit the

same type-of-place visitation sequence. Semantically enhanced trajectories

reveal more detailed and meaningful patterns for specific applications.

Figure 5.2: Semantic-feature-based trajectory clustering.

This study aims to extract semantic common trajectory behaviours from

geotagged social media data by considering both geographic and aspatial

features. We exploit semantic trajectories to uncover more meaningful se-

mantic behaviours. First we enrich raw geographic trajectories with appli-

cation related semantic annotations to generate semantic trajectories. We

use type-of-place information of specific geographic object and multiple en-

vironmental annotations. Then, from the semantic trajectories, we extract

semantic common trajectory patterns by using a proposed clustering tech-

nique. For the clustering method, we propose a similarity measure method

for multi-dimensional semantic trajectories and present an OPTICS-based

algorithm to group similar semantic trajectories. Using real geotagged photo

data, we were able to discover interesting semantic common trajectory pat-

terns that traditional geographic-feature-only approaches cannot.
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5.2 Related work

5.2.1 Trajectory clustering for geotagged photos

Trajectory clustering means partitioning a set of trajectories into clusters in

which each cluster contains similar trajectories according to a certain simi-

larity measure. Each cluster represents a common trajectory behaviour (Lee,

Han, and Whang 2007; Gaffney and Smyth 1999). Trajectory clustering has

been a popular research area for other trajectory sources, such as GPS data.

As early as 1999, Gaffney and Smyth (1999) presented a study on clustering

trajectories and proposed a model-based trajectory clustering method. Nanni

and Pedreschi (2006) proposed a density-based method for temporal-focused

trajectory clustering. Several studies focused on clustering sub-trajectories

(Lee, Han, and Whang 2007; Gudmundsson, Kreveld, and Speckmann 2004;

Jeung et al. 2008; Li et al. 2010). They extracted clusters of common local

parts of whole trajectories. Massive repositories of online geotagged photos

provide a rich collection of people’s trajectory data that has attracted sev-

eral recent studies on extracting people’s common mobility patterns. Zheng,

Zha, and Chua (2012) mined tourists’ popular travel routes from geotagged

photos using trajectory clustering. However, a common drawback of previous

studies is that they focus only on geometric features of trajectory data in the

common trajectory analysis, with the result that the extracted patterns lack

of meaningful semantics information and have low understandability.

Recently, Bermingham and Lee (2015) proposed a method for multi-

dimensional trajectory clustering that includes consideration of speed and

direction features. It adopts the TRACLUS method, which partitions tra-

jectories into line segments. We claim that their approach also mainly focuses

on the spatial geometric feature analysis. Their method is not suitable for

our sequential feature focused analysis of trajectories formed by geotagged

photos due to the differences between GPS-based trajectories and geotagged

photo-based trajectories which are presented in Chapter 2.3.4 .
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5.2.2 Similarity of trajectories for geotagged photos

In trajectory clustering method, the distance between trajectories is defined

as the dissimilarity or similarity of trajectories. The sequence of elements

is the most widely used form for representing a trajectory and it is used as

a dissimilarity measure. Each element is considered as a multi-dimensional

feature vector containing spatial and temporal values. For the dissimilarity

measure, one common method is the Euclidean distance. It sums up dis-

tances between two ordered pairs of elements for sequences. However, it is

unable to handle two unequal length trajectories, and it uses real values that

are sensitive to noise points containing extreme values. A distance function

Dynamic Time Warping (DTW) was proposed by Berndt and Clifford (1994)

in order to relax the restriction of time dimension when comparing trajecto-

ries. Both distances are based on the sum of distances between two elements.

Another type of distance is based on common parts of sequences. Vlachos,

Kollios, and Gunopulos (2002) applied the LCSS to measure the similarity

for trajectories. This distance lies on the length of the common sub-sequence

of two trajectories. It reduces the effect of real values. Edit distance, ERP

(Chen and Ng 2004), is another popular method used for trajectory data.

This distance is the number of edits required to convert one sequence into

another. Edit Distance on Real sequence (EDR) distance function (Chen,

Özsu, and Oria 2005) quantifies the distance between values 0 and 1 to re-

move the noise effect. Furtado et al. (2016) proposed a similarity measure

method for multi-dimensional trajectories. They apply weight strategy to

a multi-dimensional similarity problem that assigns different weight to each

dimension such that the sum of all weights is equal to 1. These weights

of multiple dimensions are used to calculate a matching score between two

elements. The final similarity score between trajectories is defined as the av-

erage parity, where the parity is the sum of the highest matching score of all

elements of one trajectory compared with all elements of the other trajectory.
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5.2.3 Density-based clustering methods for geotagged

photos

For clustering, a density-based technique is one of the most popular methods

applied in previous studies for discovering common trajectories (Nanni and

Pedreschi 2006; Lee, Han, and Whang 2007). This is because the density-

based method is efficient for finding noise and detecting outliers. Also, it

is able to detect clusters of arbitrary shapes. Density-based clustering is

based on data intensity. It defines a cluster as a set of objects within an area

with high density. DBSCAN (Ester et al. 1996) is one classic density-based

clustering method. DBSCAN requires two parameters Eps and MinPts

to search for areas of high density. Areas of given neighbourhood (Eps)

containing at least a minimum number of points (MinPts) are reported as

a part of a cluster. OPTICS (Ankerst et al. 1999) is a well-known density-

based approach, an extended version of basic DBSCAN. Unlike DBSCAN,

OPTICS algorithm does not generate object clusters explicitly, but instead,

orders objects of the dataset. It reduces the sensitivity of parameter Eps.

In OPTICS, an object is a core object if there exist at least MinPts objects

within the area of Eps distance. And a core distance of object is the distance

to the MinPtsth closest point. The reachability-distance of another object

from a core object is the biggest distance between these two objects. The

outcome of OPTICS algorithm is a reachability distance ordering of objects.

In the ordering, objects which are closest become neighbours. Later, these

ordered objects can be grouped into clusters based on additionally set radius

and maximum distance considered. Object clusters of varying densities can

be obtained by choosing different radius thresholds.
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Figure 5.3: Example of semantic trajectories generated from raw geographic

trajectories.

5.3 Problem statement

This study aims to mine people’s common semantic mobility behaviours from

geotagged photos. Given a set of geographic-information-referenced photo

data, the research problem is to extract people’s semantic-level common tra-

jectory patterns. A common trajectory pattern shows a general semantic

trajectory for which a group of people’s trajectories have similar mobility at

the semantic level.

The semantic trajectories, as detailed in Definition 3.7 in Chapter 3.4,

provide richer semantic descriptions and meanings about the trajectory. An

example of semantic trajectories transferred from raw geographic trajectories

is shown in Figure 5.3. Note that each sample semantic trajectory visits

several kinds of places.

A semantic common trajectory pattern refers to a group of trajectories

have similar mobility. This task becomes a problem of semantic trajectory

clustering. Given a set of semantic trajectories, the problem is to find a

set of clusters where each cluster contains similar trajectories according to a

given dissimilarity measure. Each cluster of semantic trajectories represents

a person’s semantic common trajectory pattern drawn from several people’s

trajectories.
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Figure 5.4: Framework for semantic common trajectory mining.

Definition 5.1 A semantic common pattern refers to a group of trajectories

which are semantically similar in terms of the visit sequences of types of places

with a given set of additional contextual semantics.

5.4 Semantic CTP Framework

Figure 5.4 shows our framework for discovering semantic common trajectory

patterns from geotagged social media data. We create raw geographic trajec-

tories of people from geotagged photos. Then, we generate people’s semantic

trajectories enriched with application-dependent aspatial contextual seman-

tics information. From the semantic trajectories, we extract the semantic

common patterns. This study proposes a semantic trajectory clustering ap-

proach, extending the OPTICS algorithm with a new similarity measure for

semantic trajectories. We finally obtain some clusters of semantic trajecto-

ries in which each cluster represents a semantic common trajectory pattern.

Details of methods for building raw trajectories and building semantic tra-
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jectories are presented in Chapter 4.4. In the rest of this section, we describe

the details of our similarity method and clustering algorithm for semantic

trajectories.

5.4.1 Semantic trajectory clustering

Once semantic trajectories obtained as detailed in Chapter 4.4.2, semantic

trajectory clustering is in place to find common trajectory patterns. In this

section, we illustrate the semantic trajectory clustering method. The method

adopts the density-based clustering scheme, extended OPTICS algorithm

(Ankerst et al. 1999), with a novel similarity measure for semantic trajectory

data. First, the similarity function is described in Chapter 5.4.1, and then

we illustrate the details of the clustering algorithm in Chapter 5.4.1.

Semantic trajectory similarity function

Given two multi-dimensional sequences, in order to compute a similarity be-

tween them, we need to figure out how many commonalities they have accord-

ing to the intuition of similarity (Lin 1998). We apply the LCSS algorithm

to find the common sub-sequence of two trajectories. Our similarity function

includes two parts: finding the longest common sub-sequence (LCS) of tra-

jectories and calculating a similarity score for two trajectories. Our seman-

tic trajectories are enriched with multi-dimensional semantic annotations,

which could have different degrees of importance in different applications.

Specifically, in the measure of similarity among trajectories, some dimen-

sions are required to be more important than others. In order to reflect this

application-dependent and context-sensitive importance, this study adopts

two classifications of semantic dimensions: compulsory dimensions and op-

tional dimensions. Compulsory dimensions are ones whose values must match

in the comparison of two RoIs using the LCSS algorithm, whilst values of

optional dimensions do not have to match. This flexibility is of particular use
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where some dimensions must be matched but other dimensions are assigned

different weights and used to calculate a matching score. We use a similar

idea of weight strategy as in (Furtado et al. 2016) for multiple dimensions,

especially for optional dimensions in order to reflect the different level of

importance. Trajectories considered to be similar must have the same value

in the compulsory dimensions, while the optional dimensions can be used as

loose requirements. Various combinations of compulsory and optional dimen-

sions would produce application-dependent and context-sensitive patterns.

Finding the longest common sub-sequence Finding the common sub-

sequence of two semantic trajectories is the first step to process. We apply

LCSS algorithm to do this task. Finding matched RoIs is a key step in the

discovery of the LCS in LCSS algorithm. As each RoI is multi-dimensional,

we use a weighting strategy to reflect context-sensitive weights for different

dimensions. To compute a matching score of two RoIs, we consider compul-

sory and optional dimensions separately. For compulsory dimensions, two

elements must have an exact match. Then the optional dimensions, with

their associated weights, are used to calculate a matching score between two

elements. For each dimension, when two elements have the same value for the

dimension, we set “1” for matching score of the dimension, otherwise we set

“0”. As shown in Equation 5.1, the element-matching score is the sum of the

matching score of every optional dimension times its associated weight. For

each optional dimension k, matchk(mdEle1,mdEle2) is the matching score

and weightk is its associated weight value. A threshold is used to compare

the matching score to determine whether two elements match or not. At the

end of this process, we obtain the LCS of two trajectories.

MScore (mdEle1,mdEle2) =

d∑
k=1

(matchk (mdEle1,mdEle2)× weightk) . (5.1)
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Calculating similarity score for semantic trajectories The LCSS al-

gorithm finds the longest common sub-sequence of two semantic trajectories.

To compute a similarity between trajectories, first we need to ensure that a

commonality is present in most parts of both trajectories. This is measured

by checking the ratio of LCS to the length of the whole trajectory. When both

ratios are valid, they are used to compute the similarity score between two

trajectories using the average ratio as a similarity score. Equation 5.2 shows

the calculation of the ratio of LCS to the length of one multi-dimensional

trajectory, where mdst1 and mdst2 denote two semantic trajectories, respec-

tively. The average similarity function is in Equation 5.3. Finally, the sim-

ilarity score between two given semantic trajectories is obtained. A higher

similarity score value means more similar. Finally, the distance between two

trajectories is the dissimilarity score calculated by using “1 - similarity” score

as in Equation 5.4.

ratio (mdst1) =
|LCS (mdst1,mdst2)|

|mdst1|
, (5.2)

sim(mdst1,mdst2) =
ratio(mdst1) + ratio(mdst2)

2
, (5.3)

distance(mdst1,mdst2) = 1− sim(mdst1,mdst2). (5.4)

Semantic trajectory clustering algorithm

Our semantic trajectory clustering method is based on the OPTICS algo-

rithm scheme (Ankerst et al. 1999) . We extend it to semantic trajectory-

data type, by proposing a similarity measure method for semantic trajec-

tory, which is described Chapter 5.4.1. We call this extended algorithm the

SemTra-OPTICS algorithm. We also apply the ExtractDBSCANClustering

method (Ankerst et al. 1999) to generate clusters from the ordering results.

We integrate TB-tree (Pfoser, Jensen, and Theodoridis 2000) as an index
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structure in OPTICS algorithm, in order to facilitate efficient neighbourhood

queries.

TB-tree structure is designed strictly for trajectory data. Each trajectory

is represented as a sequence of segments, and a leaf node of TB-tree stores sev-

eral segment Minimum Bounding Boxes (MBBs). Each leaf node keeps only

those segments that belong to the same trajectory. A semantic trajectory

is a sequence of multi-dimensional textual semantics annotations enriched

stops. A stop is as a textual episode which contains a vector of textual word.

The original MBB model is not suitable for textual episodes containing only

text. We modified the original structure to adapt to semantic trajectory

data. We transfer the model of MBB of TB-tree into Minimum Term Bag

(MTB) for multi-dimensional semantic RoIs. A MTB stores episodes that

build a minimum cover of terms for each dimension of episodes.

The overall process of our method for extracting common semantic tra-

jectory patterns is illustrated in Algorithm 5.1. For a given dataset of raw

geographic trajectories, we first build semantic trajectories from raw trajec-

tories in Step 1. Then we apply SemTra-OPTICS algorithm to generate a

reachability distance-ordered list of the semantic trajectories (Step 3). In

Step 4, the ExtractDBSCAN-clustering method is used to generate clusters

of trajectories from the ordered list. ExtractDBSCAN-clustering visits every

object of the ordered list. It creates a cluster for a set of continuing objects

until the terminal semantic trajectory, whose reachability distance is greater

than a given epsilon threshold.

Our SemTra-OPTICS algorithm is demonstrated in detail in Algorithms

5.2 and 5.3. At the beginning, we build a SemTB-tree for semantic trajec-

tories in Step 1 and use our semantic trajectory distance function in the

SemTB-tree in Step 2. The expected ordered list is initialised in Step 3. We

traverse unvisited semantic trajectories and process each of them in Steps

4-6. For an unvisited trajectory, Step 6 expands it to its neighbours. Specifi-

cally, in Algorithm 5.3, we mark the unvisited semantic trajectory as visited
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Algorithm 5.1 ExtractSemanticCommonTrajectoryPattern

Input: A dataset of raw geographic trajectory T ;

Output: A set of clusters of semantic trajectories;

1: semT ← generatingSemanticTrajectory(semT );

2: clustersList← ∅;
3: orderedF ile← SemTra-OPTICS(semT,);

4: clustersList← extractDBSCAN(orderedF ile);

5: return clusterList

Algorithm 5.2 SemTra-OPTICS

Input: A semantic trajectory dataset T , epsilon e, and minimum points

minPts;

Output: A list of reachability distance ordered semantic trajectories

orderedF ile;

1: build SemTB-tree;

2: set semanticTraDistance as the distance function of SemTB-tree;

3: orderedF ile← ∅;
4: for all semantic trajectory t ∈ T do

5: if t is unvisited then

6: expandClusterOrder(t, orderedF ile, e,minPts);

7: return orderedF ile
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in Step 1, calculate and set its core distance and reachability distance in

Steps 3–4 and add it into the ordered list in Step 5. We then further pro-

cess its neighbourhood trajectories. In Step 8, the unvisited neighbourhood

trajectories are put in a priority queue and sorted in ascending order based

on their reachability distance. We handle the neighbourhood trajectories of

the queue from beginning to end. For each actual neighbourhood trajectory,

we progressively find its neighbourhood trajectories, add these trajectories

into the priority queue and update the queue in Steps 9–16. In this process-

ing method, semantic trajectories with their neighbourhood trajectories are

stored in a final ordered list where the order the neighbourhood trajectories

is based on the reachability distance. The ordered list is the outcome of

SemTra-OPTICS algorithm.

5.5 Experimental setup

Our study focuses on the extraction of semantic behaviours. We propose

a clustering method to find common trajectories, and conduct experiments

with real geotagged photos to present semantic patterns. As mentioned in

Chapter 5.4.1, our method provides flexibility to choose compulsory and

optional dimensions to reflect context-sensitive and application-dependent

scenarios. We design a set of experiments to explore this flexibility with

various dimension combinations.

5.5.1 Baseline methods

We benchmark our approach with two popular methods: popular travel route

(PTR) and ND-TRACLUS. The first method for extracting popular travel

routes was proposed by Zheng, Zha, and Chua (2012). We call it the PTR

method for short in this study. It is one of the state-of-art studies for mining

common trajectories – popular travel routes – from geotagged social media
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Algorithm 5.3 ExpandClusterOrder

Input: A semantic trajectory t, a list of distance ordered semantic trajecto-

ries orderF ile, epsilon e, and minimum points minPts;

Output: A list of reachability distance ordered semantic trajectories

orderedF ile;

1: mark t as visited;

2: neighbors← semTBtree.getNeighbors(t,e);

3: t.reachabilityDistance← UNDEFINED;

4: t.setCoreDistance(neighbors, e,minPts);

5: add t into orderedF ile;

6: if t.coredistance 6= UNDEFINED then

7: orderseeds← ∅;
8: update(neighbors,t,orderseeds);

9: while orderseeds is not empty do

10: get first trajectory actualTra in orderseeds;

11: actualneighbors← semTBtree.getNeighbors(actualtra,e);

12: mark actualtra as visited;

13: actualtra.setCoreDist(actualneighbors, e,minPts);

14: add actualtra into orderedF ile;

15: if actualtra.coredistance 6= UNDEFINED then

16: update(actualneighbors,actualtra,orderseeds);
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data. A travel route is a sequence of places visited. Zheng, Zha, and Chua

(2012) first transfer raw trajectories, generated from geotagged photos, into

sequences of spatial places. Then they group similar sequences by applying a

clustering technique. Each resulting cluster is considered a potential popular

travel route. Similar to our work, it is a trajectory clustering task. How-

ever, this method considers only the geographical spatial feature of trajectory

data and lacks semantic features. Specifically, the researchers use specific ge-

ographic places without adding any further semantic annotations except the

specific place entity of the spatial region. The results are sequences of places

that show people’s spatial behaviours only.

The other method is ND-TRACLUS, developed by Bermingham and Lee

(2015). It is an extension of the well-known spatial trajectory clustering

method TRACLUS (Lee, Han, and Whang 2007) to multiple dimensions.

TRACLUS is proposed for grouping geographic trajectory segments. It par-

titions trajectories into line segments and then groups similar line segments

into clusters to find common sub-trajectories. ND-TRACLUS extends it to

n-dimensions. ND-TRACLUS is able to uncover new, previously unknown,

higher dimensional trajectory patterns. This method considers speed and

direction features of geographic trajectory. However, it is originally designed

for continual GPS trajectories. This is a different type of trajectory from

those generated from geotagged social media, which are neither continuous

nor regular. Like the original method, ND-TRACLUS groups similar spatial

trajectories according to a spatio-temporal geographic proximity measure,

but takes additional speed and direction aspects into account. It is spatial-

trajectory oriented, whilst our method is both spatial- and aspatial-oriented.

Table 5.1 shows major differences between our method and the baseline

methods. PTR deals with geotagged social media data, but does not consider

semantics; ND-TRACLUS deals with semantics used as additional features

of geographic trajectory, but is oriented towards traditional GPS trajectories

(regular and continuous). Our method (irregular and discrete) deals with
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Table 5.1: Comparison of baseline methods for semantic common pattern

mining.

Geotagged data Semantics

ND-TRACLUS NO
YES (speed and direction of

geographic trajectory)

PTR method YES
NO (geographical spatial

places)

SemTra-OPTICS YES
YES (type of place, city,

temporal and weather)

both geotagged social media data and semantics. Importantly, our method

targets semantic mobility behaviours.

5.5.2 Dataset

We use the same dataset as in Figure 4.6 in Chapter 4.5 for this semantic

common pattern mining. Most of the trajectories lie in coastal areas, where

Queensland’s major cities are located. For semantic information, we use the

geographic information database of GeoNames to obtain the type of place

and city information for trajectories and the weather information database

from Bureau of Meteorology for weather semantics.

5.6 Results and discussions

In this section, we present two types of experimental results. First we present

experimental results using our proposed method. Note that, our method has

two important features: enriched semantic-level trajectories and the flexi-

bility of compulsory and optional dimensions. We summarize experimen-

tal results with various compulsory–optional dimension combinations and

present the interesting common semantic trajectory patterns extracted in
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Chapter 5.6.1. Second we present comparative results with the PTR and

ND-TRACLUS methods in Chapter 5.6.2. These comparisons focus on the

types of common trajectory patterns.

5.6.1 Results of semantic trajectory clustering

After several rounds of parameter tuning with the RoI mining method, we

were able to obtain 737 semantic trajectories having at least 2 stops with

minSup of 0.002 and cellSize of 0.003.

Parameter selection

The proposed framework facilitates an exploratory data mining approach en-

abling users to explore datasets with different parameter values. Like other

exploratory data mining tools (Zheng, Zha, and Chua 2012), there are several

parameters to tune in our method. Most importantly, our framework enables

users to select a set of semantic trajectory dimensions to start with. That

is, the framework assists users to choose domain-specific and application-

dependent semantics. In addition, the framework assists users to select com-

pulsory (important and crucial) and optional dimensions in the calculation of

semantic trajectories. In this study, there are five dimensions defined, which

are PLACE TYPE, CITY, DAY TYPE, DAY TIME and WEATHER, for

the semantics annotations place type, city, day type, day time and weather

condition, respectively. The dimension (PLACE TYPE) is considered to

be the basic semantic annotation of the trajectory and it is set as a de-

fault compulsory dimension. The optional dimensions require weight values

to be set to reflect their respective importance. In this study, we take all

the dimensions into consideration for the calculation of semantic trajecto-

ries. For the compulsory–optional dimension combination, we conduct two

case studies with different combinations to show the effect of combination

on the common semantic trajectory patterns. The first study uses dimen-
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sion PLACE TYPE as the only compulsory dimension and the other four

dimensions, CITY, DAY TYPE, DAY TIME and WEATHER, as optional

dimensions. The second study uses PLACE TYPE and CITY as compulsory

dimensions while the other three as optional dimensions. For simplicity, we

set an equal weight value for each optional dimension in both two cases, that

is, 0.25 for 4 optional dimensions and 0.33 for 3. Results of these two cases

experiments are shown in Chapter 5.6.1.

We also need to set a threshold value for the parameter element matching

score (elematThreshold = 0.3) and a ratio threshold (rThreshold = 0.3) for

our similarity method. We use parameter values minPts = 5 and epsilon = 1

for OPTICS algorithm, and epsilon = 0.5 for extractDBSCAN-clustering

method. These default values are chosen after several rounds of exploratory

tests for this particular study.

Experiments with different dimensional combinations

Case 1: four optional dimensions In this experiment, we set PLACE TYPE

as the only compulsory dimension and the other four dimensions (CITY,

DAY TIME, DAY TYPE and WEATHER) as optional dimensions. Fig-

ure 5.5 shows the reachability ordering plot outcome of the OPTICS algo-

rithm for Case study 1. As shown in the plot, many semantic trajectories’

reachability distances are “UNDEFINED” which means their similarity val-

ues are too small based on our distance function.

Figure 5.5 shows that there are 2 clusters referring to two concave ar-

eas below 0.5 reachability distance. The first cluster contains 141 semantic

trajectories and the second contains 5 trajectories. For simplicity of presen-

tation, we list members of the smaller cluster in Table 5.2. These semantic

trajectories are similar in the sense that the commonality takes up at least

30% of both trajectories and each element matching score is no less than

0.3. In particular, the first trajectory is computed as a centre object that

has 4 neighbours in the search range and the distance between each of the
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Figure 5.5: Plot chart of ordered list of semantic trajectories for Case study

1.

four trajectories and the first trajectory is 0.4 indicating that each pair of

trajectories has 60% commonality.

Focusing on people’s common semantic mobility behaviour, we can see

from Table 5.2 that the common mobility is in Cairns area. People have

similar moving patterns from hotels to a ship berth (fleets departing place

to the Great Barrier Reef) and then to hotels. Also, note that, they move

mostly on clear days. Even though clusters have slightly different visiting

times and weather conditions, their trajectories show similar patterns. This

common trajectory is well-supported by the fact that the Great Barrier Reef

is one of the most famous daily travel destinations in Cairns, attracting mil-

lions of visits each year. This background knowledge supports validation of

the extracted behaviour of the common semantic trajectory. Note that tradi-

tional geographic-feature-only approaches are unable to detect these detailed

semantic patterns outlining place types, times, and weather conditions infor-

mation.

110



Chapter 5. Semantic common pattern mining

Table 5.2: Semantic trajectory clusters having 5 members for Case study 1.

Tra id &

length
Semantic trajectory

407 :

len− 5

[(HTL[weekday][Cairns][Clear][morning]),

(HTL[weekday][Cairns][Clear][morning]),

(PIER[weekday][Cairns][Heavy rain][morning]),

(HTL[weekday][Cairns][Heavy rain][morning]),

(HTL[weekday][Cairns][Clear][evening])]

49 : len− 5

[(HTL[weekday][Cairns][Light rain][morning]),

(PIER[weekday][Cairns][Light rain][morning]),

(HTL[weekday][Cairns][Light rain][evening]),

(PPL[weekday][Cairns][Clear][dawn]),

(HTL[weekday][Cairns][Clear][evening])]

646 :

len− 3

[(HTL[weekday][Cairns][Clear][evening]),

(HTL[weekday][Cairns][Clear][dawn]),

(HTL[weekday][Cairns][Clear][midnight])]

961 :

len− 3

[(HTL[weekday][Cairns][Light rain][evening]),

(HTL[weekend][Cairns][Clear][dawn]),

(HTL[weekday][Cairns][Clear][evening])]

704 :

len− 5

[(HTL[weekday][Cairns][Clear][evening]),

(PIER[weekday][Cairns][Clear][evening]),

(PIER[weekday][Cairns][Clear][evening]),

(PIER[weekend][Cairns][Clear][midnight]),

(HTL[weekday][Cairns][Light rain][evening])]
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Table 5.3: Description of feature codes for the dataset used in Fig. 5.4.

Feature code Description

HTL Hotel

ISL Island

HSP Hospital

DEVH Housing development

PIER
Structure built out into navigable water providing

berthing

PT
Point (a tapering piece of land projecting into a

body of water)

RSTN Railroad station

PPLX

Section of populated place: a city, town, village, or

other agglomeration of buildings where people live

and work

Case 2: three optional dimensions In this case, we set PLACE TYPE

and CITY (spatial semantics) as compulsory dimensions and the other three

dimensions, DAY TIME, DAY TYPE and WEATHER as optional. This di-

mension combination directly affects the similarity calculation of semantic

trajectories. The weight values of optional dimensions are set to 1/3 to make

the total sum equal to 1. The reachability ordering plot of this case study

is shown in Figure 5.6. As expected, using a more strict similarity mea-

sure condition, more semantic trajectories have “UNDEFINED” reachability

which means they are not similar to each other. Interestingly, adding CITY

to the compulsory dimensions, the shape of the plot chart is significantly

different from the plot in Figure 5.5. We detect three clusters in this case,

and they correspond to three concave areas below the 0.5 reachability dis-

tance as shown in Figure 5.6. The first cluster has 53 semantic trajectories,

the second cluster has 7, and the third cluster has 9. The total number of
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clustered trajectories is smaller than that of Case study 1.

Figure 5.6: Plot chart of ordered list of semantic trajectories for Case study

2.

Table 5.4 lists the three common semantic trajectories of people in this

case study. Figure 5.7 illustrates semantic common trajectory patterns for

cluster 2 and 3. For cluster 1, common mobility is a movement between ho-

tels in Gold Coast city on clear days. Other trajectories in this cluster have

similar movements. Based on the commonality of movement between hotels,

these trajectories are grouped into the same cluster. Note that Gold Coast is

renowned not only for its beautiful beaches, but also for various theme parks.

This cluster pattern is explained by popular daily trips to beaches and vari-

ous amusement parks in Gold Coast. The second cluster presents a different

common trajectory that starts from a hotel in Brisbane city on a clear morn-

ing, then passes through a rail station in Brisbane, visits a park in Logan in

the morning, and goes back to the hotel. Most RoIs of this mobility are in

Brisbane area. This cluster pattern explains a typical movement pattern in

big cities. The third common trajectory is in Cairns, gateway to the Great

Barrier Reef, and the third most popular tourist destination after Brisbane

and Gold Coast. People have similar movement patterns from hotels to the
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ship berth where fleets depart to the reef, and then go back to hotels. This

supports the popular day excursions to the Great Barrier Reef in Cairns.

Table 5.4: Representative common semantic trajectory for each cluster for

Case study 2.

Cluster Common semantic trajectory

cluster 1

[(HTL[weekday][Clear][GoldCoast][midnight])→
(HTL[weekday][Clear][GoldCoast][midnight])→

(HTL[weekday][Clear][GoldCoast][dawn])→
(HTL[weekend][Clear][GoldCoast][dawn])]

cluster 2

[(HTL[weekday][Clear][Brisbane][morning])→
(HTL[weekday][Light rain][Brisbane][dawn])→

(RSTN[weekday][Light rain][Brisbane][midnight])→
(PRK[weekday][Clear][Logan][morning])→
(HTL[weekday][Clear][Brisbane][morning])]

cluster 3

[(HTL[weekday][Light rain][Cairns][morning])→
(PIER[weekday][Light rain][Cairns][morning])→
(HTL[weekday][Light rain][Cairns][evening])→

(PPL[weekday][Clear][Cairns][dawn])→
(HTL[weekday][Clear][Cairns][evening])]

5.6.2 Comparative results

In this section, we present comparative results using the PTR and ND-

TRACLUS methods. We use our raw trajectory datasets extracted from

Flickr for both methods, as they require geographic-feature-only trajectory

datasets. We first illustrate common trajectory patterns from these three

methods, and then we compare and discuss differences among them. Com-

parisons will focus on the types of extracted trajectory behaviours. Figure
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(a) Cluster 2

(b) Cluster 3

Figure 5.7: Semantic common trajectory patterns for cluster 2 and cluster 3

shown in Table 5.4.
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5.8 presents common trajectory patterns generated from the two baseline

methods.

Results of PTR

Several clusters of trajectories have been extracted by the PTR method,

where each cluster represents a popular tour route. We list two popular tour

routes in Table 5.5. The extracted popular tour routes are sequences of spa-

tial regions of area (RoAs). Every RoA is named by the most frequent title

of all photos inside. And each RoA indicates a specific spatial region that

a density of photos are taken in the region. One of the popular routes is

visiting Palm Cove and then going to Agincourt Ribbon Reef. Palm Cove

is a beautiful beach community with palm trees lining the beach and Agin-

court Ribbon Reef is a PoI at the outer edge of the Barrier Reef renowned

for snorkelling and diving. Another popular route is from Bargara Beach

(near Bundaberg) to Greenmount Beach (Gold Coast). Even though these

extracted routes indicate popular rough and crude tour sequences, they are

unable to provide the weather-specific, place type-specific, or time-specific

semantic information that our proposed method does.

Table 5.5: Popular tour routes in Queensland extracted by the PTR method.

Popular tour route

1 Palm Cove → Agincourt Ribbon Reef

2 Bargara Beach→ Greenmount Beach

Results of ND-TRACLUS

For this particular study, we choose the following parameters: spatial epsilon

of 500 meters, temporal epsilon 10 days, directional epsilon of sin 30◦, speed

epsilon of 1× 10−8m/s and used the average representative method with pa-

rameter min lines of 10. Figure 5.8(b) shows the outcome of ND-TRACLUS,
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(a) PTR

(b) ND-TRACULS

Figure 5.8: Comparison of common trajectory patterns from three methods.
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which is a representative geographic trajectory. The extracted common mo-

bility shows a moving trace on the geographical spatial surface exhibiting a

spatial trajectory behaviour. The temporal feature is represented as a verti-

cal perspective. Geographic line segments can be extended with speed and

direction features providing additional semantics to geographic trajectories.

Comparison and discussion

Figure 5.7 and 5.8 display and compare outcomes from the three methods

for the same dataset. It shows that our proposed method reveals more de-

tailed patterns than traditional geographic-feature-only approaches. We can

summarise into two findings. Our first finding is that our common trajec-

tory patterns are in semantic-level behaviours whilst traditional trajectory

patterns are spatial-level behaviours. Our second finding is that our re-

sults produce different patterns from traditional approaches. Namely, our

approach produces local and condition-specific patterns whilst traditional

geographic-feature-only approaches produce global patterns disregarding lo-

cal and condition specific semantics. Patterns from our approach are spatial

and aspatial whilst patterns from traditional approaches are only spatial.

Note that our approach can produce the same spatial-only patterns when

the same aspatial semantics is given. Our approach produces much more

detailed and semantically enhanced patterns that traditional approaches are

not able to detect. The proposed method is flexible enabling users to choose

a set of semantic annotations based on domain-specific applications, and also

allows users to explore the effect of compulsory and optional dimensions. Ta-

ble 5.6 summarises the results and mobility behaviours for the three methods

under consideration.

At last, understanding tourists’ common patterns has implications for

tourism. For instance, a pattern of “from hotel to pier” shows one of the

common routes tourists approximately take in Cairns. Cairns is the gateway

to the Great Barrier Reef. There are several islands and reef platforms.
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Table 5.6: Comparisons of three common pattern mining methods.

Result Behaviour

ND-TRACLUS Geographic trajectories
Spatio-temporal

behaviours

PTR
Sequences of geographic

spatial places
Spatial behaviours

Our method

Sequences of place types

with weather, temporal

and city information

Semantic (spatial and

aspatial) behaviours

This popular travel route shows tourists’ movements that can provide useful

advices for planning and managing the transport between hotels and piers.

It also helps travel agencies arrange tours for tourists, and manage trips and

ships between piers to islands and reef platforms.

5.7 Conclusion

In this study, we investigate the extraction of semantic common trajectory

patterns from geotagged social media data. These patterns are useful for

understanding people’s mobility behaviours on a semantic level. Aspatial

semantic information is as important as spatial information in spatial data

mining and geographic data analysis (Miller and Han 2009). Traditional

approaches consider only spatial information while disregarding aspatial se-

mantic information. This chapter introduces a semantic trajectory mining

method for common trajectory patterns. The proposed approach first builds

raw trajectories from geotagged photos, and enriches them with various se-

mantic annotations. We propose an extended OPTICS clustering algorithm

to handle semantics enriched trajectories, and introduce a new similarity

measure for semantic trajectories. Experimental results with real datasets
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reveal that our approach produces detailed spatial and aspatial patterns that

traditional approaches fail to identify.
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Semantic trajectory pattern

mining

This chapter describes the study of mining people semantic trajectory pat-

terns from geotagged photos. Chapter 6.2 covers background techniques for

spatio-temporal patterns, trajectory pattern mining and semantic sequential

pattern mining, and reviews related work. Chapter 6.3 defines the semantic

trajectory pattern mining problem. Then, in Chapter 6.4, we introduce the

framework for extracting semantic trajectory patterns from geotagged photos

and describe the proposed semantic trajectory pattern mining algorithm in

detail. Experimental results are presented and discussed in Chapter 6.5. We

conclude our work in Chapter 6.6.

6.1 Introduction

A trajectory pattern represents a moving sequence of places associated with

transit time annotations (Giannotti et al. 2007). The transit time anno-

tations indicate frequent time intervals between adjacent places in the se-

quence. A trajectory pattern is the spatio-temporal dynamic mobility that

frequently occurs in movements. It reflects regular behaviours of moving
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objects, and delivers both the specific spatial location information and the

sequential features. It also provides important frequent interval time in-

formation for the sequence and shows temporal relations between adjacent

locations. Knowledge of human spatio-temporal behaviours is useful for var-

ious areas, such as city planning and tourism. The ever-increasing volume

of user-generated geotagged photos provides a valuable repository of peo-

ple’s trajectories. These trajectories contain rich information about people’s

mobility behaviours, which are potentially useful and valuable to domain ex-

perts. Recently, Cai et al. (2014) presented an investigation into extraction

of trajectory patterns from geotagged photos. Their results reveal patterns

about people’s frequent movements among spatial regions with annotated

transit time information.

Previous studies dealing with geographic-feature-only trajectories have

proven insufficient for many applications. There has been a great deal of

research aimed at incorporating additional aspatial contextual semantic in-

formation into trajectory data mining (Ying et al. 2011; Parent et al. 2013;

Zhang et al. 2014). Trajectory patterns enriched with semantic meanings

are referred to as semantic trajectory patterns. For example, a trajectory

pattern of moving among different place types (hotels, restaurants, etc.) can

reveal people’s mobility behaviours with respect to place categories. For

an application where the type-of-place information plays an important role,

semantic trajectory patterns are more relevant, focused and valuable than

those without semantics.

This study investigates the extraction of semantic-level trajectory pat-

terns. The following example shows a semantic trajectory pattern that is

a frequent moving sequence of “going to a hotel and then going to a park

after 2 hours on a rainy weekday and visiting a beach on a clear weekend

2 days later”. This is a much more detailed and meaningful pattern than

“going to Place A and then to Place B”, which is what you get from a

traditional geographic-feature-only trajectory. Mining semantic trajectory
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patterns requires a new technical development to handle both spatial and

aspatial information.

Hotel[weekday][Rainy]
2hours−−−−→ Park[weekday][Rainy]

2days−−−→ Beach[weekend][Clear].

This chapter proposes a semantic trajectory pattern mining algorithm to

generate semantic trajectory patterns from the semantically enhanced trajec-

tories. Our method can not only find basic semantic patterns which are the

sequence of basic geographic semantics only, but also find multi-dimensional

semantic trajectory patterns which are basic geographic semantic patterns

with additional aspatial semantic annotations. These additional annota-

tions could be arbitrary combinations of the initial multiple semantics. We

conduct experiments using real geotagged photos to find semantic trajec-

tory patterns, and undertake comparative experiments with the traditional

geographic-feature-only trajectory pattern mining method. The results show

that our method can find richer semantically meaningful and finer trajectory

patterns.

6.2 Related work

In this section, we review background techniques including spatio-temporal

patterns, trajectory pattern mining, semantic sequential pattern mining, and

related terminologies. Some previous work related to trajectory pattern min-

ing from geotagged social media data is also presented here.

6.2.1 Spatio-temporal patterns for geotagged photos

The massive online geotagged photos, containing a large number of people’s

movement trajectories, have recently attracted some investigations into ex-

traction people spatio-temporal trajectory pattern (Cai et al. 2014; Berming-

ham and Lee 2014). A spatio-temporal pattern not only shows the spatial
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aspect of a frequent movement sequence, but also includes important tempo-

ral knowledge about mobility. Bermingham and Lee (2014) found collective

spatio-temporal patterns by using spatial and temporal dimensions (3D) of

trajectory. Their patterns include the information of specific frequent occur-

rence time of visited locations. Spatio-temporal pattern mining from trajec-

tories has been studied in other areas and sources, like GPS trajectory data.

Cao, Mamoulis, and Cheung (2007) extracted periodic patterns from a long

trajectory. Time was used to decide the time period in which a movement

sequence frequently occur. Kang and Yong (2010) mined spatio-temporal

patterns with spatial and temporal dimensions and also considered the du-

ration time of visited regions. None of these approaches, however, are able

to consider the interval time information between locations in the movement

sequence.

6.2.2 Trajectory pattern mining

Trajectory pattern mining (Giannotti et al. 2007) aims to identify the moving

sequences of places with time interval annotations, the trajectory patterns,

that frequently occur in people’s trajectories. Specifically, the sequence of

places shows the mobility, and the time interval annotations indicate the typ-

ical transit time between adjacent places of the mobility. Following the same

spirit of temporally annotated sequences introduced by Giannotti, Nanni,

and Pedreschi (2006), a trajectory pattern (T-pattern) has the following form:

T-pattern = (x0, y0)
α1−→ (x1, y2)

α2−→ · · · αk−→ (xk, yk).

This can also be represented as a couple T = (S,A) of sequence S = <

(X0, Y0), · · · , (Xk, Yk) > with temporal annotations A = < α1, · · · , αk >.

Especially, any single transit time annotation α in T-pattern refers to a time

span with a form of [t1, t2]. A T-pattern is frequent in a group of trajectories

with a loose similar transit time where a time span annotation of T-pattern

indicates an frequent area where all the similar time falls in.
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The concept of the frequent of T-pattern is based on the notion of sup-

port for the T-pattern, which is defined as the number of trajectories that

contain the T-pattern. For this spatio-temporal trajectory, containment of

a T-pattern takes place when both spatial positions and transition times of

the pattern approximately correspond to those found in input trajectories.

This spatio-temporal containment requires that the two spatial locations are

an approximate match, with some error tolerance, that the pair of spatial

positions are neighbouring, and also that the two time intervals are similar,

such the tolerance τ is within the temporal constraint. Refer to Giannotti’s

work for more details (Giannotti et al. 2007; Giannotti, Nanni, and Pe-

dreschi 2006). Furthermore, for spatial containment, Giannotti et al. (2007)

proposed a grid-based RoI mining method to determine a spatial match for

spatial points. This method generates spatial RoIs, that a density of trajec-

tories passes through, from input trajectories. Spatial points located in the

same RoI are considered as neighbours. These neighbouring spatial regions

are represented as a RoI. A trajectory pattern is consequently represented as

a sequence of spatial regions with time intervals. For temporal containment,

Giannotti et al. (2007) adopt the τ -containment introduced by Giannotti,

Nanni, and Pedreschi (2006), as defined in Definition 6.1.

Definition 6.1 (τ -containment(�τ)) Given a time threshold τ , a sequence

T = s0
α1−→ · · · αn−→ (sn) is τ -contained in an input sequence I=< (I0, t0),

· · · , (Im, tm) >, denoted as T �τ I, if and only if there exists a sequence of

integers 0 ≤ i0 ≤ · · · ≤ in ≤ m such that:

1. ∀1≤k≤n.|αk − α′k| ≤ τ where ∀1≤k≤n.α′k = tik − tik−1
.

Cai et al. (2014) extracted trajectory patterns from geotagged photos

by applying TPM (Giannotti et al. 2007). Various interesting trajectory

patterns, moving among spatial regions with transit times, were found.

However, previous trajectory pattern mining work focused on geographic-

feature-only trajectories. Specifically, the analysis of trajectories is based on
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the measurement of geographical information of entities, and the trajectory

patterns are about movements on the spatial level. Recently, several stud-

ies (Chen, Kuo, and Peng 2015; Chen and Chiang 2016) analysed trajectories

incorporating semantics and time information by transforming trajectory se-

quences into symbolised sequences before using PrefixSpan. However, they

fail to consider multiple spatial and aspatial semantic information.

Unlike previous work, our study aims to find semantic trajectory patterns

whose predicate bears on both spatial and aspatial semantic contextual data.

One example of semantic trajectory pattern could be mobility among some

types of places in certain weather conditions with frequent interval time in-

formation when focusing on a place type and weather semantic context. We

attempt to find frequent trajectory patterns on a contextual semantic level

and obtain semantically meaningful patterns on mobility.

6.3 Problem statement

From semantic trajectories, we aim to find frequent sequences of semantic

elements with transit times that are frequent from trajectories in this sec-

tion. These mobility behaviours are named semantic trajectory patterns. A

semantic trajectory pattern contains a sequence of semantic elements and

a sequence of transit times where each demonstrates a frequent time inter-

val α between two consecutive elements. Adopting the spirit of trajectory

patterns (Giannotti et al. 2007), we represent semantic trajectory patterns

(SemT-pattern) as a pair of sequences of semantic elements and time anno-

tations. When an element is the basic geographic semantic annotation only,

SemT-pattern is called basic SemT-patterns ; when the element is associated

with multiple other semantics, SemT-pattern will be called multi-dimensional

SemT-patterns.

Definition 6.2 (SemT-pattern) A semantic Trajectory Pattern is a pair

(SemS,A), where SemS = 〈(SemA0), · · · , (SemAn)〉 is a sequence of se-
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mantic elements, an element SemA = (e, V ) where e is the basic semantic

annotation and V is a set of additional semantic annotations, and A = 〈 α1,

· · · , αn 〉 describes the (temporal) annotations of the sequence.

SemT − pattern = SemA0
α1−→ SemA1

α2−→ · · · αn−→ SemAn.

Our task is to find all frequent SemT-patterns such that the number of

occurrences in trajectories given support of SemT-pattern is greater than a

pre-defined minimum support threshold. An occurrence of SemT-pattern is

that there is a trajectory containing the SemT-pattern. In this study, us-

ing multi-dimensional semantic trajectories, a containment of pattern occurs

when both semantic elements and time intervals of the pattern approximately

match those found in a trajectory. Specifically, we consider that a semantic

element corresponds to another when the basic semantics of two elements

are the same and additional semantics of an element partially match or fully

match the additional semantics of the other element. This definition of match

of elements adopts the dimensional containment specifically described in Def-

inition 4.2 in Chapter 4.3. For the match of two time intervals, the gap

between two time intervals is smaller than a given tolerance threshold.

Definition 6.3 Dimensional and τ -containment (�d,τ). Given a seman-

tic trajectory SemT = 〈(SemA0, t0), · · · , (SemAn, tn)〉, time tolerance τ ,

and a SemT-pattern (SemS,A) = SemA0
α1−→ · · · αn−→ SemAk, we say that

(SemS,A) is contained in SemT ((SemS,A) �d,τ SemT ), if and only if

there exists a sub-sequence SemT ′ of SemT , SemT ′ = 〈(SemA′0, t′0), · · · ,
(SemA′k, t′k)〉 such that:

1. SemS �d SemT ′.sequence of SemA; ∀0≤j≤k, ej = e′j, and Vj ⊆ V ′j ;

2. ∀1≤j≤k.|αj − α′j| ≤ τ ; where ∀1≤k≤n.α′j = t′j − t′j−1.

Definition 6.4 support of a SemT-pattern as

supp(SemT-pattern) =
|SemT ∗ ∈ D|SemT-pattern �N,τ SemT ∗|

|D|
.
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Definition 6.5 Semantic trajectory pattern mining: Given a database of

input trajectories D, a time tolerance τ and a minimum support threshold

minSup, the semantic trajectory pattern mining problem is to find all frequent

SemT-patterns whose support is no less than minSup. Support of a SemT-

pattern is the number of trajectories SemT ∈ D such that SemT-pattern

�d,τ T .

6.4 Semantic TPM framework

Figure 6.1: Framework of semantic trajectory pattern mining.

Figure 6.1 demonstrates our framework for finding semantic trajectory

patterns from user-generated geotagged contents. The framework contains

three main steps: (1) generation of raw geographic-feature only trajecto-

ries; (2) generation of semantic trajectories from raw trajectories; and (3)

extraction of semantic trajectory patterns from those semantic trajectories.

The first two steps are common processes with the main research framework

shown in Figure 3.2 and other tasks. First, we create raw geographic trajec-

tories from geotagged photos. Then, we generate semantic trajectories. In
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the third step, we apply our semantic trajectory pattern mining algorithm

to find frequent semantic patterns from semantic trajectories.

6.4.1 Generating semantic trajectories

The first two steps are creating raw trajectories from geotagged photos and

building semantic trajectories. Detailed information on these two common

steps is presented in Chapters 4.4.1 and 4.4.2. Each extracted semantic

RoI, particularly the place type semantic annotation, is considered to be

an interesting stop of the trajectory. Last, the semantic trajectories are

built as sequences of semantic stops with multiple contextual environmental

semantics.

6.4.2 Semantic trajectory pattern mining

We propose a semantic trajectory pattern mining algorithm to find SemT-

patterns from the generated semantic trajectories. Our algorithm is devel-

oped based on T AS algorithm scheme (Giannotti, Nanni, and Pedreschi

2006) which extends the PrefixSpan (Pei et al. 2001) projection-based method.

PrefixSpan algorithm is a classic method designed for frequent sequential pat-

tern mining. It finds frequent items and adds each frequent item to the exist-

ing item sequence to make a new longer item sequence. An item sequence is

defined as the prefix and the prefixes are considered to be sequential patterns.

The algorithm also creates a projection of sequences for each new prefix. The

projection stores sequences that contain the latest found frequent item. For

each involved sequence, all items that precede the latest found frequent item

are removed. PrefixSpan recursively generates longer patterns and computes

projection of sequences.

Based on PrefixSpan, Giannotti, Nanni, and Pedreschi (2006) proposed

the T AS mining algorithm to find temporally annotated sequential patterns

which are sequential patterns with additional time annotations. The time an-
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notation indicates the transition times between each two adjacent elements

of the sequence. It is different from normal projected sequence data, in that

T AS algorithm uses T-sequence data type. A projection is composed of

T-sequences. A T-sequence is a projected sequence enriched with an annota-

tion sequence. An annotation sequence includes records of occurrences of the

prefix in the original sequence. The occurrence record contains a sequence

of time stamps of such occurrence and a pointer to the element of sequence

where the occurrence terminates. In the T AS algorithm, prefixes are gen-

erated in the normal projection-based way, and the occurrences are used to

calculate the frequent transition time annotations for the prefixes. Integrat-

ing the prefix and a frequent time annotation makes temporally annotated

sequential patterns. In each successive projection extension, T-sequences,

including annotation sequence, are maintained for the computation in the

next level.

Adopting T AS algorithm scheme, our semantic trajectory pattern mining

method finds semantic trajectory patterns from semantic trajectories. Our

algorithm includes a new technique of handling multiple semantic dimen-

sions, technique for generating multi-dimensional patterns and a modified

approach of calculating frequent time interval annotations. For multiple di-

mensions issues, it includes computing frequent combinations of dimensions

and creating multi-dimensional prefixes. The algorithm computes frequent

interval sequences for SemT-pattern in a progressively increasing way such

that length of frequent interval sequence is incremented along the deeper

level projection extension.

Algorithm 6.1 shows the procedure of the semantic trajectory pattern

mining algorithm. For an actual projection, the algorithm extracts frequent

time interval sequences in Step 7, and generates semantic trajectory patterns

by integrating prefixes and frequent interval sequences in Step 8. Step 10

removes the occurrences of prefixes that do not contribute to the frequent

interval sequences. Steps 11-13 extend actual projection that generates sub-
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Algorithm 6.1 SemanticTrajectoryPatternMining

Input: A set of semantic trajectories T, a min sup minSup, a temporal

threshold tau;

Output: A set of semantic trajectory patterns (SemT-patterns);

1: L ← 0;

2: P0 ← {T × { 〈 〉 } };
3: while PL 6= ∅ do

4: PL+1 ← ∅;
5: for all P ∈ PL do

6: if P.prefix ≥ 2 then

7: ExtractFrequentIntervalAnnotations(P);

8: patterns ← GeneratingTrajectoryPatterns(P);

9: Output(patterns);

10: P ← PruneAnnotations(P,Intervals);

11: for all element e ∈ P do

12: if support(e) ≥ minSup then

13: PL+1 ← PL+1 ∪ {ExtendProjection(P,e)};

14: L + +;

projection for each newly extracted frequent item of actual projection. This

algorithm progressively finds longer patterns.

Multi-dimensional sequence projection

Besides the generation of projected sequences and up-to-date annotations in

T-sequences, our method requires extra steps to generate multi-dimensional

prefixes that will be used to make multi-dimensional SemT-patterns. Specif-

ically, we extend the basic prefix, the sequence of basic geographic semantic

annotations, in the usual way finding a frequent element and adding it to the

prefix of the actual projection to make new longer prefixes. Also, we gen-
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erate the projected sequences by selecting the sub-sequence of the sequence

that starts at the next element of the frequent element. For those up-to-date

annotation sequences in T-sequence, each annotation will be extended with

an occurrence of the projected element successive to the entry-point of the

former, as described in (Giannotti, Nanni, and Pedreschi 2006). These basic

prefixes will be used to generate basic SemT-patterns. In this study, we also

produce multi-dimensional SemT-patterns based on the multi-dimensional

prefixes. In the next step, our method also needs to extend each multi-

dimensional prefix, which is a basic prefix with additional frequent seman-

tics. The key point is to find multi-dimensional elements. The task is to

find the combination of multiple additional semantics that is frequent for

each frequent basic element. To do this, we apply the BUC algorithm (Beyer

and Ramakrishnan 1999) to all initial additional semantics for every frequent

element. The results are arbitrary combinations of partial semantics or all

those multiple semantics that are frequent. Frequent basic elements with

these extracted combinations (that are frequent) become multi-dimensional

elements. And, based on consistent combinations, these multi-dimensional

elements are added to the multi-dimensional prefixes of the actual projection

to make new longer multi-dimensional prefixes.

Algorithm 6.2 illustrates a procedure for extending the projection method.

For multi-dimensional prefixes we need to store values of dimensions for every

frequent item in Step 7. The values of dimensions are then calculated by the

BUC algorithm as in Step 9. The results of the BUC algorithm are sets

of frequent values of arbitrary dimensional combinations. This approach

solves the issue of arbitrary combination of dimensions. As we did with the

extension of basic prefixes, we add frequent values of dimensions to existing

multi-dimensional prefixes to create expected new multi-dimensional prefixes

in Steps 11-15. To keep consistent combination of dimensions, we connect

new frequent values to multi-dimensional prefixes that both have the same

dimensions in Step 12. We also need to ensure that both frequent value and
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Algorithm 6.2 ExtendProjection

Input: A projection P and an element ele;

Output: A projection of P w.r.t ele;

1: P ′ ← ∅, Ddims ← ∅;
2: for all T-sequence t=(S,A) ∈ P, e ∈ t do

3: S ′ ← S|ele and A′ ← 〈〉;
4: for all annotation(a,e) ∈ A do

5: for all (s,t) ∈ S, ele ∈ s ∧ t > e do

6: A′ ← append(A′, (append(a, t),→ t));

7: Ddims.add(t.ele.dimValues);

8: P ′ ← P ′ ∪ {(S ′, A′)};

9: freVals ← computeFrequentValues(Ddims);

10: Remove infrequent values base on number of unique sequences;

11: for all mdPrefix ∈ P.mdPrefixes do

12: fredimValues ← freVals.values(mdPrefix.dimensions);

13: for all freVal ∈ fredimValues do

14: if (mdPrefix.sequences ∩ freValue.sequences) ≥ minSup then

15: P ′.mdPrefix ← P ′.mdPrefix

∪ (dim, append(mdPrefix, freV alue));

16: return P ′

the extended prefixes belong to the same sequence in Step 14.

Finding frequent time interval annotations

Another process is to calculate time interval annotations for trajectory pat-

terns. In projections, the type of T-sequence is used as a projected sequence.

A T-sequence contains an annotation sequence that stores several records of

occurrences of prefixes in the sequence. An occurrence includes a sequence

of timestamps of such occurrences. The algorithm uses these timestamps to
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find the time interval between elements, and calculates frequent intervals.

We generate frequent interval sequences in a progressively increasing way.

Specifically, we first calculate the frequent intervals for the last two elements

of the prefix, and then add the frequent interval into the interval sequence

to make a longer interval sequence for actual projection. These new, longer

interval sequences will be integrated with prefixes of actual projection to

generate SemT-patterns.

The procedure for finding frequent interval annotations is presented in

Algorithm 6.3. For an actual projection, the algorithm first collects all the

time blocks of two elements from occurrence sequences in Steps 1–6. Then,

Steps 7–15 calculate frequent time intervals. Last, this algorithm generates

new, longer interval annotations in Steps 15–20. In projection, a prefix may

occur several times at different positions in a sequence where several occur-

rences are stored. To find a frequent interval between the last element and

its former element of the basic prefix, we need to use all transit times of all

occurrences in Step 4. A time block, an interval, is then created for each time

by making a time range of 2τ in Step 5. An interval has two boundaries,

the lowest time value and the highest value. Some intervals probably have

intersecting ranges. Areas of intersections are various. To make the calcula-

tion of frequent intervals easier, we create some basic interval cells based on

unique values of boundaries of all intervals in Steps 7–9. So, each interval will

take place at several basic interval cells and conversely each basic interval

cell is covered by some intervals. The density of a basic cell is the number

of intervals that covers the basic cell in Steps 10–14. We remove invalid

basic cells whose density is less than the frequency threshold. In the next

step, this algorithm merges the neighbouring basic interval cells to make final

frequent intervals in Step 15. This strategy is to reduce the number of SemT-

patterns. Finally, we append frequent intervals to interval sequences to make

new, longer frequent interval sequences according to that both belonging to

the same occurrence in Step 16. The new interval sequences, which occur in
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Algorithm 6.3 ExtractFrequentIntervalAnnotations

Input: A Projection database P ;

Output: A set of extended frequent interval sequences;

1: intervals ← ∅;
2: for all T-sequence t=(S,A) ∈ P do

3: for all annotation(a,e) ∈ A do

4: time ← a.lastEle.time - a.SecondlastEle.time;

5: interval with center time and edge 2τ ;

6: intervals.add(interval);

7: basicIntervals ← ∅, timeBoundaries ← ∅;
8: for all interval ∈ intervals do

9: timeBoundaries = timeBoundaries ∪ interval.timeBoundaries;
10: Sort timeBoundaries ;

11: Build basicIntervals based on timeBoundaries ;

12: for all interval ∈ intervals do

13: involvedBasicIntervals ← interval ∩ basicIntervals;

14: For each basicInterval in involvedBasicIntervals, increment basicIn-

terval.density ;

15: Remove sparse basic intervals from basicIntervals ;

16: frequentIntervals← mergeNeighborhood(basicIntervals);

17: for all sequence ∈ P.lastLevelIntervalSequence do

18: for all interval ∈ frequentIntervals do

19: if (sequence.occurrences∩interval.occurrences)≥minSup then

20: P.intervalSequences← P.intervalSequences

∪ append(sequence, interval);
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a density of sequences, are stored for actual projection in Steps 17–20 that

will be used to produce semantic trajectory patterns.

Once frequent interval annotations have been extracted, we generate se-

mantic trajectory patterns from actual projections in Step 8 of Algorithm 6.1.

Frequent interval annotations are integrated with the basic prefix and multi-

dimensional prefixes to make basic SemT-patterns and multi-dimensional

SemT-patterns, respectively. During the process, we need to check the num-

ber of unique sequences that contain the patterns to ensure if it is frequent.

6.5 Experiments

We conducted experiments to show that our method has the ability to find

SemT-patterns: both basic patterns and multi-dimensional patterns with

an arbitrary combination of dimensions. We also executed experiments to

compare our method with the traditional geographic-feature based TPM

method (Cai et al. 2014). Experimental results demonstrate that the SemT-

patterns discovered provide more semantically meaningful information than

the results of the TPM method and demonstrate people’s semantic-level mo-

bility behaviours. Moreover, our method finds a greater number of SemT-

patterns, while the TPM method extracts fewer geographic trajectory pat-

terns.

6.5.1 Parameters

We use the same dataset used in Figure 4.6 in Chapter 4.5. Our method

requires three parameters: minimum support (minSup) for a cell to become

a RoI and trajectory to become SemT-pattern, size of geographical grid cell

(cellSize) which is used to partition the study region and time tolerance (tau)

which is the acceptable range for a time interval. In this study, semantic

trajectories that have fewer than 30 elements will be used because the few
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long trajectories, containing many identical place type elements, will produce

a huge number of occurrences that cost expensive running time. Moreover,

small values of parameter minSup lead to high consumption of memory as

the PrefixSpan algorithm quickly generates sequence dataset and holds the

candidate sequence patterns as well as the sequence dataset. As reported by

Cai et al. (2014), increasing the value of tau generates more frequent patterns,

the valid range of time interval becomes wider, and more intersections of time

intervals occur. Similarly, an increase of cellSize values will produce more

RoIs. As a result, more valid points and trajectories will be considered in

the calculation of patterns, and thus will result in more potential patterns.

In this experiment, we select a value 0.008 (0.8%) for parameter minSup, a

value 0.0015 (150 meters) for parameter cellSize, and a value of 2 days for

tau.

6.5.2 Semantic trajectory patterns

We found 65 basic semantic trajectory patterns, of which the bulk were

2- and 3-length patterns (29 and 28 respectively). The remainder were 4-

length patterns, and only one 5-length pattern. We also obtained 2,124

multi-dimensional semantic trajectory patterns. We demonstrate several typ-

ical results including basic place type semantic trajectory patterns, patterns

associated with multiple additional dimensions, arbitrary combinations of

dimensions, and patterns with various frequent time intervals.

Table 6.1 lists some basic semantic trajectory patterns for lengths of 2

to 5. Every pattern shows a frequent trajectory moving from a type of

place to others type of places, with frequent time interval information. Each

element of the pattern is a feature code from the GeoNames database used

to categorise places. The descriptions of feature codes are listed in Table

6.2. These patterns provide us with meaningful information on mobilities

among types of places and transit times. Specifically, for 2-length patterns,

one frequent pattern is “going to a hotel and then going to a rail station with
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a time interval range of 0 to 5 days”. Another 2-length pattern is “from a

park to a populated place with an interval time in 0 to 2 days”. A third

pattern is “moving from a hotel to a bridge after 0 to 3 days”. For other

patterns with a longer length involve more types of places and show diverse

mobility. As shown in the example patterns, the place type of “hotel” occurs

in many patterns and occupies most elements in long patterns; in particular,

the 5-length pattern is about movements among hotels only. This is because

many initial semantic trajectories have several hotel elements. However, the

SemT-patterns generated from our method help users understand people’s

frequent mobility behaviours on the geographic semantic level.

Table 6.1: Samples of basic SemT-patterns.

Length Basic semantic trajectory pattern

2 HTL
[0,5]−−→ RSTN,

PRK
[0,2]−−→ PPLX,

HTL
[0,3]−−→ BDG

3 HTL
[0,3]−−→ PPLA

[0,2]−−→ HTL,

HTL
[0,35]−−−→ HTL

[0,2]−−→ BDG,

RSTN
[0,8]−−→ HTL

[0,2]−−→ HTL

4 HTL
[0,35]−−−→ HTL

[0,15]−−−→ HTL
[0,2]−−→ PPLA

5 HTL
[0,35]−−−→ HTL

[0,15]−−−→ HTL
[0,4]−−→ HTL

[0,2]−−→ HTL

Our method also generates semantic trajectory patterns with multiple

additional semantics. Table 6.3 lists some multi-dimensional semantic pat-

terns belonging to the group of basic pattern of hotels to populated places.

These additional semantics provide much richer information about people’s

frequent mobilities. For a combination of day type and city dimensions, we

find that a pattern “visiting hotel on a weekday in Brisbane first and then

moving to a place in an administrative division on weekday after 0 to 3 days”.
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Table 6.2: Descriptions of feature codes for semantic trajectory pattern min-

ing.

Feature Code Description

HTL Hotel

PRK Park

BDG Bridge

PPLA Seat of a first-order administrative division

RSTN Railroad station

PPLX

Section of populated place: a city, town, village, or

other agglomeration of buildings where people live

and work

This pattern indicates the day type and city information of the mobility. For

dimensions of day type, city and weather together, a finer SemT-pattern is

found that a frequent mobility occurs on a clear day and in a weekday in

Brisbane that contains the additional weather condition information besides

the day type and city information.

Another important feature of our results is the ability to have arbitrary

combinations of multiple dimensions. We add four additional dimensions into

the semantic trajectories. The multi-dimensional SemT-patterns we obtained

are basic patterns with different combinations of partial dimensions or all

four additional dimensions. As shown in Table 6.3, we find patterns with a

combination of day type and city dimensions, patterns with a combination of

day type and weather dimensions, and patterns with all three of day type, city

and weather dimensions. The benefit of this feature is that we can find some

interesting semantic trajectory patterns with partial additional dimensions

when all four dimensions together are calculated as infrequent.

Benefiting from the T AS algorithm, the same sequence of place types

can have various time interval annotations that can generate various SemT-
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Table 6.3: Samples of multi-dimensional SemT-patterns for a pattern: HTL
[0,3]−−→ PPLA.

Combination of

dimensions
Semantic pattern

DAY TYPE, CITY
HTL[weekday][Brisbane]

[0,3]−−→
PPLA[weekday][Brisbane]

DAY TYPE, WEATHER 1) HTL[weekend][clear]
[0,3]−−→ PPLA[weekday][clear],

2) HTL[weekday][clear]
[0,3]−−→ PPLA[weekday][clear]

DAY TYPE, CITY,

WEATHER

HTL[weekday][Brisbane][clear]
[0,3]−−→

PPLA[weekday][Brisbane][clear]

patterns. These various time annotations provide people with more knowl-

edge about transit time between types of places. As shown in Table 6.4, for

the basic pattern of visiting two hotels followed by a railroad station, there

are two different frequent transit times. One interval group is spending a

range of 0 to 35 days between the first two hotels, and 0 to 3 days from the

second hotel to a railroad station. The other is 39 to 59 days interval between

two hotels. Two multi-dimensional patterns with weather and city semantics

have the same time interval group with the two basic patterns, respectively.

6.5.3 Comparison with TPM method

T-patterns from TPM

In this section, we compare our method with the TPM method (Cai et al.

2014), which already outperforms the original TPM (Giannotti et al. 2007).

We focus on comparisons of the type of extracted trajectory patterns, and

comparisons of the number of SemT-patterns and T-patterns. Using the same

values of parameters with minSup=0.008, cellsize=0.0015, tau=2, the TPM

method generated 33 spatial RoIs and found 25 patterns, mostly 2-length
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Table 6.4: Samples of SemT-patterns with various time intervals: HTL→
HTL → RSTN.

Type of pattern
Combination

of dimensions
Semantic pattern

Basic patterns 1)HTL
[0,35]−−−→ HTL

[0,3]−−→ RSTN,

2)HTL
[39,59]−−−→ HTL

[0,3]−−→ RSTN

Multi-dimensional

patterns

WEATHER,

CITY

1)HTL[Clear][Brisbane]
[0,35]−−−→

HTL[Clear][Brisbane]
[0,3]−−→

RSTN[Clear][Brisbane],

2)HTL[Clear][Brisbane]
[39,59]−−−→

HTL[Clear][Brisbane]
[0,3]−−→

RSTN[Clear][Brisbane]

patterns (24), with just one 3-length pattern.

Table 6.5: Samples of T-patterns from the TPM method.

Length Trajectory pattern

2 R1
[0,2]−−→ R35

R8
[0,4]−−→ R45,

R24
[11,12]−−−→ R67

3 R27
[0,2]−−→ R85

[0,2]−−→ R134

Table 6.5 lists four examples of T-patterns. These T-patterns are se-

quences of spatial RoI labels with time intervals. Each spatial RoI is com-

posed of several neighbouring spatial cells represented as bounding boxes of

geographical coordinates. One 2-length T-pattern is “visiting region 1 first

and then going to region 35 after 0 to 2 days”. By visualising these four

spatial T-patterns on NASA earth shown in Figure 6.2, we can see where the
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spatial RoIs and T-patterns are located. From the top left picture (Figure

6.2(a)), we can find that this 2-length pattern is located in Brisbane and its

two spatial regions are geographically close. The other two 2-length patterns,

Figure 6.2 (b) and (c), are located in Cairns city and Brisbane city, respec-

tively. The 3-length pattern, Figure 6.2 (d) is in Brisbane moving between

two regions where one region has two different labels representing two differ-

ent visits. One major issue with the traditional approach is that we need a

map overlay or map-matching to make sense of those detected RoIs.

(a) R1 to R35 (b) R8 to R45

(c) R24 to R67 (d) R27 to R85 to R134

Figure 6.2: Samples of T-patterns plotted on NASA earth.
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Table 6.6: Samples of 2-length SemT-patterns.

Length Semantic trajectory pattern

2 HTL
[0,5]−−→ RSTN

PARK
[0,2]−−→ PPLX

HTL[Cairns]
[0,2days]−−−−−→ Pier

HTL[weekday][BNE][clear]
[0,3]−−→ PPLA[weekday][BNE][clear]

Comparison

Semantic trajectory patterns provide richer semantically meaningful informa-

tion and semantic-level behaviours than the geographic T-patterns. Table 6.6

lists some 2-length SemT-patterns similar to the 2-length T-patterns shown

in Table 6.5. Note that, the main differences between SemT-patterns and T-

patterns is that SemT-patterns present frequent movement patterns between

types of places while T-patterns show frequent movement patterns between

spatial regions labelled with id. Obviously, the type of place provides more

meaningful and readable semantic information than the abstraction of a spa-

tial region with an identification number. Moreover, there are several addi-

tional pieces of semantic information added to the SemT-patterns. Though

we can obtain semantic knowledge of T-patterns through post-processing

methods such as map-matching or map overlap, there are still some draw-

backs. First, post-processing is not a natural way of producing semantic

patterns. Second, the TPM method misses some potential semantic-level

patterns.

Figure 6.3 visualises a 2-length SemT-pattern (HTL[Cairns]
[0,2days]−−−−−→ Pier)

corresponding to the 2-length T-pattern (R8
[0,4]−−→ R45) shown in Figure 6.2(b).

Note that in Cairns, the Great Barrier Reef is one of the most famous daily

travel destinations which attracts millions of people to visit. Obviously, Fig-

ure 6.3 is easier to understand than Figure 6.2(b). This SemT-pattern shows
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a mobility behaviour of hotel to the fleet station. In fact, there are some

other reef tour routes from spatially different piers to different islands or reef

platforms in Cairns. These routes fail to be triggered as patterns because the

number of involved trajectories is less than the minimum support threshold.

Figure 6.3: A 2-length SemT-pattern: Hotel[Cairns]
[0,2days]−−−−−→ Pier[Cairns].

Obviously, our SemT-patterns provide richer information and higher semantic-

level behaviours in both behaviour and information levels. Differences be-

tween SemT-patterns and spatial T-patterns can be summarised as follows:

1. Behaviour level:

• SemT-patterns: (a) (basic patterns) movement on the type-of-

place semantic level; (b) (finer patterns) movement on the type-

of-place + subset of additional weather, temporal and city dimen-

sions.

• T-patterns: (spatial level) movement on the spatial level.

2. Information level:

• SemT-patterns: (place type) hotel, park, rail station etc; (weather)
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clear, rainy, overcast etc; (temporal) day, weekday, weekend, morn-

ing, daytime, etc; (city type): Brisbane, Cairns, Gold Coast etc.

• T-patterns: spatial RoIs with id.

SemT-patterns show people’s movement behaviours on a high semantic

level whilst spatial T-patterns depict those on a low geographic spatial level.

SemT-patterns reveal how people move on the type-of-place semantic level,

whilst T-patterns show spatial positions of patterns. For applications that

require advanced knowledge about people’s movement behaviours at the high

semantic level, SemT-patterns are more understandable, readable, readily

usable, useful and valuable than spatial T-patterns.

Figure 6.4: Comparison of number of patterns for SemT-patterns and T-

patterns.

In addition, our method finds more trajectory patterns than the TPM

method does. Figure 6.4 compares the number of basic patterns found by

our method, and the numbers of patterns found by the TPM method. As we
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mentioned an increase in the value of parameter τ produces more patterns for

both methods, we use cellSize=0.0015 and τ=2, and test values of minSup

from 0.007 to 0.014. Using bigger values, both methods find few patterns,

specifically, for a value of 0.014, our method finds 5 basic patterns and TPM

finds 2 patterns. In contrast, using small values, our method finds many more

basic patterns than the TPM method. As discussed above, more patterns are

trigged when using semantic features however they become infrequent with

the geographic-feature-only approach. Moreover, our method can find many

multi-dimensional semantic patterns that are also useful to the understanding

of mobility, which is not possible with traditional TPM.

The two methods require a similar memory requirement due to the rapidly

growing number of projections. Both methods cost a similar running time

as the value of minSup increases. Our method requires slightly more time

with smaller minSup values as our approach generates a greater number

of patterns. Note that our method needs extra steps to process additional

projections for multi-dimensional prefixes and extension of multi-dimensional

patterns.

6.5.4 Discussions

There are some obvious findings from the experimental results. First, our

method is able to generate semantic-level trajectory patterns that provide se-

mantically meaningful information and knowledge about trajectory patterns.

We are able to find people’s frequent mobility patterns among different place

type semantics. Second, using additional semantic dimensions, we are able

to find patterns associated with additional semantics that provide richer in-

formation about mobility. The patterns are associated with city, day type,

day time, and weather condition semantics. Third, our method finds poten-

tial semantic trajectory patterns, which the previous geographic-feature-only

method was unable to find. Last, another important benefit of our method

is an automatic extraction of various combinations of semantics dimensions.
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These semantic trajectory patterns with arbitrary combinations of dimen-

sions also provide useful insight into people’s mobility.

This paragraph illustrates an example of using trajectory patterns for

tourism. These temporally annotated trajectory patterns show travel route

behaviours and corresponding interval time information. These trajectory

patterns have implications for tourism. Specifically, these patterns help

tourists plan a travel itinerary based on the travel duration, and provide

transport departments or travel agencies with useful advices for designing

tours and transports between places. For example, a pattern of visiting from

“hotel to pier with about 0 to 2 days in Cairns” tells tourists how long they

can spend in Cairns to visit the Great Barrier Reef. This pattern also pro-

vides transport service suppliers with information about the time tourists use

to transfer between two stops which could assist them in planning transport

and arranging public transport vehicles.

6.6 Conclusion

This study is an investigation into analysing georeferenced social media data

to find people’s semantic trajectory patterns which are in the place type se-

mantic level, frequent moving sequences with interval times. We propose a

semantic trajectory pattern mining method to find semantic trajectory pat-

terns from actual semantic trajectories. Using real geotagged photos, we

find many interesting semantic trajectory patterns. These patterns show

frequent mobility among types of places along with transit times between

entities. Experimental results also show that our method is able to find

trajectory patterns with various additional semantics. These semantic tra-

jectory patterns provide rich semantic information about people’s mobility

behaviours. SemT-patterns are more readable, potentially useful, readily us-

able, interpretable, and valuable than any patterns generated from this type

of data before.
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Semantic itinerary

recommender system

This chapter describes the semantic itinerary recommender system. Our sys-

tem uses data from geotagged photos to provide users with suggested travel

itineraries containing a sequence of places with transit time information.

Chapter 7.1 introduces the motivations of our study. Chapter 7.2 reviews

current studies in itinerary recommender systems. Chapter 7.3 formulates

problems and provides the problem statements for the semantic itinerary rec-

ommender. Chapter 7.4 introduces the framework of our proposed itinerary

recommender system based on trajectory pattern mining from geotagged pho-

tos. Chapter 7.5 outlines the experimental design and datasets used. Chapter

7.6 illustrates experimental results to demonstrate the effectiveness and effi-

ciency of our framework over traditional approaches. Finally, Chapter 7.7

draws conclusion for this chapter

7.1 Introduction

Travel itinerary recommender systems attempt to assist users with travel

planning (Yoon et al. 2012). They provide useful suggestions about popu-
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lar places to visit and ideas on travel routes and corresponding stay times

for users who travel to an unfamiliar destination. An itinerary is a detailed

trip plan made up of a travel route associated with stay time information,

where the travel route is a sequence of places. The enormous amount of

online photo data has become a potential data repository for discovering

useful travel information and building travel recommender systems (Beel et

al. 2016; Bobadilla et al. 2013), such as location recommendation (Popescu

and Grefenstette 2011; Waga, Tabarcea, and Fränti 2012; Yamasaki, Gal-

lagher, and Chen 2013) and travel route recommendation (Okuyama and

Yanai 2013).

Existing itinerary recommender systems generate specific itineraries with

geographic location information from available geotagged photos. Typically,

they generate popular PoIs where many photos have been taken, and map-

match PoIs with specific geographic place types to construct a suggested

itinerary. However, traditional approaches share a common major draw-

back: they are mainly based on geographic spatial information when they

recommend an itinerary. That is, they do not take any aspatial semantic

information into account. In many real-world scenarios, a user wants to

visit a certain place type, for instance “zoo”, in a given trip. This spe-

cific, semantically enhanced request is not considered at all in the traditional

approaches. Instead, they accommodate this aspatial semantic information

as a post-processing stage for their spatial-information-only recommender

systems. Therefore, the traditional recommender systems are not able to

accommodate users’ semantically enhanced requests to generate meaningful

and semantically enhanced itineraries.

The semantic place type request is an important feature in the user’s

travel planning. For users who are unfamiliar with specific geographic loca-

tions and PoIs in a certain destination, they prefer to list some place types

(categories) they would like to visit (Gionis et al. 2014). For instance, a user

may want to visit “Great Barrier Reef”, “rain forest” and “cultural Abo-
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riginal park” in a trip to Cairns. In addition, the user may want to visit

“Great Barrier Reef” on a clear day to enjoy swimming with fish and ex-

ploring the beauty of reefs, whilst “rain forest” is okay for a rainy day. Any

recommended itineraries are expected to contain at least one of each of these

requested place types. However, existing itinerary recommender systems

fail to consider the user’s actual constraints, because they have insufficient

semantic information in the recommender system. This study presents an

itinerary recommender system that considers users’ predefined semantic spa-

tial and aspatial constraints on place types, weather conditions and travel

duration time.

A semantic-level itinerary offers detailed journey planning with semantic

spatial and aspatial information incorporated. It is more detailed and spe-

cific than a general spatial-location-only itinerary. It shows a sequence of

movements among different place types with certain weather conditions and

certain stay times. This semantic-level itinerary provides users with flexible

choices (rain forest in Kuranda or rain forest in Port Douglas) of specific

geographic-level routes that satisfy their actual requests (Chen et al. 2011).

To the best of our knowledge, there is no other itinerary recommender sys-

tem that produces a semantic-level itinerary with a set of spatial and aspatial

user-specified constraints.

This study develops a semantic-level itinerary recommendation system

from geotagged photos. This system considers users’ semantic spatial and

aspatial requests, and travel duration constraints, and generates semantic-

level itineraries that meet the user constraints. The proposed semantic-level

itinerary recommender system aims to provide users with higher level advice

on place types, weather conditions and stay times. We generate itineraries

based on mining semantic trajectory patterns from geotagged photos. We

test our algorithm with real datasets from Flickr against traditional spatial-

only recommender systems. The experimental results support the effective-

ness and efficiency of our system.
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7.2 Related work

Online user generated databases, comprised of varying numbers of photos

from a wide range of individuals, have become massive, and now offer a po-

tentially useful resource for the tourism-related research community to build

collective intelligence and to generate collectively filtered and recommended

travel itineraries (De Choudhury et al. 2010). Itinerary recommender sys-

tems provide people with advices on travel itinerary with travel routes and

time constraints. Kurashima et al. (2013) proposed a system to to generate

travel itinerary containing a sequence of locations and the transit time infor-

mation between two locations. Different from the transit time information,

Lu et al. (2010) and Lim et al. (2015) produced the stay time information

that tourist could spend at each location of travel route. De Choudhury

et al. (2010) provided suggestions for both stay time and transit time for the

recommended travel route. However, there are two main differences between

previous itinerary recommender systems and our itinerary recommender sys-

tem. The first difference is that previous systems are unable to deal with

semantic-level requirements, such as place types. Users may also want the

recommended itineraries to contain some required place types. Symeonidis,

Ntempos, and Manolopoulos (2014) play attention to the query with con-

tainment of semantic categories, but their system generates landmark-only

recommendations. Our system considers users’ queries with required con-

tainment of place types. The second difference is that our system focuses

on the place type layer itinerary recommendations, while previous systems

produce geographic object-itinerary recommendations. Travel itinerary in

the place type layer is another kind of important suggestion for users’ travel

planning that provides useful information for users who are unfamiliar with

travel destinations and who have no idea what sequence of place types is

popular. Our recommender system produce semantic-level itinerary recom-

mendations. Moreover, our system generates additional richer and more
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meaningful contextual information than any previous itinerary recommender

system.

As for the itinerary generation, previous methods use original travel se-

quences formed from photo data to build people’s travel sequences as a prob-

abilistic model (Kurashima et al. 2013) and graph-model (Lu et al. 2010;

Quercia, Schifanella, and Aiello 2014; De Choudhury et al. 2010; Lim et al.

2015), and then they reconstruct itineraries from the travel models based

on various criteria, such as popularity maximisation. However, the main

drawback is that there is no guarantee these itineraries have ever been taken

by people. Unlike past methods, this study directly extracts people’s “fre-

quent” movement patterns from their historic data, and uses these extracted

patterns to provide recommendation to users. Being “frequent” means that

the itinerary is regularly occurring in and supported by a certain number

of people’s travel movements. These frequent movement patterns in peo-

ple’s trajectories guarantee the validity and trustworthiness of recommended

itineraries.

7.3 Problem statement

This study aims to build a semantic itinerary recommender system using data

mined from massive repositories of online geotagged photos. The problem

could be described as follows: given a query including a set of required

place types and a travel duration, query = {< Types >,Duration}, our

system replies a list of semantic-level candidate itineraries. An itinerary is a

sequence of place types with interval time information, that contains some

of the required place types and satisfies the travel duration. Each place

type stop is associated with several pieces of additional semantic contextual

information: day time, day type and weather condition. An itinerary is

expressed as shown below:

semantic itinerary = Stop0
α1−→ Stop1

α2−→ · · · αn−→ Stopn.

152



Chapter 7. Semantic itinerary recommender system

We generate itineraries based on previous people’s semantic trajectory

patterns, as explained in Chapter 6. These patterns are extracted from

historical trajectories formed from geotagged photos. We create raw tra-

jectories from photo data, then we build semantic trajectories that contain

application-dependent contextual aspatial semantics, as defined in Definition

3.7. From these semantic trajectories, we find frequent sequences of seman-

tic elements with transit times that are frequent from semantic trajectories.

These mobility behaviours are semantic trajectory patterns, as defined in

Definition 6.2. Using basic place type semantics, a semantic trajectory pat-

tern is a sequence of visited place type stops with an interval time between

two stops.

7.4 Semantic itinerary recommender system

and methods

Figure 7.1: Framework of semantic itinerary recommender system.

Figure 7.1 shows our architecture for the semantic itinerary recommender

system. The framework includes two main components: offline semantic tra-

jectory pattern mining from geotagged photos; and online itinerary recom-

mendation. In the offline component, we reconstruct people’s trajectories
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from geotagged photos, generate semantic trajectories associated with basic

place type semantics and additional contextual semantics, and extract pre-

vious users’ semantic trajectory patterns. This part contains three steps:

(1) constructing basic trajectories from geotagged photos; (2) generating en-

hanced semantic trajectories using additional spatial and aspatial databases;

and (3) mining semantic trajectory patterns. These patterns are used for

itinerary recommendations. In the online component, our system verifies the

user’s query, searches for related candidate itineraries, and sorts and displays

them. The remainder of this section describes the methods in detail, step by

step. We first present a brief description of methods for extracting seman-

tic trajectory patterns in the offline part. The semantic trajectory pattern

mining method is described in detail in Chapter 6.4 in Chapter 6. Then, we

illustrate methods for recommending itineraries in the online part.

7.4.1 Mining semantic trajectory pattern

We utilise a semantic trajectory pattern mining algorithm proposed in Chap-

ter 6.4. Given a dataset of semantic trajectories, this algorithm finds all

semantic trajectory patterns. These results contain two kinds of semantic

trajectory patterns (SemT-patterns). One is a basic semantic pattern, which

is a sequence of basic semantics, whilst the other is multi-dimensional seman-

tic pattern, which is a sequence of basic semantics with several additional

semantics.

7.4.2 Semantic itinerary recommendation

In the online itinerary recommendation component, for a given user query,

the proposed system recommends appropriate semantic itineraries through

a series of processes including verifying query, searching and filtering candi-

date itineraries from our semantic trajectory pattern database, and ranking

itineraries. At last, a set of semantic itineraries is extracted and displayed.
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The first step is to verify a user’s query to check its correctness and

validity. A query should include a set of place types and travel duration.

Each place type is a word describing a place category, such as hotel, beach,

park, etc. We check to ensure that the query contains correct and valid

category words. Travel duration indicates the number of days a user will

spend travelling. We check to ensure the number is a valid positive integer.

The second step is to search and filter itineraries from the semantic tra-

jectory pattern database. We search every semantic trajectory pattern: a

candidate pattern must contain some of required place types, and have a to-

tal duration no greater than the user-specified time constraint. Once found,

the computed candidate itineraries are stored based on their degree of sat-

isfaction of the user-specified constraints. If there is no pattern containing

any of the required types, we choose a set of long patterns that matches the

travel duration.

The last step is to sort candidate itineraries. We need to place the candi-

date itinerary that satisfies the most user constraints at the top. Satisfaction

is defined based on the number of required place types a candidate itinerary

meets and contains. We sort candidate itineraries based on the number of

required types they meet and contain. The final output of the itinerary

recommender system is a list of sorted candidate itineraries.

7.5 Experimental setup

We conducted experiments to evaluate the efficiency and effectiveness of the

proposed recommender system. The first experiment mainly focuses on the

effectiveness of our system. Specifically, we validate the performance of rec-

ommended semantic itineraries, that is, to check the number of user’s requests

the recommended itineraries contain. The second experiment evaluates the

informativeness of recommendations. We explain the additional useful in-

formation our recommendations can provide, with a comparison to previous
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traditional methods.

7.5.1 Baseline methods

We chose two previous popular traditional methods – popularity-based method

(De Choudhury et al. 2010; Lim 2015) and random-based method (Lim 2015)

– as baseline comparative studies. They reconstruct itineraries from people’s

historical travel routes generated from geotagged photos. A travel route is

a sequence of PoIs with transit time information. A PoI is a geographical

location that a great number of users visits. In the implementation of base-

line methods in this experiment, PoIs are extracted from people’s geotagged

photos by clustering photo points. We store PoIs and create a PoI database.

Then, we generate people’s travel routes using these PoIs. For each sequence,

we collect transit time between each pair of sequential PoIs, and compute an

average transit time database. Two baseline methods use the PoI database

and average transit time database to construct itineraries. Each itinerary is

a sequence of geographic PoIs with transit time between two PoIs.

• Random selection method: (Lim 2015) This method randomly

selects a PoI from the PoI database as the next destination, and finds

out the average time between these two PoIs from the transit time

database as the recommended interval time. This process continues

until the total duration time of recommended itinerary reaches the

user specified travel duration constraint.

• Popularity-based method: (De Choudhury et al. 2010; Lim

2015) This method aims to recommend itineraries with maximum pop-

ularity. The popularity of a PoI is the number of people who visit and

take a photo at this PoI. This is one of the most popular approaches

used in previous recommendation systems, using the basic assumption

that a route with maximum popularity will be preferred by users. From

the PoI database and the average transit time database, this method
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finds all potential itineraries that have a total duration not greater

than the user’s queried travel duration constraint. Then, these po-

tential itineraries are sorted in a descending order based on the total

popularity. Finally, a list of top itineraries is recommended to users.

As baseline methods produce specific spatial itineraries without any basic

place type semantics information, we conduct an extra post-processing step

in order to add place types to the spatial itineraries for the baseline methods.

We find a place type for every PoI to transform each spatial only itinerary into

a place type semantic-level itinerary. We record statistics about place type

in the recommended itineraries for a comparison with our itinerary results.

7.5.2 Evaluation approaches

Here we introduce the metrics used to measure the effectiveness of the itinerary

recommender’s results. We measure how well the recommendations satisfy

the user’s query. Specifically, when a user searches for a travel itinerary with

a set of customised place types and a travel duration, each system generates

multiple candidate itineraries. Each candidate itinerary may potentially be

selected by users. To evaluate the effectiveness of recommender systems, we

measure the following aspects:

1. Given a user query q, a system generates a list of n candidate itineraries

I = {ii, i2, . . . , in}. If a candidate itinerary ik ∈ I contains some of

user’s queried types (user’s customised constraints C = {c1, c2 . . . , cm}),
it is called positive. For n candidates, there are n+ 1 situations from

where no candidate contains any queried type (0 positive) to where

all candidates contain some queried types (n positive). Higher posi-

tive values mean better performance. That is, it is formally defined

as: |I ′| for I ′ ⊂ I where i′ ∈ I ′, ∃ c ∈ C such that i′ contains c. |I ′|
varies between 0 and n. Given a set of itinerary recommender systems
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R = {R1, R2, . . . , Rl}, Ri is said to be better than Rj in performance,

for Ri and Rj ∈ R iff |I ′Ri
| > |I ′Rj

|.

2. Let us assume there are n candidature itineraries I for a given query

q. For a candidate itinerary ik ∈ I, let us assume that it has x unique

types (number of unique values of place type in a candidate itinerary),

and contains y common types (number of place types both user query

and a candidate itinerary contain). The percentage of common types

in the candidate ik is perk = y/x. The higher percentage, the better

performance. For all n candidates, we calculate the average percentage

for I, that is aver per = (per1 + per2 + · · · + pern)/n. For a given set

of m testing routes, we record the average percentage for each route.

Then we count the number of testing routes in each average percentage

range: that is the metric we use to measure the degree of concentration.

The higher the number of routes with higher average percentage range,

the better the quality of candidate itineraries.

3. The efficiency of each system, that is, how fast the system generates a

list of recommendations.

We also compare the degree of additional meaningful semantics in-

formation in the itinerary recommendation results. This comparison mea-

sures information richness. Specifically, the comparison focuses on what in-

formation our approach and the baseline systems recommend. We conduct

these evaluation experiments by simulating user queries for test travel routes.

7.5.3 Datasets for experiments

Training dataset

The dataset used is the same as the one in Figure 4.6 in Chapter 4.5. The

statistics about the training dataset are as follows.
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• For our recommender system, we generate 1,404 trajectories, find 49

semantic RoIs with 12 place types, and extract 65 basic semantic tra-

jectory patterns (each one has a set of multi-dimensional semantic pat-

terns). Most of the patterns have a length of 2 to 4.

• For two baseline methods, we apply the DBSCAN clustering method (Es-

ter et al. 1996) to photo data and validate final PoIs based on the num-

ber of users. Finally, we obtain 46 PoIs with 17 unique place types.

Testing dataset

We used simulated travel routes as our testing dataset, constructed from a

combination of unique place types from our method and unique place types

from the baseline methods (12 and 17, respectively). The final dataset for the

simulation included 22 unique place types. We then generated travel routes

by randomly selecting place types from the place type set and randomly

generating an interval time between two types. We kept the total duration of

each route at 16 days or less, since the popularity-based baseline method cost

significantly more time to construct itineraries when a query travel duration

constraint is more than 16 days. Finally, we created a testing dataset with

the following statistics:

• 300 travel routes;

• containing total 22 unique place types;

• nearly half the routes are 2-length, while containing 2 unique place

types;

• number of common types that training dataset also contains (our sys-

tem: 12, baseline 17);

• higher diversity than real Flickr travel route testing dataset.
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7.6 Results and discussions

7.6.1 Effectiveness of recommendation results

We used testing route as simulated user query input. A query includes a

set of place types and a travel duration constraint. In evaluation experi-

ments for the effectiveness of itinerary recommendations, we chose the top

five candidate itineraries as final recommendations, because the top five can-

didates provide a temperate diversity and number of recommendations for

all three methods. When using more than five candidates, the redundancy

of itineraries increases.

The first experimental result is how many candidate itineraries contain

the user-queried place types in the recommendation results. If a candidate

itinerary contains any user-required type, it is noted as positive. When all five

candidate itineraries contain any of the required types, it becomes 5-positive.

Figure 7.2 shows the performance of itinerary recommendation results from

three systems. For 300 testing queries, the figure presents the distribution of

queries for each positive situation.

Obviously, the random selection method generates the worst quality of

recommendations. It is not able to generate 5-positive for any testing route,

whilst the popularity-based method and our method can produce 5-positive

for more than half the testing routes. The number of routes for which the

popularity-based method generates a high positive is a little more than that

of our method. The reason is that the extracted patterns from our system are

mostly in short length. As a result, our recommended itineraries are short,

whereas the popularity-based method constructs itineraries by finding PoIs

and connecting PoIs as long as possible until the total time duration reaches

the user-defined duration constraint. A long itinerary has a higher proba-

bility of containing the user-queried place types. However, the difference is

not significant. A positive value indicates the system’s ability to generate

valuable and useful candidates: the higher the positive value, the higher the
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performance. Both our method and the popularity-based method are able to

produce high positive itineraries.

Figure 7.2: Number of routes for each different containment for user-queried

types.

The second result is the average percentage of common place types in the

recommendations. A candidate containing a high percentage of user-queried

place types exhibits high concentration on queried types and thus it is useful

to users. The average percentage indicates the quality and degree of concen-

tration of whole recommendation results. Figure 7.3 shows the distribution of

routes with different average percentage ranges. Our system produces better

itinerary recommendations since it is able to generate higher concentration

recommendation results for more than half the queries. In contrast, the two

baseline methods can only generate low concentration itineraries.

The third experiment is to measure the running time of the system. The

total duration time for testing the route is used as a queried travel dura-

tion constraint. Figure 7.4 shows running time requirements for the three

systems. As shown in Figure 7.4, the popularity-based method exhibits the
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Figure 7.3: Average percentage (N.comtypes/N.uniqueTypes).

worst efficiency, that is not scalable to large datasets. For larger travel dura-

tion queries, the popularity-based method costs much more time to generate

recommendations than the other two. The random-based method and our

method cost much less time, and are scalable to large datasets. However,

note that our semantic method requires consistently less time for all travel

duration queries and exhibits the best efficiency performance.

Table 7.1: Performance comparison of recommendation results.

Positiveness Concentration Efficiency

Random-

based
Bad Bad Good

Popularity-

based
Good Bad Bad

Semantic-

based
Good Good Good

In summary, Table 7.1 presents the performance comparison of the three
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Figure 7.4: Specific running time of random-based and semantic-based rec-

ommendation systems.

itinerary recommender systems under study. The random-based method is

fairly efficient, costing less time to generate candidate itineraries, but inef-

fective: the quality of candidates is poor since it contains fewer user required

place types. The popularity-based method, on the other hand, is able to gen-

erate good positive candidate itineraries containing the user-required place

types. However, this method costs much more time to generate candidate

itineraries, and the percentage of required types in the candidates is small.

Our proposed semantic-based approach exhibits effective performance in pos-

itiveness and concentration, as well as efficiency in time costs.

7.6.2 Comparative results of information

Higher layer semantic-level itinerary vs. Lower layer geographic-

level itinerary

Our system produces semantic-level itineraries including basic semantic itineraries,

and itineraries with additional semantics. The baseline methods produce ge-
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ographic itineraries with specific geographic places. Table 7.2 lists one exam-

ple of typical itinerary recommendations from the three systems, for query:

set of types = ISL, travel duration = 15 days. This sample selects a route

from PoI Cairns pier to PoI Green Island in Cairns area.

Table 7.2: Example of itinerary recommendations.

Method Itinerary recommendation

Our system route: PIER – [0 to 2 days] – ISL

— additional info —

∗ PIER[weekday][Cairns] – [0 to 2 days] –

ISL[weekday][Cairns]

∗ PIER[Clear][Cairns] – [0 to 2 days] –

ISL[Clear][Cairns]

Random-based & route : P45 – 4days – P31

Popularity-based

One main difference between itineraries of our system and itineraries of

the baseline systems is in the layer of the recommended itinerary. For the

sample shown in Table 7.2, the baseline systems recommend a user a specific

geographic layer travel route which is from Cairns pier to Green Island. It

is one of the popular travel routes for visiting the Great Barrier Reef. Our

system recommends a user a higher layer semantic route which is from pier to

the island. Figure 7.5 shows the semantic-level itinerary and geographic-level

itinerary.

The higher semantic-level itinerary is better than the lower specific ge-

ographic route. The semantic-level itinerary enables users to freely choose

various optional geographic routes according to their preferences and actual

environments, such as the geographic location where they are, whilst the

baseline systems recommend specific routes, and users receive these routes

only but are unable to obtain other optional routes. For the semantic-level
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(a) Semantic itinerary

(b) Geographic itinerary

Figure 7.5: Visualisation of semantic-level itinerary and geographic-level

itinerary.
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route, pier to island, there are many piers and islands. We find several spe-

cific piers and islands in Cairns shown in Figure 7.5(a). Users can choose a

route from Port Douglas pier to Low Island, or a route from Cairns pier to

either Green Island or Fitzroy Island. All three of these are popular travel

routes for visiting the Great Barrier Reef. In comparison, the baseline sys-

tems recommend a specific geographic route, which limits the selection of

other popular routes. The semantic-level itinerary provides a higher layer

perspective and guidance to users on how to travel, and also they can select

a specific geographic route of their choice.

Other additional semantics information

Table 7.3: Information from itinerary recommendation results.

Basic information Other information

Itineraries

of baseline

systems

Interval time for a

route of specific PoIs

N/A

Itineraries

of our

system

A route with place

types; Interval time

Recommended contextual infor-

mation: temporal (day time, day

type), weather condition

Our system recommends more useful travel context information than

the baseline systems. Table 7.3 lists specific information the recommended

itinerary results can provide. The baseline systems supply basic informa-

tion on travel routes among specific geographic PoIs, including interval time.

Our system can provide basic information on frequent travel routes among

place types and interval time. Moreover, our results can provide additional

and useful information about travel context environment including tempo-

ral information about day time and day type, and weather condition. In

particular, our system recommends itineraries based on previous people’s
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frequent trajectory patterns mined from their historic trajectories. The tra-

jectory patterns are associated with additional semantic information. The

additional information shows the frequent contextual environment in which

frequent trajectories occur. As a result, this information in the itinerary

recommendation results provides users with useful advice on environmen-

tal contexts in which people travel the destination. Moreover, this useful

information can be potentially further used for context-aware recommenda-

tion services that recommend itineraries to users based on their contextual

environment like day time and weather condition.

7.7 Conclusion

In this study, we present an itinerary recommender system using online geo-

tagged photos. Our system allows users to customise a set of place types

and an overall travel duration in the query. The system generates itinerary

recommendations based on previous people’s semantic trajectory patterns

extracted from their historical photo data. Experimental results show that

our system is able to produce itinerary recommendations that satisfy user’s

predefined requirements. Our system recommends semantic-level itineraries

to users that show more place type layer route suggestions compared to spe-

cific geographic-level ones. The higher layer routes provide users with more

flexible selections of potential spatial routes. Moreover, our system generates

itinerary recommendations with additional and useful environmental seman-

tics information.
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Conclusions

This chapter summarises the study of this thesis. Then, some potential future

work is presented.

8.1 Summary of study

Online user-generated and shared photo data is already a massive resource,

and is growing fast. These photos, together with geographic information,

timestamp and other tag annotations, are a rich potential data repository for

extracting people’s movement behaviours. This research aimed to extract se-

mantically enhanced trajectory behavioural patterns from geotagged photos

and then to build an itinerary recommender system using the extracted pat-

terns. These semantic patterns are useful for understanding people’s mobil-

ity. This thesis has proposed a systematic framework tool to extract dynamic

movement patterns. The framework contains four main functions, for find-

ing three kinds of patterns and building an itinerary recommender system.

In particular, this project proposed four trajectory data mining approaches

for the four tasks. Overall, this study has proposed a semantic RoI mining

method for detecting stops from raw trajectories. The stops are used to build

semantic trajectories. Then, a semantic sequential pattern mining method
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has also been proposed to find the frequent semantic sequential patterns from

semantic trajectories. In addition, a semantic trajectory clustering method

has been introduced to discover the semantic common patterns in the se-

mantic trajectories. A semantic trajectory pattern mining method has been

presented to extract semantic trajectory patterns from semantic trajectories.

Finally, a semantic-aware itinerary recommender system has been built using

the semantic trajectory patterns to provide users with suggestions of travel

itineraries with routes and typical transition time information.

This research analyses the trajectory data of geotagged photos and ex-

plores people’s dynamic mobility behaviours and movement patterns. The

previous traditional spatial geometric-feature-only approaches consider only

spatial data, while disregarding aspatial contextual semantics information.

Aspatial semantics information is as important as spatial information in spa-

tial data mining and geographic data analysis (Miller and Han 2009). Our

research focused on the analysis of semantically enriched trajectories using

spatial, temporal and aspatial semantics features. First, people’s spatio-

temporal trajectory data are reconstructed from geotagged photos, then they

are enriched with multiple background geographical information and envi-

ronmental data. This research proposed a semantic RoI mining algorithm

to detect stops from raw trajectories that are then used to build stop-based

semantic trajectories. The stop is a geo-object with a place type annotation.

The proposed approach is able to find RoIs with fine and accurate place type

semantics. The final semantic trajectory is a sequence of stops with basic

geographical place type annotations and a set of environmental context data

including city name, day type, day time and weather condition.

From people’s semantic trajectories, this study first found frequent se-

quential patterns. A sequential pattern shows a frequent visit sequence of

stops that indicates a set of frequently visited stops with certain time order

behaviour. The frequent sequential patterns reveal people’s semantic-level

movement behaviours. This study proposed a semantic sequential pattern
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mining method to find the semantic sequential patterns. The method found

numerous people’s sequential trajectory patterns on a semantic level. The

semantic patterns provide more meaningful knowledge and understanding of

human mobility behaviours than those having previously been available, and

which are valuable to the tourism industry. Moreover, the proposed method

can deal with multi-dimensional semantic trajectories. That is, by adding

multiple semantics to trajectories, the method generates patterns with var-

ious combinations of dimensions. From the multi-dimensional semantic tra-

jectories, the proposed method found novel knowledge about semantic-level

trajectory patterns with several contextual semantics.

As the second aim, this study extracted semantic common patterns from

semantic trajectories. A common pattern refers to a cluster of similar se-

mantic trajectories. This study introduced a semantic trajectory clustering

method for finding common patterns in the trajectory dataset. The pro-

posed method is an extension of the OPTICS clustering algorithm to handle

semantically enriched trajectories with a new similarity measure method for

multi-dimensional trajectories. The experimental results reveal that the pro-

posed approach has the ability to produce much more detailed spatial and

aspatial patterns that traditional geographic-feature-only approaches fail to

identify. These semantic common patterns are useful for understanding peo-

ple’s mobility behaviours on the semantic level.

Another aim of this work was discovering the frequent semantic trajectory

patterns in semantic trajectories. A trajectory pattern indicates the frequent

visit sequence of stops with frequent transition time data between stops. It

shows frequent movement sequences and time relations between stops in each

sequence. This study proposed a semantic trajectory pattern mining method

to find the semantic trajectory patterns from semantic trajectories. The ex-

perimental results show that the proposed method can find many interesting

place type semantic-level trajectory patterns of people. Experimental results

also show that the proposed method is able to find trajectory patterns with
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various additional semantics, while previous methods are not able to find un-

derstandable semantic patterns. These semantic trajectory patterns provide

richer semantic information about people’s mobility behaviours than those

having previously been available. In addition, the proposed method gener-

ates more potential, detailed semantic trajectory patterns that more number

of patterns provide benefits to have less chance to miss positive patterns.

Last, this study built a semantic-aware itinerary recommender system

based on semantic trajectory pattern mining from geotagged photos. The

trajectory patterns show real-world people’s movement behaviour, including

frequent visit sequences and time information which are good indications to

travel itineraries. The proposed recommender system receives users’ queries

including a set of preferred place types and travel duration and returns ap-

propriate travel itineraries with route and transition time to users. Experi-

mental results show that the proposed system, considering semantics queries,

is able to generate highly concentrated itineraries in which most of the stops

in the itinerary match user-queried place types. In terms of efficiency, the

proposed system costs the least time of the three systems tested to gener-

ate candidature itineraries. Moreover, the itineraries recommended by the

proposed system contain rich, meaningful and understandable information

about travel routes and movement environmental contexts including time

information and weather condition information that are useful to users.

8.2 Future work

There are several areas where future work could be undertaken, as listed

below:

1. An immediate area for future study is to test our approaches with

more social media datasets, including GPS-logged and sensor-tagged

datasets. In this research, the experiments used Flickr photos to eval-

uate the proposed approaches. In the future, more datasets will be
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tested. A comprehensive set of experiments will further support the

usefulness and richness of our approaches.

2. Another future work is to extend the current framework to include

more contextual semantics information. This research analysed multi-

dimensional semantic trajectories using five pieces of semantics infor-

mation: type of place, city, day type, day time and weather. In the

future, more semantic information, including social, economic and en-

vironmental information could be added and considered. This will re-

quire a flexible framework to easily add additional semantic annotations

into the framework. Note that, our proposed framework is flexible and

designed to accommodate more dimensions with ease.

3. Post-processing of detected semantic patterns is another interesting tar-

get, to find some positive associations and cause-effect patterns. Tra-

jectories indicate movement that shows the sequential relations of vis-

ited stops. This research extracted three types of semantic movement

patterns. Further work could be conducted on patterns to discover

the associations and cause-effect sequential patterns of visited stops in

trajectories.

4. Pre-processing of time information from original geotagged photos is

another future work. The taken time information from photos could

be in different time zones that is not the correct local time in the study

area. This time information directly affects semantic patterns in this

study, and an appropriate pre-processing approach could be developed

to fix this local time in order to produce more meaningful semantic

patterns.

5. Applicability is the next aim in future work. This study developed a

framework to extract semantic mobility patterns. We plan to conduct

a case study to observe before and after scenarios with the tourism in-
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dustry to observe what benefits these semantically enhanced movement

patterns provide in real life.

6. For the itinerary recommender system, a future study is needed on

further processing of recommended itineraries to produce more diverse

semantic-level routes with suggestions of specific geographic places and

locations. This research built an itinerary recommender system us-

ing the extracted semantic trajectory patterns. The recommended

itineraries are about travel routes between place type that provide ad-

vice on higher place type layer movement and users can choose specific

places according to their actual location. In future, more appropriate

specific places could be extracted and suggested in the recommendation

results. Moreover, post-processing of recommended itineraries could be

undertaken to generate diverse and longer itineraries.

7. Visualisation is another main improvement for future work. This study

analysed semantic trajectories and extracted semantics patterns, adding

extra semantics information. A better visualisation of the semantic tra-

jectory, semantic patterns and additional semantic information will be

investigated to provide more effective presentation of the information,

and easier understanding of movement behaviour for end users. More-

over, for the itinerary recommender system, an easy-to-use interface

needs to be built, and should include the visualisation of recommended

travel itineraries on a map.
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