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Abstract

Background: Symbiosis is a phenomenon that allows organisms to colonise a wide range of environments and
occupy a variety of ecological niches in marine environments. Large benthic foraminifera (LBF) are crucial marine
calcifiers that rely on photo-endosymbionts for growth and calcification, yet the influence of environmental
conditions in shaping their interactions with prokaryotic and eukaryotic associates is poorly known.

Results: Here, we used next-generation sequencing to identify eukaryotic photosynthesizing and prokaryotic
microbes associated with the common LBF Amphistegina lobifera across a physio-chemical gradient on the Great
Barrier Reef (GBR). We collected samples from three reef sites located in the inner-, mid- and outer-shelf regions of
the northern section of the GBR. Results showed the consistent presence of Bacillaryophyta as the main eukaryotic
taxa associated with A. lobifera across all reef sites analysed; however, the abundance and the diversity of prokaryotic
organisms varied among reef sites. Inner-shelf specimens showed the highest diversity of prokaryote associates, with a
total of 231 genotypes in their core microbiome. A total of 30 taxa were identified in the core microbiome across all
reef sites. Within these taxa, Proteobacteria was the most abundant bacteria present. The presence of groups such as
Actinobacteria was significantly correlated with inner-shelf populations, whereas the abundance of Bacteroidetes and
Firmicutes was associated with A. lobifera collected from mid- and outer-shelf reef sites.

Conclusions: We found that benthic foraminifera form stable and persistent symbiosis with eukaryotic partners, but
flexible and site-specific associations with prokaryotic microbes that likely influence the ecological success of these
crucial calcifying organisms on the GBR.
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Background
Symbiotic associations expand both the diversity of po-
tential ecological niches, and the metabolic capabilities
of the host-symbiont partnerships [1]. Bacterial symbiosis
facilitates the success of species across a variety of envir-
onmental conditions, playing a fundamental role in the
evolution and adaptive capacity of eukaryotic organisms
[2, 3]. In marine environments, bacterial associations can
benefit non-photosynthetic eukaryotic hosts in deep sea
and anoxic habitats through chemosynthesis [1], or by
photosynthesis-dependent nitrogen fixation on coral reef,
where light is usually abundant [4], in addition to other

processes such as antibiotic production [5]. In contrast,
algal symbiosis is one of the major mechanisms that al-
lows mixotrophic nutrition, which is particularly bene-
ficial in nutrient-depleted environments [6, 7] and can
enhance calcification of photosymbiont-bearing hosts, such
as corals and foraminifera [8]. Symbiotic relationships with
both prokaryotes and eukaryotes have influenced the
evolution of a number of organisms, resulting in both a
departure from free-living existence and sometimes very
unique ecological strategies [9, 10].
Reef-dwelling large benthic foraminifera (LBF) are single-

celled protists that build a calcium carbonate (CaCO3) test
and harbour algae as photo-symbionts [8]. They are integral
elements of tropical coastal ecosystems, not only as import-
ant biological components, but also as key producers of the
geological substratum (i.e. reef structure and sediments)
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[8, 11]. LBF are important marine calcifiers because
they comprise up to 80% of the global reef carbonate
sediment budget [12]. Foraminifera are estimated to ac-
count for 10–15% of the accumulated sediment of the
Great Barrier Reef (GBR) [13], and approximately 35%
of the total carbonate production in reef cays [14],
equivalent to 4.75 × 102 g CaCO3 m−2 y−1. Diverse
groups of modern LBF host a wide variety of endosym-
biotic algal groups (diatoms, dinoflagellates, unicellular
chlorophytes and unicellular rhodophytes) and cyano-
bacteria, so foraminifera are particularly favourable
partners for the establishment of symbioses [11]. As is
the case with many other marine organisms [15, 16],
LBF rely on symbiosis with photosynthetic algae for
growth and calcification [17], and over the course of
their evolution have developed morphological traits to
accommodate endosymbionts in their tests [11]. In
addition to algal symbionts, LBF can also be associated
with diverse microbial communities [18–20], although
this diversity is largely undocumented for most species,
and their contribution to the success of foraminifera in
the benthos is unknown.
Changes in environmental conditions can cause a shift

in the microbial and in photosymbiont communities of
organisms, resulting in a loss of some specific taxa and
appearance of novel groups [21–23]. Flexibility in host-
symbiont associations can be advantageous when environ-
mental conditions change and is particularly important in
the context of climate change, as host organisms that are
flexible are able to form new symbioses that can be
beneficial under new biotic and abiotic regimes [24, 25].
For example, molecular studies showed that the same spe-
cies of LBF can host an extraordinary diversity of photo-
symbiont types, up to 20 species of symbionts at any given
time [24, 25]. Within-population symbiont polymorphism
and mixed infections may be a mechanism by which for-
aminifera survive environmental fluctuations over time
and colonise a wide range of habitats [26, 27].
The adaptability and symbiont flexibility of LBF is

truly remarkable; not only are they able to acquire new
symbionts if conditions change [24], but they can also
shift their life history strategy from asexual division to-
wards an increased dependence on sexual generations,
ensuring horizontal transmission of symbionts [28]. In
horizontal transmission, the host may acquire genetically
diverse symbionts well suited for any given environment
[29], which can then be perpetuated via vertical trans-
mission through asexual reproduction [28].
Environmental degradation of coral reef ecosystems

and coral bleaching from ocean warming have sparked
increasing interest in the adaptive value and stability of
symbiotic relationships of many reef organisms import-
ant to these ecosystems [11, 30, 31]. Host-microbiome
interactions and/or symbioses are potential mechanisms

by some organisms, such as corals, are able to success-
fully occupy a broad range of reef habitats [32, 33].
Given the importance of LBF for the maintenance and
health of reef ecosystems, understanding how different
environmental conditions impact the interactions of for-
aminifera with both eukaryotic and prokaryotic associ-
ates, and how flexible these associations are, is crucial
for assessing their capacity to adapt and acclimatise to
new conditions. Currently, few studies have investigated
the microbial communities associated with LBF, highlight-
ing the lack of data on prokaryotic microbiome system in
foraminifera. These studies explored changes in microbial
communities under controlled laboratory conditions
[18–20] or reported preliminary characterisations of
the bacterial microbiome [18]. Moreover, despite a sub-
stantial body of work on the description of eukaryotic
photo-symbiont in LBF, these studies are all based in
morphological features of the algal symbiont [11, 24, 25].
The aim of our study was to utilise next-generation se-
quencing to characterise the eukaryotic and prokaryotic
microbiome of Amphistegina lobifera, which is a common
LBF species in reef environments [34, 35], collected from
different reef sites along a natural cross-shelf gradient of
temperature and nutrients in the GBR.

Results
Photosynthetic microbes associated with A. lobifera
The analysis of 18S rRNA of photosynthetic taxa sequences
showed that specimens of A. lobifera host one dominant
species of Bacillariophyta (OTU# denovo5251), which was
consistently distributed across reef sites. Comparison of this
OTU sequence using the Nucleotide BLAST of the
National Centre for Biotechnology (NCBI) database showed
97% similarity to the diatom belonging to the order Fragi-
lariales. Inner-, mid- and outer-shelf specimens of A. lobi-
fera showed an average abundance of 96.06 ± 0.76%, 70.23
± 5.89% and 81.71 ± 2.38% (mean ± SEM), respectively
(Additional file 1: Table S1). Similar patterns were ob-
served for 16S chloroplast rRNA sequences (OTU#
579531). Other algal taxa, such as Rhodophyta, were
also detected in substantial proportion, and photosyn-
thetic communities were different among sites (PER-
MANOVA: n = 15, F(2, 14) = 2.65, p = 0.02; Fig. 1;
Additional file 2: Table S2). Average relative abundance
of Rhodophyta was as high as 16.63 ± 0.07% in mid-
shelf samples. In addition to the dominant phylotypes,
a total of 38 other OTUs were classified as Bacillario-
phyta (Additional file 3: Table S3). Diatom communities
from inner-shelf A. lobifera differ from those found in
the mid- and outer-shelf (PERMANOVA: n = 15, F(2,14)
= 11.95, p = 0.0001; Additional file 2: Table S4). Similar-
ity percentage (SIMPER) analysis identified OTU#
denovo7357 and OTU# denovo7981 as the main phylo-
types driving the dissimilarity among samples (Table 1).
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Comparison of 18S rRNA sequences using the NCBI
BLAST database identified these two OTUs as belonging
to the orders Naviculales and Bacillarialles, respectively,
as endosymbionts present in A. lobifera specimens col-
lected from the mid- and outer-shelf. Cores from the
mid- and outer-shelf consisted of more diatom OTUs
than those from the inner-shelf. Ten OTUs were ubiqui-
tous (Fig. 2) and comprised on average > 75% of the total
OTUs classified as ‘Bacillariophyta’ (Additional file 3:
Table S3). An additional 13 OTUs were found in all
mid- and outer-shelf samples, while four (0.01%) and
three (0.005%) OTUs were ubiquitous in only the mid-
and outer-shelf samples, respectively. In contrast, no
OTUs were exclusively found in the inner-shelf (Fig. 2).

Microbiome of A. lobifera collected from different reef sites
The microbial community of A. lobifera consisted of
13,218 identified OTUs. After the removal of singleton
and low counts OTUs (>100 counts summed across all
samples), a total of 451 OTUs remained, belonging mainly
to the following bacterial taxa across all reef sites: Proteo-
bacteria (31.57 ± 1.60%, mean ± SEM), Planctomycetes
(10.04 ± 0.46%), and Firmicutes (9.85 ± 0.99%; Fig. 3).
Among these OTUs, α-Proteobacteria were consistently

the most abundant and diverse group of bacteria
present across reef sites with an average abundance be-
tween 22.76 and 29.54% (Fig. 4a; Additional file 4: Table S5).
α-Proteobacteria was also consistently found across all
samples analysed (Fig. 4b). There was a distinct difference
in the microbial community of A. lobifera among reef sites
(PERMANOVA: n = 14, F(2,13) = 2.23, p = 0.0002; Fig. 5).
Pair-wise comparison showed a significant difference be-
tween the inner-, mid- and outer-shelf microbial com-
munities (Additional file 2: Table S6). SIMPER analysis
showed that the dissimilarity between A. lobifera collected
from the inner-shelf and both mid- and outer-shelf sites
was due to the presence of a different lower raking taxa
within Firmicutes, Actinobacteria and Bacteroidetes,
whereas the dissimilarity between mid- and outer-shelf
sites was mainly due to the presence of different Firmi-
cutes and γ-Proteobacteria taxa (Table 2). Total rich-
ness estimators showed that bacterial diversity was
similar among reef sites (Additional file 5: Figure S1,
Additional file 2: Table S7). The clear distinction between
inner-shelf and mid/outer-shelf samples was driven by the
abundance of different bacterial taxa (Fig. 5). Taxa such
as δ-Proteobacteria and Actinobacteria are positively
correlated with inner-shelf samples, with Firmicutes

Fig. 1 Differences in eukaryotic symbionts in Amphistegina lobifera collected from different reef sites. Two-dimensional non-metric multi-dimensional scaling
plot with vectors displaying major algal groups identified in A. lobifera. Reef sites include inner-, mid- and outer-shelf locations of the northern GBR

Table 1 Percentage (%) of contribution of Bacillariophyta taxa that primarily accounted for differences in A. lobifera collected from
different reef sites. Percentage of contribution was calculated using the SIMPER analysis

Bacillariophyta OTU# Inner-shelf × mid-shelf Inner-shelf × outer-shelf Mid-shelf × outer-shelf

Denovo2845 4.30 3.57 2.63

Denovo4054 3.43 5.17 2.59

Denovo7357 13.62 13.84 0

Denovo7981 4.27 1.66 7.78

Denovo10337 6.18 3.56 3.80
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and γ-Proteobacteria correlated with mid/outer-shelf
samples. Planctomycetes and Bacteroidetes taxa are also
associated with mid/outer-shelf samples, but not as
strongly (Fig. 5).
Analysis of the core microbiome showed that α-

Proteobacteria was the most consistent bacterial taxa
found in A. lobifera across different reef sites. Among
the 30 ubiquitous bacterial taxa identified (Fig. 6), 13

were classified as α-Proteobacteria. Other bacterial
taxa included Cyanobacteria (5), Actinobacteria (4),
Firmicutes (4), Planctomycetes (3) and γ-Proteobac-
teria (1). However, Firmicutes showed the highest
average abundance in the core across all reef sites
(Fig. 6b). Core microbiome among reef sites showed
a different pattern of bacterial relative abundance
and diversity. In contrast to the eukaryotic photo-
autotrophs, A. lobifera from the inner-shelf site showed
the highest diversity of bacterial taxa (231 OTUs found
exclusively in the inner-shelf core), whereas the lowest di-
versity of bacterial taxa was found in inner- and outer-
shelf samples. It is noteworthy that Chloroflexi, which was
exclusively found within the inner-shelf, was present in all
inner-shelf samples. Specimens collected from the mid-
shelf showed a high average proportion of Bacteroidetes,
while outer-shelf samples showed a high average propor-
tion of Planctomycetes.

Discussion
The dominant photo-symbiotic partners in large benthic
foraminifera (LBF) are well known and described [11];
however, the distribution patterns of their bacterial asso-
ciates are poorly understood. This study identified a
small group of bacteria that are ubiquitous across three
populations distributed broadly across the GBR shelf
system and revealed that the common and abundant
bacterial taxa associated with A. lobifera within each
population drove differences in the community structure
of bacteria at different reef locations. In contrast, the

Fig. 3 Phylogenetic tree of microbial community associated with Amphistegina lobifera. Dendrogram represents the 451 bacterial operational
taxonomic units (OTUs) with a high number of reads (≥100 counts) across all samples. The most diverse and abundant taxa are highlighted. Bars
represent relative abundance of each OTU identified in A. lobifera collected from different reef sites

Fig. 2 Venn diagram of 100% core diatom biome composition in
Amphistegina lobifera. Number in brackets represents the relative
contribution of core operational taxonomy units (OTUs) in relation to
the total number of OTUs identified in each population of A. lobifera
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photo-symbiotic profile in A. lobifera, mainly the taxa-
nomic composition of the rare diatoms, was site-specific.
Thus, the most abundant photo-symbiont taxa in A. lobi-
fera were highly conserved among reef sites, but bacterial
communities were very flexible. Differences in environ-
mental conditions, mainly between inner-shelf and mid/
outer-shelf locations, are likely to have a major influence
in shaping the bacterial communities associated with A.
lobifera populations. On the GBR, factors such as nutrient
concentration and temperature vary across an inshore-
offshore gradient. Inshore reef sites are more prone to
temperature fluctuations and influx of dissolved inorganic
nutrients from terrestrial runoff, whereas offshore sites
display more stable temperature conditions and low nutri-
ent concentrations [36, 37]. The capacity to acquire differ-
ent eukaryotic symbionts (i.e., photosynthetic algae) and

prokaryotic associates is likely to be a potential driver of
the ability of LBFs to occupy a broad range of habitats in
reef environments.
Fragilariales was the most abundant and common

order identified. Within this order, Nanofrustulum shiloi
is known to be a common endosymbiont species in A.
lobifera [25]. This phylotype of microalgae was ubiqui-
tously found in high abundance across all three popula-
tions of A. lobifera, suggesting that A. lobifera associates
with this species regardless of continental shelf location.
Other diatom species were also identified, within the or-
ders Naviculales and Bacillariales, although at lower
densities (~5–10%, Additional file 2: Table S2). Both or-
ders have been previously described as endosymbionts
of Amphistegina sp. [24], further supporting the notion
that individual A. lobifera can maintain partnership with

Fig. 4 Bacterial community identified in A. lobifera across different reef sites. a Relative abundance of major bacterial groups in Amphistegina lobifera
(mean ± 95% C.I, n = 14) across reef sites studied. Bars represent 95% C.I. and boxes represent quartiles. b Comparison of relative abundances (mean ±
SEM, n = 14) and percentages of occurrence of operational taxonomic unit (OTU) across all samples. Each point represents as individual OTU

Fig. 5 Differences in bacterial communities in Amphistegina lobifera collect from different reef sites. Two-dimensional non-metric multidimensional
scaling plot with vectors showing major bacterial groups identified in A. lobifera. Reef sites include inner-, mid- and outer-shelf locations of the
northern GBR
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multiple symbiont types [38]. Interestingly, A. lobifera
collected from offshore reef sites showed a higher diver-
sity of diatoms, suggesting that the clear, oligotrophic
environment of the mid- and outer-shelf may allow for
the colonisation of a broader array of photo-symbionts
that benefit from more stable conditions of light, lower
temperature fluctuations, and lower nutrients. In con-
trast, inner-shelf specimens may select strains of diatoms
that can tolerate waters with low light levels, regular
pulses of nutrients and peaks in elevated temperature.
The presence of other algal groups such as Rhodophyta,
Chlorophyta and Dinophycea sequences can be due to
the common association of A. lobifera with reef rubble
that is covered with turf algae [39]. Additionally, species
of LBF can host a variety of algal groups as endosymbi-
onts [10]. Even though uncommon, the same species of
LBF is able to host photo-symbionts belonging to differ-
ent major groups [11]. The presence of rhodophytes and
dinoflagellates, for example, in A. lobifera samples col-
lected from mid- and outer-shelf populations could be
linked to the presence of these taxa as endosymbionts,
although in very low relative abundances.
The high bacterial diversity among foraminifera species

found in laboratory studies has been found to be a result
of their close association with reef rubble, sediment and
filamentous algae [18]. In the present study, groups such
as Proteobacteria (mainly Alpha, Delta and Gamma
classes), Planctomycetes, Bacteroidetes and Firmicutes
were consistently the most abundant and diverse phyla
of bacteria associated with A. lobifera. However, the classes
and genera within these major phyla varied significantly
across sites, indicating flexibility in prokaryotic association
within A. lobifera from different habitats. Bacterial diversity
in A. lobifera collected from the inner-shelf was the high-
est. It is not possible to determine the kind of interaction
bacterial taxa have with A. lobifera; however, the consistent
within and between site patterns observed in the bacterial
associations indicate that bacterial communities are

non-random. Uthicke and McGuire [40] argued that
differences in water quality along a cross-shelf gradient
could drive differences in bacterial communities associated
with carbonate sediments. Similarly, the highest diversity
of bacterial taxa we observed in inner-shelf samples may
be associated with higher availability of organic matter in
inshore reefs of the GBR due to terrestrial runoff [41],
which benefits heterotrophic bacteria [42]. The mechanism
that drives the cross-shelf gradient in carbonate sediments
is likely to be similar to the one driving cross-shelf patterns
in bacterial communities in A. lobifera. However, bacterial
communities previously detected in sediment samples
along a cross-shelf gradient [40] differ from those found in
our study, indicating active interaction of bacterial taxa
with A. lobifera.
Phyla such as Actinobacteria, which is commonly as-

sociated with freshwater runoff [41, 43], showed a strong
positive correlation with A. lobifera collected from the
inner-shelf reef site. Actinobacteria is also known to be a
common invertebrate symbiont, commonly associated
with zooxanthallae corals and can be associated with
marine sediments [33, 44]. This group of bacteria is re-
ported to contribute to the breakdown and recycling of
organic compounds [45], which can be particularly advan-
tageous to hosts in habitats where the amount of organic
matter associated with carbonate sediments is high. In
contrast, the increased relative abundance and presence of
Cyanobacteria associated with A. lobifera collected from
mid/outer-shelf reef sites might be explained by higher
light availability for this photo-autotrophic group of bac-
teria, which has a competitive advantage in oligotrophic
environments [46]. Cyanobacteria also naturally occur as
benign endosymbionts in some LBF species [26] and play
a role in N-fixation within the host when conditions are
optimum [4]. Although our study demonstrates the pres-
ence of a small group of bacteria (in total 30 OTUs identi-
fied) that are persistently associated with LBFs across reef
sites, a large proportion of bacterial taxa identified by the

Table 2 Percentage (%) of contribution of bacterial taxa that primarily accounted for differences in A. lobifera collected from different
reef sites. Percentage of contribution was calculated using the SIMPER analysis

Bacterial taxa Inner-shelf × mid-shelf Inner-shelf × outer-shelf Mid-shelf × outer-shelf

α-Proteobacteria 13.73 5.94 12.54

β-Proteobacteria 10.12 11.53 11.67

δ-Proteobacteria 7.12 8.41 0

γ-Proteobacteria 12.43 7.08 13.22

Actinobacteria 9.17 16.72 7.45

Bacteroidetes 8.51 12.10 10.76

Cyanobacteria 0 0 8.35

Firmicutes 15.75 18.97 13.39

Other bacterial groups 7.35 6.61 8.52

Planctomycetes 9.52 8.16 7.87
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core microbiome analysis are site-specific, and likely help
A. lobifera to colonise a wide range of environmental
conditions.
In summary, A. lobifera from the inner-shelf showed

the lowest diversity of diatoms, and the highest diversity
and abundance of prokaryotic symbionts. No diatom
was exclusively found in A. lobifera from the inner-shelf.
While the number of prokaryotic microbes shared between
different A. lobifera populations was small, the core diatom
biome was large, with the vast majority of diatoms con-
served in all replicate individuals per site. In contrast, the
core microbiome within each site, especially in inner- and
mid-shelf specimens, was higher than the core shared by

all three sites together. These results indicate that
prokaryote microbes are likely to play a crucial role in the
ecology of A. lobifera. Environmental variables such as
water quality, temperature fluctuations and light exposure
may help drive the compositional differences in the
prokaryotic and eukaryotic microbial communities in
A. lobifera from the GBR A. lobifera specimens col-
lected from different habitats display substantially dif-
ferent responses when exposed to experimental
conditions such as increased temperature and nitrate
[47], as they have the capacity to assimilate different
types of eukaryotic and prokaryotic associates accord-
ing to their local habitat.

Fig. 6 Venn diagram of 100% core microbiome in Amphistegina lobifera. Boxplots indicate the bacterial phylum/class and respective relative abundance
(mean ± 95% C.I.) of the bacterial taxa identified in each core. Number in brackets represents the relative contribution of core operational taxonomy units
(OTUs) in relation to the total number of OTUs identified in each population of A. lobifera. a Inner-, mid- and outer-shelf core microbiome. b Inner and
mid-shelf core microbiome. c Mid-shelf core microbiome. d Mid- and outer-shelf core microbiome. e Outer-shelf core microbiome. (f) Inner-
and outer-shelf core microbiome. g Inner-shelf core microbiome
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Conclusions
We demonstrated that A. lobifera specimens are able to
establish strong but not specific symbiosis with their
eukaryotic endosymbionts. This species also showed a
diverse and flexible interaction with bacterial associates,
which varied among reef sites. This study, combined
with previous work [47, 48], demonstrates how microbial
communities can help shape the resilience and resistance
of LBFs to changing environmental conditions such as
climate change, and further highlights the importance of
symbiotic relationships in their capacity to colonise a
broad range of reef habitats. Whether the core micro-
biome is responding to or is being filtered by environ-
mental gradients remains to be investigated. Given the
importance of LBFs as ecosystem engineers and prolific
carbonate producers [12], understanding the abiotic and
biotic factors that control the diversity and associations
of LBFs with microbe symbionts is crucial to assess
their capacity to acclimate or adapt to global and local
impacts.

Methods
Study sites and sampling collection
Dead coral rubble with A. lobifera attached was collected
from inner-, mid- and outer-shelf reefs located on the
northern GBR in August 2014 (Fig. 7). Samples were
collected by SCUBA divers from the back slope of reefs
with similar habitat located on the (1) inner-shelf—Martin
Reef (14° 45′ 19.2″ S; 145° 20′ 07.9″ E), (2) mid-
shelf—Lizard Island (14° 14′ 22.3″ S; 145° 27′ 58.1″ E),
and (3) outer-shelf—Yonge Reef (14° 35′ 50.1″ S; 145°37'
26.3"E) at depths of 6 to 8 m (corrected to lowest astro-
nomical tide levels). Reef sites are located along a water

quality gradient [36, 49] and also experience differing pat-
terns of temperature fluctuation [37, 47, 50]. Pieces of
dead coral rubble were brought to the laboratory located
at the Lizard Island Research Station and were scrubbed
to remove LBF. The resultant sediment was transferred to
glass Petri dishes and was placed undisturbed in a flow-
through aquarium system. A total of five A. lobifera indi-
viduals per reef site were extracted and cleaned using a
fine brush (#000) under a stereoscope to remove any par-
ticles from the test exterior and photographed. Specimens
were then snap frozen in liquid N2 and kept at −80 °C
until analysis.

DNA extraction and sequencing
In the laboratory, specimens were taken from −80 °C,
rinsed in cold sterile phosphate buffer saline 3× and imme-
diately placed individually in 1.5-ml tubes for DNA extrac-
tion. Each tube contained 200 μl of lysis buffer (QIAmp®
DNA Mini Extraction kit, Qiagen) containing Proteinase K
and crushed using a micro homogenizer. Samples were in-
cubated overnight at 56 °C and then were purified using a
silica-membrane-based nucleic acid technique (QIAmp®
DNA Mini Extraction kit, Qiagen). Extracted DNA con-
centration was quantified using a Qubit® High-sensitivity
dsDNA assay kit (Life Technologies, NSW, Australia).
Purified total DNA samples were sent to Molecular Re-
search Laboratory (Shallowater, TX, USA) for the PCR
amplification and Illumina sequencing of the rRNAs of
eukaryotic and prokaryotic associates.

PCR amplification, sequencing and sequence analyses
Bacterial 16S and eukaryotic 18S rRNA samples were
PCR-amplified from the genomic DNA template and were

Fig. 7 Location of reef sites and Amphistegina lobifera specimen. a Sampling sites across the continental shelf on the Far North section of the
Great Barrier Reef, Australia. Inner-shelf reef: Martin reef; Mid-shelf reef: Lizard Island; Outer-shelf reef: Yonge reef. Map was generated using the
software ArcGIS v10.2 (www.esri.com). b Image of A. lobifera. Scale bar = 0.5 mm. Photography by M.P
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sequenced using the Illumina HiSeq250 platform. PCR
amplification was performed using the universal Eubac-
terial primers 27 F (5′ -AGAGTTTGATCCTGGCTCAG)
and 519R (5′ GTNTTACNGCGGCKGCTG), which
target highly variable regions V1, V2 and V3 of the 16S
rRNA. We also targeted eukaryotic 18S rRNA using the
following primer set: Euk1391 (5′ GTACACACCGC
CCGTC) and EukBRev (5′ TGATCCTTCTGCAGGTT
CACCTAC). A single-step 30-cycle PCR using HotStar-
Taq® Plus Master Mix Kit (Qiagen, Valencia, CA) was used
under the following conditions: 94 °C for 3 min, followed
by 28 cycles of 94 °C for 30 s; 53 °C for 40 s and 72 °C for
1 min; after which a final elongation step at 72 °C for
5 min was performed. Following PCR, all amplicon prod-
ucts from different samples were mixed in equal concen-
trations and were purified using Agencourt Ampure beads
(Agencourt Bioscience Corporation, MA, USA). Samples
were sequenced utilising Illumina HiSeq250 instruments
and reagents (Shallowater, TX, USA). Negative controls
for each amplification and sequencing stage were uti-
lised. The sequence data were processed using the soft-
ware package QIIME [51]. Raw .sff sequence reads
from all samples were depleted of barcodes, then se-
quences <200 bp, with ambiguous base calls and homo-
polymer runs exceeding 6 bp were removed. Sequences
were then denoised, demultiplexed, and chimeras re-
moved using UCHIME [52]. 18S rRNA sequences were
aligned and classified at 97% similarity using the SILVA
108 database [53]. Reads that were classified as ‘Fungi’,
‘Rhizaria’, ‘Metazoa’, ‘environmental samples’ or ‘unassigned’
were removed from the OTU table, and only photosyn-
thetic taxa analysed. 16S rRNA sequences were aligned
and operational taxonomy units (OTUs) were defined
using RDP classifier at 97% similarity against the May 2013
curated GreenGenes database [54]. Any sequences that
were classified as ‘chloroplast’ or ‘unassigned’ were filtered
out of the dataset. Also, for further comparison with 18S
rRNA results, only sequences classified as ‘chloroplast’
were retained into an additional database.

Statistical analyses
Differences in eukaryotic and prokaryotic microbes as-
sociated with A. lobifera populations collected from dif-
fering reef sites were analysed using the software
QIIME and PRIMER 6.1.15 with PERMANOVA+ 1.0.5
[55]. Prior to the analyses, singleton and ‘low read’
OTUs (<100 counts summed across all samples) were
removed prior to normalisation. Additionally, for the
16S rDNA, sequence reads were normalised to 5775
reads per sample, as this was the lowest number of
reads among all samples analysed, to allow for compari-
son between samples and bacterial community, which
further excluded one sample from the outer-shelf reef
site. For each OTU table, standardised relative abundances

of each taxon were fourth root transformed to reduce the
influence of rare and dominant taxa. Homogeneity of
variance was confirmed for the factors ‘reef site’ using
PERMDISP, a distance-based test for homogeneity of
multivariate dispersions [55]. Differences within and be-
tween each reef site were analysed through a Permutation
Multivariate Analysis of Variance ANOVA (PERMA-
NOVA) using a Bray-Curtis resemblance matrix, employing
‘reef site’ as a fixed factor. PERMANOVA and subsequent
pairwise tests were based on 9999 permutations, using type
III sums of squares and permutation of residuals under an
unrestricted model. For comparison, we also evaluated beta
diversity using unweighted and weighted UniFrac [56] pipe-
line in QIIME for both 16S and 18S datasets. A two-
dimensional non-metric multidimensional scaling (nMDS)
ordination was used as a visual representation of the com-
positional differences among eukaryotic and prokaryotic
microbes associated with foraminiferal populations from
different reef sites. In each nMDS plot, we plotted main
groups of bacterial or eukaryotic taxa as vectors to examine
the groups that influenced patterns in differences among
reef sites. Since A. lobifera is known to harbour diatoms,
we filtered out the other algal groups from the 18S dataset
and retained the OTUs classified as ‘Bacillariophyta’ in
order to compare the composition of endosymbionts
among reef sites using PERMANOVA. For both 16S and
18S datasets, a SIMPER analysis was performed on the
fourth root transformed datasets to determine those
microbial or eukaryotic groups that were responsible
for the significant dissimilarity between A. lobifera speci-
mens collected from different locations, as identified using
pairwise comparisons [57]. SIMPER decomposes average
Bray-Curtis dissimilarities between all pair of samples into
percentage contributions from each OTU, listing the
OTUs in decreasing order of contribution for dissimilarity
[57]. For the bacterial dataset, a phylogenetic tree was
constructed in QIIME and visualised using the online
Interactive Tree of Life [58, 59]. The phylogenetic tree was
based on the approximately maximum likelihood boot-
strap of aligned 16S rRNA gene sequences using the
FastTree program in QIIME [60]. Total richness esti-
mating curves of the alpha diversity of bacterial taxa
were also generated. Finally, in order to identify the
stable, consistent diatom and bacterial taxa present in
A. lobifera specimens collected from different reef sites,
core microbiome and diatom biome were identified
using the software package QIIME. Core microbiome
and diatom biome were defined as the OTUs that were
present in 100% of the samples across the reef sites.
Venn diagrams were generated utilising the core diatom
species composition and microbiome and constructed with
the online Venn diagram software from Bioinformatics and
Evolutionary Genomics (http://bioinformatics.psb.ugent.
be/software/details/Venn-Diagrams).
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