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Abstract

With the high rate of ecosystem change already occurring and predicted to occur in the com-

ing decades, long-term conservation has to account not only for current biodiversity but also

for the biodiversity patterns anticipated for the future. The trade-offs between prioritising

future biodiversity at the expense of current priorities must be understood to guide current

conservation planning, but have been largely unexplored. To fill this gap, we compared the

performance of four conservation planning solutions involving 662 vertebrate species in the

Wet Tropics Natural Resource Management Cluster Region in north-eastern Australia.

Input species data for the four planning solutions were: 1) current distributions; 2) projected

distributions for 2055; 3) projected distributions for 2085; and 4) current, 2055 and 2085 pro-

jected distributions, and the connectivity between each of the three time periods for each

species. The four planning solutions were remarkably similar (up to 85% overlap), suggest-

ing that modelling for either current or future scenarios is sufficient for conversation planning

for this region, with little obvious trade-off. Our analyses also revealed that overall, species

with small ranges occurring across steep elevation gradients and at higher elevations were

more likely to be better represented in all solutions. Given that species with these character-

istics are of high conservation significance, our results provide confidence that conservation

planning focused on either current, near- or distant-future biodiversity will account for these

species.

Introduction

Effective conservation planning and appropriate implementation are crucial for stemming the

current biodiversity decline. However, the challenges increase when future, enigmatic threats

such as climate change are considered. Given the uncertainty of the future, there is a lack of

guidance on how to plan for future conservation priorities where these might come at the
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expense of current priorities. For example, investing in an area with high current biodiversity

value may be a less-optimal solution compared to investing in another area with slightly lower

biodiversity value currently, but likely to have the highest value in 50 years’ time. Examination

of trade-offs between priorities for either current or future biodiversity, and ways of resolving

those trade-offs are necessary to provide guidance for planners and managers.

With current greenhouse gas emissions, the globe is on track for severe climate change [1].

Moreover, species distributions are already shifting, many of them roughly in the expected

direction to track their climatic niches [2, 3]. While current protected areas are important for

the species they currently contain, and for species already moving in response to climate

change [4–6], they are likely to be less effective for protecting species in the future, including

for birds [7], amphibians [8] and moths [9]. These ongoing range shifts and reorganisation of

assemblages result in a trade-off between investing in areas of high present conservation value

versus areas of likely future conservation value [10]. For example, increasing the weight given

to future conservation priority for amphibians and reptiles in Europe can result in substantial

loss to current biodiversity priorities with only minor gains for future [11]. Studies show re-

markable variation in consistency in the selection of priority biodiversity areas for current or

projected future: from less than 2% of planning units remaining consistent for both current

and future species of herptiles on the Iberian Peninsula [12], to 40% for corals surrounding

Japan [13], to over 72% for mammalian carnivores globally [14]. It is therefore important to

examine the potential biodiversity trade-offs through time to identify the species most likely to

be represented by protected areas in the future and those that may require alternative conser-

vation actions [6].

Methodologies that identify priority areas for conservation incorporating both current and

future species distributions, and the connectivity between these time points have been devel-

oped [11, 15, 16]; and the impact of a range of uncertainties (e.g. from modelling parameters,

unknown future climate or species response to future climates) have been examined [11, 17].

However, understanding which species are likely to benefit from conservation planning

focussed on different time points is required. Furthermore, the characteristics of distributions

that increase the likelihood of species benefitting from protected-area networks optimised for

current versus future climates have yet to be quantified.

Climate change is a severe threat to biodiversity in north-eastern Australia, across rainfor-

est, Eucalypt forest and savanna biomes [18–23]. For example, even a moderate increase in

temperature is likely to severely impact the rainforest endemics of the Wet Tropics [18] and

bird species on Cape York Peninsula [20, 23]. As a result, Natural Resource Management

(NRM) groups in this region (http://www.nrm.gov.au/regional/regional-nrm-organisations)

need to incorporate climate change into their spatial planning. Like managers elsewhere, the

NRM groups want to plan for the best biodiversity outcomes if a severe climate-change future

is realised, but without diverting scarce resources away from current conservation priorities

unnecessarily [24]. Understanding which species benefit and which do not from the optimisa-

tion of conservation actions over multiple time points simultaneously (current, near- and dis-

tant-future) is required.

This study investigated whether there is a trade-off between planning for biodiversity con-

servation under current or future climates in north-eastern Australia. We examined the differ-

ences between conservation planning solutions to protect 662 terrestrial species, using current

and two future distributions separately and combined. In addition, we investigated the charac-

teristics of species distributions–such as extent, elevation and nestedness of future distribu-

tions within current ones–to find factors that determine how well species will be accounted for

in any of the solutions. In particular, we determined for which species current distributions

would be accounted for if only a future solution was used, and vice versa.

Biodiversity trade-offs of planning for current or future
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Materials and methods

Study area

The Wet Tropics NRM cluster region incorporates four NRM groups across the Torres Strait

(Torres Strait Regional Authority), Cape York (Cape York NRM), the Wet Tropics (Terrain

NRM) and Mackay-Whitsundays (Reef Catchments NRM) in north-eastern Australia (Fig 1).

For this study, the Torres Strait region was not included as sufficient, reliable species data were

not available. The mainland section of the region (i.e. the other three NRM jurisdictions)

stretches from -10.12 to -23.53 degrees latitude, and consists of small rainforest patches clus-

tered along the east coast, from sea level to 1565 m, bordered by wet Eucalypt forests out to

open Eucalypt and other woodlands.

The rainforest regions have high numbers of endemic vertebrates, many with extremely

restricted distributions [25–27]. The dry forests and woodlands are also of high biodiversity

value, with some endemic vertebrates [28–32]. For this study, the extent of the NRM cluster

region was buffered using the outlines of a broader catchment area, and all vertebrates with

distributions overlapping the study extent were included [31]. There were species with varying

conservation importance to the region, from species with small extents endemic to the region

to those occurring widely across the continent and only marginally within the study area.

Species distribution models

Locality data on vertebrate species were acquired from the Atlas of Living Australia (http://

www.ala.org.au/), Queensland Museum (http://www.qm.qld.gov.au/), and the Centre for

Tropical Biodiversity and Climate Change (https://plone.jcu.edu.au/researchatjcu/research/

ctbcc) species database [27]. Species distribution models were fitted using the presence-only

approach implemented by the Maxent software [33]. Maxent is particularly suited for pres-

ence-only data, often outperforming commonly used statistical methods (e.g. GLM, GAM)

[34]. Furthermore, it has shown to give robust predictions for species in this region [27, 35].

Species distribution models incorporated baseline climate data, averaged across 1976 to 2005,

at 0.01 degree (~1x1km) resolution. Climate data were accessed from Australian Water Avail-

ability Project [36, 37], and the bioclimatic variables were derived using the “climates” package

in R [38]: annual mean temperature, temperature seasonality, maximum temperature of the

warmest period, annual precipitation, precipitation of the driest period, precipitation of the

wettest period and precipitation seasonality. We used a target-group as background [39],

which consisted of the locations of all the occurrence records for all the species within the class

(amphibians, birds, mammals and reptiles) to account for any potential spatial bias in the

occurrence data [40].

Distribution models with low performance, assessed with the area under the receiver operat-

ing characteristic curve values (AUC<0.7) or poor representations of the species’ known range,

were not included in further analyses. Representation of known range was assessed using rele-

vant field guides [41–44], online databases (http://www.arod.com.au/arod/) and expert opinion.

Modelled suitable areas within a state or bioregion (Interim Biogeographic Regionalisation for

Australia, Version 7) [45] in which the species was known not to occur were clipped out.

Projections of future climate were sourced from the Tyndall Centre (http://climascope.

wwfus.org/). Eighteen general circulation models (GCMs), and one emission scenario

(RCP8.5) were accessed for the years 2055 and 2085. Species distributions were modelled for

each combination of GCM, RCP and year. In order to reduce uncertainty in the projections

we sought consensus across 18 GCMs [46, 47], calculating the median modelled suitability

across the GCMs for each year for each species and used these in further analyses.

Biodiversity trade-offs of planning for current or future
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To obtain a reasonable estimate of the areas in which species could be expected to be pres-

ent or absent, the default continuous prediction of environmental suitability provided by

Maxent was clipped below an appropriate threshold; areas with suitability scores below the

threshold were deemed to have suitability too low for the species to occur. For each species,

four different thresholds obtained from the Maxent results output file were investigated, and

the threshold providing the best fit to the species’ known range was selected. Areas below the

threshold were given zero suitability; above the threshold the continuous suitability surface

was retained. To provide more realistic estimates of species’ future distributions, future projec-

tions of suitable climate space were clipped (given a suitability score of zero) beyond a reason-

able dispersal distance from species’ current distribution. The dispersal distance used was

3km/year for birds and mammals and 0.5km/year for amphibians and reptiles [48]. While

restricting future distribution projections to within a reasonable dispersal distance gives a con-

servative result, generating future distributions that are similar to the current distributions; we

wanted the analysis to be as close to a real-world scenario as possible so that ultimately we

could maximise the usefulness as management decision-support.

All modelling and post-processing of models was done as part of the CliMAS project, and

can be found online (http://climas.hpc.jcu.edu.au/)[31].

There were 662 vertebrate species (69 amphibians, 331 birds, 105 mammals and 157 rep-

tiles) occurring within the region with satisfactory distribution models for inclusion in the

prioritisation analysis. Current models for the 662 species, and the median suitability across

the 18 output distributions at both 2055 and at 2085 were included in the prioritisation.

Spatial prioritizations

Zonation is a method and software for ecologically based land use planning that provides a pri-

ority ranking, from which arbitrary best or worst fractions of the landscape can be identified

([49], see [50] for introduction and references). It is often used for cost-efficient reserve net-

work design, where many biodiversity features, costs, connectivity and other considerations

need to be balanced [16, 51]. Here, Zonation was used to find areas that efficiently cover pres-

ent and future distributions of species.

Species were weighted by the fraction of their Australian distribution occurring within the

study area, giving the highest weight to the narrow-ranged endemics and lowest weight to the

widespread species with marginal occurrences in the study area. The parameter α of the nega-

tive exponential dispersal kernel for each species was calculated as 2/d, where d = mean dis-

persal distance estimates in the same units as used the species distribution modelling [52]. For

amphibians and reptiles the dispersal distance was estimated as 0.005 degrees (α = 2/0.005 =

400); for birds and mammals dispersal was 0.03 degrees (α = 2/0.03 = 66.67)[48]. The Additive

Benefit Function (ABF) formulation for aggregating conservation value was used. It accounts

for all species, weighted for proportional range size, and effectively minimises expected aggre-

gate extinction rates according to species-specific species-area curves [50]. For comparison,

the analyses were repeated with the Core-Area Zonation method of aggregating conservation

value. Compared to ABF, this method does not allow trade-offs between species and places rel-

atively more emphasis of guaranteeing protection of high-quality areas for every included spe-

cies, even when that comes with the cost lower average outcome for all species [16](S1 Table).

Four conservation prioritizations were carried out using Zonation: prioritizing areas using

1) species current modelled distributions only (“Current”); 2) species model projections for

Fig 1. The Wet Tropics Natural Resource Management (NRM) Cluster region of north-eastern Australia. Elevation is

shown in greyscale and rainforest extent in green.

doi:10.1371/journal.pone.0172230.g001
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2055 only (“2055”), 3) species model projections for 2085 only (“2085”), and 4) species current

modelled distributions, 2055 and 2085 projections, and the connectivity between each of the

three time periods for each species (“All Time”)[11]. In this case, connectivity refers to the

proximity of the species’ distribution in each time point. For example, locations with high suit-

ability for a species at each time point receive high connectivity scores [15].

Uncertainty of future projected distributions was further accounted for using the distribu-

tion discounting function within Zonation [53]. For each species and each future time period,

we used the standard deviation of habitat suitability taken across the 18 GCMs as an indication

of model uncertainty. To give higher priority to areas where model outputs tend to agree

about future habitat quality, we subtracted the standard deviation off the median prediction

for each species in each grid cell. This balances the uncertainty of species future distributions

while still recognising the importance of future habitat suitability [11].

Comparison of different solutions

A quantitative comparison between pairs of solutions was undertaken, considering each solu-

tion as a whole, and then by taking the top 25% ranking areas in each solution. The number of

cells within the top 25% ranks that overlapped in each of the four solutions was calculated.

The ability of each of the four solutions to capture the current and future distributions of

each species was first evaluated by calculating the area and proportion of each species distribu-

tion that fell within the top 25% of each solution. This was done for the Current, 2055, 2085

and All Time solutions.

Independent evaluation

An independent evaluation of the solutions was conducted by assessing the four solutions for

their capacity to account for species that were not included in prioritisations. There were 71

vertebrates within the study region that were too restricted for useful distribution models to

be fitted using the 0.01 degree data. The proportion of occurrence points for each restricted

species that fell within the top 25% of each solution was recorded. To test for significant differ-

ences in the proportion of severely restricted species protected between the solutions, a gener-

alised linear model with a binomial error family was run. A likelihood ratio test was performed

on the model output using the ANOVA function with the option of Chi-squared test, using R
version 3.0.0 [54].

Species distribution characteristics

To investigate which characteristics of species distributions influenced how well they were cap-

tured in the high-ranking cells (top 25%) of each solution, we used Boosted Regression Tree

partial dependence plots. Partial dependence plots provide useful visualisation of the effect of

each of the variables, assuming the average effects of all the other variables [55, 56]. These plots

are informative providing the predictor variables are not strongly correlated. To this end, we

removed highly correlated variables from our predictor set (S1 Table). We followed the proto-

col and adapted the code outlined in Elith et al. [56], and used the ‘gbm’ package version 2.9

[57], and statistical analysis outlined by Sutcliffe et al. [58]. Tree complexity, i.e. the number of

splits in each tree, was set at five to prevent over-fitting but to allow identification of interac-

tions between variables [56]. The learning rate for all models was set at 0.01 to reduce the influ-

ence of the primary set of trees on the models.

After removing highly correlated variables, the remaining predictor variables were: size

(number of cells with modelled suitable environment) of current and 2085 distributions, size

of overlap between current and 2085 distributions, mean elevation across current and 2085

Biodiversity trade-offs of planning for current or future
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distributions, standard deviation of elevation across the current and 2085 distributions, mean

and standard deviation of elevation across the current and 2085 distribution overlap, and the

proportion of the current distribution that overlaps with the 2085 distribution.

Total deviance explained by the models was calculated following Sutcliffe et al. [58]:

TD ¼
�x TD � CVD

�x TD

Where TD is the total deviance and CVD is the estimated cross-validated deviance. The pro-

portion of the total deviance explained by each predictor variable was assessed using partial

dependency plots. All analyses were run in R version 3.0.0 [54].

Results

Comparison of different solutions

The Zonation solutions for Current, 2055, 2085 and All Time were similar, with the highest

ranked cells (i.e. the top 25%) overlapping from 78–85% (Table 1). Each solution prioritized

the areas that were upland, close to the east coast and contained rainforest (Fig 2; performance

curves shown in Figure A in S1 Appendix). Notable exceptions included areas that were priori-

ties only in the Current solution, which are in the far north of the region. Interestingly, the

general patterns differed little when the Core-Area cell removal rule was used (Figure B and

Figure C in S1 Appendix), although Core-Area outputs placed higher emphasis on areas away

from the east coast, on lowlands and Eucalypt woodlands, particularly in the south of the

region.

Table 1. The proportion overlap of the highest ranking cells (> top 25%) of each of the solutions.

Current 2055 2085 All Time

Current — 0.85 0.78 0.82

2055 — 0.78 0.82

2085 — 0.82

All Time —

doi:10.1371/journal.pone.0172230.t001

Fig 2. The Zonation solutions for Current, 2055, 2085 and All Time scenarios. The highest ranking cells ranked “1”, shown in red, and the lowest-ranking

cells ranked “0”, in blue. Far right: the highest-ranking cells (> top 25%) showing where all solutions overlap, and areas only found in the highest-ranking cells

for the Current, 2055, 2085 or All Time scenarios. The grey represents areas that were not in the highest-ranking cells for any solution.

doi:10.1371/journal.pone.0172230.g002

Biodiversity trade-offs of planning for current or future
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As expected, species with narrow ranges were more likely to have their entire distribution

within the region captured by any solution; this includes species’ current distribution falling

within the 2085 solution, and the reverse (e.g. the species’ 2085 distribution falling within the

Current solution; Fig 3). Individual species differed in how they were captured by each of the

solutions (Figure D in S1 Appendix), with many of the high elevation frog species current and

projected future distributions being entirely captured within each of the solutions.

Independent evaluation

Most of the restricted-range species, for which there was not enough data to model distribu-

tion changes under climate change, were accounted for by the top 25% of every solution

(Figure E in S1 Appendix). Each solution performed equally well in capturing the restricted

species in the high-ranking cells (df = 3, likelihood ratio test statistic χ2 = 152.71, p = 0.99).

However, three reptile species were unaccounted for in the top 25% of any solution: Whitsun-

day rainbow-skink (Carlia inconnexa), Australian bockadam (Cerberus australis) and Quinkan

velvet gecko (Oedura jowalbinna). Whitsunday rainbow-skink occurs only on islands that

were not included in the prioritisation. Australian bockadam occurs on the western edge of

Fig 3. The proportion of species distributions captured by the top 25% of the different solutions plotted against their range size within

the region. Top row: 1) proportion of species current distribution within the Current solution, 2) proportion of species current distribution within the

2085 solution. Bottom row: 1) proportion of species 2085 distribution within the Current solution, 2) proportion of species current distribution within

the All Time solution.

doi:10.1371/journal.pone.0172230.g003
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Cape York Peninsula and falls just outside the high priority area in the west. Quinkan velvet

gecko occurs on the western edge of the Wet Tropics bioregion, falling just to the west of the

high priority region on the east coast. The endangered Golden shouldered parrot (Psephotus
chrysopterygius) has 4–10% of its current occurrences within the top 25% of each solution; the

northern occurrences better accounted for than the south and west of its range. The remaining

species with less than half their occurrences accounted for occur outside rainforest, in either

savanna, mangroves or coastal woodlands.

Species distribution characteristics

The main factors determining how well current and projected future species’ distributions

were captured in each solution were primarily the size of each species’ global distribution, the

variation in elevation within the species current distribution (i.e. a proxy for topographic rug-

gedness), the overlap between species current and projected 2085 distributions (i.e. the nested-

ness of the future distribution within the bounds of the current distribution), and the mean

elevation across species current distribution (Fig 4). The contribution of each of the variables

to each model is shown in Table A in S1 Appendix. Overall, small-ranged species with large

variance in elevation and species at higher elevations were more likely to be better represented

in all solutions. There was little variation of the total mean deviance explained across the mod-

els (Table 2).

Discussion

Fortunately for the Wet Tropics NRM cluster region, there is not a lot of conflict between con-

servation prioritizations for the current and for the future. This is because of the nestedness

of current and future distributions of the narrow-ranged endemic species in the region. Both

the current distribution and future distributions of narrow-ranged endemic species at high ele-

vations were well represented within the highest-ranking cells in each of the planning solu-

tions. This is driven by the emphasis Zonation places on small distributions via the range-size

normalization and by the large overlaps in these species’ current and future distributions in

the mountainous areas, and subsequently reflected in the large overlap between planning solu-

tions. This result remained consistent despite different parameters in Zonation, either the

Additive Benefit Function or the Core-Area cell removal. Present results support the wide-

spread notion that mountainous areas are important as climate change refugia, both for species

that are there currently and for the species projected to find suitable climate space there in

the future [40, 59–62]. Furthermore, it reduces the challenge of which time point to plan for.

It is encouraging that for the species of most concern in this region–the small ranged endem-

ics–planning for their conservation using either just their current distributions, just their

future distributions, or an attempt to incorporate both will all result in similar conservation

recommendations.

However, the Current, 2055 and All Time solutions tended to place more emphasis on the

north and west of the study region. The Current solution favoured smaller patches throughout

the region that were not favoured at other time points. In contrast to the Current solution, few

areas were suitable only for the 2085 solution, but the 2085 and All Time solutions overlap in

the south.

Interestingly, across all species, there was no difference between the Current solution’s

mean ability to capture species’ current distributions and the 2085 solution’s ability to do so.

However, the variance among species was substantial, demonstrating that the top ranking cells

of each solution varied markedly in how well they captured individual species.

Biodiversity trade-offs of planning for current or future
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Fig 4. The boosted regression tree partial dependency plots. The plots demonstrate the influence of the predictor variables (columns) on how well

species were represented in the highest ranking cells (> top 25%) of each of the solutions. Rows: 1) proportion of species current distribution captured in the

Current solution, 2) proportion of species current distribution captured in the 2085 solution, 3) proportion of species 2085 distribution captured in the Current

solution, and 4) proportion of species current distribution captured in the All Time solution.

doi:10.1371/journal.pone.0172230.g004

Table 2. The total mean deviance explained, mean residual deviance, estimated coefficient of variation (CV) of deviance, and the number of trees

in each of the Boosted Regression Tree models.

Total Mean Deviance Mean Residual Deviance Estimated CV Deviance Number of trees

Current in All Time 0.293 0.034 0.064 50

Current in Current 0.300 0.043 0.069 50

Current in 2085 0.294 0.035 0.067 50

2085 in Current 0.325 0.041 0.069 50

doi:10.1371/journal.pone.0172230.t002
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Planning species conservation under future climate change presents inherent uncertainties,

and inaccurate predictions might pose a risk to the efficacy of conservation action. The uncer-

tainties propagate at every step of conservation planning under climate change: the physical

changes in climate and habitat that might occur, species’ responses to these changes, the conse-

quences of changing species assemblages, and the most effective strategy for conservation

across time. The presence of uncertainty should not prevent conservation planning, but rather

be accounted for to enhance the robustness of plans to unexpected changes in circumstances

[63]. These uncertainties are precisely the reason why comparing current and future conserva-

tion prioritisations is warranted. Uncertainty begins with the unknown concentrations of

greenhouse gas emissions that will eventuate during the planning horizons [64], the spatial

manifestation of changes in climate [65], and propagated through the different methods of

downscaling the coarse General Circulation Models (GCMs) to reflect the spatial heterogeneity

of climate at the local scale [66]. Species distributions modelling algorithms can produce

widely varying outputs [11], and are influenced by the quality and resolution of the input data

[67], dispersal scenario employed [20, 68], and the model algorithm’s ability to project into

novel environmental space. The output distribution model is often interpreted by assuming

that modelled suitability equates with a species’ occupancy, and usually ignores temporal fluc-

tuations in suitability and occupancy [69]. Importantly, even if the physical realities of climate

change were known and species models were robust and useful proxies for the broader biodi-

versity, the actual responses of species to climate change will be determined by factors such as

habitat availability and quality, dispersal rate, species interactions, abundance, breeding rate

and other population dynamics [70]. Bringing these species distributions models into a conser-

vation planning framework assumes that representation of species (i.e., a grid cells modelled to

be suitable currently and in the future) is a useful first proxy for the persistence of species [71].

Then, adding many species and taxa into analysis will ensure coverage of diverse and high-

quality environments that should cover and support most species both now and in the future.

Many conservation planning studies use only a small number of taxonomic groups, either

plants or vertebrates, and implicitly assume that these will be useful surrogates for broader bio-

diversity value [71]. Naturally, analyses could be repeated periodically following future im-

provements in data and more reliable information about the progress of climate change in

order to adopt a somewhat adaptive strategy to the development of conservation efforts. Fi-

nally, conservation planning priorities are influenced by the resolution of the data and the

analyses, with relatively fine-scale analysis required for direct linkage with land use decisions

[72].

Despite the limitations, research has shown that i) useful insight can be gained by using

these uncertain modelling methods, ii) there are established methods for documenting and

accounting for the uncertainties, and iii) systematic conservation planning can be a useful tool

for strategic conservation, and allow for uncertainties, trade-offs, and transparent decision-

making [73,74]. For example, birds have been found to be tracking their niche as projected [2],

and future climate change as estimated across a range of GCMs reflects recent realised changes

in climate [3, 65], giving confidence that projections can be meaningful. Accounting for uncer-

tainty can be done through judicious choice of greenhouse gas emissions projections, GCMs,

downscaling scale and techniques, species distribution algorithms, species input data, dispersal

assumptions and interpretation of the outputs. In the current study, we have taken the follow-

ing measures: used the greenhouse gas emissions projections that the globe is currently track-

ing; therefore a very likely scenario. Further, it enabled us to examine the conservation plan

robustness for the most extreme climate change future. Secondly, we modelled species distri-

bution projections at a fine resolution for a wide range of GCMs (18), and took a median

across these. We downweighted species future projections by the uncertainty of the projection

Biodiversity trade-offs of planning for current or future
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in the conservation planning process, so that areas that have high suitability for species and

high certainty would get a higher ranking than those areas in which the future suitability is

highly uncertain. We used the species distribution modelling algorithm (Maxent) that has

shown to have high performance for species models [34], used taxonomic-group specific tar-

get-group background points [39] to increase the performance of the models, invested in

extensive model vetting, and used taxonomic-group specific dispersal scenarios. These meth-

ods have resulted in robust models for species in this region [75]. Here, we used a conservative

approach to understand future distributions of species, because many of our species are nar-

row-ranged endemics restricted by geographic barriers [25, 27, 28, 30].

The similarity of the planning solutions for each time point was expected, because of the

geography of the region, the biological patterns, but also because Zonation automatically

accounts for species range sizes and places increasing emphasis on occurrences of smaller

range species. Furthermore, we weighted species by their global range size, so that species that

had distributions widely beyond our study region had lower weights than species that only

occurred within this region. This is in contrast to studies in other regions, where large differ-

ences were found for current versus future conservation prioritizations in Europe [11, 12] and

Japan [13]. Widespread species in the drier lowlands were therefore disadvantaged by these

planning solutions in multiple ways: Zonation deprioritised them, we afforded them low

weightings, and their suitable climate space was projected to move substantial distances in the

future with often only a small proportion overlapping with their current distribution [20, 40].

Constraining species’ future distribution projections within a reasonable dispersal estimate

also leads to similar planning solutions for the different time periods. It was necessary to use

the constrained projections in this analysis in order to produce conservative, realistic solutions

that facilitate decision making by the Natural Resource Managers of this region. Species distri-

bution model projections into the future with unconstrained dispersal scenarios are unlikely

to be realistic for many of these species. However, further research could investigate the trade-

offs between years using unconstrained future distributions.

Optimising conservation of the widespread lowland species could be achieved by examin-

ing these species separately, and possibly in context of their entire distributions and geographic

context. Using the current method, their conservation requirements are overshadowed by the

small ranged endemics. However, for many of these species less concern is warranted because

of the wide variety of environmental tolerances [23], or because of the large amount of wood-

land habitat still available to them. These species are likely to benefit more from landscape-level

habitat management rather than from representation in protected areas within this region.

There is strong recognition that conservation plans and actions need to be adapted to

account for climate change [24, 61, 76,77]. Central to this is whether current protected areas

will account for the important areas of biodiversity in the future. There are predictions that

current protected areas will underperform in the future [7], or become less effective [8, 9].

However, there is evidence that current protected areas will perform better than unprotected

areas for conserving biodiversity into the future [4, 5]. The tendency for disproportionate

representation of high elevation areas of rugged topography in the protected area networks

is advantageous for species tracking their climate space upslope, and for the endemic species

that are often found in this terrain [78]. However, for the species currently depending on the

mountain tops, protected areas will be unable to ameliorate the complete loss of suitable cli-

mate space. Alternatively, ex-situ conservation action might be required for these species [77].

Overall, areas that are currently unprotected but of high conservation value for species both

now and in the future should be prioritised for new protected areas and restoration where

required. The challenge is to identify the regions in which new strategies are required to ensure

species long-term persistence.
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