# ResearchOnline@JCU

This file is part of the following reference:

### Aguilar Hurtado, Catalina (2016) Transcriptomic analyses of the responses of corals to environmental stress. PhD thesis, James Cook University.

Access to this file is available from:

http://researchonline.jcu.edu.au/49678/

The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact <u>ResearchOnline@jcu.edu.au</u> and quote <u>http://researchonline.jcu.edu.au/49678/</u>



# Transcriptomic analyses of the responses of corals to environmental stress

PhD Thesis submitted by

Catalina Aguilar Hurtado

in May 2016

For the degree of Doctor of Philosophy College of Public Health, Medical and Veterinary Sciences James Cook University



## Acknowledgements

Firstly, I would like to thanks my supervisors Prof David Miller and Dr David Bourne for their continuous support during this PhD study, for their patience and motivation throughout these years. To David M for allowing me to join his lab and make that first journey to Australia, and to David B for giving me the opportunity to work at AIMS and access first-class facilities that were important for completing this thesis.

I would also like to thank my previous supervisors: Prof Juan Armando Sanchez and Prof James D. Reimer for encouraging me to pursue marine molecular research, and to have given me the opportunity to explore the Caribbean and Pacific reefs.

A sincere thank to my labmates in particular to Mei-Feng Lin, Aurelie Moya, Susanne Sprangala, Ben Mason and Bruno Lapeyre for the stimulating discussions and help during my experiments.

Special thanks to my friends in Townsville: Sam Noonan, Kelsy Miller, Daisie Ogawa, Julian Facundo Rinaudo, Andres Ramirez Yaksic, Raul Pøsse and Brett Blandford for their support and friendship.

Finally, to my family, for their unconditional support through this whole process. Without them I would not be where I am today.

## Statement of contribution of others

Research funding:

- ARC Centre of Excellence for Coral Reef Studies (ARC COE)
- AIMS@JCU
- James Cook University (JCU)
- Australian Institute of Marine Science (AIMS)

Supervision:

- Professor David J. Miller, JCU
- Dr David G. Bourne, AIMS

Experimental set-up and instrumentation:

- Dr Chia-Miin Chua (JCU) (Chapter 2)
- Dr Andrew Negri (AIMS) (Chapter 3)
- Dr Cherie A. Motti (AIMS) (Chapter 4)
- Dr Jean-Baptiste Raina (UTS) (Chapter 3 and 4)
- Dr Victor Beltran (AIMS) (Chapter 3 and 4)
- National Sea Simulator staff (AIMS) (Chapter 3 and 4)

Laboratory analyses

- Dr David C. Hayward (ANU) (Chapter 3 and 4)
- Dr Bruno Lapeyre (Laboratoire d'excellence CORAIL) (Chapter 3 and 4)

Bioinformatics assistance:

• Dr Sylvain Fôret (ANU)

Editorial assistance:

- Prof David J. Miller and Dr David G. Bourne (whole thesis)
- Dr Aurelie Moya (Chapter 2)
- Dr Jean-Baptiste Raina (Chapter 3 and 4)
- Dr Cherie A. Motti (Chapter 4)

### Abstract

Coral reefs are the oceans' most diverse and productive ecosystems. However, reef ecosystems are also one of the most endangered habitats on Earth, due to their fragility and exposure to both abiotic and biotic stressors. Understanding the impacts that environmental stressors have on the coral cellular mechanisms is integral for determining the coral health status. It also has important implications for persistence of coral reefs under rapidly changing climatic conditions. In this PhD study, I implemented a transcriptomic approach to investigate the response of the coral *A. millepora* to biotic and abiotic challenges in an attempt to better understand the molecular mechanisms underlying specific and general coral stress responses.

In Chapter 2, I focus on the coral response to lipopolysaccharidae (LPS) challenge in order to better understand innate immunity in corals. By using differential gene expression analysis and comparative genomics, I provide evidence that the coral response to LPS challenge resembles that of vertebrates. In addition, the effect of pre-exposure to high *p*CO<sub>2</sub> conditions on the response to LPS challenge was investigated where, as in vertebrates and *Drosophila*, hypercapnia impaired the innate immune response. The results obtained support the hypothesis that coral immunity is likely to be compromised by near-future ocean acidification conditions and that cumulative stressors may predispose corals to increased disease.

In Chapter 3, I investigate the molecular mechanisms underlying the coral response to hypo-osmotic stress, again through application of transcriptomic approaches. Previous studies on corals and other marine invertebrates have enabled identification of a group of genes that respond to a wide range of stressors, whereas distinct sets of genes respond to specific stressors. Results described in this chapter illustrate that common responses to environmental stressors in *Acropora* sp. include up-regulation of genes involved in

iv

macromolecular and oxidative damage, while up-regulation of genes involved in amino acid metabolism and transport represent specific responses to salinity stress. These results provide important insights into how corals respond at the molecular level to low salinity events, which are predicted to increase under future climate scenarios due to increased frequency of intense rainfall events.

In Chapter 4, I examine the production of dimethylsulphoniopropionate (DMSP) by corals under salinity stress, in order to better understand the biosynthetic pathway and the role this compound in the coral. The concentration of DMSP increased in the coral under hypo-saline conditions, contradicting the assumption that DMSP functions as an osmolyte in corals, as is the case in higher plants and algae. Results described in this chapter suggest that DMSP production primarily serves as an overflow mechanism for removal of excess methionine arising from catabolism of betaines, although DMSP may also serve as a scavenger of ROS. The transcriptomic analyses also enabled identification of candidate genes for roles in DMSP biosynthesis. When DMSP was produced in response to hyposaline stress, coral homologues of each of the four enzymes classes implicated in DMSP biosynthesis (aminotransferase, reductase, methyltransferase, and decarboxylase) were up-regulated, linking specific genes to production of this compound from methionine in corals.

In Chapter 5, the published data and that described in all of the previous thesis chapters are used in attempt to establish the general mechanisms used by corals to respond to environmental stress. The transcriptomic data generated here provide novel insights into conserved and specific molecular mechanisms used by corals under stress, and advances our understanding of how corals are likely to respond to the challenges of a changing marine ecosystem.

# **Table of Contents**

| Acknowledgements                    | ii  |
|-------------------------------------|-----|
| Statement of contribution to others | iii |
| Abstract                            | iv  |
| List of Tables                      | ix  |
| List of Figures                     | xi  |

### $\label{eq:chapter1.} Chapter \ \textbf{1}. \ \textbf{General introduction: The response of corals to environmental stress \ \dots \ 1}$

| 1.1. | The                        | importance of coral reefs and their current decline | 2  |
|------|----------------------------|-----------------------------------------------------|----|
| 1.2. | Coral innate immune system |                                                     | 6  |
| 1.3. | Env                        | ironmental stressors and coral health               | 10 |
| 1.4. | Cora                       | als response to salinity changes                    | 11 |
| 1.4. | 1.                         | Corals and osmoregulation                           | 11 |
| 1.4. | 2.                         | DMSP production in corals                           | 12 |
| 1.5. | Cora                       | als and transcriptomics                             | 13 |
| 1.6. | Stuc                       | dy aims and objectives                              | 14 |

### Chapter 2. Elevated *p*CO<sub>2</sub> suppresses the innate immune response of the coral

| Acropora I | mille | pora to LPS challenge                                                           | 17 |
|------------|-------|---------------------------------------------------------------------------------|----|
| 2.1.       | Intr  | oduction                                                                        | 18 |
| 2.2.       | Mat   | erials and Methods                                                              | 21 |
| 2.2        | 2.1.  | Aquarium experimental design                                                    | 21 |
| 2.2        | .2.   | Coral immune challenges                                                         | 22 |
| 2.2        | .3.   | RNA extractions, sequencing and gene expression analysis                        | 22 |
| 2.3.       | Res   | ults                                                                            | 24 |
| 2.3        | 8.1.  | Differential expressed genes analysis                                           | 24 |
| 2.3        | 8.2.  | Activation of innate immune pathways after LPS challenge                        | 27 |
| 2.3        | .3.   | The intracellular NLRs were regulated after 6 h challenge                       | 32 |
| 2.3        | 8.4.  | Elevated <i>p</i> CO <sub>2</sub> suppresses the innate immune respons <i>e</i> | 33 |
| 2.4.       | Disc  | cussion                                                                         | 36 |
| 2.4        | .1.   | LPS activates Toll-like, TNF and NOD-like receptors                             | 36 |
| 2.4        | .2.   | Comparative response between LPS and other immune challenges                    | 37 |
| 2.4        | .3.   | High $pCO_2$ suppressed the coral LPS-induced innate immune response .          | 38 |
| 2.5.       | Con   | clusions                                                                        | 39 |

| 2.6. | Supporting information |  |
|------|------------------------|--|
|------|------------------------|--|

| Chapter 3. | . Trar | nscriptomic analysis of the coral <i>Acropora millepora</i> reveals protein |    |
|------------|--------|-----------------------------------------------------------------------------|----|
| homeosta   | sis br | eakdown during hypo-saline stress                                           | 66 |
| 3.1.       | Intr   | oduction                                                                    | 67 |
| 3.2.       | Mat    | erials and Methods                                                          | 59 |
| 3.2        | .1.    | Coral salinity stress experiment                                            | 69 |
| 3.2        | .2.    | Juvenile coral salinity stress experiment                                   | 70 |
| 3.2        | .3.    | RNA extractions sequencing and gene expression analyses                     | 70 |
| 3.3.       | Resu   | ılts                                                                        | 72 |
| 3.3        | 8.1.   | Differential gene expression analyses                                       | 72 |
| 3.3        | 8.2.   | Proteolysis within the ER under hypo-saline conditions                      | 74 |
| 3.3        | 8.3.   | Unfolded protein response (UPR) system                                      | 75 |
| 3.3        | 8.4.   | The response of genes involved in oxidative stress and osmoregulation       | 76 |
| 3.3        | 8.5.   | Glycine betaine and glutamate catabolism by hypo-saline stress              | 78 |
| 3.3        | 8.6.   | The responses of coral juveniles to hypo-saline stress                      | 80 |
| 3.4.       | Disc   | ussion                                                                      | 81 |
| 3.4        | .1.    | The common response to stress in corals                                     | 81 |
|            | 3      | .4.2. The specific response to hypo-saline stress in coral —osmoregulati    | on |
|            | а      | nd transporters                                                             | 34 |
| 3.4        | .3.    | The response of adult coral vs. juveniles to hypo-saline stress             | 86 |
| 3.5.       | Con    | clusions                                                                    | 37 |
| 3.6.       | Sup    | porting information                                                         | 88 |
|            |        |                                                                             |    |
| Chapter 4. | . Trar | nscriptomic analysis of the response of Acropora millepora to hypo-         |    |
| osmotic st | tress  | provides insights into DMSP biosynthesis by corals1                         | 06 |

| 4.1. Introduction                                                        |
|--------------------------------------------------------------------------|
| 4.2. Materials and Methods                                               |
| 4.2.1. Adult and juveniles sampling110                                   |
| 4.2.1.1. Adults sampling111                                              |
| 4.2.1.2. Juveniles sampling                                              |
| 4.2.2. <i>Symbiodinium</i> efficiency, density estimation and genotyping |
| 4.2.3. DMSP quantification by qNMR analysis112                           |
| 4.2.4. Identification of candidate genes                                 |

| 4.3. Res                                                                          | ults                                                           |  |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------|--|
| 4.3.1.                                                                            | Concentration of DMSP in coral tissues114                      |  |
| 4.3.2.                                                                            | Candidate DMSP biosynthesis genes115                           |  |
| 4.3.3.                                                                            | DEGs involved in methionine metabolism119                      |  |
| 4.4. Disc                                                                         | cussion                                                        |  |
| 4.4.1.                                                                            | Corals increase production of DMSP under hyposaline stress     |  |
| 4.4.2.                                                                            | Putative coral enzymes involved in the DMSP algal-like pathway |  |
| 4.4.3.                                                                            | Corals do not use a plant-like pathway for DMSP synthesis      |  |
| 4.4.4.                                                                            | DMSP production in corals in response to hypo-osmotic stress   |  |
| 4.5. Con                                                                          | clusions                                                       |  |
| 4.6. Sup                                                                          | porting information128                                         |  |
|                                                                                   |                                                                |  |
| Chapter 5. General discussion: The key molecular components involved in the coral |                                                                |  |
| response to environmental stress                                                  |                                                                |  |

| References |
|------------|
|------------|

# List of Tables

### Chapter 2

| Table 2.1. Expression of TIR-domain-containing proteins                                                | .29  |
|--------------------------------------------------------------------------------------------------------|------|
| Table 2.2. Expression of TNF, TNFR and TRAF genes                                                      | .31  |
| Table S2.1. Seawater parameters under control and high $pCO_2$                                         | .40  |
| Table S2.2. Gene ontology term of the DEGs to LPS challenge                                            | .41  |
| Table S2.3. Differentially expressed genes in response to LPS challenge                                | .43  |
| Table S2.4. Homologues to the complement system and C-lectins                                          | .45  |
| Table S2.5. TIR-domain-containing proteins                                                             | .47  |
| Table S2.6. TNF and TNFR containing proteins                                                           | .49  |
| Table S2.7. TRAF-domain containing proteins                                                            | .51  |
| Table S2.8. NACHT-domain containing proteins                                                           | .53  |
| Table S2.9. General DEGs under LPS challenge                                                           | . 59 |
| Table S2.10. Gene ontology of the DEGs to LPS challenge under high <i>p</i> CO <sub>2</sub> conditions | .61  |
| Table S2.11. DEGs to LPS challenge under high $pCO_2$ conditions                                       | .62  |

### **Chapter 3**

| Table 3.1. Comparison between marine invertebrates studies and response to hypo-sa | line to |
|------------------------------------------------------------------------------------|---------|
| stress                                                                             | 84      |
| Table S3.1 DEGs to hypo-saline stress as in the heat map                           | 88      |
| Table S3.2. DEGs homologues to the ER protein processing system                    | 90      |
| Table S3.3. DEGs homologues to the peroxisome and lysosome system                  | 94      |
| Table S3.4. DEGS homologues to amino acids metabolism                              | 96      |
| Table S3.5. DEGs homologues to membrane transporters                               | 98      |
| Table S3.6. Comparison of different marine invertebrate studies                    | 102     |

### Chapter 4

| Table 4.1. List of enzymes abbreviations                                   | 110 |
|----------------------------------------------------------------------------|-----|
| Table 4.2. Candidates genes involve in DMSP biosynthesis                   | 119 |
| Table S4.1. Statistical tests for DMSP concentration under salinity stress | 128 |
| Table S4.2. Statistical tests for PAM data under salinity stress           | 128 |
| Table S4.3. ANOVA for juveniles DMSP concentration                         | 128 |
| Table S4.4. Candidates genes involve in DMSP biosynthesis                  | 129 |
| Table S4.5. Differentially expressed aldehydes to salinity stress          | 131 |

# List of Figures

### Chapter 1

| Figure 1.1. Phase shift in Caribbean reefs                              | 3  |
|-------------------------------------------------------------------------|----|
| Figure 1.2. IPCC projected ocean acidification scenarios                | 5  |
| Figure 1.3. Seasonal freshwater plumes on the GBR                       | 5  |
| Figure 1.4. TLR signalling pathway in <i>Hydra</i>                      | 7  |
| Figure 1.5. Components of the <i>A. digitifera</i> innate immune system | 8  |
| Figure 1.6. Cnidarian complement component C3 domains                   | 9  |
| Figure 1.7. Coral health trilogy                                        | 10 |

### Chapter 2

| Figure 2.1. Heat map of the DEGs to LPS                                             | 26                  |
|-------------------------------------------------------------------------------------|---------------------|
| Figure 2.2. Percentages of gene families expressed under LPS challenge              |                     |
| Figure 2.3. Summary of the coral immune response to LPS                             |                     |
| Figure 2.4. Expression of immune and stress genes under high $pCO_2$ conditions     | 35                  |
| Figure S2.1. Experimental <i>p</i> CO <sub>2</sub> values                           | 64                  |
| Figure S2.2. Venn diagram of the DEGs in response to LPS challenge                  | 64                  |
| Figure S2.3. Venn diagram of the DEGs to LPS in response to LPS challenge under hig | gh pCO <sub>2</sub> |
|                                                                                     | 65                  |

### Chapter 3

| Figure 3.1. Heat map of overrepresented GO terms to hypo-saline stress          | 73  |
|---------------------------------------------------------------------------------|-----|
| Figure 3.2. Differential expression of ER homologues to hypo-saline stress      | 76  |
| Figure 3.3. Differential expression of genes involved in amino acids metabolism | 79  |
| Figure S3.1. PCA plot of normalized gene expression values                      | 104 |
| Figure S3.2. Total DEGs under hypo-saline stress                                | 104 |
| Figure S3.3. Venn diagrams of the DEGs in adults and juveniles corals           | 105 |

### Chapter 4

| Figure 4.1. DMSP biosynthesis pathway in higher plants and algae        | . 108 |
|-------------------------------------------------------------------------|-------|
| Figure 4.2. DMSP concentration in corals under hypo-saline stress       | . 115 |
| Figure 4.3. Genes involve in methionine metabolism                      | . 121 |
| Figure 4.4. Expression levels of DMSP biosynthesis candidates           | . 124 |
| Figure S4.1. Acrylate concentrations in corals under hypo-saline stress | . 132 |
| Figure S4.2. Symbiodinium cell density and photosynthetic efficiency    | . 132 |

| Chapter 5                                                          |     |
|--------------------------------------------------------------------|-----|
| Figure 5.1. General responses of <i>Acropora</i> to abiotic stress | 138 |

# **Chapter 1: General introduction**

# The response of corals to environmental stress

#### 1.1. The importance of coral reefs and their current decline

Coral reefs are biologically diverse ecosystems. Despite only constituting approximately 0.1% of the ocean's surface area, coral reefs provide habitat for nearly one quarter of all marine species (Hoegh-Guldberg 1999; Moberg & Folke 1999; Plaisance *et al.* 2011). Coral reefs are also of great economical importance, supporting fisheries and providing income to local communities through tourism based activities. For example, the Great Barrier Reef (GBR) off the east coast of Australia and the world's largest coral reef ecosystem, was estimated to contribute \$5.7 billion to the Australian economy in 2012 (Economics 2013). Many coastal communities in developing countries rely on coral reefs for their primary source of protein, thereby making them central to the livelihood of millions of people globally (Moberg & Folke 1999). Coral reefs also provide a variety of other ecosystems goods and services including coastal protection, sediment production, and biotic services as habitat for a wide range of fish species and marine invertebrates (Harborne *et al.* 2006).

Globally, coral reefs are in decline, however, driven by environmental and anthropogenic factors, including coastal pollution, over-fishing, tourism, and climate change (Gardner *et al.* 2003; Hughes 1994; Pandolfi *et al.* 2003). Evidence for this decline can be most clearly seen in the Caribbean, where up to 80% of coral cover has been lost over three decades, attributed to several factors including coral bleaching, diseases, overfishing, and the collapse of the sea urchin, *Diadema antillarum* population. In many regions a phase shift from coral to macroalgal dominance has occurred on the reefs and persisted for 25 years (Figure 1.1) (Gardner *et al.* 2003). Recent assessments of the GBR show that a 50% decline in coral cover has occurred over the period from 1985 to 2012, largely attributable to three main factors - coral predation by crown-of-thorns starfish (COTS), cyclones and coral bleaching (De'ath *et al.* 2012). Anthropogenic factors contributing to the degradation of the GBR include water quality parameters, particularly elevated loads of nutrients, sediments, and pesticides from coastal run-off (Great Barrier Reef Marine Park 2014). Globally, these threats are

expanding with an estimated 30% of reefs threatened by coastal development, and 12% by marine pollution (Fabricius 2005).



**Figure 1.1** Phase shifts of Caribbean reefs from coral to macroalgal dominance in A) 1975 and C) 2013 Discovery Bay, Jamaica. B) 1975 and D) 2004 Carysfort Reef within the Florida Keys National Sanctuary. Figure taken from Jackson *et al.* (2014; Figure 2).

While localised disturbances have significantly impacted coral reefs, climate change effects, including increasing global temperatures and ocean acidification, are projected to have cumulative impacts on reef ecosystems, causing shifts in species distribution and further declines in coral cover. Global projections by the Intergovernmental Panel on Climate Change (IPCC 2013) predict that sea surface temperatures will increase over the next century by 1°C to more than 3°C depending on the emission scenarios. While the ocean pH is predicted to decrease by a further 0.2-0.4 units from the present value (Figure 1.2) (IPCC 2013, Chapter 12). Some studies imply that these two factors could contribute to major declines in calcification in coral reefs, where data from the GBR show that between 1990 and 2005 there was an 11% decline in coral calcification (De'ath *et al.* 2009; Orr *et al.* 2005).

Short-term laboratory experiments also provide evidence of direct impacts of high *p*CO<sub>2</sub> conditions on a wide range of marine calcifying organisms, though further research is needed to understand the long-term effects and population level impacts (Doney *et al.* 2009).

Changes in surface salinity that are linked to evaporation and precipitation over oceans have also been affected by climate change (IPCC 2013, Chapter 3). Projected global trajectories imply that as a result of climate shifts, wet regions are becoming wetter and dry regions are becoming drier (Durack et al. 2012). Over 50 years of data collected from the tropical western Pacific regions has demonstrated that sea surface salinity (SSS) has declined by 0.1 to 0.3 in regions with high precipitation (Cravatte *et al.* 2009). On the GBR, SSS is on average 35 practical salinity units (PSU), but varies depending on proximity to river mouths and fluctuates during heavy rainfall events (Great Barrier Reef Marine Park 2014). Freshwater plumes extend along 2300 km of the Queensland coast line and impact heavily the adjoining coral reef environments during the wet season (December to April; Figure 1.3) (Devlin & Brodie 2005). These plumes can cause bleaching and mortality of corals in addition to carrying heavy sediment loads, nutrients and pesticides onto the reef. For example, in the Harvey Bay region, repeated intensive flooding during the summers of 2010 to 2013 resulted in approximately a  $\sim$ 56% decline in coral cover. These flooding events were correlated with salinity decreases, increases of suspended solids and increase of total nitrogen and phosphorus, all likely contributing to the coral decline (Butler *et al.* 2015).



**Figure 1.2** Projected ocean surface pH under the RCP8.5 and RCP2.6 scenarios (filled and dashed lines respectively). Surface pH in the Arctic (green), tropical (red) and Southern Oceans (blue). Figure from the IPCC 2013 (Chapter 6; Figure 6.28).



**Figure 1.3** The extent of seasonal freshwater plumes during the 2003 and 2010 wet seasons, based on a salinity threshold of  $S \le 30$ . Figure from Schroeder *et al.* (2012; Figure 9).

#### 1.2. The coral innate immune system

There is clear evidence that environmental and anthropogenic stressors impact coral health, however many of the underlying mechanisms that corals rely on to cope with these stressors remain largely unknown. In all animals, the innate immune system is essential for defence against biotic and abiotic challenges, but is poorly understood in corals. The innate immune system is fundamental for the interaction of multicellular organisms with the environment, and the elements of this system are shared throughout the metazoan lineage. Corals have clear counterparts of many of the key components of the vertebrate immune system (Miller et al. 2007) and, although their functions are unknown, some functional data are available for *Hydra* another representative cnidarian. Work on *Hydra* has established that some immune sensing pathways arose prior to the cnidarian-bilaterian divergence; for example, although Hydra lacks a canonical Toll-like receptor (TLR), TIR containing proteins (HyTRR-1 and HyTRR-2) are present, and mediate innate immunity via an NF-kb pathway (Figure 1.4), confirming that bacterial recognition via TLRs is an ancestral function (Augustin et al. 2010). The activation of the Hydra immune response via TLRs leads to the production of antimicrobial peptides (AMPs, Hydramacin-1), host-specific molecules used as defence mechanisms (Bosch et al. 2009).



**Figure 1.4** TLR signalling pathway in *Hydra*. The TIR containing protein (HyTRR1) interacts with HyLRR-2, a protein that contains a leucine-rich repeats (LRR) domain, leading to activation of NF-kB and thus the production of antimicrobial peptides. Figure from Bosch (2013; Figure 5).

Although cnidarians are often assumed to be simple organisms, genome sequencing has revealed the presence of a highly complex and vertebrate-like immune repertoire (Miller et al.,2007). Surveys of the *A. digitifera* and *A. millepora* genomes revealed the presence of the key pathogen-recognition receptors (PRR) families of vertebrates: the (extracellular) TLRs, tumor-necrosis factor receptors (TNFR), and the (cytosolic) Nod-like receptors (NLRs) as well as many components of the corresponding down-stream signalling cascades (Figure 1.5A) (Miller *et al.* 2007; Shinzato *et al.* 2011). Moreover, the cnidarian repertoires of candidate immune receptors are large by comparison with those of other animals; for example, the A. *digitifera* genome encodes 496 NACHT domain proteins and 40 TNFR family members (Figure 1.5B) (Hamada *et al.* 2012; Quistad SD *et al.* 2014). In vertebrates, these PRRs recognise pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharides (LPS) and muramyl dipeptide (MDP), inducing a pro-inflammatory and apoptotic response by the innate immune signalling pathway (Akira *et al.* 2006). Transcriptomic analyses of the response of *Acropora millepora* to MDP (muramyl dieptide) revealed interesting similarities with vertebrate immunity, including acute up-regulation of several members of the GiMAP family of regulatory proteins (Weiss *et al.* 2013). These data demonstrate that we are starting to understand the mechanisms that corals rely upon when exposed to immunogens, but the detailed mechanisms remain largely unknown.



**Figure 1.5** Components of the *A. digitifera* innate immune repertoire. A) TLR signalling pathway components identified in *Nematostella* and *A. digitifera*. Red and blue boxes indicate genes found in the *A. digitifera* and *Nematostella* genomes respectively. B) TNFR repertoire of *A. digitifera* indicating the protein domains and members of the death receptor pathway with the numbers of proteins of each type in *A. digitifera* and *H. sapiens*. Figures from Shinzato *et al.* (2011; Figure 13) and Quistad *et al.* (2014; Figure 1).

The complement system is a second arm of the innate immune response, and again homologs of several key components have been found in cnidarians but little is known about their roles. As with the TLRs, in both vertebrates and invertebrates, lectin members of the complement system recognize PAMPs, leading to activation of a phagocytic response to eliminate pathogens (Fujita *et al.* 2004). Homologues of some of the key components of the vertebrate system have been characterized in the sea anemone, *Nematostella vectensis*: the complement component 3 (C3), factor B (Bf), and the mannan-binding protein associated serine protease (MASP) (Kimura *et al.* 2009). The *Acropora millepora* C3 (C3-Am) has the canonical complement C3 domain structure (shown in Figure 1.6) (Miller *et al.* 2007), and was up-regulated in response to injury (Kvennefors *et al.* 2010) and under challenge with *Alteromonas* sp. (Brown *et al.* 2013). These studies are consistent with an important role for C3-Am in the coral innate immune response.

Moreover, the *Acropora millepora*, mannose-binding lectin (MBL), Millectin has been implicated in pathogen recognition (Kvennefors *et al.* 2010). A number of other lectins (PdClectin, Concanavalin, P-selectin) were up-regulated after exposure of the coral *Pocillopora damicornis* to the pathogen *Vibrio coralliilyticus* (Vidal-Dupiol *et al.* 2011). Other proteins implicated in coral immunity include phenoloxidase (PO) and a number of fluorescent proteins (FPs), these proteins showed higher concentrations in unhealthy than in healthy corals (Palmer *et al.* 2010; Palmer *et al.* 2008).



### Complement component C3

**Figure 1.6** Protein domains present in vertebrate complement component C3, and the presence (+)/absence (-) of these in the corresponding proteins from *Hydra, Nematostella* and *Acropora*. Figure taken from Miller *et al.* (2007; Figure 5). **1.3. Environmental stressors and coral health** 

As in other organisms, coral health and disease can be understood as the interaction between the environment, causative agents (e.g. virus, bacteria, fungi), and host susceptibility (Figure 1.7) (Rosenberg *et al.* 2008). This interaction is evident in studies that suggest that elevated temperatures can compromise host immunity and increase pathogen virulence, making corals more susceptible to disease (Harvell *et al.* 2009). Consistent with the idea of additive or synergistic effects of stressors, Cervino *et al.* (2004) reported that elevated water temperature increased progression of yellow blotch/band disease (YBD) lesions on the Caribbean coral *Montastrea*. Vidal-dupiol *et al.* (2014) demonstrated down-regulation of innate immune system components (including TIR, NF-kB, P38, AP1 genes) during the response of *Pocillopora domicornis* to bacterial challenge under thermal stress, suggesting immune suppression.



**Figure 1.7** Coral health is result of the interaction between the environment, the causative agents and the coral holobiont (as described in Rosenberg *et al.* 2008).

Whilst some studies have focused on the effects that temperature has on coral health and immune responses (Pinzón *et al.* 2015; Ricaurte *et al.* 2016), little attention has been paid to the impact that ocean acidification (OA) could have on the coral innate immune system despite OA being considered a major threat to coral reefs over the next century. Clear evidence that elevated  $pCO_2$  can impair immune responses comes from both mammals and *Drosophila*, where exposure to elevated  $pCO_2$  conditions suppresses the production of key immune proteins and increases bacterial pathogen virulence, making these organisms more prone to disease (Cummins *et al.* 2010; Helenius *et al.* 2009; Taylor & Cummins 2011). Relatively few studies have addressed the effects of elevated  $pCO_2$  on immunity in marine organisms. Activation of the stress signalling molecule (p38 MAP-kinase) was significantly inhibited in the echinoderm Asterias rubens, after six months of elevated pCO<sub>2</sub> (Hernroth et al. 2011). Likewise, increased infection by the bacterium Vibrio tubiashii was observed in blue mussels (*Mytilus edulis*) after four months exposure to high  $pCO_2$  conditions (Asplund *et al.* 2014). After nine days of exposure, primary polyps of *A. millepora* responded to 750 ppm  $pCO_2$  by increased transcription of genes encoding specific heat shock (HSPs) and antiapoptotic Bcl-2 proteins (Moya et al. 2015 and 2016), but the impacts of this treatment on immunity are unknown.

### 1.4. Coral responses to salinity changes

### 1.4.1. Corals and osmoregulation

Freshwater intrusions onto the GBR have major impacts on near-shore reefs by decreasing water quality, impacting the health of corals and other marine organisms (Fabricius *et al.* 2005). Although there are current efforts to improve water quality to mitigate the impacts on the GBR (Great Barrier Reef Marine Park 2014), the effects of low salinity due to heavy rainfall will require global efforts to minimize climate change impacts on the water cycle. The consequences of low salinity events on corals are only now being revealed; for example, data from the Keppel Islands (GBR) indicated that 15 days of exposure to hypo-saline conditions (28 PSU) after heavy rainfall events, is the limit for survival of

*Acropora* sp. (Berkelmans *et al.* 2012). In the case of the coral *Stylophora pistillata*, exposure to hypo-saline conditions leads to swelling of cells, loss of *Symbiodinium*, and tissue necrosis (Downs *et al.* 2009). Other studies suggest that the response to low salinity may differ between species; for example, in contrast to *Acropora* and *Pocillopora*, species of *Porites* did not bleach during a low salinity event on a Gulf of Thailand reef (Nakano *et al.* 2009).

To understand the coral response to changes in salinity, it is necessary to investigate the regulatory mechanisms involved. Although there have been few studies on cnidarian osmoregulation, as in other marine invertebrates, corals respond to osmotic changes by adjusting the concentration of inorganic or organic molecules such as: K<sup>+</sup>, Cl<sup>-</sup>, free amino acids (FAA), glycine betaine, trimethylamine-N-oxide (TMAO) and proline betaine (Hochachka & Somero 2002). Changes in levels of these compounds under osmotic stress differ substantially between species (Pierce 1982). For example, FAA concentrations increased in the coral *Acropora aspera* under hyposaline conditions, whereas they decreased in the anemone *Anthopleura aureoradiata* (Cowlin 2012), suggesting taxon-specific responses. Overall, we have a very limited understanding of the molecules and processes used by corals to cope with changes in salinity, and the cellular mechanisms that are leading to bleaching and mortality after low salinity events are unknown.

### 1.4.2. DMSP production in corals

Sulphur is an essential element whose global biogeochemical cycle links the terrestrial, atmosphere and ocean systems (Andreae 1990). The oceans are one of the largest reservoirs of sulphur, from which sulphur is naturally released as the organic compound dimethylsulphide (DMS). This volatile gas is the breakdown product of dimethylsulphoniopropionate (DMSP) and, after entering the atmosphere, can regulate local climate by inducing cloud formation (Ayers & Gras 1991; Sievert *et al.* 2007). DMSP is a key molecule in the marine sulphur cycle, and is particularly significant in reef ecosystems since

corals are amongst the largest DMSP producers in the marine environment. DMSP production by corals exceeds levels reported by the highly productive sea ice algae, thus corals are important contributors to the biogenic sulphur cycle (Broadbent & Jones 2004). Pathways of DMSP biosynthesis have been described for several groups of algae and a few higher plants (Caruana 2010) and, on this basis, the production of DMSP by corals was attributed until recently to their dinoflagellate symbionts (Broadbent *et al.* 2002). However, a recent study by Raina et al. (2013) demonstrated production of DMSP by aposymbiotic coral larvae and the presence of candidate genes for roles in its biosynthesis in *A. millepora*. DMSP has been associated with a wide range of functions in organisms that produce it, including as an osmolyte, a cryoprotectant, and in scavenging reactive oxygen species (ROS) (Kirst 1990; Nishiguchi & Somero 1992; Sunda et al. 2002). For example, DMSP production by the sea-ice diatom Fragilariopsis cylindrus increased by 85% under hypersaline conditions, in order to maintain osmotic balance (Lyon et al. 2011). The biological significance of DMSP production by corals is unknown, although previous studies have reported concentration increases with temperature stress (Raina et al. 2013), and roles in scavenging of ROS have been suggested (Deschaseaux et al. 2014).

Pathways of DMSP biosynthesis are not well documented, although it has been proposed that this trait has arisen independently at least three times - twice in higher plants and once in algae (Gage *et al.* 1997; Hanson *et al.* 1994; Kocsis *et al.* 1998). Information on DMSP biosynthesis pathways is scarce and patchy. The identification of key intermediates, such as dimethylsulphonio-2-hydroxybutyrate (DMSHB), is assumed to reflect the presence of a complete pathway for DMSP biosynthesis but, while some of the enzymes involved have been identified, others await confirmation (Stefels 2000). To date, corals are the only animals known to produce DMSP, therefore elucidation of the corresponding biosynthetic pathway is of fundamental interest (Raina *et al.* 2013).

#### 1.5. Corals and transcriptomics

Transcriptomics is a powerful tool with which to investigate the molecular mechanisms that organisms rely upon to cope with external challenges (Lockwood *et al.* 2015). RNA sequencing (RNA-Seq) has provided new insights into the genetic and regulatory complexity of eukaryotes (Wang *et al.* 2009), and has proven to be particularly useful in the case of non-model "lower" animals, where it has revealed unexpected levels of complexity. For example, transcriptomics has revealed the diverse and vertebrate-like immune (Hemmrich *et al.* 2007) and apoptotic (Moya *et al.* 2016) repertoires of corals.

Whereas previous studies have used incomplete datasets, the work outlined in this thesis uses gene predictions based on a whole genome assembly for *Acropora millepora* as a reference for understanding several aspects of coral stress responses. Other studies have used candidate gene approaches – for example, in the investigation of coral responses to temperature stress (Leggat *et al.* 2011; Ogawa *et al.* 2013; Seveso *et al.* 2014) – or been based on non-comprehensive transcriptome assemblies (see, for example, DeSalvo *et al.* (Bay *et al.* 2009; 2010). Some previous work on *A. millepora* stress responses has been based on a near-complete transcriptome assembly (Moya *et al.* 2012; Moya *et al.* 2015; Weiss *et al.* 2013), but the work described here is the first to be based on a comprehensive set of gene predictions.

### 1.6. Study aims and objectives

The general aim of this study is to understand the response of corals to abiotic (environmental) and biotic (immunogen) challenges using transcriptomic approaches. Four specific topics were investigated: (i) the coral response to an immune challenge, (ii) how the immune response is affected by high  $pCO_2$  conditions, (iii) the coral response to low salinity, and (iv) the impact of low salinity on DMSP metabolism by corals. Data from these four lines of investigation allow the following objectives to be addressed:

#### 1. To understand the coral response to immune (LPS) challenge (Chapter 2).

Corals have clear homologues of many components of the vertebrate immune system, although the roles of most of these are unknown. To establish similarities with the vertebrate immune response, I will analyses the transcriptomic response of the coral after challenge with the well-characterised immunogen, LPS.

- 2. To understand the effects of high  $pCO_2$  conditions on the coral response to LPS (Chapter 2). High  $pCO_2$  is known to impair the immune response of higher organisms, making them more prone to disease. Despite the potential significance of this for the susceptibility of corals to disease, at present no data are available on the effects of changes in ocean pH on the immune responses of marine organisms. To establish whether hypercapnia supresses coral immune responses, I will compare the transcriptomic response of corals to LPS challenge under "normal" and high  $pCO_2$ conditions.
- 3. Investigate and determine the molecular mechanisms that underpin coral response to salinity stress (Chapter 3). The molecular mechanisms underlying coral bleaching and mortality during flooding events in the GBR are unknown to date. To understand these events, I will investigate gene expression changes in corals under hypo-saline conditions using transcriptomic approaches. Comparison of these results with published data for other stressors should enable general stress responses to be distinguished from those that are specific to osmotic stress.

### 4. Investigate DMSP production by corals under salinity stress (Chapter 4).

Despite corals been major sources of DMSP and contributors to the biogenic sulphur cycle, the function of this molecule in corals is still unknown. DMSP is known to function as an osmolyte in some species of algae and plants, leading to the suggestion that this may also be the case in corals, but this idea presently lacks empirical support. By using nuclear magnetic resonance (NMR) techniques to measure DMSP concentrations in coral tissue, I will investigate how levels of this metabolite change in response to variation in salinity, allowing the hypothesis that DMSP serves as an osmolyte to be tested.

- 5. Identify the specific genes involved in DMSP biosynthesis in coral adults and juveniles (Chapter 4). Essential steps of the DMSP biosynthesis pathway has been described in two species of higher plants and one algae, but never investigated in the only known animal to produce DMSP, corals. To identify which of several candidate genes are involved in the biosynthesis of DMSP in corals, I will use differential gene expression analysis. This approach is based on the hypothesis that DMSP biosynthesis will be influenced by changes in salinity, and that candidate genes will up-regulated under conditions that lead to increase of DMSP production.
- 6. Identify the core set of genes that respond to different environmental stressors in corals (Discussion Chapter 5). Several transcriptomic studies have identified genes involved in the response of corals to elevated temperature, high *p*CO<sub>2</sub> and bacterial challenge, but there is no current consensus on genes that are involve as a general response to stress. The available trancriptomic data will be used in an attempt to establish which stress responses of coral are general and which are specific for particular stressors.

# **Chapter 2**

Elevated *p*CO<sub>2</sub> suppresses the innate immune response of the coral *Acropora millepora* to LPS challenge

#### 2.1. Introduction

Coral diseases pose a major and increasing threat to the persistence of tropical reefs, contributing, along with other impacts, such as thermal stress, overfishing, ocean acidification and eutrophication, to declines in reef ecosystems globally (Harvell *et al.* 1999). Anecdotal evidence suggests that diseases have a greater impact on corals that are already under stress (Harvell *et al.* 2007) but, while this is entirely plausible, until recently there has been little empirical support for this hypothesis.

One chronic stress that coral reefs face over the next century is ocean acidification, as increased levels of carbon dioxide in the atmosphere equilibrate with the oceans (Hoegh-Guldberg *et al.* 2007). According to the most recent IPCC report (Intergovernmental Panel on Climate Change) (2013), the current surface ocean pH of ~8.1 will decrease 0.2–0.4 units by the end of this century, which will have significant impacts on ocean chemistry. Near future pH conditions have been shown to significantly impact calcification and the net production of corals (Kleypas & Langdon 2006), and transcription of genes involved in many basic processes in coral juveniles (Moya *et al.* 2012). To date, few studies have addressed potential synergistic effects of low pH and pathogen challenge on corals, although high *p*CO<sub>2</sub> conditions are known to impair immune responses in terrestrial animals (Taylor & Cummins 2011). While corals have clear homologues of many components of the vertebrate immune repertoire (Miller *et al.* 2007; Shinzato *et al.* 2011), we have only a limited understanding of coral immunity (Weiss *et al.* 2013) and almost nothing is known about the influence of elevated *p*CO<sub>2</sub> on the coral immune response.

Emerging coral diseases have been studied intensively over the last twenty years though the specific underlying causative agents (both biotic and abiotic) have been elusive (Harvell *et al.* 2007). In a number of specific case studies, bacterial species from the genus *Vibrio* have been implicated as the causatives agents of coral disease (Bourne *et al.* 2009; Rosenberg *et al.* 2007). Although the physiological impacts of *Vibrio* sp. challenge on corals

have been described (Kushmaro *et al.* 2001; Rosenberg & Falkovitz 2004; Sussman *et al.* 2008), only recently have cellular aspects of the response been investigated. For example, Vidal-Dupiol *et al.* (2014) used transcriptomics to characterise the expression of candidate immune genes of the *Pocillopora damicornis* after challenge with the coral pathogen *Vibrio coralliilyticus*, and they found that three days post challenge a number of immune recognition and signalling pathways (TIR containing proteins, IKK, NF-kB, AP1 among other) were down-regulated. Interestingly, the virulence of *Vibrio coralliilyticus* is temperature-dependent (Ben-Haim *et al.* 2003), with higher seawater temperatures resulting in increased tissue lysis in the coral *P. damicornis* following bacterial challenge (Vidal-Dupiol *et al.* 2011). This observation is consistent with an additive or synergistic effect, where increased temperature not only changes the virulence patterns of the pathogen but may also compromise the host coral immune system.

Currently, coral immune responses are poorly understood, and most experiments have been based on the assumption that coral homologues of vertebrate genes function as in higher organisms (Miller *et al.* 2007). EST databases have in some cases provided candidate immune system components, including the mannose-binding lectin (MBL), Millectin and complement C3 (Kvennefors *et al.* 2008). Subsequently, Millectin, but not the complement factor C3-like protein (C3-Am), was shown to be significant up-regulated after challenge of *A. millepora* with either lipopolysaccharide or peptidoglycan (Kvennefors *et al.* 2010). Beside C3 itself, Bf and MASP (mannan-binding protein-associated serine protease) - other members of the complement component 3 (C3) system - have been characterised from a sister cnidarian, the starlet sea anemone, *Nematostella vectensis* (Kimura *et al.* 2009).

Comparative genomics has revealed that the immune repertoire of the coral *A*. *digitifera* is significantly more complex than that of the sea anemone, *N. vectensis* (Shinzato *et al.* 2011), and whole genome sequencing has made possible comprehensive surveys of the

immune and apoptotic genes present in corals, including NOD-like receptors (NLRs) (Hamada et al. 2012), tumor necrosis factors (TNFs) and their receptors (TNFRs) (Quistad SD et al. 2014), toll-like receptors (TLRs) (Poole & Weis 2014), and caspases and their multi-domain regulators (Moya et al. 2016). Collectively, these studies have revealed a major gene expansion of many immune gene families in the coral relative to the sea anemone. For example, A. digitifera had the highest number (total = 27) of toll/interleukin1 receptor (TIR)domain containing proteins compared to other cnidarians (Poole & Weis 2014), and a higher number of NACHT (NAIP, CIITA, HET-E, and TP1) domain proteins (total = 496) than man (total = 27) (Shinzato et al. 2014). The complexity of these gene families has consequences for attempts to understand immune responses in corals, as in mammals these protein domains are involved in TLR and NLR signalling, as well as activation of NF-kB and MAPK signalling pathways, and lead to the expression of pro-inflammatory cytokines (Poole & Weis 2014). There is also evidence of functional conservation between coral and human immune systems – for example, the human cytokine TNF (HuTNF $\alpha$ ) appears to activate a coral TNFR, but further experiments are needed to identify which specific coral TNFR binds is involved (Quistad SD et al. 2014).

To better understand the effect of cumulative stressors on the underlying immune response of corals, we undertook a transcriptomic analysis of the response of *Acropora millepora* to LPS (lipopolysacharidae) challenge, both under ambient *p*CO<sub>2</sub> conditions and after pre-exposure to high *p*CO<sub>2</sub> conditions. LPS is a pathogen-associated molecular pattern (PAMPs) found in the outer membrane of gram-negative bacteria, and elicits a strong and well-characterised immune response in mammals. LPS signalling in mammals activates extracellular TLR receptors (Takeda & Akira 2005). A previous study (Weiss *et al.* 2013) addressed the transcriptomic response of *A. millepora* to MDP (muramyl dipeptide), a PAMP derived from the cell walls of both gram-negative and gram positive bacteria that activates intracellular NLRs. Challenge with MDP led to increased expression of coral homologues of

mammalian GiMAP/IAN proteins, suggesting conservation of function between corals and mammals (Weiss *et al.* 2013). In the present study, LPS can essentially be regarded as a proxy for pathogen challenge. Exposure to LPS induced changes in the expression of specific coral TLRs, NLRs, TNF/TNFRs and components of the associated down-stream signalling systems. Pre-exposure of corals to elevated *p*CO<sub>2</sub> conditions impaired the responses of several of the LPS-regulated genes, implying that near-future ocean conditions may compromise coral health by impairing immune responses. This study documents for the first time this kind of response in a marine organism.

### 2.2. Material and methods

### 2.2.1. Aquarium experimental design

Five colonies of *Acropora millepora* were collected off the coast of Orpheus Island, Queensland, Australia (18°39'52. 43"S, 146°29'42.38"E) under GBRMPA permit #G12/34321.1 during April 2012 and transported to the Orpheus Island Research Station, where they were maintained at a 27 °C (±0.015) in a flow-through system with 10 µ filtered seawater (FSW). Each colony was divided in four fragments and allocated randomly on twelve replicate 50 l aquaria under ambient conditions (pH 8.09 ± 0.04, 508.7 ppm *p*CO<sub>2</sub>) during a period of 8 days for acclimation. After the acclimation period six aquaria were exposed to high *p*CO<sub>2</sub> (pH 7.82 ± 0.11, 1072 ppm *p*CO<sub>2</sub>, details below) and six kept at control conditions (508.7 ppm *p*CO<sub>2</sub>) over a 14 day experimental period.

The high *p*CO<sub>2</sub> condition was achieved by injecting *p*CO<sub>2</sub> with a solenoid into a 500 l sump aquarium regulated with a pH-controller (Aqua Medic) and distributed to the 50 l aquaria. Temperature and pH were measured daily with portable pH and temperature meters (Milwaukee model: MW102) and calibrated daily with NBS buffers (pH 4 and 7, Labchem). Dissolved oxygen was measured with a 55 dissolved oxygen instrument (YSI 55), and monitored at 8 am daily with temperature, pH, and total alkalinity (TA). TA of seawater

(mmol/kgSW) was estimated using Gran titrations (888 Titrando, Metrohm, Switzerland) from a total of 47 water samples. Average seawater  $pCO_2$  was calculated with these parameters in the program CO2SYS (Lewis & Wallace 1998) dissociation constants from (Mehrbach *et al.* 1973) as refitted by (Dickson & Millero 1987). Average  $pCO_2$  was estimated to 508 and 1072 µmol during the 14 days of the experiment, with a summary of parameters shown in Table S2.1 (Supporting information).

### 2.2.2. Coral immune challenges

After the 14 days under control and high  $pCO_2$  conditions, each colony was injected evenly with of two different substances: sterile phosphate buffered saline (3x PBS, n= 12 per colony) as a control, and a defined immunogen Ultrapure lipopolysaccharide (LPS InvivoGen, Catalog # tlrl-3pelps, San Diego, USA; n=12 per colony). PBS (3x) was used as the dilution buffer for the LPS immune-stimulant and diluted to a concentration of 0.03 mgr/ml. Each nubbin was injected on the axial polyp with 100 µl of either PBS of LPS using a 1 ml syringe fitted with a 27-gaude needle. One hour and six hours after exposure, 3 nubbins (~2 cm fragments) per colony per treatment were collected and snap-frozen in liquid nitrogen before being stored at -80 °C.

### 2.2.3. RNA extraction, high-throughput sequencing and data analysis

The three coral nubbins collected per colony were crushed together in liquid nitrogen and ~1g of the resulting powder homogenized for 15 min by vortexing in 3 mL of TRIzol Reagent (Invitrogen), followed by centrifugation at 4,000 g for 15 min. The supernatant was recovered with a 1 mL pipet leaving the coral tissue pellet. 4-Bromo-2-chlorophenol (150  $\mu$ l) was added to the recovered supernatant according to the TRIzol manufacturer's specifications with a slight modification, 0.5 mL of 100% isopropanol was replaced with a mixture of 300  $\mu$ l 100% isopropanol and 200  $\mu$ l of high-salt buffer (0.8M Na citrate, 1.2 M NaCl) per 1.5 ml of TRIzol in the precipitation step. The RNA pellet was solubilized in ~50  $\mu$ l

of RNAse-free water and stored at -80 °C. The quality and quantity of RNA preparations were determined using a Bioanalyzer (Agilent 2100 Bioanalyzer) using samples prepared following the Agilent RNA 6000 Nano Kit instructions (cat # 5067-1511).

A total of 40 RNAseq libraries were constructed using the TruSeq RNA Library Preparation Kit v2 (RS-122-2001) following the manufacturers recommended protocol and 100 bp single-end sequence data obtained using a HiSeq 2000 at the Biomolecular Resource Facility (John Curtin School of Medical Research, Australian National University). Reads were mapped onto the *Acropora millepora* genome (Foret el al., in preparation) using TopHat2 (Kim *et al.* 2013) to produce a count data gene expression matrix for subsequent analysis. Counts were generated using htseq-count (Anders *et al.* 2015).

Data was analysed in sSeq package (Yu *et al.* 2013) (R Core Team 2014) using a design formula for differential gene expression that tests for the effects LPS challenge, by using a paired design that takes colony and treatment as factors, and runs the negative binomial model with shrinkage approach of dispersion (nbTestSH). Log<sub>2</sub> fold changes (log<sub>2</sub>FC) in gene expression levels were obtained in sSeq by comparing control (PBS) vs. LPS challenge of four different datasets: (i) control vs. LPS challenge at 1 h, (ii) control vs. LPS challenge at 1 h under  $pCO_2$  exposure, (iii) control vs. LPS challenge at 6 h, and (iv) control vs. LPS challenge at 6 h under  $pCO_2$  exposure. False discovery rate (FDR) adjusted p values for each gene, was controlled at 5% according to the methods of Benjamini and Hochberg (1995).

Statistically over-represented gene ontology (GO) categories were determined in BiNGO (Maere *et al.* 2005) in Cytoscape 3.1.1 (Smoot *et al.* 2011) by using the set of genes that were differentially up or down-regulated in each dataset (FDR < 0.01). These GO categories were used to identify specific immune related proteins and subsequent search for their gene family (TNF, PF00229.13; TNFR, PF00020.13; TIR, PF01582.15; TRAF,
PF02176.13; NACHT, PF05729.7; IRF, PF00605.12) in the *A. millepora* gene protein predictions. Moreover, sequences from immune related signalling pathways (NLRs , hsa04621; TLRs, hsa04620; NF-kappa B, hsa04064) were downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and blasted against the *A. millepora* protein predictions. All the results are based on homology of the *A. millepora* protein predictions to a reference annotated proteins (*e*-val cut-off = 1e-4), and differentially expressed genes (FDR <0.05, log<sub>2</sub>FC  $\geq$  0.05) were used for subsequent analysis.

#### 2.3. Results

Coral colonies did not show any symptoms of bleaching or disease during the acclimation or after the LPS challenge.

#### 2.3.1. Differential gene expression analyses

Transcriptomic analysis revealed that, under control (pH 8.1) conditions, at 1 h after the LPS challenge 583 (2.2% of the total) *A. millepora* genes were differentially expressed (DEGs, FDR <0.01) relative to control (PBS) injection. At six hours after the LPS challenge, the number of DEGs increased to 2251 (8.5% of the total); 305 genes were differentially expressed at both time points, but 122 of these (i.e. 40%) were up-regulated at 1 h and downregulated 6 h (Figure 2.1 and Figure S2.2, Supporting Information). Gene Ontology (GO) analysis of the up-regulated genes after 1 h of LPS challenge identified six over-represented categories (FDR <0.05), including response to chemical stimulus, central nervous system development and regulation of Wnt receptor signalling pathway. No over-represented categories were mostly in the down-regulated gene set, including the GO categories: amino acid metabolism, regulation of Wnt receptor signalling pathway, and extracellular matrix organization (Table S2.2 Supporting Information).

In order to better understand the effects of elevated  $pCO_2$  on coral immunity, the next phase of analysis focused on specific components of the innate immune repertoire, including the toll-like and Nod-like receptor signalling pathways. These genes were annotated based on similarity with key components of the immune systems of higher animals, and changes in the expression of some of these coral genes under immune challenge have previously been described (Weiss *et al.* 2015).





**Figure 2.1** Heat map of the normalized expression (log<sub>2</sub>FC) of genes differentially expressed (FDR <0.01, log<sub>2</sub>FC >0.05) in response to LPS challenge after 1 and 6 h. Clustering of the genes was based on their expression pattern. Heat map is based on 88 shared genes that are up-regulated after 1 h and down-regulated after 6 h. The colour bar indicates log<sub>2</sub>FC between control and LPS challenge, red representing up-regulation, blue down-regulation, and white no change. Refer to Table S2.3, Supporting information for values for each gene and complete list of the shared response genes.

#### 2.3.2. Activation of innate immune pathways after LPS challenge

The complement system is involved in the detection and clearance of potential pathogens, and is a key component of the mammalian innate immune system (Delanghe *et al.* 2014). Coral homologues of only three components of the mammalian complement system have been identified, these being complement C3 (Miller *et al.* 2007) of which two paralogues are present in corals and in sea anemones (Kimura *et al.* 2009; Ocampo *et al.* 2015; Shinzato *et al.* 2011), factor B (Bf) where again, two paralogues are present in anthozoans (Kimura *et al.* 2009), and MASP (Ocampo *et al.* 2015). In the present case, three C3 predictions, likely corresponding to the two loci, were identified. One of the C3 genes was up-regulated after 1 h of LPS challenge (by 0.27 log<sub>2</sub>FC), whereas factor B and MASP expression were essentially unaltered. At the 6 h time point, expression of all three C3 genes was down-regulated (Table S2.4, Supporting information). Whereas expression of the lectin, Millectin was down-regulated at both the 1 and 6 h time points, a number of other C-type lectins, including the macrophage mannose receptor (MRC1; 1.2.20551.m1), were up-regulated after 1 h but down-regulated after 6 h (Table S4, Supporting Information).

Exposure to LPS also induced changes in the expression of components of other innate immune signalling pathways, including several toll-like receptors (TLRs), NF-kB, MAPK, and NOD-like receptors (NLRs; Figure 2.2, Table S2.2.5-8 Supporting Information). Three of the four interleukin-1 receptor-like (IL-1R-like) and two of the five TLRs identified in the *A. millepora* genome were up-regulated after 1 h of LPS challenge, although one TLR and the remaining IL-1R-like homologues were down-regulated (Table 2.1, Table S2.5, Supporting information). In vertebrates, TLRs and IL-1Rs interact with pathogen associated molecular patterns (PAMP) via extracellular domains, but also characteristically contain an intracellular toll/interleukin1 receptor (TIR) domain that is also present in several other proteins, including MyD88 (myeloid differentiation primary response 28 protein 88; (Poole & Weis 2014). Moreover, TLRs and IL-1Rs can bind to MyD88 to activate the NF-kB response

via the MyD88–dependant pathway (Akira & Takeda 2004). However in the current coral gene expression data, neither MyD88 nor NF-kB homologues were differentially expressed after LPS challenge. Alternatively, signalling via these receptors can follow a MyD88–independent pathway and activate interferon regulatory factors (IRF) downstream, where two homologues to these genes were differentially up-regulated and one downregulated under LPS challenge (Figure 2.3, Table S2.8, Supporting information). Subsequently, two candidate tumor necrosis factor alpha (TNF– $\alpha$ ) genes were up-regulated after 1 h and down-regulated after 6 h of challenge (1.2.13359.m1 and 1.2.17029.m1) (Figure 2.3, Table S2.6, Supporting information).



**Figure 2.2** Percentages of each gene family differentially expressed under LPS challenge. The coloured sectors of the bars represent percentages of the total number of genes of each type differentially expressed after 1 and 6 h (FDR < 0.05): up (red), down (blue), or non-regulated

(grey). The total numbers of genes in each category are indicated in parentheses above the bars. TNF, tumor necrosis factor; TNFR, TNF receptor; TRAF, TNF receptor-associated factor; TIR, Toll/interleukin-1 receptor; NACHT, NAIP, CIITA, HET-E, and TP1.

**Table 2.1** TIR-domain-containing proteins that were differentially expressed (FDR <0.05,  $log_2FC > 0.05$ ) in response to LPS challenge after 1 and 6 h.  $Log_2FC$  colour indicates up (red) and down (blue) regulated genes.

|              |                      |                     |                                   |                             |                      |        | _        | Log <sub>2</sub> FC |       |
|--------------|----------------------|---------------------|-----------------------------------|-----------------------------|----------------------|--------|----------|---------------------|-------|
| Genome ID    | NCBI Domain          | A. digitifera<br>ID | <i>A. digitifera</i><br>Blast Hit | Blast Hit                   | Hit ID               | Length | e-Value  | 1 h                 | 6 h   |
| 1.2.22324.m1 | IG IG IG TIR         | Ad_ILR2             | ang_v2a.11844                     | HMCN2_Hemicentin-2          | A2AJ76.1 HMCN2_MOUSE | 524    | 3.40E-19 | 1.60                | -     |
| 1.2.10735.m1 | IG IG IG TIR         | Ad_ILR1             | aug_v2a.20402                     | TLR2_Toll-like receptor 2   | B2LT62.1 TLR2_CAPIB  | 586    | 4.40E-13 | -0.12               | -     |
| 1.2.22473.m1 | <b>IG TI</b> R       | Ad_ILR2             | ang_v2a.11844                     | TLR13_Toll-like receptor 13 | Q6R5N8.1 TLR13_MOUSE | 435    | 1.20E-15 | 0.37                | -     |
| 1.2.2434.m1  | <b>IG TI</b> R       | Ad_ILR6             | ang_v2a.14217                     | TLR2_Toll-like receptor 2   | Q689D1.1  TLR2_CANFA | 334    | 4.00E-13 | 0.20                | -     |
| 1.2.13179.m1 | LRR LRR  <b>TI</b> R | Ad_TLR1             | ang_v2a.20813                     | TOLL_Protein toll           | P08953.1 TOLL_DROME  | 1110   | 1.50E-64 | 0.39                | -     |
| 1.2.13177.m1 | LRR <b> TI</b> R     | Ad_TLR4             | aug_v2a14728                      | TOLL_Protein toll           | P08953.1 TOLL_DROME  | 481    | 3.60E-52 | 0.34                | _     |
| 1.2.13178.m1 | LRR LRR  <b>TI</b> R | Ad_TLR1             | ang_v2a.20813                     | TOLL_Protein toll           | P08953.1 TOLL_DROME  | 838    | 1.10E-59 | -                   | -0.18 |
| 1.2.13180.m1 | LRR <b> TI</b> R     | Ad_TLR1             | ang_v2a.20813                     | TOLL_Protein toll           | P08953.1 TOLL_DROME  | 851    | 1.80E-58 | -0.44               | -     |
| 1.2.5856.m1  | TIR                  | Ad_TIR6             | ang_v2a.05635                     | TLR2_Toll-like receptor 2   | Q2PZH4.1 TLR2_BUBBU  | 404    | 2.60E-16 | 0.40                | -0.20 |
| 1.2.16257.m1 | TIR                  | Ad_TIR2_1           | ang_v2a.23782                     | TLR6_Toll-like receptor 6   | Q704V6.1 TLR6_BOVIN  | 245    | 2.10E-18 | -                   | -0.05 |
| 1.2.2436.m1  | TIR                  | Ad_ILR4             | aug_v2a.16874                     | TLR6_Toll-like receptor 6   | Q704V6.1 TLR6_BOVIN  | 185    | 2.20E-15 | -                   | -0.34 |
| 1.2.5845.m1  | TIR                  | Ad_unknown1         | aug_v2a.13087                     | TLR2_Toll-like receptor 2   | Q2V897.1 TLR2_BOSTR  | 445    | 6.10E-18 | -                   | -0.15 |
| 1.2.849.m1   | TIR2                 | Ad_TIR2_12          | aug_v2a.16869                     | -                           |                      | 314    | -        | -                   | 0.06  |
|              |                      |                     |                                   |                             |                      |        |          |                     |       |

The observed transcriptional response of the TNF–α ligands was supported by the changes in expression of several TNF receptor (TNFR) superfamily members (Table 2.2); in mammals, TNFRs are involved in inflammation and apoptosis, and in molluscs and some other marine invertebrates (De Zoysa *et al.* 2009) are activated after LPS challenge. The *A. digitifera* immune repertoire includes 13 TNFSF members and 40 TNFRSF (Quistad SD *et al.* 2014), while in the *A. millepora* genome eight genes with the TNF domain (PF00229.13) and 22 genes with the TNFR domain (PF00020.13) have been identified. Ten of the 22 *A. millepora* TNFRSF homologues were differentially up-regulated after 1 h of LPS challenge, and eight of these were down-regulated after 6 h (Figure 2.2, Table 2.2). Moreover, TRAF homologues (TNFR-associated factor; PF02176.13), which play key roles in both TNFR and TLR signalling (Quistad SD *et al.* 2014), were differentially expressed during LPS challenge in the coral (Table 2.2). Nine of the 38 *A. millepora* TRAF genes (31in *A. digitifera*) were differentially regulated at 1 h after immune challenge (eight were up-regulated, one was

down-regulated). At 6 h, the number of differentially expressed TRAFs had increased to 13, but the majority of these (8) were down-regulated (Table 2.2, Table S2.7, Supporting information). One outcome of TNF/TNFR signalling is the triggering of apoptosis, in which the caspases and Bcl-2 proteins are the key implementers and regulators respectively. After 1 h of LPS challenge, two (likely pro-apoptotic) caspase-3/6 type genes (AmCaspase E and AmCaspase D, see Moya *et al.* 2015) were up-regulated, whereas at 6 h, one caspase 3/6 and 3 Bcl-2 (two anti-apoptotic genes and the pro-apoptotic Bax) were down-regulated (Figure 2.3, Table S2.9, Supporting information).

**Table 2.2** TNF, TNFR and TRAF genes that were differentially expressed (FDR <0.05, log<sub>2</sub>FC > 0.05) in response to LPS challenge after 1 and 6 h. Log<sub>2</sub>FC colour indicates up (red) and down (blue) regulated genes.

|      |              |                |                                                                                                                |                      |        |           | Log <sub>2</sub> FC |       |
|------|--------------|----------------|----------------------------------------------------------------------------------------------------------------|----------------------|--------|-----------|---------------------|-------|
|      | Genome ID    | NCBI Domain    | Blast Hit                                                                                                      | Hit ID               | Length | e-Value   | 1 h                 | 6 h   |
| TNF  | 1.2.13359.m1 | TNF            | TNFa_Tumor necrosis factor                                                                                     | P16599.1 TNFA_RAT    | 231    | 1.60E-06  | 1.31                | 0.17  |
|      | 1.2.17029.m1 | TNF            | TNFa_Tumor necrosis factor                                                                                     | P16599.1 TNFA_RAT    | 207    | 5.00E-06  | 1.06                | -     |
|      | 1.2.4528.m1  | TNF            | TNF10_Tumor necrosis factor ligand superfamily member 10                                                       | P50591.1 TNF10_HUMAN | 174    | 5.90E-04  | 0.16                | -     |
|      | 1.2.607.m1   | TNF            | TNFb_Tumor necrosis factor ligand superfamily member 1                                                         | P26445.1 TNFB_PIG    | 135    | 9.40E-05  | -0.28               | -0.15 |
|      | 1.2.17031.m1 | TNF            | TNF15_Tumor necrosis factor ligand superfamily member 15                                                       | Q5UBV8.2 TNF15_MOUSE | 159    | 6.00E-05  | -                   | -0.20 |
| TNFR | 1.2.15238.m1 | TNFRSF Death   | TNFR1b_Tumor necrosis factor receptor superfamily member 1b                                                    | P20333.3 TNR1B_HUMAN | 381    | 6.00E-04  | 0.66                | 0.19  |
|      | 1.2.20632.m1 | TNFRSF Death   | Netrin receptor UNC5C                                                                                          | Q761X5.1 UNC5C_RAT   | 931    | 4.00E-06  | 0.62                | -0.18 |
|      | 1.2.20630.m1 | TNFRSF Death   | TNFR16_Tumor necrosis factor receptor superfamily member 16                                                    | P18519.1 TNR16_CHICK | 580    | 7.40E-06  | 0.46                | -     |
|      | 1.2.20633.m1 | TNFRSF         | TNFR16_Tumor necrosis factor receptor superfamily member 16                                                    | P08138.1 TNR16_HUMAN | 237    | 2.70E-05  | 0.67                | -     |
|      | 1.2.20631.m1 | TNFRSF         | TNFR16_Tumor necrosis factor receptor superfamily member 16                                                    | P08138.1 TNR16_HUMAN | 253    | 4.00E-05  | 0.54                | -0.24 |
|      | 1.2.6590.m1  | TNFRSF         | ${\tt TNFR16\_Tumor\ necrosis\ factor\ receptor\ superfamily\ member\ 16}$                                     | P18519.1 TNR16_CHICK | 416    | 3.00E-02  | 0.46                | -     |
|      | 1.2.4347.m1  | TNFRSF         | ${\tt TNFR16\_Tumor}\ {\tt necrosis}\ {\tt factor}\ {\tt receptor}\ {\tt superfamily}\ {\tt member}\ {\tt 16}$ | P18519.1 TNR16_CHICK | 416    | 7.00E-03  | 0.39                | -     |
|      | 1.2.4349.m1  | TNFRSF         | TNFR16_Tumor necrosis factor receptor superfamily member 16                                                    | P18519.1 TNR16_CHICK | 416    | 1.90E-01  | 0.27                | -0.49 |
|      | 1.2.6598.m1  | TNFRSF         | TNFR19_Tumor necrosis factor receptor superfamily member 19                                                    | Q9NS68.1 TNR19_HUMAN | 391    | 2.70E-04  | 0.24                | -     |
|      | 1.2.10769.m1 | TNFRSF         | EDAR_Tumor necrosis factor receptor superfamily member EDAR                                                    | Q90VY2.1 EDAR_ORYLA  | 497    | 6.10E-05  | 0.09                | -0.05 |
|      | 1.2.17682.m1 | TNFRSF         | ${\tt TNFR16\_Tumor\ necrosis\ factor\ receptor\ superfamily\ member\ 16}$                                     | P18519.1 TNR16_CHICK | 416    | 7.80E-02  | -0.29               | -     |
|      | 1.2.6595.m1  | TNFRSF         | TNFR19_Tumor necrosis factor receptor superfamily member 19                                                    | Q9JLL3.2 TNR19_MOUSE | 416    | 3.20E-02  | -0.41               | -     |
|      | 1.2.4350.m1  | TNFRSF         | TNFR14_Tumor necrosis factor receptor superfamily member 14;                                                   | Q92956.3 TNR14_HUMAN | 283    | 4.00E-03  | -                   | -0.08 |
|      | 1.2.6597.m1  | TNFRSF         | TNFR19_Tumor necrosis factor receptor superfamily member 19                                                    | Q9NS68.1 TNR19_HUMAN | 423    | 2.00E-03  | -                   | -0.26 |
|      | 1.2.11264.m1 | TNFRSF         | TNFR16_Tumor necrosis factor receptor superfamily member 16                                                    | P18519.1 TNR16_CHICK | 489    | 1.20E-04  | -                   | -0.40 |
| TRAF | 1.2.2898.m1  | TRAF MATH      | TRAF6_TNF receptor-associated factor 6                                                                         | Q3ZCC3.1 TRAF6_BOVIN | 450    | 1.50E-63  | 1.02                | -     |
|      | 1.2.2891.m1  | TRAF MATH      | TRAF6_TNF receptor-associated factor 6                                                                         | B5DF45.1 TRAF6_RAT   | 362    | 1.40E-74  | 1.00                | -     |
|      | 1.2.2897.m1  | RING TRAF MATH | TRAF6_TNF receptor-associated factor 6                                                                         | B5DF45.1 TRAF6_RAT   | 498    | 2.30E-104 | 0.58                | -0.08 |
|      | 1.2.2881.m1  | TRAF MATH      | TRAF6_TNF receptor-associated factor 6                                                                         | Q3ZCC3.1 TRAF6_BOVIN | 366    | 4.60E-59  | 0.56                | -0.38 |
|      | 1.2.2899.m1  | RING TRAF MATH | TRAF6_TNF receptor-associated factor 6                                                                         | Q3ZCC3.1 TRAF6_BOVIN | 418    | 2.80E-81  | 0.42                | -     |
|      | 1.2.6455.m1  | TRAF           | TRAF6_TNF receptor-associated factor 6                                                                         | Q3ZCC3.1 TRAF6_BOVIN | 551    | 2.20E-13  | 0.08                | -0.14 |
|      | 1.2.2752.m1  | RING TRAF MATH | TRAF3_TNF receptor-associated factor 3                                                                         | Q13114.2 TRAF3_HUMAN | 528    | 3.40E-103 | 0.09                | -     |
|      | 1.2.4647.m1  | RING[TRAF]MATH | TRAF4_TNF receptor-associated factor 4                                                                         | Q61382.2 TRAF4_MOUSE | 456    | 6.80E-69  | 0.06                | -     |
|      | 1.2.10762.m1 | RING TRAF MATH | TRAF3_TNF receptor-associated factor 3                                                                         | Q60803.2 TRAF3_MOUSE | 552    | 1.40E-94  | -0.16               | -     |
|      | 1.2.16730.m1 | RING TRAF MATH | TARF6b_TNF receptor-associated factor 6 b                                                                      | Q6DJN2.1 TRF6B_XENLA | 412    | 6.40E-53  | -                   | 0.15  |
|      | 1.2.5451.m1  | RING TRAF MATH | TRAF6_TNF receptor-associated factor 6                                                                         | P70196.2 TRAF6_MOUSE | 411    | 1.40E-39  | -                   | 0.14  |
|      | 1.2.3972.m1  | RING TRAF MATH | TRAF4_TNF receptor-associated factor 4                                                                         | Q9BUZ4.1 TRAF4_HUMAN | 363    | 1.90E-37  | _                   | 0.13  |
|      | 1.2.2754.m1  | RING TRAF MATH | TRAF3_TNF receptor-associated factor 3                                                                         | Q13114.2 TRAF3_HUMAN | 593    | 8_50E-99  | -                   | 0.12  |
|      | 1.2.2892.m1  | TRAF MATH      | TRAF6_TNF receptor-associated factor 6                                                                         | Q3ZCC3.1 TRAF6_BOVIN | 412    | 3.70E-68  | _                   | 0.09  |
|      | 1.2.5426.m1  | RING TRAF MATH | TRAF3_TNF receptor-associated factor 3                                                                         | Q60803.2 TRAF3_MOUSE | 556    | 4.10E-117 | _                   | -0.37 |
|      | 1.2.866.m1   | ZIJTRAF MATH   | TRAF4_TNF receptor-associated factor 4                                                                         | Q61382.2 TRAF4_MOUSE | 500    | 1.10E-62  | -                   | -0.14 |
|      | 1.2.5457.m1  | RING TRAF MATH | TRAF4_TNF receptor-associated factor 4                                                                         | Q61382.2 TRAF4_MOUSE | 422    | 4.20E-65  | -                   | -0.10 |
|      | 1.2.5463.m1  | RING TRAF TRAF | TRAF6_TNF receptor-associated factor 6                                                                         | B6CJY4.1 TRAF6_CERAT | 416    | 6.60E-38  | -                   | -0.09 |
|      | 1.2.4735.m1  | RING TRAF      | TRAF7_TNF receptor-associated factor 7                                                                         | Q6Q0C0.1 TRAF7_HUMAN | 316    | 3.20E-31  | _                   | -0.06 |



**Figure 2.3** Summary of the coral immune response after 1 h of LPS challenge under control conditions. The numbers indicate numbers of genes per category that were differentially (FDR < 0.05,  $\log_2$ FC > 0.05) up- or down-regulated (see Table S2.2-S7, Supporting information for more complete details). Figure adapted from KEGG pathway database (pathways 04620 and 04064).

### 2.3.3. The intracellular NLRs were regulated after prolonged (6 h) LPS challenge

At the 1 h time point, few changes were observed in expression of NLR/NACHT genes, whereas after 6 h of LPS challenge a total of 68 genes of this type were differentially expressed (Figure 2.2, Table S2.8, Supporting information). NLRs are a family of intracellular pattern recognition receptors (PRR) that play critical roles in the innate immune response in mammals - they activate the caspase -1, NF-kB and MAPK signalling pathways (Kanneganti *et al.* 2007; Yuen *et al.* 2014). These receptors are characterized by the presence of a NACHT domain; 461 genes of this type have been identified in the *A. digitifera* genome (Hamada *et al.*  2012), and the corresponding number of *A. millepora* is 205 (cut-off 1e-5, Pfam 05729.7). The *A. millepora* NACHT genes include a group of 42 genes that encode only a NACHT domain, 116 genes with a NACHT – leucine-rich repeats (LRR) structure, 12 with NACHT– WD40, and a group of 26 genes glycosyl\_transferase 1 – NACHT domain (Table S2.8, Supporting information). As in the case of TLR signalling, in mammals, NLRs interact with TRAFs to activate NF-kB. However, in the case of *A. millepora*, fewer TRAFs were up-regulated at 6 h post-challenge (n = 5) compared to 1 h (n = 8; Table S2.7, Supporting information). Overall, 1 h after LPS challenge a number of TLR and TNFR-type cell surface receptors were up-regulated, although by 6 hours the receptor response had been down-regulated (Tables S2.5 and S2.6). By contrast, in the case of the NLRs, many more genes were differentially expressed after 6 h (33% of NLR genes identified) compared to the 1 h time point (4% of NLRs; Figure 2.2 and 2.3).

Choloylglycine hydrolases (CBAH, PF02275.14) are of particular interest because they may have roles in regulation of the microbial communities associated with corals (Miller, personal communication). A total of seven choloylglycine hydrolases were identified in the *A. millepora* genome, and one of these displayed the highest log<sub>2</sub>FC of all of the annotated DEGs (1.2.7139.m1, 3.85 Log<sub>2</sub>FC). Four of the seven CBCH genes were up-regulated at 1 h post LPS challenge, and five down-regulated after 6 h (Table S2.8, Supporting information).

2.3.4. Elevated  $pCO_2$  suppresses the innate immune response of the coral to LPS challenge

In corals that had been pre-exposed to high  $pCO_2$  conditions (pH 7.8), the expression of 51% (n = 371) of genes that were up-regulated at 1 h post-LPS challenge under control conditions (pH 8.1) was supressed (Figure S2.3, Supporting information). The differentially expressed genes described here as high  $pCO_2$  conditions post LPS challenge, refers to the log<sub>2</sub>FC of the LPS treatment relative to the control injection (PBS), both pre-exposed to high  $pCO_2$  levels. In corals that had been pre-exposed to high  $pCO_2$  conditions, GO analysis of genes up-regulated at 1h post-immune challenge identified five over-represented categories (FDR <0.05), while down-regulated genes had 16 over-represented categories including regulation of transcription, central nervous system development, regulation of signalling pathway and negative regulation of apoptosis (Table S2.10, Supporting information). A group of genes (n =20) were up-regulated 1 h after immune challenge under both control and high  $pCO_2$ conditions, including three heat shock proteins (HSPs), two fibroblast growth factor receptors (FGFR), two metalloproteinases, and a green fluorescent protein (GFP, 2.85  $Log_2FC$ ) (Table S2.11, Supporting information). A second group of genes (n = 70), which included four TIR-domain containing proteins, six TNFRs and three TRAFs (Am\_TRAF4, Am\_TRAF24 Am\_TRAF25), were up-regulated under control conditions but down-regulated under high  $pCO_2$  conditions (Figure 2.4, Table S2.12, Supporting information). Moreover, the expression of two caspases (AmCaspase D and Am Caspase E), a Bcl-2 protein (AmBclWD), and five C-type lectins was also suppressed by high  $pCO_2$  conditions, suggesting that a high *p*CO<sub>2</sub> environment impairs coral apoptotic responses (Table S2.11, Supporting information). Interestingly, high pCO<sub>2</sub> conditions strongly affected the responses of genes encoding NACHT domains; at 1 h post challenge, 33 NACHT genes were down-regulated and 14 genes upregulated under pCO<sub>2</sub> treatment, compared to four genes up and four down-regulated after 1 h under control conditions (Table S2.8, Supporting information). Also significant was the relative suppression of the CBAH homologue with the highest expression value, while two other CBAH genes were unaffected by the high  $pCO_2$  treatment.



**Figure 2.4** Immune and stress-response genes responding differentially under control and high  $pCO_2$  conditions at 1 h post LPS challenge. Bars show the log<sub>2</sub>FC of the differentially expressed genes (FDR < 0.05, log<sub>2</sub>FC > 0.05) for LPS under control (yellow), and LPS under high  $pCO_2$  conditions (green). Original data are summarised as Tables S2.4-S11 (Supporting information).

#### 2.4. Discussion

The immune system of the coral *A millepora* is poorly understood. Similar to higher animals, LPS induced the expression of immune related genes in the coral. This immune response included changes in the expression of coral genes belonging to families that are known to be LPS-induced in mammals, including the TLRs and IL-1Rs (Takeda & Akira 2005), as well as downstream components of the corresponding signalling pathways (Figure 2.3). Likewise high  $pCO_2$  conditions suppressed several of the up-regulated LPS-induced genes (Figure 2.4), suggesting that elevated  $pCO_2$  may compromise coral immunity. This hypothesis is consistent with the idea that stressed corals are more susceptible to disease (Harvell *et al.* 1999).

#### 2.4.1. LPS activates Toll-like, TNF and NOD-like receptors

TLRs are well characterised pattern recognition receptors (PRR) that control host defence against pathogens and immune disorders in mammals (Takeda & Akira 2005). In the current study, two TLRs (Am\_TLR2 and Am\_TLR5) were significantly up-regulated (0.39 and 0.34 Log<sub>2</sub>FC respectively). Previous investigations of the demosponge *Suberites domuncula* have described the increased expression of a specific TLR, and Ser/Thr/Tyr kinase domain (IRAK) and a caspase-like proteins in response to LPS challenge, suggestive of an immune response like those of higher metazoans (Wiens *et al.* 2007). In corals, the availability of the whole genome sequence allowed us to investigate changes in expression of the complete TLR and IL-1R gene repertoires (Table S2.5, Supporting information). Changes in expression of pathway components down-stream of these receptors (TRAF6 and IRF, Figure 2.3) provide further evidence for mammalian–like roles for these pathways in the early innate immune response of corals. NLRs are the second major class of metazoan PRRs – essentially they are the cytosolic counterparts of the TLRs. The *A. millepora* NLR repertoire is large and complex, and changes in the expression of members of this family in response to immune challenge were similarly complex (Figure 2.2). Since the functions of these genes are unknown,

interpretation of responses is by analogy with higher animals and essentially speculative at this point. Studies in *Hydra* have, however, revealed increased expression of specific NLRs in response to LPS challenge (Lange *et al.* 2011), potentially indicating conserved roles of these receptors in both cnidarians. However additional research is needed to better understand the significance and roles of the diverse NLR repertoire of corals.

LPS challenge also resulted in the up-regulation of specific coral TNFRs, members of a family of proteins that are involved in regulating cell death and inflammatory responses in mammals (Wiens & Glenney 2011). The activation of this system was also indicated by changes in the expression of the downstream pathway components JUN, TRAF and caspase (Figure 2.3, Table S2.9, Supporting information). TNFR activation has also previously been documented in *Hydra*, where JUN, TNFR and an associated TRAF were up-regulated from 1 to 4 h after injury (Wenger 2014). Although these are very different types of stressors, it is interesting to find that in both cnidarians these receptors and their down-stream members appear to function as components of a stress signalling system.

#### 2.4.2. Comparative response between LPS and other immune challenges in corals

The use of transcriptomics allowed us to compare the responses of specific genes that are activated by both MDP (muramyl dipeptide) and LPS challenge in *A. millepora*, as the MDP response has previously been descried (Weiss *et al.* 2013). With both of these immunogens, choloylglycine hydrolase (CBH) pA79-1 was strongly up-regulated 1 h post immunechallenge (Table S2.3, Supporting information), which is consistent with a role for CBH in regulating the coral- associated microbial community. One significant difference between the responses to the two immunogens is that, whereas MDP induced strong up-regulation of several GiMAP/IAN family members (Weiss *et al.* 2013), in the present study, these genes were not differentially expressed after LPS challenge. NLRs, that are known to be activated by MDP in mammals (Girardin *et al.* 2003), were induced 6 h after LPS challenge, so it would be

interesting to examine the 6 h response of corals to MDP. Interestingly, in experiments where *Pocillopora damicornis* was challenged with *Vibrio coralliilyticus*, after 3 days of exposure, the expression of many immune related genes was suppressed (Vidal-Dupiol *et al.* 2014). In the case of both this *Vibrio* experiment and the LPS challenge reported here, the expression of complement system homologues (Bf and MBL Lectin) and of a phospholipase A2 gene increased. However, clear differences between these datasets with respect to the expression of homologous genes (for example, TIR3, TRAF6, AP1, and ATF were down-regulated in the *Vibrio* challenge paper, but up-regulated in the present study) were also observed.

#### 2.4.3. High pCO<sub>2</sub> suppressed the coral LPS-induced innate immune response

High  $pCO_2$  conditions appear to supress the LPS-induced immune response in corals, as the expression of several TLRs, TNFRs and NLRs and key pathway components was suppressed under high  $pCO_2$  conditions relative to controls (Figure 2.4). This response is consistent with studies in mammalian cells and *Drosophila*, where NF-kB, TNF- $\alpha$  and interleukin (IL)-6 responses were impaired by hypercapnia, making these organisms more prone to disease (Cummins *et al.* 2014; Wang *et al.* 2010; West *et al.* 1997). Although in corals LPS did not activate expression of NF-kB, expression of several TNF- $\alpha$  homologues was upregulated under control conditions and these responses were suppressed under high  $pCO_2$ conditions (Table S2.6, Supporting information). High  $pCO_2$  treatment also suppressed expression of complement component 3 (C3), Bf and several C-type lectins, suggesting that high  $pCO_2$  conditions may comprehensively compromise the coral immune response. Such an effect may mean that corals become more sensitive to disease, as has been documented in *Drosophila* and for mammalian cells and (Cummins *et al.* 2014).

These results are consistent with anecdotal reports that stressed corals are more susceptible to disease (Harvell *et al.* 1999), and highlight the complex molecular mechanisms underlying coral responses to elevated  $pCO_2$  (Cummins *et al.* 2010).

#### 2.5. Conclusions

This work significantly extends the body of data available on the responses of corals to immune challenges. The experiment described here was, of necessity, relatively short-term and simple in design, and for these reasons may not accurately reflect how corals will respond to long-term changes in ocean acidification. Nevertheless, these data highlight some of the potential consequences of elevated  $pCO_2$  that are not necessarily obvious. Juvenile corals appear to be capable of rapid acclimation to elevated  $pCO_2$  (Moya *et al.* 2015), but the present work implies that they may be more susceptible to disease. In summary, this work has two major implications: (i) this is the first study to show that the expression of coral homologs of several key components of the vertebrate innate immune system are activated in response to an immune challenge,, (ii) ocean acidification may seriously compromise coral health, by suppressing normal innate immune responses that are essential for host defence.

## 2.6. Supporting information

## Tables

|                      | рН <sub>ивs</sub> | Total alkalinity<br>(µmol/kg) | Temperature<br>(°C) | $\Omega_{aragonite}$ | pCO2 (µatm)    |
|----------------------|-------------------|-------------------------------|---------------------|----------------------|----------------|
| Control              | 8.09 ± 0.04       | 2227.3 ± 72.9                 | 27.3 ± 0.1          | 2.94 ± 0.27          | 508.7 ± 55.3   |
| High CO <sub>2</sub> | 7.82 ± 0.11       | 2203.8 ± 45.2                 | 27.3 ± 0.1          | 1.74 ± 0.43          | 1072.1 ± 247.7 |

 $\textbf{Table S2.1} \ \text{Summary of seawater parameters in control and high CO}_2 \ \text{treatment}$ 

**Table S2.2.** GO terms of the differentially expressed genes after (A) 1 h and (B) 6 h post LPS challenge. FDR values were obtained from the Benjamini & Hochberg correction using BiNGO. Shaded terms (purple) are significantly over-represented (FDR < 0.05).

**(A)** 

endocrine system development

35270

3

1.76E-01

| Up-regulated                                                        |                   |                |           | Down-regulated                                        |       |                |          |
|---------------------------------------------------------------------|-------------------|----------------|-----------|-------------------------------------------------------|-------|----------------|----------|
| GO Biological processes                                             | GO ID             | Total<br>genes | FDR       | GO Biological processes                               | GO ID | Total<br>genes | FDR      |
| regulation of Wnt receptor signaling pathway                        | 30111             | 5              | 1.27E-03  | bioluminescence                                       | 8218  | 2              | 2.48E-01 |
| regulation of gene expression                                       | 10468             | 31             | 6.86E-03  | thyroid hormone generation                            | 6590  | 1              | 2.48E-01 |
| enzyme linked receptor protein signaling pathway                    | 7167              | 10             | 1.92E-02  | immature T cell proliferation                         | 33079 | 1              | 2.48E-01 |
| central nervous system development                                  | 7417              | 12             | 2.63E-02  | negative regulation of Wnt receptor signaling pathway | 30178 | 3              | 2.48E-01 |
| transmembrane receptor protein tyrosine kinase<br>signaling pathway | 7169              | 8              | 4.17E-02  | membrane                                              | 16020 | 29             | 2.48E-01 |
| response to chemical stimulus                                       | 42221             | 21             | 4.35E-02  | T cell proliferation                                  | 42098 | 1              | 2.97E-01 |
| response to stimulus                                                | 50896             | 37             | 5.08E-02  | calcium channel activity                              | 5262  | 2              | 2.97E-01 |
| sensory organ development                                           | 7423              | 10             | 6.01E-02  | cakium ion transport                                  | 6816  | 2              | 2.97E-01 |
| response to inorganic substance                                     | 10035             | 6              | 6.05E-02  | carbon dioxide transport                              | 15670 | 1              | 2.97E-01 |
| response to osmotic stress                                          | 6970              | 3              | 6.28E-02  | carbonate dehydratase activity                        | 4089  | 1              | 2.97E-01 |
| nervous system development                                          | 73 <del>99</del>  | 21             | 6.89E-02  | stress-activated MAPK cascade                         | 51403 | 1              | 2.97E-01 |
| protein tyrosine kinase activity                                    | 4713              | 7              | 7.37E-02  | hypotonic salinity response                           | 42539 | 1              | 2.97E-01 |
| generation of neurons                                               | 48699             | 15             | 8.04E-02  | passive transmembrane transporter activity            | 22803 | 5              | 2.97E-01 |
| PAMP dependent induction by symbiont of host innate immunity        | 52033             | 2              | 8.29E-02  |                                                       |       |                |          |
| T cell activation                                                   | 42110             | 3              | 1.01E-01  |                                                       |       |                |          |
| oxidoreductase activity, acting on the CH-NH2<br>group of donors    | 16638             | 2              | 1.06E-01  |                                                       |       |                |          |
| immune system process                                               | 2376              | 13             | 1.08E-01  |                                                       |       |                |          |
| transcription regulator activity                                    | 30528             | 11             | 1.14E-01  |                                                       |       |                |          |
| regulation of MAPKKK cascade                                        | 43408             | 5              | 1.14E-01  |                                                       |       |                |          |
| ATP-binding cassette (ABC) transporter complex                      | 43190             | 1              | 1.14E-01  |                                                       |       |                |          |
| regulation of signaling pathway                                     | 35466             | 13             | 1.28E-01  |                                                       |       |                |          |
| regulation of signaling process                                     | 23051             | 11             | 1.29E-01  |                                                       |       |                |          |
| transmembrane receptor protein tyrosine kinase<br>activity          | 4714              | 3              | 1.31E-01  |                                                       |       |                |          |
| neuron cell-cell adhesion                                           | 7158              | 3              | 1.31E-01  |                                                       |       |                |          |
| regulation of cellular process                                      | 507 <del>94</del> | 53             | 1.36E-01  |                                                       |       |                |          |
| negative regulation of biosynthetic process                         | 9890              | 10             | 1.36E-01  |                                                       |       |                |          |
| cell communication                                                  | 7154              | 11             | 1.44E-01  |                                                       |       |                |          |
| signaling pathway                                                   | 23033             | 22             | 1.49E-01  |                                                       |       |                |          |
| regulation of nervous system development                            | 51960             | 7              | 1.54E-01  |                                                       |       |                |          |
| central nervons system segmentation                                 | 35283             | 1              | 1.54E-01  |                                                       |       |                |          |
| phosphoenolpyruvate carboxykinase (GTP) activity                    | 4613              | 1              | 1.54E-01  |                                                       |       |                |          |
| glutamate catabolic process                                         | 6538              | 1              | 1.54E-01  |                                                       |       |                |          |
| response to nitric oxide                                            | 71731             | 1              | 1.54E-01  |                                                       |       |                |          |
| hydrogen peroxide catabolic process                                 | 42744             | 1              | 1.54E-01  |                                                       |       |                |          |
| cellular response to abiotic stimulus                               | 71214             | 3              | 1.54E-01  |                                                       |       |                |          |
| transmembrane receptor protein kinase activity                      | 19199             | 3              | 1.54E-01  |                                                       |       |                |          |
| cell-cell adhesion                                                  | 16337             | 4              | 1.60E-01  |                                                       |       |                |          |
| regulation of response to stimulus                                  | 48583             | 9              | 1.61E-01  |                                                       |       |                |          |
| system process                                                      | 3008              | 12             | 1.61E-01  |                                                       |       |                |          |
| cellular response to organic substance                              | 71310             | 8              | 1.61E-01  |                                                       |       |                |          |
| regulation of metal ion transport                                   | 10959             | 3              | 1.66E-01  |                                                       |       |                |          |
| regulation of cell projection organization                          | 31344             | 5              | 1.60E-01  |                                                       |       |                |          |
| positive regulation of centilar biosynthetic process                | 31328             | 10             | L08E-01   |                                                       |       |                |          |
| protein Killase activity                                            | 40/2              | 12             | 1 COPE-01 |                                                       |       |                |          |
| negauve regulation of signal transduction                           | 7708              | 3              | L09E-01   |                                                       |       |                |          |
|                                                                     | 9986              | 4              | L09E-01   |                                                       |       |                |          |
|                                                                     | 34908             | 2              | LOYE-U1   |                                                       |       |                |          |
| negative regination of Kas's TPase activity                         | 34201             | T              | T04F-01   |                                                       |       |                |          |

## **(B)**

| Up-regulated                                            |       |                |          | Down-regulated                                                |       |                |          |
|---------------------------------------------------------|-------|----------------|----------|---------------------------------------------------------------|-------|----------------|----------|
| GO Biological processes                                 | GO ID | Total<br>genes | FDR      | GO Biological processes                                       | GO ID | Total<br>genes | FDR      |
| lipid metabolic process                                 | 6629  | 19             | 3.49E-02 | cellular amino acid and derivative metabolic<br>process       | 6519  | 35             | 4.43E-05 |
| sphingomyelin metabolic process                         | 6684  | 3              | 3.49E-02 | bioluminescence                                               | 8218  | 9              | 1.04E-04 |
| fatty acid metabolic process                            | 6631  | 7              | 1.49E-01 | L-serine biosynthetic process                                 | 6564  | 5              | 4.09E-04 |
| bioluminescence                                         | 8218  | 3              | 2.70E-01 | glycine metabolic process                                     | 6544  | 5              | 2.58E-03 |
| alcohol biosynthetic process                            | 46165 | 4              | 3.61E-01 | IMP metabolic process                                         | 46040 | 5              | 9.44E-03 |
| phospholipid metabolic process                          | 6644  | 6              | 3.61E-01 | hypotonic salinity response                                   | 42539 | 4              | 2.65E-02 |
| G-protein coupled receptor protein signaling<br>pathway | 7186  | 10             | 3.61E-01 | regulation of Wnt receptor signaling pathway                  | 30111 | 15             | 2.85E-02 |
| positive regulation of endothelial cell proliferation   | 1938  | 2              | 3.66E-01 | extracellular matrix organization                             | 30198 | 10             | 2.86E-02 |
| cell surface receptor linked signaling pathway          | 7166  | 21             | 3.66E-01 | sulfur metabolic process                                      | 6790  | 13             | 3.10E-02 |
| transmembrane receptor activity                         | 4888  | 13             | 4.51E-01 | L-glutamate transmembrane transporter activity                | 5313  | 3              | 4.73E-02 |
| cell death                                              | 8219  | 7              | 4.59E-01 | oxygen and reactive oxygen species m <i>e</i> tabolic process | 6800  | 4              | 7.03E-02 |
| regulation of cGMP metabolic process                    | 30823 | 1              | 4.59E-01 | peroxidase activity                                           | 4601  | 4              | 1.10E-01 |
| positive regulation of RNA metabolic process            | 51254 | 11             | 4.76E-01 | response to tumor necrosis factor                             | 34612 | 4              | 1.57E-01 |
| enzyme linked receptor protein signaling pathway        | 7167  | 8              | 4.78E-01 | response to transforming growth factor beta<br>stimulus       | 71559 | 4              | 1.57E-01 |
| apoptosis                                               | 6915  | 6              | 4.78E-01 | cell development                                              | 48468 | 46             | 2.40E-01 |
| carboxylic acid metabolic process                       | 19752 | 11             | 4.78E-01 | nervous system development                                    | 7399  | 61             | 2.78E-01 |
|                                                         |       |                |          | lipid metabolic process                                       | 6629  | 12             | 2.82E-01 |
|                                                         |       |                |          | sphingomyelin metabolic process                               | 6684  | 2              | 2.82E-01 |
|                                                         |       |                |          | cytokine-mediated signaling pathway                           | 19221 | 4              | 2.82E-01 |
|                                                         |       |                |          | a poptotic nuclear change                                     | 30262 | 4              | 2.86E-01 |

3.62E-01 sulfur amino acid metabolic process 96 4 8654 phospholipid biosynthetic process 8 3.62E-01 regulation of cell migration 30334 13 3.62E-01 response to chemical stimulus 42221 3.62E-01 56

5544

3

3.62E-01

calcium-dependent phospholipid binding

| Conomo ID    | Protein ID                                              | Log <sub>2</sub> FC |       |  |  |
|--------------|---------------------------------------------------------|---------------------|-------|--|--|
| Genome ID    |                                                         | 1 h                 | 6 h   |  |  |
| 1.2.7139.m1  | Choloylglycine hydrolase                                | 3.85                | -1.03 |  |  |
| 1.2.22417.m1 | No Significant Hit                                      | 2.97                | -0.57 |  |  |
| 1.2.16616.m1 | p53-induced ring-H2 protein                             | 2.57                | -0.08 |  |  |
| 1.2.1337.m1  | No Significant Hit                                      | 2.43                | -0.13 |  |  |
| 1.2.21686.m1 | Fibroblast growth factor 4                              | 1.97                | -0.30 |  |  |
| 1.2.8860.m1  | Carbonic anhydrase II                                   | 1.91                | -0.62 |  |  |
| 1.2.6508.m1  | Epididymal secretory protein E1                         | 1.88                | -1.14 |  |  |
| 1.2.1016.m1  | No Significant Hit                                      | 1.82                | -1.23 |  |  |
| 1.2.21266.m1 | No Significant Hit                                      | 1.81                | -0.19 |  |  |
| 1.2.21472.m1 | Uncharacterized skeletal organic matrix                 | 1.77                | -0.29 |  |  |
| 1.2.6642.m1  | No Significant Hit                                      | 1.74                | -0.84 |  |  |
| 1.2.9411.m1  | Endoglucanase                                           | 1.61                | -1.95 |  |  |
| 1.2.1111.m1  | Transient receptor potential channel 4                  | 1.53                | -0.11 |  |  |
| 1.2.9159.m1  | Hemicentin-1                                            | 1.48                | -0.08 |  |  |
| 1.2.8662.m1  | No Significant Hit                                      | 1.44                | -0.13 |  |  |
| 1.2.16367.m1 | CSC1-like protein ERD4                                  | 1.38                | -0.52 |  |  |
| 1.2.8656.m1  | No Significant Hit                                      | 1.30                | -0.30 |  |  |
| 1.2.12318.m1 | No Significant Hit                                      | 1.30                | -0.36 |  |  |
| 1.2.7877.m1  | Serine/threonine-proteinphosphatase 6 regulatory repeat | 1.26                | -0.45 |  |  |
| 1.2.9227.m1  | Delta fatty acid desaturase                             | 1.18                | -1.10 |  |  |
| 1.2.22670.m1 | Neuroglian                                              | 1.17                | -0.29 |  |  |
| 1.2.16253.m1 | Protein WNT-8b                                          | 1.15                | -0.11 |  |  |
| 1.2.23282.m1 | No Significant Hit                                      | 1.14                | -0.23 |  |  |
| 1.2.4159.m1  | No Significant Hit                                      | 1.10                | -0.21 |  |  |
| 1.2.20442.m1 | No Significant Hit                                      | 1.09                | -1.25 |  |  |
| 1.2.21562.m1 | GFP-like fluorescent chromoprotein AMFP486              | 1.07                | -0.82 |  |  |
| 1.2.16853.m1 | Choloylglycine hydrolase pA79-1                         | 1.03                | -0.36 |  |  |
| 1.2.23285.m1 | No Significant Hit                                      | 1.03                | -0.20 |  |  |
| 1.2.20551.m1 | C-type mannose receptor 1                               | 1.03                | -0.14 |  |  |
| 1.2.15849.m1 | Methyltransferase-like protein 7a                       | 1.01                | -0.25 |  |  |
| 1.2.6956.m1  | Major facilitator superfamily protein 12                | 1.00                | -0.71 |  |  |
| 1.2.12363.m1 | Glutamate dehydrogenase mitochondrial                   | 0.98                | -0.10 |  |  |
| 1.2.15012.m1 | Orexin receptor type 1                                  | 0.97                | -1.31 |  |  |
| 1.2.17261.m1 | Dehydrogenase reductase SDR                             | 0.96                | -0.55 |  |  |
| 1.2.7303.m1  | Histamine H2 Receptor                                   | 0.94                | -0.36 |  |  |
| 1.2.10516.m1 | Contactin-2                                             | 0.91                | -0.31 |  |  |
| 1.2.13415.m1 | Choloylglycine hydrolase                                | 0.91                | -1.01 |  |  |

**Table S2.3** Differentially expressed genes (total = 88) (FDR <0.01, log<sub>2</sub>FC >0.05) in response to LPS challenge after 1 and 6 h. Order as presented in the heat map Figure 2.1.

| 1.2.20843.m1 | No Significant Hit                                   | 0.91 | -0.70 |
|--------------|------------------------------------------------------|------|-------|
| 1.2.3332.m1  | Protein ssuh2 homolog                                | 0.90 | -0.23 |
| 1.2.6958.m1  | No Significant Hit                                   | 0.90 | -0.87 |
| 1.2.14438.m1 | Protein WNT-4                                        | 0.89 | -0.16 |
| 1.2.20943.m1 | Fibrillin-3                                          | 0.87 | -0.66 |
| 1.2.14882.m1 | MAM and LDL receptor class A                         | 0.87 | -0.16 |
| 1.2.8432.m1  | Threonine-rich protein                               | 0.86 | -0.42 |
| 1.2.14.m1    | No Significant Hit                                   | 0.86 | -0.17 |
| 1.2.19174.m1 | Deleted malignant brain tumors 1                     | 0.86 | -0.19 |
| 1.2.4223.m1  | Collagen alpha-5 chain                               | 0.86 | -0.40 |
| 1.2.8651.m1  | No Significant Hit                                   | 0.86 | -0.29 |
| 1.2.7734.m1  | Transcription factor sox-9                           | 0.86 | -0.21 |
| 1.2.14080.m1 | Endothelin-converting enzyme 2                       | 0.84 | -0.20 |
| 1.2.20939.m1 | No Significant Hit                                   | 0.84 | -0.47 |
| 1.2.13251.m1 | Phosphoenolpyruvate carboxykinase(GTP)               | 0.83 | -0.54 |
| 1.2.15486.m1 | Serine palmitoyltransferase 3                        | 0.82 | -0.61 |
| 1.2.6310.m1  | No Significant Hit                                   | 0.82 | -0.39 |
| 1.2.15008.m1 | Alpha-N-acetylgalactosamine-specific lectin          | 0.81 | -0.98 |
| 1.2.3152.m1  | Hemicentin-2                                         | 0.81 | -0.50 |
| 1.2.4311.m1  | Pancreatic zymogen granule membrane protein gp-2     | 0.78 | -0.51 |
| 1.2.15857.m1 | Cytochrome p450-c17                                  | 0.77 | -0.31 |
| 1.2.1472.m1  | No Significant Hit                                   | 0.75 | -0.41 |
| 1.2.23786.m1 | Extracellular sulfatase                              | 0.74 | -0.37 |
| 1.2.8939.m1  | Inositol 2-dehydrogenase                             | 0.72 | -0.08 |
| 1.2.14400.m1 | PKHL1 Fibrocystin-l                                  | 0.70 | -0.68 |
| 1.2.6172.m1  | 5-Hydroxytryptamine (Serotonin) Receptor 4           | 0.70 | -0.25 |
| 1.2.6311.m1  | No Significant Hit                                   | 0.69 | -0.16 |
| 1.2.15765.m1 | Oncoprotein-induced transcript 3 protein             | 0.68 | -0.31 |
| 1.2.22505.m1 | Mothers Against Decapentaplegic Homolog 4            | 0.68 | -0.30 |
| 1.2.20633.m1 | Tumor necrosis factor receptor superfamily member 16 | 0.67 | -0.02 |
| 1.2.4382.m1  | No Significant Hit                                   | 0.67 | -0.10 |
| 1.2.15762.m1 | Collagen alpha-6 chain                               | 0.67 | -0.82 |
| 1.2.12142.m1 | Insulin-like growth factor 2 mRNA-binding protein 2  | 0.63 | -0.43 |
| 1.2.16855.m1 | No Significant Hit                                   | 0.63 | -0.48 |
|              |                                                      | 1    |       |

**Table S2.4** *A. millepora* homologues to the complement system and C-lectins-domain proteins (PF00059.16). (A) BlastP search results are listed for each protein (total = 21). (B)  $Log_2FC$  values of significantly expressed genes (FDR <0.05,  $log_2FC > 0.05$ ) in response to LPS challenge relative to the control (PBS) after 1 and 6 h. For samples under control (pH 8.1) and high  $pCO_2$  (pH 7.8) conditions.  $Log_2FC$  colour indicates up (red) and down (blue) regulated genes.

| Protein<br>type | Genome ID             | A. millepora<br>ID | Protein ID                                                                              | Length       | % ID         | <i>e</i> -Value   |
|-----------------|-----------------------|--------------------|-----------------------------------------------------------------------------------------|--------------|--------------|-------------------|
| Compleme        | ent system            |                    |                                                                                         |              |              |                   |
|                 | 1.2.8186.m1           | Am_C3-1            | complement component C3 precursor [Nematostella vectensis]                              | 655          | 33.44        | 3.00E-88          |
| <i>C</i> 3      | 1.2.2282.m1           | Am_C3-2            | complement component C3 precursor [Nematostella vectensis]                              | 1758         | 41.47        | 0                 |
|                 | 12.10886.m1           | Am_C3-3            | complement component C3 precursor [Nematostella vectensis]                              | 1394         | 44.69        | 0                 |
|                 | 1.2.3633.m1           | _                  | complement factor B precursor [Nematostella<br>vectensis]                               | 687          | 49.64        | 0                 |
| Bf              | 1.2.2 <b>0</b> 84.m1  | _                  | complement factor B precursor [Nematostella<br>vectensis]                               | 671          | 32.49        | 8.00E-81          |
|                 | 1.2.2 <b>0</b> 81.m1  | _                  | complement factor B precursor [Nematostella<br>vectensis]                               | 625          | 36.32        | 1.00E-106         |
|                 | 1.2.14429.m1          | _                  | mannose-binding lectin associated serine protease<br>precursor [Nematostella vectensis] | 689          | 52.69        | 0                 |
| MASP            | 1.2.12 <b>0</b> 93.m1 | _                  | mannose-binding lectin associated serine protease<br>precursor [Nematostella vectensis] | 276          | 35.87        | 5 <b>.00E-4</b> 7 |
|                 | 1.2.2071.m1           | _                  | mannose-binding lectin associated serine protease<br>precursor [Nematostella vectensis] | 268          | 35.07        | 6.00E-43          |
| apextrin        | 1.2.20644.m1          | Apextrin           | apextrin [Acropora millepora]                                                           | 805          | <b>99.50</b> | 0                 |
|                 | 1.2.20551.m1          | Am_MRC1            | MRC1_human ame: full=macrophage mannose<br>receptor 1                                   | 544          | 43.20        | 2 <b>.00</b> E-16 |
|                 | 1.2.4223.m1           | Am_C-lectin1       | CO6A5_human ame: full=collagen alpha-5 chain                                            | 5 <b>0</b> 7 | 55.00        | 2.6 <b>0</b> E-21 |
|                 | 1213586m1             | Am_C-lectin2       | C209A_mouse ame: full=cd209 antigen-like protein<br>A                                   | 154          | 56.00        | 7.80E-20          |
|                 | 12.1695 <b>0</b> .m1  | Am_C-lectin3       | CL17A_human ame: full=c-type lectin domain family member A                              | 228          | 47.00        | 3.30E-06          |
|                 | 1.2.17 <b>0</b> 36.m1 | Am_C-lectin4       | LADD_oncmy ame: full=ladderlectin                                                       | 234          | 47.60        | 4.60E-18          |
| Lectins         | 1.2.3603.m1           | Am_C-lectin5       | CLC4A_mouse ame: full=c-type lectin domain family<br>4 member A                         | 273          | 47.00        | 4.60E-13          |
|                 | 1.2.12 <b>034.</b> m1 | Am_C-lectin6       | FCER2_mouse ame: full=lymphocyte receptor                                               | 121          | 48.40        | 1 <b>.00</b> E-11 |
|                 | 1.2.13360.m1          | Am_C-lectin7       | LADD_oncmy ame: full=ladderlectin                                                       | 223          | 49.80        | 9.30E-14          |
|                 | 1.2.12155.m1          | Am_C-lectin8       | FCER2_mouse ame: full=lymphocyte receptor                                               | 121          | 48.20        | 3.30E-13          |
|                 | 1.2.22673.m1          | Millectin          | LECG_patpe ame: full=alpha-n-acetylgalactosamine-<br>specific lectin                    | 244          | 46.40        | <b>4.00</b> E-12  |
|                 | 1.2.8560.m1           | Am_C-lectin9       | FCER2_mouse ame: full=lymphocyte receptor                                               | 150          | 43.40        | 2.1 <b>0</b> E-15 |
|                 | 1.2.21223.m1          | Am_C-lectin10      | PLCL_mytga ame: full=perlucin-like protein                                              | 176          | 45.20        | 3.00E-14          |

(A)

|              |                           |                     | Control  | (pH 8.1)            |          | High CO2 (pH 7.8)   |          |                     |          |  |
|--------------|---------------------------|---------------------|----------|---------------------|----------|---------------------|----------|---------------------|----------|--|
| Genome ID    | <b>A. millepora</b><br>ID | 1                   | l h      | 6                   | h        | 1                   | l h      | ć                   | i h      |  |
|              | IL .                      | Log <sub>2</sub> FC | FDR      |  |
| 1.2.8186.m1  | Am_C3-1                   | 0.27                | 1.27E-02 | -0.35               | 4.42E-02 | -0.58               | 1.84E-03 | -0.48               | 2.44E-03 |  |
| 1.2.2282.m1  | Am_C3-2                   | _                   | -        | -0.41               | 2.84E-02 | -                   | -        | —                   | -        |  |
| 1.2.10886.m1 | Am_C3-3                   | -                   | -        | -0.50               | 2.09E-02 | -                   | -        | -0.03               | 4.94E-02 |  |
| 1.2.3633.m1  | -                         | -                   | -        | -                   | -        | 0.79                | 9.46E-06 | -                   | -        |  |
| 1.2.2084.m1  | -                         | 0.07                | 3.89E-02 | -                   | -        | -                   | -        | -                   | -        |  |
| 1.2.2081.m1  | -                         | 0.05                | 4.58E-02 | -0.27               | 2.01E-03 | -0.07               | 3.90E-02 | -                   | -        |  |
| 1.2.14429.m1 | _                         | -                   | -        | -                   | -        | -                   | -        | _                   | _        |  |
| 1.2.12093.m1 | _                         | -                   | _        | _                   | _        | _                   | -        | _                   | _        |  |
| 1.2.2071.m1  | _                         | _                   | _        | _                   | _        | _                   | _        | _                   | _        |  |
| 1.2.20644.m1 | Apextrin                  | _                   | _        | _                   | _        | 0.79                | 9.46E-06 | -0.13               | 1.38E-06 |  |
| 1.2.20551.m1 | Am_MRC1                   | 1.03                | 4.13E-03 | -0.14               | 1.28E-04 | -0.82               | 3.55E-05 | -0.77               | 1.16E-06 |  |
| 1.2.4223.m1  | Am_C-lectin1              | 0.86                | 3.10E-03 | -0.40               | 1.09E-03 | -                   | -        | -0.39               | 7.02E-14 |  |
| 1.2.13586.m1 | Am_C-lectin2              | 0.47                | 1.11E-02 | -                   | -        | -0.23               | 2.39E-02 | -0.31               | 3.84E-02 |  |
| 1.2.16950.m1 | Am_C-lectin3              | 0.42                | 1.41E-02 | -                   | -        | -                   | -        | -                   | -        |  |
| 1.2.17036.m1 | Am_C-lectin4              | 0.24                | 1.69E-02 | 0.33                | 6.64E-11 | -0.07               | 2.10E-03 | -0.26               | 3.25E-06 |  |
| 1.2.3603.m1  | Am_C-lectin5              | 0.20                | 2.06E-02 | -0.05               | 7.42E-07 | -0.29               | 7.48E-04 | 0.10                | 1.07E-03 |  |
| 1.2.12034.m1 | Am_C-lectin6              | 0.19                | 2.21E-02 | 0.24                | 3.29E-07 | -0.76               | 2.67E-02 | -0.45               | 4.97E-05 |  |
| 1.2.13360.m1 | Am_C-lectin7              | -0.52               | 1.25E-02 | -0.63               | 1.96E-06 | -0.16               | 3.02E-03 | 0.10                | 5.86E-08 |  |
| 1.2.12155.m1 | Am_C-lectin8              | -0.49               | 2.52E-02 | 0.67                | 1.70E-05 | -0.62               | 1.27E-05 | -0.36               | 1.12E-02 |  |
| 1.2.22673.m1 | Millectin                 | -0.47               | 1.75E-03 | -1.12               | 4.53E-26 | 0.74                | 1.63E-07 | 0.36                | 2.37E-27 |  |
| 1.2.8560.m1  | Am_C-lectin9              | -0.25               | 6.08E-04 | -1.13               | 1.38E-08 | _                   | -        | -0.11               | 2.68E-05 |  |
| 1.2.21223.m1 | Am_C-lectin10             | -0.22               | 1.39E-02 | -0.45               | 1.78E-02 | -                   | -        | -0.20               | 2.38E-03 |  |

**(B)** 

**Table S2.5** TIR-domain-containing proteins (total = 37). (A) Results of the domain search (PF01582.15 with a 1e-4 cut-off) in the *A. millepora* genome and their *A. digitifera* homologues (*Poole & Weis 2014*). NCBI domain and BlastP search results are listed for each protein. (B) Log<sub>2</sub>FC values of significantly expressed genes (FDR <0.05, log<sub>2</sub>FC > 0.05) in response to LPS challenge relative to the control (PBS) after 1 and 6 h. For samples under control (pH 8.1) and high *p*CO<sub>2</sub> (pH 7.8) conditions. Log<sub>2</sub>FC colour indicates up (red) and down (blue) regulated genes.

| (A)          |                    |                |                  |                            |                                                                                  |                                                      |          |               |
|--------------|--------------------|----------------|------------------|----------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|----------|---------------|
| Genome ID    | A. millepora<br>ID | NCBI.domain    | A. digitifera ID | A. digitifera<br>Blast Hit | Best Blast Hit                                                                   | Hit D                                                | Length   | e-Value       |
| 1.2.12032.m1 | Am_Myd881          | DD TIR         | Ad_Myd881        | aug_v2a.00120              | MyD48a_menla ame: full=myeloid differentiation<br>primary response protein 88-a  | Q9DF60.1  MYB8A_XENLA                                | 261      | 1.70E-37      |
| 1.2.1203Lm1  | Am_Myd882          | DD TIR         | Ad_Myd882        | aug_v2a.01135              | MyD08a_menta a me: full=myeloid differentiation<br>primary response protein 88-a | Q5XJ85.2 MYD88_DANR                                  | 373      | 4.20E-28      |
| 1.2.10735.m1 | Am_ILR1            | IG IG IG TIR   | Ad_ILR1          | aug_v2a.20402              | TLR2_cap ib a me: full=toll-like receptor 2                                      | B2LT62.1 TLR2_CAPIB                                  | 586      | 4.40E-13      |
| 1.2.22324.m1 | Am_ILR2            | IG IG IG TIR   | Ad_ILR2          | aug_v2a.11844              | HMCN2_mouse ame: full=hemicentin-2                                               | A2AJ76.1  HMCN2_MOUSE                                | 524      | 3.40E-19      |
| 1.2.22473.m1 | Am_ILR3            | IG TIR         | Ad_ILR2          | aug_v2a.11844              | TLR13_mouse ame: full=toll-like receptor 13                                      | Q6R5N8.1 TLR13_MOUSE                                 | 435      | 1.20E-15      |
| 1.2.2434.m1  | Am_ILR4            | IG TIR         | Ad_ILR6          | aug_v2a.14217              | TLR2_canfa ame: full=toll-like receptor 2                                        | Q689D1.1  TLR2_CANFA                                 | 334      | 4.00E-13      |
| 1.2.13178.m1 | Am_TLR1            | LRRJLRRJTIR    | Ad_TLR1          | aug_v2a.20813              | TOLL_drome ame: full=protein toll                                                | P08953.1 TOLL_DROME                                  | 838      | 1.10E-59      |
| 1.2.13179.m1 | Am_TLR2            | LRR LRR TIR    | Ad_TLR1          | aug_v2a.20813              | TOLL_drome ame: full=protein toll                                                | P08953.1 TOLL_DROME                                  | 1110     | 1.50E-64      |
| 1.2.13181.m1 | Am_TLR3            | LRR LRR TIR    | Ad_TLR1          | aug_v2a.20813              | TOLL_drome ame: full=protein toll                                                | P08953.1 TOLL_DROME                                  | 1481     | 1.70E-63      |
| 1.2.13180.m1 | Am_TLR4            | LRR TIR        | Ad_TLR1          | aug_v2a.20813              | TOLL_drome ame: full=protein toll                                                | P08953.1 TOLL_DROME                                  | 851      | 1.80E-58      |
| 1.2.13177.m1 | Am_TLR5            | LRR TIR        | Ad_TLR4          | aug_v2a.14728              | TOLL_drome ame: full=protein toll                                                | P08953.1 TOLL_DROME                                  | 481      | 3.60E-52      |
| 1.2.5856.m1  | Am_TIR1            | TIR            | Ad_TIR6          | aug_v2a.05635              | TLR2_bubbu ame: ful⊨toll-like receptor 2                                         | Q2PZH4.1 TLR2_BUBBU                                  | 404      | 2.60E-16      |
| 1.2.16257.m1 | Am_TIR2            | TIR            | Ad_TIR2_1        | aug_v2a.23782              | TLR6_bovin ame: full=toll-like receptor 6                                        | Q704V6.1 TLR6_BOVIN                                  | 245      | 2.10E-18      |
| 1.2.2436.m1  | Am_TIR3            | TIR            | Ad_ILR4          | aug_v2a.16874              | TLR6_bovin ame: full=toll-like receptor 6                                        | Q704V6.1 TLR6_BOVIN                                  | 185      | 2.20E-15      |
| 1.2.5845.m1  | Am_TIR4            | TIR            | Ad_unknown1      | aug_v2a.13087              | TLR2_bostr ame: full=toll-like receptor 2                                        | Q2V897.1 TLR2_BOSTR                                  | 445      | 6.10E-18      |
| 1.2.1935.m1  | Am_TIR5            | TIR            | Ad_TIR13         | aug_v2a.02686              | TLR6_buman ame: full=toll-like receptor 6                                        | Q9Y2C9.2 TLR6_HUMAN                                  | 174      | 5.80E-19      |
| 1.2.4752.m1  | Am_TIR6            | TIR            | Ad_ILR7          | aug_v2a.19280              | TLR4_pig ame: full=toll-like receptor 4                                          | Q68Y56.1  TLR4_PIG                                   | 147      | 1.60E-16      |
| 1.2.849.m1   | Am TIR7            | TIR2           | Ad TIR2 12       | -<br>aug v2a.16869         |                                                                                  | n                                                    | п        | п             |
| 1.2.5844.m1  | Am TIR8            | TIR2           | Ad TIR3          | aug v2a.10450              | TLR1 human ame: full=toll-like receptor                                          | Q15399.3 TLR1 HUMAN                                  | 403      | 2.90E-12      |
| 1.2.7189.m1  | Am TIR9            | TIR2           | Ad ILR3          | -<br>aug v2a.23366         | TLR6 bovin ame: full=toll-like receptor 6                                        | Q15399.3 TLR1 HUMAN                                  | 206      | 1.90E-10      |
| 1.2.12302.m1 | Am TIR10           | TIR2           | Ad ILR5          | aug v2a.08563              | TLR2 caoib ame: full=toll-like receptor 2                                        | B2LT62.1ITLR2 CAPIB                                  | 147      | 6.70E-13      |
| 1.2.5843.m1  | Am TIR11           | TIR2           | Ad TIR1          | aug v2a.09825              | TLR13 mouse ame: full=toll-like recentor 13                                      | O6R5N8.1ITLR13 MOUSE                                 | 406      | 3.30E-10      |
| 1.2.5842.m1  | Am TIR12           | TIR2           | -<br>Ad TIR7     | ang y2a.10451              | –                                                                                | 0704V6.1ITLR6 BOVIN                                  | 332      | 7.10E-12      |
| 1.2.2023.m1  | Am TIR13           | TIR2           |                  | ang y2a.08379              |                                                                                  |                                                      |          |               |
| 1 2 21921 m1 | Am TIR14           | TIR2           | u<br>Ad TIR2 1   | aug w2a 23782              |                                                                                  | u                                                    | u        | u             |
| 1 2 21020 m1 | Am TIR15           | ARMITTR?       | Ad TIR2 2        | aug_ 12a 07172             | U<br>ADLO2 areth ame: full⊐nentein are bidillo 2                                 | U<br>ODM224 114DLO2 ARATH                            | U<br>414 | U<br>3.705-04 |
| 124500 m1    | Am TIR16           | ARMITIR 2      | Ad TIR2 3        | 206_722.077723             | ADI 01 aroth ame: full=protein arabidillo 1                                      | 022161 11ADI OL ARATH                                | 680      | 6 705-06      |
| 12.1575.001  | Am_TIKIO           | huqintz        | M_INE_5          | aug_vLaurr Lo              | CDS1 humin sume full-RAP1 CTPase and discovision                                 | CERTIFICATION AND AND AND AND AND AND AND AND AND AN | 000      | 0.701.00      |
| 1.2.6982.m1  | Am_TIR17           | ARM TIR2       | Ad_TIR2_2        | aug_v2a.23782              | stimulator 1                                                                     | Q04173.1 GDS1_BOVIN                                  | 624      | 5.40E-04      |
| 1.2.20158.m1 | Am_TIR18           | ARM TIR2       | Nv_TIR2_5        | aug_v2a.11251              | ADLO2_arath ame: full=protein arabidillo 2                                       | Q9M224.1 ADLO2_ARATH                                 | 689      | 1.50E-05      |
| 1.2.24704.m1 | Am_TIR19           | ARM TIR2       | Ad_TIR2_1        | aug_v2a.23782              | 0                                                                                | 0                                                    | 0        | 8             |
| 1.2.2167.m1  | Am_TIR20           | ARM TIR2       | 0                | aug_v2a.14442              | 0                                                                                | 0                                                    | 0        | 8             |
| 1.2.1547.m1  | Am_TIR21           | ARM TIR2       | Ad_TIR2_2        | aug_v2a.07172              | 0                                                                                | 0                                                    | 0        | 0             |
| 1.2.21925.m1 | Am_TIR22           | ARM TIR2       | Ad_TIR2_1        | aug_v2a.23782              | 0                                                                                | 0                                                    | 0        | 0             |
| 1.2.17046.m1 | Am_TIR23           | ARM TIR2       | Ad_TIR2_7        | aug_v2a.22195              | 0                                                                                | 0                                                    | 0        | 0             |
| 1.2.21546.m1 | Am_TIR24           | TIR2 TIR2 TIR2 | Nv_TIR2_2        | aug_v2a.03936              | a a                                                                              | 0                                                    | 0        | 8             |
| 1.2.25362.ml | Am_TIR25           | PkC  ROC  TIR2 | Nv_TIR2_1        | aug_v2a.18447              | PATS1_diciti ame: full=probable serine threonine-<br>protein kinase pats1        | Q5 SE58.1 [PATS1_DICDI                               | 1313     | 8.90E-19      |
| 1.2.25360.m1 | Am_TIR26           | ROC TIR2       | Nv_TIR2_1        | aug_v2a.18448              | PATS1_dicdi ame: full=probable serine threonine-<br>protein kinase pats1         | Q55E58.1  PATS1_DICDI                                | 1586     | 8.60E-17      |
| 1.2.3056.m1  | Am_TIR27           | SAM[TIR2       | Nv_TIR2_3        | Nem ve 1/223246            | <b>D</b>                                                                         | <b>D</b>                                             | п        | 0             |

| (2)                 |              |                     | Control  | (nH 8 1)            |          | High CO <sub>2</sub> (pH 7.8) |          |                     |          |  |
|---------------------|--------------|---------------------|----------|---------------------|----------|-------------------------------|----------|---------------------|----------|--|
| Can and a D         | A. millepora | 1                   | h        | 6                   | h        | 1                             | h        | 6                   | h        |  |
| Genome ID           | ID           | Log <sub>2</sub> FC | FDR      | Log <sub>2</sub> FC | FDR      | Log <sub>2</sub> FC           | FDR      | Log <sub>2</sub> FC | FDR      |  |
| 1.2.12032.m1        | Am_Myd881    | -                   | _        | _                   | _        | -                             | _        | 0.17                | 3.47E-02 |  |
| 1.2.12031.m1        | Am_Myd882    | -                   | -        | -                   | -        | -                             | -        | -                   | -        |  |
| 1.2.10735.m1        | Am_ILR1      | -0.12               | 4.10E-02 | _                   | _        | _                             | _        | _                   | _        |  |
| 1.2.22324.m1        | Am_ILR2      | 1.60                | 2.39E-03 | -                   | _        | -                             | _        | -0.69               | 4.91E-02 |  |
| 1.2.22473.m1        | Am_ILR3      | 0.37                | 2.90E-02 | -                   | _        | -0.26                         | 2.03E-02 | -                   | -        |  |
| 1.2.2434.m1         | Am_ILR4      | 0.20                | 7.06E-03 | -                   | -        | -0.43                         | 5.42E-03 | -0.09               | 1.28E-02 |  |
| 1.2.13178.m1        | Am_TLR1      | -                   | -        | -0.18               | 3.05E-02 | -                             | -        | -0.33               | 2.02E-02 |  |
| 1.2.13179.m1        | Am_TLR2      | 0.39                | 2.15E-02 | -                   | -        | -0.20                         | 2.84E-02 | -0.28               | 5.73E-03 |  |
| 1.2.13181.m1        | Am_TLR3      | _                   | -        | —                   | _        | -                             | -        | 0.43                | 2.56E-03 |  |
| 1.2.13180.m1        | Am_TLR4      | -0.44               | 3.64E-02 | -                   | _        | -                             | _        | -                   | -        |  |
| 1.2.13177.m1        | Am_TLR5      | 0.34                | 4.40E-02 | -                   | _        | -                             | -        | -0.85               | 1.78E-04 |  |
| 1.2.5856.m1         | Am_TIR1      | 0.40                | 1.91E-02 | -0.20               | 8.62E-04 | -0.17                         | 5.20E-03 | -0.44               | 8.42E-04 |  |
| 1.2.16257.m1        | Am_TIR2      | -                   | -        | -0.05               | 3.12E-03 | -0.41                         | 2.56E-02 | -0.33               | 7.15E-05 |  |
| 1.2.2436.m1         | Am_TIR3      | -                   | -        | -0.34               | 1.13E-02 | -0.18                         | 1.49E-02 | -0.51               | 2.27E-03 |  |
| 1.2.5845.m1         | Am_TIR4      | -                   | -        | -0.15               | 3.71E-02 | -                             | -        | -                   | _        |  |
| 1.2.1935.m1         | Am_TIR5      | -                   | _        | -                   | _        | -0.37                         | 6.20E-04 | -0.24               | 2.37E-02 |  |
| 1.2.4752.m1         | Am_TIR6      | -                   | -        | -                   | _        | -                             | -        | -                   | _        |  |
| 1. <b>2.849.m</b> 1 | Am_TIR7      | -                   | _        | 0.06                | 7.04E-03 | 0.09                          | 3.97E-02 | -                   | _        |  |
| 1.2.5844.m1         | Am_TIR8      | -                   | -        | _                   | -        | -                             | -        | -0.14               | 4.28E-02 |  |
| 1.2.7189.m1         | Am_TIR9      | -                   | -        | _                   | -        | -0.05                         | 3.89E-02 | -                   | -        |  |
| 1.2.12302.m1        | Am_TIR10     | -                   | -        | -                   | -        | -                             | -        | -0.63               | 3.03E-03 |  |
| 1.2.5843.m1         | Am_TIR11     | -                   | _        | _                   | _        | -                             | _        | -0.21               | 4.87E-02 |  |
| 1.2.5842m1          | Am_TIR12     | -                   | -        | —                   | -        | -                             | -        | -                   | —        |  |
| 1.2.2023.m1         | Am_TIR13     | -                   | —        | -                   | —        | -                             | —        | -                   | —        |  |
| 1.2.21921.m1        | Am_TIR14     | -                   | -        | -                   | -        | -                             | -        | -                   | —        |  |
| 1.2.21920.m1        | Am_TIR15     | 0.16                | 1.69E-02 | 0.19                | 7.60E-03 | -0.61                         | 1.48E-02 | -                   | _        |  |
| 1.2.4599.m1         | Am_TIR16     | -                   | -        | 0.27                | 1.96E-02 | -0.70                         | 2.19E-02 | -0.09               | 6.03E-03 |  |
| 1.2.6982.m1         | Am_TIR17     | -0.23               | 2.65E-02 | -                   | _        | -                             | -        | -                   | _        |  |
| 1.2.20158.m1        | Am_TIR18     | -0.22               | 2.80E-02 | -                   | _        | -0.45                         | 1.45E-09 | -0.71               | 2.78E-03 |  |
| 1.2.24704.m1        | Am_TIR19     | -0.20               | 3.40E-02 | -                   | _        | -                             | -        | -                   | -        |  |
| 1. <b>2.2167.m1</b> | Am_TIR20     | -                   | -        | -                   | -        | 0.15                          | 2.35E-02 | -                   | —        |  |
| 1.2.1547.m1         | Am_TIR21     | -                   | _        | _                   | _        | -                             | -        | -                   |          |  |
| 1.2.21925.m1        | Am_TIR22     | -                   | -        | -                   | _        | -                             | -        | -                   | _        |  |
| 1.2.17046.m1        | Am_TIR23     | -                   | _        | -                   | _        | -                             | -        | -                   | _        |  |
| 1.2.21546.m1        | Am_TIR24     | -                   | _        | -                   | _        | -                             | -        | 0.12                | 2.45E-02 |  |
| 1.2.25362.m1        | Am_TIR25     | 0.33                | 4.04E-02 | -                   | -        | -0.09                         | 4.80E-02 | -                   | _        |  |
| 1.2.25360.m1        | Am_TIR26     | _                   | _        | _                   | _        | -                             | -        | _                   | _        |  |
| 1.2.3056.m1         | Am_TIR27     | -                   | _        | -                   | _        | -0.35                         | 2.19E-03 | -0.10               | 3.55E-02 |  |

**Table S2.6** TNF and TNFR-domain containing proteins (total = 36). (A) Results of the domain search in the *A. millepora* genome (PF00229.13 and PF00020.13 with a 1e-4 cut-off). NCBI domain and BlastP search results are listed for each protein. (B)  $Log_2FC$  values of significantly expressed genes (FDR <0.05,  $log_2FC > 0.05$ ) in response to LPS challenge relative to the control (PBS) after 1 and 6 h. For samples under control (pH 8.1) and high  $pCO_2$  (pH 7.8) conditions.  $Log_2FC$  colour indicates up (red) and down (blue) regulated genes.

| (A)          |                 |                      |                                                              |                                        |        |          |       |
|--------------|-----------------|----------------------|--------------------------------------------------------------|----------------------------------------|--------|----------|-------|
| Genome ID    | A. millepora ID | NCBLdomain           | BlastHit                                                     | Hit ID                                 | Length | e.Value  | % D   |
| 1.2.13359.m1 | Am_TNF1         | TNF                  | TNFa_Tumor necrosis factor                                   | gi 135938 sp P16599.1 TNFA_RAT         | 231    | 1.60E-06 | 39.8  |
| 1.2.17029.m1 | Am_TNF2         | TNF                  | TNFa_Tumor necrosis factor                                   | gi 135938 sp P16599.1 TNFA_RAT         | 207    | 5.00E-06 | 40.6  |
| 1.2.4528m1   | Am_TNF3         | TNF                  | TNF10_Tumor necrosis factor ligand superfamily member 10     | gi 1730015 sp P50591.1 TNF10_HUMAN     | 174    | 5.90E-04 | 50    |
| 1.2.607.m1   | Am_TNF4         | TNF                  | TNFb_Tumor necrosis factor ligand superfamily member 1       | gi 135942 sp P26445.1 TNFB_PIG         | 135    | 9.40E-05 | 46.8  |
| 1.2.17031.m1 | Am_TNF5         | TNF                  | TNF15_Tumor necrosis factor ligand superfamily member 15     | gi 189036103 sp Q5UBV8.2 TNF15_MOUSE   | 159    | 6.00E-05 | 39    |
| 1.2.604.m1   | Am_TNF6         | Coll TNF             | TNFb_Tumor necrosis factor ligand superfamily member 1       | gi 135942 sp P26445.1 TNFB_PIG         | 300    | 2_50E-06 | 47.2  |
| 1.2.2376m1   | Am_TNF7         | Col   Col   TNF      | TNF10_Tumor necrosis factor ligand superfamily member 10     | gi 1730016 sp P50592.1 TNF10_MOUSE     | 347    | 4.00E-15 | 49    |
| 1.2.602.m1   | Am_TNF8         | Col   TNF   Co   TNF | TNF12_Tumor necrosis factor ligand superfamily member 12     | gi 21362987 sp 043508.1 TNF12_HUMAN    | 583    | 2.70E-05 | 44.2  |
| 1.2.15238.m1 | Am_TNFR1        | TNFRSF Death         | TNFR1b_Tumor necrosis factor receptor superfamily member 1b  | gi 21264534 sp P20333.3 TNR1B_HUMAN    | 381    | 6.00E-04 | 54    |
| 1.2.20630.m1 | Am_TNFR2        | TNFRSF Death         | TNFR16_Tumor necrosis factor receptor superfamily member 16  | gi 128155 sp P18519.1 TNR16_CHICK      | 580    | 7.40E-06 | 46.33 |
| 1.2.20632.m1 | Am_TNFR3        | TNFRSF Death         | UNCSC_Full=Netrin receptor                                   | sp Q761X5.1 UNC5C_RAT                  | 931    | 4.00E-06 | -     |
| 1.2.23959.m1 | Am_TNFR4        | TNFRSF Death         | TNFR11b_Tumor necrosis factor receptor superfamily member 11 | b gi 298351871 sp A5D7R1.1 TR11B_BOVIN | 418    | 1.20E-17 | 49.6  |
| 1.2.18805.m1 | Am_TNFR5        | TNFRSF Death         | TNR1a_Tumor necrosis factor receptor superfamily member 1a   | gi 135959 sp P19438.1 TNR1A_HUMAN      | 408    | 4.10E-17 | 51.6  |
| 1.2.20631.m1 | Am_TNFR6        | TNFRSF               | TNFR16_Tumor necrosis factor receptor superfamily member 16  | gi 128156 sp P08138.1 TNR16_HUMAN      | 253    | 4.00E-05 | 44    |
| 1.2.20633.m1 | Am_TNFR7        | TNFRSF               | TNFR16_Tumor necrosis factor receptor superfamily member 16  | gi 128156 sp P08138.1 TNR16_HUMAN      | 237    | 2.70E-05 | 43.8  |
| 1.2.4349.m1  | Am_TNFR8        | TNFRSF               | TNFR16_Tumor necrosis factor receptor superfamily member 16  | sp P18519.1 TNR16_CHICK                | 416    | 1.90E-01 | -     |
| 1.2.4347.m1  | Am_TNFR9        | TNFRSF               | TNFR16_Tumor necrosis factor receptor superfamily member 16  | sp P18519.1 TNR16_CHICK                | 416    | 7.00E-03 | -     |
| 1.2.10769.m1 | Am_TNFR 10      | TNFRSF               | EDAR_Tumor necrosis factor receptor superfamily member EDAR  | gi 21263557 sp Q90VY2.1 EDAR_ORYLA     | 497    | 6.10E-05 | 44    |
| 1.2.6598.m1  | Am_TNFR11       | TNFRSF               | TNFR19_Tumor necrosis factor receptor superfamily member 19  | gi 21264102 sp Q9NS68.1 TNR19_HUMAN    | 391    | 2.70E-04 | 42    |
| 1.2.6590.m1  | Am_TNFR12       | TNFRSF               | TNFR16_Tumor necrosis factor receptor superfamily member 16  | sp P18519.1 TNR16_CHICK                | 416    | 3.00E-02 | -     |
| 1.2.17682.m1 | Am_TNFR13       | TNFRSF               | TNFR16_Tumor necrosis factor receptor superfamily member 16  | sp P18519.1 TNR16_CHICK                | 416    | 7.80E-02 | -     |
| 1.2.6595m1   | Am_TNFR14       | TNFRSF               | TNFR19_Tumor necrosis factor receptor superfamily member 19  | sp[Q9]11.3.2 TNR19_MOUSE               | 416    | 3.20E-02 | -     |
| 1.2.6597.m1  | Am_TNFR15       | TNFRSF               | TNFR19_Tumor necrosis factor receptor superfamily member 19  | sp Q9NS68.1 TNR19_HUMAN                | 423    | 2.00E-03 | -     |
| 1.2.4350.m1  | Am_TNFR16       | TNFRSF               | TNFR14_Tumor necrosis factor receptor superfamily member 14  | sp Q92956.3 TNR14_HUMAN                | 283    | 4.00E-03 | -     |
| 1.2.11264.m1 | Am_TNFR17       | TNFRSF               | TNFR16_Tumor necrosis factor receptor superfamily member 16  | gi 128155 sp P18519.1 TNR16_CHICK      | 489    | 1.20E-04 | 37    |
| 1.2.6591.m1  | Am_TNFR18       | TNFRSF               | TNFR19_Tumor necrosis factor receptor superfamily member 19  | sp Q9NS68.1 TNR19_HUMAN                | 423    | 2.00E-04 | -     |
| 1.2.6592m1   | Am_TNFR19       | TNFRSF               | UL144_TNF alpha-like receptor ul144                          | gi 363805602 sp F5HAM0.1 UL144_HCMVM   | 521    | 2.20E-05 | 49.67 |
| 1.2.6593.m1  | Am_TNFR20       | TNFRSF               | UL144_TNF alpha-like receptor ul144                          | sp Q68396.1 UL144_HCNVO                | 176    | 1.00E-05 | -     |
| 1.2.4338m1   | Am_TNFR21       | TNFRSF               | TNFR16_Tumor necrosis factor receptor superfamily member 16  | gi 128155 sp P18519.1 TNR16_CHICK      | 305    | 7.00E-06 | 45.8  |
| 1.2.11261.m1 | Am_TNFR22       | TNFRSF Zu5           | TNFR16_Tumor necrosis factor receptor superfamily member 16  | gi 128155 sp P18519.1 TNR16_CHICK      | 795    | 1.40E-08 | 43.5  |
| 1.2.13438.m1 | Am_TNFR23       | TNFRSF Zu5 Death     | unc.5b_xenla ame: full=netrin receptor unc.5b                | gi 54036590 sp Q8JGT4.1 UNC5B_XENLA    | 969    | 1.10E-07 | 47.8  |
| 1.2.13439.m1 | Am_TNFR24       | TNFRSF Zu5 Death     | unc.5b_xenla ame: full=netrin receptor unc.5b                | gi 54036590 sp Q8JGT4.1 UNC5B_XENLA    | 823    | 8.60E-09 | 53.2  |
| 1.2.6589.m1  | Am_TNFR25       | TNFRSF Zu5 Death     | unc5c_chick ame: full=netrin receptor unc5c                  | gi 54036585 sp Q7T2Z5.1 UNCSC_CHICK    | 799    | 3.70E-08 | 44.4  |
| 1.2.13437.m1 | Am_TNFR26       | TNFRSF Zu5 Death     | zo1_canfa ame: full=tight junction protein zo-1              | gi 62901480 sp 097758.1 Z01_CANFA      | 995    | 6.10E-09 | 52.2  |
| 1.2.24806.m1 | Am_TNFR27       | TNFRSF[Zu5           | zo1_canfa ame: full=tight junction protein zo-1              | gi 62901480 sp 097758.1 Z01_CANFA      | 501    | 3.60E-07 | 51.6  |
| 1.2.17684.m1 | Am_TNFR28       | TNFRSF I_set         | malt1_human ame: full=malt lymphoma-associated translocation | gi 20455075 sp Q9UDY8.1 MALT1_HUMAN    | 581    | 1.70E-06 | 50    |

|              |              |                     | Control           | (pH 8.1)            |          |                     | High CO <sub>2</sub> | (pH 7.8)            |          |
|--------------|--------------|---------------------|-------------------|---------------------|----------|---------------------|----------------------|---------------------|----------|
| Genome ID    | A. millepora | 1                   | h                 | 6                   | h        | 1                   | h                    | 6                   | h        |
|              | ID.          | Log <sub>2</sub> FC | FDR               | Log <sub>2</sub> FC | FDR      | Log <sub>2</sub> FC | FDR                  | Log <sub>2</sub> FC | FDR      |
| 1.2.13359.m1 | Am_TNF1      | 1.31                | 3.40E-04          | -1.25               | 7.82E-06 | 0.17                | 4.32E-04             | -0.29               | 1.49E-04 |
| 1.2.17029.m1 | Am_TNF2      | 1.06                | 7.50E <b>-</b> 04 | -1.04               | 1.00E-05 | _                   | _                    | -0.24               | 6.98E-03 |
| 1.2.4528.m1  | Am_TNF3      | 0.16                | 4.38E-02          | -0.20               | 3.62E-02 | -                   | _                    | -0.46               | 2.32E-04 |
| 1.2.607.m1   | Am_TNF4      | -0.28               | 1.03E-03          | 0.14                | 1.64E-02 | -0.15               | 2.25E-02             | 0.32                | 1.21E-03 |
| 1.2.17031.m1 | Am_TNF5      | -                   | -                 | -                   | -        | -0.20               | 1.73E-02             | -0.38               | 1.91E-04 |
| 1.2.604.m1   | Am_TNF6      | -                   | _                 | _                   | _        | -                   | -                    | 0.13                | 8.61E-02 |
| 1.2.2376.m1  | Am_TNF7      | -                   | -                 | -                   | -        | -0.41               | 3.63E-02             | -                   | -        |
| 1.2.602.m1   | Am_TNF8      | -0.14               | 2.41E-02          | -                   | _        | -                   | -                    | 0.16                | 6.67E-02 |
| 1.2.15238.m1 | Am_TNFR1     | 0.66                | 1.43E-02          | -0.12               | 9.45E-03 | 0.19                | 1.99E-02             | -                   | -        |
| 1.2.20630.m1 | Am_TNFR2     | 0.46                | 1.46E-02          | -                   | -        | -                   | -                    | _                   | _        |
| 1.2.20632.m1 | Am_TNFR3     | 0.62                | 2.50E-03          | -0.27               | 1.89E-06 | -0.18               | 2.58E-02             | -0.25               | 1.22E-02 |
| 1.2.23959.m1 | Am_TNFR4     | -                   | -                 | -                   | -        | -                   | -                    | -                   | -        |
| 1.2.18805.m1 | Am_TNFR5     | -                   | -                 | -                   | -        | -                   | -                    | -                   | -        |
| 1.2.20631.m1 | Am_TNFR6     | 0.54                | 6.56E-03          | -0.48               | 5.64E-05 | -0.24               | 1.51E-02             | -0.38               | 4.70E-03 |
| 1.2.20633.m1 | Am_TNFR7     | 0.67                | 8.05E-03          | -0.39               | 4.16E-05 | -0.02               | 7.91E-03             | -                   | -        |
| 1.2.4349.m1  | Am_TNFR8     | 0.27                | 1.48E-02          | -0.49               | 1.61E-06 | -0.49               | 2.26E-02             | -0.71               | 3.90E-04 |
| 1.2.4347.m1  | Am_TNFR9     | 0.39                | 2.27E-02          | -0.27               | 1.58E-03 | -                   | -                    | -                   | -        |
| 1.2.10769.m1 | Am_TNFR10    | 0.09                | 1.90E-02          | 0.69                | 4.93E-04 | -0.05               | 9.34E-03             | -0.61               | 9.79E-03 |
| 1.2.6598.m1  | Am_TNFR11    | 0.24                | 2.81E-02          | -0.44               | 3.71E-07 | _                   | -                    | -                   | -        |
| 1.2.6590.m1  | Am_TNFR12    | 0.46                | 3.94E-02          | -0.13               | 2.79E-02 | -                   | -                    | -                   | -        |
| 1.2.17682.m1 | Am_TNFR13    | -0.29               | 4.53E-02          | 0.38                | 2.71E-02 |                     |                      | -0.09               | 7.03E-02 |
| 1.2.6595.m1  | Am_TNFR14    | -0.41               | 4.94E-02          | -                   | -        | -                   | -                    | -0.37               | 4.84E-02 |
| 1.2.6597.m1  | Am_TNFR15    | -                   | _                 | 0.27                | 7.87E-07 | -0.26               | 4.83E-02             | -0.50               | 5.08E-03 |
| 1.2.4350.m1  | Am_TNFR16    | -                   | -                 | 0.08                | 4.41E-06 | -0.08               | 5.71E-03             | -                   | -        |
| 1.2.11264.m1 | Am_TNFR17    | -                   |                   | _                   | -        | -0.40               | 3.63E-02             | -                   | _        |
| 1.2.6591.m1  | Am_TNFR18    | -                   | -                 | -                   | -        | -                   | -                    | -                   | -        |
| 1.2.6592.m1  | Am_TNFR19    | -                   | _                 | _                   | _        | _                   | _                    | _                   | _        |
| 1.2.6593.m1  | Am_TNFR20    | -                   | -                 | -                   | -        | -                   | -                    | -                   | -        |
| 1.2.4338.m1  | Am_TNFR21    | -                   | _                 | —                   | _        | _                   | _                    | 0.68                | 3.13E-05 |
| 1.2.11261.m1 | Am_TNFR22    | -                   | -                 | -                   | -        | -                   | -                    | -                   | -        |
| 1.2.13438.m1 | Am_TNFR23    | 0.06                | 1.14E-02          | -                   | -        | -                   | _                    | -0.51               | 8.46E-05 |
| 1.2.13439.m1 | Am_TNFR24    | -0.29               | 1.16E-02          | 0.45                | 1.69E-02 | 0.25                | 1.53E-02             | 0.38                | 1.04E-02 |
| 1.2.6589.m1  | Am_TNFR25    | -0.17               | 3.08E-02          | -                   | -        | -                   | -                    | -0.08               | 1.95E-02 |
| 1.2.13437.m1 | Am_TNFR26    | -                   | -                 | _                   | -        | _                   | -                    | 0.25                | 1.41E-03 |
| 1.2.24806.m1 | Am_TNFR27    | -0.58               | 3.67E-02          | 0.48                | 9.87E-03 | 0.33                | 4.05E-02             | 0.29                | 3.52E-02 |
| 1.2.17684.m1 | Am_TNFR28    | -                   | _                 | _                   | _        | _                   | _                    | 0.34                | 3.01E-03 |

**Table S2.7** TRAF-domain containing proteins (total = 38) (A) Results of the domain search in the *A. millepora* genome (PF02176.13 with a 1e-4 cut-off). NCBI domain and BlastP search results are listed for each protein. (B) Log<sub>2</sub>FC values of significantly expressed genes (FDR <0.05, log<sub>2</sub>FC > 0.05) in response to LPS challenge relative to the control (PBS) after 1 and 6 h. For samples under control (pH 8.1) and high  $pCO_2$  (pH 7.8) conditions. Log<sub>2</sub>FC colour indicates up (red) and down (blue) regulated genes.

| (A)          |                    |                    |                                                           |                      |        |           |
|--------------|--------------------|--------------------|-----------------------------------------------------------|----------------------|--------|-----------|
| Genome ID    | A. milleporu<br>ID | NCBI Domain        | Blast Hit                                                 | Hit ID               | Length | e.Value   |
| 1.2.2752.m1  | Am_TRAF1           | RING TRAF MATH     | TRAF3_human ame: full=tnf receptor-associated factor 3    | Q13114.2 TRAF3_HUMAN | 528    | 3.40E-103 |
| 1.2.2754.m1  | Am_TRAF2           | RING TRAF MATH     | TRAF3_human ame: full=tnf receptor-associated factor 3    | Q13114.2 TRAF3_HUMAN | 593    | 8.50E-99  |
| 1.2.2899.m1  | Am_TRAF3           | RING TRAF MATH     | TRAF6_bovin ame: full=tnf receptor-associated factor 6    | Q3ZCC3.1 TRAF6_BOVIN | 418    | 2.80E-81  |
| 1.2.2897.m1  | Am_TRAF4           | RING TRAF MATH     | TRAF6_rat ame: full=tnf receptor-associated factor 6      | B5DF45.1 TRAF6_RAT   | 498    | 2.30E-104 |
| 1.2.4647.m1  | Am_TRAF5           | RING[TRAF]MATH     | TRAF4_mouse a me: full=tnf receptor-associated factor 4   | Q61382.2 TRAF4_MOUSE | 456    | 6.80E-69  |
| 1.210762m1   | Am_TRAF6           | RING TRAF MATH     | TRAF3_mouse ame: full=inf receptor-associated factor 3 $$ | Q60803.2 TRAF3_MOUSE | 552    | 1.40E-94  |
| 1.2.3972.m1  | Am_TRAF7           | RING[TRAF]MATH     | TRAF4_human ame: full=tnf receptor-associated factor 4    | Q9BUZ4.1 TRAF4_HUMAN | 363    | 1.90E-37  |
| 1.2.16730.m1 | Am_TRAF8           | RING[TRAF]MATH     | TRAF6b_xenla ame: full=tnf receptor-associated factor 6-b | Q6DJN2.1 TRF6B_XENLA | 412    | 6.40E-53  |
| 1.2.5426.m1  | Am_TRAF9           | RING TRAF MATH     | TRAF3_mouse ame: full=inf receptor-associated factor 3    | Q60803.2 TRAF3_MOUSE | 556    | 4.10E-117 |
| 1.2.5451.m1  | Am_TRAF10          | RING[TRAF]MATH     | TRAF6_mouse ame: full=tnf receptor-associated factor 6    | P70196.2 TRAF6_MOUSE | 411    | 1.40E-39  |
| 1.2.5452.m1  | Am_TRAF11          | RING TRAF MATH     | TRAF6_rat ame: full=tnf receptor-associated factor 6      | B5DF45.1 TRAF6_RAT   | 442    | 7.50E-65  |
| 1.2.5457.m1  | Am_TRAF12          | RING TRAF MATH     | TRAF4_mouse ame: full=inf receptor-associated factor 4    | Q61382.2 TRAF4_MOUSE | 422    | 4.20E-65  |
| 1.2.5463.m1  | Am_TRAF13          | RING TRAF TRAF     | TRAF6_cerat ame: full=inf receptor-associated factor 6    | B6CJY4.1 TRAF6_CERAT | 416    | 6.60E-38  |
| 1.2.3871.m1  | Am_TRAF14          | RING TRAF MATH     | TRAF3_mouse ame: full=inf receptor-associated factor 3    | Q60803.2 TRAF3_MOUSE | 559    | 8.70E-119 |
| 1.2.2896.m1  | Am_TRAF15          | RING[TRAF]MATH     | TRAF6_rat ame: full=tnf receptor-associated factor 6      | B5DF45.1 TRAF6_RAT   | 532    | 3.80E-109 |
| 1.2.2871.m1  | Am_TRAF16          | RING TRAF MATH     | TRAF6_rat ame: full=tnf receptor-associated factor 6      | B5DF45.1 TRAF6_RAT   | 508    | 3.00E-102 |
| 1.2.13059.m1 | Am_TRAF17          | RING[TRAF]MATH     | TRAF6_human ame: full=tnf receptor-associated factor 6    | Q9Y4K3.1 TRAF6_HUMAN | 435    | 2.70E-59  |
| 1.2.6450.m1  | Am_TRAF18          | RING[TRAF]Mei5     | TRAF6b_xenla ame: full=tnf receptor-associated factor 6-  | Q6DJN2.1 TRF6B_XENLA | 616    | 1.40E-27  |
| 1.2.6856.m1  | Am_TRAF19          | RING TRAF WD40     | TRAF7_human ame: full=tnf receptor-associated factor 7    | Q6Q0C0.1 TRAF7_HUMAN | 640    | 0.00E+00  |
| 1.2.4735.m1  | Am_TRAF20          | RING TRAF          | TRAF7_human ame: full=tnf receptor-associated factor 7    | Q6Q0C0.1 TRAF7_HUMAN | 316    | 3.20E-31  |
| 1.2.4181.m1  | Am_TRAF21          | RING TRAF          | TRAF5_human ame: full=tnf receptor-associated factor 5    | 000463.2 TRAF5_HUMAN | 175    | 1.30E-10  |
| 1.2.15982.m1 | Am_TRAF22          | RING TRAF          | TRAF5_mouse ame: full=inf receptor-associated factor 5    | P70191.1 TRAF5_MOUSE | 203    | 5.60E-10  |
| 1.2.2881.m1  | Am_TRAF23          | TRAF[MATH          | TRAF6_bovin ame: full=tnf receptor-associated factor 6    | Q3ZCC3.1 TRAF6_BOVIN | 366    | 4.60E-59  |
| 1.2.2898.m1  | Am_TRAF24          | TRAF MATH          | TRAF6_bovin ame: full=tnf receptor-associated factor 6    | Q3ZCC3.1 TRAF6_BOVIN | 450    | 1.50E-63  |
| 1.2.2891.m1  | Am_TRAF25          | TRAF MATH          | TRAF6_rat ame: full=tnf receptor-associated factor 6      | B5DF45.1 TRAF6_RAT   | 362    | 1.40E-74  |
| 1.2.2892.m1  | Am_TRAF26          | TRAF MATH          | TRAF6_bovin ame: full=tnf receptor-associated factor 6    | Q3ZCC3.1 TRAF6_BOVIN | 412    | 3.70E-68  |
| 1.2.866.m1   | Am_TRAF27          | ZIJTRAF MATH       | TRAF4_mouse ame: full=inf receptor-associated factor 4    | Q61382.2 TRAF4_MOUSE | 500    | 1.10E-62  |
| 1.2.20050.m1 | Am_TRAF28          | TRAF[MATH          | TRAF1_mouse ame: full=tnf receptor-associated factor 1    | P39428.2 TRAF1_MOUSE | 421    | 2.00E-46  |
| 1.2.7866.m1  | Am_TRAF29          | TRAF MATH          | TRAF5_mouse ame: full=inf receptor-associated factor 5    | P70191.1 TRAF5_MOUSE | 453    | 1.30E-35  |
| 1.2.863.m1   | Am_TRAF30          | TRAF MATH          | TRAF4_human ame: full=tnf receptor-associated factor 4    | Q9BUZ4.1 TRAF4_HUMAN | 517    | 1.70E-86  |
| 1.2.3975.m1  | Am_TRAF31          | TRAF <b> MA</b> TH | TRAF4_human ame: full=tnf receptor-associated factor 4    | Q9BUZ4.1 TRAF4_HUMAN | 291    | 1.30E-46  |
| 1.2.1943.m1  | Am_TRAF32          | TRAF TRAF MATH     | TRAF3_mouse ame: full=inf receptor-associated factor 3    | Q60803.2 TRAF3_MOUSE | 568    | 1.00E-103 |
| 1.2.1949.m1  | Am_TRAF33          | TRAF TRAF MATH     | TRAF3_human ame: full=tnf receptor-associated factor 3    | Q13114.2 TRAF3_HUMAN | 569    | 6.10E-105 |
| 1.2.6455.m1  | Am_TRAF34          | TRAF               | TRAF6_bovin ame: full=tnf receptor-associated factor 6    | Q3ZCC3.1 TRAF6_BOVIN | 551    | 2.20E-13  |
| 1.2.25278m1  | Am_TRAF35          | TRAF               | TRAF5_mouse ame: full=tnf receptor-associated factor 5    | P70191.1 TRAF5_MOUSE | 346    | 1_50E-14  |
| 1.2.3224.m1  | Am_TRAF36          | TRAF               | TRAF4_mouse ame: full=tnf receptor-associated factor 4    | Q61382.2 TRAF4_MOUSE | 272    | 3.10E-14  |
| 1.2.5418.m1  | Am_TRAF37          | TRAF[Fli] MATH     | TRAF3_mouse ame: full=tnf receptor-associated factor 3    | Q60803.2 TRAF3_MOUSE | 468    | 1.30E-80  |
| 1.2.3886.m1  | Am_TRAF38          | Csm[RING]TRAF]MATH | TRAF4_mouse ame: full=tnf receptor-associated factor 4    | Q61382.2 TRAF4_MOUSE | 812    | 4.60E-46  |
|              |                    |                    |                                                           |                      |        |           |

| (-)                  |                           |                     | Control  | (pH 8.1)            |          |                     | High CO <sub>2</sub> | (pH 7.8)            |          |
|----------------------|---------------------------|---------------------|----------|---------------------|----------|---------------------|----------------------|---------------------|----------|
| Genome ID            | <i>A. millepora</i><br>ID | 1                   | h        | 6                   | h        | 1                   | h                    | 6                   | h        |
|                      |                           | Log <sub>2</sub> FC | FDR      | Log <sub>2</sub> FC | FDR      | Log <sub>2</sub> FC | FDR                  | Log <sub>2</sub> FC | FDR      |
| 1.2.2752.m1          | Am_TRAF1                  | 0.09                | 1.16E-02 | _                   | _        | 0.70                | 1.97E-04             | -0.51               | 1.17E-03 |
| 1.2.2754.m1          | Am_TRAF2                  | _                   | -        | 0.12                | 1.09E-03 | 0.19                | 1.37E-02             | _                   | -        |
| 1.2.2899.m1          | Am_TRAF3                  | 0.42                | 2.01E-02 | -                   | -        | 0.05                | 8.67E-03             | -                   | -        |
| 1.2.2897.m1          | Am_TRAF4                  | 0.58                | 2.37E-02 | -0.08               | 2.70E-02 | -0.13               | 1.19E-02             | -0.25               | 1.16E-02 |
| 1.2.4647.m1          | Am_TRAF5                  | 0.06                | 4.88E-02 | _                   | -        | _                   | -                    | —                   | -        |
| 1.2.10762.m1         | Am_TRAF6                  | -0.16               | 7.79E-03 | _                   | -        | 0.07                | 9.88E-03             | _                   | _        |
| 1.2.3972.m1          | Am_TRAF7                  | -                   | -        | 0.13                | 7.61E-03 | 0.10                | 3.00E-02             | 0.19                | 9.18E-03 |
| 1.2.16730.m1         | Am_TRAF8                  | -                   | -        | 0.15                | 3.37E-02 | -0.95               | 2.66E-02             | -                   | -        |
| 1.2.5426.m1          | Am_TRAF9                  | _                   | _        | -0.37               | 1.21E-04 | 0.60                | 2.05E-10             | -0.33               | 9.38E-03 |
| 1.2.5451.m1          | Am_TRAF10                 | _                   | -        | 0.14                | 3.04E-02 | -0.20               | 2.20E-02             | _                   | -        |
| 1.2.5452.m1          | Am_TRAF11                 | -                   | -        | -                   | -        | -                   | -                    | -                   | -        |
| 1.2.5457.m1          | Am_TRAF12                 | _                   | -        | -0.10               | 1.41E-02 | 0.16                | 2.74E-02             | -                   | -        |
| 1.2.5463.m1          | Am_TRAF13                 | -                   | -        | -0.09               | 2.87E-02 | -                   | -                    | _                   | -        |
| 1.2.3871.m1          | Am_TRAF14                 | _                   | -        | _                   | _        | _                   | _                    | _                   | _        |
| 1.2.2896.m1          | Am_TRAF15                 | _                   | _        | -                   | -        | -                   | _                    | -                   | -        |
| 1.2.2871.m1          | Am_TRAF16                 | _                   | _        | -                   | -        | _                   | _                    | _                   | -        |
| 1.2.13059.m1         | Am_TRAF17                 | _                   | _        | _                   | -        | —                   | _                    | _                   | -        |
| 1.2.6450.m1          | Am_TRAF18                 | _                   | -        | _                   | -        | 0.24                | 4.05E-02             | -                   | -        |
| 1.2.6856.m1          | Am_TRAF19                 | -                   | _        | -                   | -        | -                   | -                    | -                   | -        |
| 1.2.4735.m1          | Am_TRAF20                 | _                   | -        | -0.06               | 3.67E-02 | _                   | _                    | _                   | -        |
| 1.2.4181.m1          | Am_TRAF21                 | _                   | -        | _                   | -        | 0.38                | 4.82E-02             | -                   | _        |
| 1.2.15982.m1         | Am_TRAF22                 | _                   | _        | _                   | _        | -                   | -                    | _                   | -        |
| 1.2.2881.m1          | Am_TRAF23                 | 0.56                | 1.67E-02 | -0.38               | 3.18E-02 | -                   | _                    | 0.27                | 1.08E-02 |
| 1.2.2898.m1          | Am_TRAF24                 | 1.02                | 2.70E-03 | _                   | -        | -0.63               | 4.99E-05             | 0.43                | 1.15E-03 |
| 1.2.2891.m1          | Am_TRAF25                 | 1.00                | 3.01E-03 | _                   | _        | -0.48               | 2.74E-06             | -                   | _        |
| 1.2.2892.m1          | Am_TRAF26                 | -                   | -        | 0.09                | 1.44E-02 | -0.12               | 1.52E-02             | 0.27                | 8.90E-03 |
| 1.2.866.m1           | Am_TRAF27                 | -                   | -        | -0.14               | 3.30E-02 | -0.10               | 2.85E-02             | -                   | -        |
| 1.2.20050.m1         | Am_TRAF28                 | _                   | _        | -                   | _        | -0.21               | 1.10E-02             | -                   | _        |
| 1.2.7866.m1          | Am_TRAF29                 | _                   | _        | _                   | _        | -0.25               | 6.00E-03             | -                   | _        |
| 1.2.863.m1           | Am_TRAF30                 | _                   | -        | -                   | -        | -                   | -                    | -                   | -        |
| 1.2.3975.m1          | Am_TRAF31                 | -                   | -        | -                   | -        | -                   | -                    | -                   | -        |
| 1.2.1943.m1          | Am_TRAF32                 | _                   | _        | _                   | _        | -                   | _                    | -                   | _        |
| 1.2.1949.m1          | Am_TRAF33                 | _                   | -        | _                   | _        | _                   | _                    | -                   | -        |
| 1 <b>.2.64</b> 55.m1 | Am_TRAF34                 | 0.08                | 4.27E-02 | -0.14               | 3.43E-02 | -                   | -                    | 0.44                | 1.20E-03 |
| 1.2.25278.m1         | Am_TRAF35                 | -                   | -        | -                   | -        | 0.94                | 2.50E-02             | -                   | -        |
| 1.2.3224.m1          | Am_TRAF36                 | -                   | -        | _                   | _        | -                   | _                    | -                   | -        |
| 1.2.5418.m1          | Am_TRAF37                 | -                   | -        | _                   | _        | _                   | -                    | -                   | -        |
| 1.2.3886.m1          | Am_TRAF38                 | -                   | -        | _                   | -        | -                   | -                    | _                   | -        |

**Table S2.8** NACHT-domain containing proteins (total = 206). (A) Results of the domain search in the *A. millepora* genome (PF05729.7 with a 1e-4 cut-off). NCBI domain and BlastP search results are listed for each protein. (B)  $Log_2FC$  values of significantly expressed genes (FDR <0.05,  $log_2FC > 0.05$ ) in response to LPS challenge relative to the control (PBS) after 1 and 6 h. For samples under control (pH 8.1) and high  $pCO_2$  (pH 7.8) conditions.  $Log_2FC$  colour indicates up (red) and down (blue) regulated genes.

(A)

| Genome ID       | A. millepora<br>ID | NCBI Domain                | Blast Hit                                                                                 | Length | e.Value  | % D          |
|-----------------|--------------------|----------------------------|-------------------------------------------------------------------------------------------|--------|----------|--------------|
| 1.2.26019.m1    | Am_NLR1            | Glycos_transf_1 NACHT      | nlrc4_xentr ame: full=nlr family card domain-containing protein 4                         | 787    | 4.80E-07 | 46.20        |
| 1.2.5900.m1     | Am_NLR2            | Glycos_transf_1 NACHT      | msha_acic1 ame: full=d-inositol 3-phosphate glycosyltransferase                           | 1618   | 6.10E-11 | 47.40        |
| 1.2.5883.m1     | Am_NLR3            | Glycos_transf_1 NACHT      | nire4_xentr ame: full=nir family card domain-containing protein 4                         | 1727   | 5.10E-07 | 43.60        |
| 1.2.5906.m1     | Am_NLR4            | Glycos_transf_1 NACHT      | msha_acic1 ame: full=d-inositol 3-phosphate glycosyltransferase                           | 1667   | 2.90E-08 | 46.60        |
| 1.2.19850.m1    | Am_NLR5            | Glycos_transf_1 NACHT      | nirc4_xentr ame: full=nir family card domain containing protein 4                         | 1131   | 3.10E-09 | 42.00        |
| 1.2.25480.m1    | Am_NLR6            | Glycos_transf_1 NACHT      | nlrc4_xentr ame: full=nlr family card domain-containing protein 4                         | 1485   | 4.00E-10 | 41.80        |
| 1.2.25481.m1    | Am_NLR7            | Glycos_transf_1 NACHT      | nkr.4_xentr ame: full=nkr family card domain-containing protein 4                         | 1018   | 2.80E-04 | 41.00        |
| 1.2.25484.m1    | Am_NLR8            | Glycos_transf_1 NACHT      | nlrc4_xentr ame: full=nlrfamily card domain-containing protein 4                          | 1477   | 1.10E-07 | 42.20        |
| 1.2.5889.m1     | Am_NLR9            | Glycos_transf_1 NACHT      | nalp2_buman arne: full = krr and pyd domains-containing protein 2                         | 803    | 1.60E-07 | 43.40        |
| 1.2.15887.m1    | Am_NLR10           | Clycos_transf_1 NACHT LRRs | nlrc3_mouse ame: full=protein nlrc3                                                       | 1548   | 7.70E-49 | 55 <b>40</b> |
| 1.2.23033.m1    | Am_NLR11           | Clycos_transf_1 NACHT LRRs | nlrc3_human ame: full=protein nlrc3 ame: full=card15-like protein                         | 1509   | 5.80E-36 | 54.00        |
| 1.2.23034.m1    | Am_NLR12           | Glycos_transf_1 NACHT LRRs | nkrc3_mouse ame: full=protein nkrc3                                                       | 1266   | 2.50E-54 | 52.40        |
| 1.2.3761.m1     | Am_NLR13           | Glycos_transf_1 NACHT LRR  | nkr.3_human ame: full=protein nkr.3 ame: full=card15-like protein                         | 1065   | 6.30E-22 | 40.40        |
| 1.2.9939.m1     | Am_NLR14           | Glycos_transf_1 NACHT LRR  | nkr.3_human ame: full=protein nkrc3 ame: full=card15-like protein                         | 1250   | 4.30E-61 | 53.20        |
| 1.2.19702m1     | Am_NLR15           | Clycos_transf_1 NACHT LRRs | nlrc3_mouse ame: full=protein nlrc3                                                       | 1481   | 3.30E-44 | 54.60        |
| 1.2.24451.m1    | Am_NLR16           | Glycos_transf_1 NACHT LRRs | nirc3_human ame: full=protein nirc3 ame: full=card15-like protein                         | 1243   | 2.70E-48 | 57.60        |
| 1.2.4814.m1     | Am_NLR17           | Glycos_transf_1 NACHT LRRs | nirc3_buman ame: full=protein nirc3 ame: full=card15-like protein                         | 1466   | 1.90E-54 | 49.60        |
| 1.2.23717.m1    | Am_NLR18           | Glycos_transf_1 NACHT LRRs | nire3_buman ame: full=protein nire3 ame: full=card15-like protein                         | 1324   | 5.70E-69 | 5640         |
| 1.2.15454m1     | Am_NLR19           | Glycos_transf_1 NACHT LRRs | nkr.3_human ame: full=protein nkr.3 ame: full=card15-like protein                         | 1511   | 7.80E-66 | 50.00        |
| 1.2.9916.m1     | Am_NLR20           | Glycos_transf_1 NACHT LRR  | nire3_buman ame: full=protein nire3 ame: full=card15-like protein                         | 1385   | 2_50E-44 | 52.20        |
| 1.2.23996.m1    | Am_NLR21           | Glycos_transf_1 NACHT LRR  | nirc3_mouse ame: full=protein nirc3                                                       | 1300   | 5.90E-40 | 47.40        |
| 1.2.20866.m1    | Am_NLR22           | Glycos_transf_1 NACHT LRR  | lr74a_human ame: lul⊨leucine-rich repeat-containing protein 74a                           | 1099   | 2.50E-16 | 52.40        |
| 1.2.1531.m1     | Am_NLR23           | Glycos_transf_1 NACHT LRRs | nkc3_mouse ame: full=protein nkc3                                                         | 1200   | 5A0E-22  | 47.00        |
| 1.2.19821.m1    | Am_NLR24           | Glycos_transf_1 NACHT LRRs | nlrc3_human ame: full=protein nlrc3 ame: full=card15-like protein                         | 1343   | 3.50E-55 | 56.60        |
| 1.2.23781.m1    | Am_NLR25           | Glycos_transf_1 NACHT LRRs | nlrc3_buman ame: full=protein nlrc3 ame: full=card15-like protein                         | 1.289  | 1.30E-41 | 56.80        |
| 1.2.23782.m1    | Am_NLR26           | Glycos_transf_1 NACHT LRRs | nkc3_mouse ame: full=protein nkc3                                                         | 1331   | 2.30E-43 | 52.60        |
| 1.2.4220.m1     | Am_NLR27           | incomplete NACHT           | nod2_mouse ame: full=nu:leotide-binding oligomerization domain-containing                 | 478    | 3.20E-08 | 51.00        |
| 1.2.18769.m1    | Am_NLR28           | incomplete NACHT           | protein 2<br>daip3_mouse ame: full=e3 ubiquitin-protein ligase daip3                      | 314    | 7.20E-09 | 49.50        |
| 1.2.5888.m1     | Am_NLR29           | incomplete NACHT           | nlr:4_xentr ame: full=nlr family card domain containing protein 4                         | 219    | 4.80E-04 | 55.00        |
| 1.2.15942m1     | Am_NLR30           | incomplete NACHT           | nlrc5_ictpu ame: full=protein nlrc5                                                       | 191    | 2.90E-04 | 48.00        |
| 1.2.16740.m1    | Am_NLR31           | incomplete-NACHT           | mtnn_des ps am e-full=5 -methylthioadenosine s-adenosylhomocysteine                       | 507    | 5.00E-05 | 46.00        |
| 1.2.4218.m1     | Am_NLR32           | incomplete-NACHT LRRs      | note: state<br>not1_course ame: full=nucleotide-binding oligomerization domain-containing | 554    | 2.50E-17 | 42.40        |
| 1.2.6137.m1     | Am_NLR33           | incomplete-NACHT LRRs      | protein 1.<br>nkr:3_buman ame: full=protein nkr:3 ame: full=card15-like protein           | 643    | 4.60E-09 | 42.00        |
| 1.2.9759.m1     | Am_NLR34           | NACHT                      | nod2_mouse ame: full=nucleotide-hinding oligomerization domain-containing                 | 341    | 2.80E-10 | 46.40        |
| 1.2.19297.m1    | Am_NLR35           | NACHT                      | protein 2<br>nkr4_xentr ame: full=nlr family card domain-containing protein 4             | 541    | 2.40E-17 | 42.00        |
| 1.2.24253.m1    | Am_NLR36           | NACHT                      | nkr.5_ictpu ame: full=protein nkr.5                                                       | 645    | 1.10E-25 | 44.20        |
| 1.2.13860.m1    | Am_NLR37           | NACHT                      | niru5_ictpu ame: full=protein niru5                                                       | 332    | 1.00E-09 | 43.00        |
| 1.2.19126.m1    | Am_NLR38           | NACHT                      | nire 4 xentr ame: full=nir family card domain-containing protein 4                        | 555    | 2.20E-18 | 43.40        |
| 1.2.9130.m1     | Am_NLR39           | NACHT                      | dzi p3_buuman ame: fuill=e3 ubiquitin-protein ligase dxip3                                | 527    | 8.60E-16 | 52.50        |
| 1.2.5896.m1     | Am_NLR40           | NACHT                      | nal10_mouse ame: full=lrr and pyd domains-containing protein 10                           | 1296   | 1.10E-07 | 43.40        |
| 1.2.18491.m1    | Am_NLR41           | NACHT                      | nod2_mouse ame: full=nucleotide-binding oligomerization domain-containing                 | 542    | 7.10E-21 | 43.40        |
| 1.2.15251.m1    | Am NLR42           | NACHT                      | protem 2<br>nkr4 xentr ame: full=nkrfamily card domain-containing protein 4               | 464    | 4.20E-15 | 43.80        |
| 1.2.5897.m1     | Am NLR43           | NACHT                      | nhr4 mouse ame: full=nhr family card domain-containing protein 4                          | 1259   | 4.70E-13 | 43.00        |
| 1.2.25683.m1    | Am NLR44           | NACHT                      | niru5 ictpu ame: full=protein niru5                                                       | 1102   | 1.50E-09 | 43.20        |
| 1.2.10017.m1    | -<br>Am NLR45      | NACHT                      | - · · · · · · · · · · · · · · · · · · ·                                                   | 758    | 7.70E-15 | 50.00        |
| 1.2.5895.m1     | Am_NLR46           | NACHT                      | nire5_ictpu ame: full_protein nire5                                                       | 740    | 1.90E-06 | 42.60        |
| 1.2.13880.m1    | Am NLR47           | NACHT                      | nke5 ictpu ame: full=protein nire5                                                        | 761    | 1.10E-12 | 44.00        |
| 1.2.22640.m1    | Am NLR48           | NACHT                      | niru5 ictou ame: fuil-protein niru5                                                       | 402    | 7.705-04 | 49,00        |
| 1.2.9743.m1     | Am NLR49           | NACHT                      | nodi_mouse ame: full=nucleotide-binding oligomerization domain-containing                 | 573    | 7.30E-25 | 42.80        |
| <br>1.2.7526.m1 | Am NLR50           | NACHT                      | protem 1.<br>nkr.4 xentr ame: full=nkrfamily card domain-containing protein 4             | 482    | 1.60E-11 | 40,80        |
| 1.2.2411.m1     | Am_NLR51           | NACHT                      | nkr:4_xentr ame: full=nlr family card domain containing protein 4                         | 899    | 7.60E-16 | 40.80        |

| 1.2.15816.m1          | Am_NLR52   | NACHT      | nalp5_bovin ame: full= lrr and pyd domains containing protein 5                                                                                 | 157  | 3.20E-08             | 47.20 |
|-----------------------|------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------|-------|
| 1.2.25 <b>488.m</b> 1 | Am_NLR53   | NACHT      | nirc4_xentr ame: full=nir family card domain-containing protein 4                                                                               | 1156 | 1.20E-05             | 46.00 |
| 1.2.24834.m1          | Am_NLR54   | NACHT      | nlrc4_zentr ame: full=olr family card domain-containing protein 4                                                                               | 455  | 1.00E-10             | 42_20 |
| 1.2.13873.m1          | Am_NLR55   | NACHT      | nlrc5_ictpu ame: full=protein nlrc5                                                                                                             | 1139 | 6.60E-13             | 43.20 |
| 1.2.5902.m1           | Am_NLR56   | NACHT      | nlrc4_mentr ame: full=nkr family card domain-containing protein 4                                                                               | 1222 | 7.10E-08             | 41.00 |
| 1.2.17935.m1          | Am_NLR57   | NACHT      | nal10_buman ame: ful= lrr and pyd domains-containing protein 10                                                                                 | 338  | 1.10E-05             | 42.40 |
| 1.2.19570.m1          | Am_NLR58   | NACHT      | nlrc5_ictpo ame: full=protein nlrc5                                                                                                             | 559  | 2.40E-11             | 44.40 |
| 1.2.14194.m1          | Am_NLR59   | NACHT      | nlrc4_westr ame: full=nkr family card domain-containing protein 4                                                                               | 419  | 5.80E-22             | 43.20 |
| 1.2.26008.m1          | Am_NLR60   | NACHT      | nlrc5_ictpo ame: full=protein nlrc5                                                                                                             | 1134 | 8.60E-14             | 42.80 |
| 1.2.5907.m1           | Am_NLR61   | NACHT      | nalp2_buman ame: full= lrr and pyd domains-containing protein 2                                                                                 | 1251 | 7.10E-07             | 40.40 |
| 1.2.13875.m1          | Am_NLR62   | NACHT      | nlrc5_ictpo ame: full=protein nlrc5                                                                                                             | 1496 | 2.10E-15             | 43.40 |
| 1.2.18956.m1          | Am_NLR63   | NACHT      | nlrc4_xentr ame: full=nkr family card domain-containing protein 4                                                                               | 734  | 8.10E-23             | 42.20 |
| 1.2.25684.m1          | Am NLR64   | NACHT      | nlrc5 ictpo ame: foll=protein nlrc5                                                                                                             | 1318 | 2.70E-14             | 41.60 |
| 1.2.18074.m1          | Am NLR65   | NACHT      | nire4 mouse ame: full=nir family card domain-containing protein 4                                                                               | 1156 | 2.60E-13             | 43.80 |
| 1.2.18656.m1          | Am NLR66   | NACHT      | nirc5 isteu ame: full=protein nirc5                                                                                                             | 1395 | 2.30E-07             | 41.60 |
| 1.2.19942.m1          | Am NLR67   | NACHT      | nin:5 ictao ame: foll=protein nin:5                                                                                                             | 1289 | 3.20E-13             | 42.80 |
| 1 2 18363 m1          | Am NI R68  | NACHT      | ning_and and fullant family card domain-containing ondein 4                                                                                     | 456  | 7 20F-20             | 43.00 |
| 1 2 14921             | A- NI 269  | NACUT      | news_ments are full-ale family card down in containing anothin 4                                                                                | 731  | 1 505.15             | 43.40 |
| 1.2.16730 m1          | Am NIR70   | NACHT      | nine y active and the internation alors                                                                                                         | 1160 | 1905-15              | 42.20 |
| 1 2 10 5 60 -1        | A. NI 1971 | NACUT      |                                                                                                                                                 | 1202 | 1.005 17             | 42.00 |
| 1.2.17.07.11          | A., NI 172 | NACIT      |                                                                                                                                                 | 622  | £ 00E-17             | 40.00 |
| 1.2.1260-1            | Am_NLR72   | NACHT      |                                                                                                                                                 | 1242 | 1.607.06             | 12.00 |
| 1.2.1306.m1           | Am_NLR7 3  | NACHT      | niret zentrame: tullen riamliy caru oomain-containing protein t                                                                                 | 1273 | 1.00E-00             | 41.00 |
| 1.2.10270 1           |            | NACHT      | nrcs_expu ame: tull=protein nircs<br>nod2_mouse ame: full=proteotide-binding oligomerization domain-containing                                  | 140  | 2.502-10             | 12.00 |
| 1.2.18370.ml          | Am_NLK75   | NACHI      | protein 2 ame: full=caspase recruitment domain-containing protein 15                                                                            | 119  | 200E-20              | 42.80 |
| 1.2.10322.11          | Am_NLK70   | NACHI      | nire4_metric ame: full=nir tamuy caro domain-containing protein 4<br>nod1, homan ame: full=nucleotide-binding oligomerization domain-containing | 321  | 8.30E-18             | 41.6U |
| 1.Z.18796.m1          | Am_NLK77   | NACHTILRRS | protein 1                                                                                                                                       | 1038 | 2'20E-3A             | 40.60 |
| 1.Z.ZU804.ml          | Am_NLK/8   | NALHIJLKKS | nirc3_buman ame: toll=protem nirc3                                                                                                              | 835  | 7.4UE-43             | 53.60 |
| 1.2.11040.m1          | Am_NLR79   | NACHTILRRS | nirc3_mouse ame: full=protein nirc3                                                                                                             | 820  | 3.10E-30             | 51.80 |
| 1.2.18997.m1          | Am_NLR80   | NACHT LRRs | nlrc3_mouse ame: full=protein nlrc3<br>null_mouse ame: full=protectide-binding oligomerization domain-containing                                | 716  | 1.30E-33             | 55.60 |
| 1.2.18795.m1          | Am_NLR81   | NACHTILRRS | protein 1                                                                                                                                       | 1057 | 3.80E-37             | 40.60 |
| 1.2.24320.m1          | Am_NLR82   | NACHT LRRs | nall4_buman ame: full= lrr and pyd domains-containing protein 14                                                                                | 1216 | 1.10E-53             | 42.20 |
| 1.2.20938.m1          | Am_NLR83   | NACHTILRRs | nlrc3_mouse ame: full=protein nlrc3                                                                                                             | 867  | 1.00E-36             | 59.00 |
| 1.2.22378.m1          | Am_NLR84   | NACHTILRRs | nlrc3_mouse ame: full=protein nlrc3                                                                                                             | 982  | 2.30E-59             | 40.40 |
| 1.2.18794.m1          | Am_NLR85   | NACHT LRRs | nalp3_mouse ame: full= lrr and pyd domains-containing protein 3                                                                                 | 1059 | 1.70E-3 <del>4</del> | 40.20 |
| 1.2.16092.m1          | Am_NLR86   | NACHT LRRs | ood 2_mouse ame: tuil=oucleotale-binding ongomerization domain-containing<br>protein 2                                                          | 988  | 6.00E-32             | 42.60 |
| 1.2.19740.m1          | Am_NLR87   | NACHT LRRs | nlrc3_buman ame: full=protein nlrc3                                                                                                             | 933  | 5.70E-50             | 55.00 |
| 1.2.12473.m1          | Am_NLR88   | NACHT LRRs | nlrc3_buman ame: full=protein nlrc3                                                                                                             | 914  | 3.00E-51             | 58.40 |
| 1.2.26460.m1          | Am_NLR89   | NACHT LRRs | nlrc3_buman ame: foll=protein nlrc3                                                                                                             | 1082 | 2.00E-24             | 39.00 |
| 1.2.22230.m1          | Am_NLR90   | NACHT LRRs | nall2_buman ame: full= lrr and pyd domains-containing protein 12                                                                                | 1086 | 1.20E-41             | 41.20 |
| 1.2.9751.m1           | Am_NLR91   | NACHT LRRs | nod2_mouse ame: full=nucleotide-binding oligomerization domain-containing<br>protein 2                                                          | 712  | 1.00E-33             | 41.20 |
| 1.2.6154.m1           | Am_NLR92   | NACHT LRRs | nall2_mouse ame: full= lrr and pyd domains-containing protein 12                                                                                | 1262 | 2.20E-57             | 40.80 |
| 1.2.17969.m1          | Am_NLR93   | NACHT LRRs | nod1_mouse ame: full=nucleotide-binding oligomerization domain-containing<br>protein 1                                                          | 1024 | 4.80E-40             | 41.00 |
| 1.2.6155.m1           | Am_NLR94   | NACHT LRRs | nlrc3_buman ame: full=protein nlrc3                                                                                                             | 1174 | 5.20E-39             | 40.20 |
| 1.2.22373.m1          | Am_NLR95   | NACHT LRRs | nlrc3_buman ame: full=protein nlrc3                                                                                                             | 874  | 1.30E-50             | 54.20 |
| 1.2.6132.m1           | Am_NLR96   | NACHT LRRs | nod2_mouse ame: full=nucleotide-binding oligomerization domain-containing<br>protein 2                                                          | 902  | 5.30E-32             | 41.60 |
| 1.2.15102.m1          | Am_NLR97   | NACHT LRRs | nod2_mouse ame: full=nucleotide-binding oligomerization domain-containing<br>protein 2                                                          | 1053 | 6.70E-36             | 39.60 |
| 1.2.19719.m1          | Am_NLR98   | NACHT LRRs | nalp3_bovin ame: full= lrr and pyd domain@ containing protein 3                                                                                 | 1147 | 6.40E-37             | 39.40 |
| 1.2.13398.m1          | Am_NLR99   | NACHTILRRs | nalp3_mouse ame: full= lrr and pyd domains-containing protein 3                                                                                 | 1068 | 1.30E-31             | 40.60 |
| 1.2.22377.m1          | Am_NLR100  | NACHT LRRs | nlrc3_buman ame: full=protein nlrc3                                                                                                             | 1060 | 3.90E-63             | 56.60 |
| 1.2.18648.m1          | Am_NLR101  | NACHT LRRs | nlrc3_buman ame: full=protein nlrc3                                                                                                             | 753  | 5.00E-30             | 41.00 |

| 1.2.22379.m1          | Am_NLR102      | NACHTILRRs  | nlrc3_buman ame: full=protein nlrc3                                                                                                          | 769  | 1.80E-36             | 56.60 |
|-----------------------|----------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------|-------|
| 1.2.17580.m1          | Am_NLR103      | NACHTILRRs  | nlrc3_buman ame: full=protein nlrc3                                                                                                          | 1507 | 1.80E-11             | 44.80 |
| 1.2.16964.m1          | Am_NLR104      | NACHTILRR   | n lrc3_mouse ame: full=protein nlrc3                                                                                                         | 884  | 1.40E-42             | 49.00 |
| 1.2.18364.m1          | Am_NLR105      | NACHTILRR   | n lrc3_mouse ame: full=protein nlrc3                                                                                                         | 778  | 1.90E-47             | 51.40 |
| 1.2.19603.m1          | Am_NLR106      | NACHT LRRs  | nlrc3_buman ame: full=protein nlrc3                                                                                                          | 978  | 2.90E-36             | 43.20 |
| 1.2.17576.m1          | Am_NLR107      | NACHTILRR   | nlrc3_buman ame: full=protein nlrc3                                                                                                          | 1013 | 1.20E-35             | 46.80 |
| 1.2.6164.m1           | Am_NLR108      | NACHT LRRs  | nal12_mouse ame: full= lrr and pyd domains-containing protein 12                                                                             | 1228 | 1.80E-53             | 40.60 |
| 1.2.4467.m1           | Am_NLR109      | NACHT LRRs  | nod2_mouse ame: full=nucleotide-binding oligomerization domain-containing numbers 2                                                          | 734  | 2.60E-28             | 41.40 |
| 1.2.6152.m1           | Am_NLR110      | NACHTILRRs  | nal12_mouse ame: full= lrr and pyd domains-containing protein 12                                                                             | 1266 | 7.30E-44             | 40.60 |
| 1.2.4470.m1           | Am_NLR111      | NACHTILRRs  | nal12_buman ame: full= hr and pyd domains-containing protein 12                                                                              | 841  | 7.40E-34             | 40.00 |
| 1.2.9750.m1           | Am_NLR112      | NACHT LRRs  | nod2_mouse ame: full=nucleotide-binding oligomerization domain-containing                                                                    | 792  | 2.40E-31             | 42.60 |
| 1.2.26065.m1          | Am_NLR113      | NACHT LRRs  | proven z<br>nal12_mouse ame: full= lrr and pyd domains-containing protein 12                                                                 | 1080 | 1.90E-40             | 41.00 |
| 1.2.17971.m1          | Am_NLR114      | NACHT LRRs  | nal12_buman ame: full= lrr and pyd domains-containing protein 12                                                                             | 1150 | 3.30E-48             | 41.40 |
| 1.2.22224.ml          | Am NLR115      | NACHTILRRs  | nal12 buman ame: full= lrr and pyd domains-containing prutein 12                                                                             | 1124 | 2.10E-45             | 41.00 |
| 12.16104.m1           | Am NLR116      | NACHTILRRs  | noll_buman ame: full=nucleotide-binding oligomerization domain-containing                                                                    | 951  | 2.70E-27             | 44.40 |
| 1.2.2 <b>44</b> 63.m1 | -<br>Am NLR117 | NACHTILRRs  | protein 1<br>niro3 buman ame: full=protein niro3 ame: full=card15-like protein                                                               | 1410 | 3.00E-76             | 53.40 |
| 1.2.2 <b>44</b> 95.m1 | Am NLR118      | NACHTILRRs  | nod2_mouse ame: full=nucleotide-binding oligomerization domain-containing                                                                    | 777  | 5.20E-40             | 40.80 |
| 1 2 10472 -1          | A- NI P110     | NACUTH PP-  | protein 2                                                                                                                                    | 721  | 1 605 25             | 42.30 |
| 1219973.11            | Am_NLK119      | NACHTIERAS  | nrcs_mouse ame: iui=protein nrcs                                                                                                             | 731  | 1.002-33             | 41.20 |
| 121/9/0.ml            | Am_NLKLZU      | NALHILKKS   | nal L2_mouse a met full= irr and pyd domains-containing protein L2                                                                           | 1195 | 4./UE-48             | 41.20 |
| 1.2.17966.m1          | Am_NLR121      | NACHT LRRs  | nal12_mouse ame: full= hr and pyd domains-containing protein 12<br>nod2_mouse ame: full=nucleatide, hinding olimmerization domain-containing | 1222 | 5.40E-36             | 42.40 |
| 1.2.2 <b>4494</b> .m1 | Am_NLR122      | NACHTILRRs  | protein 2                                                                                                                                    | 1043 | 1.10E-41             | 40.40 |
| 1.2.13403.m1          | Am_NLR123      | NACHTILRRs  | protein 2                                                                                                                                    | 932  | 6.10E-34             | 41.80 |
| 1.2.17239.m1          | Am_NLR124      | NACHT LRRs  | nour_numan ame: ruit=nucleocioe-nincing ongomerization domain-containing<br>protein 1                                                        | 854  | 1.50E-38             | 41.80 |
| 1.2.23718.m1          | Am_NLR125      | NACHT LRRs  | n lrc3_buman ame: full=protein nlrc3 ame: full=card1.5-like protein                                                                          | 914  | 6.60E-33             | 56.80 |
| 1.2.17756.m1          | Am_NLR126      | NACHTILRRs  | n/rc3_buman ame: full=protein n/rc3 ame: full=card15-like protein                                                                            | 996  | 1.70E-64             | 55.40 |
| 1.2.19308.m1          | Am_NLR127      | NACHT LRRs  | n lrc3_buman ame: full=protein nlrc3 ame: full=card1.5-like protein                                                                          | 736  | 4.80E-26             | 61.00 |
| 1.2.4875.m1           | Am_NLR128      | NACHTILRRs  | n lrc3_mouse ame: full=protein nlrc3                                                                                                         | 1068 | 6.30E-68             | 46.60 |
| 1.2.4870.m1           | Am_NLR129      | NACHT LRRs  | n lrc3_buman ame: full=protein nlrc3                                                                                                         | 1069 | 3.90E-73             | 45.00 |
| 1.2.4464.m1           | Am_NLR130      | NACHT LRRs  | nal12_mouse a met full= hr and pyd domains-containing protein 12                                                                             | 1014 | 9.10E-33             | 40.80 |
| 1.2.15100.m1          | Am_NLR131      | NACHTLRRs   | nod2_mouse a me: full=nucleotide-binding oligomerization domain-containing<br>protein 2                                                      | 1014 | 7.80E-46             | 40.80 |
| 1.2.2 <b>44</b> 93.m1 | Am_NLR132      | NACHT LRRs  | noll_buman ame: full=nucleotide-binding oligomerization domain-containing<br>neutrin 1                                                       | 1085 | 1.70E-37             | 41.00 |
| 1.2.14307.m1          | Am_NLR133      | NACHT LRRs  | nod2_mouse ame: full=nucleotide-binding oligomerization domain-containing<br>northin 2                                                       | 1112 | 1.60E-43             | 40.40 |
| 1.2.17757.m1          | Am_NLR134      | NACHT LRRs  | n kc3_buman ame: ful⊨protein nkc3 ame: full=card15-like protein                                                                              | 750  | 8.50E-38             | 56.60 |
| 1.2.26034.m1          | Am_NLR135      | NACHT LRRs  | n lrc3_mouse ame: full=protein nlrc3                                                                                                         | 692  | 2.10E-29             | 53.00 |
| 1.2.24858.m1          | Am_NLR136      | NACHT LRRs  | nod2_moose ame: full=nucleotide-binding oligomerization domain-containing                                                                    | 1099 | 1.10E-39             | 41.80 |
| 1.2.9752.m1           | Am_NLR137      | NACHT LRRs  | proven z<br>nod1_mouse ame: full=nucleotide-binding oligomerization domain-containing                                                        | 1009 | 3.30E-30             | 41.20 |
| 1.2.16210.m1          | Am NLR138      | NACHTILRRs  | protein 1<br>n re3 mouse ame: full=protein n1rc3                                                                                             | 867  | 3.80E-33             | 47.00 |
| 1.2.6131.m1           | Am NLR139      | NACHT LRRs  | nod2_mouse ame: foll=nocleotide-binding oligomerization domain-containing                                                                    | 1158 | 2.00E-28             | 40.60 |
| 1.2.19602.m1          | Am NLR140      | NACHTILRRs  | protein 2<br>nkr:3 human ame: full=noutein nkr:3 ame: full=card15-like noutein                                                               | 901  | 3.00E-84             | 46.40 |
| 1 2 1 7893            | Am NI R141     | NACHTIL BR- | n ho3 human amer foll−nontein nim3 amer foll−cardt S. like nontein                                                                           | 887  | 1 105-71             | 57.20 |
| 127004-1              | A. NI 2142     | NACITTI BD- | nod2_mouse ame; full=nucleotide binding oligomerization domain-containing                                                                    | 1004 | 1 405 20             | 41.00 |
| 1.2.2 000.m1          | Am_NLN142      | NACHTILINAS | protein 2<br>nod2 mouse ame: full=nocleotide-binding oligomerization domain-containing                                                       | 740  | L.TUE-20             | 11.00 |
| 1223903#1             | AB_NLK145      | NACHTICKAS  | protein 2<br>nod2 mouse ame: full=nucleotide-binding oligomerization domain-containing                                                       | 710  | 0_000-71             | 41.00 |
| 12.2.2817.m1          | Am_NLK199      | NALHIJLKKS  | protein 2                                                                                                                                    | 752  | L.SUE-1 <del>1</del> | 41.30 |
| 1.2.3762.m1           | Am_NLR145      | NACHTILRRS  | nirc3_mouse ame: full=protein nirc3                                                                                                          | 1028 | 9.80E-71             | 50.00 |
| 1.2.19820.m1          | Am_NLR146      | NACHT LRRs  | n rc3_buman ame: full=protein nlrc3                                                                                                          | 919  | 3.60E-48             | 51.20 |
| 1.2.13020.m1          | Am_NLR147      | NACHT LRRs  | n lrc3_buman ame: full=protein nlrc3                                                                                                         | 744  | 2.30E-29             | 53.60 |
| 1.2.177 <b>49.m</b> 1 | Am_NLR148      | NACHT LRRs  | nlrc3_mouse ame: full=protein nlrc3                                                                                                          | 737  | 5.10E-49             | 59.20 |
| 1226517.ml            | Am_NLR149      | NACHT LRRs  | n lrc3_buman ame: ful⊨protein nlrc3                                                                                                          | 586  | 1.20E-20             | 57.00 |
| 1.2.1.5882.m1         | Am_NLR150      | NACHT LRRs  | n lrc3_mouse ame: full=protein nlrc3                                                                                                         | 794  | 2.10E-33             | 53.00 |
| 1.2.26187.m1          | Am_NLR151      | NACHT LRRs  | nlrc3_buman ame: full=protein nlrc3                                                                                                          | 1016 | 1.20E-78             | 57.40 |

| 1.2.4873.m1           | Am_NLR152  | NACHT LRRs  | nirc3_human ame: inii-protein nirc3                                                                                                         | 746  | 9.20E-26  | 56.80 |
|-----------------------|------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|-------|
| 1.2.17577.m1          | Am_NLR153  | NACHT LRRs  | nirc3_mouse ame: full=protein nirc3                                                                                                         | 888  | 4.80E-37  | 45.00 |
| 1.2.24063.m1          | Am_NLR154  | NACHT LRRs  | nlrc3_buman ame: full=protein nlrc3                                                                                                         | 735  | 1.00E-22  | 48.40 |
| 1.2.25680.m1          | Am_NLR155  | NACHT LRRs  | nire5_ictpu ame: full=protein nire5                                                                                                         | 1332 | 8.70E-16  | 44.20 |
| 1.2.18367.m1          | Am_NLR156  | NACHT LRRs  | nire3_buman ame_ full=protein nire3                                                                                                         | 719  | 2.30E-23  | 50.20 |
| 1.2.22381.m1          | Am_NLR157  | NACHT LRRs  | nire3_buman ame: full=protein nire3                                                                                                         | 699  | 5.80E-49  | 51.00 |
| 1.2.24261.m1          | Am_NLR158  | NACHT LRRs  | nod2, mouse ame: full=nucleotide-hinding oligomerization domain-containing<br>protein 2                                                     | 669  | 7.30E-36  | 40.80 |
| 1.2.19311.m1          | Am_NLR159  | NACHT LRRs  | nire5_ictpu ame: full=protein nire5                                                                                                         | 695  | 1.20E-13  | 43.20 |
| 1.2.4466.m1           | Am_NLR160  | NACHT LRRs  | nod2_mouse ame: full=nucleotide-hinding oligomerization domain-containing<br>neutrin 2                                                      | 969  | 9.30E-32  | 40.20 |
| 1.2.23780.m1          | Am_NLR161  | NACHT LRRs  | nire3_human ame: inli=protein nire3 ame: fuli=card15-like protein                                                                           | 959  | 2.30E-33  | 55.20 |
| 1.2.20620.m1          | Am_NLR162  | NACHT LRRs  | cog7_human ame: full=conserved oligomeric golgi complex subunit 7                                                                           | 1763 | 4.20E-141 | 55.00 |
| 1.2.17572.m1          | Am_NLR163  | MACHT LRRs  | nirc3_mouse ame: fuii-protein nirc3                                                                                                         | 1267 | 2.00E-38  | 45.00 |
| 1.2.13402.m1          | Am_NLR164  | MACHT LRRs  | nalp3_human ame: full= irr and pyd domains-containing protein 3                                                                             | 1173 | 5.90E-32  | 40.20 |
| 1.2.6156.m1           | Am_NLR165  | NACHT LRRs  | nod2_mouse ame: full=nucleotide-hinding oligomerization domain-containing                                                                   | 1023 | 1.80E-27  | 42.00 |
| 1.2.4868.m1           | Am_NLR166  | NACHT LRRs  | procesa z<br>nire3_buman ame: full=protein nire3                                                                                            | 1043 | 9.70E-80  | 48.00 |
| 1.2.24947.m1          | Am_NLR167  | NACHT LRRs  | nod2_mouse ame: full=nucleotide-hinding oligomerization domain-containing                                                                   | 1074 | 4.50E-35  | 42.60 |
| 1.2.2446B.m1          | Am_NLR168  | NACHT LRRs  | protein z<br>nkrć3_buman ame: full=protein nkrć3 ame: full=card15-like protein                                                              | 987  | 1.50E-37  | 52.20 |
| 1.2.17472.m1          | Am NLR169  | MACHTILRRs  | nire3 mouseame: fuil-orotein nire3                                                                                                          | 975  | 9.80E-37  | 52.00 |
| 1.2.18792.m1          | Am NLR170  | MACHTILRRS  | nall2 mouse ame: full=irr and red domains-containing protein 12                                                                             | 1174 | 2.20E-54  | 41.40 |
| 1 2 24636 m1          | Am NIR171  | NACHTII RRS | nirr5 human ame-init=nrrtein nirr5                                                                                                          | 9980 | 2 00F-23  | 47 20 |
| 1 7 19740 m1          | Am NID177  | NACUTII DDe | ning human and full-antitian ning?                                                                                                          | 770  | 8405-30   | 54.60 |
| 1 2 24221             | Am NID177  | MACHTH DDe  | noti_mouse ame: full=nucleotide-hinding oligomerization domain-containing                                                                   | 1016 | 7 105-29  | 47.46 |
| 1 2 4421 m1           | Am NIP174  | MACHTH DDe  | protein 1<br>nabé human amo fulle les and surt domains containing motoin é.                                                                 | 077  | 7205-17   | 42.00 |
| 1.214605              | A. NID475  | MACHTU BDa  |                                                                                                                                             | 1043 | 7.605.62  | F7.60 |
| 1.2.14375.III         | Am_MIR(175 | NACHTU BD-  |                                                                                                                                             | 705  | 2102-03   | 43.60 |
| 1.2.1544/.001         | AM_ALKI70  | NACHT LERRS |                                                                                                                                             | /95  | 1102-30   | 92.0U |
| 1.2.22629.001         | Am_ALR177  | MALHIJLRRS  | nires_numan ame_inii=protein nires ame_ruii=caru15-like protein<br>nod2 mouse ame_ruii=nucleotide-binding oligomerization domain-containing | 6/3  | 71002-11  | 52.00 |
| 1.2.24496.m1          | Am_NLR178  | NACHTILRRS  | protein 2                                                                                                                                   | 937  | 2.30E-29  | 48.20 |
| 1.2.14610.m1          | Am_NLR179  | NACHTILICUS | nirc3_human ame: init_protein nirc3 ame: tull_card15-kite protein                                                                           | 805  | 4_90E-46  | 53.40 |
| 1.2.22825.m1          | Am_NLR180  | NACHT LRRs  | nird3_human ame: full=protein nird3 ame: full=card15-hite protein                                                                           | 913  | 1.20E-42  | 49.80 |
| 1.2.24718.m1          | Am_NLR181  | NACHT LRRs  | nirc3_mouse ame: full=protein nirc3                                                                                                         | 738  | 1.70E-28  | 49.00 |
| 1.2.15133.m1          | Am_NLR182  | NACHT LRRs  | nlrc4_mentrame: full=nlrfamily card domain-containing protein 4                                                                             | 794  | 1.40E-22  | 43.80 |
| 1.2.1644.m1           | Am_NLR183  | NACHT LRRs  | nlrc3_mouse ame: full=protein nlrc3                                                                                                         | 1133 | 5.80E-41  | 41.20 |
| 1.2.4577.m1           | Am_NLR184  | NACHT LRRs  | nlrc3_mouse ame: full=protein nlrc3                                                                                                         | 642  | 2 10E-21  | 59.60 |
| 1.2.17495.m1          | Am_NLR185  | NACHT LRRs  | nire3_buman ame: full=protein nire3                                                                                                         | 798  | 830E-54   | 58.60 |
| 1.2.9646.m1           | Am_NLR186  | NACHT LRRs  | nirc3_mouse ame: fuii=protein nirc3                                                                                                         | 761  | 7.90E-16  | 50.60 |
| 1.2.15075.m1          | Am_NLR187  | MACHT LRRs  | nirc3_mouse ame: full=protein nirc3                                                                                                         | 756  | 9.80E-48  | 41.80 |
| 1.2.5252.m1           | Am_NLR188  | NACHT LRRs  | nirc3_mouse ame: full=protein nirc3                                                                                                         | 713  | 8.00E-32  | 44.80 |
| 1.2.22635.m1          | Am_NLR189  | NACHT LRRs  | nlrc3_human ame: inll=protein nlrc3                                                                                                         | 874  | 2.00E-50  | 45.60 |
| 1.2.19842.m1          | Am_NLR190  | NACHT LRRs  | nire3_human ame: inii-protein nire3                                                                                                         | 830  | 3.10E-30  | 49.20 |
| 1.2.17320.m1          | Am_NLR191  | NACHT LRRs  | nirc3_human ame: full=protein nirc3                                                                                                         | 1075 | 610E-35   | 47.80 |
| 1.2.20049.m1          | Am_NLR192  | NACHT LRRs  | nlrc3_mouse ame: full=protein nlrc3                                                                                                         | 922  | 4.80E-16  | 53.40 |
| 1.2.1404.m1           | Am_NLR193  | NACHT TPR   | nphp3_human ame: full=nephrocystin-3                                                                                                        | 981  | 0.00E+00  | 60.00 |
| 1.2.12322.m1          | Am_NIR194  | NACHT/WD40  | mwd1_human ame: full=nacht domain- and wd repeat-containing protein 1                                                                       | 1565 | 5.30E-112 | 46.20 |
| 1.2.9136m1            | Am_NLR195  | NACHT[WD40  | dzip3_human ame: ful⊨e3 uhiquitin-protein ligase dzip3                                                                                      | 1498 | 6.20E-17  | 52.00 |
| 1.2.23031.m1          | Am_NLR196  | NACHT[WD40  | nire3_buman ame: full=protein nire3                                                                                                         | 1230 | 2.20E-40  | 49.60 |
| 1.2.17490.m1          | Am_NLR197  | NACHT[WD40  | nwd1_mouse ame: full=nacht domain- and wd repeat-containing protein 1                                                                       | 1838 | 2_90E-94  | 47.60 |
| 1.2.9119.m1           | Am_NLR198  | NACHT/WD40  | dzip3_human ame: full=e3 uhiquitin-protein ligase dzip3                                                                                     | 1474 | 1.20E-13  | 42.60 |
| 1.2.16539.m1          | Am_NLR199  | NACHT/WD40  | dzip3_mouse ame: ful⊨e3 uhiquitin-protein ligase dzip3                                                                                      | 1635 | 110E-13   | 44.60 |
| 1.2.9133.m1           | Am_NLR200  | NACHT/WD40  | dzip3_humaname: ful⊨e3 uhiquitin-protein ligase dzip3                                                                                       | 1445 | 1.00E-17  | 45.00 |
| 1.2.9079.m1           | Am_NLR201  | NACHT[WD40  | dzip3_humaname: full=e3 uhiquitin-protein ligase dzip3                                                                                      | 1465 | 6.90E-14  | 45.25 |
| 1.2.9139.m1           | Am_NLR202  | NACHT WD40  | dzip3_human ame: full=e3 uhiquitin-protein ligase dzip3                                                                                     | 1475 | 1.70E-14  | 51.50 |
| 1.2.9126m1            | Am_NLR203  | NACHT/WD40  | dzip3_human ame: ful⊨e3 uhiquitin-protein ligase dzip3                                                                                      | 1430 | 6.80E-13  | 45.00 |
| 1.2.16351.m1          | Am_NLR204  | NACET[WD40  | nwd1_mouse ame: full=nacht domain- and wd repeat-containing protein 1                                                                       | 1758 | 1.50E-106 | 47.80 |
| 1.2.175 <b>75.m</b> 1 | Am_NLR205  | NACHT[WD40  | dzip3, human ame: ful⊨e3 ubiquitin-protein ligase dzip3                                                                                     | 1497 | 5.80E-13  | 48.67 |
| 1.2.9138m1            | Am_NLR206  | NACHT[WD40  | dzip3, human ame: full=e3 ubiquitin-protein ligase dzip3                                                                                    | 1472 | 810E-12   | 45.20 |
|                       |            | •           | - · · · · · · · · · · · · · · · · · · ·                                                                                                     | -    |           |       |

# **(B)**

|              |                    |                     | Control  | (pH 8.1)            |          |                     | High CO <sub>2</sub> | (pH 7.8)            |          |
|--------------|--------------------|---------------------|----------|---------------------|----------|---------------------|----------------------|---------------------|----------|
| Genome ID    | A. millepora<br>ID | 1                   | l h      | 6                   | h        | 1                   | h                    | 6                   | h        |
|              | ID.                | Log <sub>2</sub> FC | FDR      | Log <sub>2</sub> FC | FDR      | Log <sub>2</sub> FC | FDR                  | Log <sub>2</sub> FC | FDR      |
| 1.2.26019.m1 | Am_NLR1            | -                   | _        | -0.16               | 2.35E-02 | _                   | _                    | -0.07               | 4.01E-02 |
| 1.2.5900.m1  | Am_NLR2            | -                   | -        | -0.14               | 2.46E-02 | -                   | -                    | -                   | -        |
| 1.2.5883.ш1  | Am_NLR3            | _                   | _        | -                   | -        | 0.10                | 1.35E-02             | 0.18                | 1.81E-02 |
| 1.2.5906.ш1  | Am_NLR4            | _                   | _        | _                   | _        | 0.32                | 3.08E-02             | 0.18                | 2.48E-02 |
| 1.2.19850.m1 | Am_NLR5            | -                   | -        | -                   | _        | 0.20                | 4.91E-02             | -                   | -        |
| 1.2.25484.m1 | Am_NLR8            | _                   | _        | _                   | _        | _                   | -                    | 0.15                | 3.97E-02 |
| 1.2.15887.m1 | Am_NLR10           | _                   | _        | 0.06                | 4.74E-02 | _                   | _                    | -0.23               | 3.91E-02 |
| 1.2.23033.m1 | Am_NLR11           | -                   | -        | -                   | -        | -0.06               | 2.80E-02             | -                   | -        |
| 1.2.23034.m1 | Am_NLR12           | _                   | _        | 0.31                | 3.37E-02 | _                   | -                    | 0.37                | 2.85E-02 |
| 1.2.3761.m1  | Am_NLR13           | -                   | _        | -0.32               | 2.55E-02 | _                   | _                    | -                   | -        |
| 1.2.9939.ш1  | Am_NLR14           | -                   | -        | -0.27               | 4.86E-02 | -                   | -                    | -                   | -        |
| 1.2.19702.m1 | Am_NLR15           | _                   | _        | -0.59               | 7.48E-04 | _                   | _                    | _                   | _        |
| 1.2.24451.m1 | Am_NLR16           | _                   | _        | -0.47               | 2.04E-02 | 0.05                | 3.73E-02             | -                   | -        |
| 1.2.4814.m1  | Am_NLR17           | -                   | -        | -                   | -        | -0.18               | 1.98E-03             | -                   | -        |
| 1.2.23717.m1 | Am_NLR18           | _                   | _        | _                   | _        | -                   | -                    | 0.06                | 2.49E-02 |
| 1.2.15454.m1 | Am_NLR19           | -                   | _        | _                   | _        | _                   | _                    | 0.25                | 2.72E-02 |
| 1.2.4220.m1  | Am_NLR27           | -                   | -        | -0.20               | 1.18E-03 | -0.37               | 4.83E-02             | 0.20                | 4.45E-02 |
| 1.2.18769.m1 | Am_NLR28           | _                   | _        | 0.05                | 4.35E-02 | -                   | -                    | -                   | -        |
| 1.2.16740.m1 | Am_NLR31           | -                   | -        | -0.11               | 3.57E-02 | _                   | _                    | 0.17                | 3.36E-02 |
| 1.2.4218.m1  | Am_NLR32           | -                   | -        | -0.11               | 1.09E-02 | -                   | -                    |                     |          |
| 1.2.6137.m1  | Am_NLR33           | -                   | -        | 0.64                | 3.41E-04 | _                   | -                    | 0.36                | 4.37E-02 |
| 1.2.9759.ш1  | Am_NLR34           | -                   | -        | 0.05                | 3.71E-02 | _                   | -                    | -0.32               | 2.19E-02 |
| 1.2.19297.m1 | Am_NLR35           | -                   | -        | 0.46                | 4.50E-02 | -                   | -                    | -0.20               | 4.16E-02 |
| 1.2.24253.m1 | Am_NLR36           | -                   | _        | 0.13                | 1.59E-02 | -0.08               | 1.18E-02             | -                   | -        |
| 1.2.13860.m1 | Am_NLR37           | -                   | _        | 0.09                | 1.69E-02 | -                   | -                    | -                   | _        |
| 1.2.19126.m1 | Am_NLR38           | -                   | -        | 0.08                | 1.57E-02 | -                   | -                    | -                   | -        |
| 1.2.9130.m1  | Am_NLR39           | -                   | _        | 0.53                | 8.99E-03 | _                   | _                    | 0.67                | 2.30E-02 |
| 1.2.5896.ш1  | Am_NLR40           | -                   | -        | -0.21               | 4.51E-02 | _                   | -                    | -                   | -        |
| 1.2.18491.m1 | Am_NLR41           | 0.59                | 2.08E-02 | -0.22               | 2.45E-02 | -                   | -                    | 0.25                | 8.05E-03 |
| 1.2.15251.m1 | Am_NLR42           | -                   | -        | -0.42               | 2.35E-02 | _                   | _                    | _                   | -        |
| 1.2.5897.ш1  | Am_NLR43           | -                   | -        | -0.38               | 1.78E-02 | _                   | -                    | -                   | -        |
| 1.2.25683.m1 | Am_NLR44           | -                   | -        | -0.07               | 2.47E-02 | -                   | -                    | -                   | -        |
| 1.2.10017.m1 | Am_NLR45           | -                   | -        | -0.25               | 3.33E-02 | -0.15               | 2.50E-02             | -                   | -        |
| 1.2.5895.m1  | Am_NLR46           | -                   | _        | _                   | _        | -0.20               | 3.94E-02             | -                   | _        |
| 1.2.13880.m1 | Am_NLR47           | -                   | -        | -                   | -        | -0.12               | 3.58E-02             | -                   | -        |
| 1.2.22640.m1 | Am_NLR48           | _                   | _        | _                   | _        | 0.11                | 2.09E-02             | -                   | _        |
| 1.2.9743.m1  | Am_NLR49           | -                   | _        | _                   | -        | 0.25                | 2.28E-02             | -                   | _        |
| 1.2.7526.ш1  | Am_NLR50           | -                   | -        | -                   | -        | 0.40                | 1.07E-02             | -                   | -        |
| 1.2.2411.m1  | Am_NLR51           | _                   | _        | _                   | _        | _                   | _                    | 0.25                | 4.14E-02 |
| 1.2.15816.m1 | Am_NLR52           | -                   | -        | -                   | _        | -                   | _                    | 0.17                | 3.18E-02 |
| 1.2.20864.m1 | Am_NLR78           | 0.32                | 3.19E-02 | -                   | -        | -                   | -                    | 0.08                | 2.11E-02 |
| 1.2.11040.m1 | Am_NLR79           | 0.41                | 4.14E-02 | -                   | _        | -                   | -                    | -                   | _        |
| 1.2.18997.m1 | Am_NLR80           | -0.09               | 2.60E-02 | -                   | _        | -0.25               | 4.01E-02             | -                   | _        |
| 1.2.18795.m1 | Am_NLR81           | -0.17               | 2.22E-02 | 0.11                | 1.39E-02 | -0.06               | 8.89E-03             | -                   | -        |
| 1.2.24320.m1 | Am_NLR82           | _                   | _        | 0.07                | 1.19E-02 | -0.07               | 1.52E-02             | -                   | —        |
| 1.2.20938.m1 | Am_NLR83           | -                   | -        | 0.08                | 6.79E-03 | -                   | -                    | _                   | -        |
| 1.2.22378.m1 | Am_NLR84           | -                   | -        | 0.10                | 2.09E-02 | -                   | -                    | -0.07               | 2.21E-02 |
| 1.2.18794.m1 | Am_NLR85           | _                   | -        | 0.19                | 3.09E-02 | -0.26               | 3.82E-02             | -                   | _        |
| 1.2.16092.m1 | Am_NLR86           | -                   | -        | 0.19                | 3.72E-02 | 0.08                | 2.49E-03             | -                   | _        |
| 1.2.19740.m1 | Am_NLR87           | -                   | -        | 0.12                | 4.78E-02 | 0.12                | 4.68E-02             | -                   | -        |
| 1.2.12473.m1 | Am_NLR88           | -                   | _        | 0.16                | 4.37E-02 | -                   | _                    | _                   | _        |
|              |                    |                     |          |                     |          |                     |                      |                     |          |

| 1.2.26460.m1          | Am_NLR89  | _     | -        | 0.08  | 4.71E-02 | -0.20 | 4.76E-02 | 0.22  | 2.11E-02 |
|-----------------------|-----------|-------|----------|-------|----------|-------|----------|-------|----------|
| 1.2.22230.m1          | Am_NLR90  | _     | _        | 0.08  | 1.87E-02 | -     | -        | 0.11  | 3.74E-04 |
| 1.2.9751.m1           | Am NLR91  | _     | _        | 0.18  | 2.91E-02 | _     | _        | 0.23  | 3.50E-02 |
| 126154 m1             | Am NLR92  | _     | _        | 014   | 3.04E-02 | _     | _        | _     | _        |
| 1.2.17969 m1          | Am NLR93  | _     | _        | 0.05  | 4.11E-02 | _     | _        | 0.24  | 1.37E-02 |
| 126155 m1             | Am NI P94 | _     |          | 0.00  | 1 54E-02 | -0.07 | 3 29F-02 | 0.24  | 2.84E-03 |
| 1 2 22273 m1          | Am NI POS | _     | _        | 0.13  | 2.63E 02 | -0.07 | 5.276-02 | 0.54  | 2.041-03 |
| 126122                | Am_NLR95  | 0.40  | 2 225 02 | 0.20  | E 94E 02 |       |          |       |          |
| 12.0132.01            | ALL_NLK95 | -0.40 | 2.326-02 | 0.11  | 5.041-03 | _     | 4 205 02 | —     | -        |
| L2.15102.m1           | Am_NLK97  | _     | -        | 0.18  | 4.75E-02 | -0.09 | 1.28E-03 | -     | -        |
| 1.2.19719.m1          | Am_NLK98  | -     | -        | 1.00  | 3.28E-03 | -0.38 | 2.23E-02 | -     | -        |
| 1.2.13398.m1          | Am_NLR99  | _     | -        | 0.09  | 2.83E-02 | _     | -        | _     | -        |
| 1.2.22377.m1          | Am_NLR100 | _     | -        | 0.33  | 1.41E-02 | _     | -        | _     | _        |
| 1.2.18648.m1          | Am_NLR101 | —     | -        | -0.14 | 1.35E-02 | —     | -        | —     | -        |
| 1.2.22379.m1          | Am_NLR102 | -     | -        | -0.26 | 4.87E-02 | -     | -        | -     | -        |
| 1.2.17580.m1          | Am_NLR103 | -     | -        | -0.16 | 3.31E-02 | -     | -        | _     | -        |
| 1.2.16964.m1          | Am_NLR104 | -     | -        | -0.29 | 3.28E-02 | -     | -        | -     | -        |
| 1.2.18364.m1          | Am_NLR105 | -     | -        | -0.27 | 1.47E-02 | -     | -        | -     | _        |
| 1.2.19603.m1          | Am_NLR106 | -     | -        | -0.22 | 4.41E-02 | -     | -        | _     | -        |
| 1.2.17576.m1          | Am_NLR107 | -     | -        | -0.34 | 4.51E-02 | -     | -        | -     | -        |
| 1.2.6164.m1           | Am_NLR108 | -     | -        | -0.14 | 3.70E-02 | -0.17 | 1.40E-02 | 0.08  | 2.44E-02 |
| 1.2.4467.m1           | Am_NLR109 | -     | -        | -0.06 | 2.02E-02 | -     | -        | 0.09  | 2.63E-02 |
| 1.2.6152.m1           | Am_NLR110 | -     | -        | -0.07 | 4.90E-02 | -     | -        | 0.10  | 4.92E-02 |
| 1.2.4470.m1           | Am_NLR111 | -     | -        | -0.12 | 6.76E-03 | -0.05 | 2.52E-02 | 0.11  | 2.83E-02 |
| 1.2.9750.m1           | Am_NLR112 | -     | -        | -0.07 | 2.15E-02 | -     | -        | 0.14  | 4.61E-02 |
| 1.2.26 <b>06</b> 5.m1 | Am_NLR113 | -     | -        | -0.05 | 1.46E-02 | -     | -        | 0.15  | 1.29E-02 |
| 1.2.17971.m1          | Am_NLR114 | -     | -        | -0.07 | 1.56E-02 | -     | -        | 0.15  | 2.69E-02 |
| 1.2.22224.m1          | Am_NLR115 | -     | -        | -0.12 | 2.88E-04 | -     | -        | 0.22  | 1.51E-03 |
| 1.2.16104.m1          | Am_NLR116 | -     | -        | _     | -        | -0.16 | 2.35E-02 | 0.18  | 2.38E-02 |
| 1.2.24463.m1          | Am_NLR117 | -     | -        | -     | -        | -0.05 | 1.57E-02 | 0.25  | 1.61E-02 |
| 1.2.24495.m1          | Am_NLR118 | -     | -        | -     | -        | -0.14 | 4.02E-02 | 0.27  | 1.07E-02 |
| 1.2.19473.m1          | Am_NLR119 | -     | -        | -     | -        | -     | -        | 0.16  | 4.84E-02 |
| 1.2.17970.m1          | Am_NLR120 | -     | -        | -     | -        | -     | -        | 0.18  | 2.47E-02 |
| 1.2.17966.m1          | Am_NLR121 | -     | _        | _     | _        | -     | -        | 0.20  | 1.77E-02 |
| 1.2.24494.m1          | Am_NLR122 | _     | -        | _     | -        | _     | -        | 0.22  | 3.35E-02 |
| 1.2.13403.m1          | Am_NLR123 | _     | -        | _     | -        | —     | -        | 0.30  | 1.72E-02 |
| 1.2.17239.m1          | Am_NLR124 | -     | -        | _     | -        | -     | -        | 0.30  | 7.13E-04 |
| 1.2.23718.m1          | Am_NLR125 | -     | -        | _     | -        | -     | -        | -0.06 | 4.84E-02 |
| 1.2.17756.m1          | Am_NLR126 | -     | -        | -0.25 | 3.28E-02 | -0.05 | 4.04E-02 | -     | -        |
| 1.2.193 <b>0</b> 8.m1 | Am_NLR127 | -     | -        | -     | -        | -0.06 | 2.66E-02 | _     | -        |
| 1.2.4875.m1           | Am_NLR128 | _     | -        | _     | -        | -0.43 | 1.46E-02 | _     | -        |
| 1.2.4870.m1           | Am_NLR129 | -     | -        | -     | -        | -0.44 | 4.89E-02 | -     | -        |
| 1.2.4464.m1           | Am_NLR130 | -     | -        | -     | -        | -0.34 | 4.40E-02 | -     | -        |
| 1.2.15100.m1          | Am_NLR131 | -     | -        | -     | -        | -0.33 | 3.75E-02 | -     | -        |
| 1.2.24493.m1          | Am_NLR132 | -     | _        | -     | _        | -0.35 | 3.15E-04 | _     | _        |
| 1.2.14307.m1          | Am_NLR133 | _     | _        | _     | _        | -0.11 | 5.76E-03 | _     | _        |
| 1.2.17757.m1          | Am_NLR134 | -     | -        | -     | -        | -0.24 | 4.71E-02 | -     | -        |
| 1.2.26034.m1          | Am_NLR135 | -     | -        | -     | -        | 0.19  | 3.02E-02 | -     | -        |
| 1.2.24858.m1          | Am_NLR136 | -     | -        | -     | -        | 0.22  | 1.66E-02 | -     | -        |
| 1.2.9752.m1           | Am_NLR137 | -     | _        | _     | _        | 0.31  | 1.37E-02 | _     | _        |
| 1.2.16210.m1          | Am_NLR138 | _     | _        | _     | _        | 0.15  | 3.02E-02 | _     | _        |
| 1.2.6131.m1           | Am_NLR139 | _     | -        | -0.47 | 1.20E-03 | 0.43  | 1.67E-02 | _     | _        |
| 1.2.19602.m1          | Am_NLR140 | _     | -        | -     | -        | 0.14  | 4.28E-02 | _     | -        |
| 1.2.1404.m1           | Am_NLR193 | -     | -        | -     | -        | -0.22 | 4.18E-02 | -     | -        |
| 1.2.12322.m1          | Am_NLR194 | -0.34 | 4.35E-02 | _     | -        | -     | -        | _     | -        |
| 1.2.9136.m1           | Am_NLR195 | -     | -        | 0.14  | 2.87E-03 | _     | -        | 0.48  | 8.13E-03 |
| 1.2.23031.m1          | Am_NLR196 | _     | _        | -0.20 | 4.78E-04 | _     | _        | -     | -        |
| 1.2.17490.m1          | Am_NLR197 | _     | _        | -0.17 | 3.04E-04 | -0.69 | 3.82E-04 | 0.40  | 2.28E-02 |
| 1.2.9119.m1           | Am_NLR198 | _     | -        | -0.29 | 1.59E-02 | -     | -        | -     | -        |
| 1.2.16539.m1          | Am_NLR199 | _     | _        | -0.05 | 5.50E-03 | _     | _        | _     | _        |
| 1.2.9133.m1           | Am_NLR200 | _     | _        | -0.15 | 1.83E-02 | _     | _        | _     | _        |
| 1.2.9079.m1           | Am_NLR201 | _     | _        | -     | _        | -0.17 | 1.72E-02 | -0.12 | 3.34E-02 |
|                       |           | I     |          |       |          |       |          |       |          |

**Table S2.9** Significantly expressed genes under LPS challenge, including members of the NFkB and MAPK signalling pathway (total = 46). (A) BlastP search results are listed for each protein. Including *A. millepora* genome homologues to caspases and Bcl2 members annotated in the *A. millepora* transcriptome (Moya *et al.* 2015). (B) Log<sub>2</sub>FC values of significantly expressed genes (FDR <0.05, log<sub>2</sub>FC > 0.05) in response to LPS challenge relative to the control (PBS) after 1 and 6 h. For samples under control (pH 8.1) and high *p*CO<sub>2</sub> (pH 7.8) conditions. Log<sub>2</sub>FC colour indicates up (red) and down (blue) regulated genes. (A)

| Function                  | Genome ID     | A. millepora<br>ID | Blast Hit                                                                                   | Length | e.Value           | % ID        |
|---------------------------|---------------|--------------------|---------------------------------------------------------------------------------------------|--------|-------------------|-------------|
|                           | 1.2.7139.m1   | Am_CBAH1           | Penicillin acylase; gi 129549 sp P12256.1 PAC_LYSSH                                         | 327    | 1.61E-45          | 31.19       |
|                           | 1.2.16853.m1* | Am_CBAH2           | Uncharacterized protein YxeI; gi 254763363 sp P54948.2 YXEI_BACS                            | 316    | 1.51E-38          | 29.84       |
|                           | 1.2.13415.m1  | Am_CBAH3           | Choloyigiycine hydrolase; gi 1705662 sp P54965.3 CBH_CLOPE                                  | 321    | 7.90E-38          | 31.77       |
| Cholylglycine<br>hydrolaw | 1.2.13416.m1  | Am_CBAH4           | Choloylglycine hydrolase; gi 1705662 sp P54965.3 CBH_CLOPE                                  | 322    | 1.18E-42          | 34.16       |
| yai olase                 | 1.2.16857.m1  | Am_CBAH5           | Penicillin acylase; gi 129549 sp P12256.1 PAC_LYSSH                                         | 230    | 2.36E-31          | 33.48       |
|                           | 1.2.4576.m1   | Am_CBAH6           | Acid ceramidase; gi 239977071 sp A5A6P2.1 ASAH1_PANTR                                       | 367    | 5.20E-142         | 51.77       |
|                           | 1.2.7128.m1   | Am_CBAH7           | Choloylglycine hydrolase; gi 1705662 sp P54965.3 CBH_CLOPE                                  | 322    | 8.45E-42          | 31.05       |
|                           | 1.2.5972.m1   | Am_CTSK1           | hsa:1513_PKND_cathepsin_K                                                                   | 332    | 6.00E-101         | 52.71       |
| athepsins                 | 1.2.6471.m1   | Am_CTSK2           | hsa:1513_PKND_cathepsin_K                                                                   | 332    | 7.00E-111         | 50          |
|                           | 12.6472.m1    | Am_CTSK3           | hsa:1513_PKND_cathepsin_K                                                                   | 308    | 1.00E-104         | 50.97       |
| RAK                       | 1.2.8695.m1   | IRAK               | hsa:3654_IRAK1_pelle_interleukin-1_receptor-associated_kinase_1                             | 235    | 2.00E-18          | 31.91       |
|                           | 12.25424.m1   | Am_IRF1            | hsa:3665_IRF7_interferon_regulatory_factor_7                                                | 111    | 4.00E-12          | 37.84       |
|                           | 1.2.25425.m1  | Am_IRF2            | hsa: 3661_IRF3_interferon_regulatory_factor_3                                               | 115    | 4.00E-16          | 34.78       |
|                           | 1.2.9013.m1   | Am IRF3            | hsa:3663 IRF5 interferon regulatory factor 5                                                | 109    | 8.00E-22          | 42.2        |
| æ                         | 12.22788.m1   | Am_IRF4            | hsa: 3663_IRF5_interferon_regulatory_factor_5                                               | 111    | 1.00E-22          | 37.84       |
|                           | 1.2.22790.m1  | Am IRF5            | hsa:3663 IRF5 interferon regulatory factor 5                                                | 163    | 3.00E-20          | 30.06       |
|                           | 12.12173.m1   | Am IRF6            | hsa:3665 IRF7 interferon regulatory factor 7                                                | 103    | 2.00E-12          | 33.98       |
|                           | 12,21516m1    | Am IIN1            | bsa:3725 IUN AP1 c-Jun jun nmth-oncorene                                                    | 349    | 5.00E-45          | 361         |
| UN                        | 12.17406 m1   | Am IIN2            | hea-3725 HIN API c-lun iun proto-onorgene                                                   | 108    | 3 00F-32          | 59.33       |
| IF-kB                     | 1.2.3977.m1   | Am_Nf-kb           | hsa:4790_NFKB1_p50_nuclear_factor_of_kappa_light_polypeptide_gen<br>e enhancer in B-cells 1 | 913    | 0                 | 42.28       |
|                           | 1.2.8454.m1   | Am Caspase E       | hsa:841 CASP8 caspase 8 apoptosis-related cysteine peptidase                                | 272    | 1.00E-44          | 37.13       |
| aspases                   | 1.2.779.m1    | Am Caspase D       | Cluster0048640                                                                              | 349    | 0                 | 99.43       |
| 1                         | 1.2.12876.m1  | Am Caspase A       | Cluster010971                                                                               | 307    | 0                 | 97.72       |
|                           | 1.2.11925.m1  | Am BokB            | Cluster002778p                                                                              | 200    | 2.00E-103         | 82.5        |
|                           | 1.2.6211.m1   | Am BcIWD           | hsa:596 BCL2 B-cell CLL/lymphoma 2                                                          | 121    | 5.00E-25          | 36.36       |
|                           | 1.2.7664.m1   | Am Mcl1-like       | hsa:596 BCL2 PP1R50 B-cell CLL/lymohoma 2                                                   | 188    | 7.00E-19          | 27.66       |
|                           | 128813m1      | Am BelWB           | hea-596 BCL2 B-cell CLL//gmnhoma 2                                                          | 119    | 1 00E-22          | 38.66       |
| 247                       | 1 2 26503 m1  | Am Reliar          | hear S07 RCI 201 RCI 2 related protein A1                                                   | 132    | 2 00E 09          | 20.55       |
| -C12.                     | 1 2 7767 m1   |                    | Churcher011490                                                                              | 67     | 6 00F 39          | 09.41       |
|                           | 12.77071      | Am Bay             | Gusta 011700                                                                                | 03     | 7.00E-11          | 20.71       |
|                           | 12.7024.007-1 | AIII_DAX           |                                                                                             | 247    | 7.00E-11          | 37.70       |
|                           | 1.2.14607.11  | Am_DCIKAPIDU       |                                                                                             | 347    |                   | 99.71       |
|                           | 1.2.2124.m1   | Am_BokU            | LiusterU11056                                                                               | 240    | 4.00E-179         | 98.75       |
| nhibitor NFkB             | 1.2.11031.m1  | Am_IKBKB           | er_in_B-cells_kinase_beta                                                                   | 621    | 6.00E-132         | 39.45       |
| 9G-1                      | 1.2.2079.m1   | Am_RIG1            | hsa:23586_RIG-I_DEAD_(Asp-Glu-Ala-Asp)_box_polypeptide_58                                   | 364    | 2.00E-59          | 37.36       |
|                           | 1.2.16130.m1  | Am_RIG2            | hsa:23586_RIG-I_DEAD_{Asp-Glu-Ala-Asp}_box_polypeptide_58                                   | 723    | 1.00E-125         | 34.99       |
|                           | 1.2.11189.m1  | Am_COX1            | $hsa: 5743\_COX-2 prostagland in-endoperoxide\_synthase\_2$                                 | 127    | 6.00E-16          | 35.43       |
| <i>ox</i>                 | 12.3032.m1    | Am_COX2            | hsa:5743_COX-2prostaglandin-endoperoxide_synthase_2                                         | 328    | 1.00E-14          | 24 <i>3</i> |
|                           | 1.2.14349.m1  | Am_COX3            | hsa:5743_COX-2prostaglandin-endoperoxide_synthase_2                                         | 454    | 2.00E-21          | 26.43       |
| IAS                       | 1.2.11953.m1  | Am_PIAS            | hsa:51588_PIAS4_protein_inhibitor_of_activated_STAT_4                                       | 497    | 5.00E-115         | 41.05       |
|                           | 1.2.1698.m1   | Am_PLAU1           | hsa:5328_PLAU_plasminogen_activator_urokinase                                               | 252    | 2.00E-38          | 35.32       |
| 15AU                      | 1.2.1699.m1   | Am_PLAU2           | hsa:5328_PLAU_plasminogen_activator_urokinase                                               | 279    | 3.00E-44          | 35.13       |
| me                        | 1.2.3957.m1   | Am_C-FOS1          | hsa:2353_FOS_murine_osteosarcoma_viral_oncogene_homolog                                     | 64     | 3.00E-07          | 42.19       |
| -105                      | 1.2.13975.m1  | Am_C-FOS2          | hsa:2353_FOS_murine_osteosarcoma_viral_oncogene_homolog                                     | 111    | 3.00E-07          | 30.63       |
|                           | 1.2.21388.m1  | Am_dapk1           | dapk3_human_ame:_full=death-associated_protein_kinase_3                                     | 331    | 2.80E-44          | 54.00       |
|                           |               |                    |                                                                                             |        |                   |             |
| eath kinase               | 1.2.16753.m1  | Am_dapk2           | dapk3_human_ame:_full=death-associated_protein_kinase_3                                     | 320    | 3 <b>.50E-8</b> 4 | 66.60       |
|              |              |                     | Control  | (-11.0.4)           |          | High (A. (nH 7.9)   |                      |                     |          |  |
|--------------|--------------|---------------------|----------|---------------------|----------|---------------------|----------------------|---------------------|----------|--|
| Canana D     | A. millepora | -                   |          | (рн 8.1)            | L.       | -                   | High CO <sub>2</sub> | (pu 7.8)            | <b>L</b> |  |
| Genome ID    | D .          | 1                   | <u>п</u> | 0<br>1 EC           | <u>п</u> | 1                   | <u>п</u>             | 0                   | л<br>    |  |
| 4.3.74.30    | A (T) AVIA   | Log <sub>2</sub> FC | FDK      | LOg <sub>2</sub> FC | FDR      | Log <sub>2</sub> FC | FDK                  | LOg <sub>2</sub> FC | FDK      |  |
| 1.2.7139.001 | Am_CBAH1     | 3.85                | 5.40E-00 | -1.03               | 8.48E-15 | -1.95               | 9.928-12             | -1.84               | 8.02E-17 |  |
| 1.2.10853.m1 |              | 1.03                | 0.34E-03 | -0.30               | 2.08E-10 | 1.60                | 1 405 07             | 0.55                | 1465.02  |  |
| 1213415.001  |              | 0.91                | 0.196-03 | -1.01               | 1.275.07 | 1.60                | 1.496-07             | 0.55                | 1.405-02 |  |
| 1.2.13410.01 |              | 0.07                | 3.92E-02 | -0.91               | I.2/E-07 | 0.26                | 4.202-03             | 0.27                | 1.986-00 |  |
| 1.2.16857.01 |              | _                   | -        | -0.22               | 5.43E-02 | _                   | _                    | -0.15               | 4.246-03 |  |
| 1.2.4370.001 |              | _                   | -        | -                   | -        | _                   | -                    | -                   | -        |  |
| 1.2.7128.m1  |              | 0.42                | 4.075.02 | -                   | —        | - 0.10              | 4 495 02             | -                   | —        |  |
| 1.2.5972.001 |              | 0.45                | 4.076-02 | 0.05                | 7 605 02 | -0.19               | 4.405-02             | _                   | _        |  |
| 1.2.6471.m1  | Am_CISKZ     | _                   | =        | 0.05                | 7.09E-03 | _                   | -                    | -                   | -        |  |
| 1.26472m1    | Am_CISK3     | -                   | -        | _                   | _        | -                   | 1 205 02             | _                   | _        |  |
| 1.2.8695.m1  | IKAK         | -0.21               | 3.63E-02 | -                   | -        | -0.34               | 1.28E-02             | -                   | -        |  |
| 1.Z.Z5424.m1 | Am_IKF1      | -                   | -        | -0.30               | 2.61E-02 | 0.34                | 1.72E-02             | 0.47                | 1.59E-04 |  |
| 1.2.25425.m1 | Am_IKFZ      | -0.06               | 1.74E-02 | 0.34                | 3.11E-02 | 0.32                | 1.76E-02             | 0.18                | 4.58E-02 |  |
| 1.2.9013.m1  | Am_IRF3      | 0.16                | 2.78E-02 | -                   | -        | _                   | -                    | -                   | -        |  |
| 1.2.22788.m1 | Am_IRF4      | 0.05                | 1.82E-02 | -                   | -        | -                   | -                    | -                   | -        |  |
| 1.Z.ZZ790.m1 | Am_IRF5      | -                   | -        | -                   | -        | 0.06                | 6.31E-05             | 0.64                | 2.20E-07 |  |
| 1.2.12173.m1 | Am_IRF6      | -                   | -        | -                   | -        | -                   | -                    | -                   | -        |  |
| 1.2.21516.m1 |              | 0.30                | 4.04E-02 | _                   | _        | 0.22                | 1.50E-08             | -0.71               | 1.43E-06 |  |
| 1.2.17406.m1 | Am_JUNZ      | -                   | -        | -                   | -        | _                   | -                    | -0.55               | 1.69E-02 |  |
| 1.2.3977.m1  | Am_Nf-kb     | -                   | -        | -                   | -        | -                   | -                    | -                   | -        |  |
| 1.2.8454.m1  | Am_Caspase E | 0.41                | 1.54E-02 | _                   | _        | -0.27               | 2.09E-02             | -0.50               | 3.53E-04 |  |
| 1.2.779.m1   | Am_Caspase D | 0.46                | 2.09E-02 | -                   | -        | -0.16               | 1.47E-07             | -0.51               | 4.97E-04 |  |
| 1.2.12876.m1 | Am_Caspase A | -                   | -        | -0.09               | 4.09E-02 | -                   | -                    | -                   | -        |  |
| 1.2.11925.m1 | Am_BokB      | -                   | -        | -                   | -        | 0.11                | 3.74E-02             | -                   | -        |  |
| 1.2.6211.m1  | Am_BclWD     | -                   | -        | -                   | -        | 0.22                | 1.11E-06             | -0.35               | 2.12E-02 |  |
| 1.2.7664.m1  | Am_Mcl1-like | -                   | -        | -0.19               | 4.75E-02 | 0.08                | 1.12E-03             | -0.32               | 3.18E-02 |  |
| 1.2.8813.m1  | Am_BclWB     | -                   | -        | -                   | -        | -                   | -                    | -0.31               | 4.09E-02 |  |
| 1.2.26503.m1 | Am_BclWC     | -                   | -        | -                   | -        | -                   | -                    | -                   | -        |  |
| 1.2.7767.m1  | Am_BclWD     | 0.263               | 1.45E-02 | -0.271              | 5.17E-04 | -0.32               | 6.01E-05             | -0.604              | 2.66E-04 |  |
| 1.2.7024.m1  | Am_Bax       | -                   | -        | -0.24               | 3.59E-02 | -                   | -                    | -                   | -        |  |
| 1.2.14607.m1 | Am_BclRAMBO  | -                   | -        | -                   | -        | -0.276              | 3.23E-04             | -                   | -        |  |
| 1.2.2124.m1  | Am_BokC      | -                   | -        | -                   | -        | -                   | -                    | -                   | -        |  |
| 1.2.11031.m1 | Am_IKBKB     | -                   | -        | -0.09               | 4.52E-02 | -                   | -                    | 0.27                | 4.02E-04 |  |
| 1.2.2079.ш1  | Am_RIG1      | -0.10               | 2.49E-02 | -0.20               | 3.30E-02 |                     |                      | 0.40                | 3.00E-04 |  |
| 1.2.16130.m1 | Am_RIG2      | -                   | -        | -0.13               | 4.60E-03 | 0.13                | 4.11E-02             | 0.26                | 2.22E-03 |  |
| 1.2.11189.m1 | Am_COX1      | -                   | -        | -                   | -        | -0.25               | 9.40E-02             | -0.33               | 1.99E-02 |  |
| 1.2.3032.m1  | Am_COX2      | 0.15                | 2.07E-02 | -0.86               | 3.57E-06 | 0.49                | 6.18E-04             | -                   | -        |  |
| 1.2.14349.m1 | Am_COX3      | -                   | -        | -0.33               | 1.66E-02 | -0.20               | 4.33E-02             | -                   | _        |  |
| 1.2.11953.m1 | Am_PIAS      | 0.26                | 4.13E-02 | -                   | -        | -                   | -                    | -                   | -        |  |
| 1.2.1698.m1  | Am_PLAU1     | -                   | _        | _                   | _        | -0.07               | 2.34E-02             | 0.21                | 4.27E-02 |  |
| 1.2.1699.m1  | Am_PLAU2     | -                   | -        | -0.20               | 4.80E-03 | -                   | -                    | -                   | -        |  |
| 1.2.3957.m1  | Am_C-FOS1    | -                   | _        | 0.23                | 4.90E-02 | 0.32                | 3.36E-03             | -                   | _        |  |
| 1.2.13975.m1 | Am_C-FOS2    | -                   | _        | -                   | -        | -0.25               | 3.34E-02             | -                   | _        |  |
| 1.2.21388.m1 | Am_dapk1     | -0.45               | 6.10E-03 | 0.10                | 3.75E-03 | -                   | -                    | 0.31                | 5.91E-05 |  |
| 1.2.16753.m1 | Am_dapk2     | 0.96                | 2.99E-03 | -0.06               | 1.09E-02 | -0.10               | 1.58E-04             | -0.44               | 6.61E-03 |  |
| 1.2.14589.ш1 | Am_dyrk      | -0.17               | 4.14E-02 | -                   | -        | 0.23                | 1.20E-03             | -                   | _        |  |

\* Gene up-regulated under MDP challenge in *A. millepora* (Weiss *et al.* 2013) **(B)** 

Table S2.10 GO terms of the differentially expressed genes at 1 h post LPS challenge of A. *millepora* samples pre-exposed to high  $pCO_2$  conditions. FDR values were obtained from the Benjamini & Hochberg correction using BiNGO. Shaded terms (purple) are significantly overrepresented (FDR < 0.05).

| Up-regulated                                                            |               |                |          | Down-regulated                                                 |                   |                |          |
|-------------------------------------------------------------------------|---------------|----------------|----------|----------------------------------------------------------------|-------------------|----------------|----------|
| GO Biological processes                                                 | GO ID         | Total<br>genes | FDR      | GO Biological processes                                        | GO ID             | Total<br>genes | FDR      |
| bioluminescence                                                         | 8218          | 8              | 1.35E-05 | regulation of macromolecule biosynthetic process               | 10556             | 77             | 1.28E-05 |
| transcription regulator activity                                        | 30528         | 27             | 1.14E-03 | regulation of transcription, DNA-dependent                     | 6355              | 67             | 1.28E-05 |
| transcription factor activity                                           | 3700          | 22             | 2.05E-03 | sequence-specific DNA binding                                  | 43565             | 29             | 1.56E-05 |
| hatching gland development                                              | 48785         | 3              | 4.09E-02 | biological regulation                                          | 65007             | 189            | 1.66E-05 |
| DNA binding                                                             | 3677          | 33             | 4.59E-02 | regulation of RNA metabolic process                            | 51252             | 68             | 2.18E-05 |
| superoxide-generating NADPH oxidase activity                            | 16175         | 2              | 1.24E-01 | regulation of nitrogen compound metabolic process              | 51171             | 79             | 5.25E-05 |
| calcium-dependent phospholipase A2 activity                             | 47498         | 2              | 2.19E-01 | tissue development                                             | 9888              | 46             | 5.75E-05 |
| regulation of transcription, DNA-dependent                              | 6355          | 34             | 3.59E-01 | central nervous system development                             | 7417              | 29             | 6.32E-04 |
| signaling                                                               | 23052         | 52             | 3.78E-01 | negative regulation of cellular process                        | 48523             | 62             | 1.73E-03 |
| apoptotic nuclear change                                                | 30262         | 3              | 3.78E-01 | positive regulation of intracellular protein kinase<br>cascade | 10740             | 13             | 3.44E-03 |
| signaling pathway                                                       | 23033         | 38             | 3.78E-01 | regulation of developmental process                            | 50793             | 37             | 3.92E-03 |
| lipid metabolic process                                                 | 6629          | 16             | 3.78E-01 | G-protein coupled receptor activity                            | 4930              | 23             | 3.97E-03 |
| G-protein coupled receptor protein signaling pathway                    | 7186          | 11             | 3.78E-01 | regulation of signaling pathway                                | 35466             | 36             | 5.68E-03 |
| cerebral cortex GABAergic interneuron development                       | 21 <b>894</b> | 1              | 3.78E-01 | response to chemical stimulus                                  | 42221             | 50             | 7.81E-03 |
| regulation of macromolecule biosynthetic process                        | 10556         | 37             | 3.99E-01 | cell surface receptor linked signaling pathway                 | 7166              | 44             | 8.08E-03 |
| Wnt receptor signaling pathway                                          | 16055         | 5              | 4.18E-01 | negative regulation of apoptosis                               | 43066             | 17             | 9.64E-03 |
| regulation of nitrogen compound metabolic process                       | 51171         | 40             | 4.18E-01 | signal transducer activity                                     | 4871              | 44             | 1.01E-02 |
| cellular lipid metabolic process                                        | 44255         | 12             | 4.36E-01 | response to stimulus                                           | 508 <del>96</del> | 87             | 5.56E-02 |
| positive regulation of transcription from RNA<br>polymerase II promoter | 45944         | 10             | 4.40E-01 | caspase regulator activity                                     | 43028             | 3              | 5.56E-02 |
| response to stress                                                      | 6950          | 32             | 4.47E-01 | modulation by symbiont of host immune response                 | 52553             | 3              | 6.55E-02 |
| cell differentiation                                                    | 30154         | 35             | 4.47E-01 | response to interlenkin-1                                      | 70555             | 4              | 7.25E-02 |
|                                                                         |               |                |          | regulation of MAPKKK cascade                                   | 43408             | 10             | 7.82E-02 |
|                                                                         |               |                |          | response to stress                                             | 6950              | 49             | 9 53E-02 |

| negative regulation of apoptosis                     | 43066             | 17 | 9.64E-03 |
|------------------------------------------------------|-------------------|----|----------|
| signal transducer activity                           | 4871              | 44 | 1.01E-02 |
| response to stimulus                                 | 50896             | 87 | 5.56E-02 |
| caspase regulator activity                           | 43028             | 3  | 5.56E-02 |
| modulation by symbiont of host immune response       | 52553             | 3  | 6.55E-02 |
| response to interlenkin-1                            | 70555             | 4  | 7.25E-02 |
| regulation of MAPKKK cascade                         | 43408             | 10 | 7.82E-02 |
| response to stress                                   | 6950              | 49 | 9.53E-02 |
| positive regulation of apoptosis                     | 43065             | 9  | 1.04E-01 |
| regulation of protein kinase B signaling cascade     | 518 <del>96</del> | 4  | 1.07E-01 |
| response to abiotic stimulus                         | <del>96</del> 28  | 16 | 1.24E-01 |
| positive regulation of immune system process         | 2684              | 11 | 1.25E-01 |
| caspase inhibitor activity                           | 43027             | 2  | 1.42E-01 |
| G-protein coupled receptor protein signaling pathway | 7186              | 15 | 1.71E-01 |
| regulation of immune response                        | 50776             | 10 | 2.09E-01 |

**Table S2.11** Differentially expressed genes (FDR <0.01, log2FC > 0.05) after 1 h post LPS challenge of samples under control and high  $pCO_2$  conditions.  $Log_2FC$  colour indicates up (red) and down (blue) regulated genes.

|               |                                                                              | :                   | 1h                               |
|---------------|------------------------------------------------------------------------------|---------------------|----------------------------------|
| Genome ID     | Blast Hit                                                                    | Control<br>(pH 8.1) | High CO <sub>2</sub><br>(pH 7.8) |
| 12.884.m1     | DAO_D-Amino-Acid Oxidase                                                     | 3.65                | -1.02                            |
| 1.2.16616.m1  | ZN363_p53-Induced Ring-H2 Protein                                            | 2.57                | -0.26                            |
| 1.2.6508.m1   | NPC2_Niemann-Pick Disease Type C2                                            | 1.88                | -0.62                            |
| 1.2.9914.m1   | AOSL_Arachidonate 8-Lipoxygenase                                             | 1.69                | -0.90                            |
| 1.2.25722.m1  | NAS15_Zinc Metalloproteinase nas-15                                          | 1.64                | -0.23                            |
| 1.2.9411.m1   | GUNE_Endoglucanase                                                           | 1.61                | -0.25                            |
| 1.2.3857.m1   | RIT 1_GTP-Binding Protein RIT 1                                              | 1.53                | -0.35                            |
| 1.2.1111.m1   | TRPC4_Transient Receptor Potential Channel 4                                 | 1.53                | -0.82                            |
| 1.2.168.m1    | OLM2a_Olfactomedin-Like Protein 2A                                           | 1.49                | -1.60                            |
| 1.2.6008.m1   | ZN106_Zinc Finger Protein 106                                                | 1.27                | -0.67                            |
| 1.2.24581.m1  | APKV1_Retroviral-Like Aspartic Protease 1                                    | 1.27                | -0.17                            |
| 1.2.19840.m1  | CBX8_Chromobox Homolog 8                                                     | 1.25                | -1.05                            |
| 1.2.16253.m1  | WNT8b_Wingless-Type MMTV Integration Site Family, Member 8B                  | 1.15                | -0.36                            |
| 12.999.m1     | RGF10 Fibroblast Growth Factor 10                                            | 1.07                | -1.00                            |
| 1.2.16853.m1  | PAC Penicillin Acylase                                                       | 1.03                | -0.03                            |
| 1.2.4364.m1   | TLIA Tolloid-Like 1                                                          | 1.03                | -0.42                            |
| 12.2898.m1    | TRAF6 TNF Recentur-Associated Factor 6                                       | 1.02                | -0.63                            |
| 172891m1      | TRAF7 TNF Recentur-Associated Factor 7                                       | 1.00                | -0.48                            |
| 17 17363 m1   | CDH Ghutamata Galaximaanasa Mitnchandrial                                    | 0.98                | -0.31                            |
| 1216753 m1    | DADK3 Dooth Accordated Protoin Kingen 3                                      | 0.90                | 0.10                             |
| 1210/35111    | CNTN2 Contestin 2                                                            | 0.90                | -0.10                            |
| 13 2223       | CONTRACTOR 2                                                                 | 0.91                | -0.51                            |
| 124478-4      | SSURZ_SSURZ ROMONO                                                           | 0.90                | -0.57                            |
| 4.2.22270-4   | CODE C. J. CNR J. J. J. C.               | 0.69                | -0.90                            |
| 1.2.22.360.ml | GBPC_Cyclic GMP-binding protein C                                            | 0.88                | -0.14                            |
| 1.2.14002.001 | MALKDI_MAM and LDL Receptor class A bomain containing I                      | 0.87                | -0.92                            |
| LZ//34.ml     | SOA9_SKT (Sex Determining Region 1)-Box9                                     | 0.86                | -0.12                            |
| 1Z133Zm1      | EGEN I_HYPOXIA-INDUCIDIE FACIOF PTOLYI HYDROXYLASE Z                         | 0.85                | -0.52                            |
| 1.2.14080.m1  | ECE2_Endothelin Converting Enzyme 2                                          | 0.84                | -0.51                            |
| 1.2.13251.ml  | PCK2_Phosphoenolpyruvate Carboxykinase                                       | 0.83                | -0.25                            |
| 12.18947.m1   | RGFR3_Fibroblast Growth Factor Receptor 3                                    | 0.82                | -0.08                            |
| 1.2.15486.ml  | SPTC3_Serine Palmitoyitransferase 3                                          | 0.82                | -0.35                            |
| 12.25219.m1   | NUSM_NADH Dehydrogenase Subunit 5                                            | 0.80                | -1.10                            |
| 12.6253.m1    | NLK_Nemo-Like Kinase                                                         | 0.79                | -0.25                            |
| 1.2.2501.m1   | TRIM71_Tripartite Motif Containing, E3 Ubiquitin-Orotein Ligase              | 0.79                | -0.18                            |
| 1.2_5368.m1   | SPRY2_Sprouty Homolog 2                                                      | 0.78                | -0.20                            |
| 1.2.4311.m1   | GP2_Pancreatic Zymogen Granule Membrane Protein GP-2                         | 0.78                | -0.31                            |
| 1.2.15857.m1  | CRYP17_Cytochrome p450-c17                                                   | 0.77                | -0.11                            |
| 1.2.299.m1    | AR1_NADPH-Dependent Aldehyde Reductase                                       | 0.77                | -0.27                            |
| 1.2.10529.m1  | DOT 1L_Lysine n-Methyltransferase 4                                          | 0.74                | -0.36                            |
| 1.2.13654.m1  | CALM_Calmodulin                                                              | 0.73                | -0.84                            |
| 1.2.8976.m1   | 2NYND19_Zinc Finger NYND Domain-Containing 19                                | 0.73                | -0.06                            |
| 12.6172.m1    | HTR4_5-Hydroxytryptamine (Serotonin) Receptor 4                              | 0.70                | -0.28                            |
| 1.2.22505.m1  | SNAD4_Nothers Against Decapentaplegic Homolog 4                              | 0.68                | -0.44                            |
| 1.2.17251.m1  | STRADA_STE20-Related Kinase Adapter Protein Alpha                            | 0.68                | -0.69                            |
| 1.2.25218.m1  | COX1_Cytochrome C Oxidase Subunit I                                          | 0.62                | -1.48                            |
| 12.3888.m1    | MBNL3_Muscleblind-Like Protein 3                                             | 0.62                | -0.12                            |
| 1.2.12494.m1  | ALDH4A1_Delta-1-Pyrroline-5-Carboxylate Mitochondrial                        | 0.62                | -0.25                            |
| 1.2.16354.m1  | INF2_Inverted Formin-2                                                       | 0.60                | -0.41                            |
| 12.9806.m1    | ELK1_ETS Domain-containing protein elk-1                                     | 0.57                | -0.67                            |
| 1.2.21239.m1  | ADAMTS2_Procollagen I N-Proteinase                                           | 0.56                | -0.33                            |
| 1.2.4919.m1   | MOXD2P_DBH-Like Monooxygenase Protein 2                                      | 0.54                | -0.43                            |
| 1.2.21427.m1  | SLC6A13_Solute Carrier Family 6 (Neurotransmitter, GABA).                    | 0.54                | -0.28                            |
| 176867        | Member 13                                                                    | 0.54                | -0.10                            |
| 173937-1      | FIV6 Transcription Easter FIV6                                               | 0.54                | -0.10                            |
| 1 2 17027 1   | ni voji i mistri ploti pator fi vo<br>DEV/7 Transfina Dantaja Vincea I i - 7 | 0.53                | -0.23                            |
| 121/02/.MI    | r i s./_i yi usine-rruen sinase-lake /                                       | 0.53                | -0.01                            |
| 1214041.ml    |                                                                              | 0.52                | -0.05                            |
| 1.2.2028.m1   | SUMM_Amiloride-Sensitive Sodium Channel Subunit Beta-2                       | 0.50                | -0.38                            |
| 1.2.9195.m1   | HKHZ_Histamine HZ Keceptor                                                   | 0.49                | -0.07                            |
| 1.2.12594.m1  | FOXL1_Forkhead Box Protein L1                                                | 0.46                | -0.45                            |

| 1.2.11672.m1  | TLL1_Tolloid-Like Protein 1                                     | 0.43  | -0.17 |
|---------------|-----------------------------------------------------------------|-------|-------|
| 1.2.7885.m1   | AGTX_Alanine-Glyoxylate Aminotransferase                        | 0.39  | -0.20 |
| 1.2.821.m1    | TBX1_T-Box Transcription Factor TBX1                            | 0.38  | -0.10 |
| 1.2.12675.m1  | ABCF2_ATP-Binding Cassette Sub-Family F Member 2                | 0.36  | -0.24 |
| 1.2.11518.m1  | AQP3_Aquaporin 3                                                | 0.35  | -0.24 |
| 1.2.17245.m1  | MRC1_Mannose Receptor, C Type 1                                 | 0.31  | -0.37 |
| 1.2.21120.m1  | CTRC_Chymotrypsin C                                             | 0.29  | -0.73 |
| 1.2.25371.m1  | PNLIPRP2_Pancreatic Lipase-Related Protein 2                    | 0.24  | -0.33 |
| 1.2.2434.m1   | TLR2_Toll-Like Receptor 2                                       | 0.20  | -0.43 |
| 1.2.545.m1    | FZD8_Frizzled-8                                                 | 0.14  | -0.51 |
| 1.2.10850.m1  | TACR1_Tachykinin Receptor 1                                     | 0.09  | -1.48 |
| 1.2.6992m1    | CAT_Catalase                                                    | 0.05  | -0.28 |
| 1.2.20887.m1  | CUBN_Cubilin                                                    | -0.06 | 0.66  |
| 1.2.25845.m1  | PNPO_Pyridoxine 5-Phosphate Oxidase                             | -0.09 | 0.60  |
| 1.2.3216m1    | PLA2G4A_Cytosolic Phospholipase A2                              | -0.10 | 0.14  |
| 1.2.1794.m1   | ADAM22_Metalloproteinase-Disintegrin ADAM22                     | -0.12 | 0.11  |
| 1 2 12662 1   | SLC2A8_Solute Carrier Family (Facilitated Glucose Transporter)  | 0.12  | 1 5 2 |
| 1.2.13003.001 | Member 8                                                        | -0.15 | 1.55  |
| 1.2.10762.m1  | TRAF3_TNF Receptor-Associated Factor 3                          | -0.16 | 0.07  |
| 1.2.12306.m1  | ADGRD1_Adhesion G-Protein Coupled Receptor D1                   | -0.20 | 0.28  |
| 1.2.10230.m1  | PSD3_Phosphatidylserine Decarboxylase Proenzyme 3               | -0.21 | 0.10  |
| 1.2.8410.m1   | FKZB_Secreted Frizzled-Related Protein 3                        | -0.23 | 0.57  |
| 1.2.14857.m1  | TRIM71_Tripartite Motif Containing, E3 Ubiquitin-Orotein Ligase | -0.24 | 0.12  |
| 1.2.9606.m1   | NOTUM_Palmitoleoyl-Protein Carboxylesterase NOTUM1A             | -0.29 | 0.54  |
| 1.2.14234.m1  | ADAM22_Metalloproteinase-Disintegrin ADAM22                     | -0.31 | 0.06  |
| 1.2.4226m1    | SMPD2_Shingomyelin Phospholipase 2                              | -0.32 | 0.03  |
| 1.2.17015.m1  | ANPEP_Aminopeptidase A                                          | -0.34 | 0.19  |
| 1.2.22673.m1  | MRC2_Mannose Receptor, C Type 2                                 | -0.47 | 0.74  |
| 1.2.22051.m1  | KOZA_Homeobox Protein Koza                                      | -0.51 | 0.44  |
| 1.2.5412m1    | ANX13_Annexin A13                                               | -0.55 | 0.30  |
| 1.2.21557.m1  | GFPL_GFP-Like Fluorescent Chromoprotein AMFP486                 | -0.57 | 0.04  |
| 1.2.9802.m1   | ETS-Related Transcription Factor ELF-1                          | -0.58 | 0.29  |
| 1.2.16980.m1  | CA_Carbonic Anhydrase                                           | -0.58 | 0.29  |
| 1.2.9809.m1   | ETS-Related Transcription Factor ELF-1                          | -1.01 | 0.10  |
| 1.2.22452.m1  | Acyl-CoA Desaturase                                             | -1.80 | 0.36  |
| 1.2.8189.m1   | RIT1_GTP-Binding Protein RIT1                                   | -0.18 | -0.05 |
| 1.2.8560.m1   | MRC2_Mannose Receptor, C Type 2                                 | -0.25 | -0.04 |
| 1.2.5952m1    | ADKB2_Beta-2 Adrenergic Receptor                                | -0.29 | -0.11 |
| 1.2.26031.m1  | TLR2_Toll-Like Receptor 2                                       | -0.35 | -0.12 |
| 1.2.22453.m1  | SCD5_Stearoyl-CoA Desaturase 5                                  | -1.92 | -0.05 |
| 1.2.13093.m1  | MMP7_Matrix Metalloproteinase-7                                 | 1.18  | 0.07  |
| 1.2.21562.m1  | GFPL_GFP-Like Fluorescent Chromoprotein AMFP486                 | 1.07  | 2.85  |
| 1.2.5134.m1   | IPHN3_Latrophilin-3                                             | 1.07  | 0.02  |
| 1.2.8762m1    | NAS14_Zinc Metalloproteinase nNAS-14                            | 1.00  | 0.31  |
| 1.2.15012.m1  | OX1R_orexin receptor type 1                                     | 0.97  | 0.29  |
| 1.2.13415.m1  |                                                                 | 0.91  | 1.60  |
| 1.2.5767.m1   | CAMK2A_Calcium/Calmodulin-Dependent Protein Kinase II Alpha     | 0.78  | 0.05  |
| 1.2.4072m1    | Fill_skeletal muscle lim-protein 3                              | 0.70  | 0.05  |
| 1.2.20514.m1  | NPFF2_Neuropeptide FF Receptor 2                                | 0.67  | 0.06  |
| 1.2.10514.m1  | FGFR_Fibroblast Growth Factor Receptor                          | 0.63  | 0.29  |
| 1.2.18951.m1  | FGFR3_Fibroblast Growth Factor Receptor 3                       | 0.60  | 0.15  |
| 1.2.11510.m1  | HNMI_Histamine H-Methyltransferase                              | 0.59  | 1.72  |
| 1.2.14044.m1  | UP1/AL_Cytochrome P450 1/A1                                     | 0.58  | 0.19  |
| 1.205/4.m1    |                                                                 | 0.57  | 0.64  |
| 1.2.3017.m1   |                                                                 | 0.54  | 0.17  |
| 1.2.4075.m1   | GP157_G-Protein Coupled Receptor 157                            | 0.54  | 0.33  |
| 1.2.19257.m1  | HSP68_Heat Shock Protein 68                                     | 0.39  | 0.82  |
| 1.2.6070.m1   | HSP12_Heat Shock Protein                                        | 0.37  | 0.50  |
| 1.2.13081.m1  | Dix 52_Spinngohpud Deita -Desaturase C4-Hydroxylase             | 0.12  | 0.12  |
| 1.2.21453.m1  | CTHR1_Collagen Triple Helix Repeat-Containing 1                 | 0.11  | 0.11  |
| 1.2.7210.m1   | CYP3A4_Cytochrome p450 3A4                                      | 0.08  | 0.45  |





**Figure S2.1.**  $pCO_2$  (µatm) values from control (green) and high  $pCO_2$  (blue) conditions in the aquaria during the course of the experiment. Each point represents an individual measurement from the control (total measurements =27) and treatment (total measurements =28) aquaria.



**Figure S2.2** Venn diagrams of the of the differentially expressed genes (FDR <0.01) in response to LPS challenge after 1 and 6 h on the coral *A. millepora*. (A) Indicate the total number of differentially expressed genes per time point and subset of shared genes between them. (B) Show the total up (red) and down (blue)-regulated genes after 1 and 6 h respectively, including a subset of shared genes.



**Figure S2.3** Venn diagrams of the differentially expressed genes (FDR <0.01) in response to LPS challenge after 1 h under control (pH 8.1) and high  $pCO_2$  conditions (pH 7.8) on the coral *A. millepora*. (A) Indicates the total number of differentially expressed genes under control and treatment conditions and a subset of shared genes between them. (B) The total up (red) and down (blue)-regulated genes under control and high  $pCO_2$  conditions respectively, including a subset of shared genes.

# **Chapter 3**

Transcriptomic analysis reveals protein homeostasis breakdown in the coral *Acropora millepora* during hypo-saline stress

#### **3.1. Introduction**

Coral reefs are amongst the diverse and complex ecosystems and, as well as their biological significance, are of enormous social and economical importance (Moberg & Folke 1999). However, coral reefs are experiencing long-term decline on a global scale due to overfishing, pollution, and climate change (Bellwood et al. 2004; De'ath et al. 2012). Climate change is likely to be an increasingly significant cause of coral decline (Cantin *et al.* 2010). Climate change effects include not only thermal stress and ocean acidification, but also increases in the frequency and intensity of tropical storms and cyclones which would expose coral reefs to more extreme and sudden salinity variations (Baker et al. 2008; Durack et al. 2012; Xie et al. 2010). These conditions affect the Great Barrier Reef (GBR), where rain associated with tropical cyclones can lower the salinity of surface waters significantly (up to 7-10 PSU) (Van Woesik et al. 1995), with hypo-saline conditions sometimes prevailing for weeks (Devlin et al. 1998). Although the impacts of heavy rainfall can be correlated with coral decline on the GBR (Butler et al. 2015), the physiological effects of hypo-saline stress have not been thoroughly investigated. A few studies have described loss of Symbiodinium and coral mortality following hypo-saline stress events (Berkelmans et al. 2012; Downs et al. 2009; Kerswell & Jones 2003), but no data are available on the molecular response of corals during these events.

Like many other marine invertebrates, corals are considered to be osmoconformers – their internal environment is near isotonic with the external environment – but can tolerate a relatively narrow range of salinity (i.e. they are stenohaline). Our current understanding of osmoregulation processes in corals is largely derived from other marine invertebrates such as sea anemones and bivalves; in these organisms, small organic molecules and inorganic ions are used to prevent osmotic lysis (Deaton & Hoffman 1988; Pierce & Warren 2001). These molecules, known as osmolytes, include free amino acids (FAAs), FAA derivates (taurine, glycine betaine) and other methyl-ammonium compounds such as

dimethylsulfoniopropionate (DMSP) (Hochachka & Somero 2002; Pierce 1982). In many cases, organisms use a variety of osmolytes and related species may use quite different mechanisms. For example, the sea anemone *Metridium senile*, and the marine sponges *Halichondria okadai* and *H. japonica* exhibit a general decrease of their FAA content during hypo-osmotic stress, whereas FAA content appears to increase in the coral *Acropora aspera* under these conditions (Cowlin 2012; Deaton & Hoffman 1988; Shinagawa *et al.* 1992). Therefore, decreases in specific candidate osmolytes during reduced salinity events may occur.

Other physiological effects are to be expected in both corals and their symbionts when adult corals are forced to adjust to osmotic stress, including increased expression of genes involved in responses to oxidative stress and heat shock proteins. These categories of genes respond to other environmental stressors, such as temperature and CO<sub>2</sub> increase (Barshis *et al.* 2013; Moya *et al.* 2015), and are likely to be part of a general stress response system. Whereas the literature for corals is very limited, more comprehensive data are available on the molecular responses of other marine invertebrates to hypo-osmotic stress (Lockwood & Somero 2011; Tomanek & Zuzow 2010). In these organisms, responses include increases in proteolysis, increased levels of oxidative stress proteins, and changes in expression of membrane transporter proteins, although closely related species have sometimes been shown to respond differently (Lockwood *et al.* 2010).

In the present study, the transcriptomic response of the model coral *Acropora millepora* to hypo-saline conditions was investigated. Through the availability of a whole genome assembly and a comprehensive set of protein predictions for this organism, it is now possible to compare the response of the coral to those of other marine invertebrates, and to tease apart specific and general responses of the coral to different environmental stressors (Barshis *et al.* 2013; Lockwood & Somero 2011; Moya *et al.* 2015). It is also possible to

compare the response between aposymbiotic juveniles (devoid of any photosynthetic symbionts) and adults corals, in order to investigate the coral animal response to environmental stress without the influence of its photosynthetic partner (Davy *et al.* 2012). Here we exposed both adult colonies of *Acropora millepora* and juveniles, to hypo-saline conditions mimicking those experienced in extreme weather events (25 PSU for the adults and 28 PSU for the juveniles). This is the first study to comprehensively describe the molecular response of a coral to salinity stress, and identifies both specific and general components of the response of *A. millepora* to this environmental stress.

#### 3.2. Materials and Methods

#### 3.2.1. Coral salinity stress experiment

Five Acropora millepora colonies were collected from Orpheus Island, Queensland, Australia (18°39'52. 43"S, 146°29'42.38"E) in June 2013 and transferred to the Australian Institute of Marine Science's National Sea Simulator (SeaSim) facility where the colonies were acclimated for 14 days in outdoor aquaria at ~27 °C. Each colony was fragmented into 25 nubbins (~6 cm) that were then randomly distributed across three 50 l tanks. The tanks were linked to a computer controlled flow-through system supplying 0.04  $\mu$  filtered seawater (FSW) maintained at 25.7 °C (±0.6 °C) and an ambient salinity of 35 PSU. UV-filtered lights were mounted above each tank and nubbins were exposed to an intensity of 250  $\mu$ E over a 12:12 h light/dark cycle (type of lights: 400W metal halide lamps, BLV). The nubbins were acclimated in this system for a further 19 days to allow recovery. At the beginning of the experiment the flow was stopped to ensure no water exchange and tanks were oxygenated via a pump (Tunze 6015). The nubbins were subsequently exposed to one of three salinity regimes for 24 h: ambient/control salinity of 35 PSU (n = 81) for the duration of the experiment, low salinity of 25 PSU (n = 68) or high salinity of 40 PSU (n = 71). The 25 PSU FSW was prepared by diluting 700 ml of 35 PSU FSW with 300 ml reverse-osmosis water while the 40 PSU FSW was prepared by adding 11 g of Red Sea Coral Pro Salt (Red Sea

Aquatics Ltd, Houston, TX) to 1 L of 35 PSU FSW. The temperature during the treatment period was maintained at 25.9±0.7°C. Salinity was monitored using a water quality meter (TPS 90FL, ThermoFisher). Coral nubbins (n = 2 per colony) were sampled at three time points for RNA analysis: prior to the salinity change, and after 1 and 24 h post the salinity change. Nubbins for RNA analysis were snap frozen in liquid nitrogen and stored at -80 °C.

#### 3.2.2. Juvenile coral salinity stress experiment

 For the experiment on coral juveniles, Acropora millepora colonies were collected

 from Trunk Reef, GBR, Australia (18°22'15.10"S/ 146°48'27.82"E) and transferred to the

 National Sea Simulator (SeaSim) facility prior to the predicted spawning event in November

 2013. Colonies were individually placed in 70 l tanks with 0.2
 Im of filtered :

 After spawning, coral larvae were raised as described in Tebben et al. (2011) and Raina et al.
 (2013). At 13 days post-fertilization, larvae were collected using a 1 mm mesh net, washed

 three times in 0.2 µm FSW and then settled in (sterile) 6-well plates (8 plates per species, 40
 larvae per well; each well filled with 40 ml of ambient salinity (35 PSU) 0.2-µm FSW) using a

 cue (5 µL) derived from crustose coralline algae (CCA; see Siboni (2014)). Throughout the
 incubation phase, the plates were maintained in the dark at 26.3 °C (±0.01) and the FSW was

 changed every second day. Four days post-settlement (T0), plates were separated into two
 groups: 16 plates were maintained at 35 PSU (control salinity) while the water in the

 remaining 16 plates was exchanged for 28 PSU sea water (salinity stress treatment). Samples
 were collected for RNA after 24 (T24), and 48 h (T48).

#### 3.2.3. RNA extraction sequencing and gene expression analyses

Total RNA was extracted from the adult nubbins of 25 and 35 PSU treatments following the same methods described in Chapter 2 (section 2.2.3.). Coral juveniles were sampled by removing the water and adding 1.5 mL of RNA*later* (Ambion, cat# AM7021) simultaneously to each well and scraping the content with a sterile 200 µL plastic tip to

transfer the contents into a 2 mL tube and stored at -20 °C. Total RNA of the 24 juvenile samples was extracted using the RNAaqueous-Micro total RNA isolation kit (AM1931, AMBION). The quality and quantity of RNA preparations were determined using a Bioanalyzer (Agilent 2100 Bioanalyzer) using samples prepared following the Agilent RNA 6000 Nano Kit instructions (cat # 5067-1511).

RNAseq libraries (18 for the adults and 23 for the juveniles) were constructed using the NEB Next Ultra Directional RNA Library Prep Kit for Illumina (NEB, E7420S) following the manufacturers recommended protocol, and 100 bp paired-end sequence data obtained using a HiSeq 2000 at the Biomolecular Resource Facility (Australian National University). Reads were mapped onto the *Acropora millepora* genome (Fôret *et al.* in prep) using TopHat2 (Kim *et al.* 2013) to produce a count data gene expression matrix for subsequent analysis.

Data were analysed in DESeq2 package (Love *et al.* 2014) in R (R Core Team 2014) using a formula for differential gene expression that tests for the effects of salinity, and accounted for the colony type in the adult dataset. Log<sub>2</sub> fold changes (log<sub>2</sub>FC) in gene expression levels were obtained in DESeq2 by comparing control vs. salinity treatment of six different comparisons: (i) control vs. treatment at 1 h in the adults, (ii) control vs. treatment at 24 h in the adults, (iii) control vs. treatment at 1 and 24 h in the adults (iv) control vs. treatment at 24 h in the juveniles, (v) control vs. treatment at 48 h in the juveniles, and (vi) control vs. treatment at 24 and 48 h in the juveniles. False discovery rate (FDR) adjusted *p* values were controlled at 5% for each gene according to the methods of Benjamini and Hochberg (Benjamini & Hochberg 1995).

Statistically over-represented gene ontology (GO) categories were determined in BiNGO (Maere *et al.* 2005) in Cytoscape 3.1.1 (Smoot *et al.* 2011) by using the set of genes

that were differentially up- or down-regulated in each dataset (FDR < 0.01). These GO categories were used to search specific pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) by downloading pathway sequences (using *Homo sapiens* and *Nematostella vectensis* as references) and blasting these sequences against the *A. millepora* protein predictions. All the results are based on homology of the *A. millepora* protein predictions to a reference annotated proteins (e–val cut-off = 1e–4).

#### 3.3. Results

#### 3.3.1. Differential gene expression analyses

In adult coral samples, 5.5 - 10.2 million RNAseq reads were obtained for each treatment sampling time while 3.4 - 8.8 million reads were obtained for each juvenile coral sample. Principal component analysis (PCA) of the count matrix of the 26,622 *A. millepora* gene predictions revealed that in the case of adult corals, the colony (i.e. genotype) had a stronger effect on gene expression than did the salinity treatment, whereas in the case of juveniles, separation was determined primarily by treatment and time (Figure S3.1, Supporting information). After 1 h of salinity stress, 2,657 genes were differentially expressed (DEGs; FDR < 0.05) in the adults, increasing to 3,713 after 24 h of exposure (Figure S3.2, Supporting information). At that time, 3,462 genes were differentially expressed in the juveniles while sharing 38% of up-regulated genes (total number: 1707; FDR <0.05) and 31% of down-regulated genes (total number: 1755) with the adults (see Figure S3.3, Supporting information). This number decreased after 48 h of stress, with 1,485 genes differentially regulated in the juveniles (Figure S3.2, Supporting information).

GO analysis revealed that several categories were consistently down-regulated at 1 h and up-regulated at 24 h in the adults (Figure 3.1, Table S3.1, Supporting information): (i) a group of categories associated with protein homeostasis, including: endoplasmic reticulum (ER), ER lumen, proteasome complex, cell catabolism and oxidoreductase activity; and (ii) a

second group associated with amino acid (AA) and nitrogen metabolism (Table S3.1, Supporting information). Based on these results, specific pathways were annotated to analyse the coral transcriptomic response to hypo-saline stress.

**Figure 3.1** Heat map of over-represented (FDR >0.05) GO terms for 109 genes that were differentially expressed between the various salinity treatments (25 PSU for the adults and 28 PSU for the juveniles) and the corresponding controls. Values represent log<sub>2</sub>FC relative to the control for genes that are up (red) or down-regulated (blue). For values and gene IDs refer to Table S3.1, Supporting information.

| Adults 1 h | Adults 24 h | Juveniles 24 h | Juveniles 48 h |                                                                         |                               |
|------------|-------------|----------------|----------------|-------------------------------------------------------------------------|-------------------------------|
|            |             |                |                | Oligosaccharyltransferase                                               |                               |
|            |             |                |                | Ribosome-binding protein                                                |                               |
|            |             |                |                | EDEM1                                                                   |                               |
|            |             |                |                | ER lectin 1                                                             |                               |
|            |             |                |                | Alpha 1,3-glucosidase                                                   |                               |
|            |             |                |                | Translocon-associated<br>FB-Goldi intermediate compartment1             |                               |
|            |             |                |                | Sec13                                                                   |                               |
|            |             |                |                | Sec31b<br>ERdi6                                                         |                               |
|            |             |                |                | Calcium-transporting ATPase sarcoplasmic ER                             | ED                            |
|            |             |                |                | Rhomboid-related                                                        | CO: 0005782                   |
|            |             |                |                | Surfeit locus protein 4 homolog                                         | 60.0003785                    |
|            |             |                |                | Calnexin                                                                |                               |
|            |             |                |                | Dolichyl diphosphooligosaccharide<br>SARAF                              |                               |
|            |             |                |                | SIL1 Nucleotide Exchange Factor                                         |                               |
|            |             |                |                | Calreticulin precursor                                                  |                               |
|            |             |                |                | Hypoxia up-regulated protein 1<br>SAC1                                  |                               |
|            |             |                |                | Coatomer subunit beta                                                   |                               |
|            |             |                |                | EIF5A<br>Sec23                                                          |                               |
|            |             |                |                | Ras-related protein Rab-1A                                              |                               |
|            |             |                |                | ER jumen protein retaining                                              |                               |
|            |             |                |                | Calumenin<br>PPIB1                                                      |                               |
|            |             |                |                | ERdj3                                                                   | ER lumen                      |
|            |             |                |                | UGGT<br>Calumenin                                                       | GO: 0005788                   |
|            |             |                |                | BiP                                                                     |                               |
|            |             |                |                | Alpha7<br>Alpha6                                                        |                               |
|            |             |                |                | Alpha3<br>Alpha5                                                        | <b>D</b>                      |
|            |             |                |                | Alpha1                                                                  | Proteasome complex            |
|            |             |                |                | Rpn8<br>Rpn7                                                            | GO: 0000502                   |
|            |             |                |                | Rpn5                                                                    |                               |
|            |             |                |                | Rpn3<br>Ron2                                                            |                               |
|            |             |                |                | Rpt4                                                                    |                               |
|            |             |                |                | Betab<br>Rpn10                                                          |                               |
|            |             |                |                | E3 ubiquitin-protein Igase RNF146                                       | Cell and molecules catabolism |
|            |             |                |                | TCEB1                                                                   | GO: 0044265: 0044282          |
|            |             |                |                | Ubiquitin-protein ligase E3A<br>Adenosine deaminase-like                | 00.0077203,0077202            |
|            |             |                |                | Medium-chain specific acyl-CoA                                          |                               |
|            |             |                |                | Dihydroorotate dehydrogenase                                            |                               |
|            |             |                |                | Glyceraldehyde 3-phosphate dehydrogenase<br>Protein diaulfida insmorran |                               |
|            |             |                |                | ALDH3A2                                                                 |                               |
|            |             |                |                | 6-phosphogluconate dehydrogenase<br>Glutamate dehydrogenase             |                               |
|            |             |                |                | Dehydrogenase/reductase SDR                                             | Oxidoreductase activity       |
|            |             |                |                | ERp57                                                                   | GO: 0016491                   |
|            |             |                |                | Glutathione s-transferase                                               |                               |
|            |             |                |                | Thioredoxin reductase 3                                                 |                               |
|            |             |                |                | Succinate dehydrogenase<br>Alcohol dehydrogenase dass-3                 |                               |
|            |             |                |                | DBH-like monooxygenase 1                                                |                               |
|            |             |                |                | Catalase<br>Ceruloplasmin                                               |                               |
|            |             |                |                | Homogentisate dioxygenase                                               |                               |
|            |             |                |                | Phenylalanine hydroxlase                                                |                               |
|            |             |                |                | Cytochrome heme<br>GDP-I -fucose synthese                               |                               |
|            |             |                |                | Cytochrome P450                                                         | Oxidoreductase process        |
|            |             |                |                | Ulutathione peroxidase<br>NADH dehvdrogenase                            | GO: 0055114                   |
|            |             |                |                | Cytochrome b-c1 complex                                                 | Alexhelmetekelism             |
|            |             |                |                | Transaldolase-like                                                      | Alcohol metabolism            |
|            |             |                |                | NUDT1<br>Accession sunthetase                                           | GO: 0006066                   |
|            |             |                |                | Asparagine—tRNA cytoplasmic                                             |                               |
|            |             |                |                | AspartyI-tRNA synthetase<br>Ornithine aminotransferase                  | Amino acias metabolism        |
|            |             |                |                | BCAT                                                                    | GU: 0006519                   |
|            |             |                |                | i nreonine—IHNA cytoplasmic<br>Mago-nashi homolog                       |                               |
|            |             |                |                | Nuclease-sensitive element-binding                                      |                               |
|            |             |                |                | 60S ribosomal protein L23                                               |                               |
|            |             |                |                | Cyclin k<br>Cyclin J 2                                                  | Nitrogen metabolim            |
|            |             |                |                | Periodic tryptophan                                                     | GO: 0006807                   |
|            |             |                |                | Nucleolar protein 14<br>Proteasome activator complex                    |                               |
|            |             |                |                | Transcription factor BTF3                                               |                               |
|            |             |                |                | Transcription factor 7-like<br>Cytochrome c                             |                               |
|            |             |                |                | Prolyl endopeptidase                                                    | Serine peptidase, GO: 000823  |
|            |             |                |                | Lon proteas homolog                                                     | ATPase activity               |
|            |             |                |                | ATP-binding cassette sub-family B                                       | GO: 016921: 016903            |
|            |             |                |                |                                                                         |                               |
|            |             |                |                |                                                                         |                               |
|            | 1           |                |                |                                                                         |                               |

-1 0 1 Log2FC

#### 3.3.2. Proteolysis within the ER under hypo-saline conditions

Up-regulation of several genes involved in ER-associated degradation (ERAD, ko04141) and the ubiquitin-proteasome system (UPS) after 24 h of hypo-saline stress implied increased protein degradation activity. By contrast, many of the same genes were down-regulated under acute (1 h) salinity stress, suggesting protein homeostasis disruption (Figure 3.2; Table S3.2, Supporting information). The ER pathway involves several processes, including: protein folding and translocation into the ER lumen, degradation of misfolded proteins through the ERAD system and proteolysis through the UPS. Amongst the genes upregulated after 24 h were coral homologues of components of the system responsible for translocation into the ER lumen; the oligosaccharyl transferase (OST) and SEC61protein transport systems. The expression of genes involved in protein glycosylation - glucosidase II (GlcII) increased by 0.66 log<sub>2</sub>FC, and UDP-glucose/glycoprotein glucosyltransferase (UGGT) increased by  $0.59 \log_2 FC$  after 24 h. Moreover, luminal chaperones and co-chaperones were also up-regulated at 24 h, including the HSP70 family member GRP70, also known as binding immunoglobulin protein (BiP; 1.2.4351.m1; 1.3 log<sub>2</sub>FC at 24 h), along with the BiP cochaperones ERdj1, ERdj3 and ERdj6 (DnaJ Hsp40 family members; 1.2.7940.m1, 1.2.25530.m1, 1.2.21656.m1). Increased expression was also observed for members of the ERAD retrotranslocon complexes, including the endoplasmic reticulum lectin 1 (XTP3B, 1.2.21359.m1), heat shock protein 90kDa (GRP94, 1.2.15211.m1), translocating chainassociated membrane protein (TRAM, 1.2.11248.m1), and the translocon-associated protein (TRAP, 1.2.3165.m1), suggesting increased protein translocated from the ER to the cytosol (Araki & Nagata 2011). The enzyme involved in maintaining the ER oxidative state, disulfideisomerase (PDI, EC:5.3.4.1), was differentially expressed from a log<sub>2</sub>FC of -0.36 at 1 h to a 0.87 log<sub>2</sub>FC after 24 h of stress (Table S3.2, Supporting information). Interestingly the coral homologues of the ER oxidoreductase 1 (ERO1), known to interact with PDI, were not differentially expressed during this experiment.

Higher levels of expression of components of the ubiquitin-proteasome system (UPS) provide further evidence of increased proteolysis after 24 h of stress. Members of the three enzyme families involved in this system - the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and the ubiquitin ligases (E3) - were up-regulated. Amongst components of the 26S proteasome system, 19 genes were down-regulated after 1 h and 17 genes were up-regulated after 24 h (Figure 3.2; Table S3.2, Supporting information). These observations suggest a change from disruption of protein homeostasis after the initial salinity shock, to a state of increased protein breakdown after 24 h of stress.

#### 3.3.3. Unfolded protein response (UPR) system

Transcriptomic data imply increased activity of the UPR system after 1 and 24 h of hypo-saline stress (Figure 3.2; Table S3.2, Supporting information) (Darling & Cook 2014). The UPR system, which is activated by the accumulation of misfolded proteins within the ER, relies on three major transmembrane proteins involved in sensing stress: the serine/threonine-protein kinase/endoribonuclease IRE1 (IRE1), the eukaryotic translation initiation factor 2-alpha kinase (PERK), and the activating transcription factor 6 (ATF6). Coral homologues to IRE1 (0.30 log<sub>2</sub>FC), its interacting pro-apoptotic effector BAX (BAX; 0.41 log<sub>2</sub>FC), and their down-stream members were up-regulated after 1 h. Different from PERK (0.60 log<sub>2</sub>FC) and ATF6 (0.41 log<sub>2</sub>FC) that were up-regulated after 24 h (Figure 3.2) of stress.

**Figure 3.2** Differential expression of *A. millepora* homologues of components of the ER protein processing machinery (pathway 04141) after exposure of adult corals to 1 and 24 h of hypo-saline conditions. Colours represent genes (FDR< 0.05) that are up (red) or down-regulated (blue). The systems involved in ER protein processing and ER stress are indicated: glycosylation, ER associated degradation (ERAD), ubiquitin-proteasome system (UPS), and the unfolded protein response (UPR). A complete list of the genes involved in this pathway and log<sub>2</sub>FC values is provided as Table S3.2, Supporting information. Figure adapted from KEGG pathway database.



#### 3.3.4. The response of genes involved in oxidative stress and osmoregulation

Hypo-saline stress induces expression of antioxidant defences that are protective against the reactive oxygen species (ROS) generated by different environmental stressors in

corals and other organisms (Lesser 2006). Genes involved in the peroxisomal antioxidant system that showed increased expression after 24 h of hypo-saline stress include: two superoxide dismutases (SOD, by 0.41 and 0.43 log<sub>2</sub>FC), two catalases (CAT, by 0.49 and 1.44 log<sub>2</sub>FC), and seven glutathione S-transferases (GST, EC:2.5.1.18) (Table S3.3, Supporting information). The glutathione (GSH) redox system, comprising the enzymes glutathione peroxidase (GPx, EC 1.11.1.9) that oxidizes GSH to glutathione disulphide (GSSG), and glutathione reductase (GSR) that reduces GSSG back to glutathione, also plays an important role in protection against oxidative damage. During hypo-saline stress, the coral GSR homologue was up-regulated after 24 h, while the GPx a homologue was down-regulated after 1 and 24 h of stress by -0.37 and -1.08 log<sub>2</sub>FC respectively (Figure 3.3; Table S3.4, Supporting information), indicating a balance towards GSH reduction.

Osmotic stress involves changes in the cellular concentrations of many inorganic and organic molecules, and this was corroborated by altered expression of many genes associated with transport of ions or organic molecules, including several solute carrier (SLC) families, ATPases, voltage-gated K<sup>+</sup> channels, and voltage-dependant Ca<sup>2+</sup> channels (VDCC). After 1 h of salinity stress, three of the nine Na<sup>+</sup>/(Ca<sup>2+</sup>–K<sup>+</sup>) exchangers (SLC24) identified were upregulated, while four Na<sup>+</sup> and Cl<sup>-</sup> dependent transporters (SLC6) were down-regulated (Table S3.5, Supporting information). After 24 h of hypo-saline stress, eight SLC6 genes and three SLC24 genes were down-regulated. In the case of ATPases, five genes were down-regulated at the 1 h time point, whereas five were up-regulated after 24 h of stress. Amongst the ATPases, the relative expression of the sarco/endoplasmic reticulum Ca<sup>2+</sup> ATPase (SERCA; an ER-associated Ca<sup>2+</sup> influx channel) changed from -1.40 log<sub>2</sub>FC at 1 h to 1.63 log<sub>2</sub>FC after 24 h. Conversely, expression of inositol 1,4,5-trisphosphate receptors (IP3Rs), which are Ca<sup>2+</sup> efflux channel components, was down-regulated after 24 h (Figure 3.2, Table S3.2, Supporting information). In addition, three voltage-dependant Ca<sup>2+</sup> channels were not differentially expressed after 1 h, but down-regulated after 24 h.

#### 3.3.5. Glycine betaine and glutamate catabolism by hypo-saline stress

GO analysis revealed an over-representation of terms associated with AA metabolism, with a strong response of genes implicated in glycine betaine catabolism following osmotic stress (Figure 3.3, Table S3.4 Supporting information). Glycine betaine catabolism starts with the action of betaine-homocysteine *S*-methyltransferase (BHMT), which transfers a methyl group from glycine to homocysteine to produce dimethylglycine (DMG) and methionine. Two betaine-homocysteine *S*-methyltransferase (BHMT) homologues were up-regulated (by 2.5 and 5.43 log2FC) after 24 h of stress. The DMG produced by the BHMT reaction can be converted to glycine by two enzymes (DMGDH and SADH, Figure 3.3), homologues of both of which were up-regulated after 1 and 24 h of hypo-saline stress.

Hypo-saline stress also caused changes in the expression of genes involved in ammonia assimilation. The coral NADH-dependant glutamate dehydrogenase (GDH1), which catalyses the release of ammonia from glutamate, was up-regulated after 1 and 24 h of stress (log<sub>2</sub>FC of 0.47 and 2.54 respectively). Conversely, some other genes involved in ammonia assimilation - the NADPH-dependant GDH (GDH2), glutamine synthase (GS), and glutamate synthase (GOGAT) - were down-regulated (Figure 3.3; Table S3.4, Supporting information). This suggests that during hypo-osmotic stress, nitrogen is not stored as glutamine through GS, or as glutamate through GOGAT, but rather converted into ammonia through the action of GDH1. Genes involved in the L-arginine degradation pathway were also up-regulated in hypo osmotic stress, expression of both ornithine transaminase (OAT), and pyrroline-5carboxylate dehydrogenase (ALDH4A1) increasing (by 0.52 and 1.51 log<sub>2</sub>FC respectively) after 24 h (Figure 3.3; Table S3.4, Supporting Information).

**Figure 3.3** Expression of *A. millepora* homologues of genes involved in amino acid metabolism during hypo-osmotic stress in adult and juvenile corals. Colours represent up (red) and down-regulated (blue) genes (FDR<0.05) after 1 h (triangle) in the adults (A1) and 24 h (squares) in the adults (A24) and juveniles (J24). Table S3.3.4, Supporting information provides the complete list of genes involved in this pathway and details of expression levels.



Abbreviations: ANPEP, aminopeptidase; BADH, betaine-aldehyde dehydrogenase; BHMT, betaine-homocysteine methyltransferase; DMGDH, dimethylglycine dehydrogenase; GGT, gamma-glutamyltranspeptidase; GDH1, glutamate dehydrogenase (NADH); GDH2, glutamate dehydrogenase (NADPH); GNMT, glycine N-methyltransferase; GOGAT, glutamate synthase;

GPx, glutathione peroxidase; GS, glutamine synthetase; GSR, glutathione reductase; GST, glutathione S-transferase; MS, methionine synthase; MTHFR, methylenetetrahydrofolate reductase; OAT, ornithine--oxo-acid transaminase; PRODH, proline dehydrogenase; SARDH, sarcosine dehydrogenase; SHMT, serine hydroxymethyltransferase; TA, threonine aldolase.

#### 3.3.6. The responses of coral juveniles to hypo-saline stress

For a substantial number (1,191) of DEGs, the responses of adult and juvenile corals were similar after 24 h of stress (Figure S3.4, Supporting Information). For example, genes encoding proteasome subunits, components of the UPR system and involved in glycine betaine catabolism were up-regulated in both juveniles and adults at the 24 h time point (see above). Conversely, three important ER luminal chaperones (BiP, GRP94 and NEF) showed opposite expression trends in the two life stages, these being up-regulated in adults but down-regulated in juveniles (Table S3.2, Supplementary Information).

Of the four treatments studied, the prolonged (48 h) exposure of juveniles resulted in the lowest number (1,485, FDR<0.05) of differentially expressed genes. At the 48 h time point, expression levels of many of the genes that were differentially expressed at 24 h in juveniles had returned to control levels, suggesting that a degree of acclimation may have occurred. For example, at 48 h only two ubiquitin-proteasome system (UPS) subunits were differentially expressed, whereas the corresponding number at 24 h was ten (Table S3.2, Supporting information). A similar decrease was seen in the case of, E2 ubiquitin-conjugation enzymes - from 13 to three up-regulated members after 24 and 48 h respectively (Table S3.2, Supporting information). Whilst these results suggest the possibility of acclimation to hyposaline stress after 48 h, experiments with longer exposure times are needed to understand if this response is maintained.

#### 3.4. Discussion

Gene expression data revealed a strong response of the coral *A. millepora* to hyposaline stress exposure, with clear differences between acute salinity shock (1 h) and more prolonged (24 h) exposure in adult corals. Here we describe a group of genes that are part of a general response to stress in corals, and a second group that are known to response to osmotic stress in other organisms but were not previously described in corals. The first group includes antioxidant genes, and genes involved in protein homeostasis, comprising molecular chaperones, and components of the ER associated protein degradation (ERAD) and unfolded protein response (UPR) systems. The second group comprises genes involved in osmoregulation, including molecular transporters and enzymes of amino acid (AA) metabolism, particularly glycine betaine catabolism. Together, changes in the expression of these two groups of genes provide insights into the molecular basis of hypo-osmotic stress in corals and the changes involved in adjusting to this stress over time.

#### 3.4.1. The common response to stress in corals

Despite a lack of uniformity in experimental design and species used, comparisons between the responses of corals to different stressors are providing insights into the classes of genes, and sometimes the specific members of those classes, that are involved in adapting to different environmental stressors. For example, some components of the coral antioxidant repertoire (catalases, superoxide dismutases) respond not only to hypo-saline stress, but also to thermal and to elevated CO<sub>2</sub> stress, (Barshis *et al.* 2013; Downs *et al.* 2009; Moya *et al.* 2015) (Table 3.1). In contrast, thioredoxin and thioredoxin-reductase homologues, which are also part of the antioxidant repertoire, were differentially expressed in corals only under hypo-saline stress, as they also were in mussels (Table 3.1) (Lockwood *et al.* 2010).

A second group of genes involved in general stress responses are the HSP family. For some time, HSPs have been investigated in the context of responses of corals to thermal

stress (Leggat *et al.* 2011; Rodriguez Lanetty *et al.* 2009; Seveso *et al.* 2014), but the HSP repertoire has only recently been properly described in *A. millepora*, allowing comprehensive analyses of the response of this complex gene family to stress (Moya *et al.* 2015). Whereas multiple HSP90 and HSP70 variants are present in corals, and respond to a range of stressors (Barshis *et al.* 2013; Chow *et al.* 2009; Downs *et al.* 2009; Leggat *et al.* 2011), specific variants appear to respond to most or all types of stress. For example, Moya *et al.* (2015) identified a specific *A. millepora* HSP70 that also responded to high CO<sub>2</sub> and whose *A. hyacinthus* orthologue was involved in thermal tolerance (Barshis *et al.* 2013). Consistent with a role in he general stress response, this same HSP70 responded to hypo-saline conditions in the present study (1.2.19257.m1, 5.8 log<sub>2</sub>FC at 24 h, Table 3.1).

Of the HSPs associated with ER processes, the luminal chaperones glucose regulated protein 94 (GRP94; Figure 3.2, Table S3.2, Supporting information, 1.2.15211.m1), is of particular interest, as in other systems this calcium-binding protein plays a key role in facilitating recovery from ER stress by blocking apoptosis (Eletto et al. 2010). GRP94 expression was elevated after 24 h of salinity stress, and also responded to acute CO<sub>2</sub>, (Moya et al. 2015) and thermal stress in corals (Rodriguez Lanetty et al. 2009); note that the mussel (*M. galloprovinciales*) orthologue also responded to hypo-saline stress (Tomanek *et al.* 2012) (Table 3.1). In the present study, the ER-lumenal HSP70 BiP, which is involved in protein folding and is a component of the ERAD system (Araki & Nagata 2011) was up-regulated under hypo-saline conditions, and is also induced by challenge with bacteria (Brown et al. 2013) or lipopolysaccharide (LPS; Chapter 2). However, BiP was not differentially expressed under high  $CO_2$  stress (Moya *et al.* 2015), suggesting that it has a broad, but not universal, role in the coral stress response (Table 3.1). Although several studies have described the response of coral HSPs to stressors, differential expression of BiP co-chaperones under stress has only been documented in one previous study (Maor-Landaw et al. 2014). BiP has a range of functions, which are largely determined by its interaction of with different DnaJ/Hsp40 co-

chaperones, that modify its activity (Araki & Nagata 2011). In the present study, the BiP cochaperones ERdj1, ERdj3 and ERdj6 were all up-regulated in adult corals after 24 h under hypo-saline conditions (Table 3.1, Table S3.2, Supporting information). ERdj3 and ERdj6 are involved in the ERAD system, which also responds to thermal stress in the coral *S. pistillata*, and to hypo-saline stress in the mussel *M. galloprovinciales* (Downs *et al.* 2009; Maor-Landaw *et al.* 2014; Tomanek & Zuzow 2010; Tomanek *et al.* 2012).

Whereas down-regulation of components of the ERAD system was observed after the acute salinity treatment (1 h), components of the unfolded protein response (UPR) system were up-regulated at both the 1 and 24 h time points, suggesting that misfolded proteins accumulated as early as 1 h after the onset of osmotic stress. The activation of the UPR system can have two opposite outcomes: it can promote survival and resistance to ER stress and/or it can activate a cell death response (Darling & Cook 2014). For example, in mammals the endoribonuclease inositol-requiring enzyme–1 (IRE1) signalling protein can interact with the pro-apoptotic protein BAX, or it can activate c-JUN to promote cell survival (Darling & Cook 2014). Like its mammalian orthologue, coral BAX promotes cell death (Moya et al. 2016), but the extent of up-regulation of BAX under hypo-osmotic stress was small compared to that of the pro-survival protein, c-JUN, suggesting that the latter outcome might predominate during hypo-saline stress. Previous studies by Maor-Landaw et al. (2014) in S. pistillata found that PERK increased during temperature stress, and expression of c-JUN and MAPK7 homologues increased under hypo-saline stress in the mussel (Lockwood & Somero 2011). However, the present study is the first to document differential expression of the three main transmembrane proteins that regulate the UPR (BAX, IREI1, and PERK), and components of the corresponding downstream signalling pathways (Figure 3.2; Table S3.2 Supporting information).

**Table 3.1.** Comparison between data presented here on the transcriptomic response of the coral *A millipora* to hypo-saline conditions and published gene expression and proteomic studies in marine invertebrates.

Table 1. Comparison between genes that are differentially express (FDR< 0.05) in A. millepora adults under hypo-saline conditions and other published gene expression or proteomics data

Osmotic stress signalling

2999

*3.4.2. The specific response to hypo-saline stress in coral —osmoregulation and* 

transporters

As adjustments to hypo-saline conditions require cell volume regulation, transport of ions through membranes plays an important role in adjusting this osmotic potential, and is mediated by H<sup>+</sup> translocating ATPases, Ca<sup>2+</sup>-ATPases, secondary active transporters, and

channels (Hasegawa *et al.* 2000). While ion transport proteins have been extensively characterized in higher animals, fungi and plants (Jan & Jan 1997; Wang & Wu 2013), little is known about these genes families in cnidarians (but see Zoccola *et al.* (2015) and (2004)). When the results of the present study were compared with those of mussels under hyposaline stress, the expression of several specific transporters (MCT, Nacra5, and ATP1A1) showed similar trends, whereas for others (SLC6A5, SLC17A5, and KCNA, Table 3.1) the opposite response was observed. However, some of these apparent differences may be a consequence of the difficulty in identifying true orthologues across the deep evolutionary divide between molluscs and cnidarians (Table 3.1 and Table S3.5, Supporting information). In general, and as mentioned by Lockwoodand Somero (2011), the responses of these transporters reflect two opposite adaptive mechanisms to stress: first, moving ions across the membrane to stop cell swelling, and second, arresting the transport activities when solute concentrations inside the cell exceed requirements (Hochachka & Somero 2002; Pierce 1982). Some of the results presented here might be explained in terms of the operation of some opposing activities, but also highlight the complexity of the genes families involved.

Marine invertebrates adjust their osmotic concentration not only by inorganic ion fluxes, but also via organic osmolytes such as taurine or betaines. Glycine betaine is thought to be an important osmolyte in corals, constituting >90% of the organic solutes measured in *Fungia, Pocillopora, Montipora* and *Tubastrea* (Yancey *et al.* 2010). Increased transcription of genes involved in glycine betaine catabolism was observed in the present study, implying that degradation of glycine betaine occurred during hypo-osmotic stress (Figure 3.3, Table S3.4 Supporting information). Previous experiments on the effects of hypo-saline stress in the Pacific oyster *Crassostrea gigas* also found an increase in transcription of betainehomocysteine S-methyltransferase (BHMT), a key enzyme of glycine betaine catabolism (Zhang *et al.* 2015). Glycine betaine concentrations have been shown to decrease under hyposaline stress in the marine alga *Platymonas subcordiformis* (Dickson & Kirst 1986), consistent

with this compound acting as an osmoticum. In a range of marine invertebrates that includes the sea anemone *Metridium senile* and the bivalve *Noetia ponderosa* (Deaton & Hoffman 1988; Pierce & Warren 2001), free amino acid (FAA) levels also decrease in response to hypoosmotic stress. However, the limited body of work on FAA metabolism in corals is not consistent with this paradigm; the FAA pool in the coral *A. aspera* increased during hyposaline stress (Cowlin 2012). The data presented here suggest that AA catabolism increased under hypo-saline stress, leading to increased ammonia production (GDH up-regulated, Figure 3.3), but measurements of AA levels are needed to better understand osmolyte responses under hypo-saline stress.

#### 3.4.3. The response of adult coral vs. juveniles to hypo-saline stress

Whereas previous work on salinity stress has focused on adult corals, this is the first investigation to focus on both adult and juvenile corals; since these latter are aposymbiotic, the potential complication of the symbiotic dinoflagellate is removed. After 24 h of osmotic stress many aspects of the response were common between the adults and juveniles - for example, genes involved in adjusting cell volume (e.g., transporters, betaine catabolism). By contrast, the antioxidant system that was up-regulated in adults and largely unaffected by hypo-osmotic stress in juveniles (Table S3.5, Supporting information). This result could be explained by the need for symbiotic hosts to protect themselves against ROS produced by the symbiont leaking into the animal host (Tchernov *et al.* 2004).

In the present experiment, the expression of glutamate dehydrogenase (GDH1) was higher in adults compared to juveniles (2.54 compared to 0.24 log<sub>2</sub>FC), implying a higher rate of AA catabolism in the former. This could be explained by the complex nitrogen fluxes in the coral-dinoflagellate symbiosis, which is known to involve exchange of both ammonia and FAA between the two organisms (Davy *et al.* 2012). Consistent with this, under hypo-osmotic stress, a greater number of genes involved in proteolysis (e.g. proteasome subunits) were expressed in adult corals than in juveniles.

As noted above, in the case of juveniles, by the later time point (48 h), significantly fewer genes were differentially expressed than after 24 h of exposure to hypo-saline conditions. In particular, the return after 48 h to baseline levels of many of the genes implicated in proteolysis and osmoregulation suggests that a degree of acclimation had occurred. A precedent for this is provided by the work of Moya *et al.* (2015) on the response of *A. millepora* juveniles to elevated CO<sub>2</sub>, where acute (3 d) exposure to elevated CO<sub>2</sub> caused changes in the expression of many genes, after 9 d exposure, expression of most of those same genes had returned to baseline levels. It will be important to determine how corals respond to more prolonged exposure to hypo-saline conditions than those used here, and the physiological impacts of such treatments. Our results imply that juvenile corals may be able to cope with decreases in salinity during prolonged exposure to heavy rainfall, but experiments involving prolonged exposure, combined with physiological data, will be necessary to enable a better understanding of the response to hypo-saline stress.

#### **3.5. Conclusions**

Increases in the frequency and severity of heavy rainfall events are predicted for the next century, leading to corresponding increases in the exposure of adult and juvenile corals to hypo-saline conditions. The data presented here represent a starting point for understanding the molecular response of corals to hypo-saline conditions and highlight specific pathways as components of that response. As hypothesized, increases were observed in the expression of genes involved in proteolysis and oxidative stress, which are common responses to environmental stress. By contrast, the increased expression of a group of transporters appears to be a specific response to osmotic stress. To better understand the coral response, proteomics should be a focus of future work, and it is important that transcriptomic data are at some stage supplemented by physiological information.

# 3.6. Supporting information Tables

|                            | Adults                                        |                     | Juveniles           |                     | GO                  |                |                       |
|----------------------------|-----------------------------------------------|---------------------|---------------------|---------------------|---------------------|----------------|-----------------------|
| Genome ID                  | Protein ID                                    | 1 h                 | 24 h                | 24 h                | <b>48 h</b>         | number         | GO definition         |
|                            |                                               | log <sub>z</sub> FC | log <sub>z</sub> FC | log <sub>z</sub> FC | log <sub>z</sub> FC |                |                       |
| 1.2.21241.m1               | Oligosaccharyltransferase                     | -0.22               | 0.64                | 0.31                | 0.06                | 5783           | ER                    |
| 1.2.3165.m1                | Translocon                                    | -0.20               | 0.54                | 0.16                | 0.01                | 5783           | ER                    |
| 1.2.3250.m1                | Ribosome binding protein                      | -0.16               | 0.48                | 0.08                | 0.25                | 5783           | ER                    |
| 1.2.14249.m1               | Synaptobrevin                                 | 0.13                | 0.81                | 0.19                | -0.04               | 5783           | ER                    |
| 1.2.3114.m1                | EDEM1                                         | 0.03                | 0.74                | 0.21                | -0.06               | 5783           | ER                    |
| 1.2.21359.m1               | ER lectin 1                                   | 0.02                | 0.70                | -0.04               | -0.03               | 5783           | ER                    |
| 1.2.13517.m1               | bax-mediated apoptosis inhibitor              | 0.06                | 0.70                | -0.11               | -0.05               | 5783           | ER                    |
| 1.2.13846.m1               | Alpha 1,3-glucosidase                         | -0.17               | 0.66                | 0.06                | 0.20                | 5783           | ER                    |
| 1.2.20980.m1               | Translocon-associated                         | -0.18               | 0.56                | 0.00                | 0.10                | 5783           | ER                    |
| 1.2.12601.m1               | ER-Golgi intermediate compartment1            | -0.24               | 0.89                | -0.01               | 0.08                | 5783           | ER                    |
| 1.2.12868.m1               | Sec13                                         | -0.31               | 0.89                | 0.13                | -0.15               | 5783           | ER                    |
| 1.2.6181.m1                | Sec31b                                        | -0.27               | 0.62                | 0.25                | 0.25                | 5783           | ER                    |
| 1.2.21656.m1               | ERdj6                                         | -0.53               | 0.58                | 0.01                | 80.0                | 5783           | ER                    |
| 1.2.8202.m1                | Calcium-transporting AT Pase sarcoplasmic ER  | -0.49               | 0.71                | 0.14                | 0.48                | 5783           | ER                    |
| 1 2 1122 m1                | Cathensin X                                   | -0.53               | 0.68                | 0.01                | -0.06               | 5783           | ER                    |
| 12517 m1                   | Bhomboid-related                              | -0.63               | 0.76                | -0.11               | -0.16               | 5783           | ER                    |
| 1.2.517.m1                 | Surfait locus protein 4 homolog               | _0.01               | 0.56                | 0.11                | -0.09               | 5783           | FR                    |
| 1.2.127 5.m1               | Carti                                         | 0.01                | 8.47                | 0.05                | 0.07                | 5782           | FD                    |
| 1.2.11204.001              |                                               | -0.17               | 0.42                | -0.00               | -0.02               | 5705           | ER                    |
| 1.2.10515.ml               | Cainexin<br>Delialed diskombo olizoonaakarida | -0.10               | 0.35                | -0.19               | -0.04               | 3703           | ER                    |
| 1.2.11239.ml               | голспуларикърноондозастияние                  | -0.10               | 0.40                | -0.19               | -0.11               | 5765           | ER                    |
| 1.2.5524.m1                | SARAP                                         | 0.14                | 0.92                | -0.22               | -0.18               | 5783           | ER                    |
| 1.Z.10115.ml               | SIL1 Nucleoù de Exchange Factor               | 0.15                | 0.85                | -0.34               | -0.18               | 5783           | ER                    |
| 1.2.23785.m1               | Sulfatase 2                                   | -0.14               | 0.73                | 0.60                | 0.62                | 5783           | ER                    |
| 1.2.2683.m1                | Calreticulin precursor                        | -0.46               | 1.14                | -0.04               | 0.14                | 5783           | ER                    |
| 1.2.2424.m1                | Hypoxia up-regulated protein 1                | -0.64               | 0.90                | -0.23               | 0.14                | 5783           | ER                    |
| 1.2.2535.m1                | SAC1                                          | -0.45               | 0.09                | 0.05                | 0.12                | 5783           | ER                    |
| 1.2.6185.m1                | Coatomer subunit beta                         | -0.32               | 0.49                | 0.03                | 0.02                | 5783           | ER                    |
| 1.2.9574.m1                | EIFSA                                         | -0.26               | 0.38                | 0.07                | -0.09               | 5783           | ER                    |
| 1.2.5585.m1                | Sec23                                         | -0.34               | 0.37                | 0.03                | 0.12                | 5783           | ER                    |
| 1.2.22852.m1               | Ras-related protein Rab-1A                    | -0.32               | 0.22                | 0.02                | 0.01                | 5783           | ER                    |
| 1.2.9475.m1                | Transmembrane emp24                           | -0.58               | 0.15                | -0.09               | -0.10               | 5783           | ER                    |
| 1.2.13624.m1               | ER lumen protein retaining                    | -0.55               | 0.27                | -0.12               | -0.22               | 5783           | ER                    |
| 1.2.1974.m1                | Calumenin                                     | -0.25               | 0.48                | 0.01                | 0.08                | 5788           | ER lumen              |
| 1.2.8532.m1                | PPIB1                                         | -0.29               | 0.64                | 0.03                | 0.00                | 5788           | ER lumen              |
| 1.2.25530.m1               | ERđj3                                         | -0.30               | 1.04                | 0.44                | 0.29                | 5788           | ER lumen              |
| 1.2.18585.m1               | UGGT                                          | -0.11               | 0.59                | 0.20                | 0.34                | 5788           | ER lumen              |
| 1.2.1831.m1                | Calumenin                                     | -0.38               | 1.06                | -0.15               | -0.03               | 5788           | ER lumen              |
| 1.2.4351.m1                | BiP                                           | -0.12               | 1.30                | -0.20               | 0.11                | 5788           | ER lumen              |
| 1.2.9956.m1                | Alpha7                                        | -0.43               | 0.20                | -0.02               | -0.16               | 502            | proteasome complex    |
| 1.2.2830.m1                | Alpha6                                        | -0.12               | 0.56                | 0.08                | -0.01               | 502            | proteasome complex    |
| 1.2.7785.m1                | Alpha3                                        | -0.35               | 0.67                | 0.12                | 0.05                | 502            | proteasome complex    |
| 1.2.9821.m1                | Alpha5                                        | -0.28               | 0.73                | 0.14                | -0.03               | 6807           | nitrogen metabolic    |
| 1.2.17385.m1               | Alpha1                                        | -0.28               | 1.06                | 0.32                | 0.17                | 6807           | nitrogen metabolic    |
| 1.2.16235.m1               | Rpm8                                          | -0.25               | 0.91                | 0.28                | 0.24                | 10498          | proteasomal catabolic |
| 1.2.3354.m1                | Rpm7                                          | -0.54               | 0.45                | 0.11                | 0.03                | 502            | proteasome complex    |
| 1 2 7613 m1                | Brm5                                          | -057                | 0.20                | -0.04               | -0.15               | 502            | proteasome complex    |
| 1 2 11418 m1               | Rum 3                                         | -0.46               | 0.30                | -0.05               | -0.15               | 502            | nroteasome complex    |
| 1 2 2366 m1                | Rrm 2                                         | -0.19               | 0.50                | 0.05                | 0.15                | 6807           | nitrogen metabolic    |
| 12461 m1                   | Rot4                                          | -0 3e               | 0.00<br>0.49        | 0.01                | _0.02<br>_0.01      | 5574           | nnoteasome complex    |
| 1 2 2510 m1                | RataS                                         | _0.30               | 0.40                | 0.12                | -0.01               | 5324           | notasona comilar      |
| 1.2.2.317.III<br>1.2.10101 | Prest 0                                       | -U.DU<br>A 20       | U.40<br>A 17        | 0.07                | -U.ZU               | 202            | protatione complex    |
| 1.2.1010.ml                | RJHLV<br>F3 phanitin-protain lister DMC144    | -U.38<br>0.47       | U.17<br>A 26        | -U.U5<br>A AO       | -U.10<br>A 26       | 502<br>44945   | proteasome complex    |
| 1.2.14702.III1             | Ibimitin-compating around F313                | -0.27               | U.20<br>A 1A        | 0.00                | -0.25<br>() () ()   | 44203<br>44765 | cell macro cataboliem |
| 1 2 107521                 | TCEBI                                         | عد.ن<br>۱۹۸۱_       | 0.10<br>A A 2       | 0.62<br>A 19        | 0.0.J<br>A.A.A      | 4474E          | Cell macro cataboliem |
| 1.2.107.J.J.III            | Ubimitin_motoin ligace E2A                    | -0.41               | 0.02<br>0.04        | 0.10<br>A AO        | 0.04                | 44203          | Call macro catabeliam |
| 1 2 20271                  | Adaparing dominara libr                       | -0.44<br>A.A.1      | 0.04<br>1.1C        | 0.00                | 0.03<br>A 11        | 44203          |                       |
| 1.6.6037.Ш1                | Parentastine uranni nase-it Kr                | -0.01               | 1.13                | 0.05                | 0.15                | 44202          | smart morecure catabo |

# **Table S3.1.** Differentially expressed genes and their GO as in the heat map Figure 3.1.

| 12.541/mNote devidences0.600.450.400.400.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.4000.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2.8981.m1                 | Medium-chain specific acyl-CoA                | -0.06 | 0.70 | 0.16  | 0.11  | 16491 | oxidoreductase activity                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------|-------|------|-------|-------|-------|-------------------------------------------|
| 12.47.0710.120.120.160.170.100.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.1000.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2.5411.m1                 | Malate dehydrogenase                          | -0.06 | 0.45 | 0.16  | 0.01  | 16491 | oxidoreductase activity                   |
| 12.1974m1100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m100m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.4737.m1                 | Dihydroorotate dehydrogenase                  | 0.12  | 0.76 | 0.13  | -0.01 | 16491 | oxidoreductase activity                   |
| 1251%11NoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNoteNote <t< td=""><td>1.2.16944.m1</td><td>Glyceraldehyde 3-phosphate dehydrogenase</td><td>-0.24</td><td>0.66</td><td>0.17</td><td>0.01</td><td>16491</td><td>oxidoreductase activity</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2.16944.m1                | Glyceraldehyde 3-phosphate dehydrogenase      | -0.24 | 0.66 | 0.17  | 0.01  | 16491 | oxidoreductase activity                   |
| 12.12.13mm12.19.13mm12.19.13mm12.19.13mm12.19.13mm16.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.10116.101 <th< td=""><td>1.2.5704.m1</td><td>Protein disulfide isomerae</td><td>-0.16</td><td>0.77</td><td>-0.22</td><td>0.04</td><td>16491</td><td>oxidoreductase activity</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.5704.m1                 | Protein disulfide isomerae                    | -0.16 | 0.77 | -0.22 | 0.04  | 16491 | oxidoreductase activity                   |
| 12.1095.n1indexindexindexindexindexindex12.1016601Oddyname0.120.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.100.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2.2152.m1                 | ALDH3A2                                       | -0.55 | 0.48 | 0.15  | 0.19  | 16491 | oxidoreductase activity                   |
| 12.16373.mlспортспорт0.070.070.070.070.070.070.070.070.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700.0700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2.1905.m1                 | 6-phosphogluconate dehydrogenase              | -0.27 | 0.57 | -0.04 | -0.07 | 16491 | oxidoreductase activity                   |
| 12.1098.019.1031.000.020.041.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.0491.049<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2.16373.m1                | Glutamate dehydrogenase                       | 0.07  | 0.95 | 0.01  | -0.07 | 16491 | oxidoreductase activity                   |
| 12.1001mlNeuroinal field-0.300.400.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.4040.404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2.10096.m1                | Dehydrogenase/reductase SDR                   | -0.12 | 1.00 | 0.02  | -0.14 | 16491 | oxidoreductase activity                   |
| 12.166/m119.0719.230.980.400.1816.4910.40eaus attivity12.2376.010Gvadova Polostaca0.150.270.430.440.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.4010.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.9018.m1                 | Protein disulfide isomerae                    | -0.36 | 0.87 | -0.26 | -0.05 | 16491 | oxidoreductase activity                   |
| 12967/m16radian strainform6.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.196.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2.1667.m1                 | ERp57                                         | -0.23 | 0.98 | -0.40 | -0.18 | 16491 | oxidoreductase activity                   |
| 12.2376.1119.checkmen PM3 or advector and enclose - 10.1150.720.731.6491outdoordenceuter and enclose - 112.2386.211Rectant delydregamen clase 30.430.720.361.6491outdoordenceuter attributer12.2489.211Rectant delydregamen clase 30.151.710.230.101.6491outdoordenceuter attributer12.2499.211Relta enclose games 10.221.760.201.641.6491outdoordenceuter attributer12.2491.111Relta enclose games 10.221.760.210.401.6491outdoordenceuter attributer12.2491.111Relta enclose games 10.221.760.210.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.400.40<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2.9677.m1                 | Glutathione s-transferase                     | -0.19 | 0.85 | 0.49  | 0.14  | 16491 | oxidoreductase activity                   |
| 12.306.0.1110.ads on the ads of the ads | 1.2.23763.m1                | Cytochrome P450 reductase                     | -0.15 | 0.72 | 0.43  | 0.27  | 16491 | oxidoreductase activity                   |
| 12.2484.2111Scianta Abylrogenaea chers0.400.720.720.720.720.600.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.6010.601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.3068.m1                 | -<br>Thioredoxin reductase 3                  | -0.23 | 0.43 | 0.52  | 0.37  | 16491 | oxidoreductase activity                   |
| Lattery min         Action in the series         Life         Life <thlife< th="">         Life         <thlife< th=""> <thl< td=""><td>1 2 24842 m1</td><td>Succinate dehydrogenase</td><td>-0.40</td><td>0.72</td><td>0.72</td><td>0.36</td><td>16491</td><td>oxidoreductase activity</td></thl<></thlife<></thlife<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 2 24842 m1                | Succinate dehydrogenase                       | -0.40 | 0.72 | 0.72  | 0.36  | 16491 | oxidoreductase activity                   |
| Late         Late <thlate< th="">         Late         Late         <thl< td=""><td>1.2.18297.m1</td><td>Alcohol dehydrogenase class-3</td><td>0.15</td><td>1.71</td><td>0.23</td><td>-0.10</td><td>16491</td><td>oxidoreductase activity</td></thl<></thlate<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2.18297.m1                | Alcohol dehydrogenase class-3                 | 0.15  | 1.71 | 0.23  | -0.10 | 16491 | oxidoreductase activity                   |
| Actional<br>L26092.ntGala<br>CarLand<br>CarLand<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 124919m1                    | DBH-like monooxyeenase 1                      | -0.22 | 196  | -0.06 | -0.16 | 16491 | oxidoreductase activity                   |
| LABMAIN         Control         Control <t< td=""><td>1 2 6992 m1</td><td>Catalase</td><td>-0.70</td><td>144</td><td>-0.49</td><td>-0.29</td><td>16491</td><td>oxidoreductase activity</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 2 6992 m1                 | Catalase                                      | -0.70 | 144  | -0.49 | -0.29 | 16491 | oxidoreductase activity                   |
| Larking         Roots         Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 124848m1                    | Cemioniasmin                                  | 0.35  | 1.05 | -0.21 | -0.46 | 16491 | oxidoreductase activity                   |
| Lab.1111         Institution interformation of partial interformation interformatintereformation interformatintereformation interformation       | 1 2 34 ml                   | Homogantisate diosvanasa                      | 0.35  | 0.80 | -0.09 | -053  | 16491 | oxidoreductase activity                   |
| 12.2503/11         Province and submits an interview metabolic process         0.67         0.52         0.71         0.57         Submits an interview           12.1180.n1         Phony submits interview         0.67         1.58         0.35         1649         oidoe obsciewas activity           12.21750.n1         Gyochrome Neme         0.32         0.40         0.17         0.13         55114         redox           12.21859.n1         Gyochrome Neme         0.32         0.40         0.17         0.13         55114         redox           12.21859.n1         Guochrome Neme         0.42         0.33         0.16         0.13         55114         redox           12.22719.n1         Grochrome Net Complex         0.037         0.09         0.19         0.13         55114         redox           12.2487.n1         Gyocen phosphorylax         0.424         0.71         0.13         5066         alcokia metabolic process           12.193.n1         Transidolaxe like         0.015         1.00         0.28         0.61         alcokia metabolic process           12.1767.n1         Aparagine vitholaxe         0.015         0.01         0.77         0.58         6069         alcokia metabolic process           12.26761.n1         Gro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 2 20229 m1                | Mathylm alon ato-comi aldohydo dohydroyon aco | 0.40  | 0.09 | 0.57  | 0.41  | 5574  | oxidoreductase activity                   |
| Lar.1100111Lar.10LosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLosLos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.20330111<br>1.2.1180 m1 | Phenylalanino hydroxlaso                      | 0.40  | 159  | -0.32 | -0.41 | 16401 | oxidoreductase activity                   |
| L2.17.03.11         Optimization of the set o      | 1221750 m1                  |                                               | 0.41  | 0.46 | -0.35 | -0.55 | 55114 | vaday                                     |
| L2 L009Ln1         Orthonol P450         1.51         0.17         0.13         5.114         Index           L227Sm1         Gyochrone P450         1.51         0.14         0.01         0.20         55114         redox           L218589n1         Guochrone P450         0.37         0.09         0.19         -0.06         55114         redox           L221616n1         NADH debydrogesase         0.42         0.03         0.16         0.13         55114         redox           L21093n1         Transidolase like         -0.24         0.71         0.15         0.13         6066         alcoha metabolic process           L2167/m1         NIDT1         0.55         1.06         -0.71         -0.58         6066         alcoha metabolic process           L2167/m1         Aparagine -RNA cytoplasmic         -0.37         0.55         0.23         0.29         6519         cellular A derivative metabolic           L21862n1         Aparagine -RNA cytoplasmic         -0.07         0.52         0.10         0.09         6519         cellular A derivative metabolic           L21862n1         Aparagine -RNA cytoplasmic         -0.07         0.52         0.10         0.30         0.619         cellular A derivative metabolic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2.10009 m1                | CDB L facon crathero                          | -0.41 | 0.40 | 0.25  | 0.10  | 55114 | redox                                     |
| L2 / 2.011.1         System on Procession         -1.1         0.14         0.01         0.00         5.011         reads           L2 L185SPm1         Gutchino peroxidase         -0.42         0.03         0.16         0.13         S5114         redox           L2 L2161Gin1         NADI debydrogenase         -0.42         0.03         0.16         0.13         S5114         redox           L2 L2271Jm1         Sytochrome b-t complex         -0.39         0.26         0.13         0.01         55114         redox           L2 L271Jm1         Sytochrome b-t complex         -0.39         0.26         0.13         0.01         6066         alcohi metabolic process           L2 L271Jm1         Sytochrome b-t complex         -0.16         0.71         -0.58         0.606         alcohi metabolic process           L2 L267Jm1         Aparegine synthetase         -0.16         0.71         -0.78         6519         cellular AA derivative metabolic           L2 L266Jm1         Aparegine synthetase         -0.06         0.48         -0.09         0.12         6519         cellular AA derivative metabolic           L2 L266Jm1         Rotoniesensitive andabolic         -0.028         0.519         cellular AA derivative metabolic           L2 L286Jm1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2.10096.01                | GDP-L-ILCOM Synthase                          | -0.32 | 0.40 | 0.17  | 0.13  | 55114 | redox                                     |
| L2 L369/L11         Guidanticolar percolatase         -0.57         0.057         0.19         -0.107         -55114         renox           L2 22161611         NADI delydrogenase         -0.42         0.03         0.16         0.13         55114         relox           L2 2271911         Gytochrome bert complex         -0.24         0.71         0.15         0.13         6066         alcohol metabolic process           L2 1093.m1         Transidolase like         -0.15         1.00         0.28         0.07         6066         alcohol metabolic process           L2 1077.m1         MUT1         0.55         1.06         -0.71         -0.58         6066         alcohol metabolic process           L2 1567.m1         Aparagine synthetase         -0.015         0.15         0.23         0.29         6519         cellular Ad derivative metabolic           L2 1567.m1         Aparagine synthetase         -0.06         0.46         0.09         -0.12         6519         cellular Ad derivative metabolic           L2 1567.m1         Bytochroplasmic         -0.07         0.52         -0.10         0.99         6519         cellular Ad derivative metabolic           L2 1587.m1         Bytochroplasmic         -0.02         0.069         0.30         0.08 <td>1.2.125101</td> <td>cytocnrome P450</td> <td>-1.31</td> <td>0.14</td> <td>0.01</td> <td>0.20</td> <td>55114</td> <td>redox</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2.125101                  | cytocnrome P450                               | -1.31 | 0.14 | 0.01  | 0.20  | 55114 | redox                                     |
| L2.161.0ml         Note adaptingenate         -0.22         0.03         0.13         5114         recox           L2.22719.m1         Cytochrome bet complex         -0.23         0.26         0.13         0.01         55114         recox           L2.2445.m1         Gytochrome bet complex         -0.24         0.71         0.15         0.13         6066         alcohol metabolic process           L2.103.m1         Transaldolase-like         -0.15         1.06         0.71         -0.58         6066         alcohol metabolic process           L2.12136.m1         Asparagine synthetase         -0.18         0.75         -0.14         0.02         6519         cellular Adderivative metabolic           L2.157.m1         Asparagine synthetase         -0.06         0.58         0.09         -0.12         6519         cellular Adderivative metabolic           L2.2567.61         Ornthine aninotransferase         -0.17         0.52         -0.10         0.99         6519         cellular Adderivative metabolic           L2.2567.61         Ornthine aninotransferase         -0.017         0.52         -0.10         0.99         6519         cellular Adderivative metabolic           L2.1857.m1         Trononine-UNA cytoplasmic         -0.28         0.54         0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2.216569.001              |                                               | -0.37 | 0.09 | 0.19  | -0.00 | 55114 | redox                                     |
| L2.2719.ml         Gycochrome 6 c1 complex         -0.39         0.26         0.13         0.01         55114         redox           L2.5445.ml         Gycogen phosphorylase         -0.24         0.71         0.15         0.13         6066         alcohol metabolic process           L2.1093.ml         Transaldolase-like         -0.15         1.06         -0.71         -0.58         6066         alcohol metabolic process           L2.1213.6ml         Asparagine synthetase         -0.18         0.75         -0.14         0.02         6519         cellular Ad derivative metabolic           L2.1587.ml         Asparagine synthetase         -0.06         0.48         -0.09         -0.12         6519         cellular Ad derivative metabolic           L2.25616.ml         Omthine aminotransferase         -0.01         0.52         -0.10         0.09         6519         cellular Ad derivative metabolic           L2.2574.ml         Asparityl RNA synthetase         -0.01         0.97         -0.10         -0.09         6519         cellular Ad derivative metabolic           L2.25561.ml         Omthine aminotransferase         -0.01         0.97         0.10         -0.10         -0.09         6519         cellular Ad derivative metabolic           L2.3574.ml         Toronin-URA cyto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2.221616.001              | NALM denydrogenase                            | -0.42 | 0.03 | 0.10  | 0.13  | 55114 | redox                                     |
| L2.542.ml         Glycogen phosphorylase         -0.24         0.71         0.15         0.13         0.066         alcohol metabolic process           L2.1093.ml         Transaldolase like         -0.15         1.00         0.28         0.07         6066         alcohol metabolic process           L2.2173.dm1         MUDT1         0.55         1.06         -0.71         0.58         6066         alcohol metabolic process           L2.2173.dm1         Asparagine-tRNA cytoplasmic         -0.37         0.55         0.23         0.29         6519         cellular AA derivative metabolic           L2.2561.ml         Asparagine-tRNA cytoplasmic         -0.06         0.48         -0.09         -0.12         6519         cellular AA derivative metabolic           L2.862.ml         RAT         0.01         0.97         -0.10         -0.38         6519         cellular AA derivative metabolic           L2.8182.ml         Mago nachi homolog         -0.02         0.54         0.11         -0.02         6519         cellular AA derivative metabolic           L2.1862.ml         Mago nachi homolog         -0.028         0.54         0.11         -0.02         6519         cellular AA derivative metabolic           L2.1862.ml         Mago nachi homolog         -0.028         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.25445 1                   | Cytochrome b-c1 complex                       | -0.39 | 0.20 | 0.13  | 0.01  | 55114 | redox                                     |
| L2 109 MT         Francisco isse         -0.15         1.00         0.28         0.07         6006         alcoho metabolic process           L2 877 M1         NUDT1         0.55         1.06         -0.18         0.07         6016         alcoho metabolic process           L2 12136 m1         Asparagine-URM cytoplasmic         -0.18         0.75         0.23         0.29         6519         cellular AA derivative metabolic           L2 25616 m1         Asparagine-URM cytoplasmic         -0.07         0.52         -0.10         0.09         6519         cellular AA derivative metabolic           L2 1256 M1         Asparagine-URM cytoplasmic         -0.07         0.52         -0.10         0.09         6519         cellular AA derivative metabolic           L2 1862 m1         BCAT         0.01         0.97         -0.10         -0.38         6519         cellular AA derivative metabolic           L2 1805 M1         Mago-nash homolog         -0.09         0.69         0.30         0.12         6607         nitrogen metabolic           L2 1805 M1         Mago-nash homolog         -0.00         0.69         0.30         0.80         6807         nitrogen metabolic           L2 1495 0m1         Socia forolal protein L23         -0.010         0.78         0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2.1002 1                  |                                               | -0.24 | 0.71 | 0.15  | 0.13  | 6066  | alcohol metabolic process                 |
| L2877ml         M001         0.55         L06         -0.71         -0.18         6066         atcohot metabolic process           L212136m1         Asparagine-synthetase         -0.18         0.75         -0.14         0.02         6519         cellular AA derivative metabolic           L227670m1         Asparagine-tRNA cytoplasmic         -0.03         0.55         0.29         6519         cellular AA derivative metabolic           L225616m1         Ornithine aminotransferase         -0.017         0.52         -0.10         0.09         6519         cellular AA derivative metabolic           L225616m1         Ornithine aminotransferase         -0.017         0.52         -0.10         0.09         6519         cellular AA derivative metabolic           L225616m1         Throonine-tRNA cytoplasmic         -0.28         0.54         0.11         -0.02         6519         cellular AA derivative metabolic           L25281m1         Mage-nashi homolog         -0.09         0.69         0.30         0.08         6607         nitrogen metabolic           L211950m1         Small nuclear ribonneleoprotein-associated         -0.16         0.68         0.21         0.17         6807         nitrogen metabolic           L211950m1         Soclin k         0.000         0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.1093.m1                 | Transaldolase-like                            | -0.15 | 1.00 | 0.28  | 0.07  | 6066  | alcohol metabolic process                 |
| L.2.1236.ml         Asparagine synthetase         -0.18         0.75         -0.14         0.02         6519         cellular AA derivative metabolic           1.2.7670.ml         Asparagine-tRNA.cytoplasmic         -0.37         0.55         0.23         0.29         6519         cellular AA derivative metabolic           1.2.1567.ml         Asparagine-tRNA.cytoplasmic         -0.06         0.48         -0.09         -0.12         6519         cellular AA derivative metabolic           1.2.25616.ml         Ornithine aminotransferase         -0.01         0.97         -0.10         -0.38         6519         cellular AA derivative metabolic           1.2.25574.ml         Throonine-tRNA.cytoplasmic         -0.28         0.54         0.11         -0.02         6519         cellular AA derivative metabolic           1.2.5281.ml         Mago-nashi homolog         -0.01         0.49         0.30         0.12         6807         nitrogen metabolic           1.2.14950m1         Snall nuclear ribonneleoprotein associated         -0.16         0.68         0.21         0.17         6807         nitrogen metabolic           1.2.11950m1         Snall nuclear protein 1.23         -0.10         0.78         0.22         -0.03         6807         nitrogen metabolic           1.2.11950m1 <t< td=""><td>1.2.877.ml</td><td></td><td>0.55</td><td>LU6</td><td>-0.71</td><td>-0.58</td><td>6066</td><td>alcohol metabolic process</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2.877.ml                  |                                               | 0.55  | LU6  | -0.71 | -0.58 | 6066  | alcohol metabolic process                 |
| 1.2.7670.ml         Asparagine-tRNA cytoplasmic         -0.37         0.55         0.23         0.29         6519         cellular AA derivative metabolic           1.2.1587.ml         Aspartyl tRNA synthetase         -0.06         0.48         -0.09         -0.12         6519         cellular AA derivative metabolic           1.2.25616ml         Ornithine aminotransferase         -0.17         0.52         -0.10         0.09         6519         cellular AA derivative metabolic           1.2.25616ml         Ornithine aminotransferase         -0.17         0.52         -0.10         -0.38         6519         cellular AA derivative metabolic           1.2.3574.ml         Threconine-tRNA cytoplasmic         -0.28         0.54         0.11         -0.02         6519         cellular AA derivative metabolic           1.2.5281.ml         Mago-nashi homolog         -0.02         0.60         0.30         0.12         6807         nitrogen metabolic           1.2.41950ml         Small nuclear ribonucleoprotein associated         -0.16         0.68         0.21         -0.06         6807         nitrogen metabolic           1.2.11950ml         Gyclin L         0.00         0.78         0.22         -0.03         6807         nitrogen metabolic           1.2.11951ml         Gyclin L2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L&12136.m1                  | Asparagine synthetase                         | -0.18 | 0.75 | -0.14 | 0.02  | 6519  | cellular AA derivative metabolic          |
| L21587.ml         Aspartyl-tRNA synthetase         -0.006         0.48         -0.099         -0.12         6519         cellular AA derivative metabolic           L225616m1         Ornthine aminotransferase         -0.17         0.52         -0.10         0.09         6519         cellular AA derivative metabolic           L21862m1         BCAT         0.01         0.97         -0.10         -0.38         6519         cellular AA derivative metabolic           L23574m1         ThreoninetRNA cytoplasmic         -0.028         0.54         0.11         -0.02         6519         cellular AA derivative metabolic           L2581m1         Mage-nash homolog         -0.09         0.69         0.30         0.12         6807         nitrogen metabolic           L214950m1         Snall nuclear ribonneleoprotein-associated         -0.02         0.60         0.30         0.08         6807         nitrogen metabolic           L211950m1         Snall nuclear ribonneleoprotein-associated         -0.01         0.68         0.21         0.06         6807         nitrogen metabolic           L211950m1         Gyclin L         -0.01         0.78         0.22         -0.03         6807         nitrogen metabolic           L241750m1         Gyclin L         -0.010         0.78 <td>1.2.7670.m1</td> <td>Asparagine–tRNA cytoplasmic</td> <td>-0.37</td> <td>0.55</td> <td>0.23</td> <td>0.29</td> <td>6519</td> <td>cellular AA derivative metabolic</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2.7670.m1                 | Asparagine–tRNA cytoplasmic                   | -0.37 | 0.55 | 0.23  | 0.29  | 6519  | cellular AA derivative metabolic          |
| 1.2.25616m1         Ornihhne aminotransferase         -0.17         0.52         -0.10         0.09         6519         cellular AA derivative metabolic           1.2.1862m1         BCAT         0.01         0.97         -0.10         -0.38         6519         cellular AA derivative metabolic           1.2.3574m1         Threonine-tRNA cytoplasmic         0.028         0.54         0.11         -0.02         6519         cellular AA derivative metabolic           1.2.5281m1         Mago-nashi homolog         -0.09         0.69         0.30         0.12         6807         nitrogen metabolic           1.2.8113m1         Nuclease-sensitive element-binding         -0.02         0.60         0.30         0.08         6807         nitrogen metabolic           1.2.14950m1         Small nuclear ribonucleoprotein associated         0.16         0.68         0.21         0.17         6807         nitrogen metabolic           1.2.14950m1         Schin k         0.00         0.78         0.22         -0.03         6807         nitrogen metabolic           1.2.1195m1         Cyclin k         0.00         0.78         0.07         -0.08         6807         nitrogen metabolic           1.2.2120m1         Periodic tryptophan         0.08         0.59         -0.07<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2.1587.m1                 | Aspartyl-tRNA synthetase                      | -0.06 | 0.48 | -0.09 | -0.12 | 6519  | cellular AA derivative metabolic          |
| 1.2.1862m1         BCAT         0.01         0.97         -0.10         -0.38         6519         cellular AA derivative metabolic           1.2.3574m1         Threonine—tRNA cytoplasmic         -0.28         0.54         0.11         -0.02         6519         cellular AA derivative metabolic           1.2.5281m1         Mago-nashi homolog         -0.09         0.69         0.30         0.12         66807         nitrogen metabolic           1.2.8113m1         Nuclease-sensitive element-binding         -0.02         0.60         0.30         0.08         6807         nitrogen metabolic           1.2.14950m1         Small nuclear ribonucleoprotein associated         -0.16         0.68         0.21         0.17         6807         nitrogen metabolic           1.2.1195m1         Gyclin k         0.00         0.78         0.22         -0.03         6807         nitrogen metabolic           1.2.21220m1         Periodic tryptophan         -0.08         0.59         -0.07         -0.08         6807         nitrogen metabolic           1.2.17803m1         Nucleolar protein 14         0.06         0.54         -0.05         0.05         6807         nitrogen metabolic           1.2.1092m1         Transcription factor BTF3         -0.16         0.88         0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2.25616.m1                | Ornithine aminotransferase                    | -0.17 | 0.52 | -0.10 | 0.09  | 6519  | cellular AA derivative metabolic          |
| 1.2.3574m1         ThreeonineRNA cytoplasmic         -0.28         0.54         0.11         -0.02         6519         cellular AA derivative metabolic           1.2.5281.m1         Mago-nashi homolog         -0.09         0.69         0.30         0.12         6807         nitrogen metabolic           1.2.8113.m1         Nuclease sensitive element-binding         -0.02         0.60         0.30         0.08         6807         nitrogen metabolic           1.2.14950.m1         Small nuclear ribonucleoprotein-associated         -0.16         0.68         0.21         0.17         6807         nitrogen metabolic           1.2.10806.m1         60S ribocomal protein 123         -0.10         0.46         0.24         -0.06         6807         nitrogen metabolic           1.2.1195.m1         Cyclin k         0.00         0.78         0.22         -0.03         6807         nitrogen metabolic           1.2.21220.m1         Periodic tryptophan         -0.010         0.78         0.12         0.22         6807         nitrogen metabolic           1.2.21803.m1         Nucleolar protein 14         0.06         0.54         -0.05         0.05         6807         nitrogen metabolic           1.2.17803.m1         Proteasone activator complex         -0.22         1.10 <td>1.2.1862m1</td> <td>BCAT</td> <td>0.01</td> <td>0.97</td> <td>-0.10</td> <td>-0.38</td> <td>6519</td> <td>cellular AA derivative m<i>e</i>tabolic</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2.1862m1                  | BCAT                                          | 0.01  | 0.97 | -0.10 | -0.38 | 6519  | cellular AA derivative m <i>e</i> tabolic |
| 1.2.5281.m1       Mago-nashi homolog       -0.09       0.69       0.30       0.12       6807       nitrogen metabolic         1.2.8113m1       Nuclease sensitive element-binding       -0.02       0.60       0.30       0.08       6807       nitrogen metabolic         1.2.14950m1       Small nuclear ribonucleoprotein associated       -0.16       0.68       0.21       0.17       6807       nitrogen metabolic         1.2.10806m1       605 ribosomal protein L23       -0.10       0.46       0.24       -0.06       6807       nitrogen metabolic         1.2.1195m1       Cyclin k       0.00       0.78       0.22       -0.03       6807       nitrogen metabolic         1.2.21220m1       Periodic tryptophan       -0.08       0.59       -0.07       -0.08       6807       nitrogen metabolic         1.2.17803m1       Nucleoar protein 14       0.06       0.54       -0.05       0.05       6807       nitrogen metabolic         1.2.17803m1       Poteasone activator complex       -0.22       0.47       -0.10       0.07       6807       nitrogen metabolic         1.2.10902m1       Transcription factor 7Fik       -0.16       0.88       0.33       0.13       6807       nitrogen metabolic         1.2.21032m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2.3574.m1                 | Threonine—tRNA cytoplasmic                    | -0.28 | 0.54 | 0.11  | -0.02 | 6519  | cellular AA derivative metabolic          |
| L28113m1         Nuclease sensitive element-binding         -0.02         0.60         0.30         0.08         6807         nitrogen metabolic           L214950m1         Small nuclear ribonneleoprotein associated         -0.16         0.68         0.21         0.17         6807         nitrogen metabolic           L210806m1         605 ribosonal protein L23         -0.10         0.46         0.24         -0.06         6807         nitrogen metabolic           L211195m1         Cyclin k         0.00         0.78         0.22         -0.03         6807         nitrogen metabolic           L24175m1         Cyclin L2         -0.10         0.78         0.12         0.22         6807         nitrogen metabolic           L221220m1         Periodic tryptophan         -0.08         0.59         -0.07         -0.08         6807         nitrogen metabolic           L217803m1         Nucleoar protein 14         0.06         0.54         -0.05         0.05         6807         nitrogen metabolic           L210902m1         Transcription factor BTF3         -0.16         0.88         0.33         0.13         6807         nitrogen metabolic           L2133m1         Cytochrome c         -0.58         1.17         0.38         0.51         6807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2.5281.m1                 | Mago-nashi homolog                            | -0.09 | 0.69 | 0.30  | 0.12  | 6807  | nitrogen m <i>e</i> tabolic               |
| L2.14950.m1         Small nuclear ribonucleoprotein associated         -0.16         0.68         0.21         0.17         6807         nitrogen metabolic           L2.10806.m1         60S ribosomal protein L23         -0.10         0.46         0.24         -0.06         6807         nitrogen metabolic           L2.11195.m1         Cyclin k         0.00         0.78         0.22         -0.03         6807         nitrogen metabolic           L2.4175.m1         Cyclin-L2         -0.10         0.78         0.12         0.22         6807         nitrogen metabolic           L2.21220.m1         Periodic tryptophan         -0.08         0.59         -0.07         -0.08         6807         nitrogen metabolic           L2.17803.m1         Nucleolar protein 14         0.06         0.54         -0.05         0.05         6807         nitrogen metabolic           L2.17803.m1         Proteasone activator complex         -0.22         0.47         -0.10         0.07         6807         nitrogen metabolic           L2.10902.m1         Transcription factor 7Flike         -0.16         0.88         0.33         0.13         6807         nitrogen metabolic           L2.21052.m1         Transcription factor 7-like         -0.22         1.10         0.45         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.8113.m1                 | Nuclease-sensitive element-binding            | -0.02 | 0.60 | 0.30  | 0.08  | 6807  | nitrogen metabolic                        |
| 1.2.10806.m1       605 ribosomal protein L23       -0.10       0.46       0.24       -0.06       6807       nitrogen metabolic         1.2.11195.m1       Cyclin k       0.00       0.78       0.22       -0.03       6807       nitrogen metabolic         1.2.4175.m1       Cyclin L2       -0.10       0.78       0.12       0.22       6807       nitrogen metabolic         1.2.21220.m1       Periodic tryptophan       -0.08       0.59       -0.07       -0.08       6807       nitrogen metabolic         1.2.2988.m1       Nucleolar protein 14       0.06       0.54       -0.05       0.05       6807       nitrogen metabolic         1.2.10902.m1       Franscription factor STF3       -0.16       0.88       0.33       0.13       6807       nitrogen metabolic         1.2.2152.m1       Transcription factor 7-like       -0.22       1.10       0.45       0.08       6807       nitrogen metabolic         1.2.2153.m1       Cytochrome c       -0.28       1.17       0.38       0.51       6807       nitrogen metabolic         1.2.2153.m1       Prolyl endopeptidase       -0.68       0.47       0.31       0.28       8236       Serine peptidase         1.2.21551/m1       Prolyl endopeptidase       -0.57 <td>1.2.14950.m1</td> <td>Small nuclear ribonucleoprotein-associated</td> <td>-0.16</td> <td>0.68</td> <td>0.21</td> <td>0.17</td> <td>6807</td> <td>nitrogen m<i>e</i>tabolic</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2.14950.m1                | Small nuclear ribonucleoprotein-associated    | -0.16 | 0.68 | 0.21  | 0.17  | 6807  | nitrogen m <i>e</i> tabolic               |
| 1.2.11195.m1       Cyclin k       0.00       0.78       0.22       -0.03       6807       nitrogen metabolic         1.2.4175.m1       Cyclin L2       -0.10       0.78       0.12       0.22       6807       nitrogen metabolic         1.2.21220.m1       Periodic tryptophan       -0.08       0.59       -0.07       -0.08       6807       nitrogen metabolic         1.2.2988.m1       Nucleolar protein 14       0.06       0.54       -0.05       0.05       6807       nitrogen metabolic         1.2.17803.m1       Proteasone activator complex       -0.22       0.47       -0.10       0.07       6807       nitrogen metabolic         1.2.10902.m1       Transcription factor BTF3       -0.16       0.88       0.33       0.13       6807       nitrogen metabolic         1.2.21052.m1       Transcription factor 7-like       -0.22       1.10       0.45       0.08       6807       nitrogen metabolic         1.2.2133.m1       Cytochrome c       -0.58       1.17       0.38       0.51       6807       nitrogen metabolic         1.2.28959.m1       Casein kinase II       -0.57       0.03       0.16       0.13       8236       Serine peptidase         1.2.2531.m1       Lon proteas homolog       0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2.10806.m1                | 60S ribosomal protein L23                     | -0.10 | 0.46 | 0.24  | -0.06 | 6807  | nitrogen m <i>e</i> tabolic               |
| 1.2.4175m1       Cyclin-L2       -0.10       0.78       0.12       0.22       6807       nitrogen metabolic         1.2.21220m1       Periodic tryptophan       -0.08       0.59       -0.07       -0.08       6807       nitrogen metabolic         1.2.2988m1       Nucleolar protein 14       0.06       0.54       -0.05       0.05       6807       nitrogen metabolic         1.2.17803m1       Proteasone activator complex       -0.22       0.47       -0.10       0.07       6807       nitrogen metabolic         1.2.10902m1       Transcription factor BTF3       -0.16       0.88       0.33       0.13       6807       nitrogen metabolic         1.2.12052m1       Transcription factor 7-like       -0.22       1.10       0.45       0.08       6807       nitrogen metabolic         1.2.2133m1       Cytochrome c       -0.28       1.17       0.38       0.51       6807       nitrogen metabolic         1.2.15517m1       Prolyl endopeptidase       -0.68       0.47       0.31       0.28       8236       Serine peptidase         1.2.28959m1       Casein kinase II       -0.57       0.03       0.16       0.13       8236       Serine peptidase         1.2.2531m1       Lon proteas homolog       0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2.11195.m1                | Cyclin k                                      | 0.00  | 0.78 | 0.22  | -0.03 | 6807  | nitrogen m <i>e</i> tabolic               |
| L221220m1         Periodic tryptophan         -0.08         0.59         -0.07         -0.08         6807         nitrogen metabolic           L2988m1         Nucleolar protein 14         0.06         0.54         -0.05         0.05         6807         nitrogen metabolic           L217803m1         Proteasome activator complex         -0.22         0.47         -0.10         0.07         6807         nitrogen metabolic           L210902m1         Transcription factor BTF3         -0.16         0.88         0.33         0.13         6807         nitrogen metabolic           L21052m1         Transcription factor 7-like         -0.22         1.10         0.45         0.08         6807         nitrogen metabolic           L22133m1         Cytochrome c         -0.58         1.17         0.38         0.51         6807         nitrogen metabolic           L215517m1         Prolyl endopeptidase         -0.68         0.47         0.31         0.28         8236         Serine peptidase           L22859m1         Casein kinase II         -0.57         0.03         0.16         0.13         8236         Serine peptidase           L22531m1         Lon proteas homolog         0.09         0.62         0.09         0.21         16903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2.4175.m1                 | Cyclin-L2                                     | -0.10 | 0.78 | 0.12  | 0.22  | 6807  | nitrogen m <i>e</i> tabolic               |
| L2988m1         Nucleolar protein 14         0.06         0.54         -0.05         0.05         6807         nitrogen metabolic           L217803m1         Proteasome activator complex         -0.22         0.47         -0.10         0.07         6807         nitrogen metabolic           L210902m1         Transcription factor BTF3         -0.16         0.88         0.33         0.13         6807         nitrogen metabolic           L21052m1         Transcription factor 7-like         -0.22         1.10         0.45         0.08         6807         nitrogen metabolic           L22133m1         Cytochrome c         -0.58         1.17         0.38         0.51         6807         nitrogen metabolic           L215517m1         Proly endopeptidase         -0.68         0.47         0.31         0.28         8236         Serine peptidase           L28959m1         Gasein kinase II         -0.57         0.03         0.16         0.13         8236         Serine peptidase           L22531m1         Lon proteas homolog         0.09         0.62         0.09         0.02         16921         ATPase activity           L212141m1         ATP-binding cassette sub-family B         -0.23         0.79         0.51         0.51         16903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2.21220.m1                | Periodic tryptophan                           | -0-08 | 0.59 | -0.07 | -0.08 | 6807  | nitrogen m <i>e</i> tabolic               |
| L2.17803.m1         Proteasome activator complex         -0.22         0.47         -0.10         0.07         6807         nitrogen metabolic           L2.10902.m1         Transcription factor BTF3         -0.16         0.88         0.33         0.13         6807         nitrogen metabolic           L2.12052.m1         Transcription factor 7-like         -0.22         1.10         0.45         0.08         6807         nitrogen metabolic           L2.2133.m1         Cytochrome c         -0.58         1.17         0.38         0.51         6807         nitrogen metabolic           L2.15517.m1         Prolyl endopeptidase         -0.68         0.47         0.31         0.28         8236         Serine peptidase           L2.2531.m1         Lon proteas homolog         0.09         0.62         0.09         0.02         16921         ATPase activity           L2.12141.m1         ATP-binding cassette sub-family B         -0.23         0.79         0.51         0.51         16903         ATPase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.988.m1                  | Nucleolar protein 14                          | 0.06  | 0.54 | -0.05 | 0.05  | 6807  | nitrogen m <i>e</i> tabolic               |
| L2.10902.m1         Transcription factor BTF3         -0.16         0.88         0.33         0.13         6807         nitrogen metabolic           L2.12052.m1         Transcription factor 7-like         -0.22         1.10         0.45         0.08         6807         nitrogen metabolic           L2.2133.m1         Cytochrome c         -0.58         1.17         0.38         0.51         6807         nitrogen metabolic           L2.15517.m1         Prolyl endopeptidase         -0.68         0.47         0.31         0.28         8236         Serine peptidase           1.2.8959.m1         Casein kinase II         -0.57         0.03         0.16         0.13         8236         Serine peptidase           1.2.2531.m1         Lon proteas homolog         0.09         0.62         0.09         0.02         16921         ATPase activity           1.2.12141.m1         ATP-binding cassette sub-family B         -0.23         0.79         0.51         0.51         16903         ATPase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2.17803.m1                | Proteasome activator complex                  | -0.22 | 0.47 | -0.10 | 0.07  | 6807  | nitrogen m <i>e</i> tabolic               |
| 1.2.12052.m1         Transcription factor 7-like         -0.22         1.10         0.45         0.08         6807         nitrogen metabolic           1.2.2133.m1         Cytochrome c         -0.58         1.17         0.38         0.51         6807         nitrogen metabolic           1.2.15517.m1         Prolyl endopeptidase         -0.68         0.47         0.31         0.28         8236         Serine peptidase           1.2.8959.m1         Casein kinase II         -0.57         0.03         0.16         0.13         8236         Serine peptidase           1.2.2531.m1         Lon proteas honolog         0.09         0.62         0.09         0.02         16921         ATPase activity           1.2.12141.m1         ATP-binding cassette sub-family B         -0.23         0.79         0.51         0.51         16903         ATPase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.10902.m1                | Transcription factor BTF3                     | -0.16 | 0.88 | 0.33  | 0.13  | 6807  | nitrogen m <i>e</i> tabolic               |
| L22133m1         Cytochrome c         -0.58         L17         0.38         0.51         6807         nitrogen metabolic           L2.15517m1         Prolyl endopeptidase         -0.68         0.47         0.31         0.28         8236         Serine peptidase           L2.8959m1         Casein kinase II         -0.57         0.03         0.16         0.13         8236         Serine peptidase           L2.2531m1         Lon proteas homolog         0.09         0.62         0.09         0.02         16921         ATPase activity           L2.12141m1         ATP-binding cassette sub-family B         -0.23         0.79         0.51         0.51         16903         ATPase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2.12052.m1                | Transcription factor 7-like                   | -0.22 | 1.10 | 0.45  | 80.0  | 6807  | nitrogen m <i>e</i> tabolic               |
| 1.2.15517m1         Prolyl endopeptidase         -0.68         0.47         0.31         0.28         8236         Serine peptidase           1.2.8959.m1         Casein kinase II         -0.57         0.03         0.16         0.13         8236         Serine peptidase           1.2.2531.m1         Lon proteas homolog         0.09         0.62         0.09         0.02         16921         ATPase activity           1.2.12141.m1         ATP-binding cassette sub-family B         -0.23         0.79         0.51         0.51         16903         ATPase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.2133.m1                 | Cytochrome c                                  | -0.58 | 1.17 | 0.38  | 0.51  | 6807  | nitrogen m <i>e</i> tabolic               |
| 12.28959.m1         Casein kinase II         -0.57         0.03         0.16         0.13         8236         Serine peptidase           12.2531.m1         Lon proteas homolog         0.09         0.62         0.09         0.02         16921         ATPase activity           12.12141.m1         ATP-binding cassette sub-family B         -0.23         0.79         0.51         0.51         16903         ATPase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.15517 <b>m</b> 1        | Prolyl endopeptidase                          | -0.68 | 0.47 | 0.31  | 0.28  | 8236  | Serine peptidase                          |
| 1.2.2531.m1         Lon proteas homolog         0.09         0.62         0.09         0.02         16921         ATPase activity           1.2.12141.m1         ATP-binding cassette sub-family B         -0.23         0.79         0.51         0.51         16903         ATPase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2.8959.m1                 | Casein kinase II                              | -0.57 | 0.03 | 0.16  | 0.13  | 8236  | Serine peptidase                          |
| 1.2.12141.m1 ATP-binding cassette sub-family B -0.23 0.79 0.51 0.51 16903 ATPase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2.2531.m1                 | Lon proteas homolog                           | 0.09  | 0.62 | 0.09  | 0.02  | 16921 | ATPase activity                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2.12141.m1                | ATP-binding cassette sub-family B             | -0.23 | 0.79 | 0.51  | 0.51  | 16903 | ATPase activity                           |

**Table S3.2**A. millepora homologues to the ER protein processing system. (A) Results of<br/>the KEGG protein processing in the ER (nve04141) pathway searched in the A. millepora<br/>protein predictions. (B) Log<sub>2</sub>FC values of significantly expressed (FDR <0.05) genes in<br/>response to the treatment (hypo-saline) over the control (35 PSU). Log<sub>2</sub>FC colour indicate up<br/>(red) and down (blue) regulated genes.

|                                                                                                                 |                 | Blast In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Blast Info          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |            |  |
|-----------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|------------|--|
| Function                                                                                                        | Gene name       | Orthology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Coral ID            | Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | % ID  | Length | e-value    |  |
|                                                                                                                 | Santi           | makin transmost SPC1 calmait lasts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 2 22267 m1        | NEMPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71.43 | 98     | 6.00E-41   |  |
|                                                                                                                 | Gi cil          | alaisa 1 3. elmentidate (FC-3.2.1.84)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1213846 m1          | NEWVE_VIg138245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60.35 | 744    | 0102-41    |  |
|                                                                                                                 | 0576            | delichył diphosphooligosa echanide – protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 2 1 1 2 20 - 1    | MEMOR -4-490767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60.07 | 705    |            |  |
|                                                                                                                 | 0315            | glycosyknandersze (EC2.499.18)<br>dokrad diakoszkosikoszerekeride "amatin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1211239001          | NEWL_VIELO/6/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67.73 | 705    | U          |  |
| G HOLE HALE A                                                                                                   | OSTS            | ppcought and store [EC:2, 4 99.18]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2.12013.m1        | NEHWE_v1g180767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 57.08 | 727    | 0          |  |
|                                                                                                                 | CNX             | ca la grina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2.16315.m1        | NEMVE_v1g80092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78.19 | 431    | 0          |  |
|                                                                                                                 | CRT             | calesticalia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2.2683.m1         | NEMVE_v1g61368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.08 | 347    | 0          |  |
|                                                                                                                 | UKEST           | UDP-glacose glycoprotein glacosyltenesiense                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2.18585.m1        | NEMVE_v1g135950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51.97 | 660    | 0          |  |
| Turninal                                                                                                        | GRP94           | heat shockprotein 90kDa beta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1215211m1           | NEMVE_v1g181671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85.06 | 261    | 2.00E-158  |  |
| chaperones                                                                                                      | MEF             | hyperia up regulated 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2.2424.m1         | NEHWE_v1g172038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69.3  | 570    | 0          |  |
|                                                                                                                 | HIP, GRP70      | lesit shock 70kDa protein 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2.4351.m1         | NEMVE_vlg216823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87.57 | 531    | 0          |  |
|                                                                                                                 | EBdy1           | Dauj homolog sublamity C member 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.7940.m1         | g#21361912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41.77 | 541    | 2.00E-111  |  |
|                                                                                                                 | EBdy3, DwaJB11  | Data homolog sublamity B member 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1225530m1           | g#18203497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60.34 | 358    | 2.00E-150  |  |
| BLP cochaperons-<br>HSP40_Dnal-Like                                                                             | E.Bay4          | Data how dog sabitany 8 member 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1220851.m1          | gq18203496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55.65 | 115    | 4 DOE-32   |  |
| 1111 10, Dirig 1110                                                                                             | ERdys           | Data in the second subtanty Company of the second s | 1222277.m1          | NEMVE_vig163820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.75 | 779    | 0          |  |
|                                                                                                                 | Elidy6, DurdjC3 | Daug homolog sublamity Computer 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1221656m1           | gr 73620807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 53.81 | 472    | 7.00E-175  |  |
| FFAD related proj                                                                                               | SEC63           | TURBOCINON PROTEIN SECIES NORMONO PROTEIN \$1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2.143. <b>m</b> 1 | <b>M</b> 767941799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46.7  | 349    | 210E-95    |  |
| in the second | EDEM            | ER degradation enhancer, mannerådere alpha like 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.3114.m1         | NEMVE v1g199864                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63.76 | 516    | 0          |  |
|                                                                                                                 | <b>XTP3</b> B   | endeplasmic articulum loctin 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1221359m1           | NEMVE <b>v1g99617</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29.73 | 111    | 1.00E-05   |  |
| Decounter of our d                                                                                              | EBHani          | namasyl-digora celaside alpha-1,2-mamosidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2.4008.m1         | NEMVE_vig112545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72.44 | 479    | 0          |  |
| targeting                                                                                                       | TEAP            | translocen-associated protein valuatit delta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2.3165.m1         | NEMVE v1g237405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61.03 | 136    | 7.00E-58   |  |
|                                                                                                                 | TEAM            | translocating dasin accordated membrane protein 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.11248m1         | NEMVE vig186830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60.89 | 327    | 2.00E-131  |  |
|                                                                                                                 | DERLIN          | Derlin-2/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2.918.m1          | <br>NEMVE √1g179634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 82.74 | 168    | 2.00E-93   |  |
| Ligase complex                                                                                                  |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |            |  |
| El activating                                                                                                   | UHE1            | nhiquitin activating enzyme E1 [EC:6.3.2.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2.14992.m1        | nvesNEIMVE_vig129964                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.47 | 1038   | 0          |  |
| ensyme                                                                                                          | IFF2C           | initia contentiar (movem E2.C [EC-6.3.2.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1775479m1           | www.WEIMIVE.wile/237/281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5775  | 147    | 3 00F-44   |  |
|                                                                                                                 | 100200          | disating contacting array F2 D/F [FC:6 3.2 19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1221247 m1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9757  | 147    | 2005-100   |  |
|                                                                                                                 | uneno Ar        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1221695-1           | NEMIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 707   | 140    | 3005 00    |  |
|                                                                                                                 | UDENO AC        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1221085.01          | MEMIE wight 2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.33 | 107    | 2005.04    |  |
|                                                                                                                 | 000.2070        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1221089.00          | MCHAC_VIGLE/8/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.66 | 163    | 21002-74   |  |
|                                                                                                                 | UBE20/E         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1221080.001         | HERVE_VIGL27671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70.44 | 150    | 9100E-31   |  |
|                                                                                                                 | UNETOT          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12002101            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 003   | 107    | 51N0E-50   |  |
| E2 conjugating                                                                                                  | UNEZALZ         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2.2.2895.001      | ENGINE A ACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90.5  | 105    | 400E-111   |  |
| enzyme                                                                                                          | UHEZI           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2.6436.001        | INCOLUNE_VIE 159579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75.95 | 158    | 7 INUE-85  |  |
|                                                                                                                 | UHEZJI          | ninquita complaing enzyme EZ J1 (EC63.2.19)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2.138.m1          | INCOMENTAL ACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 86.72 | 128    | 5 INUE-82  |  |
|                                                                                                                 | UHEZL3          | ningenten conjugating conyme 1213 [EC632219]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2.3007.m1         | TWO IN THE TREE TO BE AND A TREE TO BE A TRE | 7111  | 180    | 7.DOE-87   |  |
|                                                                                                                 | UBE2M           | nhiquitin conjugating enzyme E2 H [EC563.2.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2.1863.m1         | EWSHEHVE_vig171977                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 88.81 | 134    | 2.00E-86   |  |
|                                                                                                                 | UHRZM           | ningarian conjugating enzyme EZW (20063219)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2.23020.m1        | TWO IN THE PARTY OF THE PARTY O | 84.77 | 151    | 3100E-92   |  |
|                                                                                                                 | UHE2O           | nbiquitin conjugating enzyme E2.0 [EC6.3.2.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2.7586.m1         | everNENVE_vig196482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.94 | 1114   | 0          |  |
|                                                                                                                 | UHEZQ           | nbaquitin conjugating enzyme E2 Q [EC6.3.2.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1214941m1           | ave:NEMVE_vig230272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84.91 | 159    | 2.00E-98   |  |
|                                                                                                                 | UHLZK           | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2.35/3.m1         | INCOLUMNE_VIG194815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85.65 | 237    | 5.00E-1.58 |  |
|                                                                                                                 | HERCI           | E3 abagustas protein ligise HERC1 [EC6.3.2.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1217650m1           | everter MVE_wig240406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 61.67 | 1320   | 0          |  |
|                                                                                                                 | TRP12           | E3 abiquitin protein ligase TRIP12 [EC4.3.2.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2.3515.m1         | EW:MEMVE_v1g191358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55.41 | 1617   | 0          |  |
| HECT type E3                                                                                                    | MELTINA         | 13 abquita protein igree #EDD4 [EC56.3.2.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2.4310.m1         | EWENEMVE_vig161803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 82.99 | 4-88   | U          |  |
|                                                                                                                 | UHE3B           | nhiquitin protein ligen E3 B [EC:6.3.2.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.2.6288.m1         | ewsNEHVE_vig160280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62.86 | 972    | 0          |  |
|                                                                                                                 | WWP1            | atrophen-1 interacting protein 5 [ECa6.3.2.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2.13267.m1        | awsNEMVE_vig158690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 73.67 | 676    | U<br>C     |  |
|                                                                                                                 | EGAP            | nhiquitin protein ligaze E3 A [EC:6.3.2.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2.1434.m1         | www.MEMVE_vig243312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66.33 | 796    | 0          |  |
|                                                                                                                 | UHE4A           | nbiquitin conjugation factorE4 A [CG6.3.2.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.2.14462.m1        | evesNEMVE_v1g240861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5014  | 718    | 0          |  |
| U-box type E3                                                                                                   | CSP19           | pre-mattice-processing factor 19 (EC:6.3.2.19)<br>peptidat produt city trans insumerous. Else ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2.883.m1          | EXCEPTION: vig199033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80.86 | 512    | U          |  |
|                                                                                                                 | CYC4            | EC5218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2.14889.m1        | aw:HEMVE_v1g248427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70.92 | 533    | 0          |  |
|                                                                                                                 | ња//0           | heat shock 70kDa protein 1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2.8575.m1         | NEMVE_vig189485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80.83 | 652    | 0          |  |
|                                                                                                                 | MEKKI           | mitogen-activated protein kinase kinase hinase 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.5530.m1         | wwsHEIMVE_wig120549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61.59 | 867    | 0          |  |
|                                                                                                                 | TRAF6           | TNF receptor-associated factor 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.2897.m1         | nvesNEMVE_v1g178259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51.09 | 458    | 2.00E-158  |  |
| ete et e POUC de com                                                                                            | PIAS            | E3 SUMO-protein ligase PIAS2 [EC:6.3.2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2.11953.m1        | wwsNEMVE_wig134544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 69.87 | 385    | 0          |  |
| type E3                                                                                                         | SIAH-1          | E3 <b>abiquitin-protein lig</b> ese SIARI [EC:6.3.2.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2.20985.m1        | www.WEIMVE_w1g93606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.78 | 129    | 3.00E-10   |  |
|                                                                                                                 | Tri=37          | tripartite motif-containing protein 37 [EC=6.3.2.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2.2625.m1         | ave NEIWE_v1g95966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90.64 | 267    | 2.00E-173  |  |
|                                                                                                                 | HECA1           | broast cancer type 1 susceptibility protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2.4545.m1         | www.NEMVE_wig238046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41.41 | 227    | 4.00E-38   |  |
|                                                                                                                 | SYVN, Hedd      | E3 abiquitin-protein ligne synoviolin [EC:6.3.2.19]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2.10197.m1        | EVENERVE_vig32018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88.34 | 326    | 0          |  |
|                                                                                                                 | RBX             | RING bes protein 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2.15842.m1        | ave:MEMIVE_v1g1@697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90.18 | 112    | 2.00E-72   |  |
|                                                                                                                 | KREZ            | RING-box protein 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2.598.m1          | ave:MEMIVE_wig181003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 87.88 | 99     | 4.00E-61   |  |
| RING-finger type E3                                                                                             | Calls           | calin 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.2.480.m1          | www.MEMIVE_wig191273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 86.17 | 694    | 0          |  |
|                                                                                                                 | Calif           | callia 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2.3461.m1         | www.NEMVE_wig171734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 82.59 | 580    | 0          |  |
|                                                                                                                 | DOBI            | DNA <del>damage binding</del> protein 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1213230m1           | www.MEMVE_w1g241997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75.81 | 1174   | 0          |  |
|                                                                                                                 | F-bax           | F-box and WD-40 domain protein 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.20605.m1        | ave:NEMVE_v1g242260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 68.55 | 671    | 0          |  |
| Substrate<br>entraction and                                                                                     | uida            | nbiquitin facion degradation protein 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2.679.m1          | NEMVE_v1g189007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69.26 | 309    | 7.00E-142  |  |
| recruiting                                                                                                      | <b>P</b> 97     | transitional endeplacanic activation ATPase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2.19057.m1        | NEHVE_vig190325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90.14 | 771    | 0          |  |
| Shuttle protein                                                                                                 | DUB             | Ataain-3 [EC:3.4.22]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2.9216.m1         | NEMVE_v1g34645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70    | 210    | 2.00E-99   |  |
|                                                                                                                 | RAD23           | UV encision repairprotein RAD23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2.2686.m1         | NEHWE_v1g246958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52.02 | 371    | 2.00E-109  |  |

**(A)** 

|                                                               | Rpm2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26S prote asome regulatory submit N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2.2366.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | www.NEMVE_v1g193603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77.13                                                                                                                                                                                                                             | 1019                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                               | Rpm3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26S prote asome regulatory submit N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2.11418.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | we:#EMVE_v1g233482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73.31                                                                                                                                                                                                                             | 502                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                               | Rpu5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26S prote asome regulatory submit MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2.7613.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nve:NEMVE_v1g113443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 73.54                                                                                                                                                                                                                             | <b>44</b> 6                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                               | Rpm6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26S proteasome regulatory submit N6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2.4538.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ave:NEMVE_v1g219029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75.72                                                                                                                                                                                                                             | 416                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                               | Rpm7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26S proteasome regulatory submit N7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2.3354.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ave:NEMVE_v1g195005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 76.53                                                                                                                                                                                                                             | 277                                                                                                                                                                                         | 7.00E-1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                               | RpmB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26S proteasome regulatory submit N8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2.16235.ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nve:NEMVE_v1g161920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71.84                                                                                                                                                                                                                             | 348                                                                                                                                                                                         | 5.00E-166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | Epu9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26S proteasome regulatory submit N9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2.8083.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ave:NEMVE_v1g79078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70.48                                                                                                                                                                                                                             | 376                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                               | Rpm10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26S proteasome regulatory submit N10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2.1010.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ave:NEMVE v1g236108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65.13                                                                                                                                                                                                                             | 413                                                                                                                                                                                         | 4.00E-166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | Rpu11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26S proteasome regulatory submit N11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2.12964.ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ave:NEMVE v1g239961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83.55                                                                                                                                                                                                                             | 310                                                                                                                                                                                         | 1.00E-178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | Reul2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26S proteasome regulatory submit N12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2.13351.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ave:NEMVE v1g190193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79.85                                                                                                                                                                                                                             | 263                                                                                                                                                                                         | 4.00E-144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | Roff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 265 proteasome regulatory submit TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 2 16618 m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ave:NEMVE v1e189255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8618                                                                                                                                                                                                                              | 434                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                               | Rot?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 265 metuzone constance calmait 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 2 5710 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | THE MUT wig1 76351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 06.45                                                                                                                                                                                                                             | 107                                                                                                                                                                                         | 8 00E-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | Pref 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 265 contractor constraints and the contract T2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 2 2245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | medicing victors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00.67                                                                                                                                                                                                                             | A10                                                                                                                                                                                         | 0.002.131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | Read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 265 proteins and the column TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12461-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | medicinite wire 15693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 90.07                                                                                                                                                                                                                             | 200                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                               | арал<br>Раз                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.2041-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 97                                                                                                                                                                                                                                | 476                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pro teaso me                                                  | лра                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.3901.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | THE SECTION OF A 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 06.03                                                                                                                                                                                                                             | 412                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.120.36.ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | THE SECTIVE_VIET 90029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 07.71                                                                                                                                                                                                                             | 712                                                                                                                                                                                         | 4005.170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.17383.mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | EVENUE_V1g238636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 88.21                                                                                                                                                                                                                             | 2.10                                                                                                                                                                                        | 4 002-109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | alipikaZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 205 proteasome submut alpha 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LZ15/3.ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ave:NEMVE_v1g165493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 91.45                                                                                                                                                                                                                             | 2.34                                                                                                                                                                                        | 1.001-163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | alpha3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20S proteasome salbunit alpha 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.27785.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | www.WEMVE_w1g148426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77.63                                                                                                                                                                                                                             | 152                                                                                                                                                                                         | 4.00E-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                               | alpha4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20S proteasome salbunit alpha 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.3696.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | awe:NEMVE_w1g179894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 88.54                                                                                                                                                                                                                             | 253                                                                                                                                                                                         | 1.00E-158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | alphaS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20S proteasome salbanit alpha 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.9821.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | we:NEMVE_v1g168163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88.84                                                                                                                                                                                                                             | 242                                                                                                                                                                                         | 2.00E-161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | alpha6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20S prote asome submit alpha 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.2830.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | avesNEMVE_v1g10968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85.36                                                                                                                                                                                                                             | 239                                                                                                                                                                                         | 3.00E-1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                               | alpha7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20S proteasome submit alpha 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2.9956.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nvedHEMVE_v1g235516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82.08                                                                                                                                                                                                                             | 240                                                                                                                                                                                         | 2.00E-148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | betal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20S prote asome sabunit beta 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.9584.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ave:NEMVE_v1g101124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82.23                                                                                                                                                                                                                             | 197                                                                                                                                                                                         | 5.00E-121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | beta2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20S prote asome sabunit beta 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.10862.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nwe:MEMVE_w1g127396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 57.14                                                                                                                                                                                                                             | 231                                                                                                                                                                                         | 2.00E-77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                               | beta3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20S prote asome sabunit beta 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.5977.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mvesNEMVE_w1g99390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 88.78                                                                                                                                                                                                                             | 205                                                                                                                                                                                         | 7.00E-139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | beta4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20S prote asome sabunit beta 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.22654.ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nve:NEMVE_v1g193516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70.56                                                                                                                                                                                                                             | 197                                                                                                                                                                                         | 4.00E-104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | beta5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20S prote asome salvanit beta 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.2519.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | www.HEMVE_w1g173323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83.39                                                                                                                                                                                                                             | 277                                                                                                                                                                                         | 7.00E-174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | beta6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20S prote asome sabunit beta 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.8961.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | we:HEMVE_v1g191787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80.09                                                                                                                                                                                                                             | 226                                                                                                                                                                                         | 9.00E-136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | beta7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20S proteasome salbunit beta 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.17366.ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | weshEMVE_w1g167347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76.79                                                                                                                                                                                                                             | 56                                                                                                                                                                                          | 3.00E-26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>UPR: unfolded pr</b>                                       | otein response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                               | EBN 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | endoribounclease inositol-requiring enzyme 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2.5693.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NEMVE_v1g93936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 69.68                                                                                                                                                                                                                             | 409                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IREI c                                                        | TEAF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THF receptor-associated factor 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2.2752.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NEMVE_v1g112390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 44.7                                                                                                                                                                                                                              | 528                                                                                                                                                                                         | 3.00E-149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | TEAF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THF receptor-associated factor 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2.1949.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NEMVE_v1g112390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40.49                                                                                                                                                                                                                             | 568                                                                                                                                                                                         | 2.00E-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                               | TNF-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tamor necrosis factor receptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2.18805.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>sz</b> 7132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.14                                                                                                                                                                                                                             | 148                                                                                                                                                                                         | 1.00E-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                               | TEAF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THF receptor-associated factor 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2.3871.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ksz7186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35.74                                                                                                                                                                                                                             | 554                                                                                                                                                                                         | 5.00E-94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                               | TRAF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THF receptor-associated factor 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2.5426.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>s</b> =7186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.48                                                                                                                                                                                                                             | 545                                                                                                                                                                                         | 6.00E-94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| МАРК                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | THE manufacture states of factors 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 2 107/2 -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                   |                                                                                                                                                                                             | 2 002 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                               | TEAF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THE REPORT ASSOCIATE MEDER 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2.10762.ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s=7186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35.14                                                                                                                                                                                                                             | 552                                                                                                                                                                                         | 2006-99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| МАРК                                                          | TEAF2<br>MKK7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mitogen-activated protein kinase kinase 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2.2135.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lear7186<br>NEMVE_v1g229025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35.14<br>70.03                                                                                                                                                                                                                    | 552<br>317                                                                                                                                                                                  | 4.00E-167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MAPK                                                          | твағ2<br>МКК7<br>с-ј <b>, ј</b> им                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ner norpheresterated actor 2<br>mitogen activated protein kinase kinase 7<br>transcription factor AP-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.2.2135.m1<br>1.2.21516.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lesz:7186<br>NE MVE_v1g2:29025<br>lesz:3725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35.14<br>70.03<br>36.1                                                                                                                                                                                                            | 552<br>317<br>349                                                                                                                                                                           | 4.00E-167<br>5.00E-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MAPK                                                          | ТВАР2<br>МКК7<br>с-ј <b>, ј</b> ЈЈИ<br>ВАХ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ner receptor-economic tentra<br>mitogen activated protein kinase kinase 7<br>transcription factor AP-1<br>apoptosis regulator RAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2.2135.m1<br>1.2.21516.m1<br>1.2.7024.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | leæ7186<br>NEMVE_√1g2.29025<br>leæ3725<br>NEMVE_√1g100129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.14<br>70.03<br>36.1<br>71.57                                                                                                                                                                                                   | 552<br>317<br>349<br>102                                                                                                                                                                    | 2.00E-99<br>4.00E-167<br>5.00E-45<br>9.00E-53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MAPK<br>BAX                                                   | TRAF2<br>MKK7<br>c-j=, JUN<br>BAX<br>XBP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne responses obtains a truby 2<br>mitogen activated protein kinace kinace 7<br>transcription factor AP-1<br>apoptoris, regulator RAI<br>I box binding protein 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2.2135.m1<br>1.2.21516.m1<br>1.2.7024.m1<br>1.2.15171.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kaz7186<br>NEMVE_v1g229025<br>kaz3725<br>NEMVE_v1g100129<br>NEMVE_v1g211292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35.14<br>70.03<br>36.1<br>71.57<br>61.42                                                                                                                                                                                          | 552<br>317<br>349<br>102<br>127                                                                                                                                                             | 4.00E-53<br>6.00E-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MAPK<br>BAX                                                   | TRAF2<br>MKK7<br>c.j.m, JUN<br>BAX<br>XBP<br>CAPH1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Interestingen activated protein kinase kinase 7<br>mitogen activated protein kinase kinase 7<br>apoptosis regulator RAX<br>I box binding protein 1<br>calgain 1 [EC:84.2252]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.2135.m1<br>1.2.2135.m1<br>1.2.21516.m1<br>1.2.7024.m1<br>1.2.15171.m1<br>1.2.13821.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Hear7186<br>HEMME_v1g229025<br>Hear1725<br>HEMME_v1g100129<br>HEMME_v1g21022<br>kcad23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73                                                                                                                                                                                 | 552<br>317<br>349<br>102<br>127<br>712                                                                                                                                                      | 4.00E-99<br>4.00E-167<br>5.00E-45<br>9.00E-53<br>6.00E-51<br>2.00E-166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MAPK                                                          | TRAF2<br>MKK7<br>c-j=, JUM<br>BAX<br>IBF<br>CAPH 1<br>CASP12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Internetiper-activated protein kinase kinase 7<br>mitogen activated protein kinase kinase 7<br>transcription factor AP-1<br>apoptosis regulator RAX<br>I box binding protein 1<br>calgain 1 [05:34.22-5]<br>capase 12 [05:34.22-7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.2135.m1<br>1.2.2135.m1<br>1.2.21516.m1<br>1.2.7024.m1<br>1.2.15171.m1<br>1.2.13821.m1<br>1.2.9586.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | leaz786<br>HEMVE_y1g229025<br>leaz1725<br>HEMVE_y1g100129<br>HEMVE_y1g211292<br>leaz123<br>leaz100506742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46                                                                                                                                                                        | 552<br>317<br>349<br>102<br>127<br>712<br>260                                                                                                                                               | 4.00E-99<br>4.00E-167<br>5.00E-45<br>9.00E-53<br>6.00E-51<br>2.00E-166<br>5.00E-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| BAX                                                           | TRAF2<br>MKK7<br>c-jm, JUM<br>BAX<br>IBP<br>CAIPH1<br>CASP12<br>PEKK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | In receptor-accesses actors<br>mitogen activated protein kinace kinace 7<br>transcription factor AP-1<br>apoptoris regulator IAX<br>I box binding protein 1<br>calgain-1 [EC:34.22.52]<br>caspase 12 [EC:34.22.52]<br>enderstoit translation initiation factor 2 algebra<br>binses 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2.135.m1<br>1.2.2135.m1<br>1.2.21516.m1<br>1.2.15171.m1<br>1.2.13821.m1<br>1.2.9586.m1<br>1.2.9586.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | leaz7886<br>NEINVE_vtg22025<br>leaz7725<br>NEINVE_vtg100129<br>NEINVE_vtg211292<br>leaz102006742<br>NEINVE_vtg200396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.86                                                                                                                                                               | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716                                                                                                                                        | 2.002-55<br>4.00E-167<br>5.00E-45<br>9.00E-53<br>6.00E-51<br>2.00E-166<br>5.00E-20<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| МАРК<br>                                                      | TRAF2<br>MKK7<br>cj=,JJM<br>BAX<br>XBP<br>CAFW1<br>CASP12<br>FERK<br>clF2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | In response sectantia tubric<br>mitegen activuted protein lance lance 7<br>transcription factor AP-1<br>apoptoin ruging protein 1<br>calpain 1 [00:34.22.52]<br>caspase 12 [00:34.22.5]<br>endurote translation initiation factor 2 alpha<br>lainse 1<br>translation initiation factor 2 submit 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2.2135.m1<br>1.2.21516.m1<br>1.2.21516.m1<br>1.2.15171.m1<br>1.2.13821.m1<br>1.2.9586.m1<br>1.2.9243.m1<br>1.2.8246.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Inter 7186<br>INTER 1400, yr 1g 220025<br>Inter 2725<br>INTER 1400, yr 1g 100129<br>INTER 1400, yr 1g 112792<br>Inter 1400506742<br>INTER 1400506742<br>INTER 1400506742<br>INTER 1400506742                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.86<br>82.8                                                                                                                                                       | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314                                                                                                                                 | 2.002-55<br>4.00E-167<br>5.00E-45<br>9.00E-53<br>6.00E-51<br>2.00E-166<br>5.00E-20<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| МАРК<br>                                                      | TRAF2<br>MKK7<br>cj=,JJN<br>BAX<br>XIBP<br>CAIWI<br>CAIWI<br>CAIWI<br>FERK<br>cIF2a<br>ATF4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | In response socialist tubric<br>mitegen activuted protein kinaas kinaas 7<br>transcription factor AP-1<br>apoptosis regulator IIAX<br>I bes kinding protein 1<br>colpain 1 (20:34.22.52)<br>cospans 12 (20:34.22]<br>redurptit translation initiation factor 2 alpha<br>kinase 1<br>translation initiation factor 2 selemit 1<br>cyclic AMP dependent transcription factor ATP-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.2135m1<br>12.2135m1<br>12.21516m1<br>12.7074m1<br>12.15171m1<br>12.13821m1<br>12.9586m1<br>12.9243m1<br>12.28366m1<br>12.2941m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | le:2786<br>HEHVE; v1g22x025<br>le:2725<br>HEHVE; v1g100129<br>HEHVE; v1g100129<br>le:2123<br>le:2100060742<br>HEHVE; v1g105797<br>le:2166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.86<br>82.8<br>50                                                                                                                                                 | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90                                                                                                                           | 2.002-99<br>4.00E-167<br>5.00E-45<br>9.00E-53<br>6.00E-51<br>2.00E-166<br>5.00E-20<br>0<br>0<br>4.00E-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MAPK<br>BAX<br>PERK                                           | TRAF2<br>HKK7<br>cjm, JJH<br>JAX<br>JHP<br>CAFH1<br>CASP12<br>PERK<br>eIP22<br>ATF4<br>KEF2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | In response socialist tubre 2<br>mitogen activuted protein kinase kinase 7<br>transcription factor AP-1<br>apoptosis regulator IIAX<br>Look kinding protein 1<br>calpiant I (20:34.22.2)<br>enkapose 12 (20:34.22.2)<br>enkapose 12 (20:34.22.2)<br>enkapose 12 (20:34.22.2)<br>enkapose translation initiation factor 2 alpha<br>kinase 1<br>translation initiation factor 2 selemit 1<br>cyclic AMP dependent transcription factor ATP-4<br>medioar factor explanoid 2-related factor 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2.2135m1<br>1.2.2135m1<br>1.2.21516m1<br>1.2.7024m1<br>1.2.15171m1<br>1.2.13821m1<br>1.2.9586m1<br>1.2.9243m1<br>1.2.8366m1<br>1.2.2941m1<br>1.2.25358m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | له::27186<br>۲۹۹۲ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹<br>۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ -<br>۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹<br>- ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - ۲۹۹۶ - | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.86<br>82.8<br>50<br>42.62                                                                                                                                        | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122                                                                                                                    | 2.002-99<br>4.00E-167<br>5.00E-45<br>9.00E-53<br>6.00E-51<br>2.00E-166<br>5.00E-20<br>0<br>0<br>4.00E-14<br>1.00E-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MAPK<br>BAX<br>PERK                                           | TRAF2<br>HKK7<br>cjm,JJH<br>BAX<br>JIH<br>CAIPHI<br>CAIPHI<br>CAIPHI<br>PERK<br>dF22<br>ATT4<br>KEF2<br>ATT6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | In response Socialis tubric<br>mitegen activuted protein kinase kinase 7<br>transcription factor AP-1<br>apoptosis regulator IIAX<br>k box binding protein 1<br>culpain 1 [ECSA-2253]<br>culpain 1 [ECSA-2253]<br>culpain 1 [ECSA-2253]<br>culpain 2  | 122117.02.ml<br>122135.ml<br>1221516.ml<br>12.7024.ml<br>12.15171.ml<br>12.15821.ml<br>12.9243.ml<br>12.2943.ml<br>12.2941.ml<br>12.25358.ml<br>12.4295.ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lez7186<br>REHVE, ylg 22025<br>lez8725<br>REHVE, ylg 21029<br>REHVE, ylg 21292<br>lez8123<br>lez8123<br>REHVE, ylg 2003%<br>REHVE, ylg 215777<br>lez846<br>lez8720<br>REHVE, ylg 245260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.86<br>82.8<br>50<br>42.62<br>38.32                                                                                                                               | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689                                                                                                             | 2.002-55<br>4.00E-167<br>5.00E-45<br>9.00E-53<br>6.00E-51<br>2.00E-166<br>5.00E-20<br>0<br>0<br>4.00E-14<br>1.00E-22<br>5.00E-131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MAPK<br>BAX<br>PERK<br>ATP6                                   | TRAF2 FIRE FIE FIE FIE FIE FIE FIE FIE FIE FIE FI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | In response socialist tuber 2<br>mitogen activated protein kinase kinase 7<br>transcription factor AP-1<br>apoptosis regulator RAX<br>Liber binding protein 1<br>colgain 1 [CCSA-2252]<br>colgain 2 [CCSA-2252]<br>colgain 2 [CCSA-2252]<br>colgain 3 [CCSA-2252]<br>colgain 4 | 12.2135m1<br>12.2135m1<br>12.7024m1<br>12.7024m1<br>12.1517Lm1<br>12.1582Lm1<br>12.2956m1<br>12.2936m1<br>12.2934m1<br>12.2931m1<br>12.25358m1<br>12.4295m1<br>12.4295m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lez:7186<br>REHVE_v1g22025<br>lez:1725<br>REHVE_v1g20129<br>REHVE_v1g211292<br>lez:100506742<br>REHVE_v1g20396<br>REHVE_v1g20396<br>REHVE_v1g245260<br>REHVE_v1g245260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.86<br>82.8<br>50<br>42.62<br>38.32<br>57.36                                                                                                                      | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006                                                                                                     | 4.00E-167<br>5.00E-45<br>9.00E-53<br>6.00E-51<br>2.00E-51<br>2.00E-51<br>5.00E-20<br>0<br>0<br>4.00E-14<br>1.00E-22<br>5.00E-131<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MAPK<br>BAX<br>PERK<br>ATF6                                   | TRAP2 TRAP2 TRK7 CJ=JUN TRP CAIVIT CASP12 CASP12 CEEKK CASP42 KEF2 CASP4 SIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | In response Socialist tuber 2<br>mitogen activuted protein kinase kinase 7<br>transcription factor AP-1<br>apoptosis regulator IIAX<br>k box binding protein 1<br>culpain 1 [CC3A-22:5]<br>culpain 1 [CC3A-22:5]<br>culpain 2 [CC3A-22:7]<br>culpain 2 [CC3A-22:7]<br>culpain 2 [CC3A-22:7]<br>culpain 2 [CC3A-22:7]<br>culpain 3 [CC3A-22:7]<br>culpain 4 [CC3A-22:7]<br>culpain  | 12.2135m1<br>1.2.2135m1<br>1.2.213516.m1<br>1.2.7024.m1<br>1.2.138121.m1<br>1.2.9386.m1<br>1.2.9343.m1<br>1.2.23366.m1<br>1.2.2358.m1<br>1.2.25358.m1<br>1.2.4295.m1<br>1.2.4295.m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Inter7186           NEHVE, v1(220025           Inter7725           NEHVE, v1(200127           NEHVE, v1(211292           Inter772           Inter772           NEHVE, v1(211292)           Inter772           Inter772           NEHVE, v1(211297)           Inter772           NEHVE, v1(2115777           Inter7720           NEHVE, v1(245260           Inter7720           NEHVE, v1(215356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.86<br>82.8<br>50<br>42.62<br>38.32<br>57.36<br>68.96                                                                                                             | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006<br>480                                                                                              | 4.00E-167<br>5.00E-45<br>9.00E-53<br>6.00E-53<br>6.00E-51<br>2.00E-20<br>0<br>0<br>4.00E-14<br>1.00E-22<br>5.00E-131<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MAPK<br>BAX<br>PERK<br>ATF6<br>ERboneostasis                  | TRAP2<br>HKK7<br>cjm, JJM<br>PAX<br>IBP<br>CAFF1<br>CAFF1<br>CAFF1<br>PERK<br>eIT2a<br>ATF4<br>ATF4<br>SIP<br>SIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | In response socialist tuber 2<br>mitegen activated protein kinase kinase 7<br>transcription factor AP-1<br>apoptosis regulator RAX<br>I box binding protein 1<br>colgain 1 [05:34-25:2]<br>endoaren 12 [05:34-22:2]<br>endoaren 12 [05:34-22:2]<br>endoaren 12 [05:34-22:2]<br>endoaren 12 [05:34-22:2]<br>endoaren 12 [05:34-22:3]<br>endoaren 12 [05:34-22:3]<br>endoaren 12 [05:34-22:3]<br>endoaren 12 [05:34-22:3]<br>endoaren 12 [05:34-22:3]<br>endoaren 12 [05:34-22:3]<br>endoaren 12 [05:34-22:4]<br>endoaren 12 [05:34-22:4]<br>S2P endoapoptidase [05:34-22:4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.2135m1<br>1.2.2135m1<br>1.2.213516.m1<br>1.2.7024m1<br>1.2.15171.m1<br>1.2.13821.m1<br>1.2.9366m1<br>1.2.9346m1<br>1.2.2941m1<br>1.2.25358m1<br>1.2.25358m1<br>1.2.4295m1<br>1.2.4295m1<br>1.2.4295m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lezz7886<br>REHVE_v1g22025<br>lezz725<br>REHVE_v1g20129<br>lezz10000742<br>NEHVE_v1g21292<br>lezz10000742<br>NEHVE_v1g18595<br>lezz4700<br>REHVE_v1g185956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.86<br>82.8<br>50<br>42.62<br>38.32<br>57.36<br>68.96                                                                                                             | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006<br>480                                                                                              | 4.00E-167<br>5.00E-45<br>9.00E-53<br>6.00E-51<br>2.00E-51<br>2.00E-51<br>2.00E-20<br>0<br>0<br>4.00E-14<br>1.00E-22<br>5.00E-131<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MAPK<br>BAX<br>PERK<br>ATF6<br>ER homeostasis                 | TRAF2 HKK7 cjm,JJM PAX IBP CAFF1 CAFF1 CAFF1 CAFF1 FERK eIT2a ATT4 KEF2 SIP S2P ER01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | In response Socialis interva<br>mitegen activuted protein kinase kinase 7<br>transcription factor AP-1<br>apoptosis regulator RAX<br>I bes binding protein 1<br>colgain 1 [02:34-22:32]<br>enduryotic translation initiation factor 2 alpha<br>kinase 1<br>enduryotic translation initiation factor 2 alpha<br>enduryotic translation initiation factor 3<br>enduryotic translation initiation factor 3<br>enduryotic translation factor 3<br>enduryotic factor alpha [EC:34.24:46]<br>EED1-like protein bein [EC:18.4-]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.2107.02.ml<br>1.2.2135.ml<br>1.2.2135.16.ml<br>1.2.7024.ml<br>1.2.15171.ml<br>1.2.13821.ml<br>1.2.9366.ml<br>1.2.9343.ml<br>1.2.23358.ml<br>1.2.25358.ml<br>1.2.25358.ml<br>1.2.25358.ml<br>1.2.295.ml<br>1.2.21967.ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Inter7186           NEHVE, vtp22025           Inter725           NEHVE, vtp200129           NEHVE, vtp200129           NEHVE, vtp200129           NEHVE, vtp200376           NEHVE, vtp200376           NEHVE, vtp245260           NEHVE, vtp185856           NEHVE, vtp33316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.86<br>82.8<br>50<br>42.62<br>38.32<br>57.36<br>68.96<br>59.34                                                                                                    | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006<br>480<br>391                                                                                       | 4.00E-167<br>5.00E-45<br>9.00E-33<br>6.00E-51<br>2.00E-51<br>2.00E-51<br>0<br>0<br>0<br>4.00E-14<br>1.00E-22<br>5.00E-131<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MAPK<br>BAX<br>PERK<br>ATF6<br>ER homeostasis                 | TKAF2 HKK7 cjm,JIM IAX INP CAIPI 1 CASP12 PEEK eIP22 ATF4 SIP SIP EE01 POIs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | In response Socialist USE 2<br>mitegen activeted protein kinzer kinzer 7<br>transcription factor AP-1<br>apoptosis regulator RAT<br>I box binding protein 1<br>colgain 1 [ECSA-2252]<br>colgain 1 [ | 12.2135m1<br>12.2135m1<br>12.21516m1<br>12.21516m1<br>12.15171m1<br>12.15371m1<br>12.9586m1<br>12.2984m1<br>12.2358m1<br>12.2358m1<br>12.2951m1<br>12.2957m1<br>12.21967m1<br>12.210186m1<br>12.9018m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Inter7186           NELHVE, vtlg220025           Inter7725           NELHVE, vtlg100120           NELHVE, vtlg100120           NELHVE, vtlg11292           Inter771           Inter772           NELHVE, vtlg11292           Inter772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.86<br>82.8<br>50<br>42.62<br>38.32<br>57.36<br>68.96<br>59.34<br>69.42                                                                                           | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006<br>480<br>391<br>412                                                                                | 4.00E-167<br>5.00E-45<br>9.00E-53<br>6.00E-51<br>2.00E-166<br>5.00E-20<br>0<br>4.00E-14<br>1.00E-22<br>5.00E-131<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MAPK<br>BAX<br>PERK<br>ATF6<br>ER bomeostasis                 | TKAF2 HKK7 cjm,JIM IAX KHP CAIH1 CASP12 HEK CASP12 HEK SIP SZP ER01 FDIs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | In response sector and a term 2<br>mitegen activeted protein kinner kinner 7<br>transcription factor AP-1<br>apoptod: regulator RAX<br>I box binding protein 1<br>colgain 1 [ECSA-22:52]<br>congrass 12 [ECSA-22:52]<br>congrass 12 [ECSA-22:52]<br>conference initiation factor 2 alpha<br>binner 1<br>translation initiation factor 2 alpha<br>binner 1<br>translation initiation factor 2 alpha<br>binner 1<br>conference initiation factor 2 alpha<br>binner 1<br>conference initiation factor 3<br>conference initiation fa                                           | 12217962mi<br>122135mi<br>1221516mi<br>1221516mi<br>12215171mi<br>1215371mi<br>122586mi<br>122986mi<br>122984mi<br>122984mi<br>122954mi<br>122954mi<br>122975mi<br>1221967mi<br>1221967mi<br>12210186mi<br>1229018mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Inter7186           NELHVE, vtp220025           Inter7125           NELHVE, vtp200120           NELHVE, vtp245260           NELHVE, vtp1853516           NELHVE, vtp117546           NELHVE, vtp118540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.86<br>82.8<br>50<br>42.62<br>38.32<br>57.36<br>68.96<br>59.34<br>69.42<br>70.43                                                                                  | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006<br>480<br>391<br>412<br>413                                                                         | 4.00E-167<br>5.00E-45<br>9.00E-53<br>6.00E-51<br>2.00E-166<br>5.00E-00<br>0<br>4.00E-14<br>1.00E-22<br>5.00E-131<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MAPK<br>BAX<br>PEKK<br>ATF6<br>ER homeostasis<br>ER REDOX     | TKAF2 HKK7 c.j=, JIH IAX XIIP CAI911 CAS912 FERK cI192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | In response socialità interez interez<br>mitegen activated protein linuxe linuxe 7<br>transcription factor AP-1<br>apoptosi: regulator IIAT<br>L bes binding protein 1<br>calgain 1 [CC3A.22.52]<br>carguez 12 [ICC3A.22.52]<br>carguez 12 [ICC3A.22.53]<br>carguez 12 [ICC3A.22.55]<br>carguez 12 [ICC                      | 12.2135m1<br>12.2135m1<br>12.21516m1<br>12.215171m1<br>12.15171m1<br>12.13821m1<br>12.986m1<br>12.986m1<br>12.986m1<br>12.2836m1<br>12.2836m1<br>12.2836m1<br>12.2338m1<br>12.2338m1<br>12.23975m1<br>12.210186m1<br>12.2018m1<br>12.9018m1<br>12.5704m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Inter7186           NELHVE, vtg22x025           Inter725           Inter725           NELHVE, vtg100129           NELHVE, vtg11292           Inter727           Inter728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.36<br>82.8<br>50<br>42.62<br>38.32<br>57.36<br>68.96<br>59.34<br>69.42<br>70.43<br>43.72                                                                         | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006<br>480<br>391<br>412<br>443<br>462                                                                  | 4.00E-167<br>5.00E-157<br>9.00E-53<br>6.00E-51<br>2.00E-166<br>5.00E-20<br>0<br>0<br>4.00E-14<br>1.00E-22<br>5.00E-131<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MAPK<br>BAX<br>PEKK<br>ATF6<br>ER homeostasis<br>ER REDOX     | TKAF2 HKK7 c.j=, JIH IAX INP CAIPI 1 CASP 12 FERK CAIPI 1 FERK FERK FERK FERK FERK FERK FERK FERK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In response sectantial tuber 2<br>antegen activuted protein lanze hance 7<br>transcription factor AP-1<br>apoptoin regulator RAX<br>L beschinding protein 1<br>calquin 1 [0034.22:52]<br>caspace 12 [0034.22:52]<br>caspace 12 [0034.22:52]<br>caspace 12 [0034.22:52]<br>caspace 12 [0034.22:5]<br>reactive antikation factor 2 submit 1<br>cyclic APEP dependent transcription factor 3<br>cyclic APEP dependent transcription factor Ste-1<br>S2P endopeptidase [E034.24:45]<br>EB01 blics protein beta [E0218.4-]<br>protein deallide isone new family A member 3<br>protein deallide isone new family A member 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.2135m1<br>12.2135m1<br>12.21516m1<br>12.215171m1<br>12.15171m1<br>12.13821m1<br>12.986m1<br>12.986m1<br>12.986m1<br>12.2836m1<br>12.2836m1<br>12.2836m1<br>12.2338m1<br>12.2338m1<br>12.2391m1<br>12.23967m1<br>12.210186m1<br>12.9018m1<br>12.5704m1<br>12.5704m1<br>12.5704m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Inter7186           NELHVE, v1g22x025           Inter7125           Inter7125           NELHVE, v1g100129           NELHVE, v1g11292           Inter712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.36<br>82.8<br>50<br>42.62<br>38.32<br>57.36<br>68.96<br>59.34<br>69.42<br>70.43<br>43.72<br>55.34                                                                | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006<br>480<br>391<br>412<br>443<br>462<br>524                                                           | 4.00E-197<br>4.00E-167<br>5.00E-23<br>6.00E-51<br>2.00E-166<br>5.00E-20<br>0<br>0<br>4.00E-14<br>1.00E-22<br>5.00E-131<br>0<br>0<br>0<br>3.00E-124<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MAPK<br>BAX<br>PERK<br>ATF6<br>ER homeostasis<br>ER hedox     | TKAF2 HKK7 c-j=, JJH IAX IMP CAF91 CAF91 CAF91 CAF91 CAF91 FERK cF2 CAF6 CAF6 FER5 FER5 FER5 FER5 FER5 FER5 FER5 FER5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | In response sectantial tuber 2<br>mitegen activuted protein lanze lanze 7<br>transcription factor AP-1<br>augeptoin regulator IAX<br>L bes binding protein 1<br>calgian 1 (EG18.4.2252)<br>carpen 12 (EG18.4.22-2)<br>redurposite translation initiation factor 2 alpha<br>limits a 1<br>translation initiation factor 2 submit 1<br>cyclic APB <sup>2</sup> dependent transcription factor AT <sup>2</sup> 4<br>mechanic initiation factor 2 submit 1<br>cyclic APB <sup>2</sup> dependent transcription factor AT <sup>2</sup> 4<br>mechanic initiation factor 2 submit 1<br>cyclic APB <sup>2</sup> dependent transcription factor AT <sup>2</sup> 4<br>mechanic initiation factor 2 submit 1<br>cyclic APB <sup>2</sup> dependent transcription factor AT <sup>2</sup> 4<br>mechanic initiation factor 2 submit 1<br>S2P endopendent transcription factor Ste <sup>-1</sup><br>S2P endopendence [EG3.4.2485]<br>EBD1-like protein bein [EG1.8.4-]<br>protein deallide isomerase famity A member 3<br>protein deallide isomerase famity A member 4<br>platatione reductore (MADPH) [EG1.8.17]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.21135.ml<br>12.22135.ml<br>12.213516.ml<br>12.27024.ml<br>12.15371.ml<br>12.15372.ml<br>12.9586.ml<br>12.9243.ml<br>12.9243.ml<br>12.9243.ml<br>12.2358.ml<br>12.2358.ml<br>12.24295.ml<br>12.24295.ml<br>12.210186.ml<br>12.2018.ml<br>12.2018.ml<br>12.2018.ml<br>12.2018.ml<br>12.2018.ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inter7186           NELHVE, v1g/22005           Inter718           Inter7125           NELHVE, v1g/100129           NELHVE, v1g/11292           Inter712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.86<br>82.8<br>50<br>42.62<br>38.32<br>57.36<br>68.96<br>59.34<br>69.42<br>70.43<br>43.72<br>55.34<br>37.45                                                       | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006<br>480<br>391<br>412<br>443<br>462<br>524<br>486                                                    | 4.00E-197<br>4.00E-167<br>5.00E-45<br>9.00E-35<br>0.00E-51<br>2.00E-166<br>5.00E-20<br>0<br>4.00E-14<br>1.00E-22<br>5.00E-131<br>0<br>0<br>0<br>0<br>3.00E-124<br>0<br>5.00E-47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MAPK BAX PERK ATF6 ER homeostasis ER HEDOX Cainfhar           | TKAF2 HKK7 c.j=, JIH IAX LIIP CAIPI 1 CASP 12 FERK CAIPI 1 FERK CASP 12 FERK FERK FERK FERK FERK FERK FERK FERK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | In response sectantial tuber 2<br>mitegen activuted protein lanze lanze 7<br>transcription factor AP-1<br>augeptoin regulator IRAT<br>L beschning protein 1<br>calgian 1 (EG18.4.2252)<br>cargoen 12 (EG18.4.22-2)<br>redurgent turadation initiation factor 2 algola<br>linisca 1<br>translation initiation factor 2 submit 1<br>cyclic APEP dependent transcription factor AT-4<br>mechanic initiation factor 2 submit 1<br>cyclic APEP dependent transcription factor AT-4<br>mechanic initiation factor 2 submit 1<br>cyclic APEP dependent transcription factor AT-4<br>mechanic initiation factor 2 submit 1<br>cyclic APEP dependent transcription factor AT-4<br>mechanic initiation factor 2 submit 1<br>S2P endopendent transcription factor Ste-1<br>S2P endopendiate (EG18.4.2)<br>protein deallide isomeruse famity A. member 3<br>protein deallide isomeruse famity A. member 4<br>gibratione reduction (MADPH) (EC18.8.7)<br>(G2-2) transporting ATP-00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.2119/02.ml<br>12.21135.ml<br>12.21135.ml<br>12.21516.ml<br>12.27024.ml<br>12.15371.ml<br>12.15372.ml<br>12.25366.ml<br>12.2943.ml<br>12.2943.ml<br>12.2943.ml<br>12.2953.ml<br>12.2957.ml<br>12.210186.ml<br>12.2018.ml<br>12.2018.ml<br>12.204.ml<br>12.204.ml<br>12.204.ml<br>12.204.ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lez7186<br>REHVE_vtg227025<br>lex2725<br>REHVE_vtg100129<br>REHVE_vtg1200129<br>lex2102506742<br>REHVE_vtg1200396<br>REHVE_vtg125797<br>lex260<br>REHVE_vtg125797<br>lex260<br>REHVE_vtg185356<br>REHVE_vtg185356<br>REHVE_vtg135316<br>REHVE_vtg135316<br>REHVE_vtg135316<br>REHVE_vtg135316<br>REHVE_vtg135316<br>REHVE_vtg135316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.36<br>82.8<br>50<br>42.62<br>38.32<br>57.36<br>68.96<br>59.34<br>69.42<br>70.43<br>43.72<br>55.34<br>43.745<br>68.93                                             | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006<br>480<br>391<br>412<br>443<br>462<br>524<br>486<br>1030                                            | 4.00E-197<br>5.00E-157<br>5.00E-45<br>9.00E-53<br>2.00E-166<br>5.00E-20<br>0<br>0<br>4.00E-14<br>1.00E-22<br>5.00E-131<br>0<br>0<br>0<br>3.00E-124<br>0<br>5.00E-47<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MAPK BAX PEKK ATF6 ER homeostasis ER HEDOX Ca influx          | TKAF2 HKK7 c.j=, JIH IAX IIIP CAIPI 1 CASP 12 FERK CAIPI 1 FERK CAIPI 2 FERK FERD FERK FERD FERK FERC FERC FERC FERC FERC FERC FERC FERC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | In response socialità interva<br>nitegna activute di protria listano listano listano<br>antegna activute di protria listano listano<br>sopotosi regulator AP-1<br>calguia 1 (EG3A 2252)<br>caspoto 12 (EG3A 2252)<br>caspoto 12 (EG3A 2252)<br>caspoto 12 (EG3A 2252)<br>caspoto 12 (EG3A 2252)<br>redurpoti translation initiation factor 2 alguia<br>listano 1<br>translation initiation factor 2 sobunit 1<br>cyclic APEP dependent transcription factor AT-4<br>medior factor explanoi 2 reducid factor 2<br>cyclic APEP dependent transcription factor AT-4<br>medior factor explanoi 2 reducid factor 3<br>cyclic APEP dependent transcription factor AT-6<br>membrane-bound transcription factor 3<br>protein disallide isomerase facily A member 3<br>protein disallide isomerase facily A member 4<br>platatione reductare (HADPH) (EG1.8.17]<br>Ca2 <sup>5</sup> transporting ATP-80<br>screption (Calguia TP-80<br>screption (C                           | 12.21135.ml<br>12.22135.ml<br>12.213516.ml<br>12.27024.ml<br>12.15371.ml<br>12.15371.ml<br>12.153721.ml<br>12.9243.ml<br>12.9243.ml<br>12.9243.ml<br>12.9243.ml<br>12.25358.ml<br>12.25358.ml<br>12.2575.ml<br>12.27157.ml<br>12.210186.ml<br>12.9018.ml<br>12.9018.ml<br>12.2704.ml<br>12.21047.ml<br>12.21047.ml<br>12.21047.ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lez7186<br>REHVE_v1g22x025<br>Lez2725<br>REHVE_v1g100129<br>Lez1725<br>Lez10000742<br>HEHVE_v1g210396<br>REHVE_v1g210396<br>REHVE_v1g20396<br>REHVE_v1g20396<br>REHVE_v1g20396<br>REHVE_v1g2152556<br>REHVE_v1g115555<br>REHVE_v1g135356<br>REHVE_v1g135356<br>REHVE_v1g135356<br>REHVE_v1g135356<br>REHVE_v1g135356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.86<br>82.8<br>50<br>42.62<br>38.32<br>57.36<br>68.96<br>59.34<br>69.42<br>70.43<br>43.72<br>55.34<br>37.45<br>68.93<br>51.71                                     | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006<br>480<br>391<br>412<br>443<br>462<br>524<br>486<br>1030<br>381                                     | 4.00E-167<br>5.00E-45<br>9.00E-35<br>9.00E-31<br>2.00E-166<br>5.00E-20<br>0<br>0<br>4.00E-14<br>1.00E-22<br>5.00E-13<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MAPK BAX PEKK ATF6 ER homeostasis ER HEDOX Ca influx          | TKAP2 FKK7 cjm,JIM IAX INP CAIMITCASP12 FERK CAIMITCASP12 FERK CAIMITCASP12 FERK CAIMITCASP12 FERK CAIMITCASP1 FERK FRO15 FRO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | In responsessential tubric<br>mitegen activuted protein kinase kinase 7<br>transcription factor AP-1<br>augeptoin regulator (RAT<br>Look binding protein 1<br>calgian 1 (EG18.4.2252)<br>caspase 12 (EG18.4.2252)<br>caspase 12 (EG18.4.2252)<br>caspase 12 (EG18.4.2252)<br>redurpoint translation initiation factor 2 alpha<br>kinase 1<br>translation initiation factor 2 submit 1<br>cyclic APR <sup>-1</sup> days index transcription factor ATF-4<br>mediar factor crythroid 2-related factor 2<br>cyclic APR <sup>-1</sup> days index transcription factor ATF-4<br>mediar factor crythroid 2-related factor 2<br>cyclic APR <sup>-1</sup> days index transcription factor ATF-6<br>membrane-bound transcription factor Ste-1<br>S2P endopspitales (EG18.4.4)<br>protein idealistic-issue race An (EG28.4.1)<br>protein idealistic issue race family A member 3<br>protein idealistic issue race family A member 3<br>protein idealistic issue race (IADPF) (EG18.8.17)<br>Ca22 transporting ATF-20<br>surrappion ( <i>P</i> dioplexame relation (EG36.3.28))<br>Endoplassic reticine mentione (EG36.3.28)<br>Endoplassic reticine mentione protein 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.2135m1<br>12.2135m1<br>12.2135m1<br>12.7024m1<br>12.1517Lm1<br>12.1587Lm1<br>12.9586m1<br>12.9243m1<br>12.9366m1<br>12.2941m1<br>12.25358m1<br>12.25358m1<br>12.4295m1<br>12.21967m1<br>12.210186m1<br>12.204m1<br>12.2504m1<br>12.21444m1<br>12.23068m1<br>12.44444m1<br>12.46981m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kaz7186<br>KEHVE_v1g22x025<br>kaz1725<br>NEHVE_v1g100129<br>kaz1725<br>kaz120<br>kaz1727<br>kaz122<br>NEHVE_v1g211292<br>kaz123<br>KEHVE_v1g2003%<br>KEHVE_v1g2003%<br>KEHVE_v1g2003%<br>NEHVE_v1g2033%<br>NEHVE_v1g15555<br>NEHVE_v1g15555<br>NEHVE_v1g135356<br>NEHVE_v1g135356<br>NEHVE_v1g135356<br>NEHVE_v1g135356<br>NEHVE_v1g135356<br>NEHVE_v1g135356<br>NEHVE_v1g135356<br>NEHVE_v1g135356<br>NEHVE_v1g135356<br>NEHVE_v1g135356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.86<br>82.8<br>50<br>42.62<br>38.32<br>57.36<br>68.96<br>59.34<br>69.42<br>70.43<br>43.72<br>55.34<br>43.72<br>55.34<br>37.45<br>68.93                            | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006<br>480<br>391<br>412<br>443<br>462<br>524<br>486<br>1030<br>381<br>540                              | 4.00E-167<br>5.00E-45<br>9.00E-33<br>6.00E-51<br>2.00E-166<br>5.00E-20<br>0<br>0<br>4.00E-14<br>1.00E-22<br>5.00E-131<br>0<br>0<br>0<br>3.00E-124<br>0<br>5.00E-87<br>0<br>3.00E-130<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MAPK BAX PERK ATF6 ER homeostasis ER HEDOX Ca influx          | TKAP2 HKK7 c.j=, JJH IAX IMP CAF91 CAF91 CAF91 CAF91 CAF91 CAF91 CAF92 CAF9 CAF9 CAF9 CAF9 CAF9 CAF9 CAF9 CAF9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | In response socialità interva<br>nitegna activute protein linear linear linear<br>poptatio ngultor IIAX<br>Loos binding protein 1<br>calgian 1 (EG14.2252)<br>capare 12 (EG14.2252)<br>capare 12 (EG14.2252)<br>capare 12 (EG14.2252)<br>capare 12 (EG14.2252)<br>relargete translation initiation factor 2 alpha<br>linese 1<br>translation initiation factor 2 solumit 1<br>cyclic AHP dependent transcription factor ATF4<br>under factor e cythroid 2 related factor 2<br>cyclic AHP dependent transcription factor ATF4<br>under factor e cythroid 2 related factor 2<br>cyclic AHP dependent transcription factor ATF4<br>mediar factor e cythroid 2 related factor 2<br>cyclic AHP dependent transcription factor Ste-1<br>S2P endopspidlate (EG14.4.5)<br>protein dealfide icone race family A unember 3<br>protein dealfide icone race family A unember 3<br>protein dealfide icone race family A unember 3<br>protein dealfide icone race (MDBPH) (EG16.8.17)<br>Ga2+ transporting ATF400<br>sarceploanic (reladeam resident protein linear type II<br>calcium / chapted in dependent protein linear type II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.21135.ml<br>12.21135.ml<br>12.2135.16.ml<br>12.27024.ml<br>12.21517.ml<br>12.15371.ml<br>12.15372.ml<br>12.25366.ml<br>12.2943.ml<br>12.2943.ml<br>12.2953.ml<br>12.2953.ml<br>12.2953.ml<br>12.2975.ml<br>12.21967.ml<br>12.21967.ml<br>12.21967.ml<br>12.20918.ml<br>12.25704.ml<br>12.25704.ml<br>12.25704.ml<br>12.2144.ml<br>12.267.ml<br>12.244.ml<br>12.267.ml<br>12.244.ml<br>12.267.ml<br>12.244.ml<br>12.267.ml<br>12.244.ml<br>12.267.ml<br>12.244.ml<br>12.267.ml<br>12.244.ml<br>12.267.ml<br>12.244.ml<br>12.267.ml<br>12.244.ml<br>12.267.ml<br>12.244.ml<br>12.267.ml<br>12.244.ml<br>12.267.ml<br>12.244.ml<br>12.267.ml<br>12.244.ml<br>12.267.ml<br>12.244.ml<br>12.267.ml<br>12.244.ml<br>12.267.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.244.ml<br>12.24       | الحير 118.6           NE-MVE_v1g22x025           الحير 112.2x025           NE-MVE_v1g100129           NE-MVE_v1g10129           NE-MVE_v1g1222           NE-MVE_v1g1232           NE-MVE_v1g1230396           NE-MVE_v1g165797           NE-MVE_v1g165797           NE-MVE_v1g165797           NE-MVE_v1g165797           NE-MVE_v1g165797           NE-MVE_v1g165797           NE-MVE_v1g165756           NE-MVE_v1g165756           NE-MVE_v1g133366           NE-MVE_v1g133366           NE-MVE_v1g13336           NE-MVE_v1g13336           NE-MVE_v1g13336           NE-MVE_v1g13336           NE-MVE_v1g13336           NE-MVE_v1g13336           NE-MVE_v1g13336           NE-MVE_v1g13336           NE-MVE_v1g13336           NE-MVE_v1g1336           NE-MVE_v1g1336           NE-MVE_v1g1336           NE-MVE_v1g1336           NE-MVE_v1g1336           NE-MVE_v1g1364           NE-MVE_v1g1364           NE-MVE_v1g1364           NE-MVE_v1g1364           NE-MVE_v1g1364           NE-MVE_v1g164384           NE-NVE_V1g164384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.86<br>82.8<br>50<br>42.62<br>38.32<br>57.36<br>68.96<br>59.34<br>69.42<br>70.43<br>43.72<br>55.34<br>37.45<br>68.93<br>51.71<br>53.92                            | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006<br>480<br>391<br>412<br>443<br>462<br>524<br>486<br>1030<br>381<br>549                              | 4.00E-167<br>5.00E-45<br>9.00E-45<br>9.00E-51<br>2.00E-166<br>5.00E-20<br>0<br>0<br>4.00E-14<br>1.00E-14<br>1.00E-22<br>5.00E-131<br>0<br>0<br>0<br>3.00E-131<br>0<br>0<br>3.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124<br>0<br>5.00E-124 |
| MAPK BAX PERK ATF6 ER homeostasis ER HEDOX Cainflux           | TKAT2  FKK7  G  KK7  CAPT1 KAT2  KAT4  CAST12  FCKK  CAST12  FCK  CAST12  FCK  CAST4  FCK  FCK  FCK  FCK  FCK  FCK  FCK  FC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | In response socialist tuber 2<br>mitegen activuted protein kinze kinze 7<br>transcription factor AP-1<br>augeptotis regulator IIAX<br>Look binding protein 1<br>culpian 1 (EG14.22.5)<br>cuppen 12 (EG14.22]<br>redurpent translation initiation factor 2 alpha<br>kinze 1<br>translation initiation factor 2 solumit 1<br>cyclic APP dependent transcription factor ATF4<br>under factor crystroid 2 related factor 2<br>cyclic APP dependent transcription factor ATF4<br>under factor crystroid 2 related factor 2<br>cyclic APP dependent transcription factor ATF4<br>under factor crystroid 2 related factor 2<br>cyclic APP dependent transcription factor ATF4<br>under factor crystroid 2 related factor 3<br>cyclic APP dependent transcription factor 3<br>cyclic APP dependent transcription factor 3<br>protein deallide icone more family A in ember 3<br>categologies (EG16.4.1)<br>Ca2+ tubepointig ATF400<br>surception if calcideate restentions (EG16.3.81)<br>Endeplassing restentions resident protein kinase type<br>II<br>coloring / clanode in dependent protein kinase type<br>II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12.21135.ml<br>12.21135.ml<br>12.2135.16.ml<br>12.27024.ml<br>12.15171.ml<br>12.158721.ml<br>12.158721.ml<br>12.9386.ml<br>12.943.ml<br>12.943.ml<br>12.943.ml<br>12.943.ml<br>12.943.ml<br>12.943.ml<br>12.953.ml<br>12.25358.ml<br>12.24295.ml<br>12.2494.ml<br>12.24967.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml<br>12.2404.ml                                  | الحير 718.6           NE-MVE_v1g22x025           Index 77.5           NE-MVE_v1g1200129           NE-MVE_v1g1200129           Index 712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>28.46<br>49.86<br>82.8<br>50<br>42.62<br>38.32<br>57.36<br>68.96<br>59.34<br>69.42<br>70.43<br>43.72<br>55.34<br>37.45<br>68.93<br>51.71<br>53.92<br>60.26                            | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006<br>480<br>391<br>412<br>443<br>460<br>524<br>486<br>1030<br>381<br>549<br>546                       | 4.00E-167<br>5.00E-45<br>9.00E-51<br>2.00E-51<br>2.00E-51<br>2.00E-20<br>0<br>0<br>4.00E-14<br>1.00E-22<br>5.00E-13<br>0<br>0<br>0<br>3.00E-131<br>0<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-130<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MAPK BAX PEHK ATF6 ER bomeostasis ER REDOX Ca influx          | TRAP2           FRK7           cj=, JUH           BAX           JBP           GAT4           cLASP12           FRKK           cH72           ATF4           SIP           ATF4           FRE           ATF4           SIP           SIP </td <td>In response sociality in the set inter 2<br/>witegen activated protein kinace kinace 7<br/>transcription factor AP-1<br/>apoptosis regulator IRAX<br/>Look binding protein 1<br/>calgins 1 (2014.22]<br/>capace 12 (2014.22]<br/>capace 12 (2014.22]<br/>calorytic translation initiation factor 2 alpha<br/>kinace 1<br/>translation initiation factor 2 solumit 1<br/>cyclic APIP dependent transcription factor ATP-4<br/>unclear factor crystroid 2 related factor 2<br/>cyclic APIP dependent transcription factor ATP-4<br/>unclear factor crystroid 2 related factor 2<br/>cyclic APIP dependent transcription factor ATP-6<br/>membrane-bound transcription factor SR-1<br/>S2P endopspillace [2014.24.85]<br/>EE01 like protein beta [80:18.4]<br/>protein deallide icomerce:<br/>protein deallide icomerce:<br/>family A member 3<br/>protein deallide icomerce:<br/>family A member 3<br/>protein deallide icomerce:<br/>(ADPIP) [2014.8.1.7]<br/>Ca2+ transporting ATP-20,<br/>sarceplassic reticulum resident protein Ha<br/>calcium /chickle in resident protein kinace type<br/>II<br/>colorismic calmode in dependent protein kinace type</td> <td>12.2135m1<br/>1.22135m1<br/>1.27024m1<br/>1.27024m1<br/>1.21517Lm1<br/>1.21582Lm1<br/>1.29586m1<br/>1.2943m1<br/>1.29536m1<br/>1.295358m1<br/>1.22941m1<br/>1.225358m1<br/>1.24295m1<br/>1.24295m1<br/>1.24295m1<br/>1.24704m1<br/>1.25704m1<br/>1.25704m1<br/>1.25704m1<br/>1.25704m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m1<br/>1.24808m</td> <td>الحير 118.6           NE-MVE_v1g.22x025           Incat725           NE-MVE_v1g.12x02           Incat725           NE-MVE_v1g.12x02           Incat725           Incat726           Incat720           Incat720</td> <td>35.14<br/>70.03<br/>36.1<br/>71.57<br/>61.42<br/>28.46<br/>49.86<br/>82.8<br/>50<br/>42.62<br/>38.32<br/>57.36<br/>68.96<br/>59.34<br/>69.42<br/>70.43<br/>43.72<br/>55.34<br/>43.72<br/>55.34<br/>37.45<br/>68.93<br/>51.71<br/>53.92<br/>60.26<br/>59.19</td> <td>552<br/>317<br/>349<br/>102<br/>127<br/>712<br/>260<br/>716<br/>314<br/>90<br/>122<br/>689<br/>1006<br/>480<br/>391<br/>412<br/>443<br/>462<br/>544<br/>486<br/>1030<br/>381<br/>549<br/>546<br/>2806</td> <td>4.00E-167<br/>5.00E-45<br/>9.00E-51<br/>2.00E-51<br/>2.00E-51<br/>2.00E-20<br/>0<br/>0<br/>4.00E-166<br/>5.00E-20<br/>0<br/>4.00E-166<br/>5.00E-124<br/>0<br/>0<br/>0<br/>3.00E-124<br/>0<br/>5.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td> | In response sociality in the set inter 2<br>witegen activated protein kinace kinace 7<br>transcription factor AP-1<br>apoptosis regulator IRAX<br>Look binding protein 1<br>calgins 1 (2014.22]<br>capace 12 (2014.22]<br>capace 12 (2014.22]<br>calorytic translation initiation factor 2 alpha<br>kinace 1<br>translation initiation factor 2 solumit 1<br>cyclic APIP dependent transcription factor ATP-4<br>unclear factor crystroid 2 related factor 2<br>cyclic APIP dependent transcription factor ATP-4<br>unclear factor crystroid 2 related factor 2<br>cyclic APIP dependent transcription factor ATP-6<br>membrane-bound transcription factor SR-1<br>S2P endopspillace [2014.24.85]<br>EE01 like protein beta [80:18.4]<br>protein deallide icomerce:<br>protein deallide icomerce:<br>family A member 3<br>protein deallide icomerce:<br>family A member 3<br>protein deallide icomerce:<br>(ADPIP) [2014.8.1.7]<br>Ca2+ transporting ATP-20,<br>sarceplassic reticulum resident protein Ha<br>calcium /chickle in resident protein kinace type<br>II<br>colorismic calmode in dependent protein kinace type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.2135m1<br>1.22135m1<br>1.27024m1<br>1.27024m1<br>1.21517Lm1<br>1.21582Lm1<br>1.29586m1<br>1.2943m1<br>1.29536m1<br>1.295358m1<br>1.22941m1<br>1.225358m1<br>1.24295m1<br>1.24295m1<br>1.24295m1<br>1.24704m1<br>1.25704m1<br>1.25704m1<br>1.25704m1<br>1.25704m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m1<br>1.24808m | الحير 118.6           NE-MVE_v1g.22x025           Incat725           NE-MVE_v1g.12x02           Incat725           NE-MVE_v1g.12x02           Incat725           Incat726           Incat720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>28.46<br>49.86<br>82.8<br>50<br>42.62<br>38.32<br>57.36<br>68.96<br>59.34<br>69.42<br>70.43<br>43.72<br>55.34<br>43.72<br>55.34<br>37.45<br>68.93<br>51.71<br>53.92<br>60.26<br>59.19 | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006<br>480<br>391<br>412<br>443<br>462<br>544<br>486<br>1030<br>381<br>549<br>546<br>2806               | 4.00E-167<br>5.00E-45<br>9.00E-51<br>2.00E-51<br>2.00E-51<br>2.00E-20<br>0<br>0<br>4.00E-166<br>5.00E-20<br>0<br>4.00E-166<br>5.00E-124<br>0<br>0<br>0<br>3.00E-124<br>0<br>5.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MAPK BAX PERK ATF6 ER homeostasis ER REDOX Ga influx Ca eflux | TRAP2           FIGR7           FIGR7           SIP           INF           CASP12           FIT2           CASP12           FIT2           ATT4           BEP2           ATT4           BEP2           ATT4           BEP2           ATT4           BEP2           ATT4           BEP2           ATT4           BEP3           BER01           FDIS           FDIS           BER05           FDIS           ER05           BER05           BER05           FDIS           ER05           BER05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In response socialist tubric<br>mitegen activuted protein kinose kinose 7<br>transcription factor AP-1<br>apoptosis regulator IIAX<br>Look kinding protein 1<br>calquin 1 (EG3.4.2.2.5)<br>capace 12 (EG3.4.2.2.5)<br>capace 12 (EG3.4.2.2.5)<br>capace 12 (EG3.4.2.2.5)<br>capace 12 (EG3.4.2.2.5)<br>capace 12 (EG3.4.2.5.2)<br>capace 12 (EG3.4.2.6.5)<br>EE01 like protein beta (EG3.6.4.6.5)<br>EE01 like protein beta (EG3.6.4.1)<br>protein deallide isomence AG (EG5.3.4.1)<br>protein deallide isomence AG (EG5.3.4.1)<br>protein deallide isomence AG (EG5.3.4.1)<br>protein deallide isomence (mity A m comber 3<br>protein deallide isomence (mity A m comber 4<br>globationer reduction (EG3.6.3.8)<br>EE01 like protein Arrison retaints [EG3.6.3.8]<br>EE024 isomender transcription [EG3.6.3.8]<br>EE035 (AG3.8) (EG3.6.2.8)<br>categoptical isomence (MADIVI) [EG1.6.1.7]<br>Ca2+ transporting ATPace,<br>categoptical isomence transformer (EG3.6.3.8)<br>EE045 (AG3.8) (AG3.8) (AG3.8) (AG3.8)<br>EE045 (AG3.8) (AG                                                                                                             | 12.2135m1<br>1.22135m1<br>1.22135m1<br>1.27024m1<br>1.21517Lm1<br>1.21582Lm1<br>1.21582Lm1<br>1.29586m1<br>1.2943m1<br>1.29536m1<br>1.295358m1<br>1.225358m1<br>1.2295m1<br>1.24295m1<br>1.2495m1<br>1.2495m1<br>1.24967m1<br>1.25704m1<br>1.25704m1<br>1.25704m1<br>1.23068m1<br>1.24808m1<br>1.248081m1<br>1.248081m1<br>1.24874m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Image 718.6           Image 718.6           Image 712.5           Image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>28.46<br>49.86<br>82.8<br>50<br>42.62<br>38.32<br>57.36<br>68.96<br>59.34<br>69.42<br>70.43<br>43.72<br>55.34<br>43.7.45<br>68.93<br>51.71<br>53.92<br>60.26<br>59.19<br>38.22        | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006<br>480<br>391<br>412<br>443<br>462<br>524<br>486<br>1030<br>381<br>549<br>546<br>2806<br>450        | 4.00E-167<br>5.00E-45<br>9.00E-31<br>2.00E-166<br>5.00E-20<br>0<br>0<br>4.00E-14<br>1.00E-14<br>1.00E-22<br>5.00E-14<br>1.00E-22<br>5.00E-14<br>0<br>0<br>0<br>3.00E-131<br>0<br>0<br>3.00E-131<br>0<br>0<br>0<br>3.00E-124<br>0<br>3.00E-130<br>0<br>0<br>3.00E-130<br>0<br>0<br>0<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MAPK BAX PERK ATF6 ER homeostasis ER REDOX Ca influx          | TRAP2           FIGR7           FIGR7 </td <td>In response sector and study 2<br/>mitegen activuted protein kinnes kinnes 7<br/>transcription factor AP-1<br/>apoptosis regulator IIAX<br/>Elbes kinding protein 1<br/>colgain 1 (2014.22.2)<br/>corport 12 (2014.22.2)<br/>colorposit translation initiation factor 2 alpha<br/>kinnes 1<br/>translation initiation factor 2 submit 1<br/>cyclic AHP dependent transcription factor ATF-4<br/>mediar factor crythroid 2 related factor 2<br/>cyclic AHP dependent transcription factor ATF-4<br/>mediar factor crythroid 2 related factor ATF-4<br/>mediar factor factor Clythroid (2018.12)<br/>Calcular (chandeline dependent protein H4<br/>calcum (chandeline dependent protein times type 1<br/>mediar dependent 1. type calcium claumed 1<br/>protein dependent 1. type calcium claumed 1<br/>protein dependent 1. type calcium claumed 1<br/>mediar depen</td> <td>12.2119/02.411<br/>1.2.2135/ml<br/>1.2.2135/ml<br/>1.2.21516.411<br/>1.2.1517/ml<br/>1.2.1537/ml<br/>1.2.1537/ml<br/>1.2.9366.ml<br/>1.2.2941.ml<br/>1.2.25358.ml<br/>1.2.25358.ml<br/>1.2.25358.ml<br/>1.2.295.ml<br/>1.2.21967.ml<br/>1.2.21967.ml<br/>1.2.21967.ml<br/>1.2.21967.ml<br/>1.2.21944.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml<br/>1.2.3068.ml</td> <td>الحير 118:6           NE-MVE_v1g22x025           Incat725           NE-MVE_v1g21022           Incat725           NE-MVE_v1g21022           Incat725           Incat725           Incat725           Incat725           Incat726           Incat727           Incat728           Incat728</td> <td>35.14<br/>70.03<br/>36.1<br/>71.57<br/>61.42<br/>40.73<br/>28.46<br/>49.86<br/>82.8<br/>50<br/>42.62<br/>38.32<br/>57.36<br/>68.96<br/>59.34<br/>69.42<br/>70.43<br/>43.72<br/>55.34<br/>68.93<br/>51.71<br/>53.92<br/>60.26<br/>59.19<br/>38.22<br/>57.24</td> <td>552<br/>317<br/>349<br/>102<br/>127<br/>712<br/>260<br/>716<br/>314<br/>90<br/>122<br/>689<br/>1006<br/>480<br/>391<br/>412<br/>443<br/>462<br/>524<br/>486<br/>1030<br/>381<br/>549<br/>546<br/>2806<br/>450<br/>877</td> <td>4.00E-167<br/>5.00E-45<br/>9.00E-31<br/>2.00E-166<br/>5.00E-51<br/>2.00E-20<br/>0<br/>0<br/>4.00E-14<br/>1.00E-22<br/>5.00E-17<br/>1<br/>0<br/>0<br/>0<br/>3.00E-124<br/>0<br/>3.00E-124<br/>0<br/>3.00E-130<br/>0<br/>0<br/>3.00E-130<br/>0<br/>0<br/>0<br/>3.00E-124<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0<br/>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In response sector and study 2<br>mitegen activuted protein kinnes kinnes 7<br>transcription factor AP-1<br>apoptosis regulator IIAX<br>Elbes kinding protein 1<br>colgain 1 (2014.22.2)<br>corport 12 (2014.22.2)<br>colorposit translation initiation factor 2 alpha<br>kinnes 1<br>translation initiation factor 2 submit 1<br>cyclic AHP dependent transcription factor ATF-4<br>mediar factor crythroid 2 related factor 2<br>cyclic AHP dependent transcription factor ATF-4<br>mediar factor crythroid 2 related factor ATF-4<br>mediar factor factor Clythroid (2018.12)<br>Calcular (chandeline dependent protein H4<br>calcum (chandeline dependent protein times type 1<br>mediar dependent 1. type calcium claumed 1<br>protein dependent 1. type calcium claumed 1<br>protein dependent 1. type calcium claumed 1<br>mediar depen                                                                               | 12.2119/02.411<br>1.2.2135/ml<br>1.2.2135/ml<br>1.2.21516.411<br>1.2.1517/ml<br>1.2.1537/ml<br>1.2.1537/ml<br>1.2.9366.ml<br>1.2.2941.ml<br>1.2.25358.ml<br>1.2.25358.ml<br>1.2.25358.ml<br>1.2.295.ml<br>1.2.21967.ml<br>1.2.21967.ml<br>1.2.21967.ml<br>1.2.21967.ml<br>1.2.21944.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml<br>1.2.3068.ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | الحير 118:6           NE-MVE_v1g22x025           Incat725           NE-MVE_v1g21022           Incat725           NE-MVE_v1g21022           Incat725           Incat725           Incat725           Incat725           Incat726           Incat727           Incat728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35.14<br>70.03<br>36.1<br>71.57<br>61.42<br>40.73<br>28.46<br>49.86<br>82.8<br>50<br>42.62<br>38.32<br>57.36<br>68.96<br>59.34<br>69.42<br>70.43<br>43.72<br>55.34<br>68.93<br>51.71<br>53.92<br>60.26<br>59.19<br>38.22<br>57.24 | 552<br>317<br>349<br>102<br>127<br>712<br>260<br>716<br>314<br>90<br>122<br>689<br>1006<br>480<br>391<br>412<br>443<br>462<br>524<br>486<br>1030<br>381<br>549<br>546<br>2806<br>450<br>877 | 4.00E-167<br>5.00E-45<br>9.00E-31<br>2.00E-166<br>5.00E-51<br>2.00E-20<br>0<br>0<br>4.00E-14<br>1.00E-22<br>5.00E-17<br>1<br>0<br>0<br>0<br>3.00E-124<br>0<br>3.00E-124<br>0<br>3.00E-130<br>0<br>0<br>3.00E-130<br>0<br>0<br>0<br>3.00E-124<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# **(B)**

|                         |                |                     | Adı           | ılt <del>s</del>    |          | Juveniles |          |        |          |
|-------------------------|----------------|---------------------|---------------|---------------------|----------|-----------|----------|--------|----------|
| Coral ID                | Gene name      | 1                   | h             | Z                   | 4 h      | Z         | 4 h      | 41     | 3 h      |
|                         |                | log <sub>2</sub> FC | FDR           | log <sub>2</sub> FC | FDR      | logzFC    | FDR      | logzFC | FDR      |
| 1.2.22267.ml            | Sec61          | -                   | -             | 0.42                | 1.24E-02 | -         | -        | -      | -        |
| 1.2.13846.m1            | GLell          | -                   | -             | 0.66                | 8.95E-06 | -         | -        | _      | -        |
| 1.2.11239.m1            | OSTS           | -                   | -             | 0.40                | 7.36E-03 | -0.19     | 2.37E-02 | -      | -        |
| 1.2.12013.m1            | OSTS           | -                   | -             | 0.65                | 2.13E-06 |           |          | -      | -        |
| 1.2.16315.m1            | CNX            | -                   | -             | 0.53                | 1.60E-04 | -0.19     | 1.49E-02 | -      | -        |
| 1.2.2683.m1             | CRT            | -0.46               | 2.15E-10      | 1.14                | 8.82E-22 | -         | -        | _      | -        |
| 1.2.18585.m1            | OGGT           | -                   | -             | 0.59                | 8.82E-04 | -         | -        | 0.34   | 3.65E-02 |
| 1.2.15211.m1            | GRP94          | -0.23               | 2.23E-02      | 1.21                | 7.26E-25 | -0.16     | 4.66E-02 | -      | -        |
| 1.2.2424.ml             | NEF            | -0.64               | 3.86E-11      | 0.90                | 1.87E-07 | -0.23     | 6.15E-03 | _      | -        |
| 1.2.4351.ml             | BiP, GRP70     | -                   | -             | 1.30                | 8.64E-19 | -0.20     | 1.67E-02 | -      | -        |
| 1.2.7940.m1             | ERdij1         | -                   | -             | 1.76                | 1.52E-02 | -         | -        | -      | -        |
| 1.2.25530.m1            | ERdj3, DnajB11 | -                   | -             | 1.04                | 1.03E-07 | 0.44      | 3.48E-08 | 0.29   | 5.71E-02 |
| 1.2.20851.m1            | ERdj4          | -0.27               | 3.51E-02      | -                   | -        | -         | -        | -      | -        |
| 1.2.22277.m1            | ERdij5         | -                   | -             | -                   | -        | 0.19      | 3.52E-02 | -      | -        |
| 1.2.21656.m1            | ERdj6, DusjC3  | -0.53               | 1.64E-03      | 0.58                | 5.20E-03 | -         | -        | _      | -        |
| 1.2.143.m1              | SEC63          | -0.35               | 8.28E-03      | -                   | -        | -         | -        | -      |          |
| 1 7 3 1 14 ml           | EDEM           | _                   | _             | 0.74                | 8.06E-04 | _         | _        | _      | _        |
| 1.2.21359.ml            | хтрзв          | _                   | _             | 0.70                | 1.63E-07 | _         | _        | _      | _        |
| 1.2.4008.mJ             | ERMani         | -0.29               | 6.29E-02      | _                   | -        | _         | _        | _      | _        |
| 1.2.3165.m1             | TRAP           | -                   | -             | 0.54                | 1.52E-03 | _         | -        | _      | -        |
| 1.2.11248.m1            | TRAM           | -0.24               | 3.16E-02      | 0.53                | 6.53E-04 | -0.14     | 4.39E-02 | _      | -        |
| 1.2.918m1               | DERL IN        | -                   | -             | -                   | -        | -         | -        | -      | -        |
|                         |                |                     |               |                     |          |           |          |        |          |
| 1.2.14992.m1            | OBE1           | -                   | -             | 0.34                | 1.94E-02 | 0.15      | 5.19E-04 | -      | -        |
| 1.2.25429.m1            | UBE2C          | -0.72               | 5.00E-02      | _                   | -        | -         | -        | _      | _        |
| 1.2.21247.ml            | OBE2D/E        | -0.32               | 3.76E-04      | 0.43                | 2.65E-03 | 0.35      | 2.60E-07 | _      | _        |
| 1.2.21685.m1            | OBE2D/E        | -                   | -             | -                   | -        | 0.39      | 5.71E-02 | _      | _        |
| 1.2.21689.m1            | OBE2D/E        | -                   | _             | _                   | -        | 0.32      | 1.67E-02 | _      | _        |
| 1.2.21680.m1            | OBE2D/E        | -                   | -             | 0.57                | 2.90E-02 | 0.41      | 1.19E-04 | 0.25   | 9.01E-02 |
| 1.2.802.m1              | OBE1G1         | -                   | -             | -                   | -        | -0.25     | 4.34E-02 | -      | -        |
| 1.2.22895.m1            | UBE2G2         | -                   | -             | _                   | -        | 0.37      | 1.16E-04 | _      | -        |
| 1.2.6436.m1             | UBE2I          | -0.45               | 1.69E-04      | -                   | -        | -0.17     | 3.15E-02 | -      | -        |
| 1.2.138m1               | UBE2J1         | -0.49               | 7.95E-03      | -                   | -        | -0.21     | 2.22E-02 | -1.27  | 2.08E-02 |
| 1.2.3007.ml             | OBE2L3         | -0.32               | 2.54E-03      | -                   | -        | 0.22      | 1.26E-02 | -      | -        |
| 1.2.1863.ml             | UBE2M          | -0.59               | 7.38E-03      | -                   | -        | -         | -        | 1.29   | 3.77E-02 |
| 1.2.23020.m1            | UBE2N          | -                   | -             | 0.38                | 4.96E-02 | 0.23      | 2.24E-03 | -      | -        |
| 1.2.7586.ml             | OBE20          | -                   | -             | 0.63                | 1.20E-04 | -         | -        | -      | -        |
| 1.2.14941.ml            | OBE2Q          | -0.95               | 7.42E-05      | -                   | -        | -         | -        | -      | -        |
| 1.2.3573.m1             | UBE2R          | -                   | -             | -0.58               | 9.48E-03 | -0.15     | 3.45E-02 | -      | -        |
| 1.2.17650.m1            | HERCL          | -                   | -             | -                   | -        | -         | -        | 1.22   | 5.07E-02 |
| 1.2.3515.ml             | TRIPLZ         | _                   | -             | 1.25                | 5.20E-02 | _         | -        | -      | -        |
| 1.243 IU.ml             | MEDD4          | 1.20                | -<br>5 005 02 | 1.33                | 1.396-02 | 1.25      | 1.045.05 | 1.16   | 3.24E-02 |
| 1212267.ml              | 1001-30        | 1.20                | 5.795.02      |                     |          | -1.55     | 5.765-03 |        |          |
| 1.7.1434 ml             | FGAP           | -1.12               | 2 235-03      |                     |          | -1.08     | 5.702-03 | _      | _        |
| 1214467 ml              | URE4A          | -1.55               |               | 1 49                | 9.56E-04 | _         | _        | _      | _        |
| 1.2.883.m1              | PRP19          | _                   | _             | 1.28                | 4.92E-02 | _         | _        | _      | _        |
| 1.2.14889.m1            | CYC4           | 1.26                | 3.05E-02      | -                   | -        | _         | _        | _      | _        |
| 1.2.8575.m <sup>1</sup> | Hsn70          | _                   | -             | 1.07                | 6.37E-14 | 0.49      | 2.20E-13 | 0.30   | 1.94E-02 |
| 1.2.5530.m1             | MERKI          | 1.47                | 2.84E-04      |                     | -        | -         | -        | -      | -        |
| 1.2.2897.ml             | TRAF6          |                     | _             | 4.20                | 4.96E-10 | _         | -        | 1.44   | 5.97E-03 |
| 1.2.11953.ml            | PIAS           | -                   | -             | 1.77                | 8.03E-05 | 1.13      | 9.92E-03 | 1.19   | 1.63E-02 |
| 1.2.20985.m1            | SIAH-1         | -1.96               | 1.08E-05      | -1.88               | 6.90E-04 | 1.35      | 1.13E-09 | 1.44   | 1.77E-05 |
| 1.2.2625.m1             | Trim 37        | -                   | -             | -1.64               | 5.31E-04 | -1.32     | 9.03E-07 | -      | -        |
| 1.2.4545.m1             | BRCAL          | -                   | -             | -1.47               | 2.83E-02 | -1.20     | 6.53E-03 | _      | -        |
| 1.2.10197.m1            | SYVN, Hrdt     | -                   | -             | -                   | -        | -1.25     | 4.92E-06 | -1.16  | 2.03E-02 |
| 1.2.15842.m1            | RHX1           | -                   | -             | 1.62                | 2.64E-04 | 1.31      | 1.64E-07 | -      | -        |
| 1.2.598m1               | RHX2           | -                   | _             | -                   | -        | 1.35      | 2.07E-02 | -      | _        |
| 1.2.480.m1              | Cal3           | -1.16               | 5.18E-02      | _                   | -        | -1.13     | 8.19E-03 | _      | _        |
| 1.2.3461.m1             | Cal4           | -                   | -             | -                   | -        | -1.14     | 3.63E-03 | -1.16  | 1.63E-02 |
| 1.2.13Z30.m1            | DDB1           | -                   | -             | -                   | -        | 1.09      | 4.48E-02 | 1.19   | 7.15E-04 |
| 1.2.20605.m1            | F-bax          | -1.22               | 5.39E-02      | -                   | -        | -1.30     | 2.27E-07 | -1.21  | 5.73E-03 |
| 1.2.679.m1              | 0611           | 0.35                | 2.53E-02      | -                   | -        | -         | -        | -      | -        |
| 1.2.19057.m1            | p97            | -0.24               | 1.01E-02      | 0.84                | 1.82E-11 | -         | -        | -      | -        |
| 1.2.9216.m1             | DOB            | -0.37               | 4.62E-02      | -                   | -        | -         | -        | -      | -        |
| 1.2.2686.m1             | RAD23          | -                   | -             | 0.41                | 1.57E-02 | -         | -        | -      | -        |

| 1.2.2366.m1    | Rpn2           | -     | -        | 1.61           | 3.28E-07             | -     | _        | _     |          |
|----------------|----------------|-------|----------|----------------|----------------------|-------|----------|-------|----------|
| 1.2.11418.m1   | Rpn3           | -0.46 | 7.95E-05 | _              | -                    | _     | _        | _     | _        |
| 127613 m1      | Rnn5           | -0.57 | 1.71E-04 | _              | _                    | _     | _        | _     | _        |
| 124538 m1      | Pant           | -0.57 |          | 0.43           | 4 295-02             | 0.16  | 2495-02  |       | _        |
| 12275561       | крио<br>в      | 0.54  | 2175.02  | 0.45           | 4.232-02             | 0.10  | 2492-02  |       |          |
| 1.2.3334.001   | кри <i>2</i>   | -0.54 | 2172-03  | 0.45           | 4.040-02             | 0.20  | -        | _     | -        |
| LZ16235.m1     | крыз           | _     | -        | 0.91           | 1.16E-07             | 0.28  | 7.83E-06 | _     | -        |
| 1.2.8083.m1    | Rpn9           | -0.29 | 3.47E-02 | 0.46           | 2.34E-02             | -     | -        | -     | -        |
| 1.2.1010.m1    | Rpn10          | -0.38 | 4.63E-03 | -              | -                    | -     | _        | -     | _        |
| 1.2.12964.m1   | Rpn11          | -     | -        | 0.37           | 8.31E-02             | -     | -        | -     | -        |
| 1.2.13351.m1   | Rpn12          | -     | -        | -              | -                    | 0.22  | 2.98E-02 | -     | -        |
| 1.2.16618.m1   | Rpt1           | -0.36 | 4.11E-03 | -              | -                    | -     | -        | -     | -        |
| 1.2_5719.m1    | Rpt2           | -0.47 | 5.46E-04 | -              | -                    | -     | -        | -     | -        |
| 1.2.2345.m1    | Rpt3           | -0.95 | 1.09E-07 | -              | -                    | -     | -        | -     | -        |
| 1.2.461.m1     | Rpt4           | -0.36 | 2.77E-03 | 0.48           | 8.38E-03             | -     | -        | -     | -        |
| 1.2.3961.m1    | Rpl5           |       |          | 0.54           | 1.08E-03             | 0.18  | 8.36E-03 | -     | -        |
| 1.2.12658.m1   | Rpt6           | -0.28 | 7.19E-03 | 0.45           | 2.47E-03             | -     | -        | -     | -        |
| 1.2.17385.m1   | al pha 1       | -0.28 | 3.85E-02 | 1.06           | 3.17E-11             | 0.32  | 2.54E-05 | -     | -        |
| 1.2.1573.m1    | al pha2        | -     | -        | 0.43           | 1.49E-02             | -     | -        | -     | -        |
| 1.2.7785.m1    | al pha3        | -0.35 | 7.68E-02 | 0.67           | 6.53E-04             | -     | -        | _     | _        |
| 1.2.3696.m1    | al pha4        | -0.45 | 1.09E-02 | -              | -                    | -0.23 | 4.19E-03 | -0.35 | 1.88E-02 |
| 1.2.9821.m1    | al pha5        | -     | -        | 0.73           | 5.32E-05             | 0.14  | 5.78E-02 | -     | -        |
| 1.2.2830.m1    | al pha6        | _     | -        | 0.56           | 5.64E-03             | -     | -        | _     | -        |
| 1.2.9956.m1    | alpha7         | -0.43 | 6.50E-04 | -              | -                    | -     | _        | _     | _        |
| 1.2.9584.m1    | beta1          | _     | -        | 0.45           | 4.15E-02             | 0.22  | 3.88E-02 | _     | _        |
| 1.2.10862.m1   | heta2          | _     | _        | 0.43           | 7.63E-02             | -     | -        | _     | _        |
| 1.2_5977.m1    | beta3          | -0.46 | 2.70E-03 | _              | -                    | -0.16 | 5.86E-02 | -0.30 | 7.27E-02 |
| 1 2 22654 m1   | beta4          | -0.33 | 6.04E-02 | _              | _                    | -     | _        | _     | _        |
| 1 2 2519 m1    | hata5          | 0.50  | 6.64E-04 | 0.48           | 2545-02              | _     | _        | _     | _        |
| 139061 m1      | hotes          | -0.50 | 2015.04  | 0.40           | 2.542-02             | 0.26  | E 16E 04 |       |          |
| 1.2.0701.01    | beter          | -0.39 | 2.012-04 | 0.57           | 2.705.02             | -0.20 | 3.102-04 |       |          |
| 1.2.17 300.111 | DOC17          | -0.55 | 0.762-02 | 0.57           | 2.702-02             | _     | _        | _     | _        |
|                |                |       |          |                |                      |       |          |       |          |
| 1.2.5693.m1    | EKNI           | 0.30  | 2.59E-02 | -              | -                    | _     | -        | _     | -        |
| 1.2.2752.m1    | TRAF2          | 0.86  | 2.68E-03 | 2.64           | 1.30E-27             | -     | -        | -     | -        |
| 1.2.1949.m1    | TRAF2          | 0.39  | 4.24E-03 | -              | -                    | 0.20  | 4.19E-02 | -     | -        |
| 1.2.18805.m1   | TNF-R          | -     | -        | -              | -                    | 0.26  | 3.65E-04 | -     |          |
| 1.2.3871.m1    | TRAF2          | 0.51  | 1.07E-04 | 0.97           | 1.05E-08             | 0.41  | 9.82E-09 | -     | -        |
| 1.2.5426.m1    | TRAF2          | 3.67  | 8.42E-78 | 2.42           | 1.79E-26             | -     | -        | -     | -        |
| 1.2.10762.m1   | TRAF2          | -     | -        | -1.53          | 2.22E-06             | -0.34 | 9.62E-02 | -     | -        |
| 1.2.2135.m1    | MKK7           | -     | -        | -              | -                    | 0.21  | 7.60E-03 | -     | -        |
| 1.2.21516.m1   | c-Jun, JUN     | 3.11  | 2.59E-16 | 1.60           | 7.06E-13             | 0.38  | 8.01E-02 | -     | -        |
| 1.2.7024.m1    | BAX            | 0.41  | 2.78E-02 | 0.68           | 1.10E-03             | 0.34  | 5.56E-05 | -     | -        |
| 1.2.15171.m1   | хвр            | -     | -        | -              | -                    | -0.23 | 3.68E-09 | -0.17 | 2.74E-02 |
| 1.2.13821.m1   | CAPN1          | 0.17  | 2.50E-02 | 0.40           | 2.47E-03             | -     | -        | -     | -        |
| 1.2.9586.m1    | CASP12         | -     | -        | -              | -                    | -     | -        | -1.16 | 3.09E-02 |
| 1.2.9243.m1    | PERK           | -     | -        | 0.60           | 6.25E-03             | 0.32  | 1.94E-03 | 0.25  | 5.44E-02 |
| 1.2.8366.m1    | ellF2a         | -0.52 | 1.13E-04 | -              | -                    | -     | -        | -     | -        |
| 1.2.2941.m1    | ATF4           | 0.26  | 5.25E-02 | -              | -                    | -0.17 | 5.31E-02 | -     | -        |
| 1.2.25358.m1   | NRF2           | 1.32  | 2.93E-16 | 0.52           | 1.68E-02             | _     | -        | _     | -        |
| 1.2.4295.m1    | ATF6           | -     | -        | 0.42           | 1.89E-02             | -     | -        |       |          |
| 1.2.9725.m1    | S 1P           | -     | -        | -              | -                    | -0.28 | 8.80E-05 |       |          |
| 1.2.21967.m1   | S2P            | -     | -        | -              | -                    | -0.39 | 4.28E-05 | -0.27 | 4.41E-02 |
|                |                |       |          |                |                      |       |          |       |          |
| 1.2.10186.m1   | ER01           | -     | -        | -              | -                    | -     | -        | -0.29 | 7.78E-03 |
| 1.2.9018.m1    | PDIs           | -0.36 | 8.88E-04 | 0.87           | 6.24E-10             | -0.26 | 2.13E-04 | -     | -        |
| 1.2_5704.m1    | PDIs           | -     | -        | 0.77           | 2.42E-08             | -0.22 | 1.25E-04 | -     | -        |
| 1.2.1667.m1    | PDIs, ERp57    | -     | -        | 0.98           | 1.09E-13             | -0.40 | 5.74E-06 | _     | _        |
| 1.2.7144.m1    | PDIs, ERp57    | -     | -        | 1.24           | 1.74E-27             | -     | -        | -     | -        |
| 1.2.3068.m1    | GSR            | -0.23 | 4.01E-02 | 0.43           | 7.29E-03             | 0.52  | 1.30E-50 | _     | _        |
| 1.2.8202.m1    | SERCA2b        | -1.40 | 1.15E-09 | 1.63           | 3.59E-05             | -     | -        | 1.39  | 2.28E-04 |
| 1714444 m1     | EB nd.4        | -130  | 3.60E-05 | _              | _                    | -126  | 4.74F-08 | -1 32 | 3.11E-04 |
| 176094 -4      | C-110          | 1.30  | 6.000 00 |                |                      | 1.20  |          | 1.32  | 0.112 04 |
| 1.2.6%1.m1     | Capiti         | -1.57 | 0.232-03 | -              | -                    | _     | -        | _     | -        |
| 1.2.8061.m1    | CaMKII         | -     | -        | -1.41          | 1.53E-02             | -     | -        | -     | _        |
| 1.2.8787.m1    | IP3R1          | -     | -        | -1.35          | 4.05E-03             | -1.12 | 5.78E-02 | -     | -        |
| 1.2.4574.m1    |                |       |          |                |                      | 110   |          |       |          |
|                | STIM           | -     | -        | -1.32          | 4.95E-02             | -1.10 | 2.46E-02 | -     | -        |
| 1.2.3113.m1    | STIM<br>CaV1.2 | _     | -        | -1.32<br>-1.85 | 4.95E-02<br>2.60E-08 | -1.10 | 2.46E-02 | _     | -        |

**Table S3.3** *A. millepora* homologues to the peroxisome and lysosome systems. (A) Results of the KEGG peroxisome and lysosome pathways (nve04146 and nve04142) searched in the *A. millepora* protein predictions. (B) Log<sub>2</sub>FC values of significantly expressed (FDR <0.05) genes in response to the treatment (hypo-saline) over the control (35 PSU). Log<sub>2</sub>FC colour indicate up (red) and down (blue) regulated genes.

| Function              |           |                                                                              | Blast details |                    |                |        |            |  |  |
|-----------------------|-----------|------------------------------------------------------------------------------|---------------|--------------------|----------------|--------|------------|--|--|
|                       | Gene name | Orthology                                                                    | Coral ID      | Entry              | % ID           | Length | e-value    |  |  |
|                       | ТАН.      | K05656 ATP-binding carsette                                                  | 1.2.21081.m1  | hsa:23457          | 32.15          | 790    | 2.00E-96   |  |  |
|                       | NPC1      | K12385 Niemann-Pick C1 protein                                               | 1.2.15804.ml  | hsa:4864           | 48.38          | 1269   | 0          |  |  |
|                       | NPC2      | K13443 Niemann-Pick C2 protein                                               | 1.2.6509.m1   | hsa:10577          | 54.26          | 129    | 4.00E-44   |  |  |
|                       | SCARB2    | K12384 lysosome membrane protein 2                                           | 1.2.12925.m1  | hsa: 950           | 36.36          | 231    | 2.00E-47   |  |  |
|                       | CTSD      | KD1379 cathepsin D                                                           | 1.2.7013.m1   | hsa:1509           | 53.55          | 409    | 2.00E-151  |  |  |
|                       | CTSX      | K08568 cathepsin X                                                           | 1.2.1122.m1   | hsa:1522           | 64.18          | 282    | 1.00E-133  |  |  |
|                       | CTSB      | KD1363 cathepsin B                                                           | 1.2.16027.m1  | hsa:1508           | 53.16          | 316    | 4.00E-110  |  |  |
|                       | CTSB      | K01363 cathepsin B                                                           | 1.2.14228.ml  | hsa:1508           | 38.44          | 333    | 2.00E-63   |  |  |
|                       | CTSL      | K01365 cathepsin L                                                           | 1.2.5972.m1   | hsa:1514           | 53.43          | 335    | 3.00E-114  |  |  |
|                       | CTSH      | K01366 cathepsin H                                                           | 1.2.6471.m1   | hsa:1512           | 42_39          | 309    | 9.00E-78   |  |  |
|                       | CTS0      | K01374 cathepsin O                                                           | 1.2.12092.ml  | hsa:1519           | 43.15          | 292    | 5.00E-71   |  |  |
|                       | CTS0      | K01374 cathepsin 0                                                           | 1.2.20750.ml  | hsa:1519           | 36.81          | 288    | 3.00E-49   |  |  |
|                       | CTSH      | K01366 cathepsin H                                                           | 1.2.6471.m1   | hsa:1512           | 42.39          | 309    | 9.00E-78   |  |  |
|                       | ATP6V0C   | K02155 V-type H+-transporting ATPase<br>16kDa proteolipid submit             | 1.2.9085.m1   | hsa: 527           | 34             | 150    | 2.00E-18   |  |  |
|                       | SMPDL     | K12350 sphingomyelin                                                         | 1.2.21066.m1  | hsa:6609           | 46.35          | 561    | 1.00E-169  |  |  |
|                       | GAA       | pnospnociesterase<br>K12316 lysosomal aluba-glucosidase                      | 1.2.6192.m1   | hsa:2548           | 39.85          | 916    | Ð          |  |  |
|                       | I TDA     | K01052lysosomal acid                                                         | 1 2 21 260    | L2000              | 52.05          | 264    | 7 00E 140  |  |  |
|                       |           | lipase/cholesteryl ester hydrolase                                           | 1.2.21200.001 | 124.3900           | 3363           | 301    | 7.000-1.40 |  |  |
|                       | PSAP      | K 12382 sapesm                                                               | 1.26187.ml    | bsa:5660           | 30.99          | 342    | 200E-45    |  |  |
|                       | ACP5      | K 14379 tartrate-resistant acid phosphatas<br>K 10087 N-acetyleincosamine-1- | 1.2.22359.ml  | hsa:54             | 45.19          | 312    | ZD0E-95    |  |  |
|                       | GNPTG     | phosphate transferase                                                        | 1.2.21359.ml  | hsa:84572          | 33.33          | 105    | 8.00E-1.5  |  |  |
| Lysosome              | LAMPL     | K06528 lyso somal-associated membrane<br>protein 1/2                         | 1.2.451.m1    | hsa:3916           | 29.77          | 262    | 5.00E-13   |  |  |
|                       | FUCA1     | K01206 alpha-L-fucosidase                                                    | 1.2.6843.m1   | hsa:2517           | 57.71          | 454    | 0          |  |  |
|                       | CD63      | K06497 CD63 anligen                                                          | 1.2.18482.m1  | hsa: 967           | 36.25          | 240    | 8.00E-43   |  |  |
|                       | CD 164    | K06546 CD164 anligen                                                         | 1.2.269.m1    | hsa:8763           | 34.15          | 41     | 2.00E-04   |  |  |
|                       | SORT1     | K 12388 sortilim                                                             | 1.2.3853.m1   | hsa:6272           | 27.74          | 620    | 2.00E-54   |  |  |
|                       | HGSNAT    | K 10532 heparan-alpha-glu: osamini de N-<br>scatulitzarcíaczes               | 1.2.2064.m1   | hsa:138050         | 42.06          | 592    | 3.00E-122  |  |  |
|                       | ABCA2     | K05642 ATP-binding cassette, subfamily                                       | 12110361      | here:20            | 52.22          | 1029   | a          |  |  |
|                       | ADCAZ.    | A (ABC1)                                                                     | 12.11930.001  | iiisazzo           | 33-36          | 1036   |            |  |  |
|                       | LGMN      | K01369 legumain                                                              | 1.2.9976.m1   | hsa:5641           | 43.42          | 479    | 6.00E-123  |  |  |
|                       | PLA 2615  | KUG L29 lyso priospinotipase III                                             | 1.2.1415.m1   | hsac23659          | 4/_//          | 388    | 5.00E-108  |  |  |
|                       | PLAZEIS   | K06129 lysophospholipase III                                                 | 1.2.1900.m1   | hsa:23659          | 38.34          | 410    | Z.00E-105  |  |  |
|                       | LAND      | K01137 N-acetytglucosamine 6-sultatase                                       | LZ.23780.ml   | bsa:2/99           | ++.20<br>rar   | 122    | 5.00E-16   |  |  |
|                       | ACPZ      | K14410 lysosomal acki phosphalase                                            | 1.2.19329.ml  | BS3C03             | 323            | 120    | LINUE-32   |  |  |
|                       | MANOPI    | K12348 acti ceramkiase                                                       | 1.24127       | hsa: 427           | 33,385         | 340    | 310E-59    |  |  |
|                       | MANZDI    | K 12311 lyso somal-arpna-mannosi case                                        | 1.2.0127.m1   | bsa:9123           | 98.30          | 1001   | U          |  |  |
|                       | LAMPL     | protein 1/2                                                                  | 1.2.458m1     | hsa:3916           | 29.01          | 262    | 8.00E-13   |  |  |
|                       | GGA2      | K12404 ADP-ribosylation factor-hinding<br>protein GGA                        | 1.2.6430.m1   | hsa:23062          | 26.28          | 293    | 5.00E-18   |  |  |
|                       | (I.TA     | K04644 clathrin light chain A                                                | 1.2.2306.m1   | hsa:1211           | 42.65          | 211    | 6.00E-40   |  |  |
|                       | an        | K04646 clathrin beavy chain                                                  | 1.2.15185.ml  | hsa:1213           | 75.09          | 1132   | 0          |  |  |
|                       | M6PR      | K 10089 cation-dependent mannose-6-<br>nhosphate recentor                    | 1.2.14030.m1  | hsa:4074           | 26.58          | 79     | 3.00E-05   |  |  |
|                       | AP1G1     | K12391 AP-1 complex subunit gamma-1                                          | 1.2.11304.m1  | hsa:164            | 61.94          | 854    | 0          |  |  |
| Perusisanae           |           |                                                                              |               |                    |                |        |            |  |  |
|                       | PEX1      | K13338 percain-1                                                             | 1.2.5735.m1   | hsa:5189           | 35.75          | 565    | 1.00E-81   |  |  |
|                       | PEX1      | K13338 permin-1                                                              | 1.2.3540.m1   | hsa:5189           | 37.93          | 1147   | 0          |  |  |
|                       | PEX5      | K13342 permin-5                                                              | 1.2.25613.m1  | hsa:5830           | 46.27          | 657    | 9.00E-176  |  |  |
| Ренийс                | PEX6      | K13339 permin-6<br>K13341 permin-7                                           | 12.19057.ml   | hsa:5190           | 34.47          | 499    | 5.00E-73   |  |  |
|                       | PEXIO     | K13346 nermin-10                                                             | 121507 m1     | hea-5192           | 32.00<br>42.33 | 326    | 200E-27    |  |  |
|                       | PEX13     | K13344 permin-13                                                             | 1.2.8365.m1   | hsa:5194           | 46.99          | 266    | 4.00E-76   |  |  |
|                       | CAT       | K03781 catalase                                                              | 1.2.6992.m1   | hsa:847            | 67.2           | 497    | 0          |  |  |
|                       | CAT       | K03781 catalase                                                              | 1.2.12339.m1  | hsa:847            | 64.05          | 509    | 0          |  |  |
|                       | SOD1      | K04565 supercuide dismutase, On-Zn<br>family                                 | 1.2.240.m1    | hsa:6647           | 65.07          | 146    | 3.00E-60   |  |  |
| Antiszikant<br>system | SOD1      | K04565 superonide dismutase, Co-Zn<br>family                                 | 1.2.22720.m1  | NEMVE_v1g234825    | 42_53          | 87     | 7.00E-1.5  |  |  |
|                       | SOD1      | K04565 superonide dismutase, Cu-Zn                                           | 1.2.11.59.m1  | -<br>NEMVE v1#3582 | 34.38          | 96     | 2.00E-05   |  |  |
|                       | NOS2      | ramany<br>K13241. nitric-cuide synthase, inducible                           | 1.2.1319.m1   | hsa:4843           | 44.73          | 1120   | 0          |  |  |
|                       | NOS2      | K13241 nitric-caide synthase, inducible                                      | 1.2.890.m1    | hsa:4843           | 43.78          | 1222   | 0          |  |  |
|                       | PRDX1     | K13279 percairedonin 1                                                       | 1.2.5154.m1   | hsa:5052           | 68.39          | 193    | 6.00E-91   |  |  |
|                       | PRDX1     | K13279 permiredoxin 1                                                        | 1.2.66.ml     | hsa:5052           | 69.95          | 193    | 7.00E-99   |  |  |
|                       | PRDX1     | K13279 perceiredoxin 1                                                       | 1.2.16198.m1  | Cluster030963      | 96.74          | 92     | 2.00E-61   |  |  |
|                       | EPHX2     | nuo 726 sorume eposide hydrolase /<br>lipid-phosphate phosphatase            | 1.2.5185.m1   | hsa:2053           | 30.94          | 320    | 4.00E-35   |  |  |
|                       | DHRS4     | K11147 dehydrogenase/reductase SDR<br>family member 4                        | 1.2.16310.ml  | hsa:10901          | 31.82          | 110    | 3.00E-09   |  |  |

# **(B)**

| . /                      | Gene пате    | Adults              |          |           | Juveniles |                     |           |                     |          |
|--------------------------|--------------|---------------------|----------|-----------|-----------|---------------------|-----------|---------------------|----------|
| Coral ID                 |              | 1 h 24 h            |          | 24 h 48 h |           |                     |           |                     |          |
|                          |              | log <sub>2</sub> FC | FDR      | log_FC    | FDR       | log <sub>2</sub> FC | FDR       | log <sub>2</sub> FC | FDR      |
| 1.2.21081.m1             | TAPL         | 1.35                | 1.02E-82 | 1.96      | 2.63E-59  | 1.23                | 1.04E-128 | 1.02                | 3.97E-26 |
| 1.2.15804.m1             | NPC1         | -                   | -        | 1.40      | 3.45E-22  | 0.76                | 2.85E-16  | 0.85                | 1.75E-07 |
| 1.2.6509.m1              | NPCZ         | -                   | -        | 1.22      | 8.11E-16  | 1.09                | 4.61E-33  | 0.80                | 1.52E-10 |
| 1.2.12925.m1             | SCARBZ       | -                   | -        | 1.57      | 2.25E-18  | -                   | -         | -                   | -        |
| 1.2.7013.m1              | CTSD         | -                   | -        | 1.01      | 1.13E-15  | -0.22               | 8.18E-04  | -                   | -        |
| 1.2.1122.m1              | CTSX         | -0.53               | 2.27E-07 | 0.68      | 2.11E-06  | -                   | -         | -                   | -        |
| 1.2.16027.m1             | стѕв         | -                   | -        | 0.61      | 4.90E-06  | -                   | -         | -                   | -        |
| 1.2.14228.m1             | CTSB         | -                   | -        | 0.37      | 4.58E-02  | 0.63                | 4.74E-04  | -                   | -        |
| 1.2.5972.m1              | CTSL         | -0.28               | 8.16E-03 | 0.60      | 8.05E-06  | -0.13               | 2.97E-04  | -                   | -        |
| 1.2.6471.m1              | стян         | -                   | -        | 0.79      | 3.52E-05  | 0.36                | 5.18E-07  | -                   | -        |
| 1.2.12092.m1             | CTSO         | -                   | -        | 0.43      | 3.23E-02  | -                   | -         | _                   | _        |
| 1.2.20750.m1             | CTSO         | -                   | -        | -0.27     | 4.35E-02  | -0.21               | 7.58E-04  | -                   | -        |
| 1.2.6471.m1              | стян         | -                   | -        | 0.79      | 3.52E-05  | 0.36                | 5.18E-07  | -                   | -        |
| 1.2.9085.m1              | ATP6V0C      | _                   | -        | 0.64      | 5.63E-05  | -                   | -         | _                   | -        |
| 1 2 21066 m1             | SMPD1        | 0.98                | 1.67F-07 | 1 47      | 1 22F-11  | 0.66                | 7 88F-14  | 0.38                | 1.06F-02 |
| 1.2.(102 -1              | 500 D1       | 0.30                | 7.125.02 | 4.5.5     | 1 555 00  | 0.00                | 4 145 00  | 0.50                | 1002 02  |
| 1.26192.ml               | GAA          | 0.30                | 7.12E-02 | -1.55     | 1.55E-09  | -0.65               | 4.14E-08  | -                   | -        |
| 1.2.21260.m1             | LIPA         | -                   | -        | 0.95      | 1.89E-09  | -                   | -         | -                   | -        |
| 1.2.6187.m1              | PSAP         | -                   | -        | 0.68      | 2.02E-09  | -                   | -         | -                   | -        |
| 1.2.22359.m1             | ACPS         | -                   | -        | -1.13     | 2.67E-08  | 0.31                | 9.73E-03  | -                   | -        |
| 1.2.21359.m1             | GNPTG        | -                   | -        | 0.70      | 1.63E-07  | -                   | -         | -                   | -        |
| 1.2.451.m1               | LAMP1        | _                   | -        | 0.57      | 2.72E-07  | _                   | -         | _                   | -        |
| 1 2 6 8 4 3 m 1          | FUCAL        | _                   | _        | 0.58      | 2 74F-06  | _                   | _         | _                   | _        |
| 1.2.18482 m1             | CD63         | -0.27               | 1.47F-02 | 0.50      | 6.75E-06  | 0.24                | 1.08E-02  | _                   | _        |
| 1 2 269 m1               | CT1164       | -0.27               |          | 0.67      | 3 285-05  | 0.24                |           | _                   | _        |
| 1.2.3853 m1              | SORTI        |                     |          | 0.07      | 1 25E-04  |                     |           |                     |          |
| 1.2.5055.111             | 55811        |                     |          | 0.11      | 1.252-01  |                     |           |                     |          |
| 1.2.2064.m1              | HGSNAT       | -                   | -        | -0.83     | 1.62E-04  | -                   | -         | -                   | -        |
| 1.2.11936.m1             | ABCAZ        | -                   | -        | -0.53     | 1.68E-03  | -                   | -         | 0.33                | 2.08E-02 |
| 1.2.9976.m1              | LGMN         | -                   | -        | 0.43      | 2.28E-03  | -                   | -         | -                   | -        |
| 1.2.1415.m1              | PLA2G15      | -                   | -        | 0.58      | 9.19E-02  | 0.97                | 2.51E-24  | 0.66                | 1.30E-03 |
| 1.2.1406.m1              | PLA2G15      | -                   | -        | -1.45     | 4.57E-03  | -                   | -         | -                   | -        |
| 1.2.23786.m1             | GNS          | -                   | -        | 0.79      | 4.65E-03  | -                   | -         | 0.87                | 3.79E-03 |
| 1.2.14329.m1             | ACPZ         | -                   | -        | 0.48      | 7.44E-03  | 0.19                | 4.24E-02  | -                   | -        |
| 1.2.22081.m1             | ASAH1        | -                   | -        | 0.57      | 1.16E-02  | -                   | -         | -0.26               | 2.40E-02 |
| 1.2.6127.m1              | MAN2B1       | 0.17                | 4.77E-02 | 0.35      | 1.95E-02  | -                   | -         | -                   | -        |
| 1.2.458.m1               | LAMP1        | -                   | -        | 0.30      | 3.09E-02  | -0.30               | 1.15E-11  | -0.30               | 2.03E-05 |
| 1 2 6430 m1              | CCA7         | _                   | _        | 0.41      | 3 63F-02  | -0.23               | 5 27F-03  | _                   | -        |
| 1.2.0450.111             | UNITZ.       |                     |          | 0.41      | 5.052-02  | -0.23               | 5.272-05  |                     |          |
| 1.2.2306.m1              |              | -                   | -        | 0.32      | 3.74E-02  | _                   | _         | _                   | -        |
| 1.2.15185.m1             | шıс          | -0.20               | 4.42E-02 | 0.28      | 3.92E-02  | -                   | -         | -                   | -        |
| 1.2.14030.m1             | M6PR         | -                   | -        | 0.39      | 4.62E-02  | 0.16                | 4.27E-02  | -                   | -        |
| 1.2.11304.m1             | AP1G1        | _                   | -        | 0.31      | 4.62E-02  | -                   | -         | -                   | -        |
| 4 3 5 3 3 5              |              | -                   | -        | -         | -         | -                   | -<br>-    | -                   | 4.000 00 |
| 1.2.5735.m1              | PEX1<br>PEX1 | -0.60               | 1.47E-04 | -         | -         | -0.21               | 2.77E-02  | -0.47               | 4.82E-02 |
| 1.2.25613.m1             | PEXS         | -                   |          | _         | _         | -0.26               | 4.99E-03  | -0.47               | 3.78E-07 |
| 1.2.19057.m1             | РЕХБ         | -0.24               | 1.01E-02 | 0.84      | 1.82E-11  | -                   | -         | -                   | -        |
| 1.2.16331.m1             | PEX7         | -                   | -        | -         | -         | 0.17                | 3.36E-02  | -                   | -        |
| 1.2.1507.m1              | PEX10        | -                   | -        | 0.55      | 2.41E-02  | -                   | -         | -                   | -        |
| 1.2.8365.m1              | PEX13        | -0.46               | 7.67E-03 |           |           | -                   | -         | -                   | -        |
| 1.2.6992.m1              | CAT          | -0.70               | 1.00E-08 | 1.44      | 1.93E-31  | -0.49               | 1.26E-09  | -                   | -        |
| 13340 4                  | cons         | _                   | -        | 0.30      | 1.075.00  | -0.42               | 0.031-00  | -0.41               | J.542-00 |
| 1.Z.240.m1               | 2001         | _                   | -        | 0.42      | 1.07E-02  | -                   | -         | -                   | -        |
| 1.2.22720.m1             | SOD1         | -                   | -        | 0.44      | 4.68E-02  | -                   | -         | -                   | -        |
| 1.2.1159.m1              | SOD1         | -0.80               | 8.98E-06 | -1.90     | 2.96E-07  | -                   | -         | -                   | -        |
| 1.2.1319.m1              | NOSZ         | -2.27               | 5.38E-06 | -2.99     | 3.43E-06  | -                   | -         | -                   | -        |
| 1.2.890.m1               | NOSZ         | -                   | -        | -0.70     | 5.51E-03  | -                   | -         | -                   | -        |
| 1.2.5154.m1              | PRDX1        | -0.30               | 6.59E-03 | -         | -         | 0.00                | 7 152 04  | -0.19               | 2.17E-02 |
| 1.2.16198 m <sup>1</sup> | PRDX1        | -0.40               | 1.112-02 | _         | _         | -0.32               | 7.15E-00  | -0.35               | 3.38E-03 |
| 1 2 5195 m <sup>4</sup>  | ЕРНУ?        | -0.29               | 3.22F-02 | 0.56      | 6.49F-04  | -0.28               | 8 21 8-07 | -0.21               | 5.84F-02 |
| 103.601 (                | 1106         | -0.29               | 5.226-02 | 0.30      | 0.192-04  | -0.20               | 0.212-07  | -0.21               | 5.542-02 |
| 1.2.16310.m1             | DHRS4        | -                   | -        | 1.40      | 1.09E-31  | 1.60                | 3.39E-187 | 1.63                | 3.48E-66 |
**Table S3.4**A. millepora homologues to amino acids metabolism. (A) Results of the KEGGamino acids pathways (00260 glycine, serine and threonine metabolism, 00270 cysteine andmethionine metabolism, 00330 arginine and proline metabolism, and 00480 glutathionemetabolism) searched in the A. millepora protein predictions. (B) Log<sub>2</sub>FC values ofsignificantly expressed (FDR <0.05) genes in response to the treatment (hypo-saline) over</td>the control (35 PSU). Log<sub>2</sub>FC colour indicate up (red) and down (blue) regulated genes.

|                             | Gene     |                                                                         |                   |              | Blast details       |                   |        |           |
|-----------------------------|----------|-------------------------------------------------------------------------|-------------------|--------------|---------------------|-------------------|--------|-----------|
| Function                    | name     | Orthology                                                               | EC number         | Coral ID     | Entry               | % D               | Length | e-valme   |
|                             | CDH      | K00108 choline dehydrogenase                                            | 1.1.99.1          | 1.2.6999.m1  | veNEMVE v1g112198   | 66.02             | 359    | 0         |
|                             | ALDH7A1  | K14085 aldehyde dehydrogenase family 7<br>member A1                     | 12131<br>1218     | 1.2.25403.m1 | nve:NEMVE_v1g175287 | 67.77             | 546    | o         |
|                             | BHMT     | K00544 betaine-homo cysteine S-<br>methyltransferase                    | 2115              | 1.2.8566.m1  | nve:NEMVE_v1g236455 | 71.97             | 396    | o         |
|                             | BHMT     | K00544 hetaine-homo cysteine S-                                         | 21.1.5            | 1.2.19413.m1 | NP_001012498.1      | 99                | 58     | 2E-142    |
| Gycine betaine              | DMGDH    | meuny uransterase<br>K00315 dimetholelocine debodrozenase               | 1.5.8.4           | 1.2.34(4.m1  | ma-NEMVE v1#243380  | 69.42             | 618    | 0         |
| ety azatak                  | GNMT     | K00552 elvcine N-methyltransferase                                      | 2.1.1.20          | 1.2.13833.m1 | nvesNEMVE v1z173936 | 66.56             | 311    | 4.00E-149 |
|                             | SARDH    | K00314 sarcosine dehydrogenase                                          | 1583              | 1.2.1981.m1  | nve:NEMVE v1g174872 | 72.37             | 894    | 0         |
|                             | MS       | Methionine synthase                                                     | 2.1.1.13          | 1.2.20586.m1 | NP_932338.1         | 97                | 70     | 0         |
|                             | SHMT     | Serine hydroxymethyltransferase                                         | 21.2.1            | 1.2.6795.m1  | XP_001625575.1      | 96                | 79     | 0         |
|                             | MTHFR    | Methylenetetrahydrofolate reductase                                     | 1.5.1.20          | 1.2.1458.m1  | XP_001633891.1      | 93                | 70     | 0         |
|                             | AGT      | K00830 alanine glymylate transaminase                                   | 26.1.44           | 1.2.7885.m1  | nvesNEMVE_v1g112567 | 61.37             | 409    | 0         |
| Glycine synthesis           | AGT      | K00827 alanine glynnylate transaminase                                  | 26.1.44           | 1.2.4389.m1  | nvesNEMVE_v1g214753 | 40.18             | 453    | 1.00E-104 |
|                             | TA       | K01620 threonine aldol as e                                             | 4.1.2.5           | 1.2.6387.m1  | nve:NEMVE_v1g192932 | 66.12             | 245    | 8.00E-118 |
|                             | GLDC     | K00281 glycine dehydrogenase                                            | 1442              | 1.2.12004.m1 | nve:NEMVE_v1g173380 | 75.13             | 571    | 0         |
| Glycine cleavage<br>system  | AMT      | K00605 aminomethyltransferase                                           | 2.1.2.10          | 1.2.3288.m1  | nve:NEMVE_v1g137645 | 71_57             | 313    | 1.00E-157 |
|                             | DLD      | K00382 dihydrolipoami de dehydro genase                                 | 1.8.1.4           | 1.2.23266.m1 | nve:NEMVE_v1g177276 | 75.15             | 511    | 0         |
|                             | GLXR     | K00049 głyczyłate/bydrczypyruvate<br>reductase                          | 1.1.1.79 1.1.1.81 | 1.2.4394.m1  | nve:NEMVE_v1g159915 | <del>69</del> .14 | 324    | 3.00E-160 |
|                             | GPML     | K15633 2.3-bispho sphoglycerate-<br>independent phosphoglycerate mutase | 542.12            | 1.2.1726.m1  | nve:NEMVE_v1g183697 | 73.96             | 515    | 0         |
| Serine Biosynthesis         | 3PGDH    | K00058 D-3-phosphoglycerate<br>dehydrogenase                            | 1.1.1.95          | 1.2.6168.m1  | nve:NEMVE_v1g170150 | 63.58             | 464    | 0         |
| -                           | PSAT1    | K00831 phosphoserine aminotransferase                                   | 261.52            | 1.2.14345.m1 | nvesNEMVE_v1g206542 | 65.48             | 336    | 4.00E-161 |
|                             | PSPH     | K01079 phosphoserine phosphatase                                        | 3133              | 1.2.20067.m1 | nve:NEMVE_v1g151322 | 65.91             | 44     | 9.00E-16  |
|                             | SDS      | K17989 L-serine/L-threonine deaminase                                   | 4311743119        | 1.2.876m1    | nve:NEMVE_v1g241178 | 60.25             | 317    | 2.00E-129 |
|                             | NOS1     | K13240 nitric-cuide synthase, brain                                     | 1.14.13.39        | 1.2.890.m1   | hsa:4842            | 45.66             | 1474   | 0         |
|                             | NOS1     | K13240 nitric-cuide synthase, hrain                                     | 1.14.13.39        | 1.2.1319.m1  | hsa: 4842           | 45.3              | 1139   | 0         |
| Arginine metabolism         | ARG1     | K01476 arginase                                                         | 3.5.3.1           | 1.2.5621.m1  | hsa:383             | 44.3              | 316    | 9.00E-92  |
|                             | OAT      | K00819 ornithine-ouo-acid transaminase                                  | 26113             | 1.2.25616.m1 | hsa: 4942           | 62.2              | 455    | 0         |
|                             | ALDH4A1  | K00294 1-pyrroline-5-carboxylate<br>dehydrogenase                       | 1.2.1.88          | 1.2.12494.m1 | hsa:8659            | 51.37             | 255    | 3.00E-85  |
| Proline metabolism          | PRODE    | K00318 prome dehydrogenase                                              | 15                | 126653m1     | http://www.upic.com | 46.7              | 619    | 0         |
| Gistamate metabolism        | ALDH18A1 | K12657 delta-1-pyrroline-5-carboxylate<br>synthetase                    | 27211             | 1.2.21795m1  | hsa:5832            | 51.9              | 289    | 4.00E-80  |
|                             | GDH 1    | K00261 glutamate dehydrogenase (NADH)                                   | 1413              | 1.2.12363.m1 | nve:NEMVE_v1g243194 | 78.42             | 505    | 0         |
| degradation                 | NAGS     | K11067 /N-acetylglutamate synthase                                      | 23.1.1            | 1.2.1353.m1  | nve:NEMVE_v1g235893 | 50.15             | 327    | 1.00E-102 |
|                             | GDH2     | K00261 glutamate dehydrogenase (NADPH)                                  | 1.4.1.4           | 1.2.5656.m1  | nve:NEMVE_v1g169502 | 75.73             | 445    | 0         |
|                             | GOGAT    | K00264 glotamate synthase (NADPH/NADH)                                  | 14.1.13           | 1.2.4000.m1  | nve:NEMVE_v1g168875 | 67.42             | 1237   | o         |
|                             | 65       | K01915 glutamine synthetase                                             | 6.3.1.2           | 1.2.21495.m1 | hsa: 2752           | 58.86             | 350    | 1.00E-151 |
| L-good mate<br>biasynthesis | OPLAH    | K01469 5-catoprolinase (ATP-hydrolysing)                                | 3.5.2.9           | 1.2.3712m1   | hsa:26873           | 57.98             | 1285   | 0         |
|                             | CPS1     | K01948 carbamoyl-phosphate synthase<br>(ammonia)                        | 6.3.4.1.6         | 1.2.23421.m1 | hsa: 1373           | 50.71             | 1477   | 0         |
|                             | CPS1     | K01948 carbamoyl-phosphate synthase                                     | 6.3.4.16          | 1.2.1352.m1  | hsa: 1373           | 65.46             | 1077   | 0         |
|                             | GSR      | (ammoma)<br>K00383 slutathione reductase (NADPH)                        | 1817              | 1.2.3068.m1  | hsa: 2936           | 37.45             | 486    | 5.00E-87  |
|                             | GPx .    | K00432 glutathione permidase                                            |                   | 1.2.3638m1   | hsa:2876            | 51.08             | 186    | 5.00E-63  |
|                             | GPx .    | K00432 glotathione permidase                                            | 1.11.1.9          | 1.2.18589.m1 | nve:NEMVE v1g55851  | 42.11             | 114    | 2.00E-20  |
|                             | œ        | K00432 glotathione permidase                                            | 1.11.1.9          | 1.2.11017.m1 | nve:NEMVE v1g81388  | 51.15             | 131    | 1.00E-41  |
|                             | IDH1     | K00031 isocitrate dehydrogenase                                         | 1.1.1.42          | 1.2.17652.m1 | hsa:3417            | 67.57             | 404    | 0         |
|                             | GGPD     | K00036 glucose 6-pho sphate 1-<br>dehydrogenase                         | 1.1.1.49          | 1.2.25769m1  | hsa:2539            | 67.02             | 470    | o         |
|                             | 6PGD     | K00033_6-phosphogluconate dehydrogenase                                 | 1.1.1.44          | 1.2.1905.m1  | <b>hsa:</b> 5226    | 69.65             | 481    | o         |
|                             | GST 02   | K00799 glutathione S-transferase                                        | 25.1.18           | 1.2.7742.m1  | Claster027041       | 99_58             | 236    | 6.00E-177 |
| Glutathiane REDOX           | GST K1   | K13299 glutathione S-transferase kappa 1                                | 25.1.18           | 1.2.9677.m1  | hsa:373156          | 42.65             | 272    | 5.00E-67  |
|                             | GST A4   | K00799 glutathione S-transferase                                        | 25.1.18           | 1.2.22579.m1 | hsa: 2941           | 28.57             | 203    | 2.00E-14  |
|                             | 65701    | K00799 glutathione S-transferase                                        | 25.1.18           | 1.2.7897.m1  | hsa: 9446           | 43.78             | 217    | 2.00E-49  |
|                             | GST      | K00799 glutathione S-transferase                                        | 25.1.18           | 1.2.25046.m1 | Cluster005175       | 99.26             | 136    | 2.00E-96  |
|                             | GST      | K00799 glutathione S-transferase                                        | 25.1.18           | 1.2.24505.m1 | Cluster040146       | 96.3              | 135    | 1.00E-90  |
|                             | GST      | K00799 glotathione S-transferase                                        | 25.1.18           | 1.2.10776.m1 | Cluster006475       | 99.42             | 344    | 0         |
|                             | GGT      | K 18592 gamma-glutanyl transpeptidase                                   | 2322              | 1.2.5072.m1  | hsa: 2678           | 43.03             | 588    | 4.00E-154 |
|                             | ANPEP    | K11140 aminopeptichse N                                                 | 34.11.2           | 1.2.20802.m1 | hsac290             | 37.43             | 927    | 0         |
|                             | ANPEP    | K11140 aminopeptichse N                                                 | 34112             | 1.2.3061.m1  | hsac290             | 35.86             | 937    | 0         |

<u>(B)</u>

| Gene                 |           | Adults      |            |                        |             | Juveniles |             |                |            |
|----------------------|-----------|-------------|------------|------------------------|-------------|-----------|-------------|----------------|------------|
| Coral ID             | name      | 1<br>Inv.FC | l h<br>EDP | Z<br>Ing. DC           | 4 h<br>1300 | Z-        | 4 h<br>1000 | 44<br>Jace 140 | 8 h<br>rno |
| 136000 m1            | CDH       | mghc        | FDR        | <b>1</b> 2 <u>2</u> 14 | FDR         | IOE21C    | FDK         | mg2rc          | FDA        |
| 1.2.0999.111         | Шa        | -           | -          | -                      | -           | -         | -           | -              | -          |
| 1.2.25403.m1         | ALDH7A1   | 0.42        | 1.68E-03   | 0.95                   | 4.93E-10    | -         | -           | -              | -          |
| 1.2.8566m1           | BHMT      | 2.09        | 3.89E-139  | 2.52                   | 6.39E-70    | 3.86      | 0.00E+00    | 4.02           | 0.00E+00   |
| 1.2.19413.m1         | BHMT      | -           | -          | 5.43                   | 2.38E-69    | 1.19      | 5.15E-12    | 1.07           | 3.85E-03   |
| 1.2.3404.m1          | DMGDH     | 1.13        | 8.99E-22   | 2.19                   | 1.06E-42    | 2.75      | 0.00E+00    | 2.68           | 2.54E-128  |
| 1.2.13833.m1         | GNMT      | 1.56        | 2.39E-14   | 2.07                   | 7.39E-41    | 2.70      | 6.16E-155   | 2.76           | 5.02E-249  |
| 1.2.1981.m1          | SARDH     | 0.79        | 1.82E-13   | 1.61                   | 5.25E-29    | 1.73      | 6.65E-176   | 1.72           | 9.41E-121  |
| 1.2.20586.m1         | MS        | -           | -          | -0.62                  | 1.54E-04    | -0.82     | 3.80E-74    | -0.73          | 5.35E-11   |
| 1.2.6795.m1          | SHM T     | -           | -          | -                      | -           | -0.40     | 5.28E-05    | -0.38          | 1.86E-04   |
| 1.2.1458m1           | MTHFR     | -1.02       | 6.56E-22   | -1.72                  | 6.65E-10    | -2.63     | 5.00E-239   | -2.61          | 3.13E-88   |
| 1.2.7885.m1          | AGT       | -           | -          | 0.99                   | 2.38E-12    | 0.29      | 9.44E-07    | -              | -          |
| 1.2.4389.m1          | AGT       | 0.53        | 3.04E-03   | 1.16                   | 6.64E-11    | 0.80      | 6.73E-34    | 0.72           | 2.20E-12   |
| 1.2.6387.m1          | ТА        | -           | -          | 0.86                   | 1.57E-02    | -         | -           | -              | -          |
| 1.2.12004.m1         | GLDC      | -           | -          | -                      | -           | -0.19     | 1.27E-02    | -              | -          |
| 1.2.3283m1           | AMT       | -           | -          | -                      | -           | -0.43     | 4.99E-03    | -              | -          |
| 1.2.23266.m1         | DLD       | -           | -          | -                      | -           | -         | -           | -              | -          |
| 1.2.4394m1           | GLXR      | -           | -          | -                      | -           | 0.20      | 2.08E-02    | -              | -          |
| 1.2.1726m1           | GFML      | -0.45       | 1.92E-03   | -                      | -           | 0.14      | 2.62E-02    | -              | -          |
| 1.2.6168m1           | 3PGDH     | -0.60       | 1.04E-06   | -0.77                  | 5.04E-03    | -0.57     | 9.34E-12    | -0.53          | 3.87E-04   |
| 1.2.14345.m1         | PSAT1     | -0.40       | 7.99E-03   | -                      | -           | 0.17      | 5.34E-02    | -              | -          |
| 1.2.20067.m1         | PSPH      | -1.13       | 3.67E-02   | -                      | -           | 0.29      | 5.68E-02    | 0.61           | 8.90E-04   |
| 1.2.876.m1           | SDS       | -           | -          | -                      | -           | -0.32     | 2.26E-02    | -0.66          | 7.68E-03   |
| 1.2.890.m1           | NOS1      | -           | -          | -0.70                  | 5.51E-03    | -         | -           | -              | -          |
| 1.2.1319.m1          | NOS1      | -2.27       | 5.38E-06   | -2.99                  | 3.43E-06    | -         | -           | -              | -          |
| 1.2.5621.m1          | ARG1      |             |            |                        |             |           |             |                |            |
| 1.2.25616m1          | OAT       | -           | -          | 0.52                   | 2.16E-05    | -         | -           | -              | -          |
| 1.2.12494.m1         | ALDH4A1   | 0.79        | 2.17E-04   | 1.51                   | 1.10E-11    | -         | -           | -              | -          |
| 1.2.665.m1           | PRODH     | -           | -          | 1.10                   | 5.41E-10    | 1.23      | 3.27E-70    | 0.76           | 1.80E-06   |
| 1.2.6653.m1          | PRODH     | 0.93        | 1.04E-09   | 1.06                   | 1.25E-06    | 1.31      | 5.45E-51    | 0.89           | 1.28E-02   |
| 1.2.21 <b>7</b> 95m1 | ALDH 18A1 | -           | _          | -                      | -           | -         | -           | 0.31           | 5.97E-03   |
| 1.2.12363.m1         | GDH1      | 0.47        | 1.21E-02   | 2.54                   | 4.28E-55    | 0.24      | 4.59E-03    | -              | -          |
| 1.2.1353.m1          | NAGS      | 0.56        | 1.87E-06   | 0.50                   | 2.15E-02    | -         | -           | -              | -          |
| 1.2.5656m1           | GDH2      | -0.80       | 1.46E-06   | -2.40                  | 1.74E-21    | -0.17     | 4.59E-02    | -              | -          |
| 1.2.4000.m1          | GOGAT     | -0.24       | 1.49E-02   | -0.70                  | 1.43E-07    | -0.38     | 2.31E-05    | -              | -          |
| 1.2.21495.m1         | GS        | -0.92       | 4.10E-15   | -1.54                  | 7.72E-21    | -0.29     | 8.93E-06    | -              | -          |
| 1.2.3712.m1          | OPLAH     | -           | -          | -0.39                  | 1.97E-02    | -0.29     | 1.28E-07    | -              | -          |
| 1.2.23421.m1         | CPS1      | -           | -          | 0.86                   | 4.22E-07    | -         | -           | -              | -          |
| 1.2.1352.m1          | CPS1      | _           | _          | -                      | -           | -0.35     | 6.31E-07    | -              | -          |
| 1.2.3068m1           | GSR       | -0.23       | 4.01E-02   | 0.43                   | 7.29E-03    | 0.52      | 1.30E-50    |                |            |
| 1.2.3638m1           | GPx       | -0.38       | 1.30E-03   | -1.08                  | 7.61E-10    | -         | -           | -              | -          |
| 1.2.18589.m1         | GPx       | -0.37       | 9.84E-03   | -                      | -           | -         | -           | -              | -          |
| 1.2.11017.m1         | GPx       | -           | -          | -1.12                  | 3.49E-03    | -0.44     | 5.96E-05    | -0.45          | 3.36E-04   |
| 1.2.17652.m1         | IDH1      | -           | -          | -0.64                  | 4.73E-06    | -         | -           | -              | -          |
| 1.2.25769.m1         | GGPD      | -           | -          | -0.36                  | 4.22E-02    | -         | -           | -              | -          |
| 1.2.1905.m1          | 6PGD      | -0.27       | 5.60E-02   | 0.57                   | 5.54E-05    | -         | -           | -              | -          |
| 1.2.7742.m1          | GST 02    | -1.40       | 2.25E-02   | -1.59                  | 1.78E-02    | -1.60     | 3.24E-10    | -              | -          |
| 1.2.9677.m1          | GST K1    | -           | -          | 0.85                   | 1.27E-03    | 0.49      | 9.63E-15    | -              | -          |
| 1.2.22579.m1         | GSTA4     | -0.38       | 5.35E-03   | 0.80                   | 3.38E-05    | 0.33      | 2.30E-10    | -              | -          |
| 1.2.7897.m1          | GST01     | -           | -          | 0.61                   | 2.15E-05    | -0.13     | 5.87E-02    | -              | -          |
| 1.2.25046.m1         | GST       | -           | -          | 0.82                   | 1.92E-04    | -         | -           | -              | -          |
| 1.2.24505.m1         | GST       | -           | -          | 1.56                   | 1.43E-08    | -         | -           | -              | -          |
| 1.2.10776m1          | GST       | -           | -          | -                      | -           | 0.55      | 9.03E-15    | -              | -          |
| 1.2.5072.m1          | GGT       | -           | -          | -1.52                  | 1.15E-08    | -0.29     | 1.14E-03    | -              | -          |
| 1.2.20802.m1         | ANPEP     | -           | -          | -0.58                  | 1.96E-05    | -         | -           | 0.22           | 2.35E-02   |
| 1.2.3061.m1          | ANPEP     | -           | -          | -                      | -           | -0.55     | 1.43E-02    | -              | -          |

**Table S3.5** *A. millepora* homologues to membrane transporter. (A) Results of the KEGG transporters searched in the *A. millepora* protein predictions. (B) Log<sub>2</sub>FC values of significantly expressed (FDR <0.05) genes in response to the treatment (hypo-saline) over the control (35 PSU). Log<sub>2</sub>FC colour indicates up (red) and down (blue) regulated genes.
 **(A)**

|                                         | _            |                                     | Blast details |                            |        |        |           |  |  |
|-----------------------------------------|--------------|-------------------------------------|---------------|----------------------------|--------|--------|-----------|--|--|
| Function                                | Gene<br>пате | Gene ID                             | Coral ID      | Entry                      | %ID    | Length | e-value   |  |  |
| Solute carriers                         |              |                                     |               |                            |        |        |           |  |  |
|                                         | SLC4A2       | Anion exchange protein 2            | 1.2.16219.m1  | Cluster000158m             | 96.25  | 960    | 0.00E+00  |  |  |
| <b>D</b> '                              | SLC4A2       | Anion exchange protein 2            | 1.2.16234.m1  | Cluster000158m             | 57.83  | 1086   | 0.00E+00  |  |  |
| transporters                            | SLC4A3       | Solute carrier family 4, member 3   | 1.2.10500.m1  | Cluster000926              | 36.84  | 912    | 0.00E+00  |  |  |
|                                         | SLC4A10      | Solute carrier family 4, member 10  | 1.2.18778.m1  | Cluster000926              | 100    | 1188   | 0.00E+00  |  |  |
|                                         | SLC4A11      | Solute carrier family 4, member 11  | 1.2.10134.m1  | Cluster001846              | 93.96  | 861    | 0.00E+00  |  |  |
|                                         | SLC6A1       | Solute carrier family 6, member 1   | 1.2.2642.m1   | gi 128609 sp P23978.1      | 65%    | 591    | 0.00E+00  |  |  |
|                                         | SLC6A1       | Solute carrier family 6, member 1   | 1.2.7193.m1   | gi 229462780 sp P30531.2   | 62.20% | 583    | 2.90E-141 |  |  |
|                                         | SLC6A5       | Solute carrier family 6, member 5   | 1.2.764.m1    | gi 145885602]gb[ES391184.1 | 44.27  | 192    | 2.00E-48  |  |  |
|                                         | SLC6A5       | Solute carrier family 6, member 5   | 1.2.6220.m1   | gi 52783378 sp Q761V0.1    | 58%    | 564    | 2.10E-157 |  |  |
|                                         | SLC6A5       | Solute carrier family 6, member 5   | 1.2.25412.m1  | gi 52783378 sp Q761V0.1    | 61.80% | 660    | 2.60E-170 |  |  |
|                                         | SLC6A5       | Solute carrier family 6, member 5   | 1.2.6219.m1   | gi 52783378 sp Q761V0.1    | 62.60% | 685    | 1.30E-178 |  |  |
|                                         | SLC6A11      | Solute carrier family 6, member 11  | 1.2.21883.m1  | gi 400626 sp P31647.1      | 65.20% | 534    | 2.10E-165 |  |  |
| Na <sup>*</sup> and CL                  | SLC6A11      | Solute carrier family 6, member 11  | 1.2.11757.m1  | gi 341942004 sp P31650.2   | 68.40% | 560    | 0.00E+00  |  |  |
| transporters                            | SLC6A13      | Solute carrier family 6, member 13  | 1.2.21427.m1  | gi 209573786 sp A5PJX7.1   | 57.60% | 690    | 3.10E-104 |  |  |
|                                         | SLC6A13      | Solute carrier family 6, member 13  | 1.2.14967.m1  | gi 400624 sp P31646.1      | 63.80% | 674    | 0.00E+00  |  |  |
|                                         | SLC6A13      | Solute carrier family 6, member 13  | 1.2.21418.m1  | gi 400624 sp P31646.1      | 60.20% | 643    | 2.60E-121 |  |  |
|                                         | SLC6A18      | Solute carrier family 6, member 18  | 1.2.2523.m1   | gi 48429099 sp Q62687.1    | 60.60% | 754    | 2.00E-156 |  |  |
|                                         | SLC6A18      | Solute carrier family 6, member 18  | 1.2.4717.m1   | gi 48429108 sp 088576.1    | 63.40% | 663    | 1.20E-170 |  |  |
|                                         | SLC6A19      | Solute carrier family 6, member 19  | 1.2.7241.m1   | gi 73919285 sp Q695T7.1    | 63.80% | 657    | 7.80E-147 |  |  |
|                                         | SLC6A19      | Solute carrier family 6, member 19  | 1.2.2521.m1   | gi[73919287]sp[Q5R6]1.1    | 52%    | 767    | 1.70E-90  |  |  |
|                                         | SLC6A19      | Solute carrier family 6, member 19  | 1.2.20969.m1  | gi[73919287]sp[Q5R6]1.1    | 52.60% | 433    | 4.20E-68  |  |  |
|                                         | NAC3         | Solute carrier family 8, member 3   | 1.2.14821.m1  | gi[2498054]sp[P70549.1     | 53%    | 804    | 1.10E-125 |  |  |
| Na*/Ca <sup>s</sup> * exchanger         | NAC2         | Solute carrier family 8, member 2   | 1.2.14679.m1  | gi 10720116 sp Q9UPR5.2    | 44.80% | 886    | 1.90E-102 |  |  |
|                                         | SLC9         | Solute carrier family 9             | 1.2.622.m1    | Cluster004770              | 83.23  | 662    | 0.00E+00  |  |  |
|                                         | SLC9A2       | Solute carrier family 9, member 2   | 1.2.2250.m1   | Cluster005704              | 99.6   | 755    | 0.00E+00  |  |  |
|                                         | SLC9A8       | Solute carrier family 9, member 8   | 1.2.16650.m1  | Cluster007852              | 99.83  | 594    | 0.00E+00  |  |  |
| Na*/N* exchanger                        | SLC9A9       | Solute carrier family 9, member 9   | 1.2.2407.m1   | Cluster006121              | 90.94  | 629    | 0.00E+00  |  |  |
| ton y tr choninger                      | SLC9A9       | Solute carrier family 9, member 9   | 1.2.20148.m1  | Cluster006121              | 53.95  | 569    | 0.00E+00  |  |  |
|                                         | SLC9R2       | Solute carrier family 9 subfamily b | 1 2 4134 m1   | ज13419411711snI058KR2 2    | 63%    | 531    | 2.00E-111 |  |  |
|                                         | 5147122      | member 2                            | 1             | BID III III IIapi (Comerce |        |        |           |  |  |
|                                         | SLC9C1       | Solute carrier family 9, member C1  | 1.2.1836.m1   | gi 158563886 sp Q4G0N8.2   | 50.80% | 881    | 6.60E-83  |  |  |
| transporter                             | SLC16A3      | Monocarboxylate transporter 3       | 1.2.16615.m1  | gi 149383394gb ES738463.1  | 34.85  | 132    | 4.00E-19  |  |  |
| Vesicular glutamate                     | SLC17A5      | Solute carrier family 17, member 5  | 1.2.21296.m1  | gi 145883711 gb ES389293.1 | 35.96  | 178    | 5.00E-31  |  |  |
| transporter                             | SLC17A5      | Solute carrier family 17, member 5  | 1.2.312.m1    | hsa:26503                  | 41.06  | 453    | 1.00E-103 |  |  |
|                                         | SLC24A1      | Solute carrier family 24            | 1.2.457.m1    | Cluster033035              | 100    | 141    | 1.00E-97  |  |  |
|                                         | SLC24A2      | Solute carrier family 24 member 2   | 1.2.7150.m1   | gi 17865498 sp 054701.1    | 56.60% | 659    | 5.20E-132 |  |  |
|                                         | SLC24A4      | Solute carrier family 24, member 4  | 1.2.13525.m1  | Cluster006401              | 99.28  | 553    | 0.00E+00  |  |  |
|                                         | SLC24A4      | Solute carrier family 24, member 4  | 1.2.4324.m1   | Cluster011028              | 20.2   | 510    | 4.00E-24  |  |  |
| Na*/(Ca <sup>2+</sup> -K*)<br>exchanaer | SLC24A5      | Solute carrier family 24, member 5  | 1.2.17180.m1  | Cluster009582              | 51.58  | 444    | 4.00E-152 |  |  |
| 0                                       | SLC24A5      | Solute carrier family 24, member 5  | 1.2.20341.m1  | Cluster008099              | 93.65  | 567    | 0.00E+00  |  |  |
|                                         | SLC24A5      | Solute carrier family 24, member 5  | 1.2.17183.m1  | Cluster009582              | 98.66  | 449    | 0.00E+00  |  |  |
|                                         | SLC24A5      | Solute carrier family 24, member 5  | 1.2.6851.m1   | Cluster054035              | 57.45  | 94     | 8.00E-29  |  |  |
|                                         | SLC24A6      | Solute carrier family 24, member 6  | 1.2.6296.m1   | Cluster011028              | 98.21  | 336    | 0.00E+00  |  |  |
| 100 - 1 - 2 - 2                         | SLC25A17     | Solute carrier family 25, member 17 | 1.2.22387.m1  | hsa:10478                  | 53.51  | 271    | 3.00E-89  |  |  |
| Mitochondrial carrier                   | SLC25A17     | Solute carrier family 25, member 17 | 1.2.22651.m1  | hsa:10478                  | 31.43  | 245    | 2.00E-31  |  |  |
|                                         | SLC26A1      | Solute carrier family 26            | 1.2.10089.m1  | Cluster004291              | 62.45  | 719    | 0.00E+00  |  |  |
|                                         | SLC26A1      | Solute carrier family 26            | 1.2.22559.m1  | Cluster004291              | 93.23  | 739    | 0.00E+00  |  |  |
| Multifunctional anion                   | SLC26A1      | Solute carrier family 26            | 1.2.18457.m1  | Cluster004248              | 92_53  | 790    | 0.00E+00  |  |  |
|                                         | SLC26A1      | Solute carrier family 26            | 1.2.13625.m1  | Cluster004980              | 76.83  | 574    | 0.00E+00  |  |  |
|                                         | SLC26A1      | Solute carrier family 26            | 1.2.13627.m1  | Cluster004980              | 72.92  | 288    | 4.00E-136 |  |  |

| ATPases                                      |         |                                                                                                          |             |                            |        |            |           |
|----------------------------------------------|---------|----------------------------------------------------------------------------------------------------------|-------------|----------------------------|--------|------------|-----------|
| Na <sup>†</sup> (V <sup>†</sup> teams acting | ATP1A1  | Na+/K+-ATPase alpha subunit                                                                              | 12.17116m1  | gi 149381259 gb ES736328.1 | 61.17  | 188        | 2.00E-62  |
| на ук. Шанция илу                            | ATP1A1  | Na+/K+-ATPase alpha subunit                                                                              | 12.17104m1  | gi 149381259 gb E5736328.1 | 63.33  | 150        | 5.00E-52  |
| Ca++ transporting                            | ATP2C1  | Calcium-transporting ATPase type 2C<br>member 1                                                          | 12.15136m1  | Cluster000652m             | 100    | 919        | 0.00E+00  |
|                                              | VAS1    | V-type H+ transporting ATPase<br>subunit S1                                                              | 12.17585m1  | Cluster011030              | 100    | 462        | 0.00E+00  |
|                                              | АТР6В   | V-type H+-transporting ATPase<br>subunit B                                                               | 1.2.1144.m1 | nve:NEMVE_v1g99968         | 94.8   | 481        | 0         |
|                                              | VATD    | V-type proton ATPase subunit D                                                                           | 12.15346m1  | Cluster017889              | 93.9   | 246        | 9.00E-162 |
|                                              | АТР6Н   | V-type H+-transporting ATPase<br>subunite                                                                | 1.2.964.m1  | nve:NEMVE_v1g192Z25        | 63.46  | 52         | 3.00E-17  |
| H* transporting,                             | ATPeV1H | V-type H+-transporting ATPase<br>subunit H                                                               | 1.2.9026.m1 | nve:NEMVE_v1g164874        | 60.04  | 468        | 0         |
| lysosomal                                    | ATPeV1G | V-type H+-transporting ATPase<br>subunit G                                                               | 1.2.2284.m1 | nve:NEMVE_v1g191954        | 70.43  | 115        | 5.00E-51  |
|                                              | ATPeV1E | V-type H+-transporting ATPase<br>subunit E                                                               | 12.14605m1  | nve:NEMVE_v1g237075        | 76.55  | <b>ZZ6</b> | 3.00E-121 |
|                                              | VA0D1   | V-H+ATPase subunit a1-JV                                                                                 | 12.15120.m1 | Cluster009028              | 99.72  | 357        | 0.00E+00  |
|                                              | VPP1    | V-H+ATPase subunit a1-IV                                                                                 | 1.2.8634.m1 | Cluster005272              | 99_53  | 856        | 0.00E+00  |
|                                              | VATE    | V-type proton ATPase                                                                                     | 12.11894.m1 | Cluster028816              | 100    | 126        | 4.00E-89  |
|                                              | VATL.   | V-type proton ATPase                                                                                     | 12.22335.m1 | Cluster018458p             | 91.6   | 131        | 1.00E-75  |
| ER                                           | VCP     | Transitional endoplasmic reticulum<br>ATPase                                                             | 12.19057m1  | nve:NEMVE_v1g190325        | 87.86  | 807        | 0         |
|                                              | КСТОЗ   | Potassium voltage-gated shaker-<br>related                                                               | 12.15258m1  | gi 112823993 sp Q9Y597.2   | 73.80% | 654        | 0.00E+00  |
|                                              | KCNAW   | Potassium voltage-gated shaker-<br>related                                                               | 12.22013.m1 | gi 116444 sp P17972.1      | 57%    | 1486       | 2.10E-105 |
|                                              | KCNQ    | Potassium voltage-gated channel KQT-<br>like subfamily                                                   | 12.11257.m1 | nve:NEMVE_v1g99775         | 68.23  | 277        | 2.00E-113 |
|                                              | KCNA1   | Potassium voltage-gated shaker-<br>related                                                               | 1.2.5102.m1 | gi 116420 sp P16388.1      | 66.20% | 509        | 1.10E-127 |
|                                              | KCNC1   | Potassium voltage-gated channel<br>Shaw-related subfamily C member 1                                     | 1.2.7045.m1 | nve_NEMVE_v1g21646         | 79.9   | 403        | 0         |
|                                              | KCD20   | Potassium voltage-gated shaker-<br>related                                                               | 12.21228m1  | gi 74750149 sp Q7Z5Y7.1    | 82.20% | 397        | 4.30E-131 |
| Potassium channels                           | KCNAZ   | Potassium voltage-gated shaker-<br>related member 10                                                     | 1.2.5849.m1 | gi 745755676 sp Q09081.2   | 74%    | 565        | 2.10E-148 |
|                                              | KCNA2   | Potassium voltage gated shaker-<br>related                                                               | 12.15380.m1 | gi 745755676 sp Q09081.2   | 56.20% | 488        | 8.40E-72  |
|                                              | BACD3   | Potassium voltage-gated shaker-<br>related                                                               | 1.2.857.m1  | gi 74733570 sp Q9H3F6.1    | 81.80% | 286        | 2.60E-130 |
|                                              | KCNAS   | Potassnim voltage-gated shaker-<br>related member 10                                                     | 1.2.8080.m1 | gi 145882999 gb E5388581.1 | 43.44  | 244        | 9.00E-53  |
|                                              | KCND2   | Potassium voltage-gated channel Shal-<br>related subfamily D                                             | 1.2.7519.m1 | nve:NEMVE_v1g135889        | 84.71  | 484        | 0         |
|                                              | KCNH6   | Potassnim vonage-gated channel rag-<br>related subfamily H member 6<br>Retroction voltage, gated chalter | 1.2.6126.m1 | nve:NEMVE_v1g236199        | 73.87  | 532        | 0         |
|                                              | KCNA2   | related                                                                                                  | 12.14042.m1 | gi 82221700 sp Q91830.1    | 57.20% | 477        | 3.80E-76  |
|                                              | CACIM   | Voltage-dependent calcium channel<br>alpha- 1                                                            | 1.2.3113.m1 | nvc:NEMVE_v1g88037         | 69.55  | 1051       | 0         |
|                                              | CACB4   | Voltage-dependent L-type calcium<br>channel beta= 4                                                      | 12.13199.m1 | Cluster013385              | 100    | 336        | 0.00E+00  |
|                                              | CAC1H   | Voltage-dependent T-type calcium<br>channel alpha-1 subunit                                              | 12.13780.m1 | Cluster046091              | 60.63  | 127        | 3.00E-48  |
|                                              | CACIA   | Voltage-dependent calcium channel<br>alpha– 1                                                            | 12.10389m1  | Cluster000649              | 99.73  | 1477       | 0.00E+00  |
|                                              | CACIA   | Voltage-dependent calcium channel<br>alpha– 1                                                            | 12.20611.m1 | Cluster000601              | 44.61  | 1652       | 0.00E+00  |
| Calcium channels                             | CAZD3   | Voltage-dependent calcium channel<br>alpha=2-3                                                           | 1.2.718.m1  | Cluster001718              | 99.82  | 551        | 0.00E+00  |
|                                              | CAC1A   | Voltage-dependent P/Q type calcium<br>channel subunit alpha-1A                                           | 1.2.8465.m1 | Cluster000649              | 47.55  | 1123       | 0.00E+00  |
|                                              | CACBZ   | vortage-dependent L-type calcium<br>channel beta                                                         | 12.16220.m1 | Cluster013385              | 46.25  | 240        | 2.00E-68  |
|                                              | CA2D3   | vorrage-dependent calcium channel<br>alpha- Z                                                            | 12.11288m1  | Cluster003383              | 29.26  | 1063       | 2.00E-113 |
|                                              | CA2D3   | Voltage-dependent calcium channel<br>alpha- Z                                                            | 12.15641m1  | Cluster003383              | 95.21  | 1085       | 0.00E+00  |
|                                              | CAC1H   | Voltage-dependent T-type calcium<br>channel alpha-1 subunit                                              | 1.2.6803.m1 | Cluster046091              | 100    | 127        | 9.00E-82  |
|                                              | XCAT2   | Calcium Transporter 3                                                                                    | 1.2.1155.m1 | Cluster001782              | 99.67  | 918        | 0.00E+00  |
| Colcium Transporters                         | XCATZ   | Calcium Transporter 4                                                                                    | 1.2.1164.m1 | Cluster007604              | 93.27  | <b>SSO</b> | 0.00E+00  |
|                                              | XCATZ   | Calcium Transporter Z                                                                                    | 1.2.1162.m1 | Cluster001782              | 53.49  | 787        | 0.00E+00  |
|                                              | AQP     | Aquaporin-3                                                                                              | 12.11520m1  | gi 1351966 sp P47862.1     | 48.06  | 283        | 1.00E-80  |
| Aquaporta                                    | AQP     | Aquaporin-3                                                                                              | 12.11518m1  | gi 1351966 sp P47862.1     | 47.72  | 285        | 8.00E-87  |
|                                              | AQP     | Aquaporin-3                                                                                              | 12.11517m1  | gi 1351966 sp P47862.1     | 51.68  | 238        | 8.00E-75  |
| Receptors                                    | Nacra5  | Nicotinic acetylcholine receptor<br>subunit a5                                                           | 12.13318m1  | gi 145890050 gb ES395632.1 | 28.47  | 295        | 1.00E-30  |

| $(\mathbf{R})$ |  |
|----------------|--|
| נשו            |  |

| <u>(B)</u>     |                      |                     |            | •                   |           | Inveniles           |          |                     |          |
|----------------|----------------------|---------------------|------------|---------------------|-----------|---------------------|----------|---------------------|----------|
|                |                      |                     | Ad         | ults                |           |                     | Juve     | niles               |          |
| Coral ID       | <b>Gene name</b>     | ]                   | . <b>h</b> |                     | .411      |                     | 4h<br>   | 4                   | 8h<br>   |
|                |                      | log <sub>z</sub> FC | FDR        | log <sub>z</sub> FC | FDR       | log <sub>z</sub> FC | FDR      | log <sub>z</sub> FC | FDR      |
| 1 2 16210      | ST CA AD             | 0.50                | 9 25E 0.9  |                     |           |                     |          |                     |          |
| 1.2.16224 m1   | SI CA A2             | -0.49               | 2.97E-02   |                     |           |                     |          |                     |          |
| 1.2.102.34.111 | SI CAA2              | -0.40               | 3.87E-03   | 166                 | 216E-04   |                     |          |                     |          |
| 1.2.10770      | SICAND               | 0.40                | 501E07     | 0.91                | 2.94E 11  |                     |          |                     |          |
| 1.2.10770.001  | SIL-MILV<br>SICAALI  | -0.49               | 5.91E-07   | -0.01               | 2.046-11  | _                   | _        | _                   | _        |
| 1.2.10134.001  | SIL-PALL<br>SIL-PALL | _                   |            |                     |           | _                   |          |                     |          |
| 1.2.2042.111   | SLADAL<br>SLADAL     | _                   | _          | _                   | _         | _                   | _        | _                   | _        |
| L.2.7193.ml    | SLOAL                | -                   | -          | _                   | -         | _                   | -        | _                   | —        |
| 1.2.764.m1     | SLUDAS               | 0.62                | 1.48E-04   | 0.93                | 2.85E-08  | -0.20               | 1.89E-02 | -                   | -        |
| 1.2.6220.m1    | SLC6A5               | -0.40               | 3.09E-02   | -1.25               | 2.64E-22  | -0.75               | 7.65E-13 | -                   | -        |
| 1.2.25412.m1   | SLC6A5               | -                   | -          | -                   | -         | -0.44               | 3.23E-06 | -0.34               | 1.12E-02 |
| 1.2.6219.m1    | SLC6A5               | -0.52               | 1.43E-06   | -0.75               | 7.36E-07  | -                   | -        | -                   | -        |
| 1.2.21883.m1   | SLC6A11              | -0.67               | 9.27E-06   | -1.24               | 2.65E-10  | -0.38               | 2.58E-08 | -0.50               | 3.85E-10 |
| 1.2.11757.m1   | SLC6A11              | -                   | -          | -1.21               | 2.34E-02  | -                   | -        | -                   | -        |
| 1.2.21427.m1   | SLC6A13              | -0.27               | 7.48E-03   | -                   | -         | -                   | -        | 0.34                | 4.22E-02 |
| 1.2.14967.m1   | SLC6A13              | -                   | -          | -1.20               | 3.06E-09  | -                   | -        | -                   | _        |
| 1.2.21418.m1   | SLC6A13              | -                   | -          | -                   | -         | -                   | -        | -                   | -        |
| 1.2.2523.m1    | SLC6A18              | -                   | -          | -0.77               | 2.76E-02  | -                   | -        | -                   | -        |
| 1.2.4717.m1    | SLC6A18              | -                   | -          | -                   | -         | 0.25                | 2.69E-02 | 0.51                | 1.35E-07 |
| 1.2.7241.m1    | SLC6A19              | -                   | -          | -0.81               | 2.17E-05  | 0.23                | 7.11E-03 | 0.44                | 2.35E-04 |
| 1.2.2521.m1    | SLC6A19              | -                   | -          | -                   | -         | -                   | -        | -                   | -        |
| 1.2.20969.m1   | SLC6A19              | -                   | -          | -                   | -         | -                   | _        | -                   | _        |
| 1.2.14821.m1   | NAC3                 | 0.60                | 1.32E-06   | -                   | -         | -                   | -        | -                   | -        |
| 1.2.14679.m1   | NAC2                 | -                   | -          | -                   | -         | -                   | -        | -                   | -        |
| 1.2.622.m1     | SLC9                 | -                   | -          | -0.53               | 1.72E-02  | -0.29               | 2.17E-04 | -                   | -        |
| 1.2.2250.ml    | SLC9A2               | -                   | -          | -                   | -         | -                   | -        | -                   | -        |
| 1.2.16650.m1   | SLC9A8               | -0.36               | 1.17E-02   | -                   | -         | -                   | -        | -                   | -        |
| 1.2.2407.m1    | SLC9A9               | -                   | -          | -                   | -         | -                   | _        | -                   | _        |
| 1.2.20148.m1   | SLC9A9               | -                   | -          | -                   | -         | -                   | -        | -                   | -        |
| 1.2.4134.m1    | SLC9B2               | _                   | _          | _                   | _         | -                   | _        | _                   | _        |
| 1.2.1836.m1    | SLC9C1               | _                   | _          | _                   | _         | -                   | _        | _                   | _        |
| 1.2.16615.m1   | SLC16A3              | _                   | _          | -2.43               | 2.71E-04  | -0.59               | 7.07E-04 | _                   | _        |
|                |                      |                     |            |                     |           |                     |          |                     |          |
| 1.2.21296.m1   | SLC17A5              | -                   | -          | -                   | -         | -0.61               | 1.22E-02 | -                   | -        |
| 1.2.312.m1     | SLC17A5              | -                   | -          | 0.63                | 7.74E-04  | -                   | -        | -                   | -        |
| 1.2.457.m1     | SLC24A1              | -                   | _          | -                   | _         | -                   | _        | -                   | _        |
| 1.2.7150.m1    | SLC24A2              | -                   | -          | -                   | -         | -                   | -        | -                   | -        |
| 1.2.13525.m1   | SLC24A4              | 0.58                | 1.26E-04   | -1.50               | 1.31E-12  | -0.54               | 1.32E-03 | -                   | -        |
| 1.2.4324.m1    | SLC24A4              | -                   | -          | -                   | -         | -0.37               | 4.53E-02 | -                   | _        |
| 1.2.17180.m1   | SLC24A5              | -                   | -          | -0.90               | 7.76E-03  | -0.52               | 1.27E-04 | -                   | -        |
| 1.2.20341.m1   | SLC24A5              | -                   | -          | -1.45               | 2.39E-03  | 0.62                | 3.32E-04 | -                   | -        |
| 1.2.17183.m1   | SLC24A5              | -                   | -          | -                   | -         | -0.20               | 4.58E-02 | -                   | -        |
| 1.2.6851.m1    | SLC24A5              | -                   | -          | -                   | -         | -                   | -        | -                   | -        |
| 1.2.6296.m1    | SLC24A6              | 0.36                | 7.87E-04   | -                   | -         | -                   | -        | -                   | -        |
| 1.2.22387.m1   | SLC25A17             | -                   | -          | -                   | -         | 0.22                | 6.43E-04 | _                   | _        |
| 1.2.22651.m1   | SLC25A17             | -                   | -          | 0.61                | 6.06E-03  | 0.32                | 3.57E-06 | -                   | -        |
| 1.2.10089.m1   | SLC26A1              | -1.81               | 3.18E-34   | -2.61               | 7.14E-105 | 1.00                | 4.44E-11 | -                   | -        |
| 1.2.22559.m1   | SLC26A1              | -0.69               | 4.20E-03   | -2.64               | 1.05E-23  | -                   | -        | -                   | -        |
| 1.2.18457.m1   | SLC26A1              | _                   | _          | _                   | _         | 0.23                | 7.08E-04 | 0.28                | 1.38E-02 |
| 1.2.13625.m1   | SLC26A1              | -                   | -          | -                   | -         | -                   | -        | 0.40                | 1.35E-02 |
| 1.2.13627.m1   | SLC26A1              | _                   | _          | _                   | _         | _                   | _        | _                   | _        |

| 1.2.17116.m1                                                                                                                                                                                                                                                                                      | ATP1A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.73                         | 9.23E-23                                                                              | -1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.73E-13                                                                                                                                               | -0.14                                                                                                                                                                                                                                      | 2.57E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.29                                                                                                 | 3.91E-03                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 1.2.17104.m1                                                                                                                                                                                                                                                                                      | ATP1A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                             | -                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                      | 0.34                                                                                                                                                                                                                                       | 2.81E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.58                                                                                                 | 1.59E-03                                                                                    |
| 1.2.15136.m1                                                                                                                                                                                                                                                                                      | ATP2C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                             | -                                                                                     | -0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.25E-03                                                                                                                                               | -0.27                                                                                                                                                                                                                                      | 4.33E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                    | -                                                                                           |
| 1.2.17585.m1                                                                                                                                                                                                                                                                                      | VAS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                             | -                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                      | -                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                    | -                                                                                           |
| 1.2.1144.m1                                                                                                                                                                                                                                                                                       | ATP6B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                             | -                                                                                     | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.98E-06                                                                                                                                               | 0.20                                                                                                                                                                                                                                       | 2.72E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                                                    | _                                                                                           |
| 1.2.15346.m1                                                                                                                                                                                                                                                                                      | VATD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.33                         | 1.77E-02                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                      | -                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                    | -                                                                                           |
| 1.2.964.m1                                                                                                                                                                                                                                                                                        | АТР6Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                             | -                                                                                     | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.94E-03                                                                                                                                               | 0.20                                                                                                                                                                                                                                       | 2.33E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                    | _                                                                                           |
| 1.2.9026.m1                                                                                                                                                                                                                                                                                       | ATPeV1H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                             | -                                                                                     | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.78E-06                                                                                                                                               | 0.18                                                                                                                                                                                                                                       | 9.54E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                    | -                                                                                           |
| 1.2.2284.m1                                                                                                                                                                                                                                                                                       | ATPeV1G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.39                         | 2.80E-03                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                      | -                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                    | _                                                                                           |
| 1.2.14605.m1                                                                                                                                                                                                                                                                                      | ATPeV1E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.32                         | 2.29E-02                                                                              | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.94E-02                                                                                                                                               | -                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                    | -                                                                                           |
| 1.2.15120.m1                                                                                                                                                                                                                                                                                      | VAOD 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.26                         | 4.74E-02                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                      | -                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                    | _                                                                                           |
| 1.2.8634.m1                                                                                                                                                                                                                                                                                       | VPP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                             | -                                                                                     | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.85E-03                                                                                                                                               | -                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                    | -                                                                                           |
| 1.2.11894.m1                                                                                                                                                                                                                                                                                      | VATF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                             | -                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                      | -                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                    | -                                                                                           |
| 1.2.22335.m1                                                                                                                                                                                                                                                                                      | VATL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                             | -                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                      | -                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                    | -                                                                                           |
| 1.2.19 <b>0</b> 57.m1                                                                                                                                                                                                                                                                             | VCP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.24                         | 1.01E-02                                                                              | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.82E-11                                                                                                                                               | -                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                    | -                                                                                           |
| 1.2.15258.m1                                                                                                                                                                                                                                                                                      | КСТДЗ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.52                          | 4.02E-04                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                      | -                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                    | -                                                                                           |
| 1.2.22013.m1                                                                                                                                                                                                                                                                                      | KCNAW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.53                          | 2.47E-02                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                      | -                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                    | -                                                                                           |
| 1.2.11257.m1                                                                                                                                                                                                                                                                                      | KCNQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.44                          | 2.03E-03                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                      | -0.30                                                                                                                                                                                                                                      | 4.99E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                    | -                                                                                           |
| 1.2.5102.m1                                                                                                                                                                                                                                                                                       | KCNA1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                             | -                                                                                     | 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.90E-02                                                                                                                                               | -                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                    | -                                                                                           |
| 1.2.7045.m1                                                                                                                                                                                                                                                                                       | KCNC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                             | -                                                                                     | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.31E-03                                                                                                                                               | -                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                    | _                                                                                           |
| 1.2.21228.m1                                                                                                                                                                                                                                                                                      | KCD20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                             | -                                                                                     | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.79E-02                                                                                                                                               | -                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                    | -                                                                                           |
| 1.2.5849.m1                                                                                                                                                                                                                                                                                       | KCNA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.85                         | 2.00E-04                                                                              | -0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.42E-03                                                                                                                                               | -                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                    | _                                                                                           |
| 1.2.15380.m1                                                                                                                                                                                                                                                                                      | KCNA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.88                         | 2 005 02                                                                              | 1 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.01E.02                                                                                                                                               |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                      | _                                                                                           |
|                                                                                                                                                                                                                                                                                                   | Luum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00                          | 3.701-02                                                                              | -1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.01E-05                                                                                                                                               | _                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                      |                                                                                             |
| 1.2.857.m1                                                                                                                                                                                                                                                                                        | BACD3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.31                         | 3.05E-02                                                                              | -1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                      | -                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                    | -                                                                                           |
| 1.2.857.m1<br>1.2.8080.m1                                                                                                                                                                                                                                                                         | BACD 3<br>KCNAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.31                         | 3.05E-02                                                                              | -1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -<br>1.63E-05                                                                                                                                          | -0.21                                                                                                                                                                                                                                      | 5.79E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.32                                                                                                | -<br>4.60E-03                                                                               |
| 1.2.857.m1<br>1.2.8080.m1<br>1.2.7519.m1                                                                                                                                                                                                                                                          | BACD3<br>KCNAS<br>KCND2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.31                         | 3.05E-02                                                                              | -1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -<br>1.63E-05<br>-                                                                                                                                     | -0.21                                                                                                                                                                                                                                      | 5.79E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.32                                                                                                | -<br>4.60E-03<br>-                                                                          |
| 1.2.857.m1<br>1.2.8080.m1<br>1.2.7519.m1<br>1.2.6126.m1                                                                                                                                                                                                                                           | BACD 3<br>KCNAS<br>KCND2<br>KCNI <del>IG</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.31                         | 3.05E-02<br>-<br>-<br>-                                                               | -1.73<br>-<br>-1.04<br>-<br>-0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -<br>1.63E-05<br>-<br>2.54E-03                                                                                                                         | -0.21<br>-0.27                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.32                                                                                                | -<br>4.60E-03<br>-<br>-                                                                     |
| 1.2.857.m1<br>1.2.8080.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.14042.m1                                                                                                                                                                                                                           | BACD 3<br>KCNAS<br>KCND2<br>KCNH6<br>KCNA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.31<br><br><br>             | 3.05E-02<br>-<br>-<br>-<br>-                                                          | -1.73<br><br>-1.04<br><br>-0.75<br>-1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                        | -0.21<br>-0.27<br>_                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.32<br>-<br>-                                                                                      | -<br>4.60E-03<br>-<br>-<br>-                                                                |
| 1.2.857.m1<br>1.2.8060.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.14042.m1<br>1.2.3113.m1                                                                                                                                                                                                            | BACD3<br>KCNAS<br>KCND2<br>KCNB6<br>KCNA2<br>CAC1M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.31                         | 3.95E-02<br>                                                                          | -1.73<br>-1.04<br>-0.75<br>-1.90<br>-0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                        | -0.21<br>-0.27<br>-                                                                                                                                                                                                                        | -<br>5.79E-02<br>3.09E-02<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.32<br>-<br>-<br>-                                                                                 | -<br>4.60E-03<br>-<br>-<br>-<br>-<br>-                                                      |
| 1.2.857.m1<br>1.2.8080.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.14042.m1<br>1.2.3113.m1<br>1.2.13199.m1                                                                                                                                                                                            | BAGD3<br>BAGD3<br>KCNAS<br>KCND2<br>KCNH6<br>KCNA2<br>CAG1M<br>CAGB4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.31<br><br><br><br><br>     | 3.95E-02<br>                                                                          | -1.73<br>-<br>-1.04<br>-<br>-0.75<br>-1.90<br>-0.89<br>-0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                        | -0.21<br>-0.27<br>-<br>-<br>-                                                                                                                                                                                                              | -<br>5.79E-02<br>3.09E-02<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.32                                                                                                | -<br>4.60E-03<br>-<br>-<br>-<br>-<br>-<br>-                                                 |
| 1.2.857.m1<br>1.2.8060.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.14042.m1<br>1.2.3113.m1<br>1.2.13199.m1<br>1.2.13780.m1                                                                                                                                                                            | BACD3<br>KCNAS<br>KCNA2<br>KCNH6<br>KCNA2<br>CAC1M<br>CACB4<br>CAC1H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.31<br><br><br><br><br><br> | 3.05E-02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                 | -1.73<br>-1.04<br>-0.75<br>-1.90<br>-0.89<br>-0.89<br>-0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                        | -0.21<br>-0.27<br>-<br>-<br>-                                                                                                                                                                                                              | -<br>5.79E-02<br>3.09E-02<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.32<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                             | -<br>4.60E-03<br>-<br>-<br>-<br>-<br>-<br>-                                                 |
| 1.2.857.m1<br>1.2.8080.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.14042.m1<br>1.2.3113.m1<br>1.2.13199.m1<br>1.2.13780.m1<br>1.2.13780.m1                                                                                                                                                            | EACD3<br>BACD3<br>KCNAS<br>KCND2<br>KCNH6<br>KCNA2<br>CAC1M<br>CACB4<br>CAC1H<br>CAC1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.31<br>                     | 3.05E-02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-             | -1.73<br>-<br>-1.04<br>-<br>0.75<br>-1.90<br>-0.89<br>-0.89<br>-0.80<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                        | -0.21<br>-0.27<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                        | 5.79E-02<br>3.09E-02<br><br><br><br>2.61E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.32<br>                                                                                            | -<br>4.60E-03<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                       |
| 1.2.857.m1<br>1.2.8060.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.6126.m1<br>1.2.3113.m1<br>1.2.13199.m1<br>1.2.13780.m1<br>1.2.10389.m1<br>1.2.20611.m1                                                                                                                                             | BACD3<br>KCNAS<br>KCND2<br>KCNB6<br>KCNA2<br>CAC1M<br>CAC1A<br>CAC1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.31                         | 3.05E-02<br>                                                                          | -1.73<br>-<br>-1.04<br>-<br>-0.75<br>-1.90<br>-0.89<br>-0.89<br>-0.80<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        | -0.21<br>-0.27<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>0.22<br>-0.21                                                                                                                                                     | 5.79E-02<br>3.09E-02<br>-<br>-<br>-<br>-<br>-<br>2.61E-02<br>3.83E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.32<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                         | 4.60E-03                                                                                    |
| 1.2.857.m1<br>1.2.8080.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.14042.m1<br>1.2.3113.m1<br>1.2.13199.m1<br>1.2.13780.m1<br>1.2.10389.m1<br>1.2.20611.m1<br>1.2.20611.m1                                                                                                                            | BAGD3<br>BAGD3<br>KCNAS<br>KCND2<br>KCNH6<br>KCNA2<br>CAC1M<br>CACB4<br>CAC1H<br>CAC1A<br>CAC1A<br>CAC1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.31                         | 3.05E-02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-             | -1.73<br>-<br>-1.04<br>-<br>-0.75<br>-1.90<br>-0.89<br>-0.89<br>-0.80<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        | -0.21<br>-0.27<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                              | -<br>5.79E-02<br>3.09E-02<br>-<br>-<br>-<br>-<br>2.61E-02<br>3.83E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.32<br>                                                                                            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                               |
| 1.2.857.m1<br>1.2.8060.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.14042.m1<br>1.2.3113.m1<br>1.2.13199.m1<br>1.2.13780.m1<br>1.2.10389.m1<br>1.2.20611.m1<br>1.2.20611.m1<br>1.2.718.m1<br>1.2.8465.m1                                                                                               | BACD3<br>KCNAS<br>KCND2<br>KCNB6<br>KCNA2<br>CAC1M<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.31<br>                     | 3.05E-02<br>                                                                          | -1.73<br>-1.04<br>-0.75<br>-1.90<br>-0.89<br>-0.89<br>-0.80<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        | -0.21<br>-0.27<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>2<br>-<br>-<br>-<br>-                                                                                                                              | 5.79E-02<br>3.09E-02<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.32<br>                                                                                            | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| 1.2.857.m1<br>1.2.8080.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.14042.m1<br>1.2.3113.m1<br>1.2.13199.m1<br>1.2.13780.m1<br>1.2.10389.m1<br>1.2.20611.m1<br>1.2.718.m1<br>1.2.718.m1<br>1.2.8465.m1<br>1.2.16220.m1                                                                                 | BAGD3<br>KCNAS<br>KCNAZ<br>KCNH6<br>KCNH6<br>KCNA2<br>CAC1M<br>CACB4<br>CAC1H<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.31<br>                     | 3.05E-02<br>3.05E-02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -1.73<br>-<br>-1.04<br>-<br>-0.75<br>-1.90<br>-0.89<br>-0.89<br>-0.80<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        | -0.21<br>-0.27<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>2<br>-<br>-<br>0.21                                                                                                            | -<br>5.79E-02<br>3.09E-02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.32                                                                                                | 4.60E-03                                                                                    |
| 1.2.857.m1<br>1.2.8060.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.14042.m1<br>1.2.3113.m1<br>1.2.13199.m1<br>1.2.13780.m1<br>1.2.10389.m1<br>1.2.20611.m1<br>1.2.718.m1<br>1.2.2465.m1<br>1.2.16220.m1<br>1.2.16220.m1<br>1.2.11288.m1                                                               | BACD3<br>KCNAS<br>KCNA2<br>KCNB6<br>KCNB6<br>KCNA2<br>CAC1M<br>CACB4<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.31<br>                     | 3.05E-02<br>                                                                          | -1.73<br>-1.04<br>-0.75<br>-1.90<br>-0.89<br>-0.89<br>-0.80<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                        | -0.21<br>-0.27<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>2<br>-<br>-<br>-<br>2<br>-<br>-<br>-<br>2<br>-<br>-<br>-<br>2<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 5.79E-02<br>3.09E-02<br>-<br>-<br>-<br>-<br>2.61E-02<br>3.83E-02<br>3.83E-02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.32<br>                                                                                            | +.60E-03                                                                                    |
| 1.2.857.m1<br>1.2.8080.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.14042.m1<br>1.2.13199.m1<br>1.2.13199.m1<br>1.2.10389.m1<br>1.2.20611.m1<br>1.2.718.m1<br>1.2.718.m1<br>1.2.718.m1<br>1.2.16220.m1<br>1.2.11288.m1<br>1.2.11268.m1                                                                 | BACD3<br>KCNAS<br>KCNA2<br>KCNH6<br>KCNA2<br>CAC1M<br>CACB4<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.31<br>                     | 3.05E-02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-             | -1.73<br>-1.04<br>-0.75<br>-1.90<br>-0.89<br>-0.89<br>-0.89<br>-0.80<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                        | -0.21<br>-0.27<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>2<br>-<br>0.22<br>-<br>0.21<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                         | 5.79E-02<br>3.09E-02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                      | +.60E-03                                                                                    |
| 1.2.857.m1<br>1.2.8080.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.6126.m1<br>1.2.14042.m1<br>1.2.3113.m1<br>1.2.13199.m1<br>1.2.13780.m1<br>1.2.13780.m1<br>1.2.20611.m1<br>1.2.20611.m1<br>1.2.216220.m1<br>1.2.16220.m1<br>1.2.15641.m1<br>1.2.15641.m1                                            | EACD3<br>EACD3<br>KCNA2<br>KCNB6<br>KCNB6<br>KCNA2<br>CAC1M<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.31<br>                     | 3.05E-02<br>3.05E-02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -1.73<br>-<br>-1.04<br>-<br>-0.75<br>-1.90<br>-0.89<br>-0.89<br>-0.80<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        | -0.21<br>-0.27<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                              | 5.79E-02<br>3.09E-02<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.32<br>                                                                                            |                                                                                             |
| 1.2.857.m1<br>1.2.8080.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.6126.m1<br>1.2.14042.m1<br>1.2.3113.m1<br>1.2.13199.m1<br>1.2.13780.m1<br>1.2.10389.m1<br>1.2.20611.m1<br>1.2.20611.m1<br>1.2.16220.m1<br>1.2.15641.m1<br>1.2.15641.m1<br>1.2.155.m1                                               | BACD3<br>KCNAS<br>KCNA2<br>KCNB6<br>KCNA2<br>CACIM<br>CACIM<br>CACIA<br>CACIA<br>CACIA<br>CACIA<br>CACIA<br>CACIA<br>CACIA<br>CACIA<br>CACIA<br>CACIA<br>CACIA<br>CACIA<br>CACIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.31                         | 3.05E-02<br>                                                                          | -1.73<br>-1.04<br>-0.75<br>-1.90<br>-0.89<br>-0.89<br>-0.80<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                        | -0.21<br>-0.27<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>2<br>-<br>-<br>-<br>2<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                         | 5.79E-02<br>3.09E-02<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.32<br>                                                                                            | 4.60E-03                                                                                    |
| 1.2.857.m1<br>1.2.8060.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.6126.m1<br>1.2.13109.m1<br>1.2.13199.m1<br>1.2.13780.m1<br>1.2.10389.m1<br>1.2.20611.m1<br>1.2.718.m1<br>1.2.16220.m1<br>1.2.16220.m1<br>1.2.15641.m1<br>1.2.15641.m1<br>1.2.155.m1<br>1.2.1164.m1                                 | BACD3<br>KCNAS<br>KCNA2<br>KCNH6<br>KCNA2<br>CAC1M<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CACB2<br>CA2D3<br>CAC1A<br>CACB2<br>CA2D3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               | 3.05E-02<br>3.05E-02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -1.73<br>-1.04<br>-0.75<br>-1.90<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.75<br>-1.90<br>-0.75<br>-1.90<br>-0.75<br>-1.90<br>-0.75<br>-0.75<br>-0.75<br>-0.75<br>-0.75<br>-0.75<br>-0.75<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.61E-03<br>-<br>1.63E-05<br>2.54E-03<br>5.70E-04<br>2.60E-08<br>3.89E-02<br>1.32E-08<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -0.21<br>-0.27<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                              | 5.79E-02<br>3.09E-02<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.32<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 4.60E-03                                                                                    |
| 1.2.857.m1<br>1.2.8060.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.14042.m1<br>1.2.13113.m1<br>1.2.13199.m1<br>1.2.13780.m1<br>1.2.10389.m1<br>1.2.20611.m1<br>1.2.20611.m1<br>1.2.16220.m1<br>1.2.16220.m1<br>1.2.15641.m1<br>1.2.15641.m1<br>1.2.155.m1<br>1.2.1164.m1<br>1.2.1164.m1               | BACD3<br>KCNAS<br>KCNA2<br>KCNB6<br>KCNA2<br>CAC1M<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | 3.05E-02<br>3.05E-02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -1.73<br>-1.04<br>-0.75<br>-1.90<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.80<br>-1.49<br>-1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.61E-03<br>-<br>1.63E-05<br>2.54E-03<br>5.70E-04<br>2.60E-08<br>3.89E-02<br>1.32E-08<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -0.21<br>-0.27<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                              | 5.79E-02<br>3.09E-02<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      | 4.60E-03                                                                                    |
| 1.2.857.m1<br>1.2.8080.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.14042.m1<br>1.2.13113.m1<br>1.2.13199.m1<br>1.2.13780.m1<br>1.2.10389.m1<br>1.2.20611.m1<br>1.2.718.m1<br>1.2.16220.m1<br>1.2.11288.m1<br>1.2.15641.m1<br>1.2.155.m1<br>1.2.1155.m1<br>1.2.1162.m1<br>1.2.11520.m1                 | BACD3<br>KCNAS<br>KCNA2<br>KCNH6<br>KCNA2<br>CAC1M<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC13<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14<br>CAC14 |                               | 3.05E-02<br>3.05E-02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -1.73<br>-1.04<br>-0.75<br>-1.90<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.80<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81<br>-0.81 | I.11E-03<br>-<br>I.63E-05<br>2.54E-03<br>3.70E-04<br>2.60E-08<br>3.89E-02<br>1.32E-08<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -0.21<br>-0.27<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                              | <ul> <li>5.79E-02</li> <li>5.79E-02</li> <li>3.09E-02</li> <li>-</li> <li>-&lt;</li></ul> |                                                                                                      | 4.60E-03                                                                                    |
| 1.2.857.m1<br>1.2.8080.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.14042.m1<br>1.2.13199.m1<br>1.2.13780.m1<br>1.2.10389.m1<br>1.2.20611.m1<br>1.2.718.m1<br>1.2.16220.m1<br>1.2.11288.m1<br>1.2.15641.m1<br>1.2.155.m1<br>1.2.1164.m1<br>1.2.1162.m1<br>1.2.11520.m1<br>1.2.1158.m1                  | BACD3<br>KCNAS<br>KCNA2<br>KCNH6<br>KCNA2<br>CAC1M<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A |                               | 3.05E-02<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-             | -1.73<br>-1.04<br>-0.75<br>-1.90<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89<br>-0.89 | I.11E-03<br>-<br>I.63E-05<br>2.54E-03<br>5.70E-04<br>2.60E-08<br>3.89E-02<br>1.32E-08<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -0.21<br>-0.27<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                              | <ul> <li>5.79E-02</li> <li>5.79E-02</li> <li>3.09E-02</li> <li>-</li> <li>-&lt;</li></ul> | 0.32<br>                                                                                             | 4.60E-03 4.60E-03                                                                           |
| 1.2.857.m1<br>1.2.8080.m1<br>1.2.7519.m1<br>1.2.6126.m1<br>1.2.14042.m1<br>1.2.13199.m1<br>1.2.13199.m1<br>1.2.13780.m1<br>1.2.10389.m1<br>1.2.20611.m1<br>1.2.20611.m1<br>1.2.1162.0.m1<br>1.2.1155.m1<br>1.2.1155.m1<br>1.2.1162.m1<br>1.2.1151.m1<br>1.2.1151.m1<br>1.2.1151.m1<br>1.2.1151.m1 | BACD3<br>KCNA2<br>KCNA2<br>KCNA6<br>KCNA2<br>CAC1M<br>CACB4<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CAC1A<br>CACB2<br>CA2D3<br>CAC1A<br>CACB2<br>CA2D3<br>CAC1A<br>CACB2<br>CACD3<br>CAC1A<br>CACB2<br>CACD3<br>CAC1A<br>CACB2<br>CACD3<br>CAC1A<br>CACB2<br>CACD3<br>CACD3<br>CACCB2<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CACD3<br>CA                                                                                                                                                                                                                                                                                                                                                                           |                               | 3.05E-02<br>3.05E-02<br>                                                              | -1.73<br>-<br>-1.04<br>-<br>0.75<br>-1.90<br>-0.89<br>-0.89<br>-0.89<br>-0.80<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I.JIE-03<br>-<br>I.63E-05<br>2.54E-03<br>5.70E-04<br>2.60E-08<br>3.89E-02<br>1.32E-08<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -0.21<br>-0.27<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                              | <ul> <li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                      |                                                                                             |

**Table S3.6** Comparison between data presented here on the transcriptomic response of the coral *A millipora* to hypo-saline conditions and published gene expression and proteomic studies in marine invertebrates.

Gene name Species Type of treatment

GRP94

uperoxide dismutase

| A. millepora | Hypo-saline | Adults | Δ. | 24 h | RNAseq | 1.2.21656.m1 | Aguilar, Chapter 3 |
|--------------|-------------|--------|----|------|--------|--------------|--------------------|
|              |             |        |    |      |        |              |                    |

ase

GDH1, glutamate dehydrogenase

# **Figures**

**Figure S3.1** Principal component analysis (PCA) from the normalized expression values of 26,622 genes in coral adults and juveniles. (A) Adults, each colour represents a colony (C1-C5, n=4 per colony). (B) Juveniles, each colour represents a salinity treatment (n=11 per treatment). Samples encircled by dashed represent 24 h (orange) and 48 h (grey) after the salinity treatment. PCA was generated by "arrayQualityMetrics" (Kauffmann *et al.* 2009).



**Figure S3.2** Total number of differentially expressed genes (DEGs) (FDR< 0.05) for each dataset. With the corresponding number of up-regulated (red) and down-regulated (blue) genes.



**Figure S3.3** Venn diagrams of the differentially expressed genes (FDR< 0.05) after 24 h hyposaline stress that were up- (red) and down- (blue) regulated in the adults and juveniles *A. millepora* corals. Indicating the subset of shared genes between each set of expression.



# **Chapter 4**

Transcriptomic analysis of the response of *Acropora millepora* to hypo-osmotic stress provides insights into DMSP biosynthesis by corals

#### 4.1. Introduction

Dimethylsulphoniopropionate (DMSP) and its volatile breakdown product dimethylsulphide (DMS) are key intermediates in the global sulphur cycle; the conversion of DMSP to DMS delivers biogenically-derived sulphate aerosols into the marine boundary layer, thereby transferring sulphur from the oceans to the atmosphere (Andreae & Crutzen 1997). DMS can subsequently be oxidized into sulphate particles and when combined with ultrafine sea salt and other marine organic aerosols, contributes to the formation of clouds, increasing their reflectance, thereby acting in local climate regulation (Ayers & Gras 1991). While DMSP is produced by several classes of algae and a few higher plants (Caruana 2010; Stefels 2000), coral reefs are hotspots of DMSP production due primarily to the high densities of the dinoflagellate *Symbiodinium* present in coral tissues (Broadbent *et al.* 2002; Jones *et al.* 2008). In addition, it has recently been demonstrated that the coral animal itself can produce DMSP (Raina *et al.* 2013). However, the molecular mechanisms underlying the production of DMSP by corals are unknown and are only partially understood in other organisms.

DMSP biosynthesis is thought to have evolved independently at least three times; two different pathways have been described in higher plants (Hanson *et al.* 1994; Kocsis *et al.* 1998), and a third, demonstrated in the marine macroalga *Ulva intestinales* (Gage *et al.* 1997), is also likely to operate in several phytoplankton species (Figure 4.1). The common denominator in these three pathways is the use of the sulphur-containing amino acid, methionine as a precursor. The chemical identities of the intermediates in the pathways have largely been established, providing insights into the classes of enzyme likely to be involved. However, at this time, the identities of the genes involved are unknown. Candidates for roles in the algal pathway have emerged from proteomic and gene expression analyses under conditions that lead to increased DMSP production. Proteomic analyses of DMSP-producing diatoms implicated particular aminotransferases, reductases, methyltransferases and decarboxylases in the algal DMSP biosynthesis pathway (Kettles *et al.* 2014; Lyon *et al.* 2011)

on the basis of their increased abundance under hypersaline conditions, though their involvement in DMSP synthesis remains to be confirmed.



**Figure 4.1** Pathways of DMSP biosynthesis in higher plants and marine algae (adapted from (Stefels 2000). (A) Compositae pathway (described in *Wollastonia biflora*). (B) Gramineae pathway (described in *Spartina alterniflora*). (C) Pathway in marine algae (described in *Ulva intestinales*). (D) Methyl cycle and the enzymes involved in methionine biosynthesis. Dimethylsulphonio-2-hydroxybutyrate (DMSHB); dimethylsulphoniopropionate (DMSP); DMSP-aldehyde (DMSP-ald); 4-methylthio-2-hydroxybutyrate (MTHB); 2-oxo-4-mehtylthiobutanoate (MTOB); S-adenosylhomocysteine (SAH); S-adenosylmethione (SAM); S-methylmethionine (SMM). Enzyme types and associated cofactors are shown in italics (refer to Table 4.1 for the enzyme names).

A range of biological functions have been attributed to DMSP; it can act as an osmolyte (Dickson *et al.* 1980) or cryoprotectant (Karsten *et al.* 1996; Nishiguchi & Somero 1992). DMSP and its breakdown products acrylate, DMS and dimethylsulfoxide (DMSO) also

possess antioxidant capabilities, and are capable of scavenging hydroxyl radicals and reactive oxygen species (ROS), suggesting potential functions in the stress responses of organisms such as corals (Deschaseaux et al. 2014). Whilst the potential involvement of DMSP in ROSscavenging in corals has been raised (Raina et al. 2013), osmoregulatory roles remain an additional possibility. Although corals have traditionally been thought of as stenohaline osmo-conformers, shallow water corals can experience major fluctuations in salinity and must therefore have mechanisms to tolerate these environmental conditions. Currently limited data are available on the effects of hyperosmotic stress on corals, but there is evidence that corals can tolerate acute exposure to hypersaline (40 PSU) conditions (Porter et al. 1999). Moreover, coral reefs occur in the Arabian Gulf and Gulf of Oman at 40-42 PSU, and appear to be adapted to these conditions (Coles 2002). On the Great Barrier Reef (GBR), rain associated with tropical cyclones can lower the salinity of surface waters significantly (up to 7-10 PSU) (Van Woesik et al. 1995), with these hyposaline conditions prevailing for weeks (Devlin et al. 1998). Hyposaline conditions can lead to coral mortality and changes in coral community composition; however, the response seems to vary among species and through time (Berkelmans et al. 2012). Heavy rainfall, induced by the increased occurrence and intensity of tropical storms and cyclones (Xie *et al.* 2010), is likely to expose coral reefs to more extreme and sudden salinity variations.

The genome of the reef-building coral *Acropora millepora* encodes orthologs of the reductase and methyltransferase (Fig 4.1C, steps 2 and 3) implicated in DMSP biosynthesis in algae, suggesting that corals also use an algal-like pathway to produce DMSP from methionine (Raina *et al.* 2013). To better understand the role and route of DMSP production in corals, the transcriptomic response of *A. millepora* to salinity stress was investigated, the rationale being that DMSP might serve as an osmolyte in corals and that genes involved in the synthesis of this compound might be up-regulated under conditions that lead to its increased production. Adult colonies (harboring DMSP-producing photosynthetic symbionts), as well as

aposymbiotic juveniles (devoid of any photo-symbionts) of *A. millepora* were exposed to hyposaline conditions reflecting those experienced in extreme weather events (25 PSU for the adults and 28 PSU for the juveniles) in parallel experiments and hypersaline (40 PSU) conditions for the adults. The analyses presented here focused on genes that are candidates for involvement in the known pathways of DMSP synthesis in algae (including those previously identified as candidates; Raina *et al.* 2013) and plants. Whilst the expression data reported here are consistent with corals being equipped with the necessary enzymatic machinery for DMSP biosynthesis and being able to rapidly change the expression of the corresponding genes, the production of DMSP by corals under hyposaline stress maybe an inevitable consequence of osmolyte catabolism rather than an adaptive stress response.

| Abbrev. | Enzyme name                            | EC number |
|---------|----------------------------------------|-----------|
| BADH    | Betaine-aldehyde dehydrogenase         | 1.2.1.8   |
| BHMT    | Betaine-homocysteine methyltransferase | 2.1.1.5   |
| CDH     | Choline dehydrogenase                  | 1.1.99.1  |
| DMGDH   | Dimethylglycine dehydrogenase          | 1.5.8.4   |
| GNMT    | Glycine N-methyltransferase            | 2.1.1.20  |
| MAT     | Methionine adenosyltransferase         | 2.5.1.6   |
| MS      | Methionine synthase                    | 2.1.1.13  |
| MTHFR   | Methylenetetrahydrofolate reductase    | 1.5.1.20  |
| SAHH    | S-adenosylhomocysteinase               | 3.3.1.1   |
| SAM met | S-adenosylmethione methyltransferase   | 2.1.1.37  |
| SARDH   | Sarcosine dehydrogenase                | 1.5.8.3   |
| SHMT    | Serine hydroxymethyltransferase        | 2.1.2.1   |

**Table 4.1.** List enzymes abbreviations and their EC number.

#### 4.2. Materials and Methods

#### 4.2.1. Adult and juveniles sampling

The methods for the salinity stress experiments in both adults and juveniles, are described in Chapter 3 (3.2.1 Coral salinity stress experiment). Post the salinity changes coral nubbins for quantitative nuclear magnetic resonance (qNMR) were sampled as described below.

## 4.2.1.1. Adults sampling

Coral nubbins (n = 2 per colony) were sampled at three time points qNMR analysis: prior to the salinity change, and after 1 and 24 h post the salinity change. Nubbins were immediately extracted in 5 ml of HPLC-grade methanol (details provided below). Another set of nubbins (n = 1 per colony) were collected, incorporating another time point (12h post salinity change), for the determination of zooxanthellae density.

## 4.2.1.2. Juveniles sampling

Samples were collected at 24, and 48 h post salinity changes and processed as below (4.2.3). The size of each settled juvenile in the sampled well was measured using a motorized stereomicroscope (Leica Microsystems MZ16A) operating with the Application Suite Version 3.8 software. The average juvenile size at 48 h was 1.27 mm<sup>2</sup> (±0.06).

### 4.2.2. Symbiodinium efficiency, density estimation and genotyping

A diving pulse amplitude modulated (PAM) (Walz Gmbh, Germany) fluorometer was used to measure the photosystem II (PSII) photochemical efficiency of *Symbiodinium* associated with the adult coral nubbins. Measurements were taken one day before, and 8, 16, 28 h after changing the salinity, by taking 3 replicates per 23 nubbins in each condition. *Symbiodinium* density estimation was conducted as described in Raina *et al.* (2013); for each homogeneous extract, 6 replicate measurements were recorded at 600 nm on a DSM-Micro densitometer (Laxco). For genotyping, DNA was extracted from the crushed coral (see RNA extraction) using SNET buffer (20mM Tris-HCl pH 8.0, 5 mM EDTA, 1% SDS (w/v), 400mM NaCl, 400 μg ml<sup>-1</sup> Proteinase K) and incubated overnight at 55 °C. The supernatant was transferred to an equal volume of phenol-chloroform mixture (1:1) and precipitated with isopropanol. The DNA pellet was solubilized in ~50µl of sterile water and stored at -20 °C. The *Symbiodinium* type was determined by ITS sequencing using the primers "ITSintfor2" (5'GAATTGCAGAACTCCGTG-3') and "ITS2CLAMP" (5'GGGATCCATATGCTTAAGTTCAGCGGGT3') (LaJeunesse 2002). All *A. millepora* colonies harboured *Symbiodinium* clade C1.

#### 4.2.3. DMSP quantification by qNMR analysis

DMSP and acrylate in adult nubbins and settled juveniles were quantified according to Raina *et al.* (2013) with minor modifications. Briefly, coral nubbins were extracted in methanol for 30 min with sonication followed by a second extraction with an additional 2 ml of methanol for 10 min, after which the extracts were pooled and analysed via <sup>1</sup>H NMR as in Raina *et al.* (2013) using the ERETIC method (Tapiolas *et al.* 2013). The surface area of each individual adult nubbin was used to normalise the corresponding qNMR and *Symbiodinium* density data. Nubbins were bleached (10% bleach) and then lyophilized (Dynavac Freeze Drier FD12) with the surface area determined using the wax dipping technique originally described by Veal *et al.* (2010).

For juveniles, seawater was decanted from individual wells and residual seawater gently absorbed using a sterile cotton tip, taking care not to disturb the animal.  $CD_3OD$  (300 ]]) and DO (200 ]]) were added to each well. Plates were gently shaken for 30 s and a 200 ] aliquot transferred into a 3 mm Bruker MATCH NMR tube for immediate analysis. In addition, negative control wells containing no larvae or settled juveniles, but which did contain the CCA-derived settlement cue, were extracted following the same procedure. The concentrations of DMSP and acrylate were normalized initially to the number of settled coral juveniles in the respective well. They were then normalized to the averaged surface area of the juveniles as in Raina *et al.* (2013).

DMSP concentration data were analysed using the open source software R Version 3.1.0 (R Core team, 2014) using the "car" (Fox & Weisberg 2011) and "doBy" (Højsgaard *et al.* 2014) libraries. Multivariate analyses of variance MANOVA were used to test for changes in

DMSP concentration over the course of the experiment. Repeated measures ANOVA were used to test for difference in DMSP concentration at each time point and over time (Table S4.1, Supporting information).

#### 4.2.4. Identification of candidate genes

The methods for transcriptomics analysis including RNA extractions, sequencing, reads mapping, and gene expression analysis of the salinity stress experiments are detailed in Chapter 3 (3.2.3. RNA extraction sequencing and gene expression analyses).

To identify homologs of the known algal and plant DMSP biosynthesis enzymes in the coral genome, protein sequences from the diatom *Fragilariopsis cylindrus* v1.0 (algal pathway) (Kettles *et al.* 2014; Lyon *et al.* 2011) in addition to sequences from the two known enzymes involved in the plant pathway (Enzyme Commission (EC) 2.1.1.12 and 1.2.1.3, downloaded from http://www.uniprot.org) were used to retrieve protein family (Pfam) domain and gene ontology (GO) annotation. In addition to complete sequences, protein domains were used to search the *A. millepora* genome for homologs of the algal and plant enzymes. Additionally, sequences with characteristic GO domains of the enzymes involved in DMSP biosynthesis from four algae and two plant genomes were retrieved and blasted against the *A. millepora* genome (E-value ranged from 0.003-0.1, retrieving at least five sequences). Sequences were retrieved from: the marine microalga *Emiliania huxleyi (Read et al. 2013), the green alga Chlamydomonas reinhardtii* v5.5 (Merchant *et al.* 2007), the diatom *Thalassiosira pseudonana* v3.0 (Kettles *et al.* 2014), the dinoflagellate *Symbiodinium minutum* Clade B1 v.1.0 (Shoguchi *et al.* 2013) (dataset downloaded from

*http://marinegenomics.oist.jp/genomes/downloads?project\_id=21*, last accessed October 27, 2014), and the flowering plants *Arabidopsis thaliania TAIR10* (Lamesch *et al.* 2012) (Lamesch 2012) and *Brachypodium distachyon v2.1* (The International Brachypodium Initiative 2010). *All the* databases (except for the *S. minutum*) were downloaded from the U.S. Department of

Energy Joint Genome Institute (JGI; http://genome.jgi-psf.org, last accessed October 15, 2014). The nomenclature of *A. millepora* proteins used here is based on BlastP searches of non-redundant protein sequences at NCBI or by hidden Markov models in HMMER (http://hmmer.janelia.org; Finn *et al.* 2011) assignments (results are listed in Table 4.2 and Table S4.4, Supporting information). KEGG orthology (KO) identifiers were used to retrieve EC numbers and search for characteristics in the enzyme information system BRaunschweig ENzyme DAtabase (BRENDA; http://www.brenda-enzymes.org/index.php) and the metabolic pathways database (MetaCyc; http://metacyc.ai.sri.com). After obtaining the BlastP results based on the *A. millepora* gene predictions, differentially up-regulated genes (FDR < 0.05) in any of the datasets were used for subsequent analysis.

#### 4.3. Results

#### 4.3.1. Concentration of DMSP in coral tissues

Exposure of adult *A. millepora* colonies to a sudden decrease in salinity (25 PSU) resulted in a 2.6 fold increase in tissue DMSP concentration after 1 h (from 9.02 nmol mm<sup>-2</sup> at 35 PSU to 23.76 nmol mm<sup>-2</sup> in the treatment) compared to the controls. DMSP levels in these colonies continued to increase through time, reaching 31.46 nmol mm<sup>-2</sup> after 24 h, representing a 3.5 fold increase in DMSP relative to the control (TukeyHSD, p adj <0.05; Figure 4.2A and Table S4.1, Supporting information). In aposymbiotic *A. millepora* juveniles, exposure to low salinity (28 PSU) triggered an increase of DMSP levels of 1.2 fold after 24h (from 2.66 nmol mm<sup>-2</sup> at 35 PSU to 3.27 nmol mm<sup>-2</sup> in the treatment) and of 1.4 fold after 48 h relative to control juveniles maintained at 35 PSU (ANOVA, p<0.0005; Figure 4.2B and Table S4.3).

In contrast, adult *A. millepora* nubbins exposed to hypersaline conditions (40 PSU) exhibited no significant change in tissue DMSP concentrations compared to the controls (TukeyHSD, p adj >0.05; Figure 4.2 and Table S4.1, Supporting information). At both time

points the concentration of the DMSP breakdown product acrylate did not differ significantly from controls in either treatment (Figure S4.1, Supporting information). Furthermore, no clear physiological changes were observed in the corals during the 24 h period of both hypoand hyper-salinity stress experiments, as assessed by PAM fluorometry (MANOVA, H-F Pr > 0.05; Figure S4.2, Table S4.2, Supporting information) and *Symbiodinium* cell density (Figure S4.2, Supporting information).



**Figure. 4.2.** Changes in DMSP concentration (mean ± s.e.) in adult corals (*n*=5) and settled juveniles (*n*=6) of the coral *A. millepora*. Adults (A) were exposed to ambient/control (35 PSU, green) and two salinity stress conditions (25 and 40 PSU in blue and black respectively). DMSP concentrations increased significantly under hyposaline stress (25 PSU; \*H-F Pr<0.005) and through time compared to both the control and hypersaline stress conditions (40 PSU; \*p adj<0.05). No significant changes in DMSP levels were observed between the control and 40 PSU treatments. Juveniles (B) were exposed to ambient/control (35 PSU, green) or hyposaline (28 PSU, blue) conditions. In this case, DMSP levels differed significantly between treatments and controls (F = 17.70, \*p<0.0005), but did not differ significantly with time.

#### 4.3.2. Candidate DMSP biosynthesis genes

Differential gene expression analysis of the hyposaline stress in adults and juveniles

are described in Chapter 3 (3.3.1. Differential gene expression analyses).

BlastP analysis of the *A. millepora* gene predictions led to the identification of coral

members of gene families implicated in DMSP biosynthesis in other organisms (Table 4.2 and

Table S4.4, Supporting information), some of which were differentially expressed in response to hyposaline stress and on this basis are considered to be candidates for roles in DMSP biosynthesis in corals. Amongst the genes up-regulated under hyposaline conditions were members of each class of enzyme in the DMSP biosynthesis pathway previously described in the alga *Ulva intestinalis* (Gage *et al.* 1997), whereas there was no evidence for up-regulation of genes specifically associated with DMSP-synthesis in higher plants (DMSP-amine oxidase and *S*-methylmethionine (SMM) transaminase-decarboxylase; Table 4.2 and Fig 4.1A and B, step 3).

Six transaminase family members (Table 4.2, AT1- AT6) were identified as candidates for the initial aminotransferase step in the algal biosynthetic pathway (conversion of Lmethionine to 2-oxo-4-methylthiobutanoate; MTOB), on the basis of elevated levels of expression in adults and/or juveniles during hypo-osmotic stress. One of these candidate genes, AT1 was expressed at higher levels at both time points in both juveniles and adults, and is therefore of particular interest. Although BlastP NR database comparisons classified the AT1 predicted protein as most similar to ethanolamine-phosphate phospholyases (EC2.6.1.88), its overall sequence similarity (5E-<sup>35</sup>) to the aminotransferase candidate (269005) from the diatom *Fragilariopsis cylindricus* (Lyon *et al.* 2011) is consistent with the hypothesis that the two proteins play analogous roles in DMSP metabolism. While the expression levels of five other aminotransferases (AT2 – AT6) were less consistent across the treatments, BlastP NR comparisons imply that their transamination reactions are likely to be 2-oxoglutarate dependant and hence cannot be excluded as candidates for roles in DMSP biosynthesis.

The second step in the algal DMSP biosynthesis pathway involves the reversible reduction of MTOB to 4-methylthio-2-hydroxybutyrate (MTHB), but this reaction is not restricted to DMSP-producing organisms (Summers *et al.* 1998). Table 4.2 lists the

differentially expressed genes (REDOX1-REDOX10) that encode NAD- or NADP-dependant dehydrogenases. Due to their redox capacities, the dehydrogenases corresponding to EC1.2.1.3 (Table 4.2, REDOX2, REDOX3, REDOX5 and REDOX8) could equally well correspond to the enzyme carrying out the terminal step (oxidation of DMSP-aldehyde; DMS-ald) in the plant DMSP biosynthetic pathway or that which converts MTOB to MTHB in the algal pathway. REDOX1 was consistently up-regulated in adult and juvenile corals with database comparisons indicating that it is a 10-tetrahydrofolate reductase since the N-terminal part of the protein contains a hydrolase domain highly specific for this class of enzyme (5.79E-144 similarity with cd08647). Moreover, TargetP (http://www.cbs.dtu.dk/services/TargetP/) predicts that REDOX1 is mitochondrial, which is consistent with the location of the best NR database matches and therefore of relevance to its ability to function in DMSP synthesis. REDOX2 and REDOX3 were differentially up-regulated in the adults when excluding time as a factor (Table S4.5, Supporting information), and significantly up-regulated in juveniles (at 24 h in the case of REDOX3; at both time points for REDOX2). REDOX2 may be the best candidate for enzymatic reduction of MTOB, as it matches (9.31E<sup>-12</sup>) to a dehydrogenase (177646) that is highly up-regulated in the diatom F. cylindricus under conditions that lead to DMSP biosynthesis via the algal pathway (Lyon *et al.* 2011).

Both the plant and algal DMSP biosynthesis pathways feature SAM-dependent methylation steps; in the algal pathway, conversion of MTHB to dimethysulphonio-2hydroxybutyrate (DMSHB) involves a SAM-dependant methyltransferase, as does the conversion of methionine to SMM in the plant pathway (Figure 4.1). Two methyltransferases (METHYL1 and METHYL2) were up-regulated during salinity stress (Table 4.2), although database comparisons suggest other primary roles for both METHYL1 and METHYL2 due to their methyltransferase domains (cd02440) being class I type, as is also the case for the methionine *S*-methyltransferase Q9LTB2 (which functions in the plant DMSP pathway), and the algal methyltransferase (212856) identified by Lyon *et al.* (2011). Of the candidates,

METHYL1 was the most consistently up-regulated in the hyposaline treatments. A third SAMdependant methyltransferase METHYL3 (Table 4.2), was initially identified as the most likely candidate for the conversion of MTHB to DMSHB (Raina *et al.* 2013) based on its similarity to the primary candidate for this role in the alga *F. cylindrus* (Lyon *et al.* 2011). Note however that METHYL3 was not differentially expressed as a result of exposure to altered salinity conditions.

The final step in the algal DMSP biosynthesis pathway, the transformation of DMSHB to DMSP, is the least well understood. The enzyme involved is thought to be an oxygen dependant decarboxylase (Summers *et al.* 1998), but has not been characterised. Four candidate enzymes (DECARB1-DECARB4) were identified in the coral on the basis of similarity with the diatom decarboxylases implicated in DMSP biosynthesis (Lyon *et al.* 2011), but neither these nor the candidates from the diatom are likely to be oxygen-dependent. All of the four *Acropora* candidate 263016 (Lyon *et al.* 2011), DECARB1 encodes a group IV PP-dependent decarboxylase (Pfam02784). The remaining three coral candidate decarboxylases are of the group II PP-dependent type (Pfam00282). None of these coral candidate decarboxylases showed consistent up-regulation across the hyposaline manipulation experiments (Table 4.2).

**Table 4.2.** Changes in expression levels of candidate genes involve in DMSP biosynthesis in *A. millepora* under hyposaline stress.



For each candidate gene, the table provides  $\log_2$  fold change ( $\log_2$ FC) and false discovery rate (FDR) data for the hyposaline treatment relative to the control. Red shading indicates genes that were up-regulated; blue shading indicates genes that were down-regulated (FDR <0.05). \* Candidates previously identified by Raina *et al.*, (2013).

\*\* Genes differentially up-regulated in the adult treatments when time was excluded as a factor (Table S4.5, Supporting information).

4.3.3. Differential expression of genes involved in methionine metabolism

Although methionine adenosyltransferases (MAT1 and MAT2), which convert

methionine to its activated form (S-adenosyl methionine), were up-regulated under

hyposaline conditions (Table 4.2, Figure 4.3), other coral genes implicated in methionine salvage and the methyl cycle (Table 4.2) were down-regulated. Methionine synthase (MS), which methylates homocysteine to regenerate methionine, was down regulated in both adults and juveniles, as were the other methyl cycle enzymes, methylenetetrahydrofolate reductase (MTHFR) and serine hydroxymethyltransferase (SHMT; Table 4.2). Although methionine synthase was down-regulated under hyposaline conditions, methionine can also be generated by methylation of homocysteine by the action of betaine-homocysteine methyltransferase (BHMT; Figure 4.3), two coral homologs of which (BHMT1 and BHMT2) were up-regulated in both adults and juveniles (Table S4.4, Supporting information). In addition to generating methionine, the action of BHMT converts betaine to dimethylglycine (DMG), which can be converted to glycine by a series of enzymes (Figure 4.3; DMGDH (EC1.5.8.4), SARDH (EC1.5.8.3) and GNMT (EC2.1.1.20), all of which were up-regulated in under hyposaline conditions (Table S4.4, Supporting information). It is also interesting to note that, of a list of genes potentially involved in methionine salvage from SAM (Figure 4.3, EC 4.1.1.50, 2.5.1.16, 2.4.1.28, 4.2.1.109 and 3.1.3.77), the only gene differentially expressed under hyposaline conditions was that enabling the final conversion to 3methylthiopropionate of this pathway (Figure 4.3, EC1.13.11.53) and this was downregulated (Table S4.4, Supporting information) in both adults and juveniles. Finally, the coral homolog to the enzyme involved in the methionine trans-sulphuration pathway (cystathionine γ-lyase (CGL), EC4.4.1.1; Table S4.4, Supporting information) was not differentially expressed, providing further evidence that methionine is not shunted into either the methyl cycle or the methionine salvage pathways, but rather being driven into DMSP biosynthesis.



**Figure. 4.3.** Changes in expression levels of genes involved in methionine metabolism during hyposaline stress in the coral *A. millepora*. Enzyme names and EC numbers are shown in italics (names as in Table 1). Blue, red or black arrows represent steps where genes are upregulated, down-regulated or do not change significantly, respectively, during hyposaline stress in adult and/or juvenile corals. Dashed arrows indicate other roles of SAM (FDR <0.05, see Table S4.4, Supporting information for values). Dimethylglycine (DMG); tetrahydrofolate (THF). Abbreviations for compounds are as in the legend to Figure 4.1.

# 4.4. Discussion

## 4.4.1. Corals increase production of DMSP under hyposaline stress

DMSP concentrations in adult corals increased 3.5 fold after 24 h exposure to 25 PSU with similar trends observed for aposymbiotic coral juveniles. This is the first report of DMSP production under hyposaline conditions by a coral. Increased DMSP production under hyposaline conditions argues against a role for this compound in osmoregulation in corals and contrasts with the situation in a number of other organisms (Trossat *et al.* 1998;

Vairavamurthy *et al.* 1985) where DMSP biosynthesis increases under hypersaline conditions. Importantly, in the case of *A.millepora*, DMSP concentrations did not change significantly under hypersaline conditions (40 PSU), indicating that corals use different mechanisms to adjust to changes in osmotic conditions. Increased levels of DMSP have also been observed in adult and aposymbiotic juvenile *A. millepora* exposed to heat stress (Raina *et al.* 2013). Taken together, these results suggest that increases in DMSP concentration in the coral (animal and *Symbiodinium*) might be a more general response to stress, although DMSP levels did not increase when *Montastraea franksi* was exposed to copper stress (Yost *et al.* 2010). DMSP has been shown to function in scavenging hydroxyl radicals and reactive oxygen species (ROS) generated under high light and UV stress in some organisms (Darroch *et al.* 2015; Sunda *et al.* 2002). Although it is not yet clear whether ROS are generated in corals during salinity stress, the observed increase in DMSP levels under hyposaline conditions are consistent with possible functions as an antioxidant.

The response of corals to decreased salinity is not well understood. In *A. aspera*, free amino acid (FAA) concentrations have been shown to increase 2.6-fold after 1 h of exposure to hyposaline (28 PSU) conditions (Cowlin 2012) but remained unchanged under hypersaline (42 PSU) conditions. Thus, under hyposaline stress, the concentration of free methionine, the precursor of DMSP, is likely to increase in coral tissue.

#### 4.4.2. Putative coral enzymes involved in the DMSP algal-like pathway

RNA sequencing results presented here are consistent with the hypothesis that corals produce DMSP via an alga-like pathway (Raina *et al.* 2013), but that the identities of genes and enzymes involved needs to be revisited in the light of the transcriptomic responses reported here. Clear differences were observed between adults and juveniles with respect to the responses of genes that are considered candidates for roles in DMSP synthesis by corals (Figure 4.4), presumably as consequences of the presence of the dinoflagellate symbionts in the former but not the latter.

In the proposed algal-like pathway of DMSP synthesis, the transamination of methionine and subsequent reduction/oxidation step are both known to be reversible and, while not specific to DMSP producers, exhibit high activity in DMSP accumulating organisms (Summers *et al.* 1998). The gene referred to here as AT1 is considered the best candidate for involvement in the initial transamination step, as it was up-regulated in both adults and juveniles at all time points. In the case of the reduction step, three candidate genes (REDOX1-REDOX3) were up-regulated in all the datasets, whereas the expression data for REDOX8, previously identified as a candidate on the basis of similarity with the diatom reductase (Raina *et al.* 2013) were less consistent. Although REDOX1 showed the most consistent up-regulation of expression across the datasets, its likely mitochondrial localisation may limit its involvement in the proposed pathway, hence REDOX2/3 are also considered to be candidates for roles in DMSP production.

The last two steps in the proposed DMSP biosynthesis pathway involve methylation followed by decarboxylation and, unlike the transamination and oxidation/reduction steps, are not reversible. The enzyme referred to here as METHYL3 was initially identified as a candidate for the methylation step (Raina *et al.* 2013) on the basis of similarity to a candidate for the same step from a diatom (Lyon *et al.* 2011) but the corresponding gene was not upregulated in the present study (Table 4.2). However, one other putative SAM-dependant methyltransferase (METHYL1) was highly up-regulated across the hyposaline treatment datasets and is thus a candidate for involvement in DMSP biosynthesis.

The identities of genes or enzymes associated with the decarboxylation step of DMSP synthesis are unknown. Two candidates for this role in diatoms have been put forward (Lyon

*et al.* 2011), but neither of these enzymes is likely to be oxygen-dependent, which is inconsistent with earlier metabolic data for this step (Gage *et al.* 1997). No clear candidates for this role emerged from the hyposaline treatment experiments described here.



**Figure 4.4.** Summary of changes in expression levels of coral genes that are candidates for involvement in an algal-like pathway of DMSP synthesis. For each candidate gene, transcripts levels are indicated as a bar, the length of which indicates log<sub>2</sub>-fold change (as in the *x* axis) relative to control in (A) adult and (B) juvenile corals. Blue bars and red bars represent the expression levels of up-regulated and down-regulated genes, respectively. Values of candidate gene expression are in Table 4.2, and abbreviations are as in Figure 4.1 and Table 4.1.

# 4.4.3. Corals do not use a plant-like pathway for DMSP synthesis

Some steps in the algal and higher plant DMSP pathways are biochemically similar, but it is unlikely that the production of DMSP by corals occurs through a plant-like pathway. Possible coral equivalents of S-methyl-L-methionine decarboxylase (SDC) (Table 4.2, DECARB1), and two DMSP-amine oxidases (Table 4.2, DOX1 and DOX2) (Figure 4.1B, step 3) are present, but the two DOX homologs were down-regulated in both the adults and juveniles in response to hyposaline stress, making their involvement in DMSP production by coral unlikely. The oxidation of DMSP-aldehyde to DMSP (Figure 1A and B, step 4) in the plant pathway is biochemically similar to the reductase step of the algal pathway (Figure 1C, step 2 and Figure 4.4), hence the observed up-regulation of REDOX candidate genes is the only evidence that the corals could use a plant-like DMSP pathway.

#### 4.4.4. DMSP production in corals in response to hypo-osmotic stress

The increased production of DMSP in corals under hyposaline stress precludes an osmoregulatory function, but is consistent with a role in conferring protection against ROS generated under these conditions. However, DMSP is produced in some systems (e.g. the alga *Tetraselmis subcordiformis*) simply in response to the availability of excess methionine (Gröne & Kirst 1992; Vierstra 1993), and this situation may occur in corals in response to hyposaline conditions.

Osmoregulation has not been extensively studied in corals, but betaines have emerged as likely to have major roles as osmolytes. Early evidence for this was based on HPLC data where Yancey *et al.* (2010) surveyed a range of osmolyte candidates in seven corals and some other cnidarians, identifying glycine betaine (also known as *N,N,N*-trimethyl glycine) as the dominant osmoregulatory molecule in all of the corals studied except *Porites* species. Similarly, glycine betaine was also implicated as the primary osmolyte in developing larvae of the mushroom coral *Fungia scutaria* (Hagedorn *et al.* 2010). The presence of high concentrations of betaines, particularly glycine betaine and taurine betaine, in *Madracis* spp. corals has been confirmed by coupled HPLC/mass spectrometry (Hill *et al.* 2010). Increasing levels of betaine correlated with higher light exposure in *Madracis*, suggesting roles in ROS scavenging (Hill *et al.* 2010).

Although, to our knowledge, osmolyte concentrations in Acropora have not been documented, on the basis of the precedents above, betaines are likely candidates, and the responses of Acropora to hypo-osmotic stress should be viewed in the context of the requirement to decrease internal osmolarity by reducing betaine levels. Betaines are catabolised via methionine and in the present study, betaine aldehyde dehydrogenase (EC1.2.1.8; BADH) and betaine homocysteine methyltransferase (EC2.1.1.5; BHCMT) were up-regulated in response to hyposaline conditions, which is consistent with betaine breakdown. The action of BHCMT generates methionine and dimethylglycine, the latter of which is metabolised to glycine (and hence to central metabolism) via sarcosine by the sequential actions of dimethylglycine dehydrogenase (EC1.5.8.4; DMGDH) and either glycine-N-methyltransferase (EC2.1.1.20; GNMT) or sarcosine dehydrogenase (EC1.5.8.3), all of which were up-regulated under hyposaline conditions in the present study. Because of the flux of homocysteine to methionine driven by betaine catabolism, methionine synthase activity is redundant, which can account for the observed down-regulation of this enzyme (EC2.1.1.13) and the others of the methyl cycle. Some methionine is rescued by conversion to the activated form S-adenosyl methionine (note that methionine adenosyltransferase is upregulated under hyposaline conditions), while the excess is converted to DMSP via the pathways discussed above. Excess DMSP itself can be metabolised by coral-associated bacteria to the volatile compound DMS (Raina et al. 2010), effectively removing it from the system. Note that some homocysteine can be directed into cysteine biosynthesis in other animals (and possibly other corals), however, Acropora spp. lack the enzyme cystathionine synthase (EC4.2.1.22; Shinzato et al., 2011), and so are unable to achieve this.

In addition to being produced as a consequence of betaine catabolism, methionine (and cysteine) will arise in corals as a consequence of proteolysis, which is clearly implied by the up-regulation of many genes encoding proteasome components observed during hypoosmotic stress (Chapter 3, Table S3.2, Supporting information). Increases in levels of free

amino acids, including methionine, have previously been observed when the coral *Acropora aspera* was exposed to hyposaline conditions (Cowlin 2012).

## 4.5. Conclusions

Hyposaline stress increased DMSP production in both adults and aposymbiotic juvenile corals, and transcriptomic analyses highlight the potential involvement of specific candidate genes in the production of DMSP via an alga-like pathway. The DMSP produced is likely to provide protection against ROS arising as a consequence of stress, but may also constitute a molecular sink for methionine arising as a consequence of osmolyte catabolism as well as proteolysis. The biochemistry of DMSP production is not well established for any eukaryotic system and, as the first animals in which it has been demonstrated, this is particularly true in the case of corals. The transcriptomic data presented here have enabled the identification of candidates for roles in DMSP biosynthesis in corals but, given its critical roles in diverse biological processes, a thorough investigation of the molecular mechanisms leading to its production by corals is required.

# 4.6. Supporting information

# Tables

**Table S4.1.** Statistical tests for DMSP concentration under salinity stress on the adult *Acropora millepora* corals significance levels for: (A) MANOVA, and (B) Tukey post-hoc test. Asterisk (\*) represents significant differences (p adj< 0.05).

| (A) |  |
|-----|--|
| uy  |  |

| Effect          | DF | H-F Pr   |
|-----------------|----|----------|
| Intercept       | 1  | 0.00001  |
| Salinity        | 2  | 0.00459* |
| Colony          | 1  | 0.71576  |
| Salinity:Colony | 2  | 0.86481  |
| Residuals       | 9  |          |

# **(B)**

| Salinity<br>(PSU) | Time<br>(hours) | Diff     | lwr      | upr      | p adj      |
|-------------------|-----------------|----------|----------|----------|------------|
| 35-40             | 1               | 1.476597 | -9.09894 | 12.05213 | 0.926825   |
| 25-40             | 1               | 16.21631 | 5.640781 | 26.79185 | 0.0039486* |
| 25-35             | 1               | 14.73972 | 4.164184 | 25.31525 | 0.0076419* |
| 35-40             | 24              | 0.787524 | -13.4579 | 15.03293 | 0.988091   |
| 25-40             | 24              | 22.11324 | 7.867837 | 36.35865 | 0.0036137* |
| 25-35             | 24              | 21.32572 | 7.080313 | 35.57112 | 0.0046846* |

**Table S4.2.** Statistical tests for PAM data under salinity stress on the adult *Acropora millepora* corals significance levels for MANOVA.

| Effect          | DF | H-F Pr  |
|-----------------|----|---------|
| Intercept       | 1  | 0       |
| Salinity        | 2  | 0.08826 |
| Colony          | 1  | 0.12466 |
| Salinity:Colony | 2  | 0.92476 |
| Residuals       | 5  |         |

**Table S4.3.** Sums of squares (SS), mean squares (MS) and significance levels for ANOVA of DMSP concentration under salinity stress on juveniles of *Acropora millepora* corals. Asterisk (\*) represents significant differences (p< 0.05).

| Effect        | SS     | df | MS    | F      | р         |
|---------------|--------|----|-------|--------|-----------|
| Salinity      | 6.373  | 1  | 6.373 | 17.703 | 0.00024 * |
| Time          | 0.192  | 1  | 0.192 | 0.534  | 0.47081   |
| Salinity:Time | 0.379  | 1  | 0.379 | 1.053  | 0.31357   |
| Residuals     | 10.079 | 28 |       |        |           |

**Table S4.4**. *A. millepora* candidate genes to the DMSP biosynthesis pathway, glycine betaine catabolism, and methionine salvage pathway. (A) Differentially expressed genes in response to hyposaline stress, log2 fold change (log2FC) and false discovery rate (FDR) are reported for each of the experiment datasets of the treatment (hyposalinic) relative to the control, including EC pathway details. Red shading indicates genes that are differentially upregulated; blue shading indicates genes that are differentially down-regulated (FDR <0.05). (B) Best blast hit, HMMER, and KOGG annotation listed for each enzyme.

| (A)                               |                |              |               |                                                              |          |           |          |           |        |              |        |           |                       |                                           |                                    |
|-----------------------------------|----------------|--------------|---------------|--------------------------------------------------------------|----------|-----------|----------|-----------|--------|--------------|--------|-----------|-----------------------|-------------------------------------------|------------------------------------|
|                                   |                |              |               |                                                              | Adults   |           |          |           |        | Jave         | ales - |           | EC pathways           |                                           |                                    |
| Pathways                          | Step<br>Abbrev | Generate ID  | alarrev.      | Protein ID                                                   | 11       | ь<br>тор  | 24<br>1  |           | 2/     | 4 h<br>100 P | 4<br>1 | 8h<br>FDP | EC namber             | Reaction Type                             | Cofactors                          |
|                                   | anater.        |              |               | Ethanolamine-phosphate phospho-                              | ang zat. | FUR       | ang zin. | HUR       | Bigan. | HUR          | a so   | FUR       |                       |                                           |                                    |
| DMSP bio synthesis                | ILA            | 1.2.4369.01  | EIMPPL        | ly ase                                                       | 0.54     | 1.352-03  | 1.17     | 1.235-13  | 0.80   | 6./3E-34     | 0.72   | 2.20E-12  | 4.2.3.2               |                                           | pynaeca s -piespiaie               |
|                                   | AT2            | 1.2.3643=1   | TAT           | Tyrosine an inotranslerase                                   | 0.66     | 1.69E-03  | 0.87     | 3.01E-03  |        |              | -0.34  | 4.46E-02  | 26.15                 | amino group transfer                      | pyridenal S'-phosphate             |
|                                   | A] 3<br>5T4    | 12.6653=1    | ат т          | Alamine aminotransferese                                     | 0.47     | 6 58E-02  | 0.97     | 2.852-04  | 017    | 4.65E-0.2    | -0.38  | 3.59E-05  | 26.1.42               | anino group craisier                      | pynaccal 5-pilospilate             |
|                                   | 415            | 126452=1     | ALT           | Alamine aminotransferese                                     | 0.17     | 0.302-02  | 0        |           | 0.17   | 3 755-04     | 0.30   | 2.895-03  | 2612                  | anino group transfer                      | pyniciaal S-phosphate              |
|                                   | ATG            | 1.2.6454=1   | ALT           | Alamine aminotransferase                                     | 0        | 0         | 0        | 0         | 0.36   | 1.26E-03     | 0      | 0         | 26.1.2                | amino group transfer                      | pyridenal 5'-phosphate             |
|                                   | REDOX1         | 1.2.9800.=1  | ALDH          | Formyltetralgelrofolate                                      | 1.33     | 1.27E-16  | 2.35     | 5.22E-68  | 1.82   | 4.50E-171    | 1.63   | 2.26E-138 | 15.16                 | redox reaction.                           | 10-formritetralardrofolate         |
|                                   | REDOX2         | 1.2.22357.=1 | ALDH          | de hydrogenase<br>Alde hydrogenase (NAD+)                    | п        | n         | 0        | п         | 0.14   | 1.42E-03     | 0.31   | 6.18E-04  | 12.13                 | redox reaction                            | MAD+                               |
|                                   | REDOX          | 1.2.21229.=1 | ALDH          | Aldeligde deligdrogenise                                     | 0        | 0         | 0        | 0         | 0.20   | 7.18E-02     | 0      | 0         | 12.1.3                | redox reaction                            | MAD+                               |
|                                   | REDOX4         | 1.2.12494.=1 | owtA          | L-glutamate gamma-semialde hyde                              | 0.79     | 2.17E-04  | 1.51     | 1.10E-11  | п      | п            | п      | п         | 1.2.1.88              | reduc resistion                           | MAD+                               |
|                                   |                |              |               | de ligitrogenase                                             |          |           |          |           |        |              |        |           | 12.13                 |                                           |                                    |
| Reduction/<br>Oxidation           | REDOIS         | 1.2.25403.=1 | ALDH; BAD     | 18 Alde hyde dehydrogenase                                   | 0.42     | 1.68E-03  | 0.95     | 4.93E-10  | u      | u            | U      | u         | 12.18                 | redax reaction.                           | MAD+                               |
|                                   | REDOX6         | 1.2.20338.=1 | ALDH          | Alde hyde dehydroge mese                                     | 0.44     | 7.94E-03  | 0.78     | 1.03E-04  | -0.38  | 1.99E-07     | -0.62  | 4.33E-09  | 12127                 | redox reaction                            | MAD+, CoA,                         |
|                                   | REDOX7         | 1.2.2152.=1  | ALDH          | Alde hyde dehydrogenase                                      | -0.55    | 3.83E-12  | 0.48     | 4.30E-03  | 0.15   | 1.49E-04     | 0      | 0         | 1.2.1.5               | redax reaction                            | NAD+                               |
|                                   | REDOXE         | 1.2.11968.=1 | -             | NADPE-dependent FMN zeductase*                               | 0        | 0         | 0.73     | 8.24E-05  |        |              | -0.51  | 3.00E-02  | 1213                  | redax reaction.                           | NAD+                               |
|                                   | REDOX9         | 1.2.57.=1    | AKR1A1        | Alcohol dehydrogenase (NADP+)                                | D        | D         | D        | D         | 0.37   | 1.75E-04     | a      | D         | 11.1.2                | reduc reaction                            | NADP+, NADPH                       |
|                                   | REDOXIO        | 1.2.25591.=1 | CBR           | NADH-cytochrome b5 reductase                                 | 0        | 0         | 0        | 0         | 0.19   | 9.73E-03     | 0      | 0         | 16.2.2                | redox reaction                            | NADPH                              |
|                                   | METHYLI        | 1.2.13833.=1 | GRIMT         | Glycme II-methyltransterase                                  | 1.50     | 2.39E-14  | 2.07     | 7.39E-41  | 2.70   | 6.16E-155    | 2./6   | 5.02E-249 | 21.1.20               | methyl group transler                     | -                                  |
| Hethylation                       | METHYLZ        | 1.212191.=1  | PRMT          | Argume #-methy#ranstense<br>SAM decondent metholisme forwark | 0.67     | 1.02E-03  | 0.78     | 5.72E-03  | и<br>п |              | и<br>п | и<br>п    | 21.1-                 | _                                         | _                                  |
| Decar <del>barylation</del>       | DECARBI        | 1.2.3018=1   | -<br>ODC1     | Omithine decarboardase                                       | 0.21     | 5.60E-02  | 0.66     | 3.85E-06  | 0      | 0            | 0      | 0         | 41.1.17               | de carbonylation                          | pyridecal 5'-phosphate             |
|                                   | DECARB2        | 1.2.4120.=1  |               | PLP dependant de carboxylase                                 | 0        | 0         | 1.39     | 7.15E-13  | 1.46   | 8.22E-28     | 1.85   | 2.48E-24  | -                     | -                                         | -                                  |
|                                   | DECARBS        | 1.2.4118=1   | _             | Decarbanylase                                                | 1.54     | 1.42E-03  | 0        | 0         | 0.69   | 2.38E-05     | 1.11   | 5.85E-12  | -                     | =                                         | -                                  |
|                                   | DECARB4        | 1.2.4119=1   | _             | Decarboxylase                                                | 0.38     | 4.31E-02  | -1.38    | 1.77E-09  | 1.75   | 1.53E-14     | 1.97   | 1.62E-29  | -                     | -                                         | -                                  |
| Oxidative<br>deamination          | DOLL           | 1.2.874=1    | AOC1          | Diamine oridase                                              | D        | a         | -1.20    | 1.58E-07  | -0.47  | 5.61E-05     | 0      | 0         | 14.3.22               | axidation                                 | 2,4,5-<br>trikydroxyphenylalanine  |
|                                   |                |              |               |                                                              |          |           |          |           |        |              |        |           |                       |                                           | 24.5-                              |
|                                   | DOX2           | 1.2.87651    | A0C1          | Diamine oridate                                              | D        | D         | -0.99    | 1.02E-03  | 0      | 0            | а      | a         | 14.3.22               | axidation.                                | teikydroxyphenylalanine<br>eninone |
|                                   | -              | 1.2.8442.=1  | MAT           | Methionine adenosyltransferase                               | 0.51     | 8.67E-05  | 1.41     | 1.21E-04  | 0.22   | 9.12E-05     | 0.51   | 3.96E-06  | 25.16                 | adenosyl group transfer                   | ATP                                |
|                                   | -              | 1.2.90821    | MAT           | Methionine adenosyltrauslerase                               | 0.41     | 3.51E-03  | 3.40     | 3.71E-238 | 0.59   | 3.66E-06     | 0.64   | 4.04E-03  | 25.16                 | adenosyl group transfer                   | ATP                                |
|                                   | -              | 1.2.10409.=1 | SAM-met       | SAM methyltransferase                                        | n        | 0         | 0        | n         | 0      | п            | П      | п         | 21.1.37               | cysteine and methionine<br>metabolism     | S-adenosyl-L-methionine            |
| Mathud Oarle                      | -              | 1.2.2524.=1  | SAHH          | S-adenosylhomocysteine hydrokse                              | a        | 0         | -0.39    | 9.36E-02  | -0.55  | 6.40E-20     | -0.82  | 4.09E-13  | 3.3.1.1               | hydrolysis of thice ther                  | MAD+                               |
|                                   | -              | 1.2.20586.=1 | MS            | Methionine synthese                                          | 0        | 0         | -0.62    | 1.54E-04  | -0.82  | 3.80E-74     | -0.73  | 5.35E-11  | 21.1.13               | methyl group transfer                     | S-adenosyl-L-methionine            |
|                                   | _              | 1.2.6795.=1  | SHIMT         | Se rine hydroxym ethyltrausie zose                           | п        | п         | п        | п         | -0.40  | 5.28E-05     | -0.38  | 1.86E-04  | 2121                  | hydroxymethyl group                       | proidecal 5'-phosphate             |
|                                   |                |              |               | Methorie nete train drofolate                                | _        |           |          | -         |        |              |        |           |                       | te sler                                   |                                    |
|                                   | -              | 1.2.1458-1   | MTHFR         | reductase                                                    | -1.02    | 6.56E-22  | -1.72    | 6.65E-10  | -2.63  | 5.00E-239    | -2.61  | 3.13E-88  | 15.1.20               | redox reaction.                           |                                    |
| Methinaine trans-<br>salpharation | -              | 1.2.10238.=1 | CGL           | Cystathionine gamma-lyase                                    | D D      | 0         | 0        | D D       | 0      | п            | 0      | 0         | 44.1.1                | alpha,gamma elimination                   |                                    |
|                                   | -              | 1.2.6999.=1  | СЮН           | Choline dehydrogenase                                        | 0        | п         | 0        | D D       | 0      | п            | 0      | 0         | 1.1.99.1              | reduc reaction                            | FAD                                |
|                                   | -              | 1.2.8566.=1  | BHIMT         | Betaine homocysteine S-                                      | 2.09     | 3.89E-139 | 2.52     | 6.39E-70  | 3.86   | 0.00E+00     | 4.02   | 0.00E+00  | 21.15                 | methyl group transfer                     | -                                  |
|                                   |                |              |               | Betaine-komocysteine S-                                      | -        | -         | F 40     |           |        |              |        |           |                       |                                           |                                    |
| Oycine betnine<br>degradation     | -              | 1.2.19413.=1 | BHMT          | me drykransferase                                            | U        | U         | 5.43     | 2.38E-69  | 1.19   | 5.15E-12     | 1.07   | 3.85E-03  | 21.15                 | methyl group transler                     | -                                  |
|                                   | -              | 1.2.3404.=1  | DMGDH         | Dimethylglycine de hydrogenæse                               | 1.13     | 8.99E-22  | 2.19     | 1.06E-42  | 2.75   | 0.00E+00     | 2.68   | 2.54E-128 | 15.84                 | redox reaction, oxidative<br>de amination | FAD                                |
|                                   | -              | 1.2.1981.m1  | SARDH         | Sarcosine dehydrogenase                                      | 0.79     | 1.82E-13  | 1.61     | 5.25 E-29 | 1.73   | 6.65E-176    | 1.72   | 9.41E-121 | 15.83                 | redax reaction.                           | FAD, tetrahydrofolate              |
|                                   | -              | 1.2.13833.=1 | GNIMT         | Glycine N-methyltransferase                                  | 1.56     | 2.39E-14  | 2.07     | 7.39E-41  | 2.70   | 6.16E-155    | 2.76   | 5.02E-249 | 2.1.1.20              |                                           |                                    |
|                                   | -              | 1.2.4059.==1 | AMD 1         | Ade nosylme thionine decarboxylase                           | a a      | 0         | 0        | U U       | 0      | 0            | 0      | U U       | 4.1.150               | de carboxylation                          | pyridexal 5'-phosphate             |
|                                   | -              | 1.2.4123.=1  | SRM           | Spermidine synthuse                                          | D        | 0         | 0        | o         | 0      | 0            | 0      | 0         | 25.1.16               | aminop ropyl group transfer               | Ca2+, K+, Na+                      |
|                                   | -              | 1.2.11993.=1 | mtaP          | Methylthioadenosine phosphorylase                            | a        | 0         | 0        | a         | D      | D            | 0      | D         | 24.2.28               | pentosyl group transfer                   | -                                  |
|                                   |                |              |               |                                                              |          |           |          |           |        |              |        |           |                       | intranolecular                            |                                    |
| Methinaine<br>SULVACE             | -              | 1.2.84641    | <b>min</b> A  | MethyRhioribose-1-phosphilte                                 | U U      | u         | u        | u         | u      | u            | u      | и         | 5.3.1.23              | axidoreduction                            | -                                  |
|                                   | -              | 1.2.7046=1   | <b>n ta</b> B | deligidaatase                                                | 0        | D         | 0        | D         | 0      | D            | O      | D         | 4.2.1.109             | dehydration                               | -                                  |
|                                   | -              | 1.2.8848.=1  | ENOPH1        | En olase-phosphatase                                         | D        | 0         | 0        | 0         | 0      | 0            | 0      | 0         | 3.1.3.77              | acizeductone synthese                     | -                                  |
|                                   | -              | 1.2.21614.=1 | AD11          | 1,2-diliydroxy-3-keto-5-<br>methylthiopentene dioxygenase    | -0.28    | 8.51E-02  | 0        | O         | -0.22  | 5.07E-02     | 0      | 0         | 1.13.115<br>1.13.1153 | azidation                                 | =                                  |
|                                   | -              | 1.2.7815=1   | 11.411        | L-amino-acid oxida se                                        | D        | 0         | П        | u         | 0      | 0            | П      | П         | 14.3.2                | redax reaction                            | FAD                                |

**(B)** 

| Pathways              | Genarme ID        | Best blast bit                                                               | Query    | E value   | Identity | Denuin ID          | E-value        | Ð             | Kame                                                   | ROCC    | KECS OR THOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------|-------------------|------------------------------------------------------------------------------|----------|-----------|----------|--------------------|----------------|---------------|--------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | 1 2 4 290 1       | XP_001633045.1   predicted protein                                           | 00       | •         | (70      | -4000010           | 2505 152       | HE0020216     | Aminotony former along 10                              | ¥14396  | alandarin dan karakarkarkar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DPISP biosynthesis    |                   | [Nematostella vectenzis]<br>yn geografia (h                                  |          | 0         | 63       | aboaro             | 2.396-133      | 110020218     | Anna Sun Service Cares III                             | R142266 | service and her best and her best and the service of the service o |
|                       | 1.2.3643.=1       | 12 _001632576.1  predicted protein<br>[Nematostella vecteursis]              | 97       | 0         | 61       | cdD0609            | 3.79E-70       | PF00155.16    | Aminotransferese class I and II                        | KD0815  | tyrosi ne aminotransferase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       | 121862=1          | IP_001627427.1  predicted protein                                            | 94       |           | 66       | el01557            | 1226.131       | PE0106314     | Aminetra eferera elecs IV                              | 800826  | hour had a later a sain a said aminotron (box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Transamination.       |                   | (Rematosiella vectensis)<br>XP 00167753511 modietad metain                   |          | •         |          |                    |                |               |                                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 1.2.6453.m1       | [Nematostella vectencis]                                                     | 93       | 0         | 54       | cd00.609           | 5.76E-48       | PF00155.16    | Aminotransferase class I and II                        | KD0814  | alarine transmissee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | 1.2.6452.=1       | XP_001622550.1  hypothetical protein<br>[Nematostella vecteuxis]             | 98       | o         | 73       | cd00609            | 1.20E-49       | PF00155.16    | Aminotransferase class I and II                        | KDOE14  | alamine transaminese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | 126454-1          | XP_001627535.1  predicted protein                                            | 36       | 9.00F-150 | 44       | -innena            | 2 75F-A7       | PERMISS 16    | Aminotransforma class I and II                         | 800814  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                   | [Nematostella vecteusis]                                                     | <i>,</i> |           |          |                    |                |               |                                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 1.2.9800.m1       | formyltetrahydrofolate dehydrogenase-                                        | 99       | 0         | 71       | cdD8647+           | 7.01E-144      | PF00171.17+   | Aldehyde dehydrogenase family                          | KD0289  | formyltetralsydrofolate delsydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       |                   | like [Saccoglocus kowalevskii]<br>32P_001639716.1] predicted protein         |          |           |          |                    |                |               |                                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 1.2.22357 =1      | [Nematostella vectensis]                                                     | 95       | 0         | 74       | cd07141            | 0              | PF00171.17    | Aldehyde dehydrogenase family                          | KD012E  | aldelsyde delsydrogymære (NAD+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 1.2.21229 = 1     | XP_001630371.1   predicted protein<br>[Nematostella vectensis]               | 97       | 0         | 80       | cd07111 +          | 0.00E+00       | FF00171.17    | Aldehyde dehydrogenase family                          | KD012E  | aldelsyde delsydrogenase (NAD+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 1 2 1 2 4 04 - 1  | NP_001096184.1   delta-1-pyrroline-5-                                        |          | 0.000 00  | F.2      | - 107102           | 2115 124       | IF 991 71 17  |                                                        |         | 1 F F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                   | carboxylate dehydrogenase [Xenopus<br>]                                      | ,,       | ,         | 35       | GB7 12.5           | 2111-124       | 11001711      | And you dely a signal series y                         | 100274  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reduction/            | 1.2.25403 =1      | semialdeliyde deliydrogonase (Astyanar                                       | 94       | 0         | 70       | cd07130            | ۰              | PF00171.17    | Aldehyde dehydrogenase family                          | K14085  | aldelityde delitydrogen ase family 7 member<br>At                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>Oxidation</b>      | 1.2.203381        | XP_001641635.1  predicted protein                                            | 99       | 0         | 68       | cd07085            | 0.00E+00       | PF00171.17    | Aldehyde dehydrogenase family                          | KD0140  | methylm alonate-semi aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       |                   | IP 001629556.1] predicted protein                                            |          |           |          |                    |                |               |                                                        |         | delaydrogena se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 1.2.2152.01       | (Mematostella vectensis)                                                     | 99       | 0         | 66       | d11961             | ٥              | PF00171.18    | Aldehyde dehydrogenase family                          | KD0129  | aldekyde dekydrogsnase (NAD(F)+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | 1.2.11968.m1      | XP_001632685.1] predicted protein<br>[Nematostella vectencis]                | 77       | 9.00E-77  | 68       | d00438             | 2.80E-07       | PF03358.10    | NADP II-dependent FMM zednetzse                        | KD0128  | aldeligde deligdrogenase (NAD+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                   | XP_001628474.1  predicted protein                                            |          |           | -        | - Inc con          |                |               |                                                        |         | I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       | 1.257 - 1         | [Nematostella vectenzis]                                                     | 95       | 9.00E-122 | 59       | Cableeo            | 9.81E-84       | PF00248.16    | Auto/neto realictase talliny                           | K00002  | aconoi de nyaroje nase (nune+)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       | 1.2.25591 = 1     | 12 _001631871.11 predicted protein.<br>[Nematostella vecteursis]             | 97       | 9.00E-139 | 75       | cd06183            | 1.41E-113      | P100970.19+   | Oxidoreductase FAD-binding<br>domain                   | KD0326  | cytochrome-b5 reductase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       | 1 7 13833 =1      | XP_001625366.1] predicted protein                                            | 86       | 1006-145  | 67       | cd02440            | 639E-17        | FF17847 7     | Matheditrancia va sa                                   | 800552  | alwin a Mamatlevitrancia rasa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       |                   | (Hematosiella vecteusis)<br>XP 780353 21 contain avaining Ma                 |          |           |          |                    | 40,2 12        |               |                                                        |         | b) and a sign and a si |
| He hylation           | 1.2.12191 =1      | me daykransferase 7-like                                                     | 98       | 0         | 41       | cdi02440           | 1.40E-03       | PF12847.2     | Hethyltranslense                                       | K11438  | protein arginine N-methykranslenase 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                       |                   | [Strongylocentrotus purpuratus]<br>XP_002611771.1] hypothetical protein      |          |           |          |                    |                |               | SAM dependent carboxyl                                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 1.2.14921.01      | [Branchiostoma floridae]                                                     | 95       | 800E-171  | 63       | a04109             | 7.998-23       | PF03492.10    | methyltransferase                                      | ц       | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | 1.2.3018.m1       | IP_001636251.1  predicted protein<br>[Nematostella vecteusis]                | 88       | 0         | 69       | cd00622            | 0.00E+00       | PF02784.11    | decarboxylase, pyridoxal binding                       | KD1581  | omithine decarbasylise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | 1.2.4120.m1       | XP_001632404.1  predicted protein                                            | 72       | 0         | 46       | d18945             | 1536-73        | FF00282.14    | domain<br>Pyridexcal-dependent                         | п       | п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Decarboxylation       |                   | [Nematostella vectencis]<br>XP 001677387.1] medieted metein                  |          | -         | 10       | dayte              | 1000.00        |               | decarboxylase concerved domain                         | 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 1.2.4118=1        | [Nematostella vecteursis]                                                    | 95       | o         | 40       | d18945             | 1.30E-75       | PF00282.14    | Pyradoxal-dependent<br>decarboxylase courserved domain | -       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | 1.2.4 119.01      | IP_001632404.1  predicted protein<br>[Newatestella wertensis]                | 73       | 0         | 46       | d18945             | 1.07E-72       | FF00282.14    | Pyridexal-dependent                                    | -       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       |                   | XP_001632737.1  predicted protein                                            |          |           |          |                    |                |               | Copperantine coidase, entrune                          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Oxidative deamination | 1.2.874.=1        | (Nematostella, vectensis)                                                    | 99       | o         | 45       | piam01179          | 1.00E-130      | PF01179.15    | domain                                                 | K11182  | diamine oxidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 1.2.8765.=1       | XP_001627145.1  predicted protein<br>[Nematostella vectencis]                | 90       | 0         | 43       | d08309             | 3.29E-113      | PF01 179.15   | Copperamine cuidase, enzyme<br>domain                  | K11182  | diamine oridate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 128442-1          | XP_001629913.1 predicte d protein                                            | 93       |           | 81       |                    | 1957-69        | PE0777311+    | S-adenosylmethionine synthetase,                       | 800789  | Surda noveling this singly switched area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       |                   | [Nematostella vecteusis]<br>VR_001627120-11 condicted contain                | 73       | •         | 61       | pramoz//2.         | 1.7.82-07      | 1102//3111    | C-terminal domain+                                     | 800787  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 1.2.9082.=1       | [Nematostella vectensis]                                                     | 100      | 0         | 76       | pfam02772+         | 5.90E-66       | PF02773.11+   | s-menosymeenome<br>synthetase+                         | KD0789  | S-ade nosylmethionine synthetase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | 1.2.10409.=1      | IP_001626663.1  predicted protein                                            | 81       | 0         | 69       | al04760+           | 3.31E-45       | PF00145.12+   | C-5 cytosine-specific DNA                              | KD0558  | DNA (cytosine-5)-methyltomsferase 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       |                   | XP 001639319.1 predicted protein                                             |          |           |          |                    |                |               | methylase+<br>Sadenoval I domocrateine                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Methyl Cycle          | 1.2.2524.=1       | [Nematostella vectensis]                                                     | 100      | 0         | 87       | cd00401            | 0.00E+00       | PF05221.12+   | hydrolase+                                             | KD1251  | aden osylhomocysteina se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       | 1.2.205861        | NP_932338.1] methionine synthese<br>[Danio rerio]                            | 97       | 0         | 70       | cd00740+           | 1.16E-130      | PF02574.11+   | Homocysteine S-methyltransferase<br>+                  | KD0548  | 5 methyltetrahydrofolate-homocysteine<br>methyltesucforoso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       | 12/201-1          | IP_001625575.1  predicted protein                                            |          |           | 70       | - 100 2220         |                | IT TO A CALLA | ·                                                      | ****    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 1.26795.01        | [Nematostella vectensis]<br>vn. generation at                                | 76       | Ū         | /3       | 6800376            | 0002700        | Fr00404.14    | senne nyarokymeonyknoisiense                           | 100600  | gyone nyarodyneutyn asie ase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       | 1.2.1458.m1       | 11 predicted protein<br>[Nematostella vectoreis]                             | 93       | 0         | 70       | cd00537            | 4.02E-100      | PF02219.12    | Methylenete trakydrofolate<br>zeductase                | KD0297  | methyle nete trahydrofolate reductase<br>(NADP H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Methinaine trans-     | 1.2.10238.=1      | XP_001634593.1  predicted protein                                            | 99       | 0         | 71       | cd00614            | 0.00E+00       | FF01053.15    | Cys/Het metabolism PIP-                                | KD1758  | cryathionine rauma-brase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| saly have time        |                   | [XP 002588882.1] hypothetical protein                                        |          | _         |          |                    |                |               | dependent enzyme                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 1.2.6999.m1       | BRAFIDRAFT_235936 [Branchiostoma                                             | 91       | 0         | 69       | pfam00732+         | 4.63E-58       | PF00732.14    | GMC could creduct ase                                  | KD0108  | choline de hydroge nase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       |                   | TEP_001639806.1  predicted protein                                           |          | _         |          |                    |                |               | Homocysteine S-                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 1.2.6566          | [Nematostella vectenzis]                                                     |          | 0         | 12       | CL21457            | 9.456-58       | PF02574.11    | methyltransferase                                      | AD0544  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Glycine betaine       | 1.2.19413 == 1    | NP_001012498.1[ betame=homocysteme<br>S-methyltransferase 1 [Danio rerio]    | 99       | 2.00E-142 | 58       | d21457             | 1.42E-51       | FF02574.12    | Homocysteine S-<br>methyltransferase                   | KD0544  | betaine-homocysteine S-methyltrausfenese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| degenda tina          | 1.2.3404.m1       | IP_001632395.1  predicted protein                                            | 97       | 0         | 70       | ofaa01571+         | 4.14E-66       | PF01266.19+   | FAD dependent axidored actase +                        | K00315  | dimethylelycine delydyseus se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       |                   | Weinandstein wertensisj<br>XP 001624293.11 predicted protein                 |          |           |          | •                  |                |               | •                                                      |         | 101 9 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       | 1.2.1981.=1       | [Nematostella vectoreis]                                                     | 96       | 0         | 72       | pf==01571+         | 6.94E-61       | PF01266.19+   | FAD dependent oxidoædnetase+                           | KD0314  | sarcosine dehydrogenase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       | 1.2.13833.=1      | XP_001625366.1  predicted protein<br>[Nematostella vecteursis]               | 86       | 2.00E-145 | 67       | cd02440            | 1.49E-12       | FF13649.3     | Methyltraesie rase domain                              | KD0552  | glycine N-methyltranslensse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       |                   | XP_001628454.1  predicted protein                                            |          |           |          | leases a           |                |               | Adenosyl methionine                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 1.24059.01        | (Nematostella vectensis)                                                     | 96       | 2008-69   | 548      | d03253             | 6.16£-67       | PP0153611     | deca abaaylase                                         | KD1611  | 5-ade nosylmethionine de carboxylase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | 1.2.4123.m1       | IP_001634423.1  predicted protein<br>[Nematostella vecteusis]                | 85       | 2.00E-156 | 76       | cd02440            | 7.46E-07       | PF01564.12    | Spezmine/spezmidine synthese                           | KD0797  | spezonidine synthese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | 1 2 119921        | XP_001626994.1  predicted protein                                            | 97       | 1006-128  | ~        | TICEMICOA          | 2 9/JF - 1 (9) | PE0104915     | Phoenic and the convertion its                         | ******  | C' mathebiand marine also also also also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       |                   | [Nematostella vectencis]<br>TR 00000221011                                   | ,,       | 1.001124  |          | 11000074           | 3.74107        | TTORO MELLO   | ( Displaying superiorally                              | 100772  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 1.2.8464.=1       | phosphate isomerase-like [Latimeria                                          | 98       | 4.00E-161 | 64       | TIGR00512          | 6.66E-176      | FF01008.12    | Initiation factor 2 submit family                      | KD8963  | methylthioribose-1-phosphate isomerase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Piethinnine SALVACE   |                   | chaine naej<br>XP 0072391781j metkrikliorikuloca-1-                          |          |           |          |                    |                |               |                                                        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 1.2.7046=1        | phosphate de hydratase-like (Astyanas<br>maiormari                           | 92       | 3.00E-88  | 70       | TIGE0332E          | 6.80E-57       | PF005 96.16   | Class II Aldolase and Adducin N-<br>terminal domain    | KD8964  | me Brythioribulose-1-phosphate<br>debydratase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       | 120040            | IP_006010154.1] exclase-phosphatese                                          |          | 2005 77   | 47       | TURALO             | E 030 FT       | BE12410 7     | Haloacid dehalogenase-like                             | FROM    | analyza alegadiatean C*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       | 1.40898 <b></b> 1 | El [Latimeria chalumnae]                                                     | аb       | 2008-11   | -1/      | 10001091           | 3422-35        | FF13419.1     | igel rolase                                            | PD-4581 | converse proception are a 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                       | 1.2.21614.==1     | ar _0023379003.11 actreductione<br>dicarygenase, putative [kodes scapularis] | 95       | 2.00E-83  | 66       | pfam03079          | 2582-65        | FF03079.9     | ARD/ARD' family                                        | KD8967  | 1,2-diltydraxy-3-keto-5-<br>methykthiopentene diaxygenese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | 1.2.7815.m1       | gbjAC2288355.1jamine coidase, flavin-                                        | 86       | 4.00E-63  | 30       | p <b>ian</b> 01593 | 4.42E-48       | PF01593.19    | Plavin containing an ine                               | KD3334  | L-amino-acid onidese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       |                   | community (south estimation as a set                                         | -        |           | -        | ,                  |                |               | condorreductance                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

**Table S5.5.** Differentially expressed *A. millepora* aldehydes in response to hyposaline stress, independent of the time factor. Log2 fold change (log2FC) and false discovery rate (FDR) are reported for each of the experiment datasets of the treatment (hyposalinic) relative to the control when excluding time as a factor. Red shading indicates genes that are differentially up-regulated; blue shading indicates genes that are differentially down-regulated (FDR <0.05).

| Step    | Conomo D     | Protoin II)                                     | Adı    | ılts     | Juveniles |           |  |
|---------|--------------|-------------------------------------------------|--------|----------|-----------|-----------|--|
| Abbrev. | Genome in    | Fi Wieni ny                                     | log2FC | FDR      | log2FC    | FDR       |  |
| REDOX1  | 1.2.9800.m1  | Formyltetrahydrofolate dehydrogenase            | 1.77   | 9.08E-23 | 1.75      | 1.40E-277 |  |
| REDOX2  | 1.2.22357.m1 | Aldehyde dehydrogenase                          | 0.15   | 1.91E-02 | 0.22      | 3.03E-06  |  |
| REDOX3  | 1.2.21229.m1 | Aldehyde dehydrogenase                          | 0.30   | 1.54E-03 | 0.19      | 2.13E-02  |  |
| REDOX4  | 1.2.12494.m1 | L-glutamate gamma-semialdehyde<br>dehydrogenase | 1.12   | 1.90E-12 |           |           |  |
| REDOX5  | 1.2.25403.m1 | Aldehyde dehydrogenase                          | 0.63   | 1.55E-09 | -0.10     | 4.40E-02  |  |
| REDOX6  | 1.2.20338.m1 | Aldehyde dehydrogenase                          | 0.58   | 2.84E-07 | -0.50     | 4.74E-14  |  |
| REDOX7  | 1.2.2152.m1  | Aldehyde dehydrogenase                          |        |          | 0.17      | 3.96E-04  |  |
| REDOX8  | 1.2.11968.m1 | NADPH-dependent FMN reductase*                  | 0.48   | 6.03E-04 | -0.37     | 4.02E-03  |  |
| REDOX9  | 1.2.57.m1    | Alcohol dehydrogenase (NADP+)                   |        |          | 0.30      | 1.79E-05  |  |
## **Figures**



**Figure S4.1.** Changes acrylate concentrations (mean ± s.e.) in adult corals (*n*=5) and settled juveniles (*n*=6) of the coral *A. millepora*. Adults (A) were exposed to control (35 PSU, green) and two salinity stress conditions (25 PSU in blue and 40 PSU in black). Acrylate concentrations were not significant between the control and treatments (H-F Pr > 0.05). Juveniles (B) were exposed to control (35 PSU, green) and one salinity stress condition (28 PSU, blue). Acrylate concentrations were significantly different between the salinity treatment and control of the *A. millepora* juveniles (F=10.59, \*p<0.005). Concentrations were not significant different through time.



**Figure S4.2.** *Symbiodinium* cell density and photosynthetic efficiency (mean  $\pm$  s.e.) within the adults of the coral *Acropora millepora* under control (35 PSU, green) and two salinity stress conditions (25 PSU in blue and 45 PSU in black). (A) Density of *Symbiodinium* cells in the coral nubbins through time (n=3). (B) Photosystem II photochemical efficiency (maximum quantum yields: Fv/Fm) through time (n=9 in all time points, but n=3 at 28 h) (MANOVA, H-F Pr > 0.05; Table S4.2, Supporting information).

**Chapter 5: General discussion** 

# The key molecular components involved in the coral response to environmental stress

## **General contribution**

This thesis represents a substantial contribution towards understanding the molecular bases of the responses of the coral *A. millepora* to a number of stressors – osmotic stress, and an immune challenge both with and without the additional stress of high  $pCO_2$  conditions. In this chapter, these results are discussed with a focus on identifying a core set of general stress response genes that are induced by temperature, salinity and high  $pCO_2$  conditions. This chapter also focuses on the significance of this work in understanding the connection between the coral health and the changing environment.

#### 5.1. Genes involved in the cellular stress response in corals

Previous studies have enabled the description of general cellular stress responses that are common across a wide range of organisms. These universal mechanisms represent cellular responses to macromolecular damage that are independent of the type of stress and conserved across a broad range of cellular organisms (Kultz 2005; Petrak et al. 2008). The general response was analysed by Wang et al. (2009); this meta analysis used 66 proteomic studies across 5 model species (worm, fly, human, mouse, rat), and samples taken from different tissues, organs and conditions, to generate a list of 44 proteins that were detected independent of the organism or stressor. These proteins grouped into five main functional classes: energy metabolism, cytoskeleton organization, cellular growth, cycle and death, and molecular chaperones. In the case of *A. millepora*, homologues of 26 of these 44 "universal" stress response proteins were up-regulated under hypo-saline stress in our study (Table 5.1, Chapter 3). An additional seven of these proteins were involved in the transcriptional responses to stress in other coral studies (Chapter 3 Table S3.6). The molecular function protein homeostasis is the most obvious component of the response of Acropora to hyposaline stress, and was one of the general stress responses identified in the Wang *et al.* (2009) study.

134

At the top of the list of the most frequently detected proteins is the heat-shock protein 70kDa protein 5 (HspA5, also known as grp78 and binding immunoglobulin protein or BiP). This chaperone, has a central function in the endoplasmic reticulum (ER) (Araki & Nagata 2011) and its expression increased in the coral A. millepora under high temperature and under bacterial challenge (Brown et al. 2013; Rodriguez Lanetty et al. 2009). In the current thesis, the HspA5 (1.2.4351.m1; Table 5.1) also displayed increased expression when corals were exposed to hyposaline conditions or subjected to an immune challenge (Chapters 2 and 3, respectively). Two other Hsp70 genes (1.2.8575.m1 and 1.2.8573.m1; Table S3.6) were upregulated in response to both high temperature (in S. pistillata and A. aspera), and to hyposaline conditions in *A. millepora* (Chapter 3). Interestingly, in previous transcriptomic studies these two Hsp70 were not differentially expressed in A. millepora juveniles under high  $pCO_2$ stress, whereas expression of other Hsps, including grp94 and other Hsp70s did increase under these conditions (Moya et al. 2015) (Table 5). In general, the response of specific Hsps constitutes a defined thermal stress indicator that is highly conserved across a wide range of taxa that includes marine invertebrates (Hofmann 1999). For example, Hsp70 expression levels were correlated to the intensity of temperature stress in mussels (Gracey et al. 2008). Several specific Hsps24 were also shown to increase in expression under heat stress in two *Mytilus* species, and it has been suggested that these may be general abiotic stress biomarkers (Lockwood et al. 2010).

**Table 5.1.** *A. millepora* homologues of the "universal" stress response proteins identified by Wang *et al.* (2009; Table 2). Salinity (24 h) data represent the differentially expressed values under hypo-saline stress in *A. millepora* (Chapter 3). Entries in the "Other studies" column refer to coral stress response studies that have identified orthologues of the *A. millepora* genes (for details see Table S3.6).

| Protein Name                                                 | Coral Genome<br>ID | Protein ID            | Salinity 24 h |          | Other studies                                      |                                                   |
|--------------------------------------------------------------|--------------------|-----------------------|---------------|----------|----------------------------------------------------|---------------------------------------------------|
|                                                              |                    |                       | log2FC        | Padj     | Type of stressor                                   | Authors                                           |
| BiP, HSP70 kDa protein 5 (glucose-regulated protein, 78 kDa) | 1.2.4351.m1        | sp P11021 GRP78_HUMAN | 1.30          | 8.64E-19 | High temperature,<br>bacteria and LPS<br>challenge | Rodriguez-Lanetty (2009),<br>Brown et al. (2013)  |
| Heat shock 70 kDa protein 8                                  | 1.2.8573.m1        | sp P11142 HSP7C_HUMAN | 1.07          | 6.37E-14 | High temperature                                   | Maor-Landaw et al. (2014)<br>Leggat et al. (2011) |
| Heat shock 70 kDa protein 8                                  | 1.2.8575.m1        | sp P11142 HSP7C_HUMAN | 1.77          | 6.54E-28 | High temperature                                   | Maor-Landaw et al. (2014)<br>Leggat et al. (2011) |
| Heat shock 60 kDa protein 1 (chaperonin)                     | 1.2.6096.m1        | sp P10809 CH60_HUMAN  | 1.29          | 1.21E-21 | -                                                  | _                                                 |
| Heat shock 27 kDa protein 1                                  | 1.2.6070.m1        | sp P04792 HSPB1_HUMAN | 2.96          | 1.36E-37 | High temperature<br>and LPS challenge              | Palumbi et al. (2014)                             |
| Superoxide dismutase 1                                       | 1.2.240.m1         | sp P00441 SODC_HUMAN  | 0.42          | 1.07E-02 | High temperature                                   | Palumbi et al. (2014)                             |
| Calreticulin                                                 | 1.2.2683.m1        | sp P27797 CALR_HUMAN  | 1.14          | 8.82E-22 | High temperature                                   | Maor-Landaw et al. (2014)                         |
| Protein disulfide isomerase family A                         | 1.2.1667.m1        | sp P07237 PDIA1_HUMAN | 0.98          | 1.09E-13 | High temperature                                   | Maor-Landaw et al. (2014)                         |
| Protein disulfide isomerase family A                         | 1.2.7144.m1        | sp P07237 PDIA1_HUMAN | 1.24          | 1.74E-27 | _                                                  | _                                                 |
| Protein disulfide isomerase family A                         | 1.2.5704.m1        | sp P07237 PDIA1_HUMAN | 0.77          | 2.42E-08 | _                                                  | _                                                 |
| Enolase 1, (alpha)                                           | 1.2.9573.m1        | sp P06733 ENOA_HUMAN  | 1.96          | 2.47E-42 | -                                                  | _                                                 |
| Peroxiredoxin                                                | 1.2.10889.m1       | sp P30041 PRDX6_HUMAN | 0.45          | 6.20E-04 | _                                                  | _                                                 |
| Rho GDP dissociation inhibitor (GDI) alpha                   | 1.2.5696.m1        | sp P52565 GDIR1_HUMAN | 0.36          | 9.25E-03 | _                                                  | _                                                 |
| Tubulin, beta                                                | 1.2.2538.m1        | sp P07437 TBB5_HUMAN  | 1.47          | 3.43E-36 | _                                                  | _                                                 |
| Tubulin, beta                                                | 1.2.3539.m1        | sp P07437 TBB5_HUMAN  | 0.60          | 5.29E-03 | _                                                  | _                                                 |
| Tubulin, beta                                                | 1.2.2537.m1        | sp P07437 TBB5_HUMAN  | 0.76          | 3.98E-07 | _                                                  | _                                                 |
| Phosphoglycerate kinase 1                                    | 1.2.9109.m1        | sp P00558 PGK1_HUMAN  | 0.55          | 1.04E-02 | _                                                  | -                                                 |
| Glyceraldehyde-3-phosphate dehydrogenase                     | 1.2.16944.m1       | sp P04406 G3P_HUMAN   | 0.66          | 2.59E-05 | -                                                  | -                                                 |
| Eukaryotic translation elongation factor 2                   | 1.2.8169.m1        | sp P13639 EF2_HUMAN   | 1.10          | 5.41E-19 | _                                                  | _                                                 |
| Eukaryotic translation initiation factor 5A                  | 1.2.9574.m1        | sp P63241 IF5A1_HUMAN | 0.38          | 7.13E-03 | -                                                  | -                                                 |
| Tumour protein, translationally controlled                   | 1.2.343.m1         | sp P13693 TCTP_HUMAN  | 1.14          | 1.38E-17 | _                                                  | -                                                 |
| Aldolase A, fructose-bisphosphate                            | 1.2.6905.m1        | sp P04075 ALDOA_HUMAN | 0.51          | 1.08E-04 | -                                                  | -                                                 |
| Aldehyde dehydrogenase 2 family                              | 1.2.9800.m1        | sp P05091 ALDH2_HUMAN | 2.35          | 5.22E-68 | _                                                  | _                                                 |
| Cathepsin D                                                  | 1.2.7013.m1        | sp P07339 CATD_HUMAN  | 1.01          | 1.13E-15 | _                                                  | -                                                 |
| Prohibitin                                                   | 1.2.18477.m1       | sp P35232 PHB_HUMAN   | 0.59          | 1.32E-03 | -                                                  | -                                                 |
| Peptidylprolyl isomerase A (cyclophilin A)                   | 1.2.18288.m1       | sp P62937 PPIA_HUMAN  | 0.49          | 4.43E-05 | -                                                  | -                                                 |
| Peptidylprolyl isomerase A (cyclophilin A)                   | 1.2.8532.m1        | sp P62937 PPIA_HUMAN  | 0.64          | 1.81E-04 | -                                                  | _                                                 |
| Triosephosphate isomerase                                    | 1.2.14534.m1       | sp P60174 TPIS_HUMAN  | 0.52          | 7.57E-03 | _                                                  | _                                                 |
| T-complex 1                                                  | 1.2.11253.m1       | sp P17987 TCPA_HUMAN  | 0.69          | 3.69E-07 | _                                                  | _                                                 |
| Nonmetastatic cells 2                                        | 1.2.6632.m1        | sp P22392 NDKB_HUMAN  | 0.41          | 1.83E-02 | _                                                  | _                                                 |
| Nonmetastatic cells 2                                        | 1.2.6628.m1        | sp P22392 NDKB_HUMAN  | 1.34          | 1.73E-21 | -                                                  | _                                                 |
| Tyrosine 3-monooxygenase                                     | 1.2.12060.m1       | sp P63104 1433Z_HUMAN | 0.28          | 4.07E-02 | -                                                  | _                                                 |
| Annexin A5                                                   | 1.2.3250.m1        | sp P08758 ANXA5_HUMAN | 0.48          | 4.50E-04 | _                                                  | _                                                 |

Other coral genes involved in the universal stress response include genes associated with the ER protein folding and stress apparatus, such as protein disulphide isomerase (PDI), calreticulin (CRT), and superoxide dismutase (SOD). These genes were consistently differentially expressed under hyposaline conditions in *A. millepora* (Chapter 3) and under

thermal stress in *S. pistillata* and *A. hyacinthus* (see Figure 5.1 identifying genes involved in different environmental stressors in corals) (Maor-Landaw *et al.* 2014; Palumbi *et al.* 2014). Note that the coral response to hypo-saline stress involved differential expression of a higher proportion of the general cellular stress response genes in *A. millepora*, than has been documented in any previously published study (Table 5.1).

Altogether, these results confirm that cellular responses to macromolecular damage are involved in responses to both hypo-saline and thermal stress in corals, and that the coral responses include homologues of proteins that respond to abiotic stressors in a wide range of animals (Figure 5.1). Previous studies have described the expression of some members of this core set of genes in stressed corals, but the work described here is the first to make a comprehensive comparison with the general stress response of higher organisms. With the application of transcriptomic and proteomic techniques, it should now be possible to identify biomarkers diagnostic of the health status of natural coral populations. However, important caveats that should be taken into account include the potential for spatial and temporal variation in levels of these markers, and the potential for lack of correspondence between the transcriptome and proteome levels (Somero 2012). For example, in both mussels and corals, the expression of genes encoding specific Hsps and proteolytic enzymes varies with the circadian cycle, in addition to there being temporal variation in the expression of groups of genes involved in a specific metabolic functions (Gracey et al. 2008; Levy et al. 2011). Also, as discussed by Feder & Walser (2005), the correlation between mRNA and protein abundance levels was less than 50% in several human and yeast studies, and there is evidence that the degree of correlation differs between classes of genes / proteins (Greenbaum et al. 2003). These limitations highlight important considerations for future work in corals such as investigating temporal variation, and complementing transcriptomic analyses with proteomic studies. As highlighted by Wang et al. (2009), there is also a need to identify biomarkers for specific stressors. From this perspective, it is important to investigate the functions of genes

137

that respond only to a specific stressor. For example, genes of specifically expressed under hypo-saline conditions in both corals and mussels (Chapter 3) (Lockwood & Somero 2011; Tomanek *et al.* 2012). This PhD work (Chapter 3 and 5) contributes by identifying repertoires of genes that could potentially indicate that corals had experienced specific environmental stressors.



**Figure 5.1.** Schematic representation of general responses of *Acropora* to abiotic stress based on known mammalian responses (Araki & Nakata, 2011; Zhang & Kaufman 2008). The figure is based on data from a number of different stress response experiments, details of which are given in Table 5.1 and Table S3.6. Mechanisms potentially operating inside coral cells under stress include: 1) ER chaperone activity by calretiulin (CRT) and calnexin (not shown), promotes proper protein folding and prevents aggregation. CNX/CRT can also lead unfolded proteins to be targeted by BiP and its co-chaperones (ERdj6) into the ER-associated degradation pathway (ERAD). This pathway involves a ligase complex (which includes GRP94) and brings about protein translocation to the cytosol where they are finally degraded. 2) ER protein folding involving the oxidation of disulphide bonds by protein disulphide isomerase (PDI) generates reactive oxygen species (ROS) and therefore leads to ER stress. 3) Cellular stress can lead to increased levels of Hsps and generates ROS, leading to the activation of the antioxidant system, which includes superoxide dismutase (SOD) and

catalase (CAT) activities. 4) Accumulation of unfolded proteins in the ER can activate the unfolded protein response (UPR). This system is mediated by membrane proteins that are activated by the release of BiP. The activated signalling cascade results in translation of ER recovery genes.

#### 5.2. Cellular stress response under an immune challenge

Previous studies have demonstrated crosstalk between cellular stress and immune responses in a number of animals. For example, BiP produced as an ER stress response can act as a cytokine and increase pro-inflammatory responses in man (Asea *et al.* 2000; Pinsino & Matranga 2015). The coral response to LPS challenge included the up-regulation of several Hsp20s (1.2.6070.m1, 1.2.6572.m1, 1.2.6574.m1; Table S3.6), an Hsp70 and BiP (1.2.4351.m1, 1.2.19257.m1; Table S3.6), as demonstrated in Chapter 3 of this thesis. These increases do not necessarily indicate stress, and could rather be considered part of the innate immune response (Pinsino & Matranga 2015), particularly in view of the fact that no other stress response genes were up-regulated (Table 5.1). Although we do not have further information on the function of these Hsps in corals, the transcriptomic response of specific Hsps in our salinity and immune challenge experiments (Chapters 2 and 3), in addition to other elevated temperature, high  $pCO_2$  stress studies, suggests that these proteins are involved in a common stress response. In particular, the ubiquity of BiP expression noted here suggests that this gene may be suitable as a general biomarker of the stressed state in corals.

## 5.3. DMSP production under environmental stress

DMSP is a key intermediate in the sulphur cycle molecule and precursor of the volatile gas dimethylsuphide (DMS). DMSP is known to be generated by higher plants and algae, and has also recently been shown to be produced by the coral animal (Raina *et al.* 2013). This compound has several important roles in plants, which produce DMSP in response to a variety of environmental stressors (i.e. light, salinity, temperature and nitrogen limitation) (Stefels 2000). Several studies have focused on the plant response to hyper-saline conditions, where DMSP increases with salinity and the molecule likely functions as an osmolyte (Trossat *et al.* 1998; Vairavamurthy *et al.* 1985). Although there have been relatively few studies on the influence of hypo-osmotic stress on DMSP biosynthesis in plants, loss of DMSP from algal cells under these conditions has been documented (Dickson & Kirst 1986; Niki *et al.* 2007). The results reported in Chapter 4 demonstrate that DMSP production by the coral animal increased under hypo-saline conditions but remained unchanged under hyper-saline conditions. These results indicate that DMSP does not act as an osmolyte in corals, but appears to have a more general role in the response to stress, as its production increases under both hypo-saline (Chapter 4) and high temperature conditions (Raina *et al.* 2013).

The data reported in this thesis, including the combination of qNMR and transcriptomics, represents a major advance in understanding DMSP biosynthesis in corals (Chapter 4). This thesis identified candidate genes for roles in DMSP biosynthesis in corals, based on the rationale that the genes involved are likely to be up-regulated under environmental conditions that resulted in increased production of DMSP. In addition, the trancriptomic approach identified the pathways involved in the biosynthesis of methionine, the precursor of DMSP. Increases in the expression of genes involved in methionine production, in addition to increases in the expression of genes involved in proteolysis and stress responses, supports the conclusion that DMSP serves as a scavenger of ROS and is produced in coral as a sink for excess methionine.

## 5.4. Ecological significance and concluding remarks

The genus *Acropora* is of particular ecological significance on the GBR and in the wider Indo-Pacific, because it is the dominant and most diverse genus in this region (Veron 2000). However, the high sensitivity of *Acropora* spp. to elevated temperatures makes them particularly vulnerable to bleaching (Loya *et al.* 2001), and understanding the impacts of not only of heat stress, but also other environmental stressors is key for predicting how well or

badly they are likely to fare in future. This PhD work contributed to a broader understanding of the molecular responses of *A. millepora* to environmental stress. By studying the response to osmotic conditions resembling those experienced during heavy rainfall events, this study determined that these conditions lead to up-regulation of the protein degradation and antioxidant systems in corals (Chapter 3). These results aid our understanding of the molecular processes that may drive coral mortality and declines following hypo-saline events on the GBR (Berkelmans *et al.* 2012; Butler *et al.* 2015; Downs *et al.* 2009). Interestingly, during low salinity events, the coral *A. millepora* increases DMSP production, potentially contributing higher flux of DMS to the atmosphere. This DMS can influence local climate as it reacts to form sulphate aerosols (sulphate and methane sulphonate) within the marine atmospheric boundary and can influence cloud albedo (Charlson *et al.* 1987). Likewise, quantifying DMS production on the reef will be important to understand the influence of low salinity events on the biogenic sulphur cycle (Broadbent & Jones 2004).

This PhD work also contributed to understanding the interactions between the environment, biotic stressors, and the coral holobiont (Figure 1.7), first by identifying genes involved in the immune response, and second by indicating the impact on the immune response of exposure to elevated  $pCO_2$  conditions approximating to near future ocean acidification values (IPCC 2013) (Figure 1.2). Further studies should investigate the extent to which the coral immune system can acclimate to prolonged elevated  $pCO_2$ . There are precedents for acclimation to stress. For example, Palumbi *et al.* (2014) described acclimation of a field population of *A. hyacinthus* to a more challenging temperature regime within one year.

The ability of corals to acclimate is unlikely to be uniform; more likely, some species will have a greater capacity to acclimate to environmental and immune stressors than others (Mydlarz *et al.* 2010). *Acropora* species appear to be more vulnerable than many other corals

141

to environmental stress. For example, acroporoid corals were reported to be declining in the Caribbean due to environmental stressors, whereas *Porites spp.* were found to be more tolerant (Green *et al.* 2008). However, the molecular bases of this observation are currently unknown. The results presented in this study (Chapter 2 and 4) provide candidates for a comparative analysis of stress response genes between species. It will be informative to compare both the stress response repertoire and the levels of expression of these genes across a range of species that represent a spectrum of stress sensitivity types.

Importantly, protein-coding genes and gene regulation are the primary determinants of the ability of species to cope with environmental change by regulating cellular stress while providing the species with phenotypic plasticity (Somero 2012). This PhD work has made a major contribution in identifying protein-coding genes that are central in the coral molecular response to present and future environmental conditions. In addition the study has provided new insights into the genes that have a key role in defending to coral against environmental stress and maintaining coral health. However, results presented in this thesis are only part of a larger picture with further research required to characterise the functions of these proteins, which will be a significant step to further understand the corals response to both abiotic and biotic stressors under climate change challenges.

## References

- Akira S, Takeda K (2004) Toll-like receptor signalling. *Nat Rev Immunol* **4**, 499-511.
- Akira S, Uematsu S, Takeuchi O (2006) Pathogen Recognition and Innate Immunity. *Cell* **124**, 783-801.
- Anders S, Pyl PT, Huber W (2015) HTSeq--a Python framework to work with highthroughput sequencing data. *Bioinformatics* **31**, 166-169.
- Andreae MO (1990) Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. *Marine Chemistry* **30**, 1-29.
- Andreae MO, Crutzen PJ (1997) Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. *Science* **276**, 1052-1058.
- Araki K, Nagata K (2011) Protein folding and quality control in the ER. *Cold Spring Harb Perspect Biol* **3**, a007526.
- Asea A, Kraeft S-K, Kurt-Jones EA, *et al.* (2000) HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. *Nature medicine* **6**, 435-442.
- Asplund ME, Baden SP, Russ S, *et al.* (2014) Ocean acidification and host-pathogen interactions: blue mussels, *Mytilus edulis*, encountering *Vibrio tubiashii*. *Environ Microbiol* **16**, 1029-1039.
- Augustin R, Fraune S, Bosch TCG (2010) How Hydra senses and destroys microbes **22**, 54-58.
- Ayers GP, Gras JL (1991) Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air. *Nature* **353**, 834 835.
- Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. *Estuarine, Coastal and Shelf Science* **80**, 435-471.
- Barshis DJ, Ladner JT, Oliver TA, *et al.* (2013) Genomic basis for coral resilience to climate change. *PNAS* **110**, 1091-6490.
- Bay LK, Ulstrup KE, Nielsen HB, *et al.* (2009) Microarray analysis reveals transcriptional plasticity in the reef building coral *Acropora millepora*. *Molecular ecology* **18**, 3062-3075.
- Bellwood DR, Hughes TP, Folke C, Nystrom M (2004) Confronting the coral reef crisis. *Nature* **429**, 827-833.
- Ben-Haim Y, Zicherman-Keren M, Rosenberg E (2003) Temperature-regulated bleaching and lysis of the coral *Pocillopora damicornis* by the novel pathogen *Vibrio coralliilyticus. Applied Environ Microbiol* **69**, 4236-4242.
- Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. *J R Stat Soc, B* **57**, 289–300.
- Berkelmans R, Jones AM, Schaffelke B (2012) Salinity thresholds of *Acropora* spp. on the Great Barrier Reef. *Coral Reefs* **31**, 1103-1110.
- Bosch TCG, Augustin R, Anton-Erxleben F, *et al.* (2009) Uncovering the evolutionary history of innate immunity: the simple metazoan Hydra uses epithelial cells for host defence. *Dev Comp Immunol* **33**, 559-569.
- Bourne DG, Garren M, Work TM, *et al.* (2009) Microbial disease and the coral holobiont. *Trends in microbiology* **17**, 554-562.
- Broadbent AD, Jones GB (2004) DMS and DMSP in mucus ropes, coral mucus, surface films and sediment pore waters from coral reefs in the Great Barrier Reef. *Mar Freshwater Res* **55**, 849-855.

Broadbent AD, Jones GB, Jones RJ (2002) DMSP in corals and benthic algae from the Great Barrier Reef. *Estuar Coast Shelf Sci* **55**, 547-555.

Brown T, Bourne D, Rodriguez-Lanetty M (2013) Transcriptional activation of c3 and hsp70 as part of the immune response of *Acropora millepora* to bacterial challenges. *PLoS One* **8**, e67246.

Butler IR, Sommer B, Zann M, Zhao JX, Pandolfi JM (2015) The cumulative impacts of repeated heavy rainfall, flooding and altered water quality on the high-latitude coral reefs of Hervey Bay, Queensland, Australia. *Mar Pollut Bull* **96**, 356-367.

Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. *Science* **329**, 322-325.

Caruana A (2010) *DMS and DMSP production by marine dinoflagellates* PhD thesis, University of East Anglia.

Cervino JM, Hayes RL, Polson SW, *et al.* (2004) Relationship of Vibrio species infection and elevated temperatures to yellow blotch/band disease in Caribbean corals. *Applied and environmental microbiology* **70**, 6855-6864.

Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. *Nature* **326**, 655-661.

Chow AM, Ferrier-Pages C, Khalouei S, Reynaud S, Brown IR (2009) Increased light intensity induces heat shock protein Hsp60 in coral species. *Cell Stress Chaperones* **14**, 469-476.

Coles SL (2002) Coral species diversity and environmental factors in the Arabian Gulf and the Gulf of Oman: A comparison to the Indo-Pacific region. *Atoll Res. Bull* 507, 1-19.

Cowlin M (2012) Osmoregulation and the anthozoan- dinoflagellate symbiosis Msc Thesis, Victoria University of Wellington.

Cravatte S, Delcroix T, Zhang D, McPhaden M, Leloup J (2009) Observed freshening and warming of the western Pacific warm pool. *Climate Dynamics* **33**, 565-589.

Cummins EP, Oliver KM, Lenihan CR, *et al.* (2010) NF-kappaB links CO2 sensing to innate immunity and inflammation in mammalian cells. *J Immunol* **185**, 4439-4445.

Cummins EP, Selfridge AC, Sporn PH, Sznajder JI, Taylor CT (2014) Carbon dioxidesensing in organisms and its implications for human disease. *Cell Mol Life Sci* **71**, 831-845.

Darling NJ, Cook SJ (2014) The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. *Biochim Biophys Acta* **1843**, 2150-2163.

Darroch LJ, Lavoie M, Levasseur M, *et al.* (2015) Effect of short-term light- and UVstress on DMSP, DMS, and DMSP lyase activity in *Emiliania huxleyi*. *Aquatic Microbial Ecology* **74**, 173-185.

Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. *Microbiol Mol Biol Rev* **76**, 229-261.

De Zoysa M, Jung S, Lee J (2009) First molluscan TNF-α homologue of the TNF superfamily in disk abalone: Molecular characterization and expression analysis. *Fish Shellfish Immunol* **26**, 625-631.

De'ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. *PNAS* **109**, 17995-17999.

De'ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. *Science* **323**, 116-119.

Deaton LE, Hoffman RJ (1988) Hypoosmotic volume regulation in the sea anemone *Metridium senile. comp Biochem Physiol* **91**, 187-191.

Delanghe JR, Speeckaert R, Speeckaert MM (2014) Complement C3 and its polymorphism: biological and clinical consequences. *Pathology* **46**, 1-10.

- DeSalvo MK, Sunagawa S, Voolstra CR, Medina M (2010) Transcriptomic responses to heat stress and bleaching in the elkhorn coral *Acropora palmata*. *Marine Ecology Progress Series* **402**, 97-113.
- Deschaseaux ESM, Jones GB, Deseo MA, *et al.* (2014) Effects of environmental factors on dimethylated sulfur compounds and their potential role in the antioxidant system of the coral holobiont. *Limnology and Oceanography* **59**, 758-768.
- Devlin M, Taylor J, Brodie J (1998) Flood plumes, extent, concentration and composition. *GBRMPA Reef Res* **8**, 1-9.
- Devlin MJ, Brodie J (2005) Terrestrial discharge into the Great Barrier Reef Lagoon: nutrient behavior in coastal waters. *Mar Pollut Bull* **51**, 9-22.
- Dickson A, Millero F (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. *Deep Sea Research Part A. Oceanographic Research Papers* **34**, 1733-1743.
- Dickson DM, Wyn Jones RG, Davenport J (1980) Steady state osmotic adaptation in *Ulva lactuca. Planta* **150**, 158-165.
- Dickson DMJ, Kirst GO (1986) The role of beta-dimethylsulphoniopropionate, glycine betaine and homarine in the osmoacclimation of *Platymonas subcordiformis*. *Planta* **167**, 536-543.
- Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. *Ann Rev Mar Sci* **1**, 169-192.
- Downs CA, Kramarsky-Winter E, Woodley CM, *et al.* (2009) Cellular pathology and histopathology of hypo-salinity exposure on the coral *Stylophora pistillata*. *Sci Total Environ* **407**, 4838-4851.
- Durack PJ, Wijffels SE, Matear RJ (2012) Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. *Science* **336**, 455-458.
- Economics DA (2013) Economic Contribution of the Great Barrier Reef. *Great Barrier Reef Marine Park Authority, Townsville* **195**.
- Eletto D, Dersh D, Argon Y (2010) GRP94 in ER quality control and stress responses. *Semin Cell Dev Biol* **21**, 479-485.
- Fabricius K, De'ath G, McCook L, Turak E, Williams DM (2005) Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. *Marine pollution bulletin* **51**, 384-398.
- Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. *Marine pollution bulletin* **50**, 125-146.
- Feder M, Walser JC (2005) The biological limitations of transcriptomics in elucidating stress and stress responses. *J Evol Biol* **18**, 901-910.
- Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. *Nucleic Acids Res* **39**, W29-37.
- Fox J, Weisberg S (2011) An R Companion to Applied Regression, Thousand Oaks CA.
- Fujita T, Matsushita M, Endo Y (2004) The lectin-complement pathway its role in innate immunity and evolution. *Immunological Reviews* **198**, 185-202.
- Gage DA, Rhodes D, Nolte KD, *et al.* (1997) A new route for synthesis of dimethylsulphoniopropionate in marine algae. *Nature* **387**.
- Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. *Science, New Series* **301**, 958-960.

- Girardin SE, Boneca IG, Viala J, *et al.* (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. *Journal of Biological Chemistry* **278**, 8869-8872.
- Gracey AY, Chaney ML, Boomhower JP, *et al.* (2008) Rhythms of gene expression in a fluctuating intertidal environment. *Curr Biol* **18**, 1501-1507.
- Great Barrier Reef Marine Park A (2014) Great Barrier Reef Outlook Report 2014. Great Barrier Reef Marine Park Authority, Townsville.
- Green DH, Edmunds PJ, Carpenter RC (2008) Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. *Marine Ecology Progress Series* **359**, 1-10.
- Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. *Genome Biol* **4**, 117.
- Gröne T, Kirst GO (1992) The effect of nitrogen deficiency, methionine and inhibitors of methionine metabolism on the DMSP contents of *Tetraselmis subcordiformis* (Stein). *Marine Biology* **112**, 497-503.
- Hagedorn M, Carter VL, Ly S, *et al.* (2010) Analysis of internal osmolality in developing coral larvae, Fungia scutaria. *Physiol Biochem Zool* **83**, 157-166.
- Hamada M, Shoguchi E, Shinzato C, *et al.* (2012) The complex NOD-like receptor repertoire of the coral Acropora digitifera includes novel domain combinations. *Mol Biol Evol* **30**, 167-176.
- Hanson AD, Rivoal J, Paquet L, Gage DA (1994) Biosynthesis of 3dimethylsulfoniopropionate in *Wollastonia biflora* (L.) DC. *Plant Physiol.* **105** 103–110.
- Harborne AR, Mumby PJ, Micheli F, *et al.* (2006) The functional value of Caribbean coral reef, seagrass and mangrove habitats to ecosystem processes. **50**, 57-189.
- Harvell C, Kim K, Burkholder J, *et al.* (1999) Emerging marine diseases--climate links and anthropogenic factors. *Science* **285**, 1505.
- Harvell D, Altizer S, Cattadori IM, Harrington L, Weil E (2009) Climate change and wildlife diseases: When does the host matter the most? *Ecology* **90**, 912--920.
- Harvell D, Jord·n-Dahlgren E, Merkel S, *et al.* (2007) Coral disease, environmental drivers, and the balance between coral and microbial associates. *Oceanography* **20**, 172-195.
- Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular response to high salinity. *Annu. Rev. Plant Physiol. Plant Mol. Biol.* **51**, 463-499.
- Helenius IT, Krupinski T, Turnbull DW, *et al.* (2009) Elevated CO2 suppresses specific Drosophila innate immune responses and resistance to bacterial infection. *Proc Natl Acad Sci U S A* **106**, 18710-18715.
- Hemmrich G, Miller DJ, Bosch TCG (2007) The evolution of immunity: a low-life perspective. *Trends in Immunology* **28**, 449-454.
- Hernroth B, Baden S, Thorndyke M, Dupont S (2011) Immune suppression of the echinoderm *Asterias rubens* (L.) following long-term ocean acidification. *Aquatic Toxicology* **103**, 222-224.
- Hill RW, Li C, Jones AD, Gunn JP, Frade PR (2010) Abundant betaines in reef-building corals and ecological indicators of a photoprotective role. *Coral Reefs* **29**, 869-880.
- Hochachka PW, Somero GN (2002) *Biochemical adaptations: mechanism and process in physiological evolution* Oxford University Press.

Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world's coral reefs. *Marine and freshwater research* **50**, 839-866.

- Hoegh-Guldberg O, Mumby P, Hooten A, *et al.* (2007) Coral reefs under rapid climate change and ocean acidification. *Science* **318**, 1737.
- Hofmann GE (1999) Ecologically relevant variation in induction and function of heat shock proteins in marine organisms. *American zoologist* **39**, 889-900.
- Højsgaard S, Halekoh U, from wc, *et al.* (2014) doBy: doBy Groupwise summary statistics, LS means, general linear contrasts, various utilities. *R package version 4.5-11*.
- Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. *Science* **265**, 1547.
- IPCC (2013) Climate Change 2013: The physical science basis: working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.
- Jackson J, Donovan M, Cramer K, Lam V (2014) Status and Trends of Caribbean Coral Reefs.
- Jan LY, Jan YN (1997) Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci **20**, 91-123.
- Jones AM, Berkelmans R, van Oppen MJ, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. *Proc Biol Sci* **275**, 1359-1365.
- Kanneganti T-D, Lamkanfi M, Núñez G (2007) Intracellular NOD-like receptors in host defense and disease. *Immunity* **27**, 549-559.
- Karsten U, Kück K, Vogt C, Kirst GO (1996) Dimethylsulfoniopropionate production in phototrophic organisms and its physiological functions as a cryoprotectant. In: *Biological and environmental chemistry of DMSP and related sulfonium compounds* (eds. Kiene R, Visscher P, Keller M, Kirst G), pp. 143-153. Springer US.
- Kauffmann A, Gentleman R, Huber W (2009) arrayQualityMetrics a Bioconductor package for quality assessment of microarray data. *Bioinformatics* 25, 415-416.
- Kerswell A, Jones RJ (2003) Effects of hypo-osmosis on the coral Stylophora pistillata nature and cause of low-salinity bleaching. *Marine Ecology Progress Series* **253**, 145-154.
- Kettles NL, Kopriva S, Malin G (2014) Insights into the regulation of DMSP synthesis in the diatom *Thalassiosira pseudonana* through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen. *PLOSone* **9**.
- Kim D, Pertea G, Trapnell C, *et al.* (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. *Genome Biol* **14**, R36.
- Kimura A, Sakaguchi E, Nonaka M (2009) Multi-component complement system of Cnidaria: C3, Bf, and MASP genes expressed in the endodermal tissues of a sea anemone, *Nematostella vectensis*. *Immunobiology* **214**, 165-178.
- Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. *Annu Rev Plant Physiol Plant Mol Biol* **41**, 21-53.

- Kleypas JA, Langdon C (2006) Coral reefs and changing seawater carbonate chemistry. *Coastal and Estuarine Studies: Coral Reefs and Climate Change Science and Management* **61**, 73-110.
- Kocsis MG, Nolte KD, Rhodes D, *et al.* (1998) Dimethylsulfoniopropionate biosynthesis in *Spartina alterniflora*. *Plant Physiol* **117**, 273-281.
- Kultz D (2005) Molecular and evolutionary basis of the cellular stress response. *Annu Rev Physiol* **67**, 225-257.
- Kushmaro A, Banin E, Loya Y, Stackebrandt E, Rosenberg E (2001) *Vibrio shiloi* sp. nov., the causative agent of bleaching of the coral *Oculina patagonica*. *Int J Syst Evol Microbiol* **51**, 1383-1388.
- Kvennefors EC, Leggat W, Hoegh-Guldberg O, Degnan BM, Barnes AC (2008) An ancient and variable mannose-binding lectin from the coral Acropora millepora binds both pathogens and symbionts. Dev Comp Immunol 32, 1582-1592.
- Kvennefors EC, Leggat W, Kerr CC, *et al.* (2010) Analysis of evolutionarily conserved innate immune components in coral links immunity and symbiosis. *Dev Comp Immunol* **34**, 1219-1229.
- LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. *Marine Biology* **141**, 387-400.
- Lamesch P, Berardini TZ, Li D, *et al.* (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. *Nucleic Acids Res* **40**, D1202-1210.
- Lange C, Hemmrich G, Klostermeier UC, *et al.* (2011) Defining the origins of the NODlike receptor system at the base of animal evolution. *Mol Biol Evol* **28**, 1687-1702.
- Leggat W, Seneca F, Wasmund K, *et al.* (2011) Differential responses of the coral host and their algal symbiont to thermal stress. *PLoS One* **6**, e26687.
- Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. *Annu Rev Physiol* **68**, 253-278.
- Levy O, Kaniewska P, Alon S, *et al.* (2011) Complex diel cycles of gene expression in coral-algal symbiosis. *Science* **331**, 175-175.
- Lewis E, Wallace D (1998) Program Developed for CO2 System Calculations (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Dept. of Energy, Oak Ridge, TN). *ORNL/CDIAC-105*.
- Lockwood BL, Connor KM, Gracey AY (2015) The environmentally tuned transcriptomes of *Mytilus mussels*. *Journal of Experimental Biology* **218**, 1822-1833.
- Lockwood BL, Sanders JG, Somero GN (2010) Transcriptomic responses to heat stress in invasive and native blue mussels (genus *Mytilus*): molecular correlates of invasive success. *J Exp Biol* **213**, 3548-3558.
- Lockwood BL, Somero GN (2011) Transcriptomic responses to salinity stress in invasive and native blue mussels (genus *Mytilus*). *Mol Ecol* **20**, 517-529.
- Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome biology* **15**, 1-21.
- Loya Y, Sakai K, Yamazato K, *et al.* (2001) Coral bleaching: the winners and the losers. *Ecology letters* **4**, 122-131.
- Lyon BR, Lee PA, Bennett JM, DiTullio GR, Janech MG (2011) Proteomic analysis of a sea-ice diatom: salinity acclimation provides new insight into the

dimethylsulfoniopropionate production pathway. *Plant Physiol* **157**, 1926-1941.

- Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. *Bioinformatics* **21**, 3448-3449.
- Maor-Landaw K, Karako-Lampert S, Waldman Ben-Asher H, *et al.* (2014) Gene expression profiles during short-term heat stress in the red sea coral *Stylophora pistillata. Glob Chang Biol* **20**, 3026-3035.
- Mehrbach C, Culberson C, Hawley J, Pytkowicx R (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. *Limnol Oceanogr* **18**, 897-907.

Merchant SS, Prochnik Se Fau - Vallon O, Vallon O Fau - Harris EH, *et al.* (2007) The *Chlamydomonas* genome reveals the evolution of key animal and plant functions. *Science* **318**, 245-250.

Miller DJ, Hemmrich G, Ball EE, *et al.* (2007) The innate immune repertoire in Cnidaria-ancestral complexity and stochastic gene loss. *Genome Biol* **8**, R59.

- Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. *Ecological economics* **29**, 215-233.
- Moya A, Huisman L, Ball EE, *et al.* (2012) Whole transcriptome analysis of the coral *Acropora millepora* reveals complex responses to CO2-driven acidification during the initiation of calcification. *Mol Ecol* **21**, 2440-2454.
- Moya A, Huisman L, Foret S, *et al.* (2015) Rapid acclimation of juvenile corals to CO2 mediated acidification by upregulation of heat shock protein and Bcl-2 genes. *Mol Ecol* **24**, 438-452.

Moya A, Sakamaki K, Mason BM, *et al.* (2016) Functional conservation of the apoptotic machinery from coral to man: the diverse and complex Bcl-2 and caspase repertoires of *Acropora millepora*. *Bmc Genomics* **17**, 1.

- Mydlarz LD, McGinty ES, Harvell CD (2010) What are the physiological and immunological responses of coral to climate warming and disease? *J Exp Biol* **213**, 934-945.
- Nakano Y, Tsuchiya M, Rungsupa S, Yamazato K (2009) Influence of severe freshwater flooding during the rainy season on the coral community around Khang Khao Island in the inner Gulf of Tahiland. *Galaxea, Journal of Coral Reef Studies* **11**, 131-138.
- Niki T, Shimizu M, Fujishiro A, Kinoshita J (2007) Effects of salinity downshock on dimethylsulfide production. *Journal of Oceanography* **63**, 873-877.
- Nishiguchi MK, Somero GN (1992) Temperature and concentration-dependence of compatibility of the organic osmolyte ß-dimethylsulfoniopropionate. *Cryobiology* **29**, 118–124.
- Ocampo I, Zárate-Potes A, Pizarro V, *et al.* (2015) The immunotranscriptome of the Caribbean reef-building coral *Pseudodiploria strigosa*. *Immunogenetics* **67**, 515-530.
- Ogawa D, Bobeszko T, Ainsworth T, Leggat W (2013) The combined effects of temperature and CO2 lead to altered gene expression in *Acropora aspera*. *Coral Reefs* **32**, 895-907.
- Orr JC, Fabry VJ, Aumont O, *et al.* (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. *Nature* **437**, 681-686.

Palmer CV, Bythell JC, Willis BL (2010) Levels of immunity parameters underpin bleaching and disease susceptibility of reef corals. *The FASEB Journal* **24**, 1935.

- Palmer CV, Mydlarz LD, Willis BL (2008) Evidence of an inflammatory-like response in non-normally pigmented tissues of two scleractinian corals. *Proc R Soc Lond [Biol]* **275**, 2687.
- Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. *Science* **344**, 895-898.
- Pandolfi JM, Bradbury RH, Sala E, *et al.* (2003) Global trajectories of the long-term decline of coral reef ecosystems. *Science* **301**, 955-958.
- Petrak J, Ivanek R, Toman O, *et al.* (2008) Deja vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. *Proteomics* **8**, 1744-1749.
- Pierce SK (1982) Invertebrate cell volume control mechanisms: a coordinated use of intracellular amino acids and inorganic ions as osmotic solute. *Biol. Bull* **163**, 405 419.
- Pierce SK, Warren JW (2001) The taurine efflux portal used to regulate cell volume in response to hypoosmotic stress seems to be similar in many cell types: Lessons to be learned from molluscan red blood cells. *Amer Zool* **41**, 710-720.
- Pinsino A, Matranga V (2015) Sea urchin immune cells as sentinels of environmental stress. *Dev Comp Immunol* **49**, 198-205.
- Pinzón JH, Kamel B, Burge CA, *et al.* (2015) Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. *Royal Society Open Science* **2**.
- Plaisance L, Caley MJ, Brainard RE, Knowlton N (2011) The diversity of coral reefs: What are we missing? *PLoS One* **6**, e25026.
- Poole AZ, Weis VM (2014) TIR-domain-containing protein repertoire of nine anthozoan species reveals coral-specific expansions and uncharacterized proteins. *Dev Comp Immunol* **46**, 480-488.
- Porter JW, Lewis SK, Porter KG (1999) The effect of multiple stressors on the Florida Keys coral reef ecosystem: A landscape hypothesis and a physiological test. *Limnology and Oceanography* **44**, 941-949.
- Quistad SD, Stotland A, Barott KL, *et al.* (2014) Evolution of TNF-induced apoptosis reveals 550 My of functional conservation. *PNAS* **111**.
- Raina JB, Dinsdale EA, Willis BL, Bourne DG (2010) Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? *Trends in microbiology* **18**, 101-108.
- Raina JB, Tapiolas DM, Foret S, *et al.* (2013) DMSP biosynthesis by an animal and its role in coral thermal stress response. *Nature* **502**, 677-680.
- Read BA, Kegel J Fau Klute MJ, Klute Mj Fau Kuo A, *et al.* (2013) Pan genome of the phytoplankton *Emiliania* underpins its global distribution. *Nature*.
- Reed K, Muller E, Van Woesik R (2010) Coral immunology and resistance to disease. *Diseases of aquatic organisms* **90**, 85-92.
- Ricaurte M, Schizas NV, Ciborowski P, Boukli NM (2016) Proteomic analysis of bleached and unbleached Acropora palmata, a threatened coral species of the Caribbean. *Marine pollution bulletin*.
- Rodriguez Lanetty M, Harii S, Hoegh Gulberg O (2009) Early molecular responses of coral larvae to hyperthermal stress. *Molecular ecology* **18**, 5101-5114.
- Rosenberg E, Falkovitz L (2004) The *Vibrio shiloi/Oculina patagonica* model system of coral bleaching. *Annu. Rev. Microbiol.* **58**, 143-159.

Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. *Nature Reviews Microbiology* **5**, 355-362.

Rosenberg E, Kushmaro A, Kramarsky-Winter E, Banin E, Yossi L (2008) The role of microorganisms in coral bleaching. *The ISME journal* **3**, 139-146.

Seveso D, Montano S, Strona G, *et al.* (2014) The susceptibility of corals to thermal stress by analyzing Hsp60 expression. *Mar Environ Res* **99**, 69-75.

Shinagawa A, Suzuki T, Konosu S (1992) The role of free amino acids and betaines in intracellular osmoregulation of marine sponges. *Nippon Suisan Gakkaishi* **58**, 1717-1722.

Shinzato C, Mungpakdee S, Satoh N, Shoguchi E (2014) A genomic approach to coraldinoflagellate symbiosis: studies of *Acropora digitifera* and *Symbiodinium minutum*. *Front Microbiol* **5**, 336.

Shinzato C, Shoguchi E, Kawashima T, *et al.* (2011) Using the *Acropora digitifera* genome to understand coral responses to environmental change. *Nature* **476**, 320-323.

Shoguchi E, Shinzato C, Kawashima T, *et al.* (2013) Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. *Curr Biol* **23**, 1399-1408.

Siboni N, Abrego D, Motti CA, Tebben J, Harder T (2014) Gene expression patterns during the early stages of chemically induced larval metamorphosis and settlement of the coral *Acropora millepora*. *PLoS One* **9**, e91082.

Sievert SM, Kiene RP, Schultz-Vogt HN (2007) The sulfur cycle. *Oceanography* **20**, 117-123.

Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. *Bioinformatics* **27**, 431-432.

Somero GN (2012) The physiology of global change: linking patterns to mechanisms. Ann Rev Mar Sci 4, 39-61.

Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants *Journal of Sea Research* **43**, 183-197.

Summers PS, Kurt D. Nolte, Arthur J.L. Cooper, *et al.* (1998) Identification and stereospecificity of the first three enzymes of 3-dimethylsulfoniopropionate biosynthesis in a chlorophyte alga. *Plant Physiol.* 

Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. *Nature* **418**, 317-320.

Sussman M, Willis BL, Victor S, Bourne DG (2008) Coral pathogens identified for White Syndrome (WS) epizootics in the Indo-Pacific. *PLoS One* **3**, e2393.

Takeda K, Akira S (2005) Toll-like receptors in innate immunity. *Int Immunol* **17**, 1-14.

Tapiolas DM, Raina J-B, Lutz A, Willis BL, Motti CA (2013) Direct measurement of dimethylsulfoniopropionate (DMSP) in reef-building corals using quantitative nuclear magnetic resonance (qNMR) spectroscopy. *J Exp Mar Biol Ecol* **443**, 85-89.

Taylor CT, Cummins EP (2011) Regulation of gene expression by carbon dioxide. *J Physiol* **589**, 797-803.

Tchernov D, Gorbunov MY, de Vargas C, *et al.* (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. *Proc Natl Acad Sci U S A* **101**, 13531-13535.

- Tebben J, Tapiolas DM, Motti CA, *et al.* (2011) Induction of larval metamorphosis of the coral *Acropora millepora* by tetrabromopyrrole isolated from a *Pseudoalteromonas* bacterium. *PLoS One* **6**, e19082.
- The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass *Brachypodium distachyon*. *Nature* **463**, 763-768.
- Tomanek L, Zuzow MJ (2010) The proteomic response of the mussel congeners *Mytilus galloprovincialis* and *M. trossulus* to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress. *J Exp Biol* **213**, 3559-3574.
- Tomanek L, Zuzow MJ, Hitt L, Serafini L, Valenzuela JJ (2012) Proteomics of hyposaline stress in blue mussel congeners (genus *Mytilus*): implications for biogeographic range limits in response to climate change. *J Exp Biol* **215**, 3905-3916.
- Trossat C, Rathinasabapathi B, Weretilnyk EA, *et al.* (1998) Salinity promotes accumulation of 3-dimethylsulfoniopropionate and its precursor Smethylmethionine in chloroplasts. *Plant Physiol.* **116**, 165-171.
- Vairavamurthy A, Andreae MO, Iverson RL (1985) Biosynthesis of dimethylsulfide and dimethylpropiothetin by *Hymenomonas carterae* in relation to sulfur source and salinity variations. *Limmnol. Oceanogr.* **301**, 59-70.
- Van Woesik R, De Vantier LM, Glazebrook JS (1995) Effects of Cyclone 'Joy' on nearshore coral communities of the Great Barrier Reef. *Mar Ecol Prog Ser* **128**, 261-270.
- Veal CJ, Carmi M, Fine M, Hoegh-Guldberg O (2010) Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. *Coral Reefs* **29**, 893-897.
- Veron J (2000) *Corals of the World* Australian Institute of Marine Science, Townsville.
- Vidal-Dupiol J, Dheilly NM, Rondon R, *et al.* (2014) Thermal stress triggers broad *Pocillopora damicornis* transcriptomic remodeling, while *Vibrio coralliilyticus* infection induces a more targeted immuno-suppression response. *PLoS One* **9**.
- Vidal-Dupiol J, Ladriere O, Meistertzheim AL, *et al.* (2011) Physiological responses of the scleractinian coral *Pocillopora damicornis* to bacterial stress from *Vibrio coralliilyticus*. J Exp Biol **214**, 1533-1545.
- Vierstra RD (1993) Protein degradation in plants. *Annu Rev Plant Physiol Plant Mol Bioi* **44**, 385-410.
- Wang N, Gates KL, Trejo H, et al. (2010) Elevated CO2 selectively inhibits interleukin-6 and tumor necrosis factor expression and decreases phagocytosis in the macrophage. *The FASEB Journal* 24, 2178-2190.
- Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. *Annu Rev Plant Biol* **64**, 451-476.
- Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. *Nat Rev Genet* **10**, 57-63.
- Weiss Y, Foret S, Hayward D, *et al.* (2013) The acute transcriptional response of the coral *Acropora millepora* to immune challenge: expression of GiMAP/IAN genes links the innate immune responses of corals with those of mammals and plants. *Bmc Genomics* **14**.
- West MA, Hackam DJ, Baker J, *et al.* (1997) Mechanism of decreased in vitro murine macrophage cytokine release after exposure to carbon dioxide: relevance to laparoscopic surgery. *Annals of Surgery* **226**, 179-190.

- Wiens GD, Glenney GW (2011) Origin and evolution of TNF and TNF receptor superfamilies. *Dev Comp Immunol* **35**, 1324-1335.
- Wiens M, Korzhev M, Perovic-Ottstadt S, *et al.* (2007) Toll-like receptors are part of the innate immune defense system of sponges (demospongiae: Porifera). *Mol Biol Evol* **24**, 792-804.
- Xie S-P, Deser C, Vecchi GA, *et al.* (2010) Global warming pattern formation: sea surface temperature and rainfall. *Journal of Climate* **23**, 966-986.
- Yancey PH, Heppenstall M, Ly S, *et al.* (2010) Betaines and dimethylsulfoniopropionate as major osmolytes in cnidaria with endosymbiotic dinoflagellates. *Physiol Biochem Zool* **83**, 167-173.
- Yost DM, Jones RJ, Mitchelmore CL (2010) Alterations in dimethylsulfoniopropionate (DMSP) levels in the coral *Montastraea franksi* in response to copper exposure. *Aquat Toxicol* **98**, 367-373.
- Yu D, Huber W, Vitek O (2013) Shrinkage estimation of dispersion in Negative Binomial models for RNA-seq experiments with small sample size. *Bioinformatics* **29**, 1275-1282.
- Yuen B, Bayes JM, Degnan SM (2014) The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals. *Mol Biol Evol* **31**, 106-120.
- Zhang Y, Sun J, Mu H, *et al.* (2015) Proteomic basis of stress responses in the gills of the Pacific oyster *Crassostrea gigas*. *J Proteome Res* **14**, 304-317.
- Zoccola D, Ganot P, Bertucci A, *et al.* (2015) Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. *Sci Rep* **5**, 9983.
- Zoccola D, Tambutte E, Kulhanek E, *et al.* (2004) Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral *Stylophora pistillata*. *Biochim Biophys Acta* **1663**, 117-126.