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Abstract
In this study we have developed a full multi-term space-time solution of Boltzmann’s equation

for electron transport in gases and liquids. A Green’s function formalism is used that enables

flexible adaptation to various experimental systems. The spatio-temporal evolution of electrons

in liquids in the non-hydrodynamic regime is benchmarked for a model Percus-Yevick (PY) liquid

against an independent Monte Carlo simulation, and then applied to liquid argon. The temporal

evolution of Franck-Hertz oscillations in configuration and energy space are observed for the model

liquid with large differences apparent when compared to the dilute gas case, for both the velocity

distribution function components and the transport quantities. The packing density in the PY

liquid is shown to influence both the magnitude and wavelength of Franck-Hertz oscillations of the

steady-state Townsend simulation. Transport properties are calculated from the non-hydrodynamic

theory in the long time limit under steady-state Townsend conditions which are benchmarked

against hydrodynamic transport coefficients. Finally, the spatio-temporal relaxation of low-energy

electrons in liquid argon was investigated, with striking differences evident in the spatio-temporal

development of the velocity distribution function components between the uncorrelated gas and

true liquid approximations, due largely to the presence of a Ramsauer minimum in the former and

not in the latter.
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I. INTRODUCTION

The study of electron transport in dense gases and liquids is of interest in understanding

the fundamental microscopic scattering processes involved, and to technological applications

including liquid-state electronics [1], high-energy particle detectors [2–5], plasma medicine

[6–9] and radiation dosimetry [10–13]. For these technologies, the maximisation of their effec-

tiveness requires a detailed understanding of the full spatio-temporal behaviour of electrons

in dense gases, liquids, and other bio-structures, typically under non-equilibrium conditions.

In a recent paper [14] the transport of excess electrons in liquid argon was considered

from ab initio liquid phase cross-sections calculated using the Dirac-Fock scattering equa-

tions. The approach detailed in the seminal works by Lekner and Cohen [15, 16] has been

revisited with modern scattering theory techniques, where the original treatment was ex-

tended to consider multipole polarizabilities and a non-local treatment of exchange. With

an increase in density, several effects become significant, most notably (i) the coherent scat-

tering from multiple scattering centres, (ii) the screening of the long range polarization

potential due to induced multipoles in the bulk, and (iii) the contribution of the bulk to the

effective potential experienced by the electron. Transport coefficients such as drift velocities

and characteristic energies calculated in the hydrodynamic regime with our hydrodynamic

multi-term Boltzmann equation solution were in good agreement with swarm experiment

measurements in both gas- and liquid-phase argon [14].

In this work we aim to model typical behaviour in Liquid Argon Time Projection Cham-

bers (LArTPC) which are currently being used for high energy particle detection [2], by

extending our previous work to an investigation of the liquid state in the non-hydrodynamic

regime, using the same electron-argon potentials and cross-sections presented in [14]. In

these chambers, ionized electrons originating from the high energy particles are accelerated

in the liquid argon under the action of an electric field to generate a current and consequently

allow the reconstruction of the path of the high energy particle. Crucial to enhancing detec-

tor accuracy is understanding the time-lag between the detector signal ts and the passage of

the high energy particle, t0. Typically the fluid is chosen such that the drift velocity W (E)

is constant over a range of fields (E), and the drift distance during this time is assumed to

be d =
∫ ts
t0
W (E)dt, where effects of diffusion are ignored. In reality however, there is spatial

and temporal relaxation of the average velocity of the electrons emanating from the particle
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track, and hence, to enhance the spatial resolution of these detectors, a full understanding

of the spatial and temporal evolution of the phase-space distribution is required.

The solution of the the full temporal-, spatial- and energy-dependent Boltzmann equa-

tion is formidable, both mathematically and computationally. Historically, the majority

of kinetic theory investigations have focused on the hydrodynamic regime where spatial

gradients are small, and have considered increasingly complex space- and time-dependent

hydrodynamic behaviours and field configurations (see reviews [17–21]). In situations where

the hydrodynamic regime is not applicable, the space-time dependence of the phase space

distribution function cannot be projected onto the number density and a density gradient

expansion is no longer valid. Instead the configuration-space dependence of the Boltzmann

equation must be treated on equal footing with the energy-space dependence, which makes

for a difficult problem even for simple geometries [22–24]. It is no surprise that system-

atic studies of non-hydrodynamic phenomena lag behind their hydrodynamic counterparts.

The prototypical example of non-hydrodynamic phenomena is the Franck-Hertz experiment

[25, 26], which helped lay the foundations for quantum and atomic physics. Extensive the-

oretical studies of non-hydrodynamic electron phenomena have been performed including

field free spatial relaxation [27], and spatial relaxation in the presence of uniform [28–31],

non-uniform [32] and periodic electric fields [33–35]. Similar kinetic studies on the spatial

relaxation of electrons in gases in uniform and spatially-varying fields have been performed

by Golubovskii et al. [36–39]. White, Robson and co-workers have considered arbitrary elec-

tric and magnetic field configurations with a multi-term analysis [18, 40, 41]. Multi-term

solutions of the space-dependent Boltzmann equation for semiconductor device simulation

have been reviewed by Rupp et al. [42]. Solution of the Boltzmann equation for electrons

including both the space and time dependence have also previously been performed [43–45],

however these were restricted to a two-term approximation in Legendre polynomials to make

the problem computationally feasible. The two-term approximation has also been used to

reduce a six-dimensional Boltzmann equation to a four-dimensional Fokker-Planck equation,

to model electrons in plasmas, semiconductors and gas discharges [46–48]. Limitations of the

two-term approximation for molecular gases are well known [49], however one can estimate

from the cross-sections where it may fail [50]. Direct numerical procedures exist that do

not require a spherical harmonic expansion to solve the space and time Boltzmann equation

[46, 51–56], and there are respective advantages between the two techniques. Although there
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are previous works which solve the numerical advection (e.g. the Vlasov equation [57]), these

do not include the dominant contribution of the collision term which is present in the full

Boltzmann equation.

In this study, we present a full multi-term space-time dependent solution of Boltzmann’s

equation, capable of handling highly non-equilibrium electron transport in dilute gases, dense

gases and liquids under non-hydrodynamic conditions. To our knowledge, this is the first

time such a complete solution of Boltzmann’s equation has been developed. In addition, by

solving for the spatio-temporal evolution of the Boltzmann equation Green’s function, the

technique is quite general in its application, enabling various experimental configurations

(temporal and spatial initial and boundary conditions) and practical devices to be modelled

from a single solution. This work extends the Boltzmann equation framework to applications

and accuracies comparable to those achieved using the Monte-Carlo simulations of Petrovic,

Dujko and co-workers [58–60].

We begin the paper in Section II with a brief overview of the multi-term solution of the

full space-time Boltzmann’s equation for electrons in structured materials, such as liquids.

In Section III we then validate our solution technique against an independent Monte Carlo

simulation for a model hard-sphere liquid system with a Percus-Yevick structure factor used

to simulate a prototypical liquid with realistic pair correlations. A simple inelastic channel is

included to induce oscillatory structures (an idealized version of the well known Franck-Hertz

experiment [26]) which can act as a non-hydrodynamic benchmark particularly relevant for

noble-gas liquids. The transport properties calculated from the non-hydrodynamic code are

compared with those determined from a the previous purely hydrodynamic formalism and

associated code [14, 61] in the hydrodynamic limit. Next, in Section IV we investigate the

temporal and spatial evolution of the phase-space distribution for electrons in liquid argon,

using microscopic cross-sections which have been derived previously [14]. The differences in

transport quantities, particularly average velocity, between gaseous systems with increased

density and true liquid systems is striking, with implications to applications such as liquid

argon time projection chambers. Conclusions are drawn in Section V. A detailed discussion

of the numerical code developed and other numerical considerations is given in the Appendix.
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II. THEORY

The fundamental kinetic equation describing the evolution of an electron swarm in a

gaseous or liquid background medium subject to an electric field, E, is the Boltzmann

equation for the phase-space distribution function f ≡ f (r,v, t) [62]:

(
∂

∂t
+ v · ∂

∂r
+
eE

m
· ∂
∂v

)
f = −J (f) , (1)

where t is time, and r, v, e and m are the position, velocity, charge and mass of the electron

respectively. The collision operator J(f) accounts for interactions between the electrons and

the background material, and describes the effect of collisions on the distribution function

at a fixed position and velocity. Macroscopic transport properties including mean energy

and drift velocity can then be found via expectation values of the distribution, as detailed

in Section II B.

The starting point for most modern solutions of the Boltzmann equation is the decom-

position of the angular part of the velocity dependence of equation (1) in terms of spherical

harmonics [62]. If there is a single preferred direction in the system, e.g. due to an electric

field in plane parallel geometry, then the angular dependence of the velocity component can

be adequately described by a simpler expansion in terms of Legendre polynomials. For the

plane-parallel geometry considered in this work, f (v, r, t) can be written as f (v, z, µ, t),

where z is the distance in the direction of the electric field and µ = v̂ · Ê, such that

f (v, r, t) =
∞∑
l=0

fl (v, z, t)Pl(µ), (2)

where Pl is the l-th Legendre polynomial. Upon substituting the expansion (2) into equa-

tion (1) and equating the coefficients of the Legendre polynomials results in the following

system of coupled partial differential equations for the fl:

∂fl
∂t

+
∑
p=±1

∆
(p)
l

(
2

m

) 1
2

[
U

1
2 ∂

∂z
+ eE

(
U

1
2 ∂

∂U
+ p

(
l + 3p+1

2

)
2

U
− 1

2

)]
fl+p = −Jl (fl) , (3)

for l = 0, 1, 2, . . . ,∞, where U = 1
2
mv2, Jl is the Legendre decomposition of the collision

operator, and

∆
(−1)
l =

l

(2l − 1)
; ∆

(+1)
l =

(l + 1)

(2l + 3)
. (4)
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Equation (3) represents an infinite set of coupled partial differential equations for the expan-

sion coefficients, fl. In practice, one must truncate the series (2) at a sufficiently high index,

l = lmax. The history of charged particle transport in gases and liquids has been domi-

nated by the ‘two-term approximation’, i.e., lmax = 1. The assumption of quasi-isotropy

necessary for the two-term approximation is violated in many situations, particularly when

inelastic collisions are included [63] or when higher order moments are probed [14]. Our

multi-term formalism avoids these assumptions. Instead, the truncation parameter lmax is

treated as a free parameter that is incremented until some convergence criterion is met on

the distribution function or its velocity moments.

In order to solve equation (3) we require the collision operators for all of the relevant

collisional processes, and their representations in terms of Legendre polynomials, Jl. If we

assume that the neutral background material is at rest and in thermal equilibrium at a

temperature T0, then the collision operator is linear in the swarm approximation. Below

we detail the specific forms of the collision operator for the particle-conserving elastic and

inelastic collisions employed. A further expansion of each collision integral with respect

to the ratio of swarm particle mass to neutral particle mass, m/m0, has been performed.

Because this ratio is small for electrons in fluids, only the leading term of this expansion

was taken into account in each equation of the system (3). In our case the total collision

operator separates into Jl = Jel
l + Jexc

l where Jel
l and Jexc

l are the elastic and inelastic

collision operators, respectively. For dense mediums and low electron energies, the de Broglie

wavelength of the electron is comparable to the average inter-particle spacing ∼ n
−1/3
0 where

n0 is the background medium number density, implying that the electron wave is scattered

coherently from multiple scattering centres in the medium. Cohen and Lekner [16] showed

how to account for coherent scattering using a two-term approximation, which has since been

extended to a multi-term regime [62, 64]. The Legendre projections of the elastic collision

operator in the small mass ratio limit were shown to be:

Jel
l (fl) =

−
2m
m0
U−

1
2
∂
∂U

[
U

3
2νel

1 (U)
(
f0 + kbT0

∂f0
∂U

)]
l = 0,

ν̃el
l (U)fl(U) l ≥ 1.

(5)

Here, m0 is the mass of the background neutral, kb is Boltzmann’s constant, and

νel
l (U) = n0

(
2U

m

) 1
2
(

2π

∫ π

0

σ(U, χ) [1− Pl(cosχ)] sinχdχ

)
, (6)
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are the usual binary collision frequencies where σ(U, χ) is the atomic cross section, modi-

fied for polarisation screeening [14]. The ν̃el
l (v) in equation (5) are the structure-modified

counterparts to νel
l (U), i.e.,

ν̃el
l (U) = n0

(
2U

m

) 1
2
(

2π

∫ π

0

Σ(U, χ) [1− Pl(cosχ)] sinχdχ

)
, (7)

where Σ(U, χ) is the effective structure-modified differential cross-section

Σ(U, χ) = σ(U, χ) S

(
2

~
√

2mU sin
χ

2

)
, (8)

which accounts for coherent scattering effects through the static structure factor, S
(

2
~

√
2mU sin χ

2

)
[16]. At higher energies, the de Broglie wavelength becomes much less than the inter-particle

spacing and the effects of coherent scattering are no longer important. In this limit, the

binary scattering approximation is recovered, i.e., Σ → σ and ν̃el
l → νel

l . νel
1 is more com-

monly known as the momentum transfer collision frequency, νm, which is associated with

the momentum transfer cross section, σm. Similarly, ν̃m = Σm is known as the effective

(structure-modified) momentum transfer collision frequency. We will adopt this convention

in the following discussions.

At higher fields, incoherent inelastic scattering effects, such as electronic excitations, need

to be included [62, 64]. By considering only a single inelastic channel, and assuming neutral

particles are in the ground state, the excitation collision operator is

Jexc
l (fl) = νexc (U) fl(U)−


(
U+UI

U

) 1
2 νexc (U + UI) fl (U + UI) ,

0,

l = 0,

l ≥ 1,
(9)

where UI is the threshold energy associated with the excitation collision frequency νexc.

Now that the form of the collision operators are known, the kinetic equation (3) can be

solved numerically. The numerical approach employed in this work can be summarized as

a simplified flux corrected transport method [65] for the configuration-space sub problem,

a centered difference discretization in energy and implicit Euler method in time [61] for the

energy-space sub problem, combined via Lie-Trotter splitting [66, 67]. A detailed discussion

of the numerical techniques employed in this work is given in the appendix.
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A. Green’s function solution

In our formalism and associated non-hydrodynamic code, we solve for the Green’s function

of the Boltzmann equation,

Lf̃l = δ(z − z0)δ(t− t0), (10)

where

Lfl =
∂fl
∂t

+

(
2

m

) 1
2 ∑
p=±1

∆
(p)
l

[
U

1
2 ∂

∂z
+
eE

m

(
U

1
2 ∂

∂U
+ p

(
l + 3p+1

2

)
2

U
− 1

2

)]
fl+p + Jl (fl)

(11)

for l = 0, 1, 2, . . . ,∞. The Green’s function solution, fl, can then be used to find the solution

of the more general space-time Boltzmann equation, i.e. if

Lfl = S(z, t), (12)

where S(z, t) is a source term, then

fl (U, z, t) =

∫
dt0

∫
dz0 f̃l (U, z − z0, t− t0)S (z0, t0) . (13)

We do this by choosing an initial distribution in configuration-space that is a good approx-

imation to a delta-function, which, for this study, is a narrow Gaussian,

δa(z) =
1

a
√
π

exp

(
−z

2

a2

)
, (14)

where a is a parameter controlling the width of the Gaussian, representing the temporal-

spatial relaxation profile of a single pulse centred on z0 and released at t0. In the limit

of a → 0, δa(z) → δ(z). The formalism is quite general, enabling the treatment of var-

ious experiments (e.g. Pulsed Townsend (PT), Steady-State Townsend (SST) and other

drift tube configurations [68]), as well as various source and spatial/energy/temporal distri-

butions, through a single solution. This approach extends the functionality and accuracy

of Boltzmann equation solutions to those routinely achieved by Monte Carlo simulations

[58, 69, 70].

B. Transport properties

The transport properties that represent experimental measurables are obtained as aver-

ages of certain quantities with respect to the distribution function, f . Among the transport
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properties of interest in the current manuscript are the number density, n, particle flux, Γ,

and average energy, ε, of the electron swarm, which are calculated via

n (z, t) = 2π

(
2

m

) 3
2
∫
dU U

1
2f0(U, z, t), (15)

Γ (z, t) =
2π

3

(
2

m

)2 ∫
dU Uf1(U, z, t), (16)

ε (z, t) =
1

n (z, t)
2π

(
2

m

) 3
2
∫
dU U

3
2f0(U, z, t). (17)

Likewise, we sample the traditional hydrodynamic transport coefficients in this non-

hydrodynamic framework, i.e. the drift velocity, W , and the (longitudinal) diffusion co-

efficient, DL:

W (t) =
d

dt

[
1

N (t)

(∫
dz zn (z, t)

)]
, (18)

DL(t) =
1

2

d

dt

[
1

N (t)

(∫
dz z2n (z, t)

)
−
(

1

N (t)

∫
dz zn (z, t)

)2
]
, (19)

where N(t) is

N (t) =

∫
dz n (z, t) . (20)

As we work with a plane-parallel geometry, N(t) in equation (20) actually represents the

contribution to density in the directions perpendicular to the field, which we scale out. To

be explicit, the normalization of n(r, t) = n(z, t) is chosen according to equation (20).

In this work we are interested in the results of a SST simulation, for which there have been

previous calculations performed for benchmark systems. Similar to [58], the SST transport

properties can be determined from the Green’s function transport properties via

fSST
l (U, z) = h

∫ ∞
0

dt0 f̃l (U, z, t0) , (21)

nSST(z) = h

∫ ∞
0

dt0 ñ (z, t0) , (22)

ΓSST (z) = h

∫ ∞
0

dt0 Γ̃ (z, t0) , (23)

εSST (z) =
h

nSST(z)

∫ ∞
0

dt0 ñ (z, t0) ε̃ (z, t0) , (24)
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where h is the emission rate of the source and the tilde quantities refer to equations (15)–(17)

with the Green’s function f̃l. In practice the upper limit of the integrals is not ∞, but a

sufficiently long time for the SST transport properties to have converged over the range of

z considered.

C. Reduced variables

Henceforth, it is convenient to work with rescaled reduced variables.In particular, the

space and time variations will be presented as functions of

z∗ = n0σ0z, (25)

t∗ = n0σ0

√
2e

m
t, (26)

n∗ =
n

n0σ0N
(27)

where σ0 = 10−20 m2 and N is defined in equation (20). Likewise, the electric field depen-

dence arises through the reduced electric field E/n0 in units of Townsend (1 Td = 10−21Vm2).

By presenting results in this manner the n0 dependence is scaled out, which allows for com-

parisons between the dilute gas phase and the liquid/dense gas phase, to give a true reflection

of the impact of coherent and other scattering effects.

III. VALIDATION OF ELECTRON TRANSPORT USING A BENCHMARK LIQ-

UID MODEL

In this section we validate our theory and numerical code against a model system that

includes structure effects. A benchmark frequently employed in the literature which treats

a structured system is that for a system of hard-sphere potentials obtained by applying the

Percus-Yevick approximation as a closure to the Ornstein-Zernike equation, which yields a

pair-correlation function [71, 72] and corresponding static structure factor. We include the

corrections of Verlet-Weiss [73, 74] which better emulate the structure of a real liquid (see

[70] for details). The volume fraction parameter, Φ, specifies how tightly packed the hard

spheres in the medium are. It can be written in terms of the hard-sphere radius r and the

neutral number density, n0, as Φ = 4
3
πr3n0. We have modeled systems with a range of
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densities, from Φ ≈ 0, which approximates a dilute gas, to Φ = 0.4, which states that 40%

of the volume is excluded by hard-sphere potentials of the neutral molecules.

The remaining details required of the benchmark hard-sphere model implemented for

electron sized particles are

σm = 6 Å2
,

σexc =

 0,

0.1 Å2
,

U < 2 eV

U ≥ 2 eV

Φ = 0, 0.2, 0.3, 0.4,

E/n0 = 3 Td, (28)

m0 = 4 amu,

T0 = 0 K.

A step-like inelastic process has been included in addition to the standard Percus-Yevick

hard sphere benchmark system in model (28). The inelastic channel introduces a peri-

odic oscillatory non-hydrodynamic behaviour, similar to those observed in the well-known

Franck-Hertz experiment, and can hence determine whether the numerical code is accurately

capturing the non-hydrodynamic phenomena. Figure 1 highlights the variation of the ef-

fective momentum transfer cross-section with Φ, evaluated using the cross-section in (28)

together with the static structure factor from [70]. At high energies, coherent scattering

effects are suppressed, and the various momentum transfer cross sections converge on the

dilute gas case (corresponding to Φ = 0) .
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Figure 1: The variation of the effective elastic momentum-transfer cross-section, Σm =

2π
∫ π

0
Σ(U, χ) [1− cosχ] sinχdχ, including structure with energy for model (28) for various

volume fractions, Φ.

The source distribution is given by

f (v, r, 0) = NfDM(v)fz(z), (29)

where fDM(v) is a drifted Maxwellian distribution with T = 104 K and W = 105 ms−1Ê,

i.e.,

fDM(v) =

(
m

2πkbT

) 3
2

exp

[
− m

2kbT
(v −W)2

]
, (30)

while fz(z) is a narrow Gaussian in configuration-space, i.e.,

fz(z) =
1

∆z0

√
2π

exp

(
−1

2

(
z

∆z0

)2
)
. (31)

For the benchmark model we take ∆z0 = 0.1. Note that, by the choice of normalization in

equations (31)–(30), we have 2π
(

2
m

) 3
2
∫∫

U
1
2f0(U, z, 0) dUdz = N .

A. Transport coefficients in the long-time hydrodynamic limit

In previous papers [14, 61] a purely hydrodynamic formalism and associated numerical

code has been developed for light particles in gases and liquids. We compare with the
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asymptotic values of the drift velocity and diffusion coefficient calculated from the spatial

moments (18) and (19) respectively and show these in Table I. We also show the differences

between two-term and multi-term calculations which can be up to 2.3%, for the model (28).

The zeroth order hydrodynamic transport coefficients, i.e., the mean energy and drift

velocity, agree to within 0.2% with the multi-term asymptotic non-hydrodynamic values

for the volume fractions considered. The multi-term hydrodynamic and non-hydrodynamic

calculations of the longitudinal diffusion coefficient agree to within 0.7%. As the volume

fraction increases, all of the coefficients increase monotonically, a consequence of the coher-

ent scattering. At low energies, increasing volume fractions leads to decreased momentum-

transfer cross-sections. For further discussion on the physical variation of the hydrodynamic

transport coefficients with volume fraction the reader is referred to [62, 70, 75]. The close

agreement between the asymptotic non-hydrodynamic and multi-term hydrodynamic trans-

port properties serves to validate the long-time behaviour of our space-time solution to

Boltzmann’s equation.
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Table I: Comparison of the steady-state transport quantities calculated from multi-term

non-hydrodynamic (MTN), multi-term hydrodynamic (MT) and two-term hydrodynamic

(2T) formalism for model (28) at various volume fractions Φ.

Φ Method ε W n0DL

[eV] [104 ms−1] [1024 m−1s−1]

0 MTN 0.8335 1.385 2.386

MT 0.8337 1.385 2.387

2T 0.8337 1.386 2.383

0.2 MTN 0.9765 3.397 6.333

MT 0.9772 3.391 6.328

2T 0.9788 3.402 6.307

0.3 MTN 1.080 5.929 11.22

MT 1.080 5.921 11.24

2T 1.086 5.970 11.16

0.4 MTN 1.233 10.52 19.51

MT 1.233 10.51 19.63

2T 1.255 10.75 19.33

B. Space-time evolution of the phase-space distribution and its velocity moments

We now consider the effect of the volume fraction in model (28) on the spatio-temporal

evolution of the phase-space distribution and hence the transport properties. In Figure 2 the

evolution of the f0 and f1 velocity distribution function components are compared for Φ = 0

and Φ = 0.4 at three different times, and the integral moments of f0, the electron density

n∗, and velocity moment of f1, the flux Γ∗, are displayed in Figure 3. The time scale for

variation of f0 is governed by ∼
(

2 m
m0
νm

)−1

, and hence exhibits no explicit Φ dependence

in the time scale, however differences arise due to the implicit energy dependence in the

collision frequency and the coupling to higher order moments with different time scales.

The time scale for variation of f1 on the other hand is governed by ν̃−1
m , which has an

explicit Φ dependence. The time scale for momentum exchange is significantly decreased for
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increasing Φ at low energies, as shown in Figure 1, however they approach the same value

at higher energies.

At very small times (e.g. t∗ = 0.2), there are only small differences in the f0 contours

between the two volume fractions, and this is also highlighted in the density n∗. At higher

energies (> 5-6 eV) there are also very little differences in the f1 contours (reflecting the

similarity in the momentum relaxation times at these energies), however at low energies, the

Φ = 0.4 contours for f1 are significantly displaced in both energy and configuration-space

relative to the Φ = 0 case. This indicates significantly higher advective and diffusive fluxes

in this energy regime, which is evidenced in the flux profiles of Figure 3.

At larger times, the f0 and f1 contours in the Φ = 0.4 case depart significantly from

the Φ = 0 case, initially in the low energy regime and then finally the entire energy regime

as the higher energy electrons relax from the initial condition. The peaks in each of the

distribution components at larger times for Φ = 0.4 case are displaced significantly more

in the z-direction. This is reflected in both the density and flux profiles at larger times,

which highlight the enhanced drift and diffusion due to the reduced momentum transfer

cross-section associated with coherent scattering for this model and field. Interestingly, at

sufficiently long times, the Φ = 0.4 contours have predominantly positive values, and only

very small negative excursions at low energies, in contrast to the Φ = 0 contours. At

these times, the flux is positive over the swarm indicating that the advective contribution

dominates the diffusion contribution, since the density gradients are much more rapidly

dissipated in the Φ = 0.4 case.

Strikingly, both the Φ = 0 and Φ = 0.4 contours for both f0 and f1 demonstrate peri-

odic structures in both configuration space and in energy space at sufficiently long times

and sufficiently downstream from the source. The periodic structures manifest themselves

earlier for the Φ = 0.4 case. These are the well known Franck-Hertz oscillations [25, 26]. A

simplistic picture of this non-hydrodynamic phenomena is that the electrons in the swarm

are being repeatedly accelerated by the electric field to an energy above the inelastic pro-

cess threshold whereby they undergo an inelastic collision losing their energy. This simple

physics is evidenced in the f0 and f1 distributions. By integrating over the energy to obtain

the density and flux, shown in Figure 3, much of the periodic structure observed in the dis-

tribution function is masked, however some non-Gaussian spatial structure is still observed.

We will explore the Φ-dependence of the wavelengths of oscillations further in Section III C.
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C. Steady-state Townsend configuration

The solution detailed in Section III B is essentially equivalent to solving for the Boltzmann

equation Green’s function for the model (28). A strict validation of this approach and

associated numerical code is to be able to reproduce the Steady-State Townsend (SST)

transport properties from the Green’s function solution, as described in Section IIA. The

average energy (24) and average velocity (23) for SST simulations of various volume fractions

are shown in Figure 4, along with the results of an independent Monte Carlo simulation (the

details of which can be found in [70]). In the spatially asymptotic regime (not shown in

Figure 4), the average energy and the average velocity are equal to the hydrodynamic and

pulsed-Townsend values shown in Table I. Li and co-workers have investigated the relaxation

characteristics of model 28 for Φ = 0 and determined that the steady-state is reached at a

distance of z∗ ≈ 100 [40, 76]. It can be seen that the SST properties demonstrate damped

spatially periodic structures similar to those observed in the Franck-Hertz experiment and

other investigations [25, 26, 30, 77–79]. They are a manifestation of the energy and spatially

periodic structures in the distribution function components, and in the spatially periodic

structures in the density and flux profiles of Figure 3. By assuming the elastic scattering is

weak, the width between the peaks in the transport property profiles, λ, is directly related

to the threshold energy of the inelastic process, UI in eV, via [80]

λ =
UI

(0.1)eV/Td (E/n0)Td
, (32)

where the reduced electric field is in Townsend (Td). For model (28), the theoretical spacing

is 6.6̇z∗. In Figure 4 it is possible to see that there are variations in the wavelength of

the spatial structures with Φ, as well as significant differences in the decay rates of the

oscillation amplitudes. For Φ = 0, the wavelength is approximately 8.00 ± 0.2 and this

decreases to 6.67± 0.2 for Φ = 0.4. The differences arise explicitly due the differences in the

elastic momentum transfer cross-section, as well as implicit variations associated with the

modification to the swarm’s energy with Φ. Because the effective momentum transfer for

larger Φ, the oscillations are not as strongly dampened. This has the effect of making λ for

the Φ = 0.4 case closest to the analytical approximation (32), since the reduced momentum

transfer more closely approximates the weak elastic scattering assumption used in deriving

it. Note that we have compared the SST transport properties calculated using a two-term
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approximation (not shown) to the multi-term approximation, which were found to differ by

as much as 3% over the range of z∗.

We must also point out that the validity of these profiles are dependent on the discretiza-

tion of the distributions in configuration-space. If the spatial discretization is of the same

order as the Franck-Hertz wavelength, then it will be very difficult to resolve these features

in the distributions and consequently the time-averaged profiles. As we use an adaptive

mesh that increases the spatial grid spacing with time (see Appendix A 4), we can only

accurately resolve the distribution up to a maximum z∗ ≈ 30.

Figure 4: Spatial variation of the average energy and average velocity under SST condi-

tions for model (28) with various volume fractions Φ. The solid lines are solutions of the

Boltzmann equation, while the dashed lines are the results of Monte Carlo simulation. The

details of the Monte Carlo simulation can be found in [70].

IV. SPATIO-TEMPORAL RELAXATION OF ELECTRONS IN LIQUID ARGON

As detailed in the introduction, to enhance the spatial resolution of Liquid Argon Time

Projection Chambers (LArTPC) detectors requires an enhanced understanding of the spatio-

temporal evolution typical of ionized electrons emanating from the high energy particle

track. Typically these chambers operate with electric field strengths of less than 500 kV/cm.

Foxe et al. [81] have measured the energy distribution of the electrons ionized by high
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energy particles in liquid argon, and have shown that the majority of the ionized electrons

have energies below 1 eV. Consequently in this study we employ an initial source energy-

distribution that is constant in energy space up to 1 eV, i.e.,

fU(U) = CU−
1
2 Θ (U − 1 eV) , (33)

where Θ is the Heaviside step function, and U is in eV and C is a normalisation constant.

The mean energy of this distribution is 0.5 eV. The swarm is released from a narrow Gaussian

in configuration-space,

fz(z) =
1

∆z0

√
2π

exp

(
−1

2

(
z

∆z0

)2
)
, (34)

so that the full initial phase-space distribution is f (v, r, 0) = NfU(U)fz(z), and where C

is chosen such that 2π
(

2
m

) 3
2
∫∫

U
1
2f0(U, z, 0) dUdz = N. For argon, we take ∆z0 =

√
10, a

larger initial spread than for the Percus-Yevick model, reflecting the smaller cross sections

of argon, and hence a larger mean free path.

A. Cross-sections, potentials and screening

The procedure for including a real physical cross section differs slightly from the bench-

mark described in the previous section. As shown in [14], polarisation screening and the

effect of the surrounding atoms must be accounted for to obtain an effective cross section

σ (U, χ) that is used in equations (6) and (8). The momentum transfer cross-sections cal-

culated from the dilute gaseous and liquid argon potentials are shown in Figure 5. It is

significant to note the absence of the Ramsauer minimum in the liquid-phase cross-section.

Shown in [14], the gas-phase cross-sections produce transport coefficients that agree with

experiment to within 10%. The liquid modifications to these is largely insensitive to the fine

detail of the cross section and so retains the same level of accuracy within the approximations

used.
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Figure 5: The momentum transfer cross-sections in the gas-phase (dashed line) and liquid-

phase (solid line) for electrons in argon [14].

B. Results

In order to consider conditions representative of those in liquid state particle detectors,

we simulate electron transport in liquid argon under the following conditions:

E/n0 = 2.5× 10−3 Td,

T = 85 K, (35)

m0 = 40 amu.

The reduced field is equivalent to 500 kV/cm with a density corresponding to liquid argon,

n0 = 0.0213 Å−3. For this reduced electric field and source distribution, given in (33)-(34),

the electron swarm energies are generally well below the first inelastic channel threshold

energy (8.9 eV), so that there is no inelastic channel operative, and hence the periodic

spatial structures observed in the Percus-Yevick hard-sphere liquid model above are not

present.

The relaxation of the f0 distribution function component is compared for the gas and

liquid phases at three different times in Figure 6. At t∗ = 1, there are only small differences

between the contours reflecting similar energy relaxation rates between the two phases ini-

tially. At t∗ = 10, a bulge is beginning to develop in the gas-phase contour in the energy

region between 0.1− 0.5 eV, which corresponds to the Ramsauer minimum in the gas-phase

momentum transfer cross-section. In this region, the gas-phase momentum transfer cross-

section dips below the liquid cross-section, which has resulted in this enhancement of the
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diffusive flux in this range. At higher energies the liquid cross-section is less than the gas-

phase cross-section, which has resulted in enhanced diffusive flux. At t∗ = 100 these effects

are even more pronounced.

In Figure 6 the f1 component contours for the gas and liquid phases of argon are compared

for the same three times. At the first time, t∗ = 1, there are already significant differences

in the f1 contours, with the largest change occurring in the Ramsauer minimum range in

the gas-phase case. This highlights again the difference in the time scales of the energy

and momentum relaxation between the two phases. As time increases, greater differences

develop between the f1 contours particularly around the Ramsauer minimum and at the

high energy range for the reasons previously discussed.

The number density as a function of time is shown in Figure 7. The behaviour of the

number density profiles is consistent with the behaviour of the f0 and f1 profiles. At t∗ = 1

there is no noticeable difference in the two number density profiles. At later times it is clear

that, despite the Ramsauer minimum in the gas-phase, the liquid-phase experiences the

greater diffusion rate overall. For the electric field considered and initial source distribution,

the average drift velocity for both the gas and liquid phases is small compared to the diffusion

rates.

Figure 7: Temporal evolution of the number density profiles n∗ for gas-phase (dashed

lines) and liquid-phase (solid lines) argon. The three columns represent the times, t∗ =

1, 10, and 100 respectively.

22



F
ig
ur
e
6:

Te
m
po

ra
le

vo
lu
ti
on

of
th
e
di
st
ri
bu

ti
on

fu
nc
ti
on

co
m
po

ne
nt
s
fo
r
ga
s-
ph

as
e
(d
as
he
d
lin

es
)
an

d
liq

ui
d-
ph

as
e
(s
ol
id

lin
es
)

ar
go

n.
T
he

fir
st

ro
w

ar
e

2π
σ

0

( 2 m

)3 2
U

1 2
f 0
/n

0
(e
V
−

1
)
co
nt
ou

rs
,t
he

se
co
nd

ro
w

ar
e
∣ ∣ ∣2πσ

0

( 2 m

)3 2
U
f 1
/n

0

∣ ∣ ∣(eV−
1 2
)
co
nt
ou

rs
.
T
he

sh
ad

ed

co
nt
ou

rs
in
di
ca
te
U
f 1
<

0.
T
he

th
re
e
co
lu
m
ns

re
pr
es
en
t
th
e
ti
m
es
,t
∗

=
1,

10
,
an

d
10

0
re
sp
ec
ti
ve
ly
.

23



V. CONCLUSIONS

We have developed a full multi-term, space-time dependent solution of the electron Boltz-

mann equation in gases and liquids capable of modeling non-hydrodynamic conditions. The

flexibility of the algorithm lies in solving the Boltzmann equation’s Green’s function, knowl-

edge of which allows one to construct the solution for other experimental configurations

e.g. the SST experiment and similar applications. A tailored numerical scheme has been

employed to efficiently evolve the energy-space and configuration-space components.

The theory and associated code was first applied to a simple hard-sphere benchmark

model liquid, where structure effects were simulated by the Percus-Yevick structure factor

as a function of the volume fraction, Φ. This benchmark emulates Franck-Hertz-type exper-

iments in liquid neon or liquid xenon, and the inclusion of an inelastic channel was a key

test of the algorithm’s ability to reproduce non-hydrodynamic phenomena. Periodic spatial

structures developed in the space-time and steady-state profiles for the distribution func-

tion components and associated transport properties, the periodicity of which is directly

related to the threshold energy of the inelastic process. We observed that these periodic

structures arose on shorter times scales when coherent scattering effects became impor-

tant. The steady-state profiles constructed for various volume fractions also reproduced the

non-hydrodynamic oscillatory structures expected. The asymptotic transport coefficients

calculated from the non-hydrodynamic solution of Boltzmann’s equation were also shown

to be consistent with the values calculated from a hydrodynamic solution of Boltzmann’s

equation. For the cases considered, a multiterm framework was required in order to achieve

accuracies to within 3% in the SST quantityprofiles.

Finally, the cross-sections calculated in [14] were used to investigate the spatio-temporal

evolution of electrons in gas-phase and liquid-phase argon. The two momentum-transfer

cross-sections feature different qualitative and quantitative behaviours. Striking differences

in the evolution of the components of the phase-space distribution were apparent, reflecting

the differences in the gas-phase and liquid-phase cross-sections, particularly the absence

of a Ramsauer minimum in the liquid-phase. This highlights the problems associated with

treating liquid systems as gaseous systems with increased density, which has implications for

various applications including liquid argon time projection chambers. Further, it highlights

the need for a complete understanding of the full space-time evolution of the electrons if
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enhancements in detector accuracy are to be achieved.
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Appendix A: Solution technique

The Boltzmann equation consists of two parts; an advective component (in phase space)

and a component representing collisions. To solve the Boltzmann equation numerically,

using a single numerical scheme for both components and a single time-stepping method,

is computationally challenging Because of the complexity, we choose to replace the task of

solving the full Boltzmann equation by the task of solving the configuration-space transport,

and the energy-space transport with the contributions due to collisions separately, then

combining the results in a manner that appropriately approximates the full solution. This

can be achieved via the technique known as operator splitting [82, 83].

To this end, the Legendre polynomial expansion of Boltzmann’s equation in plane parallel

geometry given in equation (3) can be represented as

∂fl
∂t

+ SZ(fl) + SU(fl) = 0, (A1)

where

SZ(fl) =
∑
p=±1

∆
(p)
l

(
2

m

) 1
2

U
1
2 ∂

∂z
fl+p, (A2)

SU(fl) =
∑
p=±1

∆
(p)
l

(
2

m

) 1
2

eE

(
U

1
2
∂

∂U
+ p

(
l + 3p+1

2

)
2

U
− 1

2

)
fl+p + Jl (fl) . (A3)

In the following subsections we discuss numerical solution in detail, which can be here

summarized as a simplified flux corrected transport method [65] for sub problem (A2), a

centered difference discretization in energy and implicit Euler method in time [61] for sub

problem (A2), combined via Lie-Trotter splitting [66, 67].
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1. Operator splitting

The simplest method of operator splitting, and the method employed in this paper, is

Lie-Trotter splitting [66, 67], which employs two separate operators, e.g. SZ and SU , in a

sequential order. If

∂f

∂t
+ SZ(f) + SU(f) = 0, (A4)

then the Lie-Trotter algorithm is

∂f ∗

∂t
+ SZ(f ∗) = 0, with t ∈

[
tn, tn+1

]
and f ∗ (tn) = f (tn) , (A5)

∂f#

∂t
+ SU(f#) = 0, with t ∈

[
tn, tn+1

]
and f# (tn) = f ∗

(
tn+1

)
, (A6)

so that f(tn+1) = f# (tn+1), where tn and tn+1 are successive times. This simple method

can be shown to be only accurate to first order (globally) in time, and there are many other

methods available that offer higher order accuracy and often include additional advanta-

geous properties [67, 84–89]. The major reason for the choice of Lie-Trotter splitting is its

computational simplicity. As described in the following sections, the numerical schemes cho-

sen for the individual sub-problems are each (at worst) first order accurate in time, so there

is little to be gained by using a higher order and more computationally expensive operator

splitting method [83]. A secondary reason is that, if SZ is treated in an explicit manner and

SU is treated in an implicit manner, then the overall result is essentially the Douglas class

of the Alternating Direction Implicit schemes [90, 91], which is particularly successful at

accurately capturing the steady-state solution. We compare the asymptotic values from the

current non-hydrodynamic formalism with the results of hydrodynamic calculations for a

benchmark model in Section IIIA. Although general operator-splitting schemes can capture

the relaxation process, accurately and consistently determining the steady-state solution can

be very difficult [92].

The isolation of the configuration-space dependence to the operator SZ makes this par-

ticular scheme an example of dimensional splitting. We can now investigate how we treat

the configuration-space advection and energy-space advection and collision components nu-

merically in detail.
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2. Configuration-space advection

The operator involving the configuration-space dependence, Sz, is given by equation (A2),

which represents a coupled homogeneous advection equation. As there are no derivatives

of U present in Sz, the configuration-space dependence can be solved independently for

different values of U which is huge simplification when a discretization in energy space is

used. The coupled advection equation can be simplified as follows:

∂

∂t
fl +

(
2U

m

) 1
2

∆
(−)
l

∂

∂z
fl−1 +

(
2U

m

) 1
2

∆
(+)
l

∂

∂z
fl+1 = 0, (A7)

which can be written in matrix form,

∂

∂t
f + A

∂

∂z
f = 0, (A8)

where f = [f0, f1, ..., flmax ]T and

A =

(
2U

m

) 1
2



0 ∆
(+)
0

∆
(−)
1 0 ∆

(+)
1

. . . . . . . . .

∆
(−)
lmax−1 0 ∆

(+)
lmax−1

∆
(−)
lmax

0


. (A9)

By letting A = RΛR−1, where Λ is a matrix of eigenvalues of A on the diagonal, and R

are the associated eigenvectors, then

∂

∂t
g + Λ

∂

∂z
g = 0, (A10)

where g = R−1f , which now represents a set of uncoupled, homogeneous advection equations.

It follows from the method of characteristics [93], that

g (t, z) = g (0, z −Λt) . (A11)

Even in this extremely simple form, the solution can be troublesome. When discretized, the

set of values z − Λt are unlikely to align with existing z values, and hence some form of

interpolation is required. It can be shown that linear interpolation is equivalent to a first

order upwind finite volume method scheme [94]. First order methods have the advantage

of being well behaved and can be used to conserve mass etc. with no unwanted, unphysical
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oscillations, but have the disadvantage of introducing extra numerical diffusion, particularly

around regions of sharp variation [95]. Higher order methods perform better at controlling

unwanted diffusion but can lead to problematic, oscillatory and unphysical solutions. Rather

than straightforward interpolation, we choose to employ a variation of a technique well

known in fluid transport, the SHASTA algorithm of Boris and Book [65]. The SHASTA

algorithm approach, termed flux-corrected transport (FCT), leads to a class of Eulerian

finite-difference algorithms which strictly enforce the non-negative property of realistic mass

and energy densities. As a result, steep gradients and shocks can be handled particularly well,

which is a useful property when modelling transport under non-hydrodynamic conditions.

A FCT algorithm consists conceptually of two major stages, a transport or convective stage,

followed by an anti-diffusive or corrective stage.

We employ a simplified version of the full FCT algorithm to numerically approximate

g (0, z −Λt). Let us consider the evolution of g (t, z) for a single Λ, i.e., g (t, z; Λ), over a time

interval of ∆t, with a uniform configuration-space mesh with spacing ∆z. By discretizing in

this way, zj = j∆z for j = 1, 2 . . . , nz − 1, and tn+1 = tn + ∆t. The algorithm is as follows:

1. Shift: The elements of g (t, z; Λ) are shifted to the node closest to z−β, where β = ∆t
∆z

Λ.

This may result in an ‘overshoot’, but we can then propagate the shifted solution

(in step 2) either forwards or backwards in time as appropriate. The purpose of this

step is to overcome time step limitations due to the Courant-Friedrichs-Levy (CFL)

condition [96], which allows us to choose arbitrary time step sizes with respect to the

configuration-space convergence (sufficiently small time steps are still necessary for the

operator splitting accuracy etc.). By shifting to the nearest node, the CFL condition

|β| = ∆t

∆z
|Λ| ≤ 1 (A12)

for the remaining advection is always satisfied.

2. Advection with additional diffusion: The advection algorithm employed is given by

gn+1
j = gnj −

β′

2

(
gnj+1 − gnj−1

)
+

(
γ +

β′2

2

)(
gnj+1 − 2gnj + gnj−1

)
, (A13)

where gn+1
j = g (tn+1, zj), and

γ =

[
0,
β′

2

]
, (A14)
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is the additional numerical diffusion. The dimensionless advancement β′ = β − bβe

accounts for the shift that has been applied in step 1. Note that β′ may be opposite

in sign to β, which corresponds to an overshoot in step 1. However, this does not

adversely affect the procedure. If γ = 0, then equation (A13) is the well known Lax-

Wendroff scheme [95], which is accurate to second order. Historically, the inclusion

of an extra diffusion term, γ, has been used to ensure that a density function (i.e. a

function that is non-negative by definition) remains positive, which is unconditionally

enforced everywhere if γ = β′

2
. In our case, the gnj include contributions from fl≥1,

which are expected to be negative in some regions of space. However, the presence of

γ ensures the stability of gn+1
j , which can be defined by the requirement that ∆gn+1

j <

max(∆gnj−1,∆g
n
j ,∆g

n
j+1) where ∆gnj = gnj+1 − gnj . When the solution gnj is sharply

varying or, in the extreme case, a discontinuity, the additional diffusion is necessary

to suppress unphysical oscillatory behaviour in gn+1
j .

3. Anti-diffusion: An ‘anti-diffusion’ step is employed to reduce the extra numerical dif-

fusion introduced in (A13) i.e.,

ḡn+1
j = gn+1

j −
(
γ +

β2

2

)(
gn+1
j+1 − 2gn+1

j + gn+1
j−1

)
. (A15)

The inclusion of this extra diffusion in step 2 assures that the solution is positive and

physically realistic, and the straightforward application of step 3 undoes this which can

re-introduce a negative solution. Boris and Book [65] suggested modifying the removal

of the erroneous diffusion by just enough to maintain positivity, in a non-linear way

(note that they worked with non-negative densities, as we have remarked on above in

step 2). This is an early example and precursor of the modern technique of flux limiting

[97–101]. In this work the full anti-diffusion step is applied in general, except in regions

where a sharp variation or discontinuity is known a priori (e.g. configuration-space

boundaries), in which case no anti-diffusion is applied. Unphysical oscillations can now

occur, but we have found that for the situations considered they are negligibly small.

The natural extension is to include flux limiting to prevent this unphysical behavior

but this introduces extra computational complexity.

It should be noted that the shift step can be performed after the advection and anti-diffusion

stages with no change in the result. We have assumed that the boundaries are absorbing,
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in that the elements of g(t, z) that move outside the computational domain are lost, and no

information is introduced from outside the domain. Although perfectly absorbing boundaries

are notoriously difficult to implement numerically, in our calculations we avoid this problem

by keeping the swarm density negligible at the simulation edges, through the use of an

adaptive mesh, see Section A4. In practice we pre-calculate a transformation matrix (for a

given set of parameters) which combines the above three steps for each of the grid energies.

3. Energy-space advection and collisions

A major advantage of splitting the Boltzmann equation operator according to equa-

tions (A2)-(A3) is that SU is then the familiar, spatially homogeneous Boltzmann equation.

There is much literature on solving this equation, and we use the approach developed pre-

viously [14, 61, 102, 103] to perform the numerical discretization and time-step. A full

description of the numerical solution of the process is given in [61], and we will briefly sum-

marize it here. The equation we need to solve is equation (A3). The time dimension is

discretized with a first order implicit Euler method, which has been chosen for its good sta-

bility properties. Similar to the work of Winkler and collaborators [104–106], we employ a

finite difference method to discretize the system of ODE’s at centred points using a centred

difference scheme, i.e.,

df(U, t)

dU

∣∣∣∣
Ui+1/2

=
f(Ui+1, t)− f(Ui, t)

Ui+1 − Ui
, (A16)

f(Ui+1/2, t) =
f(Ui+1, t) + f(Ui, t)

2
, (A17)

so that equation (A3) evaluated at i+ 1/2 becomes,

SU (fl)|i+1/2 = Jl (fl)|i+1/2 +

(
2

m

) 1
2 ∑
p=±1

∆
(p)
l eE

[
U

1
2

i+1/2

(
fl+p(Ui+1, t)− fl+p(Ui, t)

Ui+1 − Ui

)

+ p

(
l + 3p+1

2

)
2

U
− 1

2

i+1/2

(
fl+p(Ui+1, t) + fl+p(Ui, t)

2

)]
. (A18)

Although a general form can be constructed for an arbitrary grid, the simplest case is for

evenly spaced points, i.e.

Ui = i∆U for 0 ≤ i ≤ nU , (A19)
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where ∆U is a constant. By discretizing at the midpoint of the two solution nodes results

in a system of linear equations that is under-determined. The extra information is naturally

provided by boundary conditions which are appended to the system.

These boundary conditions have been analyzed by Winkler and collaborators [104–106]

who investigated the multi-term, even order approximation, and discovered that the gen-

eral solution of the steady-state hierarchy contains 1
2

(lmax + 1) non-singular and 1
2

(lmax + 1)

singular fundamental solutions when U approaches infinity, and the physically relevant so-

lution has to be sought within the non-singular set of fundamental solutions. The boundary

conditions necessary for the determination of the non-singular physically relevant solution

are [104]

fl(U = 0) = 0 for odd l,

fl(U = U∞) = 0 for even l, (A20)

fl(U > U∞) = 0 for all l,

where U∞ represents a sufficiently large energy. In practice, U∞ has to be determined in

a prior calculation, and is chosen such that the value of f0(U∞) is less than 10−10 of the

maximum value of f0.

The temporal evolution of the system of coupled linear equations

∂fl
∂t

= −SU(fl),

is achieved using a first-order implicit Euler method, which has been chosen for its good

stability properties. The first-order implicit Euler method leads to a system of the form[
1

tn+1 − tn
+ SU

]
fl (U, tn+1) =

fl (U, tn)

tn+1 − tn
. (A21)

4. Numerical considerations and adaptive meshing

The matrix system of linear equations that result from the discretization of the Legendre-

decomposed Boltzmann equation in energy- and configuration-space at each time step are of

the size (nznU (lmax + 1))× (nznU (lmax + 1)), where nz and nU are the number of nodes in

configuration and energy space respectively. Due to the discretization schemes, the matrix
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is sparse and sparse techniques are employed in the code to exploit this property. Each of

these parameters are free to be increased until some convergence criterion is met. It should

be noted that, although the two-term approximation (lmax = 1) has been used extensively,

it is well known that it can be insufficient in many situations [49].

In order to model the spatio-temporal relaxation of a narrow Gaussian source distribution

in configuration-space with a distribution of energies as computationally efficiently as possi-

ble, we have developed a configuration-space node-mesh that adaptively follows the spread of

the distribution throughout the simulation. In this way, a small configuration-space window

is used around the original narrow Gaussian source which can then be sufficiently resolved

with a small nz. As the initial pulse drifts and diffuses, a small amount of information

reaches and then leaks out of the window boundaries. Before the amount of information

lost to the system exceeds some small tolerance, the window is extended and the solution

at the previous time-step is calculated on the new configuration-space mesh. This approach

differs from existing adaptive mesh procedures developed for direct kinetic solvers, which

utilize ‘tree of tree’ data structures [51, 52].We have found that the most convenient way to

quantify the amount of information on the boundary is by the relative number density, and

impose the condition that when∫ t

t0

dt′
n (zL or zR, t

′)∫
dz n(z, t′)

≥ 10−5, (A22)

then the configuration-space window is doubled (while the number of nodes is kept the

same). Here t0 is the time of the last window adjustment, zL and zR are locations of the left

and right configuration-space boundaries respectively. The decision to extend the window by

doubling has been made so that the new mesh lines up exactly with nodes of the old mesh,

hence requiring no interpolation. The accuracy of the modified Lax-Wendroff scheme used

to model the configuration-space advection [95] is related to the parameter β = ∆t
∆z

Λ, hence

by doubling ∆z after a re-adjustment, the value of ∆t can also be doubled. This effectively

allows us to use smaller time steps when our solution is sharp and diffusing quickly, and larger

time steps once the solution has spread out and is varying less quickly. A maximum value

for the time step size still needs to be enforced however, since with bigger time step sizes

less mixing between the configuration-space and energy-space components of the operator

splitting occurs, leading to errors.

If the spatial discretization is of similar size to features in the spatial profiles, such as a
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Franck-Hertz oscillation wavelength, then it will be very difficult to accurately resolve these

features in the distributions and consequently the time-averaged profiles. Of course, the

initial choice for the discretization is small enough to easily resolve the important features,

but as the simulation progresses and the distribution diffuses, the adaptive mesh will increase

in range and also increase the spatial discretization step size. The distribution is also drifting

in space to larger z, which means that contributions to the time-averaged quantities from

solutions with larger spatial discretizations are significant only for z past a particular point.

If we let λ be the Franck-Hertz wavelength, then there will be a time in the simulation

tλ after which the spatial discretization becomes ∆z > λ/10, and we can expect that the

oscillations are not accurately represented. We define a point zλ, such that there is a

negligible contribution to the time-averaged quantity for z < zλ from the Green’s function

solution for t > tλ. In this paper, we choose zλ as the point beyond which more than 99% of

the number density profile has propagated at the time tλ. After this point, the coarseness

of the discretization causes the distribution to slowly lose its features, which manifests itself

in the time-averaged quantities by the suppression of the amplitude and a phase-lag of the

oscillations. Hence, we should expect that the results for z > zλ to progressively deviate

from the true spatially dependent steady-state values, until the oscillations are completely

dampened. It is clear that increasing the resolution in configuration-space will mitigate this

problem, but is also more computationally intensive.

There is one extra complication to be discussed. Since the boundaries are absorbing, when

they are re-adjusted, the number density profiles (and distribution functions) drop directly

from the built-up value at the previous boundaries location to zero in a single ∆z, which

can lead to problematic, unphysical, oscillatory solutions when treated with the method

described in Section A2. In order to combat this, we simply apply the procedure described

in Section A2 without the final anti-diffusion step for a small amount of time on the edge and

in the newly opened regions. The extra diffusion added ensures that the solution remains

positive and gives physical results, which, after a small amount of time, ensures that the

profiles decrease smoothly to zero at the boundary. After this short correction time, we again

apply the full procedure. By not removing the added extra diffusion we have increased the

overall diffusion, but since it is only applied for a small time and to a region where there is

necessarily only a small proportion of particles, this does not significantly affect the transport
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profiles.
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