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Constructed tidal lakes provide new and additidradditat for fish
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Abstract

Understanding acute hyperthermic exposure riskitmals, including fish in tropical estuaries,
is increasingly necessary under future climate gharmo examine this hypothesis, fish (upper
water column species - glassfigtmbassis vachellii; river mullet,Chelon subviridis; diamond
scale mulletEllochelon vaigiensis, and ponyfishlelognathus equulus; and lower water bottom
dwelling species — whitin§illago analis) were caught in an artificial tidal lake in tropigorth
Queensland (Australia), and transported to a ldbograank to acclimate (3wks). After
acclimation, fish (between 10 to 17 individualstetime) were transferred to a temperature
ramping experimental tank, where a thermoline iased (2.%C/hr; which is the average
summer water temperature increasing rate measuoithe urban lakes) tank water temperature
to establish threshold points where each fish sgdosst equilibrium (defined here as Acute
Effect Temperature; AET). The coolest AET amorngpécies was 33C (S analis), while

the highest was 39°G (A. vachellii). High frequency loggers were deployed (Novenavet
March representing Austral summer) in the sameruldlee where fish were sourced, to
measure continuous (20min) surface (0.15m) anaivof0.1m) temperature to derive thermal
frequency curves to examine how often lake tempesatexceed AET thresholds. For most
fish species examined, water temperature that doeildthal were exceeded at the surface, but
rarely, if ever, at the bottom waters suggestingpgeooler, water provides thermal refugia for
fish. An energy-balance model was used to estinlatg mean lake water temperature with
good accuracy (+°C; R = 0.91, modelled vs lake measured temperaturbkg rifodel was used
to predict climate change effects on lake wateptnature, and the exceedance of thermal
threshold change. A 2@ climate warming (based on 2100 local climate jotamh) raised lake
water temperature by P@. However, small as this increase might seefadito a doubling of
time that water temperatures were in excess of &kiEdsholds at the surface, but also the

bottom waters that presently provide thermal refugr fish.
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1. Introduction
Despite being incredibly productive habitats fahf(Blaber et al., 2010; Manson et al., 2005;
Nagelkerken et al., 2015), across much of the windpical estuaries continue to be modified
for human gain (Rozas, 1992; Wen et al., 2010).eRample of this modification occurs where

property developers excavate large tracts of natvetlands (e.g., mangroves, saltmarsh), or dig

out terrestrial habitat to create artificial, urb@ater development, designed to increase extent of

usable waterfront land (Lindall et al., 1973; Walthand Connolly, 2013). Residential urban
waterways have been built on most continents, atidatively contribute to over 4,000 km
linear of engineered habitat for fish (Waltham &@uwahnolly, 2011). In utilising these built
waterways fish (Claassens, 2016; Waltham and Conrfl06) are susceptible to
contamination and poor water quality (Maxted etE97), and hydraulic connectivity with
downstream estuaries may be altered (Zigic e2@02). Furthermore, their position in low
lying areas of coastal floodplains raise concebmiavulnerability to sea level rise, shoreline
erosion (Harvey and Stocker, 2015), and that cknechange might reduce the utility of these

man-made habitats for fish (Waltham and Connoldj,1).

Animals spend a significant proportion of time (aamergy) avoiding or escaping stimuli
(predation, chemical contamination, noise) thaldd@ause physical harm that reduces fithness or
causes death (Connell, 1993). One causal stincolisibuting to animal avoidance is exposure
to high temperature (Brett, 1956). Determiningeef§ of temperature on animal behaviour and
movement has received increasing attention pronpgedimate change concerns and how
future, warmer temperature may cause range shifisstribution of native (James et al., 2017;
Stewart et al., 2013; Welbergen et al., 2008)nwasive species (Carveth et al., 2006), or in
some cases extinction of vulnerable species (Thahak, 2004). For many aquatic species,
including fish, temperature directly controls metidrate, and can influence growth, resource

allocation for reproduction and ultimately, popidatsize (Armstrong et al., 2013; Jobling,
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1995). Evidence shows that growth rate and dewedop in fish tend to increase with
temperature up to an optimum, provided sufficiemif is available (Eaton and Scheller, 1996).
However, the long term (chronic) effects of expestarelevated water temperature can include
reduced year class strength (Brown et al., 201&\at al., 2003), cessation of growth, and
increased susceptibility to environmental stressed as low concentrations of dissolved
oxygen (Pearson et al., 2003). Exposure to exttemeerature causes acute hyperthermic (or
hypothermic) response, requiring animals to theegolate or they will die (Coulter et al.,

2016; McCauley and Casselman, 1981). Determiriagemperature threshold (defined here as
Acute Effect Temperature, AET) provides insighbithhermal exposure risk, necessary for

species protection and conservation.

This paper reports fine time-interval resolutiof (8in) continuous water temperature
measurements made in a residential man-made aikialih Townsville, northern Queensland,
Australia. We used these data to quantify how mat@perature changes as the austral summer
evolves, and how water temperature varies betweesurface and bottom layer in tidal built
lakes. We then determine the AET for five commstuarine fish that occupy the lakes using
laboratory manipulative experiments, to assessdftam lake water temperature approach and
exceed these thresholds. Advancements in watenéh@nergy modelling provides the
opportunity to predict temperature exposure ris&doatic animals using readily available daily
weather data (McJannet et al., 2014; McJannet,2@12; Wallace et al., 2015). We then use
an energy balance model to simulate how climatagdanight influence the thermal exposure

risk for fish occupying engineered tidal lakes.

2. M ethods

2.1 Sudy area



104  Ross Creek is a small (8 km linear) transitiondli¢ and Whitfield, 2011) estuary in tropical
105 north Queensland (-19.270688, 146.788279E) that flows into Cleveland Bay, and the Great
106  Barrier Reef lagoon, Figure 1la (Sheaves and Jomn2@10). Located adjacent to Ross Creek
107 is a large constructed residential tidal lake estatilt in the early 1990s as a way to increase
108  residential real estate with waterfrontage (Waltlaard Sheaves, 2015), and to treat water

109  quality (sediment and nutrient load reductionsghigged from the surrounding urban and

110 industrial estates before reaching the main estaladyGreat Barrier Reef lagoon. The lake

111  system is approximately 7.5 ha, average water deftatween 1.9 to 2.5 m (150ML). The lake
112 has two sections that are connected via a narroerete open channel (approximately 150 m
113 long, 10 m width and 1 m depth) which allows waecthange and fish passage between the
114 lakes. A long concrete channel extends from tke, Ippining with Ross Creek approximately
115 3.5 km upstream from the mouth of the creek. Aesesf four engineered hydraulic arms

116  separate the concrete channel from Ross Creekrgséumal are synchronised to open based on
117  the tidal height of the downstream Ross Creek @hazan be manually opened during extreme
118  flood events) (Causeway Floodgate Procedures, Twiln€ity Council, unpublished manual).
119  The hydraulic control structure permits tidal exaofpa with Ross Creek, in such a way that it
120  reduces the tidal prism, which is necessary taiainent situations where increased tidal prism
121  compromises engineering rock walls or bridge fotioda, and contributes to erosion along the
122 lake edges (Zigic et al., 2002). Fish visit theekand can return to the estuary during times
123 when the hydraulic gates are open. The lakes lzofaset of fish species found in the adjacent
124  estuaries (Sheaves et al., 2012) including a numib&adromous species common throughout
125 the region (Sheaves and Johnston, 2010; Sheaaes 2010; Waltham and Davis, 2016).

126  During summer months the lakes become hypoxicnaegpuence of high ambient air and water
127  temperature (which reduces the solubility of oxygewater available for fish), in addition to

128  high densities of oxygen consuming phytoplanktoth sediment benthic algae; a trait that
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contributes to poor water quality and fish killscioastal waters of Queensland (Dunn et al.,

2012).

2.2  Estuary fish acute temperature effects experiments

In this study, a subset of local estuarine fistcgsewere examined, including glass perch
(Ambassis vachellii), river mullet Chelon subviridis), diamond scale mulleE{lochelon
vaigiensis), and pony fishl{eiognathus equulus) — representing upper water column
assemblage; and the whitingl{ago analis) — representing benthic dwelling assemblage. Fish
were collected in the lake using a seine net (10mash, 1.8m drop), and transported to the
laboratory for acclimation (from the collectionestb the laboratory was 30 min, using three 90
L containers each with battery aerators). Theratiooy had a single 800 L saltwater tank
(salinity 33), set up on a re-circulatory systerthwvater exchange set approximately 10 L/min

(MARFU, James Cook University).

In the laboratory, fish were acclimated to a comstamperature (Z2&; +2°C) for three weeks
prior to the Acute Effect Temperature (AET) exp@serperiment. This acclimation
temperature represents approximately the summeageelaily water column temperature in
the lakes (based on historical water quality mamtpundertaken by Townsville City Council
since 1994 - unpublished data). Fish were fed agtuae pellets (Ridley AgriProducts Pty Ltd)
every 2-3 days; all fish were feeding during theliatation period suggesting that they were not

stressed prior to the temperature exposure expetime

In the AET experiment an experimental glass aquatank (0.7 x 0.4 x 0.6 m; ~150 L) was
designed specifically for the experiment. Two glatory pumps were placed in the tank to
ensure the tank was well mixed. Water in the drpant tank was continuously replaced at a

rate of 2 L/min with water on the acclimation taystem. Photoperiod in the aquarium
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laboratory was maintained at 12:12h dark:light eycThe experimental tank was cleaned after

each experiment, resulting in an approximate 80%mexchange.

Between 10 and 16 individual fish were transplaritech the acclimation tank to the
experimental tank 2-3 days prior to the AET expenirtank so that fish would acclimate to the
new tank setting. During the experimental tankiaation period, conditions (i.e., water

temperature (Z&) and photoperiod) remained the same as the aatadimtank.

At the start of each AET experiment, the waterudation pipe was closed so the tank was a
single experimental unit. A programmable thermatoaler (Thermoline, Eurotherm 3216
Control) was used to increase the water temperatuadinear rate of approximately 2c3per
hour with the experiment commencing at the accliomaiemperature (this rate is similar to
diurnal water temperature changes experienceceitalte, see below). The time elapsed and
water temperature on the thermocline readout disptre recorded when fish (one at a time)
lost equilibrium or displayed erratic behaviour (Bwvs and Butler, 2012). Fish were then
immediately placed into a separate recovery coetditled with room temperature (X8)

water for up to 30 mins before being relocated separate holding tank (to avoid repeated use
of fish) that was also on the main water circulateystem (fish total length was measured
before release; there were no linear relationsbipiéen fish size and AET, for each fish species
examined here). The experimental tank was draileédp cool for 24 hrs, refilled with
seawater from the main acclimation tank, readyHernext experiment. Fish AET statistics

were determined and are presented in Table 1.

2.3  Lakewater temperature logging
To profile water temperature characteristics inuHgan tidal lakes, Hobo temperature loggers

(Onset CorporatioBourne, Massachusetts) were deployed at two deptigproximately the

8



181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

deepest point in both lakes: 1) surface; 0.2 mbe&later surface; and 2) bottom; 0.1 m above
the lake bottom. The surface logger was attachdidet underside of a 0.15 m diameter buoy to
shield it from the sun at all times as direct expescould produce erroneous results. Loggers
were set to record data every 20 min from 31 Oct@bé5 to 30 March 2016 (this logging
period represents the summer months for the regrwhthereby the maximum likely
temperature that fish would be exposed too). Tdgging frequency was necessary to derive
water temperature frequency distributions for thgopses of assessing exposure risks (Wallace
et al., 2017; Wallace et al., 2015). The samedoggnfiguration was deployed in Lake 2
(Keyatta Lake) (Fig 1.), unfortunately these tenapae loggers, after 21 December 2015, failed
and no further data were retrieved. This limited ability to generate exposure risk plots and
to model the temperature. Data for Lake 2 aregmtesl in the Supplementary Notes (see Fig.

S1), however, is not included further in this study

24  Estimating lake water temperatures

Water temperature was estimated using the enetgpd®mmodel (McJannet et al., 2014;
Wallace et al., 2015). The model was originallyeleped for estimating daily evaporation
from open water bodies of various sizes (rangingfwaterbodies ~ 60 m wide, ~ 600 %im
area), but it can also calculate the daily mearewaddy temperature in order to specify the
changes in heat storage (to a well-mixed waterrono)u The main input of energy to the model
is solar radiation and the main loss occurs vid beaduction to the atmosphere and
evaporation. It is also possible for energy teetgave water if there is flow, however, this
effect can be ignored here given the tidal exchamgenall, when considering the total lake

volume (approximately < 0.01% of total lake volure@xchanged each day).

The lake water temperature model requires dailytezalata, which were obtained from the

Australian Government SILO database (http://www.nidigov.au/silo/). The SILO database

9
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consists of interpolated meteorological variablesa®.05° (5 km) grid for the whole of
Australia (Jeffrey et al., 2001). The variableaitable from SILO used in the temperature
model are air temperature, vapour pressure, satiatron and rainfall, and the way these
variables are used to calculate all of the ternte@model are described by (McJannet et al.,
2008). The model also requires daily mean winede calculate the evaporation rate) and as
this is not available in the SILO database, a fiwét speed of 1.3 mi'swas applied in the
model; the consequence of this assumption is diecuiater in the paper. Evaporation rate is
also dependent on the water body size, in ternb®thf surface area and depth. Water area
affects the ‘wind function’ used in calculating peaation (McJannet et al., 2012). Water depth
primarily affects heat storage and the model isfram the beginning of the year so that its
depth predictions match waterhole depth measuremmeatle during the model period
November 2015 to March 2016 (Supplementary Fig S&nsitivity analysis shows that

altering the water surface area or depth by a faift@ only changes modelled water

temperature by 0.8% and 0.2% respectively.

3. Resultsand Discussion
3.1 Lakewater temperature
During the logging period, weather conditions wgeaerally fine during November to February
period, as is typical for this time of year in tlegion. In this period the water column
consistently exhibited pronounced diel temperapamodicity and occasional diurnal
stratification (Fig 2). Typically one or two houafter sunrise each day the near-surface water
temperature began to rise at almost a linear cata period of 8 hrs reaching daily maxima as
high as 40.4C (mean 33) during the early evening hours (140007t00). The mean increase
in water temperature at the near-surface duringléye(06:00 to 14:00) was 228 h' (max 6.5

°C hY). For the remaining 16 hrs of the day the nesfase water temperatures gradually

10
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declined reaching a minimum 240 (mean 30.8C; max 38.2C), shortly before sunrise

(04:00 to 08:00).

In order to properly quantify the temperature regimconstructed urban tidal lakes, would
require logging water temperature over a numbeapafiotemporal scales, in order to
incorporate the full range of engineering desighnthese urban lakes (e.g., where flow is
controlled using tidal gates, tidal pipes, rock dwvalls, as each have varying differences in the
hydrodynamic exchange of tidal water with the dowe®m primary estuary (Waltham and
Connolly, 2007)), and to also examine among yeiferénces in thermal regimes. Data here
were collected during a single summer period, &edefore provide an indicative guide of the
annual minimum and maximum conditions expectediattime of the year. The methodology
applied here of determining acute thermal thresh@aboratory experiments), combining with
high frequency continuous water temperature datagdition to water balance models to
examine future exposure risks under climate ch@idlace et al., 2015), are the key focus of
this paper; these methods are transferable to bEewto examine thermal exposure risks to

tropical estuarine fish species.

Water temperatures near the bottom increased are gnadual rate each day, with an
increasing trend sustained for a longer periodh{¥}, therefore daily maximum was reached
after sunset (mean 29G3; max 36.5C). The mean hourly (during the day) increaséén t
near-lake bottom was 0°8 h* (max 1.8°C h%). The fact that bottom water temperature
continued to increase (lag) after sunset is a apresece of either continuing thermal heat
exchange after sunset (conduction), or the effepaidial mixing with the warmer surface

water.
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An important fact in the data here is that lakeawéémperature changed across the logging
period (Fig 2a), where the water column was veijiagell mixed (surface and bottom waters
remained similar), but at other times the colums diarnally stratified, where surface and
bottom waters were separated by several degresaI€€@Fig. 2b). Changes in mixing often
coincided with rainfall events, the most notablewdng on 10 January 2016 (91.8 mm over 72
hours, Townsville airport, station number 3204Meve the initial influx of cool rainwater
decreased surface water temperature by 6 °C i8jostirs, compared to only’8 in this time
period in the bottom water temperature. It casdmn that rainfall causes dramatic changes in
the thermal regime in the lake, where diurnallatfied profile then became vertically well
mixed, which occurred on 28 December 2015 afte8 8dm of rainfall fell in 3 days (Fig 2b).
The period where the near-surface waters (anddssar extent bottom waters) were coolest
occurred between 20 February and 18 March 2016rendnseries of rainfall events (totaling
561mm over several weeks) occurred in the regiorhis time series, after each rainfall event
surface water temperature progressively increagaith aintil the next rainfall event. In fact,
between 11 and 18 March 2016 the bottom water testyoe was higher than at the surface,

which indicates the ability for deeper waters twresthermal energy for relatively long periods.

3.2  Fishtemperature threshold experiments

The AET of five estuarine fish species ranged betw@3.1°C (minimum) and 39.8C
(maximum), Table 1. Of these fish species, thgedretween lowest AEAnd the highest for
an individual species was 6, which occurred for the whitin&illago analis, while the
smallest difference (0.4C) was found for diamond scale mullEtlochelon viagiensis.
Interestingly, in a study of thermal tolerance @rine fish in Indonesia, Eme and Bennett
(2009) revealed a similar thermal toleranceHoviagiensis of 38°C when acclimated at about

25°C, compared to (AEg) 39.5C when acclimated at 28 in the present study.
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The narrow range in AET has been found in othatistuusing estuarine fish species (Cheng et
al., 2013; Heath et al., 1993; Rajaguru and Ranratriaa, 2001), but also tropical freshwater
fish species (Burrows and Butler, 2012). Tabledvigles an overview of the percentage of
time that each fish species exceeded the thresheidg the surface and bottom logging
temperature data. For example, the surface dwelfiass perchhmbassis vachellii, exceeded
the minimum AET (35.9C) 26% of the logging time at the surface, and teas 3% of the
logging time at the bottom waters. In contrastlibathic dwelling whitingSilago analis,
minimum AET threshold (33°C) was exceeded 58% of the logging time at theasarfand

28% of the logging time at the bottom waters. Waeposed to water temperature above these
thermal thresholds, we assume fish would searcbhdoler thermal refugia. Both lakes have
limited edge vegetation for shading (Fig. 1B);h@tend the most likely response for fish would
be to descend the water column to the bottom, ctaite waters (Figure 3b), where neither of
the above thresholds are exceeded during the sumorghs. The need to migrate through the
water column has been also suggested for freshfsttenccupying ephemeral waterholes
within the tropical seasonal rivers of northern thalka (Wallace et al., 2017). While providing
thermal refugia, the cooler bottom waters havecatiyy low, hypoxic, dissolved oxygen
concentrations (unpublished data Townsville Cityi@ml). By continually adjusting position

to regulate against high water temperature analdisd oxygen, fish would use important
energy reserves leaving them more susceptibldattoatiwater quality conditions,

compromising reproductive fitness and predatiorcepibility (Eaton et al., 1995). The energy
balance model used here shows that thermoreguhatlbimcrease under future climate change,
for some fish this increase is considerable. Kamle, the ponyfish,eiognathus equulus,

AET is exceeded between 14% of the logging timed€dan maximum AET), but could be has
high as 47% (using the minimum AET) at the surface] up to 14% of the logging time in the

bottom waters (based on minimum AET) under futlireate conditions (Table 1).
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The acclimation tank temperature used in our exrpanmt (28°C) is commonly reported in the
literature (Burrows and Butler, 2012). Clearlygbalata show that aquatic organisms inhabiting
transitional coastal waters are exposed to congttmttuating water temperature, which raises
questions regarding the validity of acclimatingatonstant temperature (Rajaguru and
Ramachandran, 2001); it would seem advisable talaimthe natural diel temperature
periodicity of the animals’ environment during aowtion (Coulter et al., 2016). We advocate
here that fluctuating acclimation temperaturespaodably most appropriate in laboratory
experiments, however, based on our field measermegérature data, determining what diel

range to simulate would be difficult.

3.3  Modeling lake water temperature

The water temperature model used here predictedursthtemperature to withil@ during
periods when the lake was well mixed (Supplemerfagys2 and S3). Underestimation of
water temperature in the modelling has been shavather studies McJannet et al., (2008) and
Wallace et al., (2017), where those studies atiedbthe underestimation in wind speed (which
may be different to the 1.3happlied here in the model; increasing the windedpte 2nT (as
applied in freshwater waterholes in northern AdistraVvallace et al., 2015; Wallace et al.,
2017) contributed to further model underestimati®h= 0.81). For this reason the absolute
accuracy of the modelling when using readily alddagovernment weather climate data is
probably between 1 and@, however, precision could be improved with ifatadn of weather
stations, recording continuous weather condititimes, are located immediately adjacent to

water body of interest.

Concern about the potential impacts of climate geasn coastal transitional waters is
widespread. For example, authors of studies ifutB@and Europe have found that climate-

warming increases may reduce habitat availabiityile for others it will increase leading to

14



335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

shifts in species distributions (Buisson et alQ&CEaton and Scheller, 1996; Robins et al.,
2016; Sinokrot et al., 1995). Future changesimate in northern Queensland could affect the
thermal environment of constructed urban tidal $akEor the proposed increase in air
temperature of 2°C by 2100 (Hennessy et al., 2008), the model prediater temperature will
increase accordingly by 1°8. The modelling suggests that the period of expo® acute
thermal conditions increases, particularly at tearrsurface water layer. It seems that deeper
lake areas might provide important thermal refugidere water temperatures under future
climate conditions remain below the thermal thrégiior the fish species examined here. On
this basis it seems probable that fish occupyiegiéep waters are shielded from future climate,
however, fish species associated with near-suriaters may need to migrate down the water
column, more often, to find thermal relief. In thwure, vertical migration in the water column
may increase expose to critically low dissolvedgety (Marshall and Elliott, 1998; O'connell et
al., 2000). Fish in estuaries may be also suljedt salinity which can vary seasonally, tidally
and following rainfall (Araujo et al., 2000; Marshand Elliott, 1998; Whitfield et al., 1981).

The interaction between salinity and water tempeeahas been previously shown to influence
thresholds in estuarine fish (including for analeg@dmbassidae species) (Blaber, 1973; Martin,

1988), and should be investigated in future researc

4. Conclusions

Once in a constructed artificial urban lake, astesome estuarine fish species are faced with
acute thermal exposure stress during summer maarlsn response, would need to actively
search for thermal refugia, including potentialég@ssing the cooler, lake, bottom waters.
Using a water energy balance model, it seems igtabtcupying the near-surface waters will
spend more hours of the day searching for therafagra under future climate change, in some
cases up to twice the amount of time each daytiegtcurrently invest. Whether fish can

successfully achieve this will be influenced byastfactors, such as available oxygen, salinity
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or prey abundance, but would indeed still requsk fo be continually moving in the water
column. We believe that the methodology presehead is transferable to other transitional

water locations.
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Table 1. Temperature tolerance experiments for each species examined. Summary statistics provided demonstrating the rangein AET. Current
and future climate threshold exceedance (%) for both surface and bottom logger data.

Family/species Number Size Statistic 28(°C) Current climate Future climate Current climate Future climate
range acclimation threshold threshold threshold threshold
(TL, mm) experiment exceedance (%) exceedance (%) exceedance (%) exceedance (%)
Surface Bottom
Ambassidae
Ambassis vachellii 61 27-47 Lowest observed AET 35.10 26 a7 3 15
AET1o 37.30
AETso 38.70 5 14 0 0
AETgo 39.60
Highest observed AET 39.90 1 3 0 0
Leiognathidae
Leiognathus equulus 29 21-47 Lowest observed AET 34.90 26 47 3 15
AET1o 36.30
AETso 37.05 11 21 0 1
AETgo 37.39
Highest observed AET 37.90 5 14 0 0
Mugilidae
Chelon subviridis 8 48-189 Lowest observed AET 37.30 11 21 0 1
AET1o 37.58
AETso 39.00 2 6 0 0
AETgo 39.50
Highest observed AET 39.50 1 3 0 0
Ellochelon viagiensis 21 50-82
Lowest observed AET 38.90 2 6 0 0
AET1o 38.90
AETso 39.50 1 3 0 0
AETgo 39.50
Highest observed AET 39.80 <1 3 0 0
Slliginidae
Sillago analis 12 65-145 Lowest observed AET 33.10 6 16 28 54
AET1o 37.20
AETso 38.50 5 6 0 0
AETgo 39.80

Highest observed AET 39.80 <1 3 0 0
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List of figures
Figure 1. A) Curralea Lake (Lake 1) and Keyatta L ake (Lake 2), and connecting channels
adjacent to Ross Creek, Townsville, Australia. Dark grey fill indicates urban, industria or

commercia areas. B) Photo illustrating limited riparian shading provided around these |akes.

Figure 2. High frequency of water temperature recorded at the surface (~0.2m; black) and
bottom (~2.4m; grey) in Lake 1. A) full data set; and B) subset of the logging data from (A),

along with rainfall data for this logging period.

Figure 3. The percentage of time (based on 20 min data between 31 October 2015 and 31
March 2016) water temperature in Lake 1. 1n both graphs, black curve line is measured water
temperature for the current survey period, broken black curve lineis the future modelled
climate change data for the same time period. (@) lake near surface; and b) lake bottom
waters. Threshold lines present minimum Ambassis vachellii AET (black line), and

maximum AET (grey line measured temperature (not shown given <1%; Table 1)).
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