The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle

Garnett, Trevor, Conn, Vanessa, Plett, Darren, Conn, Simon, Zanghellini, Juergen, Mackenzie, Nenah, Enju, Akiko, Francis, Karen, Holtham, Luke, Roessner, Ute, Boughton, Berin, Bacic, Antony, Shirley, Neil, Rafalski, Antoni, Dhugga, Kanwarpal, Tester, Mark, and Kaiser, Brent N. (2013) The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle. New Phytologist, 198 (1). pp. 82-94.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1111/nph.12166
 
50
1


Abstract

An understanding of nitrate (NO3-) uptake throughout the lifecycle of plants, and how this process responds to nitrogen (N) availability, is an important step towards the development of plants with improved nitrogen use efficiency (NUE).

NO3- uptake capacity and transcript levels of putative high- and low-affinity NO3 transporters (NRTs) were profiled across the lifecycle of dwarf maize (Zea mays) plants grown at reduced and adequate NO3-.

Plants showed major changes in high-affinity NO3 uptake capacity across the lifecycle, which varied with changing relative growth rates of roots and shoots. Transcript abundances of putative high-affinity NRTs (predominantly ZmNRT2.1 and ZmNRT2.2) were correlated with two distinct peaks in high-affinity root NO3- uptake capacity and also N availability. The reduction in NO3- supply during the lifecycle led to a dramatic increase in NO3- uptake capacity, which preceded changes in transcript levels of NRTs, suggesting a model with short-term post-translational regulation and longer term transcriptional regulation of NO3 uptake capacity.

These observations offer new insight into the control of NO3- uptake by both plant developmental processes and N availability, and identify key control points that may be targeted by future plant improvement programmes to enhance N uptake relative to availability and/or demand.

Item ID: 50792
Item Type: Article (Research - C1)
ISSN: 1469-8137
Keywords: maize, nitrate, nitrogen, nitrogen use efficiency (NUE), uptake
Funders: Australian Centre for Plant Functional Genomics, DuPont Pioneer, Australian Research Council (ARC), University of Adelaide
Projects and Grants: ARC Linkage Grant LP0776635
Date Deposited: 03 Oct 2017 00:50
FoR Codes: 11 MEDICAL AND HEALTH SCIENCES > 1110 Nursing > 111099 Nursing not elsewhere classified @ 100%
SEO Codes: 92 HEALTH > 9202 Health and Support Services > 920210 Nursing @ 100%
Downloads: Total: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page