Differential gene expression in narrow- and broad-headed European glass eels (Anguilla anguilla) points to a transcriptomic link of head shape dimorphism with growth rate and chemotaxis

De Meyer, J., Maes, G.E., Dirks, R.P., and Adriaens, D. (2017) Differential gene expression in narrow- and broad-headed European glass eels (Anguilla anguilla) points to a transcriptomic link of head shape dimorphism with growth rate and chemotaxis. Molecular Ecology, 26 (15). pp. 3943-3953.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1111/mec.14155
8


Abstract

One of the major challenges in evolutionary biology is to understand the mechanisms underlying morphological dimorphism and plasticity, including the genomic basis of traits and links to ecology. At the yellow eel stage of the European eel (Anguilla anguilla), two morphotypes are found: broad-and narrow-heads. This dimorphism has been linked to dietary differences, with broad-heads feeding on harder, larger prey than narrow-heads. However, recent research showed that both morphotypes could be distinguished at the glass eel stage, the nonfeeding predecessor of the yellow eel stage, implying that nondietary factors play a role in the development of this head shape dimorphism. Here, we used transcriptome profiling (RNAseq) to identify differentially expressed genes between broad-and narrow-headed glass eels. We found 260 significantly differentially expressed genes between the morphotypes, of which most were related to defence and immune responses. Interestingly, two genes involved in growth (soma and igf2) were significantly upregulated in narrow-heads, while nine genes involved in chemotaxis showed significant differential expression. Thus, we found support for the observation that head shape is associated with somatic growth, with fast-growing eels developing a narrower head. Additionally, observations in the wild have shown that slow-growers prefer freshwater, while fast-growers prefer brackish water. The differential expression of genes involved in chemotaxis seems to indicate that glass eel growth rate and habitat choice are linked. We hypothesize that two levels of segregation could take place in the European eel: first according to habitat choice and second according to feeding preference.

Item ID: 50588
Item Type: Article (Research - C1)
ISSN: 0962-1083
Keywords: Anguillidae, habitat choice, phenotypic plasticity, RNAseq
Funders: Ghent University (GU)
Projects and Grants: GU Special Research Fund (BOF 13/24J/052)
Date Deposited: 20 Sep 2017 10:13
FoR Codes: 31 BIOLOGICAL SCIENCES > 3105 Genetics > 310505 Gene expression (incl. microarray and other genome-wide approaches) @ 80%
41 ENVIRONMENTAL SCIENCES > 4104 Environmental management > 410401 Conservation and biodiversity @ 20%
SEO Codes: 96 ENVIRONMENT > 9608 Flora, Fauna and Biodiversity > 960807 Fresh, Ground and Surface Water Flora, Fauna and Biodiversity @ 100%
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page