ESTIMATION OF JOINT CONTACT FORCES IN THE EQUINE DIGIT

Prisca Noble, Bernard Collin, Jean-Marie Denoix, Didier Serteyn and Frédéric Pascon

1 Department of Morphology and Pathology, Liège University Faculty of Veterinary Medicine, Belgium,
2 CIRALE-ENVA, France,
3 Department of Clinical Sciences, Equine Clinic, Liège University Faculty of Veterinary Medicine, Belgium,
4 Department of ArGenCo, Liège University Faculty of Applied Sciences, Belgium. Email: pnoble@ulg.ac.be

INTRODUCTION
In order to explain better the correlation between mechanical loading and osteoarticular disorders, joint contact forces and internal bone forces were recently investigated in human biomechanical studies [1,2]. Little research has yet been done on this subject in the horse, indeed this study describes a procedure estimating joint contact force in the equine digit during the stance phase of a trot simulation (4 m/s).

METHODS
Three Warmblood horses were used (mean body mass 510 kg). Right distal forelimb segments and joint centres were identified and morphometric data (body mass (Mt), segmental length (L), segmental angle (α) made by the segment with the vertical direction in the square standing position, moment arms of muscles (dm) for the coffin and for the fetlock joints) were measured. From all the collected parameters and using published kinematic [3,4,5] and kinetic [6] data, an inverse dynamic analysis was executed. The joint contact forces were estimated for the coffin joint and for the fetlock joint during the stance phase of the trot (4m/s) (Figure 1).

RESULTS AND DISCUSSION
Per unit body weight (BW), the mean peak vertical joint contact force was found to be 1.4 BW and 4 BW respectively for the coffin and for the fetlock joints (Figure 2).

CONCLUSIONS
A model estimating joint contact force in the equine digit during the stance phase of a trot simulation was developed. The results of this application could be compared with a thorough in vivo dynamic equine gait study and could be associated with a biomechanical model studying dynamic stresses.

REFERENCES