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The most utilized method to measure swimming performance of fishes has been the critical swimming speed (UCrit)
test. In this test, the fish is forced to swim against an incrementally increasing flow of water until fatigue. Before the
water velocity is increased, the fish swims at the water velocity for a specific, pre-arranged time interval. The magnitude
of the velocity increments and the time interval for each swimming period can vary across studies making the compari-
son between and within species difficult. This issue has been acknowledged in the literature, however, little empirical
evidence exists that tests the importance of velocity and time increments on swimming performance in fish. A practical
application for fish performance is through the design of fishways that enable fish to bypass anthropogenic structures
(e.g. dams) that block migration routes, which is one of the causes of world-wide decline in sturgeon populations. While
fishways will improve sturgeon conservation, they need to be specifically designed to accommodate the swimming cap-
abilities specific for sturgeons, and it is possible that current swimming methodologies have under-estimated the swim-
ming performance of sturgeons. The present study assessed the UCrit of shortnose sturgeon using modified UCrit to
determine the importance of velocity increment (5 and 10 cm s−1) and time (5, 15 and 30 min) intervals on swimming
performance. UCrit was found to be influenced by both time interval and water velocity. UCrit was generally lower in
sturgeon when they were swum using 5cm s−1 compared with 10 cm s−1 increments. Velocity increment influences the
UCrit more than time interval. Overall, researchers must consider the impacts of using particular swimming criteria
when designing their experiments.
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Introduction
Of the two main methods to measure swimming performance
in fish, the critical swimming test (UCrit) is still the tool most
widely used by researchers (Hammer, 1995; Plaut, 2001;
Kieffer, 2010). In this test, the fish is forced to swim against an
incrementally increasing velocity of water until fatigue occurs.
The methodology of the test has been critically evaluated (e.g.
Farlinger and Beamish, 1977; Beamish, 1978; Hammer, 1995;
Kolok, 1999; Plaut, 2001), and the test remains a widely used
and relevant methodology of evaluating the effects of various
biotic and abiotic factors on fish (Plaut, 2001; Farrell, 2008;
Kieffer and Cooke, 2009). A significant literature exists on
species-specific UCrits in fish (e.g. Beamish, 1978; Peake,
2004a, b; McKenzie et al., 2007; Kieffer and Cooke, 2009,
Table 1), and a large amount of research has focused on high
performance fish, such as Salmonids, and other game fish.
Most research involving fish exercise physiology is invested in
Salmonids mainly due to their importance as a fishery species
and the impact of dams on stock populations (Brett and Glass,
1973; Williams and Brett, 1987). Salmonids have become a
physiological ‘model species’ in the context of cardiac and
exercise physiology, as they frequently swim at UCrit and thus
perform at or near maximum oxygen consumption (Jain et al.,
1997). Recently, studies using other fish are available (see
Table 1 for references), such as sturgeons, mainly due to their
conservation status. However, there still is a paucity of infor-
mation regarding the swimming capabilities of sturgeons,
when compared to the teleosts (reviewed by Peake, 2004a).

Most sturgeon species’ populations are vulnerable (listed as
either threatened or endangered) to many anthropogenic
impacts on the environment, including over-fishing and dams
blocking migration routes (Rochard et al., 1990; Williot et al.,
2002; Mussen et al., 2014; Verhille et al., 2014; Jager et al.,
2016). Dam construction limits spawning grounds, causing lar-
vae to hatch in less-ideal locations (e.g. higher salinity) in the
river (Cheong et al., 2006). In addition, dams also cause
changes in river flows and temperature which can impact
water quality (Secor et al., 2002; Cai et al., 2015) and thus
affect swimming performance. To mitigate migration issues
with respect to dams, fishways are built so migrating fish can
overpass the dam. However, most fishway designs are built for
Salmonids, which have different body morphologies and swim
performances than sturgeons (Peake et al., 1997a; Wang and
Guo, 2005; Zheng et al., 2010; Thiem et al., 2011; Cai et al.,
2013). In order to encourage Salmonids and Clupeid fish to
swim through the passage, fishways rely on mechanisms such
as bends and obstructions to alter flow regimes (Jager et al.,
2016), with water velocity ranging from prolonged swimming
speed, to as high as burst swimming speed (Cai et al., 2015).
However, sturgeons prefer swimming along a constant flow, as
evident by pallid sturgeon (Scaphirynchus albus Forbes and
Richardson, 1905) preferring migration routes with the lowest,
constant flows for energy optimization (McElroy et al., 2012).
White sturgeon (Acipenser transmontanus Richardson, 1836)
benefitted from fishway designs that implemented flow

straighteners to provide constant flow (Jager et al., 2016).
Therefore, with global sturgeon populations on the decline as
a result from anthropogenic influences such as dam construc-
tion, fishways need to accommodate local sturgeon popula-
tions. Recent studies have specifically focused on exercise
physiology of sturgeons to provide data that might improve
fishway designs (Cai et al., 2013; Braaten et al., 2015; Jager
et al., 2016; Thiem et al., 2016). Many of these studies focus
on burst swimming, which may not be an important aspect of
sturgeon physiology, as their anaerobic capabilities appear to
be less than teleosts (Kieffer et al., 2001). Peake et al. (1997a)
found that Lake sturgeon (Acipenser fulvescens Rafinesque,
1817; 12–132 cm total length; TL) are incapable of high speed
or burst swimming (compared to Salmonids), as evident by
fatigue graphs that do not show a slope change between pro-
longed and burst swim speeds. A similar trend was found in
juvenile shortnose sturgeon (7.07 ± 0.38 cm TL), as there was
no statistically significant change in slope as the fish transi-
tioned from prolonged to burst swimming speeds (42 cm s−1;
6 BL s−1) during an endurance test (Deslauriers and Kieffer,
2012a). In contrast, Adams et al. (1999) did note a slope
change for juvenile Pallid sturgeon (13–20.5 cm Fork Length;
FL) during endurance tests, however, unlike many sturgeons,
they are found in fast flowing rivers (>40 cm s−1). In addition,
sturgeons have retained their primitive notochord, which limits
locomotor power output (Long, 1995). Recently, it has been
suggested that sturgeon rely on aerobic swimming (Kieffer
et al., 2009), however, relative to other species of fish, it has
been shown that sturgeons have low critical swimming speeds
(Webb, 1986; Peake et al., 1995; Kieffer et al., 2009;
Deslauriers and Kieffer, 2012a, b; Cai et al., 2013, 2015;
Verhille et al., 2014; May and Kieffer, 2017). While this lower
swimming capacity of sturgeon is partially related to its body
morphology (presence of scutes, heterocercal tail; Webb, 1986;
Peake, 2004a; Kieffer et al., 2009; Deslauriers and Kieffer,
2011; Qu et al., 2013), it is uncertain whether the method-
ology used to swim sturgeon might influence UCrit values, and
thus the swim performance of these animals. Specifically, many
swimming tests were initially developed for Salmonids (Brett,
1964), and various modifications to the procedure have been
adopted (Kolok and Sharkey, 1997; Farrell, 2008), in part
because of differences in fish size (age), size of flume, and
reduction of time to complete tests (i.e. minimizing experimen-
tal time). Thus, standardized protocols for UCrit tests are not
often adhered to, and are likely to be species specific. In par-
ticular, the magnitude of the velocity increment and prescribed
time interval for a given swimming period vary (Table 1),
which has been shown to affect the UCrit (Farlinger and
Beamish, 1977; Beamish, 1978), and thus can greatly influence
the value of comparisons between studies. For species such as
sturgeon, which are benthic species that modify their swim-
ming behaviour substantially at different swimming speeds
(Kieffer et al., 2009; Deslauriers and Kieffer, 2012a; May and
Kieffer, 2017), the choice of velocity and time intervals might
be important factors that influence the overall UCrit perform-
ance (Verhille et al., 2014). To date, this is not known for any
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Table 1: The comparison of speed increment (cm s−1), time interval (min) and resulting UCrit (BL s−1 and cm s−1 ± SE) for various fish species

Species TL (cm) n Temperature
(°C)

Speed increment
(cm s−1)

Time interval
(min)

Ucrit

Reference
BL s−1 cm s−1

Shortnose sturgeon (Acipenser
brevirostrum)

19.4 ± 0.1 71 10–25 5 30 1.5 ± 0.1 29.5 ± 1.3 Deslauriers and Kieffer
(2011)

7.1 ± 0.1 6 15 3 20 3.2 ± 0.2 22.3 ± 0.6 Deslauriers and Kieffer
(2012b)

16 ± 0.7 8 15–16 5 30 1.8 ± 0.1 28.7 ± 1.1 May and Kieffer (2017)

16.4 ± 0.7 8 15–16 5 30 1.7 ± 0.1 27.2 ± 2.1

Siberian sturgeon (Acipenser baerii) 58.4 ± 0.6 4 24 10 10 1.8 105.5 Qu et al. (2013)

64.3 ± 0.9 7 24 10 10 1.7 106.3

Lake sturgeon (Acipenser fulvescens) 13.84 ± 0.2 24 14 5 10 28.56 ± 0.61 2.07 ± 0.05 Peake et al. (1995)

39.32 ± 1.2 39 38.98 ± 0.88 1.02 ± 0.03

115 ± 4.72 3 107.67 ± 6.97 0.94 ± 0.5

Amur sturgeon (Acipenser schrenckii) 18.8 ± 0.3 18 20 0.25* 30 1.96 ± 0.1 36.8 ± 1.9 Cai et al. (2013)

Chinese sturgeon (Acipenser sinensis) 13.7 ± 2 2 16–25 10 20 2.6 ± 0.1 36 ± 5 He et al. (2013)

24.5 ± 2.4 2 10–25 10 20 2.3 ± 0.1 55.5 ± 2.5

35.3 1 10–16 10 20 2 70

40.5 1 10–16 10 20 2.1 85

Pallid sturgeon (Scaphirhynochus albus) 21.4 ± 0.3 8 20 5 30 1.7+ 35.9 ± 1.2 Adams et al. (2003)

Shovelnose sturgeon
(Scaphirhynochus platorynchus)

57– 2 16 10 15 1.79 ± 0.2 102 ± 14 Adams et al. (1997,
2003)

67.2 ± 1.4– 3 16 10 15 1.4 ± 0.2 90.9 ± 14.8

19.5 ± 0.73 6 20 5 30 1.9+ 36.9 ± 3.5

20.9 ± 1.3 4 10 0.93+ 19.5 ± 4.4

Green sturgeon (Acipenser medirostris) 4.3 ± 0.2 32 18–19 5 5 8.5 ± 0.4 35.7 ± 1.7 Verhille et al. (2014)

6.5 ± 0.2 40 18–19 5 10 7.1 ± 0.2 45.3 ± 1.5

15.4 ± 0.6 25 18–19 10 20 2.9 ± 0.1 43.2 ± 1.3 Allen et al. (2006)

22.1 ± 0.4 27 18–19 10 20 2.2 ± 0.1 48.1 ± 1.3

49.4 ± 0.6 53 18–19 10 30 1.2 ± 0.5 57.5 ± 2.5 Miller et al. (2014)

68.3 ± 2.7 11 19 10 20 1.2 ± 0.1 79.2 ± 4.9 Mayfield and Cech
(2004)

(Continued)
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Table 1: continued

Species TL (cm) n Temperature
(°C)

Speed increment
(cm s−1)

Time interval
(min)

Ucrit

Reference
BL s−1 cm s−1

White sturgeon (Acipenser transmontanus) 8 ± 0.4 44 18–19 5 10 4.6 ± 0.2 35.3 ± 1.4 Verhille et al. (2014)

34.2 ± 1.6 14 11–12.5 5 15 1.6 ± 0.05 56.4+ Counihan and Frost
(1999)

Coho salmon (Oncorhynchus kisutch) 61.1 ± 0.9– 12 7.6 ± 0.1 0.15* 5–20 1.61 ± 0.02 98.2 ± 1.8 Lee et al. (2003)

57.7 ± 1.4– 13 8.2 ± 0.7 1.68 ± 0.05 96.5 ± 1.9

Chinook salmon
(Oncorhynchus tshawytscha)

31–33 9 8–10 0.5* 10 2.13 ± 0.08 68+ Gallaugher et al. (2001)

Sockeye salmon (Oncorhynchus nerka) 7.74 ± 0.06
(0.3 years)

10 15 9.1 60 6.65 51.5 Brett (1965)

10.03 ± 0.17
(0.7 years)

9 15 9.1 60 5.94 59.8

12.78 ± 0.21
(0.9 years)

42 15 9.1 60 4.16 53.2

18.8 ± 0.8
(1.4 years)

10 15 9.1 60 4.12 77.4

41.8 ± 1.13
(3.4 years)

4 15 9.1 60 3 125

53.9 ± 0.67
(4.4 years)

14 15 9.1 60 2.65 143

64.2 ± 0.7– 20 18 ± 0.2 0.15* 5–20 2.08 ± 0.05 132.9 ± 1.7 Lee et al. (2003)

57.9 ± 1.6– 6 13 ± 0.2 0.15* 5–20 2.36 ± 0.06 136.8 ± 3.4

62.4 ± 1.6– 12 15.9 ± 0.2 0.15* 5–20 1.74 ± 0.05 110.4 ± 2.7

64 ± 0.9– 12 12.2 ± 0.2 0.15* 5–20 1.41 ± 0.03 89.8 ± 1.7

16 ± 0.17 5 2 5 30 2.5 ± 0.13 39.98 ± 2.09 Brett and Glass (1973)

Pink salmon (Oncorhynchus gorbuscha) 49.3 ± 3.8 78 12–14 10–15 30 2.4 ± 0.75 118+ Williams and Brett
(1987)

46.8 ± 2.4 101 12–14 10–15 30 2.2 ± 0.87 103+

Rainbow trout (Oncorhynchus mykiss) 38.9 ± 0.5 5 5.5–8 0.2* 30 1.72 ± 0.08 67+ Jain et al. (1997)

42 ± 1 2 5.5–8 0.2* 30 1.5 ± 0.11 63+

33.3 ± 0.5 4 5.5–8 0.2* 30 2.1 ± 0.06 70+

10 56 6 2.5 5 4.3+ 43.4 Peake et al. (1997b)

10 48 18 2.5 5 5.4+ 54.4
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Brown trout (Salmo trutta) – 6 5 30 15 1.95 ± 0.13 – Beaumont et al. (1995)

– 6 15 30 15 1.94 ± 0.1 –

7.8 ± 0.2 8 – 5 20 8.3+ 65.43 ± 0.54 Tudorache et al. (2008)

Pumpkinseed (Lepomis gibbosus) 12.7 ± 0.27 12 20 – 60 3.01 ± 0.27 38 Brett and Sutherland
(1965)

Common carp (Cyprinus carpio) 4.9 ± 0.1 8 – 5 20 8.8+ 43.31 ± 2.15 Tudorache et al. (2008)

10.7 ± 0.2 8 – 5 20 5.8+ 62.3 ± 4.15

22.8 ± 3.9 8 – 5 20 3.8+ 87.09 ± 5.24

Gudgeon (Gobio gobio) 10 ± 0.3 8 – 5 20 5.4+ 54.15 ± 2.01

12.3 ± 0.3 8 – 5 20 4.9+ 60.17 ± 1.17

Stone loach (Barbatula barbatula) 7.2 ± 0.5 8 – 5 20 3.9+ 28.25 ± 0.32

Common roach (Rutilus rutilus) 4.6 ± 0.2 8 – 5 20 10+ 45.78 ± 2.1

7.3 ± 0.3 8 – 5 20 8.1+ 59.45 ± 1.27

15.7 ± 1.5 8 – 5 20 7+ 110.75 ± 6.71

Arctic char (Salvelinus alpinus) 35.5 ± 1.2 11 – 10 10 2.8+ 100.2 ± 3 Jones et al. (1974)

Mountain whitefish (Prosopium williamsoni) 30.4 ± 1.5 9 – 10 10 1.4+ 42.5 ± 6.5

Arctic cisco (Coregonus autumnalis) 42.1 4 – 10 10 1.9+ 80

Emerald shiner (Notropis atherinoides) 6.5 4 – 10 10 9.1+ 59

Trout spp. 7.2 3 – 10 10 7.6+ 55

Goldeneye (Hiodon alosoides) 22.5 2 – 10 10 2.7+ 60

Least cisco (Coregonus sardinella) 29.5 2 – 10 10 2+ 60

Zebra fish (Danio rerio) 4.4 ± 2.5 21 28 4 5 15.5 56 ± 4.8 Plaut (2000)

5.2 ± 0.38 17 28 4 5 12.5 43.7 ± 6.8

Iberian barbel (Luciobarbus comizo) 15.6–50.9 60 16–21 0.75* 30 3.1 ± 0.86 81 ± 11 Mateus et al. (2008)

Creek chub (Semotilus astromasculatus) 12.2 ± 0.9 7 21 3.5 2 4.3+ 53.2 ± 1.8 Tritico and Cotel (2010)

Guppy (Poecillia reticulate) 1.75 ± 0.05 37 27–29 2.9 3 13.7 23.7 ± 0.96 Nicoletto (1991)

1.76 ± 0.05 22 27–29 2.9 3 12.8 22.6 ± 0.79

1.73 ± 0.05 27 27–29 2.9 3 12.4 21.3 ± 0.65

Atlantic silverside (Menidia menidia) 6.34 ± 0.23 10 20 0.5* 2 9.7 61+ Hartwell and Otto
(1991)

6.34 ± 0.23 10 20 0.5* 5 9.5 60+

6.34 ± 0.23 10 20 0.5* 10 9.7 61+

(Continued)
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sturgeon species, and understanding this may help improve
design of fishways specifically for sturgeons.

The present study was undertaken to examine the relation-
ship between the effects of time and velocity increments on
the critical swimming speed of shortnose sturgeon (Acipenser
brevirostrum LeSueur, 1818), and these studies complement
some of our earlier research on swimming performance and
behaviour in sturgeon (Kieffer et al., 2009; Deslauriers and
Kieffer, 2011, 2012a; Downie and Kieffer, 2017; May and
Kieffer, 2017). The shortnose sturgeon is found along the
eastern seaboard of North America, from Saint John River,
New Brunswick (only Canadian population) down to the St.
John’s River, Florida, and was listed as an endangered species
in 1973 under the US Endangered Species Act (Kynard, 1997)
and according to DFO (Department of Fisheries and Oceans,
Canada) is a species at risk (Kynard et al., 2016). Several field
studies have noted the negative impacts of dams on shortnose
sturgeon spawning sites in South Carolina (Cooke and Leach,
2004; Finney et al., 2006), North Carolina (Moser and Ross,
1995) and Connecticut (Buckley and Kynard, 1985). While
the recommendation from these studies is to construct fish-
ways in order to improve migration over dams, field studies
are limited in understanding the swim performance of these
animals. The use of lab-based UCrit tests that follow a stand-
ard protocol for sturgeon may better improve the conserva-
tion strategies and construction of proper fishways for these
at-risk species. It is hypothesized that UCrit values will be
impacted both by swimming time and velocity increments,
with the prediction that large velocity increments will lead to
higher critical swimming speeds, as has been shown in a pre-
vious study by Farlinger and Beamish (1977) for largemouth
bass (Microperus salmoides Lacépède, 1802).

Methods and materials
Animal husbandry
Juvenile shortnose sturgeon were obtained from Acadian
Sturgeon and Caviar, Inc. (New Brunswick, Canada; http://
www.acadian-sturgeon.com), and housed in 208 l holding
tanks (50–80 individuals per tank) which was continuously
supplied with a flow-through of fresh, well aerated, dechlori-
nated, city water (salinity = 0 ppt; temperature = 15 ± 1°C;
pH = 7) at a rate of 1 l min−1. Fish were fed daily to sati-
ation with commercial Salmonid pellets (1.5mm optimum
salmonid feed; 52% crude protein, 18% crude fat, 1.2%
crude fibre; www.coreyaqua.ca) each day, but were fasted
for 24 h prior to the swim trials (Deslauriers and Kieffer,
2011). A photoperiod of 14 h:10 h (day:night) was main-
tained throughout the holding period.

Experimental flume
The experimental flume (Aquabiotech Inc., Coaticook,
Canada) measured 732 cm (length) × 50 cm (height) ×
50 cm (width). The swimming test area was 155 cm length ×
17 cm height of the water × 50 cm width. An acrylic flowTa
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channel was set up ahead of the swimming area to ensure lam-
inar flow. A mesh screen was placed at the downstream end
of the flume. Flume velocity was calibrated using a FLO-
MATE Marsh-McBirney portable flowmeter (Model 2000)
(Deslauriers and Kieffer, 2012a, b; May and Kieffer, 2017;
Downie and Kieffer, 2017). Water temperature within the
flume was maintained at 15°C. Dechlorinated fresh water was
used for the swim trials; after every second fish swum,
approximately a third of the water was drained from the
flume and replaced to replenish water oxygen levels (always
>9.0mg l−1).

Swimming protocol
Fish were gently removed from the holding tank using a wet
net and quickly measured under water, so they were the tar-
get length for the study (18–20 cmTL; total length; tip of ros-
trum to tip of caudal fin). A single fish was swum in the
flume at a time. Fish were placed in the flume and allowed to
recover from handling from their holding tank, at flow
speeds of 5 cm s−1 for 30min (following methods described
in Deslauriers and Kieffer, 2012a). Following this habitu-
ation period, velocity was increased in a constant stepwise
progression (Brett, 1964). Time increments used were 5, 15
and 30min; velocity increments were 5 and 10 cm s−1. Eight
(n = 8) fish were used for each set of UCrit tests. Once the
swimming trial was complete, the weight of the fish was
recorded and it was subsequently placed in a different hold-
ing tank, so they could not be swum more than once.
Critical swimming speed (UCrit) was calculated using the fol-
lowing formula:

( ) = + [( ) × ]− tUCrit cm s Vf T1/ dv ,1

where Vf is the speed of the last completed interval (cm s−1),
T1 is the time swum at the final velocity before it fatigued
(min), t is the time increment (5, 15 or 30min) and dv is the
velocity increment (5 or 10 cm s−1) (Brett, 1964). UCrit is then
converted to body length per second (BL s−1).

Statistical analysis
Data were graphed and presented as means ± SE. The UCrit
values (BL s−1) were compared between velocity increments
(5 or 10 cm s−1) and time increments (5, 15 or 30min) using
two-way ANOVAs (α = 0.05). Data were log10 transformed
to better approximate normality and equal variance. A
Tukey’s post hoc test was used if significant differences were
found. All statistics were performed using Sigma Stat 3.5
with α = 0.05.

Results
There were no significant differences in mass or length in fish
between treatment groups (two-way ANOVA; P > 0.05, for
both mass and length). On average, fish were 19.2 ± 0.1 cm
(SE) and 22.6 ± 0.6 g (SE) across the groups. It was also
observed during the swim trials that at slower water

velocities (<15 cm s−1), sturgeon spent more time in the
water column. At faster speeds (>20 cm s−1), sturgeon
remained on the bottom of the flume (generally substrate
skimming), particularly at the front of the flume. Results of a
two-way ANOVA on log10 transformed data indicated that
critical swimming (BL s−1) was affected by velocity increment
(P = 0.025) and time interval (P = 0.046) (increment × inter-
val interaction, P = 0.135; Fig. 1). Overall, the UCrit was
about 20% higher in fish swum using a 10 cm s−1 versus 5
cm s−1 increment at 15 and 30min intervals (Fig. 1). This
contrasted the situation for fish swimming at 5 min intervals,
where the UCrit values were nearly identical (~2.3 BL s−1) at
both speed increments. When the velocity increment was set
at 5cm s−1, critical swimming speed decreased curvilinearly
with increases in time interval. In contrast, UCrit values were
similar (~2.2 BL s−1) in fish tested at 10cm s−1 regardless of
the interval used.

Discussion
Farlinger and Beamish (1977) state: ‘Ideally, critical per-
formance should be measured under conditions in which
fatigue is the result of swimming, not of the method
applied.’ Results from the current study show that both vel-
ocity increment and time interval affect UCrit values in
shortnose sturgeon. In general, swimming fish at 10 cm s−1

yield higher UCrit values compared with fish swimming at
5 cm s−1. However, at 10 cm s−1, sturgeon were able to
maintain consistent critical swimming speeds regardless of
the time interval used. This consistency across time inter-
vals was not evident in fish swum at 5 cm s−1 intervals,
where the UCrit decreased curvilinearly with increases in
time interval. The reason(s) for this finding may be related
to cost of transport at different water velocities and/or

Figure 1. The critical swimming speed (UCrit) of juvenile shortnose
sturgeon (Acipenser brevirostrum) swum at different speed (5 cm s−1;
black bars and 10 cm s−1; open bars) and time intervals (5, 15 and
30min). UCrit is expressed as body lengths per second (BL s−1). A plus
sign (+) indicates a significant difference (P < 0.05) in UCrit values
from the corresponding 5min interval. An asterisk (*) indicates a
significant difference (P < 0.05) in UCrit values between the different
velocity increments at any given time interval. Values are means ±
standard error (SE).
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some behavioural adjustments that might be required to
swim at various speeds in sturgeon. For example, Cai et al.
(2013) recently found that the cost of transport in juvenile
Amur sturgeon (Acipenser schrenckii Brandt, 1869) decreased
slowly with increased swimming speed, and concluded that
this species of sturgeon was an efficient swimmer. Although
not quantified in the present study, we noted in previous
studies that sturgeon modify their behaviour when swum
at various speeds during the UCrit test. Kieffer et al.
(2009) and May and Kieffer (2017) specifically noted that
shortnose sturgeon modify their swimming behaviour at
various speeds by using a combination of behaviours such
as station-holding, substrate skimming, and burst-and-
glide behaviours. Some of these behavioural modifications
have also been noted for other species of sturgeon (Adams
et al., 1997; Chan et al., 1997; Peake, 2004a; Hoover
et al., 2011). To sufficiently allow a species to use specific
swimming behaviours during a swimming challenge, it is
essential to match swimming style with the type (e.g. flat
bottom) and size of flume (Deslauriers and Kieffer, 2011).
In the present study, the size of the flume was large relative
to the fish size to allow for fish to modify their behaviour
to match the swimming velocity and challenge, which may
allow for weaker swimmers to swim at speeds approaching
the UCrit values (as suggested by Deslauriers and Kieffer,
2011). Therefore, it may be possible that it takes a particu-
lar velocity (noted by May and Kieffer, 2017) and/or peri-
od of time for the fish to switch from one swimming
behaviour to another. This is important as Braaten et al.
(2015) noted that flow regimes in fishways built along the
Yellowstone River (Western USA) vary throughout (flows are
1.2–2.4m s−1 along the ramp of the fishway and >2.4m s−1

at the crest (top) of the fishway), and thus sturgeon may or
may not be able to switch swimming behaviour to cope with
the change in water velocity as they swim through the pas-
sage. Coupled with this, it was noted, but not quantified,
that fish swum at 5 cm s−1 intervals appeared to spend more
time swimming in the water column, compared to fish swim-
ming at 10 cm s−1. How time spent swimming in the water
column versus closer to the bottom of the flume influences
swimming performance (i.e. cost of transport between swim-
ming in the water column vs swimming on the benthos) in
sturgeon is not fully understood, but may be worthy of fur-
ther study.

In general, our findings support earlier conclusions of
Farlinger and Beamish (1977) and Beamish (1978) that a vel-
ocity increment of 10 cm s−1 appears to be satisfactory for
swimming performance studies; however, the selection of the
time interval in the various publications may be reflective of
the study objectives (see Table 1). As noted by Farrell (2008),
the UCrit test can be time consuming; depending on what the
endpoint UCrit is used for, a shorter or modified UCrit test
might be sufficient for testing the effects of abiotic and biotic
factors on swimming performance. However, if the goal of the
research is to couple swimming performance with metabolic
costs (i.e. oxygen consumption rates), a longer time interval

(greater than 20min) is needed to ensure that the swimming
fish is in steady state, and to provide enough time for multiple
measurements of the oxygen consumption of the fish during
swimming at each speed. However, this may be less relevant
because of the enhanced oxygen measuring technology now
available to researchers.

From a conservation perspective, consistent UCrit protocols
will enable the aerobic swim performance of sturgeon to be
accurately measured and be representative of the species under
field conditions. While many swim experiments investigate
swim speeds that fish can maintain over time, water velocity
inside a fishway must be set at a speed that fish can make pro-
gress against (Peake et al., 1995). Cai et al. (2013) mentioned
the importance of accurate UCrit results in constructing the
dimensions of fishway openings, flow of water through the
passage and the number of resting pools. For threatened/
endangered species, such as sturgeons, the proper construction
of such structures will support local populations impacted by
anthropogenic structures, such as dams. Shortnose sturgeon
populations continue to be threatened by many factors, includ-
ing the construction of dams which block off ideal spawning
sites that cause larvae to hatch in conditions (such as salinity
or temperature), which leads to lower recruitment to the adult
population (Boreman, 1997; Kynard, 1997). The construction
of fishways designed for the proper swim performance of these
sturgeon may enable adults to over-pass dams and return to
these ideal spawning sites and prevent larvae and juveniles
from growing under less-ideal conditions (e.g. temperature
and salinity). For example, in Connecticut, fishways have been
used successfully to allow adult shortnose sturgeon to pass
over the Holyoke Dam (Kynard, 1998). However, Kynard
(1998) notes that most adults enter during specific flow rates
into the fishway (water flow: 200–400m3 s−1), and thus the
fishways’ design have to accommodate the sturgeon’s swim
performance, so the appropriate flow rates/water velocities are
not too strong for the fish. Results from this study suggest that
the opening of the fishway and the current flowing through it
should not exceed the UCrit speed (2.2 BL s−1) for juvenile
shortnose sturgeon (18–20 cm TL) based on the time and vel-
ocity intervals prescribed in this study.

Life stage and how swim ability changes over ontogeny are
also important criteria to consider in fishway design. Juvenile
green sturgeon increase UCrit from hatch until they reach a
critical size when they enter seawater (Allen et al., 2006). From
this point onward, UCrit will either decrease or increase as the
fish continues to grow, depending on season, age or thyroid
hormone levels (Allen et al., 2006). He et al. (2013) found that
UCrit is higher among younger juvenile Chinese sturgeon
(aged 2.5, 4.5 and 6.5 months) than older juveniles (aged 8.5,
10.5 and 12.5 months). He et al. (2013) hypothesized this may
be because younger fish have increased muscle mass, available
energy reserves and metabolic rate relative to their size early in
life. Peake et al. (1995) investigated the UCrit of Lake sturgeon
over ontogeny using three size classes (small fish:12–22 cm,
intermediate fish: 23–55 cm and large fish: 106–132 cm TL)
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and found that relative critical swimming speed is higher
among the smaller fish than the larger size classes. Peake et al.
(1995) hypothesized that small fish invest more energy into
growing lengthwise than girth (muscle) and as fish grow,
length growth rate decreases and larger fish develop muscle
mass to reduce drag. However, critical swimming speed in lar-
ger fish decreases with length as the sturgeon cannot increase
enough muscle mass to overcome drag (Peake et al., 1995).
While studies have investigated the impact of ontogeny on
behaviour of shortnose sturgeon (Richmond and Kynard,
1995; Kynard and Horgan, 2002), changes in swim speed as
fish grew were not measured. Most studies investigating the
swim performance of sturgeon have focused on smaller life
stages (e.g. juveniles), and thus future research should also
investigate the swim performance of larger juveniles or adult
sturgeons, so fishways can accommodate a wider range of sizes
and developmental stages. While it has been previously difficult
to assess the swim speed and metabolism of large juvenile and
adult sturgeon in nature, newer technology (e.g. biotelemetry)
is now available to allow for such studies to be conducted
(Cooke et al., 2004). This is important as Braaten et al. (2015)
state that the current fishways in use along the Yellowstone
River are designed for adult pallid sturgeon (112–164 cm TL;
average swimming speed in nature is 0.77–1.95m s−1; flow
velocity through passage is 1.2–2.4m s−1) and not suitable for
juveniles (average size of juvenile pallid sturgeon are 13–21 cm
TL; average UCrit is 0.1–0.25m s−1; average burst swimming
is 0.4–0.7m s−1) (Adams et al., 1999). Overall, life history
stage is an important metric when evaluating swim ability and
sure also be considered when constructing fishways, especially
near nursery grounds.

In conclusion, these findings for shortnose sturgeon sup-
port the earlier recommendations of Farlinger and Beamish
(1977) and Beamish (1978) that velocity increments should
range between 5 and 10 cm s−1, and time intervals between
10 and 30min for UCrit tests. In a similar manner to Beamish
(1978), we recommend that preliminary studies should be
conducted when swimming new fish species. Once the
swimming parameters have been determined for that spe-
cies, researchers should adhere to them for future studies.
In addition, while UCrit is a more representative measure-
ment of Acipensarid swimming capabilities, the importance
of burst swimming should also be further investigated to
construct fishways that accommodate a range of swim speeds
across ontogeny.
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