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Abstract

Background: Tuberculosis (TB) is now the world’s leading infectious killer and major programmatic advances will
be needed if we are to meet the ambitious new End TB Targets. Although mathematical models are powerful tools
for TB control, such models must be flexible enough to capture the complexity and heterogeneity of the global TB
epidemic. This includes simulating a disease that affects age groups and other risk groups differently, has varying
levels of infectiousness depending upon the organ involved and varying outcomes from treatment depending on
the drug resistance pattern of the infecting strain.

Results: We adopted sound basic principles of software engineering to develop a modular software platform for
simulation of TB control interventions (“AuTuMN”). These included object-oriented programming, logical linkage
between modules and consistency of code syntax and variable naming. The underlying transmission dynamic
model incorporates optional stratification by age, risk group, strain and organ involvement, while our approach to
simulating time-variant programmatic parameters better captures the historical progression of the epidemic. An
economic model is overlaid upon this epidemiological model which facilitates comparison between new and existing
technologies. A “Model runner” module allows for predictions of future disease burden trajectories under alternative
scenario situations, as well as uncertainty, automatic calibration, cost-effectiveness and optimisation. The model has
now been used to guide TB control strategies across a range of settings and countries, with our modular approach
enabling repeated application of the tool without the need for extensive modification for each application.

Conclusions: The modular construction of the platform minimises errors, enhances readability and collaboration
between multiple programmers and enables rapid adaptation to answer questions in a broad range of contexts
without the need for extensive re-programming. Such features are particularly important in simulating an epidemic as
complex and diverse as TB.

Keywords: Disease transmission, infectious, Tuberculosis, Models, biological, Global health, Software, Tuberculosis,
multidrug-resistant
Background
The latest estimates for tuberculosis (TB) burden un-
equivocally identify the pathogen as the world’s leading
infectious killer [1]. Despite the consistent claim that
rates of disease are declining, the last three Global Tu-
berculosis Reports from the World Health Organization
(WHO) estimate a greater burden of disease than that in
the preceding year [1–3]. Although this may be attribut-
able to improvements in case detection and better rec-
ognition of the scale of the problem, insufficient funding
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for both control programs and for research threatens to
derail even the modest current progress being made [1, 4].
Despite these obstacles, several technologies are now
emerging, including novel diagnostics, medications and
treatment regimens [5], while the post-2015 End TB Tar-
gets are an ambitious call to action [6]. Therefore, the field
of TB control is now in a state of flux, with well-
established methods of control competing against new
technologies for a share of the limited TB control budgets
of highly-endemic countries. Such countries need to
understand better the likely epidemiological and economic
consequences of programmatic decisions for TB control
to guide strategic investment to maximise impact, particu-
larly given that the highest burden countries are almost
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universally those with the lowest budgets. The recent
addition of a financial outcome (catastrophic costs) to the
established disease burden targets further emphasises the
importance of the economics of such decisions.
Mathematical models are powerful tools to evaluate

programs for which evaluation through intervention is
impractical, unethical or impossible [7]. Despite significant
uncertainties regarding the best approach to structuring
and parameterising dynamic models of TB transmission
[8], such models are frequently and increasingly used to
answer key policy questions in TB control at the national
or sub-national level [9, 10]. Moreover, if such models are
to be applied repeatedly across multiple regions of
the world, they must be able to address the dramatic
differences in TB drivers by context – such as HIV in
Africa, migration in Western nations and drug resist-
ance in Eastern Europe.
Our recent research has focused on simulating pro-

grammatic responses to TB to answer questions of rele-
vance to TB control policy in high-burden countries.
Such modelling is important to countries in the cyclical
process of evaluating current programs, setting future
priorities and planning the TB response. Both countries
and funders increasingly view mathematical modelling
as a key component of this cyclical process, which is de-
scribed in detail by a recent publication on the TIME
Impact model for TB. The TIME paper describes im-
portant principles in using modelling as a programmatic
tool, including the need to partner with such countries to
support the development of local epidemiological expert-
ise and improve understanding of the epidemic [11]. Here
we describe our development of a software platform to
achieve these goals and our approach to the particular
challenges in simulating the complex and heterogeneous
global TB pandemic.
Implementation
Past approach
Our earlier TB modelling studies involved the construction
of code and compartmental structure appropriate to the
question at hand, but with limited capacity for model elabo-
rations to be re-used in subsequent applications – an ap-
proach we believe to be common in infectious disease
modelling. For example, our work in Western Province, Pa-
pua New Guinea incorporated a matrix of population mix-
ing to capture differences between districts of the Province
[12], while our modelling in Karakalpakstan, Uzbekistan
allowed for mis-assignment of patients according to
the extent of drug resistance of the infecting organ-
ism [9]. While some elements of our code could be
re-used in subsequent applications, the need for ex-
tensive re-working of such models for each applica-
tion was a significant inefficiency.
Modular development
We fundamentally changed our approach to model de-
velopment, incorporating principles from computer sci-
ence and coding in open-source object-oriented Python
(version 2.7). This is intended to make our software plat-
form more reliable, testable, reusable and interpretable,
as well as to expand the possible functions for which the
model can be used and facilitate multi-person program-
ming (via GitHub). The modular structure of our software
platform (branded “AuTuMN”) is presented in Fig. 1.
After user inputs have been received through the Graph-
ical user interface module, the processes involved in
model running proceed in a logical sequence from data
processing through model execution to creation and dis-
play of model outputs. We used an object-oriented pro-
gramming approach, with each module (represented by a
rectangle in Fig. 1) being a single class. Each such module
accepts and produces a consistent set of data structures
for the linked modules, to avoid a situation in which ad-
justments to a single module requires adaptations of other
modules. Default settings avoid errors when the user
selects a certain option (e.g. age stratification) without
specifying necessary associated inputs (e.g. the corre-
sponding age breakpoints).

Coding syntax
In addition to the modular development, we aimed for
our code to be stylistically consistent and adhere to
sound basic principles of computer programming. In
addition to object-oriented and modular programming,
these principles include extensive commenting and ex-
planation of code, using functions wherever possible,
using loops to avoid code repetition, employing consist-
ent naming of variables and consistent structuring of
data and object attributes. Advantages of employing
such principles include ensuring that the code is more
readable and interpretable by the multiple contributing
programmers, reducing the possibility of errors and
allowing functions developed for use in a certain part of
the code base to be re-used elsewhere.

Characteristics of the epidemiological and economic
models
The general compartmental structure of the TB trans-
mission dynamic model is presented in Fig. 2 and de-
scribed in Section 1 of Additional file 1. As model
stratification is intended to be variable by context and is
determined by user inputs, it is not possible to present a
universal flow diagram or list of differential equations.
However, the structure presented depicts most of the
main transition flows between compartments that are
universal to all applications of the model. The epidemio-
logical principles of model construction have been de-
scribed in several of our previous publications and are



Fig. 1 Modular structure of the AuTuMN platform
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retained through all AuTuMN country applications.
These include: partial vaccine efficacy [13], waning risk
of progression to active disease with time from infection
[14, 15], a three year average duration of active disease
[16], distinguishing the process of detection from that of
determining the drug resistance profile [9], amplification
of drug resistance with default from treatment [14, 17]
and a partial reduction in transmissibility for organisms
with greater levels of drug resistance [9, 12].
A logistic cost-coverage function links spending on

programmatic interventions to coverage and subsequent
epidemiological impact. We consider start-up costs as
additional fixed costs for programs absent from the base-
line scenario, because we are frequently comparing well-
established interventions (e.g. BCG vaccination) against
the implementation of newly proposed technologies (e.g.
molecular diagnostics). Therefore, we assume a maximal
cost-coverage gradient at zero spending, after start-up
costs have been applied.

Results
Earlier iterations of our model (coded in Matlab™ with-
out adherence to all the programming principles de-
scribed above) were applied to inform TB control
programs in five contexts: Western Province of Papua
New Guinea [12], Karakalpakstan in Uzbekistan [9], and
India, China and South Africa through the TB-MAC-
coordinated “Targets” exercise [10, 18]. With support
from the Global Fund to Fight AIDS, TB and Malaria, we
were then commissioned to undertake policy-relevant
modelling for the National Tuberculosis Programs (NTPs)
of three further countries: Fiji, the Philippines and
Bulgaria. Reports on the epidemiological and economic
results for each of these three applications have been sub-
mitted to the NTPs of each country and we also aim to
publish these in peer-reviewed journals in the coming
months in collaboration with our country partners, in-
cluding detailed exposition of the epidemiological as-
sumptions and parameter values made in each. The
software allows for immediate adaptation of many features
of the transmission model to each context through the
Graphical user interface, such as addition of risk groups
or strains and changes to the purpose of the simulation.
The “General transmission dynamic model” module has
been released as open-source software (see https://github.
com/popdynamics/popdynamics), while a repository that
presents the framework of each platform module is
also available (see https://github.com/jtrauer/AuTuMN_
framework). These repositories include code, dependen-
cies and detailed user documentation. The characteristics
of each module are presented in Table 1, with examples
provided in the AuTuMN_framework repository.
Examples of our coding approach are presented in

Table 2 and Section 2 of Additional file 1: (Table S1).
Note the consistent naming conventions. For example,
parameter name strings are separated by underscores
that describe first the source of the parameter (e.g. dis-
ease specific = ‘tb’, programmatic = ‘program’), then the
nature of the parameter (e.g. rate = ‘rate’, propor-
tion = ‘prop’), then the meaning of the parameter (e.g.
spontaneous recovery = ‘recover’, untreated death = ‘death’)
and lastly the stratum to which the parameter applies if
applicable (e.g. smear-positive/negative/extrapulmonary
status = ‘organ’). As the source, meaning, units and applic-
ability of each parameter are implied by its name string,
there is less need for detailed comments to explain the
meaning of each parameter at each code line. Also, the
division of the code into functions responsible for a very
small component of the entire platform’s function limits
the potential for errors and enables changes to be made
that only affect one component of the platform. For ex-
ample, changes to progression through stages of active
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Fig. 2 Compartmental structure of transmission dynamic model.
Recovery to susceptible compartments after successful completion
of treatment, default with return to active disease, death and
intervention-related flows are universally implemented but not
presented in this Figure. Greater number of overlapping rectangles
indicates greater degrees of model stratification, although number
of rectangles is arbitrary. Flows presented are: 1, births; 2,
infection; 3, progression to active disease; 4 and 5, spontaneous
recovery; 6, missed diagnosis due to insensitivity of the diagnostic
algorithm; 7, return to care seeking; 8, detection with correct
assignment by drug resistance profile; 9, detection with incorrect
assignment by drug resistance profile; 10 and 11, commencement
on treatment. *“Organ involvement” refers to whether patient has
smear-positive, smear-negative or extrapulmonary disease
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disease could be adjusted without the need to check that
all inter-compartmental flows have been appropriately
coded and that flows are conserved.
Figure 3 illustrates our approach of automatically fitting

time-variant parameter values to data loaded through the
Spreadsheet reader module and an example of variation in
a programmatic parameter (vaccination coverage) for sce-
nario simulation. After setting time-variant parameters, a
Metropolis-Hastings algorithm is used to vary uncertain
(time-constant) parameters in order to calibrate the model
to epidemiological data on disease burden, with the
progression of parameter values displayed through the
Graphical user interface in real time. Progression of model
outputs over consecutive runs can also be displayed over-
laid on calibration data from the Global TB Report dis-
played as shaded areas (Fig. 4). A similar approach to
parameter variation is also used to quantify uncertainty in
future predictions.
Figure 5 presents examples of our approach to imple-

menting logistic cost-coverage curves for interventions
and hence estimating costs over time for each program.
The logistic function links an intervention’s coverage to
its associated cost and is presented in detail in Section 3
of Additional file 1. This function incorporates variables
such as population sizes that are updated at each
iteration of the model integration so that the economic
and epidemiological modules interact continuously. The
cost-coverage curves can be used in two directions: cost-
ing of programs when coverage values are specified, and
adjustment of coverage based on input costs.
Outputs from our model include assessment of the

baseline epidemiology, such as reconciling data for inci-
dence, mortality, prevalence and notifications or explain-
ing why such indicators appear mutually inconsistent. We
also present estimates of the likely impact of planned or
considered changes to the programmatic response based
on our scenario simulations. Next, the epidemiological
and economic differences between the baseline scenario
and these counter-factual scenarios are then used for cost-
effectiveness analysis. Last, an optimisation algorithm al-
lows for minimisation of disease burden indicators over a
specified time horizon, with such indicators including in-
cidence, prevalence, mortality and proportion of TB
multidrug-resistant in the overall population or sub-
groups, as well as any weighted combination of these
indicators. The current approaches to calibration and op-
timisation are described briefly in Table 1. However, given
that each procedure is called from only one function of
the Model runner module, alternative techniques could
easily be substituted.

Discussion
We present the development of our novel software plat-
form and mathematical model of TB transmission. The
significant change in computer programming philosophy
that we adopted to tailor it to TB control simulations
helps improve the flexibility, reliability and reusability of
our software. Our modular approach allows for compart-
mentalisation of the software’s functions, in order to im-
prove these characteristics of the tool and allow for a
broader range of functionality, including stratification by
age, risk group, strain and organ involvement, historical
understanding of the epidemic, uncertainty, automatic
calibration, cost-effectiveness and optimisation. Dynamic
models of infectious disease transmission have the major



Table 1 Characteristics of modules

Module Characteristics

Graphical user interface Accepts user inputs to determine:
• Country to be simulated
• Purpose of simulation
○ Uncertainty, optimisation, automatic calibration, scenario analysis
▪ Scenarios required (uncertainty or scenario analysis only)

○ Saving and loading of previous simulations
• Compartmental model structure, including optional elaborations
○ Multiple health systems differing by quality of care
○ Amplification of drug resistance with treatment default
○ Mis-assignment of drug resistance status of infecting organism
○ Sub-populations and risk groups
○ Heterogeneous mixing between population groups

• Other methodological aspects of run
○ Integration method
○ Integration time step
○ Fitting method of parameters to loaded data
○ Epidemiological and economic parameters

• Outputs required

Spreadsheet reader Reads data according to country selected in Graphical user interface
Accepts original format of spreadsheets as input (currently all Microsoft Excel™)
Converts data to consistent format (Python dictionary with years as keys and
data entries as values)
Spreadsheets read:
• Data on aggregate TB burden and programmatic response, WHO [45]
• BCG vaccination coverage, UNICEF/WHO [46]
• Demographic variables, the World Bank [47]

Data processing Creates data structures with a format interpretable by the Model modules
• Combines and reconciles external inputs from Spreadsheet reader with user
inputs from GUI

• Calls Curve fitting module to fit functions to reconciled data structures
• Derives parameters determined by multiple input parameters
○ e.g. for comorbidities leading to an increased progression rate
(such as diabetes) the risk group-specific progression rate is calculated
by multiplying the age group-specific progression rate by the relative
progression rate attributable to the risk factor

Curve fitting Derives polynomial spline functions to represent parameters (often interventions)
scaling over time (See Fig. 3)
• Fits to input data of dictionaries with keys time (in years) and values
parameter values (often intervention coverage as a proportion)

• Intervention values remain constant into the future from most recent
parameter value
○ That is, the default behaviour (baseline scenario) is all interventions
frozen at this value

Model runner Creates and runs model objects according to the purpose selected in the Graphical
user interface
• For scenarios, runs baseline model followed by each requested scenario with
interventions as requested

• For uncertainty, iteratively runs model, updating uncertainty parameters
between each run
○ Currently uses a Metropolis-Hastings algorithm
○ Priors are estimated from the distributions of included
epidemiological parameters

○ Posteriors are estimated from a comparison of outputs to WHO data
• For automatic calibration (an extension of uncertainty), iteratively runs
model, updates model parameters, starting populations and other
epidemiological parameters

• For optimisation, estimates epidemiological outputs from proportionate
allocation of funding across programs given a certain funding envelope
○ Currently uses SLSQP from the “minimize” function of the scipy.
optimize package

○ Considers proportional funding to interventions to be the bounds
○ Considers the function to be minimised to be the epidemiological
output of interest (usually incidence or mortality) when scenarios are
run with varying funding allocation from a fixed/calibrated baseline
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Table 1 Characteristics of modules (Continued)

Disease-specific (TB) modelb Defines stratifications and their interaction by:
• Age
• Comorbidity and/or population risk group
• Organ involvement (smear-positive pulmonary, smear-negative
pulmonary and extrapulmonary)a

• Drug resistance of infecting straina

• Health system qualitya

Sets inter-compartmental flows, for:
• Ageing
• Natural progression through stages of infection and disease
• Detection (by each stratum of health system quality, if applicable)
• Drug resistance status assignment by health system

Implements interventions selected from scenarios requested in Graphical
user interface
• Estimates economics of interventions using logistic cost-coverage
curves and population sizes

General transmission dynamic model Defines fundamental structures of transmission dynamic model which are not
pathogen-specific (i.e. components common to any deterministic, compartmental,
ordinary differential equation-based model of population-level infectious disease
transmission), including:
• Compartments
• Inter-compartmental flows
• Fixed parameters
• Variables to be updated at each integration time step

Output modules Creates Word™ and Excel™ tables of epidemiological and economic
outputs and graphical (PNG) figures to illustrate:
• Compartmental model structure (using “graphviz” repository)
• Time-variant parameters, including fit to input data (see Fig. 3)
• Other illustrations of epidemiological implementation of interventions
○ e.g. visualisation of matrix of population mixing

• Aggregate model outputs compared to Global TB Report estimates, for:
○ Scenarios
○ Uncertainty (see Fig. 4)

• Model outputs by risk groups
• Optimised funding distribution across interventions

aNote that not all types of stratification apply to all compartments (e.g. susceptible population not stratified by drug resistance of infecting organism), see Fig. 2.
bThis module is not a stand-alone class, but instead inherits general methods from the General transmission dynamic model module, adding TB-specific methods
to the class. Abbreviations: TB, tuberculosis; PNG, portable network graphics; UNICEF, The United Nations International Children’s Emergency Fund; WHO, World
Health Organization.
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advantage that they are able to capture the non-linear
positive feedback loop of greater disease burden leading
to more transmission and, in turn, to greater disease
burden. However, such models must be fit for purpose
and the challenges in developing a realistic tool for
simulating TB transmission are considerable. Although
mathematical modellers have long used computer pro-
gramming to produce numerical simulations of infec-
tious disease transmission, this is most often undertaken
by small groups of researchers or individual academics
and so is often limited to analyses whose end result is
expected to be a single journal article.
Model flexibility is critically important in simulating

the TB epidemic across multiple settings, because of the
heterogeneity in drivers of the TB epidemic – arguably
more than for any other disease. For example, HIV coin-
fection is a critical driver of the high rates of disease in
sub-Saharan Africa [19, 20], drug resistance reaches
alarming levels in many countries of Eastern Europe
[21, 22] and the Asia-Pacific Region is characterised by
a huge absolute caseload and a significant proportion of
care delivered outside of the public sector [1, 23].
Therefore, the characteristics of the epidemic are dra-
matically different in these settings, as are the program-
matic interventions that policy-makers from these
regions wish to understand better. Moreover, the epi-
demiology of TB immunity, transmission and progres-
sion differs dramatically according to several population
strata, adding further to the degree of model complexity
necessary to capture the epidemic realistically. Such
strata include age groups, which affect immunity fol-
lowing vaccination [24], infectiousness [25] and rates of
progression from infection to active disease [15]. Simi-
larly, comorbid conditions that affect rates of progres-
sion from infection to active disease can have major
epidemiological effects, such as HIV [26] and diabetes
[27], while the impacts of factors such as poverty and
overcrowding are more difficult to quantify but likely to
be equally important [28]. Further, patients with smear-
negative pulmonary or extrapulmonary disease are
known to have significantly lower infectiousness than
smear-positive pulmonary disease [29] and treatment



Table 2 Illustration of approach coding
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outcomes differ markedly according to the drug resist-
ance of the infecting organism [30].
These differences are important to TB models; both to

accurately capture the underlying epidemiology and be-
cause interventions often act differentially across such
disease categories. However, simultaneous model imple-
mentation of several such factors can be challenging and
lead to high levels of complexity, as the number of
compartments to track may scale multiplicatively with
the number of stratifications included. Therefore,
function-based code that consistently and automatically
implements such strata into models regardless of their
compartmental structure and other stratifications, add
much to the flexibility, reliability and reusability of the
software platform. For example, ageing rates between
sequential age groups are set automatically once the



Fig. 3 Fitting of time-variant parameters to data. Black dots, loaded data for the Philippines from – World Bank (birth rate), UNICEF (vaccination
coverage) and Global TB Report (death rate on treatment and treatment success rate). Solid lines, time-variant parameter functions – black,
baseline scenario; red, example scenario of scale-up of vaccination coverage
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user has requested a set of breakpoints between age
groups.
Tuberculosis is an ancient disease, as well as being a

slow-moving epidemic due to the propensity of the
infecting organism to re-activate after many years to de-
cades of dormancy [31]. Therefore, accurately capturing
the historical dynamics of the disease is of greater im-
portance than for many acute infections, as interven-
tions and dynamics are dependent on disease burden
many decades earlier and can be markedly affected by
demographic trends. In our analyses, we have consist-
ently found the size of the latent pool to be a key driver
of the future disease burden, and that this pool of infec-
tion limits the effectiveness seen with interventions di-
rected at active cases alone. To address this issue, all our
analyses commence from many decades to centuries into
the past and aim to capture the dynamics of the TB re-
sponse from the point at which they commenced. Time-
variant parameters representing this response are fit to
freely available officially reported data, and a zero value
is added automatically at the time the technology first
became available. Similarly, loading of disease burden
outcomes from the WHO is important to ensure that
model calibrations capture the progression of the epi-
demic over the course of the time period for which data
are available. The General transmission dynamic model
module is intended to apply equally to any infectious
disease and examples are provided for measles, influenza
and TB. The issues specific to ancient, slow-moving en-
demic infections and TB in particular have partially in-
formed the broader modular development of our tool,
although most of the modules could be adapted to any
infection. We aim to release further modules as possible,
such as the Curve fitting and Spreadsheet reader mod-
ules, and to extend the capability of the General trans-
mission dynamic model. However, given the major
differences between interventions requested, population-
level risk factors and epidemiological context in each
country, we make significant adaptations to the Disease-
specific model module at each application, and so have
no short-term plan to release this module.
A number of modular software platforms exist to esti-

mate future burden of disease. Perhaps best known is the
Spectrum suite of models, which simulate population
demographics and disease progression, although these are
not necessarily underpinned by transmission dynamic
models [32, 33]. For influenza, complex microsimulation-
based models underpinned by realistic synthetic popula-
tion structures and explicit transmission dynamics have
been made available to policy-makers [34, 35]. Models de-
signed to simulate strategies to combat the huge global
burden of HIV have also proliferated, and include the
Asian Epidemic Model [36, 37], Optima [38] and the Esti-
mation Projection Package [39–41]. For TB, transmission



Fig. 4 Visual outputs from model calibration to data for epidemiological indicators. Data are from Global TB Report 2016 for the Philippines.
Progressively darker parallel grey lines, successive model runs accepted by the Metropolis-Hastings algorithm; coloured shaded areas (where
presented), calibration data uncertainty ranges; thin central coloured lines in shaded areas, calibration data point-estimates. This example calibration
is to reported incidence data from 1990 to 2016 with weighting to emphasise calibration to more recent years for which data are available, with
three uncertainty parameters (effective contact rate, duration of untreated TB, case-fatality of untreated TB), with values starting from values found
during a manual calibration
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dynamic model-based tools have been tailored to consider
specific interventions for control, such as active case find-
ing [42] and diagnostic strategies [43, 44]. However, such
tools are not readily adaptable to consider a broader range
of interventions or to compare interventions that act at
very different points in an individual’s journey through in-
fection, disease, detection and treatment. A more general
TB modelling tool that has been used across several coun-
tries worldwide is TIME Impact, which incorporates a
transmission dynamic model and is integrated into the
Spectrum suite of modelling tools [11]. The most import-
ant epidemiological advances of AuTuMN by comparison
to TIME relate to flexibility. TIME describes a fixed ap-
proach to latency (single latent compartment with bypass),
drug-resistant strains (MDR-TB and DS-TB), age groups
(5-year age bins), organ status (smear-positive and smear-
negative) and comorbidities (HIV). By contrast, AuTuMN
permits greater versatility in relation to each of these
epidemiological stratifications, while additionally incorp-
orating uncertainty, calibration and optimisation capacity
through the Model runner module.
Complicated modelling tools have the disadvantages of

increased computational expense (i.e. processing time),
potential for errors and increased difficulty for the user
to understand and interpret all the dynamics operating
within a particular simulation. We minimise the potential
for coding errors through consistent coding, minimisation
of code repetition and built-in checks throughout our
modules. Although we frequently use a highly stratified
version of AuTuMN, involving hundreds to thousands of
compartments, some or all stratifications can immediately
be removed to facilitate the user’s understanding of the
underlying epidemiological processes at play. Also, we
build in intermediate outputs to model running, in order
to facilitate understanding of such processes, such as mix-
ing matrix diagrams and population sizes by sub-group.
Despite the rapidly increasing speed of modern computers
and methods for decreasing computation time, computa-
tion time remains an issue in our model, particularly for
uncertainty calculations. Whereas optimisation and sce-
nario analyses typically require the full model to be run for-
ward over the simulation window from a single baseline
run (typically twenty to thirty years), uncertainty requires
repeated runs from the start of the simulation (typically
several decades to centuries). For example, explicit Euler
model integration from the start of simulation time with



Fig. 5 Cost-coverage curves for example scenarios. Cost-coverage curves for four example scenarios in the Philippines. ACF, active case finding.
Progressively darker shading indicates progression in cost-coverage relationship over time, in five year increments from 2015 to 2035 (as relationships
are dependent on the size of the population targeted by each intervention)
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three organ status strata, two strains (DS-TB and MDR-
TB), two health care strata differing by quality and five
population risk groups takes around 40 s for a full run and
ten seconds for each additional scenario run on a standard
personal computer (Intel i7 2.6GHz processor, 8 GB RAM).
Run-time scales approximately multiplicatively with the
number of stratifications for each type of stratification,
while the time taken for initialisation remains approxi-
mately unchanged at around 7 s.

Conclusions
We employed several principles of software engineering
to develop a robust and flexible tool to support TB con-
trol decisions. The tool is underpinned by a transmission
dynamic model and is rapidly adaptable to capture many
of the complexities of the TB epidemic across a range of
settings and the interventions available in the fight
against this critically important infectious disease. Such
tools are of increasing importance as TB emerges as the
world’s leading infectious threat, ambitious new targets
for its control have been set and old technologies vie
with new tools for limited budgets.

Availability of data and materials
The code for the “General transmission dynamic model”
module has been released as open-source software, in-
cluding the full code, dependencies and detailed user
documentation.
Project name popdynamics.
Project home pages https://github.com/popdynamics/

popdynamics, https://github.com/jtrauer/AuTuMN_frame
work
Operating system Platform independent.
Programming language Python version 2.7.
Other requirements numpy, scipy, graphviz.py, graph-

viz binary on path: http://www.graphviz.org/, matplotlib.
License Open source.
Additional file

Additional file 1: Notes on structure of epidemiological model, further
code examples and notes on economic model. (DOCX 1113 kb)
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