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Abstract

Fountains, also called negatively buoyant jets, are widely present in environmental
settings and practical applications, such as natural ventilation, volcanic eruption, cumulus
clouds, reverse cycle air conditioning, to name just a few. A good understanding of the
behaviour of fountains in homogeneous ambient fluids has been attained attributed to
extensive past studies since the 1950s. However, the understanding of the behavior of
fountains in stratified fluids, in particular that of plane fountains, is currently lacking,
which motivates this study.

The behavior of plane fountains in linearly-stratified fluids is mainly governed by the
stratification of the ambient fluid, represented by the dimensionless temperature strat-
ification parameter (s), along with the Reynolds number (Re) and the Froude number
(F'r). In this study, a series of three-dimensional DNS runs were carried out using ANSY'S
FLUENT 13 for transitional plane fountains in linearly-stratified fluids with Fr, Re and
s varying in the ranges of 1 < Fr < 10, 10 < Re < 300 and 0 < s < 0.7 to examine the
effects of these governing parameters on the transient behavior of these transitional plane
fountains. In particular, the effects of F'r, Re and s on the symmetric-to-asymmetric tran-
sition, initial and time-averaged maximum fountain penetration height, characteristics of
bobbing and flapping motions, and thermal entrainment are analyzed and quantified with
the obtained DNS results and compared to the scaling relations obtained by dimensional
analysis for weak plane fountains in linearly-stratified fluids, at F'r = O(1).

Over the ranges of F'r, Re and s considered in this thesis, it was found that a transi-
tional plane fountain in a linearly-stratified fluid can be either symmetric or asymmetric.
In an asymmetric plane fountain, the fountain flow behavior becomes asymmetric at the
later developing stage, characterized by bobbing and flapping motions, although at the
early developing stage it is symmetric and no bobbing and flapping motions are present.
In a symmetric plane fountain, however, the fountain flow remains symmetric all the time
without the presence of bobbing and flapping motions. The DNS results show that plane
fountains remain symmetric for all times at a lower F'r or Re value or at a higher s value.
On the contrary, when F'r or Re is large or the stratification is weak with a small s, plane
fountains will remain symmetric only in the early developing stage and will become asym-
metric at the later, fully developed stage. The regime maps to distinguish the symmetric
plane fountains from the asymmetric ones were developed in terms of F'r, Re and s. It was
observed that the critical F'r and Re values for the asymmetric transition move up when
s increases, due to the stabilizing effect of stratification; on the other hand, the critical
Re value for the asymmetric transition reduces when F'r increases at lower F'r values, but
becomes essentially independent of F'r when F'r is high.

For symmetric plane fountains in linearly-stratified fluids, the DNS results show that
in general F'r has a much stronger effect on the maximum fountain penetration height
and the associated time than s does, whereas the effect of Re is negligible. In addition,
intrusion is an important integral part of the fountain behavior for these symmetric plane
fountains, and hence often has a substantial effect on the fountain behavior, in particular
at the later, fully developed stage. This is because the formation and the subsequent
movement of the intrusion change the stratification condition of the ambient fluid, which
results in a smaller negative buoyant force that the fountain fluid experience. This is
particularly prominent at small F'r values or very strong stratifications under which the
maximum fountain penetration height is significantly restricted. Empirical correlations to
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quantify the effects of F'r, Re and s on the the maximum fountain penetration height and
the associated time, as well as the intrusion height and velocity were developed using the
DNS results.

For asymmetric transitional plane fountains in linearly-stratified fluids, the DNS results
show that both the initial and time-averaged maximum fountain penetration height and
the time to attain the initial maximum fountain penetration height increase monotonically
with F'r, apparently due to the stronger momentum flux of the injected fountain fluid,
whereas on the contrary, due to the stronger negative buoyancy force at higher s values,
these bulk fountain behavior parameters reduce with s , although the effect of Re is
found to be negligible. The DNS results also demonstrate that the extent of both the
bobbing and flapping motion increases with F'r and Re but decreases with s. The bobbing
motions are predominated by a single dominant frequency over the ranges of F'r, Re and s
considered, and it is found that this dominant bobbing frequency decreases monotonically
with F'r, but increases with s. The flapping motions occur along both the X direction (i.e.
perpendicular to the slot) and the Y direction (i.e. along the slot). The flapping motions
along the X direction are also predominated by a single dominant frequency, and similar to
the bobbing motions, this dominant flapping frequency also decreases monotonically with
Fr, and increases with s. The effect of Re on the dominant frequencies for the bobbing
motions and the flapping motions along the X direction is found to be insignificant. On
the other hand, the flapping motions along the Y direction are more chaotic and fluctuate
with multiple dominant frequencies.

For asymmetric transitional plane fountains in linearly-stratified fluids, the DNS re-
sults further demonstrate that thermal entrainment is one of the major features of plane
fountains and plays a key role for the symmetric-to—asymmetric transition and the tur-
bulent mixing process in asymmetric fountains. Over the parameter ranges considered, it
is observed that thermal entrainment in general has a negligible effect on the core region
of the injected fountain fluid, but plays a key role in the downflow, in particular at the
interface between the upflow and the downflow, as well as at the interface between the
downflow and the ambient fluid, which becomes more dominant and stronger at the later
flow developing stages. At the early developing stage, thermal entrainment occurs mainly
in a very thin layer which is the interface of the fountain top and the ambient fluid. It
is also observed that thermal entrainment decreases with height. Thermal entrainment is
further found to be characterized by several representative average thermal entrainment
coeflicients.

The DNS results were used to develop a series of empirical relations to quantify the
individual and combined effects of F'r, Re and s, over their ranges considered, on the bulk
fountain behavior parameters, including the initial and time-averaged maximum fountain
penetration heights, the time to attain the initial maximum fountain penetration height,
the onset time for the symmetric-to-asymmetric transition, the dominant frequencies of the
bobbing and flapping motions, and several representative thermal entrainment coefficients.
Notably, it is found that the scaling relations developed by Lin & Armfiled (2002) for weak
plane fountains in linearly-stratified fluids, at Fr = O(1), in general also work well for
the asymmetric transitional plane fountains in linearly-stratified fluids considered in this
thesis, which have higher F'r values. Similarly, it is also found that this is true for the
symmetric plane fountains considered in this thesis as well.
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Chapter 1

Introduction

1.1 Significance and motivation

A fountain is in fact a jet with negative buoyancy acting on it. It is hence also
called a negatively buoyant jet. When a dense fluid is injected upward into a less
dense ambient fluid, or vice versa, when a light fluid is injected downward into a
dense ambient fluid, a fountain flow forms. In both cases, buoyancy opposes the
momentum of the ejected jet fluid, leading to gradually reduced vertical jet velocity
until it becomes zero at a certain finite height (commonly called the maximum
fountain penetration height, Z,,). After that, the jet flow reverses its direction and
comes back around the core of the upward or downward flow and an intrusion forms

on the base which moves outwards. This process is sketched in Fig. 1.1.

dﬂmv'n down
/ s flow

«—— Intrusion Intrusion ——

Slot |«

FIGURE 1.1: Schematic of a fountain with upflow, downflow and intrusion. Z,, is the maximum
fountain penetration height in the ambient fluid.
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When the ejection of the jet fluid from the source into the ambient fluid is not
vertically, but at an angle smaller than 90 degrees, a fountain, called an inclined foun-
tain, also forms. Inclined fountains have numerous applications, and are particularly
common and useful in the disposal of brine effluent into the marine environment.
The effluent is produced from the desalination process in a desalination plant and
is characterised by elevated density and contaminant levels which potentially poses
a direct threat to the marine environment if the discharge does not dilute to ac-
ceptable concentrations. There have been many studies on inclined fountains (see,
e.g., Fischer et al. 1979; Bloomfield & Kerr 2002; Papakonstantis, Christodoulou,
& Papanicolaou 2011a, 2011b; Oliver 2012; Crowe 2013; Ahmad & Baddour 2014;
Ramakanth 2016), although the majority of the studies have focused on turbulent
inclined fountains. However, as the focus of this thesis is on vertical fountains, the
discussion of inclined fountains is beyond the scope of the thesis and will then not
be detailed. Furthermore, there have been significant interest and research activities
on multiple fountains due to their application importance, particularly in natural
ventilation of a space (see, e.g., Pera & Gebhart 1975; Gebhart et al. 1976; Incropera
& Yaghoubi 1980; Brahimi et al. 1989; Linden et al. 1990; Moses et al. 1993; Ching
et al. 1996; Linden & Cooper 1996; Cooper & Linden 1996; Wong & Griffiths 1999;
Kaye & Linden 2004, 2006; Lai & Lee 2012; Shrinivas & Hunt 2014b; Mahmud 2014;
Mahmud et al. 2015a, b. The readers are referred to, e.g., Linden 1999; Hughes &
Griffiths 2008; Wong & Griffiths 1999; Shrinivas & Hunt 2014a; and Mahmud 2014
for the review of some of these studies on the topic). Nevertheless, similarly, the
discussion of these multiple fountains is also beyond the scope of the thesis and will
then not be detailed.

Depending on the shape of the source from which the fountain fluid jet is ejected,
a fountain can be either a round one or a plane one. If the source is an orifice, the
resultant fountain will be a round one whereas if the source is a slot, the fountain
will be a plane fountain (also called a line or planar fountain sometimes). For either
type, if the fountain is injected into a homogeneous ambient fluid, its behavior will
be governed by the Reynolds Number, Re, which is the ratio of inertial force to
viscous force, and the Froude Number, F'r, which is the ratio of inertia force to
buoyancy force, at the source. Re and F'r at the fountain source are defined as
follows,
Re = W‘)XO, (1.1)
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where W is the average inlet velocity of the ejected fluid at the source, Xj is the
radius of the orifice in the case of a round fountain or the half width of the slot
in the case of a plane fountain at the fountain source, v is the kinematic viscosity
of fluid, ¢ is the gravitational acceleration, pg, Ty and p,, T, are the densities and
temperatures of the ejected fluid from the fountain source and the ambient fluid,
and [ is the coefficient of volumetric expansion of the fluid. The second expression
of Fr is only valid when the density difference is linearly correlated with the tem-
perature difference of the ejected fluid from the fountain source and the ambient
fluid within the Oberbeck-Boussinesq approximation. The behavior of a fountain
strongly depends on Re and F'r, with a low Re value usually related to laminar flow
and a high Re to turbulent flow, whereas forced fountains characterised by large F'r

values and weak fountains by small F'r values.

Along with F'r and Re, the density stratification parameter, S, also has a strong
influence on the behavior of a fountain when it is injected into a linearly-stratified
ambient fluid, since the ejected fluid from the fountain source will experience a
gradually increased negative buoyancy when it penetrations the stratified ambient
fluid. S, is defined as,

(1.3)

where p, o and p, 7 are the densities of the initial ambient fluid at the bottom (i.e.,
at Z = 0) and at height Z, respectively, whereas Z denotes the vertical coordinate
as sketched in Fig. 1.2. With the Oberbeck-Boussinesq approximation, S, can be

expressed by the temperature stratification parameter, S, which is defined as follows,

= Moz _ 5% (1.4)

S=iz T3

where T}, 7 is the initial ambient fluid temperature at Z. However, the dimensionless
form of the temperature stratification parameter, s, as defined below, is normally
used,

M X o X

dz (Ta,o - To) ﬁ(Ta,o - To)
where 0,, = (Th.z — Tao)/(Tuo — To) and z = Z/ X, are the dimensionless initial

ambient fluid temperature at height Z and the dimensionless coordinate of Z, re-

S, (1.5)

spectively, whereas T, ¢ is the initial temperature of the ambient fluid at the bottom,
e, at Z = 0.

There have been strong interests and thus extensive investigations in the be-

havior of fountains since the 1950s. The majority of the investigations have been
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FI1GURE 1.2: Sketch of the physical system under consideration, the computational domain and
the boundary conditions.

focused on the round fountains, in particular turbulent round fountains injected into
homogeneous fluids, as will be reviewed in Chapter 2. Plane fountains, although also
present in a wide range of environmental settings and engineering applications, such
as air curtains created by injecting warm air downwards in tunnels and shop en-
trances and cold air plume arrays in buildings to create natural ventilation (see,
e.g., Vinoth & Panigrahi 2014; Burridge & Hunt 2013, 2014), have been much less

studied and thus understood, as will be reviewed in Chapter 2 as well.

The onset of asymmetry, instability and unsteadiness in transitional fountains is
the key to elucidating the mechanism for the generation and flow dynamics of tur-
bulence and entrainment in fountains, and thus is of both fundamental significance
and application importance. However, little understanding has been achieved so far.
In particular, to the best knowledge of the author, no study has been found in which
the onset of asymmetry of transitional plane fountains in stratified fluids has been
investigated. This, along with the desire to provide a much improved understand-
ing of the other aspects of the behavior of transitional plane fountains in stratified

fluids, motivates the current study.
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1.2 Problem addressed and objectives

The problem addressed in this thesis is the transient flow behavior of transitional
plane fountains in linearly-stratified ambient fluids. This is achieved by carrying out
a series of three-dimensional direct numerical simulation (DNS) runs with F'r, Re

and s varying over wide ranges.

The physical system under consideration and thus the computational domain
used for the three-dimensional DNS runs in this thesis is a rectangular container of
the dimensions H x B x L (Height x Width x Length), containing a Newtonian
fluid initially at rest and linearly stratified with a constant temperature gradient
dT, ./dZ, as sketched in Fig. 1.2, where Z is the coordinate in the vertical direction
on which the buoyancy acting in the negative Z direction and 7, , is the initial
temperature of the ambient fluid at the height Z. At the center of the bottom of the
container, a narrow slot with a half-width of X in the Y direction functions as the
source for a plane fountain, with the remainder of the bottom being a rigid non-slip
and adiabatic boundary. The two vertical surfaces in the X —Z plane, at Y = +B/2,
are assumed to be periodic whereas the two vertical surfaces in the Y — Z plane, at
X = +L/2, are assumed to be outflows. The top surface in the X — Y plane, at
Z = H, is also assumed to be an outflow. The origin of the Cartesian coordinate
systems is at the center of the bottom, as shown in Fig. 1.2. At time ¢t = 0, a stream
of fluid at Ty (T < Tao, where T, ¢ is the initial temperature of the ambient fluid
at the height Z = 0, i.e., at the bottom of the container) is injected upward from
the slot with a uniform velocity W, into the container to initiate the plane fountain

flow and this discharge is maintained over the whole course of a specific DNS run.

The main objective of this thesis is to understand the transient flow behavior of
transitional plane fountains in linearly-stratified ambient fluids, including the char-
acteristics of the symmetric-to-asymmetric transition, the bulk fountain behavior
parameters such as the maximum fountain penetration height and the associated
time scale, the bobbing and flapping motions, and the thermal entrainment, under
various conditions in terms of F'r, Re and s, through a series of three-dimensional

DNS runs. More specifically, the objectives of this thesis are as follows,

e To understand the transient flow behavior of asymmetric transitional plane
fountains in linearly-stratified fluids, in particular the effect of F'r, Re and s
on the asymmetric transition, the initial and time-averaged maximum foun-

tain penetration heights and the time to attain the initial maximum fountain



6 Chapter 1

penetration height, over the ranges of 1 < Fr < 10, 25 < Re < 300 and
0<s<0.5.

e To understand the characteristics of the bobbing and flapping motions which
are present in the later developing stages of asymmetric transitional plane
fountains in linearly-stratified fluids, in particular the effect of F'r, Re and s
on the dominant frequencies for these motions, over the ranges of 1 < Fr < 10,
25 < Re <300 and 0 < s <0.5.

e To understand the characteristics of thermal entrainment in asymmetric tran-
sitional plane fountains in linearly-stratified fluids, in particular the effect of
Fr, Re and s on various thermal entrainment coefficients, over the ranges of
1< Fr <10,25 < Re <300 and 0 <s<0.5.

e To understand the transient flow behavior of symmetric plane fountains in
linearly-stratified fluids, in particular the effect of F'r, Re and s on the initial
and time-averaged maximum fountain penetration heights and the time to
attain the initial maximum fountain penetration height, as well as the intrusion
height and velocity, over the ranges of 1 < Fr < 10, 10 < Re < 100 and
0<s<0.7.

e To obtain the critical values for F'r, Re and s which distinguish symmetric
plane fountains from asymmetric plane fountains in linearly-stratified fluids
and thus to develop the relevant regime maps over the ranges of 1 < Fr < 10,
10 < Re <300 and 0 < s <0.7.

1.3 Outline of the rest of the thesis

The rest of this thesis is organized as follows,

e In Chapter 2, the past studies on fountains, including round and plane foun-
tains, in both homogeneous and stratified fluids, will be briefly reviewed and

discussed.

e The numerical method used by this thesis will be briefly introduced in Chap-
ter 3. The governing equations for fountain flow and the appropriate boundary
and initial conditions will be detailed first, followed by a brief description of
the Finite Volume Method and the discretization schemes used to solve the

discretized equations. In particular, the discretization of governing equations
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and the solution strategy used in ANSYS FLUENT 13 are introduced in this
chapter. A brief description about the FLUENT setup to solve the problem is

also introduced.

e In Chapter 4, the transient flow behavior of asymmetric transition plane foun-
tains in linearly-stratified fluids at a fixed high Froude number of Fr = 10 will
be studied through a series of three-dimensional DNS runs over the ranges of
25 < Re <300 and 0 < s < 0.5. In particular, the effects of Re and s on the
onset of asymmetric transition, the maximum fountain penetration height and

the associated time scale will be discussed and quantified by the DNS results.

e The study presented in Chapter 4 will be significantly extended in Chapter 5
to include the effect of F'r with smaller F'r values on the transient flow behav-
ior of asymmetric transition plane fountains in linearly-stratified fluids, again
through a series of three-dimensional DNS runs over the ranges of 1 < Fr < 10,
25 < Re <300 and 0 < s < 0.7. In addition to the effects of F'r, Re and s on
the onset of asymmetric transition, the maximum fountain penetration height
and the associated time scale, the effects of these control parameters on the
bobbing and flapping motions and the thermal entrainment will also be dis-
cussed and quantified by the DNS results. The regime maps for critical values
of Fr, Re and s to distinguish the symmetric and asymmetric plane fountains
in linearly-stratified fluids will also be developed with the DNS results.

e In Chapter 6, the transient flow behavior of symmetric plane fountains in
linearly-stratified fluids will be studied through a series of three-dimensional
DNS runs over the ranges of 1 < Fr < 10, 10 < Re < 100, and 0.1 < 5 < 0.7,
and the effects of F'r, Re and s on the maximum fountain penetration height
and the associated time scale, and the intrusion height and velocity will also
be discussed and quantified by the DNS results.

e Finally, Chapter 7 summarizes the major findings of this study with suggestions

for future work.






Chapter 2

Literature Review

2.1 Introduction

As mentioned in the previous chapter, a fountain is a special type of jet flow
with negative buoyant force acting on it, which also earns it the name of a ‘negative
buoyant jet’. As further sketched in Fig. 2.1, which is taken from Hunt & Burridge
(2015), when a denser fluid is injected vertically upward into a less dense fluid, a
fountain forms. Similarly, when a less dense fluid is injected vertically downward into
a denser fluid, a fountain also forms. In both cases, the negative buoyancy acting
on the fountain flow opposes its momentum, which results in a gradually reduced
vertical velocity of the fountain flow at its early developing stage until it becomes
zero at a certain finite height without the presence of the downflow, as depicted in
Fig. 2.1(a) and (b). Subsequently, the fountain flow reverses its direction and falls
back as a downflow around the core of the upward or downward flow, which results
in the co-existence and interaction of the upflow and the downflow, as illustrated in
Fig. 2.1(c) and (d). An horizontal intrusion then forms on the base, if present, and
moves outwards. When the fountain flow attains its fully developed, steady-state
stage, the front of the fountain flow usually fluctuates around a constant time-

averaged mean maximum height.

Fountains are ubiquitous in nature and in numerous industrial and environmental
applications. Examples include heating and cooling for human comfort (Baines et
al. 1990; Fernando 1991; Williamson et al. 2011), replenishing of cold saline water
at the bottom of a solar pond (Duffie & Beckman 1991), building ventilation when
cool air is injecting vertically into a room through vents on the floor (Linden 1999;

Coffey & Hunt 2010; Burridge et al. 2015), explosive volcanic eruption (Kaminski
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FIGURE 2.1: Schematic diagrams and experimental snapshots of a turbulent round fountain at
the early developing stage when the downflow has not yet formed ((a) and (b)), and at the fully
developed, steady-state stage when the down-flow has fully developed ((¢) and (d)) (after Hunt &
Burridge 2015).

et al.2005), replenishment of the magma chamber (Bloomfield & Kerr 1999), air
curtains created by injecting warm air downwards in tunnels and shop entrances
as a means of segregating regions of fluid and a consequence of a thermal or fire
plume in a room when the ceiling current impinges on the sidewall (Hunt & Coffey
2009), to name just a few. The readers are referred to some influential reviews and
books on the topic for more examples (such as Turner 1969; Fischer et al. 1979; List
1982; Fernando 1991; Linden 1999; Woods 2010; and Hunt & Burridge 2015). It
is therefore of both fundamental significance and practical application importance
to fully understand the flow dynamics and transient behavior of fountains under

various conditions.

Although studies on fountains commenced in the 1950s (see, e.g., Morton 1959),
they have continued to be the subjects of research (see, e.g., Williamson, Armfield &
Lin 2010, 2011; Srinarayana, Armfield & Lin 2010, 2013; Myrtroeen & Hunt 2010,
2012; Carazzo, Kaminski & Tail 2010; Burridge & Hunt 2012, 2013, 2014, 2016;
Vinoth & Panigrahi 2014; Shrinivas & Hunt 2014a, b; Burridge et al. 2015). In this

chapter, some of these studies will be briefly reviewed and discussed.

2.2 Fountains classification

In terms of the geometry of the fountain source, fountains are normally classified
as round fountains or plane/line fountains, as stated in Chapter 1. If the source

from which the fountain fluid is injected is an orifice, the resultant fountain will be
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a round one, whereas if the source is a slot, the fountain will be a plane or line one.
The ambient fluid can be homogeneous or stratified and the behavior of a fountain
in a homogeneous fluid, no matter it is a round one or plane one, will be different
from that in a stratified fluid.
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FIGURE 2.2: Typical experimental images of fountains showing their major features such as the
vortex dynamics and the initial and steady-state maximum fountain penetration height of the
fountains in the five categories classified by Hunt & Burridge (2015) (after Hunt & Burridge 2015).

There are classifications of fountains into different categories, particularly for
round fountains. The prevailing one is that by Hunt & Burridge (2015) who, in
terms of F'r, classify round fountains in homogeneous fluids into the following five

categories:

very weak fountains (Fr < 0.7);

weak fountains (0.7 < Fr < 1.2);

intermediate fountains (1.2 < F'r < 2.0);

forced fountains (2.0 < Fr < 3.9);
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e highly forced fountains (F'r > 3.9).

The typical images showing the major fountain features, such as the vortex dynam-
ics and the initial and steady-state maximum fountain penetration heights, of the
fountains in these five categories, which were obtained experimentally by Hunt &
Burridge (2015), are depicted in Fig. 2.2. However, this classification is solely based
on Fr and does not take into account the influence of Re. Based on their exten-
sive experimental results, Williamson et al. (2008) argued that the classification of
round fountains, in addition to that by Hunt & Burridge (2015) in terms of Fr
only, should also take into account of the influence of Re. They classified round
fountains, in terms of Re, as laminar fountains (Re < 120), transitional fountains
(120 < Re < 2000) and turbulent fountains (Re > 2000). They also found that
some sub-categories in the low Re regime can be classified, such as steady, flapping,
bobbing, and sinuous fountains, as shown in Fig. 2.3 (Williamson et al. 2008). Hunt
& Burridge (2015) made further discussion of the major features of the fountains
according to their classification in terms of F'r, but also taking into account the

effect of Re, as summarized in Fig. 2.4, which was taken from their work.

Plane or line fountains are also classified, similar to round fountain, by Hunt &
Coffey (2009) as forced plane fountains (Fr 2 5.7), weak plane fountains (2.3 <
Fr < 5.7), and very weak plane fountains (F'r < 2.3). However, this classification
again does not take into account the influence of Re like their classification of round
fountains, which has been done based on F'r solely. Srinarayana et al. (2010), based
on their experimental results, incorporated the effect of Re and further classified
plane fountains at low Re values (Re < 127) into four sub-regime behavior, i.e.
steady, flapping, laminar-mixing and jet-type mixing behavior. These sub-regimes
are separated from each other with a single or multiple demarcation lines, which
strongly depend on Fr and Re. They found that the transition from a steady to
unsteady flow for Re = 60 is independent of Re and is well described by the F'r ~ 1.0
line, while over the range of 10 < Re < 50 the transition can be approximated
by a constant FrRe?? line. However, for Re < 10 the transition occurs at the

demarcation line which follows Fr ~ Re™, where n ~ 2 — 4.

2.3 Behavior of round fountains

So far round fountains, in particular those in the turbulent regime in homo-

geneous fluids, have been the most studied ones, as regularly reviewed by some
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(c) Bobbing (d) Sinuous

FIGURE 2.3: Typical experimental images showing (a) the steady fountain, () the flapping foun-
tain, (¢) the bobbing fountain, and (d) the sinuous fountain (after Williamson et al. 2008).

leading researchers on the topic, such as Turner (1966, 1969), List (1982), Kaye &
Hunt (2006), Williamson et al. (2008), and Hunt & Burridge (2015).

2.3.1 In homogeneous fluids

For a forced turbulent round fountain, as sketched in Fig. 2.1, the momentum
of the ejected jet fluid is much stronger than the negative buoyancy force (thus
also named as a strong fountain). In such a forced fountain, the inner upflow of
the fountain core behaves more like a turbulent jet, with strong mixing with and
entrainment from the downflow in the outer periphery of the fountain core, as well
as the ambient fluid at the fountain top (front), while the downflow behaves like

a dense plume, with mixing with and entrainment from both the upflow and the
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FIGURE 2.4: Fountain classification and the major fountain features in different categories (after
Hunt & Burridge 2015).

ambient fluids across their individual interfaces. As a consequence of the turbulent

mixing and entrainment process the fountain flow never achieves self-similarity and

the flow properties vary along the axial position. As stated earlier and sketched

in Fig. 2.1, the development of a forced fountain can be divided into three stages:

the early developing stage, the transitional developing stage, and the fully devel-

oped, steady state stage. At the early developing stage, the fountain continues to

penetrate in the ambient fluid, without the formation and presence of the down-

flow, until the fountain front (top) reaches the initial maximum penetration height
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where the source momentum flux of the fountain is balanced by the negative buoy-
ancy force. Subsequently, the fountain flow reverses its direction and falls back as a
downflow around the core of the upward flow, with the co-existence and interaction
of the upflow and the downflow, and the interaction between the downflow and the
surrounding ambient fluid, leading to the transitional developing stage. This tran-
sitional developing stage will usually last for a while, before eventually the fountain
flow attains its fully-developed, steady-state stage, as illustrated in Fig. 2.1(¢) and
(d), at which the maximum fountain penetration height fluctuates around a con-
stant time-averaged mean value. In addition to the feature of strong mixing and
entrainment among the upflow, the downflow, the ambient fluid, and potentially the
intrusion, if a base is present, a forced turbulent fountain is also represented by a
large maximum fountain penetration height, (Z,,, as sketched in Fig. 1.1), which is
much larger than the fountain source size (i.e., Z,, > Xj) and is usually independent
of Re but has a linear dependence on F'r, as shown in, e.g., Turner (1966), Baines
& Turner (1969), Baines et al. (1990), Zhang & Baddour (1998), Friedman & Katz
(2000), Bloomfield & Kerr (2002), Carazzo et al. (2010), Woods (2010), Myrtroeen
& Hunt (2010), Williamson et al. (2011), and Burridge & Hunt (2012, 2013, 2014).

On the other hand, the source momentum flux of a weak or very weak fountain
is, in contrast to that in a forced fountains, weaker than the negative buoyant force,
and hence plays a less important role than the negative buoyant force. As a result,
these flows usually remain laminar or transitional (thus also known as laminar or
transitional fountains). Numerous studies have demonstrated, as reviewed below,
that the behavior of weak or very weak fountains is significantly different from that of
forced turbulent fountains. In particular, Z,, in a weak or very weak round fountain
is also strongly dependent on Re, in addition to its strong dependence on F'r; Z,, is
comparable to or less than X in a weak or very weak round fountain; there is usually
no distinguishable upflow and downflow in weak fountains, instead, the streamlines
curve and spread from the fountain sources; and there is usually little entrainment of
the ambient fluid into the fountain fluid, as shown in, e.g., Lin & Armfield (2000a,b,
2003, 2008), Philippe et al. (2005), Kaye & Hunt (2006), Williamson et al. (2008,
2010), Burridge & Hunt (2012), and Hunt & Burridge (2015), and as will be discussed

in detail below.

2.3.1.1 Maximum fountain penetration height

The maximum fountain penetration height, Z,,, as sketched in Fig. 1.1, has

been the prevailing bulk fountain parameter used to illustrate, characterize and
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quantify the fountain behavior. In the literature, the dimensionless counterpart of
Zm, i.e., the dimensionless maximum fountain penetration height, z,,, which is non-

dimensionalized by Xq (i.e., 2z = Zn/Xo), is usually the parameter used instead.

Earlier studies on the maximum fountain penetration height had mainly focused
on forced turbulent round fountains, although it has continued to attract extensive
attention even nowadays. Morton (1959) has been acknowledged as the pioneer in
analysing forced turbulent fountains in both homogeneous and stratified ambient
fluids, including the maximum fountain penetration height. He used the classical
entrainment model developed by Morton, Taylor & Turner (1956), together with
an approximate form of the governing equations for the conservation of mass, mo-
mentum and buoyancy in integral form, to develop an analytic expression for the
maximum fountain penetration height in terms of the fountain source conditions.
Nevertheless, his analysis was applicable only for the start-up flow, at the early de-
veloping stage as shown in Fig. 2.1(a) and (b), when the downflow has yet to form,
as his model does not take into account the effect of the downflow. Abraham (1967)
argued that the assumption made by Morton (1959), i.e., the vertical flux of a tracer
being contained in the jet is constant from the source to Z,,, is not realistic, and
instead suggested that near Z,, the vertical flux of jet fluid and the vertical flux of a
tracer carried by the jet decrease with height. He then obtained modified analytical
solution which takes this into consideration, leading to improved results. The inte-
gral approach used by Morton (1959) was further developed by Turner (1966) and
McDougall (1981) who included interactions between the upflow and the downflow,
and between the downflow and the ambient fluid, based on a method suggested by
Morton (1962) for coaxial turbulent jets, and introduced separate coefficients for
the entrainment from the ambient fluid to the downflow, from the downflow to the
upflow flow, and from the upflow to the downflow. Bloomfield & Kerr (2000) made
further improvement by modifying the approach used to determine the fountain
height and the assumptions for the characteristic velocity used in the entrainment

relation, as well as including the effect of ambient stratification.

By assuming that fountain flows are controlled by the fluxes of momentum and
buoyancy at the source, Turner (1966) obtained the following scaling for z,, for
forced turbulent round fountains using dimensional analysis,

Zy=C (2.1)

BOI/2 )

where C is a proportional constant and M, and By denote the momentum and

buoyancy fluxes of the fountain fluid at the source, respectively, which is defined for
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a uniform inlet velocity as follows,
My = 1X*Wo?, By = 1A Xo*Wo, (2.2)

where Ag = g(po — pa)/pa is the reduce gravity between the fountain fluid and the
ambient fluid at the source. With the definition of F'r (see (1.2)), the above scaling
(2.1) can be written as

Zm = CFr. (2.3)

To validate and quantify the obtained scaling (2.3), Turner (1966) carried out a
large number of experiments on salt water jets discharging into fresh water using
three nozzles with different sizes (1.40 cm, 0.96 cm, and 0.65 cm, respectively), over
a wide range of volume fluxes and initial density differences between the salt water
and the fresh water that led to F'r varying over 2 < Fr < 30. As expected, his
experiments showed that after the initiation of the fountain flow the first pulse of
fluid looked rather like a light starting plume, with a vortex-like front and nearly
steady plume behind; when this fountain front reached the initial fountain height, it
fell back; eventually it settled down to a nearly steady state, with the fountain front
fluctuating at the final fountain height which is a constant when time averaged. The
experimental results confirmed the scaling (2.3) and produced the value of 2.46 to C.
Surprisingly, the value 2.46 has been found by numerous subsequent studies as the
consensus value for C' for forced turbulent round fountains, as noted in Table 2.1,
where the obtained values for C' for forced turbulent round fountains from some
leading studies available in the literature are summarized, although the value of
C' in the literature varies over a noticeable range (from 2.12 to 3.06 as shown in
Table 2.1). The variation is caused by numerous factors, including the significant
differences in experimental conditions (for example, the nozzle exit conditions as
noted by Pantzlaff & Lueptow (1999)), measurement errors, etc. It should be noted
that the results presented in Table 2.1 are for the cases when the source fluid and
the ambient fluid are miscible. There have been some similar studies on forced
turbulent round fountains with immiscible source and ambient fluids, such as those
by Clanet (1998), Friedman & Katz (1999), Friedman (2006), Friedman et al. (2006,
2007), Geyer et al. (2012), etc., as summarised in Geyer et al. (2012). The results

from these studies are not presented in Table 2.1.

It should be noted that all the values for C' discussed above are for time-averaged
maximum fountain penetration heights when the forced turbulent round fountains

attain their respective fully developed, steady-state stage. It has also been shown
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that the scaling relation (2.3) is applicable for the initial maximum fountain penetra-
tion heights when the fountains reach their respective maximum penetration heights
for the first time. Turner (1966) found from his experiments that the ratio of the
initial maximum fountain penetration height to the final time-averaged maximum
fountain penetration height varies only within a narrow range, with a mean value

of 1.43 across all his experiments.

On the other hand, the scaling relation of the maximum fountain penetration
height at small F'r and lower Re conditions, i.e. weak and very weak fountains or
laminar and transitional fountains, should be not linear like the scaling relation (2.3)
for forced turbulent fountains at high F'r and large Re conditions. For these weak
and very weak fountains, or laminar and transitional fountains, it is believed that
viscosity also plays an important role in addition to momentum flux and buoyancy
flux (see, e.g., Friedman & Katz 2000; Lin & Armfield 2000a, b, ¢; Lin & Armfield
2003; Philippe et al. 2005; Kaye & Hunt 2006; Williamson et al. 2008). This leads

to the conclusion that Re has significance influence on z,, as well in addition to F'r.



TABLE 2.1: Summary of the obtained values for C for forced turbulent round fountains with miscible source fluid and ambient fluid from some leading
studies available in the literature. Note: Some information presented in the table is obtained with the consideration of the information presented in Wang et

al. (2011) and Geyer et al. (2012), in the case of the lacking of the information presented in several original studies.

Authors Method Fr Re Source fluid/Ambient fluid C

Turner (1966) Experimental 2~ 30 - Saline water/Fresh water 2.46
Abraham (1967) Analytical - - - 2.74
Seban et al. (1978) Experimental 6.6 ~ 53.5 894 ~ 1923  Hot air/Ambient air 2.52
Mizushina et al. (1982) Experimental 3.0 ~257.7 870 ~ 2710  Fresh water/Heated fresh water 2.34
James et al. (1983) Experimental 24 ~ 110 1550 ~ 11000 Saline water/Fresh water 2.46
Baines et al. (1990) Experimental 5 ~ 200 - Saline water/Fresh water 2.46
Baines et al. (1993) Experimental 31.6 ~ 102.7 - Fresh water/Saline water 2.46
Cresswell & Szczepura (1993) Experimental 3.2 2500 Hot water/Cold water 2.46
Zhang & Baddour (1998) Experimental > 7 850 ~ 6000  Saline water/ Fresh water 3.06
Pantzlaff & Lueptow (1999) Experimental 15.8 ~ 78.0 1250 ~ 10500 KCI solution/Water 2.12
Pantokratoras (1999) Analytical - - - 2.46
Bloomfield & Kerr (2000) Analytical /Experimental 10 ~ 70 - Saline water/Fresh water 2.28
Kaye & Hunt (2006) Analytical /Experimental 2~ 102 - Saline water /Fresh water 2.46
Papanicolaou & Kokkalis (2008) Experimental 1.4 ~83.2 770 ~ 5840  Fresh water/Saline water 2.46
Wang et al. (2011) Numerical > 6.0 1000 ~ 1500 - 2.46
Burridge & Hunt (2012) Experimental > 2.8 969 ~ 4022  Saline water/Fresh water 2.46
Vinoth & Panigrahi (2014) Experimental 2.3 ~13.6 5~ 102 Helium gas/Air 2.55
Burridge et al. (2015) Experimental > 4.0 > 750 Saline water/Fresh water 2.46

MOIADY SINYRINNT
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For weak round fountains with small Fr values (Fr ~ 1), at the Re values in
the laminar regime, Lin & Armfield (2003) developed the following scaling relation
for z,, using dimensional analysis with the assumption that the fountain behavior

is governing by viscosity, momentum flux, and buoyancy flux,
Zm = C1FrRe", (2.4)

where (' is a proportional constant and the index n is also a constant. However, it is
found that n has different values which strongly depend on the values of F'r and Re.
For example, Lin & Armfield (2003) obtained n = —1/2 for Fr ~ 1 and Re < 500
which was confirmed by their direct numerical simulation results, while Philippe et
al. (2005) obtained n = 1/2 with a series of experiments on laminar round fountains
for Re < 100 over a wide range of F'r with the majority in the higher F'r region,
which was also confirmed by Williamson et al. (2008) using their experimental results
on laminar and transitional round fountains at higher F'r conditions. However, for
intermediate values of F'r and Re, Lin & Armfield (2004) found n = 1/4 with their
direct numerical simulation results over the ranges of 1 < Fr < 8 and 100 < Re <
800.

For very weak round fountain (Fr < 1), Lin & Armfield (2000b) argued that
inertial effect is negligible and fountain flow predominantly control by viscous force
and buoyancy force only. They then used dimensional analysis to develop the fol-

lowing scaling relations,
Zm ~ Fr?3Re™%/3, (2.5)

which was confirmed by their direct numerical simulation results over the ranges
of 0.0025 < Fr < 0.2 and 5 < Re < 800. This scaling relation was also con-
firmed by Kaye & Hunt (2006) with their analytical solutions by assuming that
the fountain flow for Fr < 1 is hydraulically controlled by the radial outflow and
their experimental results. The scaling relation (2.5) was further confirmed by the
experimental results of Burridge & Hunt (2012) over the ranges of 0.4 < Fr <1
and 924 < Re < 2171 and the experimental results of Burridge et al. (2015) with
0.3 < Fr < 1. Similarly, Williamson et al. (2010) confirmed the above scaling

~Y

relation with their direct numerical simulation results when F'r < 0.4.

There have been other scaling relations developed for weak round fountains or
laminar round fountains. For example, for weak and intermediate round fountains
Kaye & Hunt (2006) developed the quantified scaling relation z,, = 0.90F7r? for
1 < Fr < 3 with their analytical and experimental results, which was later adjusted
slightly by Burridge & Hunt (2012) as z,, = 0.86Fr? for 1 < Fr < 2.8 with their
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extensive experimental results over 1015 < Re < 2780. The z, ~ Fr? scaling
relation was also found to be in agreement with the experimental results of William
et al. (2008) over comparable F'r and Re ranges. Zhang & Baddour (1998) obtained
the quantified scaling z,, = 01.7Fr'3 for Fr < 7 with their experimental results
over the range of Re < 6000. Vinoth & Panigrahi (2014) gave z,, = 2.02Fr/2 for
the weak fountains that they defined (with 0.7 < Fr < 2.1) with their experimental
results over 5 < Re < 204. For 2 < Fr < 4.0, Burridge et al. (2015) also developed
the quantified scaling relation z,, = 2.8Fr — 2.1 with their experimental results.
William et al. (2010) found that over the transition range of 0.4 < F'r < 2.1 between
the very weak and weak fountains which is defined by them, the scaling relation is

in the form of z,, ~ CoFr?/3 + C5Fr?, where C, and Cj are constants.

As discussed above, the scaling relation for z,, for round fountains is independent
of Re for forced turbulent fountains while it depends on Re for weak and very
weak or laminar and transitional round fountains. To examine the critical Re value
which distinguishes the independence and dependence of the scaling relation on
Re, Burridge et al. (2015) conducted an extensive and comprehensive experimental
study over wide ranges of Fr and Re (0.3 < F'r < 40 and 15 < Re < 4000). They
obtained the following threshold values for Re to distinguish the very weak, weak,

and intermediate and forced fountains,

500Fr for very weak fountains, Fr < 1,
Rer = < 760 for weak fountains, 1 < Fr < 2, (2.6)

75Fr + 350 for intermediate and forced fountains, Fr 2 2,

where Rer is the threshold value of Re. When Re 2 Rer the scaling relation for z,,
essentially is independent of Re whereas it depends on Re when Re < Rep. Their
results also resolve the inconsistency of the scaling relations in the literature, as

some noted above.

An excellent summary of the scaling relation for z,, for round fountains in dif-
ferent categories, along with other major features such as the ratio of the initial
maximum fountain penetration height and its time-averaged counterpart and the
the dominant frequency for the bobbing motions present in fountains, is made by
Hunt & Burridge (2015), which is also adopted here in Fig. 2.5. They also presented
the following quantified scaling relations for different categories of round fountains

based on their own comprehensive analytical and experimental results as well as the
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prevailing results available in the literature,

(
246Fr for forced and highly forced fountains, F'r 2 4.0,
2.8Fr — 2.1 for intermediate fountains, 2.0 < Fr < 4.0. (2.7)
Zm = & .
0.86 Fr? for weak fountains, 1.0 < Fr < 2.0,

kO.81F7"2/3 for very weak fountains, Fr < 1.0.

These scaling relations are believed to be the consensus ones for different categories

of round fountains.

2.3.1.2 Entrainment

In the entrainment process, a mixing layer is formed by turbulent eddies among
the jet within its surrounding fluid. The most successful quantitative macroscopic
description of entrainment was introduced by Taylor (1945) and Morton et al.
(1956). Using the ‘top-hat’ method, in which it was assumed that the velocity
and buoyancy force remain constant across the jet and become zero outside the jet,
they stated that the entrainment rate along the periphery is proportional to the

local velocity.

Entrainment plays a significant role in any type of turbulent free-share flows,
including jets, fountains and plumes. Previous experimental and theoretical stud-
ies mostly determined the entrainment coefficient to use in the turbulent closure
model, given by Morton et al. (1956), to characterize jets, plumes and fountains.
Determination of an appropriate entrainment coefficient, which particularly varies
with height or with the local Froude number, with experimentally or theoretically,

is significant and investigations continue (Ezzamel et al. 2015).

The entrainment of the ambient fluid into the turbulent fountains plays a sig-
nificant role; where fountain flow is developed when the negative buoyancy force,
created due to the density difference between the incoming and ambient fluids, op-
poses the momentum flux of the incoming fluid from the source. In this study of
the entrainment process, mass transfer from the ambient fluid into the fountains
is important because it controls the rate of dilution, which moderates the negative
buoyancy force. In addition, entrainment plays a key role in determining the vol-
ume and physical shape of a fountain. The mixing mechanism into the fountains,

entrainment, is unquestionably complex, since ambient fluid not only enters the
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FIGURE 2.5: Summary of scaling relations for the maximum fountain penetration height and the
dominant frequency for the bobbing motions of round fountains in different categories (after Hunt
& Burridge 2015).

fountain (including at the top), but fluid is also exchanged via upward and down-
ward flow. Lots of attempts have been made to capture the exact dynamics of the
turbulent fountains using simplified theoretical plumes models, which is expanded

from earlier work by Morton (1959) to some further modification by Bloomfield &



24 Chapter 2

Kerr (1998), Kaye & Hunt (2006), Carazzo et al. (2010). The application of plume
theory to capture the dynamics of turbulent fountains, i.e. the initial rise and the
quasi-steady behaviour, ideally requires a clear understanding of the exchange mech-
anism of fluid, entrainment, among the fountain core and the downward flow, and
between the downward flow and the environment. A clear understanding of this ex-
change mechanism, based upon which a parametrization could be done, is not well
established; publication are scarce (e.g. Cresswell & Szczepura 1993; Williamson et

al. 2011) and it is hard to draw a firm conclusion.

However, the bulk entrainment of surrounding fluid, 7.e. entrainment of ambient
fluid by fountain as a whole, can be measured with reasonable accuracy (Burridge
& Hunt 2016). It can be measured without any assumption regarding either in-
ternal flow or the nature of entrainment mechanism. Bulk entrainment estimates
the average dilution of the scalar buoyancy over the fountain as a whole, while the
local entrainment rate does not resolve. To our knowledge, Banies et al. (1993) and
Burridge & Hunt (2016) explicitly studied bulk entrainment by turbulent fountains.
Burridge & Hunt (2016) conducted a series of experiments in order to quantify the
total volume flux entrained, bulk entrainment, by an aqueous saline fountain, in
which they used a modified technique reported by Banies (1983) to determine the
entrain volume flux in a plume. In their experiments, a saline fountain was estab-
lished by injecting an aqueous sodium chloride solution (dense fluid) from a circular
source along the vertically upward direction into the fresh water (light fluid). Ini-
tially, the whole cylinder was full of fresh water. After initiating the injection from
the source at the bottom, the descending flow formed a well defined saline layer at
the base of the cylinder. This interface will propagate along the vertical direction
with time. The flow rate through the extract pump, which was installed at the bot-
tom of the tank, was varied until the interface become fixed at a unique height at
the plane of the source. In this condition, the volume flux in the downward flow of
the fountain was equal to the flow rate of the extract pump. Due to the entrainment
of the ambient fluid by the turbulent fountain, the flow rate in the downward flow,
Qout, 1s greater than )y, where )y denotes flow rate from the source. The bulk
entrainment of ambient fluid, g, by the turbulent fountain was then calculated
directly via Qg = Qout — Qo. Their experiments were conducted over the wide range
of Fr and Re (0.004 < Fr <25 and 350 < Re < 3460). After an extensive investi-
gation over the range of Re, where Re was always maintained above the threshold
value mentioned by Burridge et al. (2015), they did not observe any significant ef-
fect of Re on the bulk entrainment. On the other hand, their experimental results

showed that the dimensionless volume flux of entrainment, Qg /Qo, strongly depends
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on the source Froude number (F'r). The author showed that the relations between
Qr/Qo and Fr were different corresponding to each class of fountains. The author
identified a distinct class of fountain when F'r < 01. A set of empirical relations was
proposed by the authors for the volume flux scaling for the fountains at different

conditions of F'r, which is summarized as follows:

(1.0840.025 if Fr < 0.1,

0.37Fr2/3 if 0.1 < Fr < 1,

Qe/Qi = { 0.38Fr? if 1 < Fr <2, (2.8)
0.71Fr if 2< Fr <8,

\0.71F7’—1 if F'r > 8.

Baines et al. (1993) also reported experimentally on bulk entrainment by turbulent
fountains in which a saline solution (a dense fluid) was injected vertically in an
upward direction to establish a fountain within an initially uniform light aqueous
environment. A saline layer was produced at the base of the tank by the descending
counter flow which spread laterally on reaching the bottom of the tank. The bulk
entrainment by fountain above the interface, which separates saline and aqueous
solution, was then calculated by estimating the total volume flux in fountain above
the interface. Their studies summarized that Qz/Q; o< Fr® when Fr; < 3 (different
from Burridge & Hunt 2016) and Qg/Q; o Fr; at moderate Fr; (i.e. Fr; > 3),
similar to Burridge & Hunt (2016), where @); and F'r; denote the volume flux and

Froude number of the core at the level of the interface, respectively.

In addition, a number of studies have been conducted to determine entrainment
across the density interface due to localized forcing that forms a fountain-like flow.
Typically fluid from a localized source which is injected vertically in an the up-
ward direction within the stratified surroundings (often two-layer) to establish a
fountain-like flow above the interface and the entrainment flux in that case is es-
timated from the time derivative of the height of the interface (e.g. Baines 1975;
Kumagai 1984; Cardoso & Woods 1993). The entrainment in the interface indeed
becomes apparent with entrainment by fountains. On impinging with the interface,
it is typically observed that the incoming fluid from the jet (whether negatively,
positively or neutrally buoyant in the lower layer) penetrates some distance above
the interface before collapsing back around under the negative buoyancy. In other
words a fountain-like flow is developed into the upper region as a result of the lo-
calized forcing of incoming fluid at the interface. In previous experimental studies,

complementary predictive phenomenological models have been used to parametrize
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the dimensionless entrainment flux (Qg/Q;) by the fountain — like flow in the upper
layer - in terms of the Froude number at the interface (F'r;), where @; indicates the
flux that is subsequently transferred across the interface. Banies (1975) conducted
a series of experiments where an axisymmetric turbulent plume impinged at the in-
terface, which separated two initially homogeneous layers of different density. With
the assumption of Turner’s hypothesis, Banies (1975) showed experimentally that
entrained volume flux Qg across the interface is strongly dependent on the buoy-
ancy difference across the interface along with plume radius and vertical velocity at
the interface. Finally, the authors showed experimentally for axisymmetric turbu-
lent plumes over the range 0.25 < Fr < 1.8 that dimensionless entrainment flux
(Qr/Q;) followed the power law,

Qe/Qi~ Fr", (2.9)

where n is equal to 3. There is no doubt yet about this entrainment law (2.9),
however the debate about the value of power index n remains unresolved.. Kumagai
(1984) followed a similar experimental configuration to Baines (1975) and proposed a
similar entrainment law Qg /Q; ~ Fr? for Fr < 1, however argued that entrainment
became independent of Fr at Fr > 1. Coffey & Hunt (2010) also investigated
turbulent inter-facial mixing, within a confine box, by injecting a fresh water jet from
the opening at the top on a dense fluid layer draining via opening at the bottom from
the box. Their experiment also recommended that Qg/Q; ~ Fr3 for Fr < 1, similar
to Banies (1975), and a constant value of Qr/Q; at Fr > 1, similar to Kumagai
(1984). Cardoso & Woods (1993) also examined experimentally entrained volume
flux along the top of a rising axisymmetric plume from a stratified upper layer
across an interface into an almost homogeneous lower layer. The authors proposed
a quadratic relation for entrainment (Qg/Q; ~ Fr? ) within 0.4 < Fr < 1.3 and
argued that this quadratic entrainment law gives a better curve fitting to Kumagai’s
(1984) data for Fr < 1.4 rather than his proposed relation (Qg/Q; ~ Fr?). Similar
entrainment law, such as equation 2.9, was also proposed by Cardoso & Woods
(1993), with n = 2, and this was also justified experimentally by Ching et al. (1993)

where a turbulent line plume strikes on the sharp density interface.

These wide ranges of discrepancies in entrainment law may arise due to inherent
uncertainties in determining (); and F'r;. Experiments should be undertaken within
a confined visual tank in which the differences between setups and tank geometries
may affect the physics and analysis of measurements. Additionally, entrainment

flux is estimated by evaluating the time derivative of the interface position. Lin &
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Linden (2005a) bypass this issue by calculating entrainment straightforwardly from
a measurement of the steady interface position which was induced by a plume and
a fountain in a ventilated box - the plume to develop a two - layer system and the
fountain to impinge upon and entrain fluid across the interface. Their findings are
qualitatively similar to those obtained by Kumagai (1984), namely, where Qg /Q;(~
0.65) is independent of F'r; over the region 0.9 < Fr; < 2.2. A theoretical analysis
was conducted by Shrinvas & Hunt (2014) to determine entrainment flux in an
unconfined environment where a steady turbulent jet impinged on an interface which
separated two homogeneous fluids. They showed theoretically that entrainment flux
at low-Fr; (i.e. Fr; < 1.4), characterized by a semi-ellipsoidal dome at the top
of the impinging jet, is followed by a quadratic power law (i.e. Qg/Q; o Fr;?).
However, the entrainment flux at large-F'r; (i.e. F'r; > 3.8), characterized by a fully
penetrating turbulent fountain, is governed by a liner power law (i.e. Qr/Q; < Fr;).
An explicit time average theoretical model for entrainment by fountain top was also
proposed by Shrinvas & Hunt (2014) where the fountain comprises three regions:
upflow, downflow and top. Recently, Debugne & Hunt (2016) developed a new
phenomenological model to determine entrainment of external fluid in which they
emphasised the role of the fluctuations in the entrainment process, suggesting that

the entrained volume flux is proportional to the incoming volume flux.

This discrepancy suggests the need for further investigation to characterize the
entrainment process. In additions, lack of knowledge about entrainment into the
fountains, especially in the transitional plane fountains into linearly stratified fluid,
due to their complex flow dynamics at fountain top, is one of the motivations of this
thesis. However, thermal entrainment, defined at § 5.6, will be reported at different

conditions of F'r, Re and s in this thesis.

2.3.1.3 Onset of asymmetry

In addition to the fountain maximum penetration height, understanding the
stability, transition and unsteady characteristics of the fountain are also important.
The onset of asymmetry, instability and unsteadiness in fountains is the key to eluci-
dating the mechanism for the generation of turbulence and entrainment in fountains,
but is not well understood, although some investigations have been undertaken. Lin
& Armfield (2008) studied the onset of entrainment in transitional round fountains
in a homogeneous fluid over the ranges of 1 < Fr < 8 and 200 < Re < 800 us-

ing direct numerical simulation, and found that entrainment is strongly dependent
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on Re while the effect of F'r is much smaller. Williamson et al. (2010) investi-
gated the transitional behavior of weak turbulent round fountains in a homogeneous
fluid over a wide range of Re (20 to 3494), although F'r was relatively small with
0.1 < Fr < 2.1. They observed that there is a continuum of behaviour over this
transitional F'r range, from hydraulically driven buoyancy dominated flow to mo-
mentum dominated flow. Williamson et al. (2008) demonstrated experimentally
that round Boussinesq fountains could be symmetrical flow (i.e. steady flow without
fluctuation) or asymmetric flow based on the condition of F'r & Re. At higher Re
(i.e. Re > 120) fountains becomes asymmetrical flow for any condition of Fr. How-
ever, at lower Re (i.e. Re < 120) fountains can exhibit different types of unsteady
behavior based on Fr & Re. At first, fountain transfer from symmetric flow to
laminar flapping which leads to multimodal flapping followed by a laminar bobbing
motion at lower Re. The critical value of F'r for asymmetric transition strongly
depends on Re and followed by FrRe*? = 16 in the ranges of 10 < Re < 120 and
0.7 < Fr < 10. Lamorlette et al. (2011) studied the effect of inclination on “weak”
laminar round fountains using helium and a helium-air mixture (non-Boussinesq
fountains) and reported that the unstable modes are affected by the inclination of
the fountain. It also observed from previous experimental results on immiscible
fountains by Friedman (2006); Friedman & Katz (1999); Friedman et al. (2006,
2007) and Geyer et al. (2012) that fountains exhibit different flow regimes based on
Fr. Friedman (2006) showed experimentally by injecting water into diesel fuel that
fountains remain stable at Fr < v/2 and become unstable at Fr > /2. The same
threshold value, Fr = v/2, was also obtained by Friedman et al. (2006), where a
fountain was established by injecting glycerin-water mixtures into silicon oil. Fried-
man et al. (2007) argued that transition depends on the flow condition whether
flow is turbulent or laminar. The author showed that transition occurs at approxi-
mately F'r = V2 for turbulent fountain flows whereas Fr = 1 / V/2 for laminar flows.
The dependency of Re can be diminished by defining Re in terms of characteris-
tic velocity, W*. This idea came from the important note suggested by Friedman
et al. (2006). The characteristics velocity, W*, is equal to inlet velocity, Wy, for
turbulent flow with uniform inlet velocity whereas W* = Wov/2 for laminar flow to
incorporate additional momentum. From the definition of characteristics velocity,
Friedman et al. (2007) incorporated the effect of Re by defining a corrected Froude
number (Fr.). For the turbulent regime (nominally Re > 2,300), Fr. = Fr and
Fr. = Fr/2 for the laminar regime (Re < 2,300). In this way, the threshold value
for transition, using Fr., was obtained to Fr. = v/2 in both regimes, laminar and
turbulent. Geyer et al. (2012) conducted an extensive investigation experimentally

on immiscible round fountains by injecting dyed fresh water into rapeseed oil over
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the range 467 < Re < 5928 and 1.01 < Fr < 50. The authors reported that tran-
sition happens between stable and unstable regions at F'r ~ 3.92, which is much
higher than the previous results obtained by Friedman and co-authors. The authors
argued about this discrepancy may be due to high inter facial tension between oil

and water.

2.3.1.4 Bobbing and flapping motions

One predominant feature of asymmetric behavior in a fountain is the bobbing
motions, which are fluctuations of the maximum fountain penetration height along
the vertical direction. Studies of bobbing motions in round fountains are scarce,
although it is well known from early experimental work by Turner (1966) that foun-
tain height starts to fluctuate around the mean value at steady state. This fountain
height fluctuation can be characterized based on the magnitude and frequency of
this vertical fluctuation. Burridge & Hunt (2012) showed experimentally that mean
fountain height fluctuation of Boussinesq turbulent round fountains into homoge-
neous medium, scaled with a mean steady height, is maximum within 1 < Fr < 1.7
and varied between 0.1 ~ 0.45 depending on F'r. The authors further argued that
at higher Fr (Fr > 5) fountain height fluctuations become independent of F'r,
equal to 0.92, when fountain height fluctuation scaled with fountain-top width in-
stead of mean fountain height. Burridge & Hunt (2013) also conducted a series of
experiments on miscible round axisymmetric fountains to characterize the vertical
height fluctuation of the fountain top. They proposed different scaling relations for
fountains height fluctuation (6Z,,,), scaled with the radius of the orifice (Xj), at dif-
ferent conditions of F'r like as 072, ./ Xo = 0.38Fr for Fr > 1.4; 6Z,, ./ Xo ~ Fr?/3
for 0.3 < Fr < 1.4 and a discontinuity was observed at F'r ~ 1.4 among these two
trends. Burridge & Hunt (2013) also showed that at higher F'r height fluctuation,
when scaled with width of the fountain top, becomes independent of F'r like as
Burridge & Hunt (2012).

Some studies also reported on the frequency of this vertical height fluctuation,
though not extensively. Friedman (2006) reported on the oscillation of height of
immiscible round fountains, formed by water penetrating into diesel, and noted that
the fountain height starts to fluctuate periodically for F'r above 1. It was found
that the bobbing motions were dominated in the range 1.0 < Fr < 3.16 by a
constant Strouhal number, i.e. str, = 0.1, however they became more unpredictable
at F'r > 3.16, where str, ~ f,X,/Wp and f, denotes bobbing frequency. Williamson
et al. (2008) showed experimentally that the dominant frequency of the bobbing
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motions in laminar round fountains scales with EFr like str, = CFr—2, where C is
equal to 0.15 and 0.4 for the lowest and the highest dominant frequency, respectively.
Burridge & Hunt (2013) also obtained the same scaling as Williamson et al. (2008)
for forced fountains (F'r > 4), however, the value of C' was proposed as 0.21 and
0.44 for the lowest and the highest frequency, respectively. Burridge & Hunt (2013)
also classified axisymmetric turbulent miscible Boussinesq fountains based on the
bobbing frequency as very weak fountains (Fr < 1.0), weak fountains (1.0 < Fr <
2.0), intermediate fountains (2.0 < Fr < 4.0) and forced fountains (F'r > 40);
similar to Burridge & Hunt (2012) which was done based on fountain penetration
height. With suitable scaling, which varied according to each class, Burridge & Hunt
(2013) showed that bobbing frequency becomes constant for each class. The bobbing
motions of fountains with large density differences was studied by Clanet (1998) with
experiments and analytical modeling, who also found that the dominant frequency
scales with Fr as str, ~ Fr~2. In addition, Vinode & Panigrahi (2014) scaled

dominant bobbing frequency as str, = 0.60Fr~2 for non-Boussinesqu fountains.

In addition to the bobbing motions, the asymmetric behavior of fountains is also
dominated by flapping motions which are fluctuations along the horizontal direc-
tions, as observed experimentally by Williamson et al. (2008) for round fountains
in homogeneous fluids. However, no further details were given by the author about
the frequency of flapping. Vinoth & Panigrahi (2014) showed experimentally for
non-Boussinesq round fountains that the scaling relation str, = CFr~! is appli-
cable for the flapping frequency, where str, ~ f,Xo/W, and f, denotes flapping
frequency and C'is equal to 0.127 and 0.255 for flapping mode I and II, respectively.
Williamson et al. (2008) reported that the flapping motion possibly observed only
when a flush mounted nozzle is used to establish the fountain and not in a salient
nozzle. However, Vinode & Panigrahi (2014) argued that the fountains from a salient
nozzle also exhibit a flapping motion. The exact reason for flapping oscillation is

not yet known.

2.3.2 In stratified fluids

Studies on fountains in stratified environments have not been focused as exten-
sively as fountains, round or plane, into the homogeneous environment. However,
the behavior of fountains in stratified environments was also investigated by few
researchers, as summarized by Bloomfield & Kerr (1999, 2000), Druzhinin & Troit-
skaya (2010), Freire et al. (2010), Lin & Armfield (2002) and Mehaddi et al. (2012).
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The behaviour of axisymmetric round fountains in stratified environments is not sim-
ilar to fountains in homogeneous environments. Bloomfield & Kerr (1998) showed in
the case of turbulent round fountains in stratified environments that downward flow
either spreads along the base or intrudes at a certain height between initial height
and base, depending upon the releasing conditions (momentum and buoyancy flux

at source) and strength of the density gradient.

Round fountains in stratified environments can form under two conditions. First
one is zero buoyancy flux at the source, which means the density of the incoming fluid
is equal to ambient fluid at the bottom, and the second case is non-zero buoyancy flux
at the source. In both cases, fountains exhibit three different penetration heights,
Zm, (i.e. initial, final and spreading height). Fischer et al. (1979) developed a relation
to determine penetration height, Z,,, for the first case, zero buoyancy flux at the

source, which is as follows,

M
Zm = Oi7m0 (2.10)

where momentum flux denotes by M, define by equation 2.2, and buoyancy fre-

N:—M%%. (2.11)

Bloomfield & Kerr (1998) obtained experimentally the value of C' which is equal to

quency (N) is defined by

3.25, 3.00 and 1.53 for initial, final and spreading height for turbulent round foun-
tains in stratified environments with zero buoyancy flux at the source, respectively.
The authors also conducted a numerical analysis to obtain the values of C' in equa-
tion 2.35 for initial height and obtained 3.29 which was close to the experimental
value. Bloomfield & Kerr (2000) also obtained numerically the value of C, equal to
2.98 and 1.53 for final and spreading height, respectively, using the modified theo-
retical models of plume for turbulent fountains in stratified environments. The ratio
between initial and final fountain height is equal to 1.08, obtained by Bloomfield &
Kerr (1998), much lower than the 1.43 that was observed by Turner (1966) in the
case of round fountains in homogeneous environments. Bloomfield & Kerr (1998)
argued that due to the intermediate intrusion the interaction between up and down

flows takes place over a short distance, which leads to this lower ratio.

Bloomfield & Kerr (1998) proposed a scaling relation of Z,, for turbulent round

fountains for the second case, non-zero buoyancy flux at the source, by introducing
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a new term instead of a constant term at the equation 2.1 (given by Turner 1966):

. MO3/4
Zy = [(o )W? (2.12)
where My and By is known as momentum and buoyancy flux at the source, re-
spectively, which is defined by equation 2.2. The dimensionless parameter, ¢*, is

introduced by Fischer et al. (1979) as follows

. MZ2N?
g = .
B§

(2.13)

Combining equations 2.2, 2.11, 1.2, 1.3 and 1.5 with equation 2.13; the dimension-
less parameter, o*, can be rewritten as a function of Froude number, F'r, (i.e. see
equation 1.2) and dimensionless temperature stratification, s, (i.e. see equation 1.5)

for round Boussinesq fountains, as follows:
o = Fr’s. (2.14)

Finally the above scaling relation 2.12 leads to a turbulent round Boussinesq foun-
tain,
Zm = f(Fr?s)Fr. (2.15)

Bloomfield & Kerr (1998) obtained the critical condition of ¢*, ¢¥ = 5 which is
similar to the numerical result obtained by Bloomfield & Kerr (2000), at which
downward flow spreads at a certain height above the bottom for the first time.
This indicates that downward flow spreads along the bottom when ¢* < ¢; on the
other hand it spreads at certain height when o* > ¢} . Bloomfield & Kerr (1998)
observed experimentally and numerically that the values of f(o*), in equation 2.12,
strongly depends on ¢*. The authors found that fountain penetration height (both
initial and final height) solely depended on F'r, as found by Turner (1966), at lower
stratification. They proposed a set of empirical relations for initial height (z,, ), final

height (z,..) and spreading height (z,,s) at different conditions of o*, as follows:

2.65Fr if o < 0.1,
Zm,i = (216)
3.25Fr%5570-25 if 5% > 40,

1.85Fr if 0* < 0.1,
Zm,a = (217)
3.00F 70557025 if o* > 40,



Literature Review 33

0 if o <5,
Zm,s = (2.18)
1.53Fr%5s70-% if o* > 40.
Mehaddi et al. (2012) proposed a closed-form solution for initial penetration height
of turbulent fountains (round) into the linearly stratified environment under the
Boussinesq approximation using plume theory, followed a similar approach used
by Kaye & Hunt (2006), and obtained same scaling relation (2.16), proposed by
Bloomfield & Kerr (1998) for initial height. In the lower stratification condition,
Mehaddi et al. (2012) also found that initial penetration height of a forced fountain
is independent of the strength of stratification as observed by Bloomfield & Kerr
(1998) and independent of entrainment in case of a weak fountain as mentioned by
Kaye & Hunt (2006). Mehaddi et al. (2012) obtained the entrainment coefficient, «,
equal to 0.068 by comparing their analytical result with the experimental result of
Bloomfield & Kerr (1998) for forced fountains. However, Bloomfield & Kerr (1998)

assumed « equal to 0.085 for their numerical analysis.

For weak round fountains with F'r = 0(1) into the linearly stratified environment,
Lin & Armfield (2002) argued that momentum flux M, buoyancy flux (By), kine-
matic viscosity (v) and the stratification number (.S, which is defined by equation
1.3) provides a complete parametrization of the penetration height. With dimen-
sionless analysis and scaling analysis, Lin & Armfield (2002) showed that maximum

fountain penetration height can be expressed as follows,

FT’2/3

Zm,s ™ W (219)

Lin & Armfield (2002) validated this scaling relation for round fountain into the
linearly stratified environment with their DNS result over the range 0.2 < Fr <
1,20 < Re <200 and 0.1 < s < 0.5 and obtained the following relation:

Fr2/3

(2.20)

The onset of asymmetry and three-dimensionality in transitional round fountains
in a linearly stratified fluid was explored by Gao et al. (2012) with three-dimensional
direct numerical simulation over the ranges 1 < Fr < 8 and 100 < Re < 500 at a
constant dimensionless stratification, s = 0.03. Their results show that a critical Re
exists between 100 and 200 for F'r = 2, and similarly a critical F'r exists between 1
and 2 for fountains at Re = 200, which divide the fountains into either axisymmetric

and two-dimensional or asymmetric and three dimensional. Druzhinin & Troitskaya
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(2010) observed that round fountains in stratified environments becomes unstable
at higher F'r with self-oscillation by direct numerical simulation. Their numerical
results demonstrated that fountain height fluctuation frequency decreases with F'r

and obtained str, ~ Fr=2 similar to Williamson et al. (2008).

2.4 Behavior of plane fountains

2.4.1 In homogeneous fluids

The behavior of plane fountains is also investigated by some researchers, although
apparently not so extensively done like that for round fountains. A good summary of
these studies can be found in, e.g., Hunt & Coffey (2009), Srinarayanna et al. (2009),
van der Bremer & Hunt (2014), and more recently Hunt & Burridge (2015). The
reader is referred to these for the details. Here only the results from some leading

studies are reviewed.

As mentioned in § 2.2, plane fountains are classified by Hunt & Coffey (2009) as

the following three categories, in terms of F'r only,

e very weak plane fountains (Fr < 2.3);
e weak plane fountains (2.3 < F'r < 5.7);

e forced plane fountains (F'r 2 5.7).
However, this classification does not take into account of the effect of Re. Sri-
narayana et al. (2010), based on their experimental results, further classified plane
fountain behavior at low Re values (Re < 127) into four sub-regime behavior, i.e.,
steady, flapping, laminar-mixing, and jet-type mixing behavior, after taking into

account of the effect of Re.

2.4.1.1 Maximum fountain penetration height

For forced turbulent plane fountains, similar to their forced turbulent round coun-
terparts, it was also found that z,, is independent of Re and solely depends on F'r.

Again by assuming that momentum flux and buoyancy flux are the main governing
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parameters, Baines et al. (1990) developed the following scaling relation for forced

turbulent plane fountains using dimensionless analysis,
T = Zm | Xo = CaMyBy %, (2:21)

where Cj is a constant of proportionality, M, and B, are the momentum flux and
buoyancy flux per unit length at the source, respectively, which are defined as follows

for a uniform velocity (Wy) at the fountain source of the half-width of Xj,
My = 2XWyo?, By = 280X Wy, (2.22)

where Ay = [g(po — pa)/pa] is the reduced gravity between the source fluid and the
ambient fluid at the source. The scaling relation (2.21) can also be expressed as
follows in terms of F'r, (Baines et al. 1990),

2 = Cs Frt/3, (2.23)

They further found that the value of Cj is 0.64 for 5 < Fr < 1000 using their exper-
imental results. However, it was found that the value of Cj from Baines et al. (1990)
should be 1.64 as an error existed in the original presentation, as pointed out by Hunt
& Coffey (2009), which is supported by the experimental results obtained by Bloom-
field & Kerr who used the same experimental rig as used by Baines et al. (1990).
The experimental results by Campbell & Turner (1989) gave C5 = 1.64 ~ 1.97 over
the range of 5.6 < Fr < 51, whereas the experimental results by Zhang & Baddour
(1997) found C5 = 2.0 for 6.5 < Fr < 113 over 325 < Re < 2700). Hunt & Cof-
fey (2009) speculated that the large discrepancy in the value of C5 among different
studies may be due to the difference in the source geometry used by these studies,
which, they argued, has a significant impact on fountain behavior, and the range of

Fr covered in their respective experiments.

Hunt & Coffey (2009) obtained an analytical solution for the initial maximum
fountain penetration height of a forced turbulent plane fountain (z,,;) by using the
plume conservation equations and the entrainment model, which supports the above
scaling relation (2.23). They then present the following quantified scaling relation
for Fr 2 5.7,

Zmi = 0.84Fr*/3, (2.24)

However, Goldman & Jaluria (1986) obtained a different quantified scaling relation
for 2z,
Zm.i = 3.959F 7088 (2.25)
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based on their two-dimensional fountain experiments with injecting heated air verti-
cally downward from rectangular sources with aspect ratios from 30:1 to 5:1, which
is different from the configuration of the case considered by Hunt & Coffey (2009)

where the aspect ratio is assumed to be infinite.

The scaling relation (2.23) was also confirmed by the experimental and numerical
studies by Srinarayana et al. (2010, 2013). For 2.1 < Fr < 10, they obtained the

following quantified scaling relation,

Zm = 1.53FrY3 4 4.45. (2.26)

For weak plane fountains with smaller F'r values, Zhang & Baddour (1997) ar-
gued that buoyancy flux dominants, and proposed two models. In the first model,
they treated the fountain to be equivalent to the one developing from a virtual source
of momentum flux and buoyancy flux only. They then obtained, using dimensional

analysis and their experimental results, the following empirical scaling relation,
Zm = (2.0 = 1L.12Fr=2/3) Fri/3, (2.27)

for 0.62 < Fr < 6.5. In their second model, they adopted an alternative scaling
approach by considering the time for the fountain to reach the maximum penetration
height to be scaled with the ratio of the momentum flux and the buoyancy flux and
assuming that z,, is proportional to the product of this time and the characteristic
vertical velocity (i.e., Wy). They then proposed the following empirical scaling

relation using their experimental results,
Zm = 0.7T1F7?, (2.28)

for 0.62 < Fr < 6.5. However, Hunt & Coffey (2009) used their recent comprehen-
sive experiment results to modify the above quantified scaling relation (2.28) to be
as follows,

Zm = 0.5F7?, (2.29)

for 2.3 < Fr <5.7. The z,, ~ Fr? scaling relation for weak plane fountains is also
confirmed by the experimental and numerical studies by Srinarayana et al. (2010,
2013), who gave the following quantified scaling relation for 1.25 < Fr < 2.25,

Zm = 1.05Fr% +2.73. (2.30)
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For plane fountains at F'r ~ 1, Lin & Armfield (2000c, 2003) argued that Re
also affects z,,, similar to their round fountain counterparts, and then developed the

following scaling relation based on dimensional and scaling analysis,

Fr

Zm

which was confirmed by their DNS results for 0.2 < Fr <1 and 5 < Re < 200.

For very weak plane fountains with Fr < 1 and low Re values, Lin & Armfield
(2000c) assumed that the inertial effect is small and the fountain flow behavior is
governed by buoyancy and fluid viscosity only. They then developed the following

scaling relation using dimensional analysis,
Zm ~ Fri/3Re /3, (2.32)

Their direct numerical simulation results shown that at Re = 200, the quantified
scaling relation for 0.0025 < F'is,

Zm A 1.88F 13, (2.33)

To summarize, it seems that the following quantified scaling relations obtained
by Hunt & Coffey (2009), as indicated by Hunt & Burridge (2015), are probably the
most consistent and accurate ones for plane fountains in homogeneous fluids over a

wide range of F'r, from very small ones to very large ones,

0.84Fr*3  for forced plane fountains, Fr > 5.7,
Zm = 0.5Fr? for weal plane fountains, 2.3 < Fr < 5.7, (2.34)

1.5F72/3  for very weak plane fountains, Fr < 2.3.

2.4.1.2 Onset of asymmetry, Flapping and bobbing

As is the case with round fountains, it is also important to understand the onset
of asymmetry, flapping and bobbing to elucidate the plane fountain completely.
Studies on the onset of asymmetry, bobbing and flapping motions in plane fountains
are scarce. The flapping motion of plane fountains into the homogeneous fluid was
observed by Srinarayana et al. (2008, 2010 and 2013). Srinarayana et al. (2008)
showed, with numerical analysis of plane fountain into the homogeneous medium
over the range 0.25 < Fr < 10 and Re = 100, that steady and symmetrical flow,
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within 0.25 < Fr < 2, leads to unsteady with periodic oscillation, within 2 < Fr <
4, and finally becomes unsteady with aperiodic oscillation at Fr > 4. Srinarayana
et al. (2010) investigated plane fountain behavior at low-Reynolds numbers using a
series of experiments over the range 2.1 < Re < 127 and 0.4 < F'r < 42 and found
that the behavior of plane fountains could be categorized broadly into four regimes:
steady; flapping; laminar mixing; and jet-type mixing behavior. It was also found
that the critical Froude number for transition from a steady to unsteady flow varies
with Re. Srinarayana et al. (2013) also conducted a series of two-dimensional DNS
of laminar plane fountains in homogeneous ambient fluids with a parabolic inlet
velocity profile, to study the instabilities and variation of the fountain height, and
found that plane fountain exhibit three distinct regimes: steady and symmetrical,
unsteady with periodic and aperiodic lateral oscillation. The asymmetric transition
occurred at critical F'r = 2.25, reported by Srinarayana et al. (2008) with DNS
with uniform inlet velocity. Srinarayana et al. (2010) showed experimentally that
the critical F'r =~ 1 for 50 < Re < 120, which is in good agreement with Srinarayana
et al. (2013). Srinarayana et al. (2013) showed that critical F'r for asymmetric
transition lies between 1 ~ 1.15. The authors argued about the discrepancy in the
critical Froude number proposed by Srinarayana et al. (2008) and Srinarayana et al.
(2013). For a given flow rate, the uniform velocity profile has a lower momentum flux
compared to the parabolic velocity profile. This supports a higher critical Froude
number, F'r = 2.25, for asymmetric transition with uniform inlet velocity, obtained
by Srinarayana et al. (2008), and a lower critical Froude number with parabolic
inlet velocity, reported by Srinarayana et al. (2013). Srinarayana et al. (2013) also
mentioned that flapping is observed in fountains when a flush mounted nozzle is

used and not a salient nozzle.

Flapping and bobbing frequency of non-Boussinesq plane fountains in homoge-
neous environments was reported by Vinoth & Panigrahi (2014) with their exper-
imental results, considering three rectangular nozzles with aspect ratio 1, 2 and
3. The author showed that flapping and bobbing frequency from the rectangular
nozzle followed similar types of dependency on F'r like as round fountains. The
scaling relations proposed by Vinoth & Panigrahi (2014) is str, = 0.60Fr~2 for
bobbing frequency and str, = CFr~! for flapping frequency where C' is equal to
0.127 and 0.255 for flapping mode I and II, respectively. Srinarayana et al. (2008)
showed numerically with uniform inlet velocity that plane fountains flap with a
single dominant frequency str, ~ 0.017,0.015 and 0.013 along the horizontal direc-
tion for Fr = 2.25,2.5 and 2.75, respectively. A less dominant mode was observed

at Fr = 3, with str, = 0.11, in addition to smaller higher and lower frequency
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modes, indicating quasi-periodic behavior. A broad-banded multi-modal structure
was observed at F'r = 4, demonstrating the aperiodic chaotic behavior. Srinarayana
et al. (2008) also observed that plane fountains fluctuate along the vertical di-
rection, bobbing, with dominant frequency str, = 0.033,0.030,0.026 and 0.022 for
Fr = 2.25/2.5,2.75 and 3, which are almost double the flapping frequency. This
happens because of the nature of the flapping motion whereby the fountain height
achieves twice the maximum and minimum values during each full cycle of flapping.
A broad branded bobbing frequency was also observed at Fr = 4, similar to the
flapping frequency. With the assumption of parabolic inlet velocity, Srinarayana et
al. (2013) showed with numerical results that plane fountains flap with a single dom-
inant frequency str, ~ 0.037,0.030,0.025 and 0.021 for F'r = 1.25,1.5,1.75 and 2.0,
respectively. A less dominant mode was observed at Fr = 2.25, with str, = 0.018,
in addition to smaller higher and lower frequency modes, indicating quasi-periodic
behavior. A broad-banded, multi-modal structure, was observed at F'r = 2.5 demon-

strating the aperiodic chaotic behavior.

2.4.2 In stratified fluids

The behaviour of plane fountains in the stratified environments is not investi-
gated extensively, and only a few articles are available on this. Bloomfield & Kerr
(1998) showed experimentally that the flow behaviour from a line source into the
stratified environment is qualitatively similar to the round fountains in stratified
environments. Just after initiating the flow from line source into the stratified am-
bient fluid, the injected fluid penetrates through the environment until first coming
to rest by negative buoyancy force at an initial height. However, in this case, the
initial height is not reduced significantly due to the interaction between upflow and
subsequent counterflow. The reversed flow may again either spread along the base
or at certain height depending upon the strength of stratification of the ambient
fluid. The thickness of this intrusion is comparable to the intrusion height near
the fountain axis, however, it becomes thinner corresponding to the higher radial
distance. The profile of a line fountain fluctuates randomly between symmetric and
asymmetric, leading to a corresponding reduction in the final height, as a result of
deflected counterflows to one side from the upflow. This additional instability was
also observed by Banies et al. (1990) in the case of plane fountains in homogeneous

environments.

Like as round fountains in stratified environments, a plane fountain can also be

established under two conditions. The first is zero buoyancy flux at the source and
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the second is non-zero buoyancy flux at the source. Like round fountains in stratified
ambient conditions, in both cases, plane fountains in stratified environments exhibit
three different penetration heights, Z,,, (i.e. initial, final and spreading height).
Bloomfield & Kerr (1998) assumed a relation to determine penetration height, Z,,,

for the first case, zero buoyancy flux at the source, which is as follows,

M3

Zm = ON72/37

(2.35)

where momentum flux denotes by My, define by equation 2.22, and buoyancy fre-
quency (N) is defined by equation 2.11. Bloomfield & Kerr (1998) showed exper-
imentally that the value of C' is equal to 2.46, 2.43, 2.27 and 1.07 for initial, final
symmetric, final asymmetric and spreading heights for turbulent plane fountains in

stratified environments with zero buoyancy flux at the source, respectively.

Bloomfield & Kerr (1998) proposed a scaling relation of Z, for turbulent plane
fountain for the second case, non-zero buoyancy flux at the source, by introducing

a new term instead of a constant term at the equation 2.21 (given by Turner 1966):
Zy = f(0)MoBy™/*, (2.36)

where My and By is known as momentum and buoyancy flux at the source, re-
spectively, which is defined by equation 2.22. The dimensionless parameter, o, was
introduced by Bloomfield & Kerr (1998) as follows

M2N?
g — .
Bj

(2.37)

Combining equation 2.22, 2.11, 1.2, 1.3 and 1.5 with equation 2.37; the dimensionless

parameter, o, can be rewritten as follows for plane Boussinesq fountains:
o= Fr’s. (2.38)

Finally the above scaling relation 2.36 can be written, for turbulent Boussinesq plane

fountain, as follows
2m = f(Fr?s)Fri/3. (2.39)

Bloomfield & Kerr (1998) obtained the critical condition of 0,0, = 6 which was
similar to the numerically obtained result 5.4, at which downward flow spread at a
certain height above the bottom for the first time. This indicates that downward flow
spread along the bottom when o < ., on the other hand it spread at certain height

when o > o.. Bloomfield & Kerr (1998) observed experimentally and numerically
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that the values of f(o), in equation 2.36 , strongly depend on ¢. The authors found
that fountain penetration height (both initial and final height) solely depends on
Fr, as did Turner (1966), at lower stratification. They proposed a set of empirical
relations for initial height (z,,;), final symmetric height (2,,45), final asymmetric

height (2,,,4.045) and spreading height (z,, ) at different conditions of o as follows:

1.26F /3 if o < 0.1,
Zmi = (240)
2.46F 1?3513 if ¢ > 30,

0.95Fr/3 if o < 0.1,

Zmas = (2.41)
2.463Fr?/3s71/3 if ¢ > 100,
0.72Fr*/3 if o <0.1,

Zm,a.as = (2.42)
2.27TFr?3s71/3 if ¢ > 100,

0 if 0 <6,
Zm,s = (243)

1.07Fr?/3s~ 3 if ¢ > 100.

For weak plane fountains with F'r = 0(1) into the linearly stratified environ-
ment, Lin & Armfield (2002) argued that momentum flux (My), buoyancy flux
(By), kinematic viscosity (v) and the stratification number (S,) provide a complete
parametrization of the penetration height, like as round fountains in stratified envi-
ronments. With dimensionless analysis and scaling analysis, Lin & Armfield (2002)

showed that maximum fountain penetration height can be expressed as follows,

Fr2/3

Zm

Lin & Armfield (2002) validated this scaling relation for plane fountain into the
linearly stratified environment with their DNS result over the range 0.2 < Fr <
1,20 < Re < 200 and 0.1 < s < 0.5 and obtained the following relation:

Fr2/3

(2.45)

2.5 Summary

Extensive research has been conducted on fountains, however most studies have

focused on turbulent round fountain in an homogeneous medium as summarized
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at section 2.3. Some researchers, although apparently not so extensive, also in-
vestigated the behaviour of plane fountains in homogeneous environments (i.e. see
section 2.4). Studies on fountains (both, round and plane) in stratified environ-
ments is rarely available (i.e. see section 2.3.2 and 2.4.2), especially plane fountains
into stratified fluid. Previous studies mainly focused on turbulent fountains (round
or plane) either into homogeneous or stratified environments. To date, as per the
author’s knowledge, the behavior of plane fountains, especially into the transitional
regime, into the stratified environment is not well understood. This motivates the

current study.

During previous investigations mainly focused on fountain penetration height,
which was extensively done in case of round fountains in homogeneous environments
(i.e. summarized at section 2.3.1.1), moderate for plane fountain into homogeneous
ambient fluid (i.e. see section 2.4.1.1) and scarce on round or plane fountain into
stratified environments (i.e. see section 2.3.2 and 2.4.2). No study, except Lin &
Armfield (2002), has been found to demonstrate the effect of F'r, Re and s on pene-
tration height of plane fountains, especially in transitional regime, into the stratified
environment, which is the another motivation for this current study to develop a

scaling relation of penetration height in term of F'r; Re and s.

The onset of asymmetry, instability and unsteadiness in transitional fountains
is the key to elucidating the mechanism for the generation and flow dynamics of
turbulence and entrainment in fountains, and thus is of both fundamental signifi-
cance and application importance. However, little understanding has been achieved
so far. In particular, to the best knowledge of the author, no study has been found
in which the onset of asymmetry of transitional plane fountains in stratified fluids

has been investigated.This also motivates the author for this current research.

Fountain height fluctuation along the vertical direction, bobbing, is known from
early experimental work by Turner (1966), though only a few researchers have re-
ported this bobbing frequency. In addition to bobbing, fountains exhibit flapping
motion as well as. The author understands that no literature is available that can
demonstrate briefly the bobbing and flapping frequency of transition plane fountains

in stratified environments,and this also has motivated the current investigation.

Entrainment is an important feature of fountain flow, although the entrainment
mechanism is still not explained clearly. Many discrepancies have been observed
among the entrainment law, as proposed by previous researchers (i.e. see section
2.3.1.2). This motivates the author as well as to observe the effect of F'r, Re and s

on thermal entrainment by transitional plane fountain.
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These unresolved matters, along with the desire to provide a much-improved
understanding of other aspects of the behavior of transitional plane fountains in

stratified fluids, motivate the current study.






Chapter 3

Methodologies

3.1 Introduction

The physical system under consideration in this thesis and the associated compu-
tational domain used for the DNS runs was briefly described in § 1.2. The governing
equations of fountain flow and the appropriate boundary and initial conditions pro-
vide the mathematical basis for the numerical simulation of the flow behavior. For
the unsteady transitional fountains considered in this thesis, the governing equations
are the Navier-Stokes equations and the temperature equation, which are presented
in § 3.2, along with the appropriate boundary and initial conditions. In § 3.3, the Fi-
nite Volume Method to solve the governing equations employed by the commercial
CFD code ANSYS FLUENT 13, which is used in this thesis to carry out three-
dimensional direct numerical simulation (DNS), is briefly described. In particular,
the discretization of governing equations and the solution strategy are introduced
in this section. A brief description about the FLUENT setup to solve and analyze

these flow problems, numerically, is presented in § 3.5.

3.2 Governing equations and boundary and initial condi-

tions

It is always challenging to establish some basic assumptions and accurate for-
mulas for describing a problem before any numerical procedure are implemented.
Especially numerical simulation on fluid flow and heat transfer are always compli-

cated. Plane fountains into linearly stratified environment, which is considered in

45
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this thesis, include both fluid flow and heat transfer problem. Plane fountain into
linearly stratified ambient fluids satisfies continuity equation, Navier-Stokes equa-
tion and energy equation. These governing equations allow to describing all flow

variables, which are denoted by velocity 17, temperature 7', density p and pressure
P.

The continuity equation, derived from the conservation of mass, can be written
as,

dp -
5 TV (V) =0. (3.1)

Equation 3.1 is valid for both compressible and incompressible flow. The first term in
equation 3.1 denotes the rate of increasing density among the control volume, second
term indicates the rate of mass flux travelling out through the control surface per

unit volume.

On the other hand, conservation of momentum is expressed by the Navier-Stokes

equations, like as follows,

O (V) 4V - (V) = V- (3) + g (3.2)

where gravitational and stress tensor are represented by ¢ and &, respectively. The
first term on the left side of equation 3.2 denotes the rate of momentum increasing
per unit volume into the control volume and the rate of momentum lost per unit
volume by convection through the surrounding surface is denoted by the second
term on the left side of the equation. The surface force per unit volume denotes by
the first term on the right side of equation 3.2 and the second term on the right side

of the equation denotes the gravitational force per unit volume force.

Conservation of the internal energy F, ensure according to first law of thermo-
dynamics, can be expressed by the energy equation,
J(pE - - -
%—I—V-(VpE):V-(J-V)—V-Q, (3.3)
where heat conduction vector denotes with Cj and internal energy with F. In equa-
tion 3.3, the first term on the left side denotes the rate of increase of F, while total
energy lost (per unit volume) through the control surface by convection denotes
with the second term on the left side. on the other hand, first term on the right
side of equation 3.3 represents work done on the per unit control volume by surface
force, while rate of heat transfer, per unit volume, by conduction through the control

surface is denoted by the second term on the right side of the equation. In equation
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3.3, internal energy (FE) can be expressed in terms of temperature (7'), pressure (P)

and density (p) as follows,

P
E=h—-—, 3.4
p (3.4)

where

T
h = / ¢ dT, (3.5)

Tref
and specific heat at constant pressure is denoted by c,. Stress tensor for Newtonian
fluid is given by 5
g =pu[(VV +VVT) 4 (—P - SV )1, (3.6)

where p denotes dynamic viscosity of fluid.

The heat conduction vector (@) is expressed according to the Fourier’s Law,
Q = —\VT, (3.7)

where A denotes thermal conductivity of the fluid. Combining equations (3.4-3.7)
with equations (3.1-3.3), the equations of continuity, Navier-Stokes and temperature

can be rewritten as,

0 o
Liv-pV) = o (38)
ot
8 — — — — 2 —
a(pV)+v-(pVV) = —VP+p§+V-(u[(VV+VVT)—§V-V)I]),(3.9)
d(pT) - Ao 1 oP Sl
) (VoT) = ZVT+—"—_1+P. Ll 1
o + V- (VpT) va +Cp 5 + (VV)+CP , (3.10)

where energy dissipation, u®/c, , is occurred due to viscosity and ® is expressed as
follows, )
o — —g(v-V)2+w-([vV+vVT]V). (3.11)

In the case of buoyancy dominant flow, like as plane fountains flow into the
linearly stratified ambient fluid which is considered in this thesis, the above Navier-
Stokes equations can be simply with the Oberbeck-Boussinesq assumption. Accord-
ing to this assumption, density is assumed as a constant value everywhere except
where body force is buoyancy force and a linear relation exists among density and

temperature, like,
p(T) = p(Po, To)[1 — B(T — Ty)], (3.12)

where [ represents the coefficient of volumetric expansion of fluid. In additions,
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fluids are assumed as an incompressible fluid during these flows, as a result com-
pressibility term is ignored from the energy balance equation. Fluids properties
are also assumed constant and viscous heating is neglected during these simulations
run. By incorporating these assumptions into the equations (3.8-3.10); the conti-

nuity, momentum and energy equations can be rewrite into the simplified from as

follows,
V-V =0, (3.13)
oV L 1 v
T .
%—t +V-(VT) = kVT, (3.15)

where K = A/c,p and v = p/p are representing thermal diffusivity and kinematic
viscosity of fluid, respectively, and the static pressure has been excluded from the
temperature equation. Temperature range for the Oberbeck-Boussinesq assumption
has been explored by Gray & Giorgini (1976). Authors claimed for water that the
dependency of § on T is the most restrictive assumptions and error are limited
within 10% for the case of water at 25°C' for maximum 4°C' temperature difference
during Oberbeck-Boussinesq assumption. Fountains are known as Boussinesq or
non-Boussinesq fountains based on the density different between incoming fluid from
fountain source and ambient fluid. The Oberbeck-Boussinesq assumption is valid
when the relative density ratio (Ap/p., where Ap = py — p,) is much lower than
one, i.e. Ap/p, << 1 and the fountain is called Boussinesq fountain. Crapper &
Baines (1977) suggested that Oberbeck-Boussinesq assumption is valid in positively
buoyant jet up to Ap/p, ~ 0.05. Ai et al. (2006) reported that forced plum divided
into Boussinesq or non-Boussinesq plum at Ap/p, ~ 0.05 . Baddour & Zhang (2009)
suggested in case of fountain that the Oberbeck-Boussinesq approximation is valid
until Ap/p, =~ 0.003 . The present study about plane fountain into linearly stratified
considered that Ap/p, ~ 0.0009 to ensure Oberbeck-Boussinesq approximation.

Finally the governing equations (3.13-3.15) can be expressed at Cartesian coor-

dinates as follows,

oU 9V oW

8_X+8_Y+8_Z_0’ (3.16)

ou N o(UU) N o(VU) N owu)  19pP , o*U N o*U N o*U (3.17)
ot 0X oY 0z  poX 0xX2  oy2 o9z2)’ 7
v N o(UV) N o(VV) N oWwv) 18P N 0’V N o’V N 0*V (3.18)
ot | ox oY oz  pov “\oxz Tav: Tazz)
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oW UW) oVW) oWW) 10P W *W  O*W
- + - = ——— +v + -
ot 0X oY 07 p0Z 0X2 ' 9Yy? = 922
+98(T — Ta,z), (3.19)

or aUT) AVT) +a(WT>:,{(6>2T T 52T) (3.20)

o T Tox "oy oz oxz " oy? T oz
where U, V, and W are the velocity components in the X, Y, and Z directions,

respectively.

In this present study, the physical system under consideration is a rectangular
container of the dimensions H x B x L (Height x Width x Length), containing
a Newtonian fluid initially rest with a constant temperature gradient (d7, ./dZ=
constant), as sketched in Fig. 1.2. At the center of the bottom of the container,
a narrow slot with half-width of X in the Y direction functions as a source for a
plane fountain, with the remainder of the bottom being a rigid non-slip and adiabatic
boundary. The two vertical surface in the X — Z plan, at Y = £B/2, are assumed
to be periodic whereas the two vertical surface in the Y — Z plane, at X = £L/2,
are assumed to be outflows. The top surface in the X — Y plane, at Z = H, is
also assumed to be an outflow boundary condition. The origin of of the Cartesian
coordinate systems is at the center of the bottom, as shown in Fig. 1.2. The
gravitational force is acting along the negative Z direction. Initially, at time ¢ = 0,
a stream of fluids at Ty (Ty < Tgyo) is injected upward direction with a uniform
velocity Wy into the container to initiate the plane fountain flow and this discharge

is maintained over the whole course of a specific DNS run.

Initial and boundary conditions are assumed for these three-dimensional DNS

simulation, as follows,

7
U=V=W=0, T(Z) =T,o+s(T.o —To)? at all XY, 7
0

when ¢t < 0, and

B B

U=V=0, W=W, T=Tat Z=0, ~Xp <X <Xpand — - <V <
aT L B B
U=V=W =0, 97 0 at Z =0, XO_X_Qand 2_Y_2,
oT L B B

U=V=W=0, 57 0at Z =0, 2_X_ Xo and 2_Y_2,
ou ov oW IT L L B B
57 - 97 97 27 0at Z=H, 2_X_Qamd 2_Y_2,



50 Chapter 3

ou oV  ow  oOT L B B
X X ox —ax o 3 Ty s¥sgadl0sZsH
B B B B B B
U = 5)=U(Y =—2), VIV = )= V(¥ = —0), WV = 5) =W(y = -
B L L
when ¢ > 0.

It should be noted that the “outflows” boundary conditions are applied at the
lateral boundaries of the domain (in the X direction, i.e., at the locations X =
+L/2), which assumes a zero diffusion flux for all flow variables. Such a zero diffusion
flux condition applied by Fluent at “outflow” boundaries is approached physically
in fully-developed flows. The “outflow” boundaries can also be defined at physical
boundaries where the flow is not fully developed if the assumption of a zero diffusion
flux at the exit is expected to have a negligible impact on the flow solution. In all
DNS runs carried out in thesis, H, B and L were chosen to be sufficiently large to
ensure that outflow and periodic boundary conditions assumed have negligible effect

on the flow quantities of interest.

3.3 Numerical Method

The above governing equations for unsteady transitional plane fountains are
highly nonlinear, coupled partial differential equations, and analytical solutions are
not possible to be obtained. Therefore, a numerical method should be used to get

an approximate solution of this type of flows.

A considerable number of computational fluid dynamics (CFD) packages (i.e.
ANSYS Fluent, ANSYS CFX, PHOENICS, OPENFOAM, COMSOL Multiphysics,
FLOW 3D and STAR CD etc.) are available to obtain approximate solution through
numerical simulaiton. The most effective, widely used and popular one is ANSYS
FLUENT, due to owing powerful pre and post-processing capabilities and advanced
numerical techniques. In this thesis, all these three-dimensional Direct Numerical
Simulation (DNS) runs are carried out by using ANSYS FLUENT 13.

ANSYS FLUENT have two types of solvers, i.e. pressure-based solver and density-
based solver. Traditionally, pressure base solver was designed to solve incompressible
flow problem in generally associated with low speed, while density based solver was
developed for high-speed compressible flow. However, significant modifications have

been done in both methods to cover a wide range of flow from their traditional
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or original intent. In this thesis, pressure based solver has been selected to solve
these specific flow phenomena. In pressure base solver, the velocity field is obtained
from momentum equations and pressure field is extracted by solving a pressure or
pressure correction equation which is mainly achieved by manipulating continuity
and momentum equations. In ANSYS FLUENT for both solver, either pressure
base or density base, the control volume technique is used to solve these governing
equations (i.e. conservation of mass, momentum and energy equations). In control
volume approach, first whole domain is divided into tiny control volumes by creating
a computational mesh. This governing equations are then integrated on each indi-
vidual tiny control volume to construct a set of algebraic equations with respect to
discrete unknown quantities such as pressure, velocities and temperature. Finally,
these linearized and discretized algebraic equations are solved to update the values
of the dependents variable using Semi-Implicit Method for Pressure-Linked Equa-
tion (SIMPLE, see ANSYS FLUENT Theory Guide for details). The flow chart of

pressure based solver is shown in Fig. 3.1 .

—)l Update properties

A 4
Solve sequentially:
U'vef Vvef erf
v

Solve Pressure —correction
(Continuity) equation

A 4
Update mass flux, pressure
and velocity

v

Solve energy, species,
turbulence and other scaler
equations

A 4

No Yes
Converged

F1GURE 3.1: Flow chart of pressure Based Segregated Algorithm.
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3.3.1 Discretization of the governing equations

ANSYS FLUENT uses a finite volume method (already mention before) to con-
struct a large set of algebraic equations, which can be solved numerically, from the
governing equations. Only basic mathematical formulation of this finite volume
method, used in ANSYS FLUENT-13, is briefly outlined here. More detailed de-
scriptions can be found in the user manual of the ANSYS FLUENT-13, or in some
popular books in CFD, such as Versteeg & Malalasekera (2007), Ferziger & Peric
(1999), Patanker (1980) or Fletcher (1991).

Discretization of these governing equations (i.e. continuity, momentum and en-
ergy equations) can be demonstrated most easily by considering a unique unsteady
conservation equation for transport of a scalar quantity ¢, which can be written in

the following form,

% + oV -V =TyV2% + Sy, (3.21)

where V' = (Ui + Vj + Wk) is a velocity vector, A is a surface area vector, Iy
denotes diffusion coefficient for ¢, V¢ indicates the gradient of ¢ equal to (9¢/0X )i+
(8¢/9Y)j+(8¢/0Z)k in 3-D and S indicates the source of ¢ per unit volume. The
governing equations (i.e., 3.16 — 3.20) will be obtained by substituting a specific
values of ¢, 'y and S, in equation 3.21, which are listed in Table 3.1.

TABLE 3.1: Definition of ¢, I'y and Sy in equation 3.21 for the corresponding simplified governing
equations mention in equations 3.16 — 3.20

Equations o Ty Sy

Continuity equation (3.16) 1 0 O

X-momentum equation (3.17) U v  —(1/p)(0P/0X)

Y-momentum equation (3.18) Vv  —(1/p)(0P/JY)

Z-momentum equation (3.19) W v —(1/p)(0P/0Z)+ gB(T — Tq,z)
Energy equation (3.20) T k 0

In control volume approach, the scalar transport equation 3.21 is integrated over
the each tiny control volume, created by mesh generation. As an example a two-
dimensional computational mesh is presented in Fig. 3.2. Integral form of this
unique transport equation 3.21, can be written for arbitrary control volume V' as

follows,

/V %dv+ /V (pV - V)aV = /V (CyV2)dV + /V SsdV. (3.22)
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Applying the Divergence theory, equation 3.22 can be rewrite as,

) L .
/ @dv + 7{(;5‘/ -dA = %Fqﬁng ~dA +/ SedV. (3.23)
v Ot v
Discretization of this integral scalar transport equation 3.23 on a given cell is obtain
as follows,
a¢ Nface Nface
=V + Y Vigp- Ay =Y TyVeér- A+ S,V (3.24)
! . ! ~ Source Term

Transient Term

-~

-~
Convection Term  Diffusion Term

where the number of faces enclosing the cell indicates with Nfgees, ¢y indicates
convected value of ¢ through face f (i.e. see Fig. 3.2), ‘7} A s indicates volume flux
through the face A ¢, V¢ denotes gradient of ¢ at facef and cell volume represents
by V.

In order to simply this discretization process of the governing equations, first
explain for the steady state and later on for the transient state. For steady state,
discretization equation (by excluding the transient term from equation 3.24) can be

written as follows,

Nygce Nyace
S Vigp-Ap= > TyVeés- Ay + S,V (3.25)
f f

By default, the discrete value of scalar ¢ stores in cell center in ANSYS FLUENT,
shown in Fig. 3.2 . However, for convection term, in equation 3.25, the face values
of ¢f at face f (i.e. Fig. 3.2) are required to interpolate from the center value
using upwind scheme. In the upwind scheme, the face values ¢ are calculated from
the upstream cell value corresponding to the normal velocity in equation 3.25 to
overcome the instability of the central difference scheme. There are several upwind
schemes available in ANSYS FLUENT to discretize the convection term, like as first
order upwind, power law, second-order scheme and QUICK scheme. Out of these,
QUICK scheme was selected for third order accuracy to determine the face value
of ¢; at face f for the convection term in equation 3.25. The diffusion terms in

equation 3.25 are discritize with second-order central-difference scheme.

QUICK scheme is a higher order discretization scheme which considers a three-
point upstream weighted quadratic interpolation to determine face value ¢;. One-

dimensional control volume, shown in Fig. 3.3, is assumed to explain QUICK scheme
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F1GURE 3.2: Control volume in 2-D to discretize the governing equations.

and the value of ¢ at face f can be calculated according to the equation as follows

S, Sy S, +25;

5150 T g0 -0

o5 =0l S;+ 8

¢p — =¢8]  (3.26)

sz

The value of 0 equal to 1 in the equation 3.26 is the results of central second-order

L
k
/1
"y
K
W

¢ o 5 @°

FIGURE 3.3: One-dimensional Control Volumes.

interpolation and second order upwind value yields while 6 equal to zero. Setting
0 = 1/8 in equation 3.26 provides the traditional QUICK scheme. ANSYS FLUENT

implement solution dependent value of # to avoid introducing new solution extrema.

For transient simulation, which is considered in this thesis, the governing equa-
tions should be descretized in respect to both, time and space. The spatial dis-
cretization for the time-dependent case is similar to the steady state case, which
already explained in case of steady state. Temporal discretization of transient term
is done through integration over a time step At of the general discretization equa-
tion, which is obtained for steady state. The integration of the time-dependent terms
is straight forward, as explained below. To explain the temporal discretization, a
generic expression of the time progress of the quantity ¢ is assumed by,

% _ F(g) (3.27)
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where any special discretization, explained for steady state, is incorporated with
function F. Time derivative term in equation 3.27 is discretized using backward
difference with second order discretization and implicit time integration are used to

evaluate F'(¢) at the future time, as follows,

3¢n+1 . 4¢n + gbnfl

SAs = F(¢"th), (3.28)

where ¢ is a scalar quantity, n denotes value at the current time level (¢), n + 1
denotes value at the next time level (t+ At) and n — 1 denotes value at the previous
time level (¢t — At). Since ¢"™! at a given cell is calculating using the values of
¢"*1 of the surrounding cells through F(¢"™!), that’s why it is known as implicit
time integration. An unconditional stable condition with respect to time step size is
achieved using fully implicit scheme. Before moving to the next time step the implicit
equation as follows, obtain by rearranging equation 3.28, is solved iteratively at each

time step until meet the convergence criteria,

4 n 1 n—1 2 n+1
0" = 0"+ AR (e, (3.29)

¢n+1 —

Other common settings used for this thesis in Fluent are: The Green-Gauss Cell-
Based method to compute the gradients, Pressure Staggering Option (PRESTO!)
scheme to interpolate the pressure value at faces and the Semi-Implicit Method for
Pressure-Linked Equation (SIMPLE) scheme is used to couple velocity and pressure

corrections to enforce mass conservation and to obtain the pressure field.

3.3.2 Solution strategy
3.3.2.1 Linear equation solving

As stated above that FLUENT use finite volume approach. In Finite volume
approach, whole computational domain is divided into tiny control volumes where
the governing equations are integrated over these each control volume to construct
a set of algebraic equations for discrete unknown quantities. A general form of these

linearized algebraic equations for scalar quantity ¢ is assumed as follows,
CZPQb = Z anb¢nb + b, (330)
nb

here the subscript nb indicates neighbor cells, linearized coefficient of ¢ and ¢, are

denoted by a,, and an, respectively. The number of neighbor cells can get for each
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cell from the mesh topology, typically (except boundary cells) is equal to number of

face enclosing the cell.

Similar type of equation can be written for each tiny control volume which is
created by grid generation. As a result a set of algebraic equations is developed with
a sparse matrix. ANSYS FLUENT is using a point implicit (Gauss-Seidel) linear
equation solver in conjunction with an algebraic multigrid (AMG) method to solve
this linear system (i.e. see FLUENT theory guide for details).

3.3.2.2 Control of the iterative process

It is essential to control the variation of the scalar quantity of ¢ of the equations
set, during the iteration process done by ANSYS FLUENT due to the non-linearity
properties of the equations. This is typically attained by under-relaxation of vari-
ables (also known as explicit relaxation), which is changing ¢ values during the
each iteration through under-relaxation factor . The new value of ¢ is calculated
through the old value ¢,4 and computed change A¢ of ¢ , which is expressed by

simple equation as follows,
¢ = Gola + @AP. (3.31)

Under-relaxation factor a equal to 0.3 for pressure, 0.7 for velocities and 1 for the

rest of the quantities are assumed during this present study.

3.3.3 Convergence

An appropriate converging criterion for an iteration process is important since
it determines success and efficiency of the iteration process. Convergence criterion
plays a significant role in the numerical simulations of unsteady flows and turbulence
since errors from the previous time steps transfer to the consecutive iterations. Due
to inappropriate convergence criterion setting, numerical simulation results could be

deviate from the real physical flow.

Theoretically, numerical simulation with the finite precision computer should
be converged when residuals value reach to the zero value. In reality with actual
computer, the residual drops to some small value (round off) and later on becomes
constant (level out). Therefore residuals value should be higher than level out. In
the present numerical simulation, assume specific residual for each equation, velocity

components along X, Y and Z direction. Here, it compares calculated residual for
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each equation and components after each iteration with the sets residual values to
check the converging criterion. The iteration will continue until calculated residuals

drop lower than the set residual values.

The linear discretization equation of the conservation equation of general scalar

quantity ¢ at a cell P can be written as

a,d, = anuw+Db. (3.32)

nb

The global residual R? of the equation 3.32 is define as the sum of the imbalance

over all the computational cell P, which is expressed as follows,

St

where ¢ is replaced by U,V and W or T, respectively, for momentum and energy

, (3.33)

equation.

Residual for continuity equation is defined as follow as,

Z‘rate of mass creation in cell P‘

R® = F . (3.34)
Z [rate of mass creation in cell P|

max in first 5 iteration

Here denominator is the biggest absolute value of the continuity residual along the

first five iterations.

ANSYS FLUENT permit to drop residual value up to twelve order magnitudes
(10712) in the case of double precision. The effect of converging criteria on the
numerical result was tested extensively for different fountain flows (at different
conditions of F'r, Re and s) by changing converging limits of continuity equation,
energy equation and velocity components (U,V and W). As an example, these
extensive converging criteria testing results is illustrated in Fig. 3.4, where figure
demonstrates the time series of dimensionless maximum fountain penetration height
(zm = Zm/Xo) at three different set of converging criteria (which denotes with a, b
and c) for different F'r, Re and s conditions. It is clearly observed from the figure
that time series of z,, is same for all these three set of converging criteria for different

Fr, Re and s conditions. Considering these extensive testing results, convergence
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FIGURE 3.4: Time series of dimensionless maximum penetration height z,,(~ Z,,/Xo, where Z,,
known as maximum penetration height) of different fountains at (a) Fr = 10, Re = 100 & s = 0.1;
(b)Fr =5,Re =300 & s =0.1; (¢c)Fr =5,Re =100 & s = 0.5 and (d)Fr =2, Re =100 & s = 0.1
at three different converging criteria a,b and c¢. Whereas, residual values set at a is equal to 10™%
for continuity equation; 10=4 for all U, V, W and 10~° for energy equation; at b is equal to 107°
for continuity equation; 10 for all U, V, W and 10~° for energy equation; and at c is equal to
109 for continuity equation; 107° for all U, V, W and 10~8 for energy equation. And time made
dimensionless by X /Vj.

criterion are set equal to 107> for continuity equation; 10~° for all U, V, W and 1076

for energy equation.

3.4 Result validation and Model repeatability

In this thesis, a number of DNS simulations were carried out to characterise
the behaviour of plane fountain into the linearly stratified fluid. Unfortunately any
experimental data for these specific cases, considered in the thesis, are not available
to validate these DNS results. As a result, experimental results of Srinarayana et

al. (2010) (which was conducted for line fountain into the homogeneous ambient
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condition) is used to validate the DNS model for line fountain into homogeneous

environment.

Figure 3.5 depicts the numerically obtained time series of dimensionless max-
imum fountain penetration height, z,,, for different values of Fr and Re in the
homogeneous cases, which are compared to the corresponding experimental result.
It is clearly observed from Fig. 3.5 that the experimental and DNS result are al-
most identical at fully developed stage, although some discrepancy is observed at
the developing stage. This discrepancy is mainly caused by the uncertainty of the
experimental setup and measurements. As the experiments are carried out under
real conditions, while the DNS simulations were done under ideal conditions, it is
quite normal to have differences, in particular at the early stage of the fountain de-
velopment as in a real experimental case, for example, the velocity at the fountain
source is also definitely not uniform and there is entrance effect, which naturally
leads to difference at the early stage. However, at the later stage, the velocity at
the source will be fully developed in the experimental case, which will be then quite
similar to the DNS case, so the results are very close. In addition in experiment, it is
always challenging to maintain homogeneous ambient condition, which is a mixture
of 99.75 % pure NaCl and fresh water, whereas in DNS this is straight forward and

this will also leads to some discrepancy between the experimental and DNS result.

4 6 8
—— Srinarayana et. al. (2010) X —— Srinarayana et. al. (2010) 3 —— Srinarayana et. al. (2010)
3k —— DNSresult — DNS result 6 — DNS result
AF -
€k e | E 4}
N 2 N N 4
) L
1 2
(a) Fr=10.65 & Re = 46 (b) Fr=1 & Re = 100 () Fr=132&Re=22
PRI B T PR R U R PRI R U B
0 0 0
0 25 50 75 100 0 50 100 150 0 50 100 150
T T

F1GURE 3.5: Comparison between the time series of dimensionless maximum fountain penetration
height, z,,, of line fountain into the homogeneous environment obtained experimentally by Sri-
narayana et al. (2010) and numerically by the DNS of the present thesis: (a) Fr = 0.65 & Re = 46;
(b) Fr=1& Re =100 and (¢) Fr = 1.32 & Re = 22.

The repeatability of the DNS model run was also tested by conducting a set
of DNS simulations at fixed F'r, Re & s condition, whereas this specific condition
of Fr, Re & s was achieved for each DNS run with the values of these controlling
parameters were determined by changing the inlet conditions and the relevant fluid
properties based on equations 1.1, 1.2 and 1.5. Table 3.2 presents three different

set of values of Wy, Ty, Xy and g for the corresponding condition 1, condition 2 and
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TABLE 3.2: Key information for DNS run for the corresponding Condition 1, Condition 2 and
Condition 3.

Fr Re S XO g W() Tg S

() () () (mm) m/s*) (m/s) (K)  (K/m)
Condition-1 5 100 0.1 3 23 0.02859 298.2822  57.257
Condition-2 5 100 0.1 2 50 0.04289 297.3333 133.337
Condition-3 5 100 0.1 3 25 0.02860 298.4197 52.676

condition 3 which are at the same values of F'r =5, Re = 100 and s = 0.1, whereas
the values of p,, v, 8 and T, ¢ retain fixed to 996.6 kg/m3, 8.58 x 10~" m?, 2.76 x 10~*
1/K and 300 K, respectively, for all these three DNS runs. Figure 3.6 depicts the
time series of z,, of fountain at Fr = 5, Re = 100 and s = 0.1 for three different
conditions. It is clearly observed from Fig. 3.6 that z,, is essentially the same
for all three conditions with the same values of F'r = 5, Re = 100 and s = 0.1.
Similar results are also obtained for other Fr, Re and s values, which confirm the
repeatability of the DNS model run.

A — Condition -1
20 — Condition - 2
— Condition - 3

FIGURE 3.6: Time series of z,, of the plane fountains at Fr = 5, Re = 100 and s = 0.1 for three
different model setup conditions.

3.5 Fluent setup

To solve these fountain flow problem numerically with commercial software
ANSYS FLUENT 13, a new FLUENT fluid flow analysis system was created from
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the ANSYS Workbench under Analysis Systems in the Toolbox by double-clicking
the Fluid Flow (FLUENT) option. This creates a new FLUENT based fluid flow
analysis system in the Project Schematic which composed with five different cells
(i.e. Geometry, Mesh, Setup, Solution and Results). Mesh was imported directly
into the Mesh cell, whereas a non-uniform mesh, .e. details specification is given
in § 4.2, 5.2 and 6.2, was created by ICME CFD mesh generation software. By
double-clicking the Setup cell in the Project Schematic, ANSYS FLUENT 13 will be
started for the first time with displaying FLUENT Launcher. In Fluent Launcher
3D was selected by default under Dimension since imported mesh was in three-
dimensional, choose Double Precision under Options and select the Parallel (Local
Machine) option under Processing Option & write 8 in the box below the Number of
Processes to reduce simulation running time. By pressing the OK button in Fluent
Launcher a graphical user interface (GUI) of FLUENT will be launched, shown in
Fig. 3.7 with appropriate leveling. In GUI, a navigation pane, located on the left
side, contains a list of items (i.e. Problem Setup, Solution and Results). When any
items at navigation pane under Problem Setup or Solution or Results is highlighted,
a task page (i.e. see Fig. 3.7) of the corresponding item will be displayed at the
right side of the navigation pane. A dialog box, separate window, of any item at the

task page will be displayed when corresponding item in the task page click double.

3.5.1 Problem Setup
3.5.1.1 General

Select General under Problem Setup in the navigation pane, which creates Gen-
eral task page at the right side, to execute the mesh related activities and to select
solver. In the General task page under the Mesh item, four options (i.e. Scale. ..,
Check, Report Quality and Display...) are available. Check option will report the
result in the console like as in Fig. 3.8, where it should be ensured that minimum
volume is not negative since calculation in ANSYS FLUENT cannot begin in this
case. Report Quality option will display mesh quality in the console. Scale... op-
tion is used to scale the imported domain into the lower or higher dimension if
required. For these simulations, meshes were created in the same dimension as re-
quired so that Scale option did not require to use. Display option is used to display
the imported mesh or any plane or any edge as a whole or partially, for details see
FLUENT user guide. Below the Solver option in the General task page Pressure-

Based under Type, Absolute under Velocity Formulation and Transient under Time
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F1cure 3.7: FLUENT Graphical user interface (GUI).

were selected to perform these simulations. Put a tick mark on the Gravity and
set the value of gravitational acceleration along the Z axis. Units... option, at
the bottom of the General task page, used to change mesh dimension unit, were
not used during these simulation run since meshes were created in the same unit as

required for these simulation run.

3.5.1.2 Models

A number of modeling options are available in FLUENT 13. A list of models
(i.e. Multiphase, Energy and Viscous etc.) can see in the task page when Models in
navigation pane is highlighted, see Fig 3.9. An Energy dialog box will be open by
double-clicking on the Energy item under the Models in task page and put a tick
mark on the Energy Equation. After that press the OK button on the Energy dialog
box. In the next step, double click on the Viscous —Laminar item under Models in

the task page which will open a Viscous Models dialog box. A number of models
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Domain Extents:
x-coordinate: min (m) = -2.032000e-01, max (m)
y-coordinate: min (m) -2.286000e-01, max (m)
z-coordinate: min (m) -2.332952e-18, max (m)
Volume statistics:
minimum volume (m3): 1.148430e-10
maximum volume (m3): 5.741104e-08
total volume (m3): 2.633922e-03
Face area statistics:
minimum face area (m2): 2.147325e-07
maximum face area (m2): 3.444069e-05
Checking mesh. ......cuviiiimieennnnnnns
Done.

2.032000e-01
2.032000e-01
5.080000e-02

non
wonu

F1GURE 3.8: Check option output in the console.

are observed in the Viscous Model dialog box. Out of these, select Laminar for DNS

simulation and press than the OK button.

3.5.1.3 Material

Specific fluid properties, used for these simulation runs, was defined through
Materials task page, shown in Fig. 3.10. A Create/Edit Material dialog box, open
by double-clicking on the Fluid item under Materials at Material task page, is used
to specify fluid properties. In Create/Edit Material dialog box, write the name of
fluid as water under Name. In §3.2) it is already mentioned that Boussinesq approxi-
mation was assumed during these simulation runs. Due to that under the Properties
list, the Density changed to Boussinesq from the drop-down list instead of constant
which leads to adding an extra fluid property, Thermal Expansion Coefficient, item
at the bottom of Properties lists. All other fluid properties, i.e. Specific Heat,
Thermal Conductivity, Viscosity and Thermal Expansion Coefficient, keep constant
instead of Density and enter the specific constant values for each of these properties
to get specific F'r, Re and s condition. After that press the Change/Create button at
the bottom of the Create/Edit Material dialog box and then a Question dialog box
will appear and selected the NO button (i.e. demonstrated with Fig. 3.10 ). Fluid
properties can also import from FLUENT Database... button, which is located on
the right side of the Create/Edit Material dialog box.
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FIGURE 3.9: Models setup in FLUENT.

3.5.1.4 Cell Zone Conditions

An appropriate fluid, define at Materials, should be assigned into whole domain
through the Cell Zone Conditions task page, which obtained when highlight Cell
Zone Conditions item in the navigation pane, to obtain an accurate result from the

simulation. In Cell Zone Condition task page, shown in Fig. 3.11, Fluid dialog
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F1GURE 3.10: Fluid properties define by Material in FLUENT.

box will be appeared by double-clicking fluid under Zone. In the Fluid dialog box,
select right fluid, define at Material, from the Material Name drop-down list and
click the OK button. In the Operating Conditions dialog box, open by pressing
Operation Condition... button at the bottom of the Cell Zone Conditions task
page, set Operation Pressure 101325 pascal under Pressure and define Operating
Temperature 300k under Boussinesq Parameters. Other settings in the Fluid and

Operating Conditions dialog box keep the default setting, shown in Fig. 3.11.

3.5.1.5 Boundary Conditions

Appropriate boundary conditions, define at §3.2, plays an important role in any
numerical simulation to obtain accurate numerical result. In Boundary Conditions
task page, shown in Fig. 3.12, a list of boundaries, define during mesh generation,

shown under Zone. Highlight each boundary names one by one under Zone and select
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FI1GURE 3.11: Assign working fluid and operating condition into the domain by Cell Zone Condi-
tions.

an accurate boundary condition, mention in § 3.2, from the drop-down list under
Type . A dialog box of the corresponding boundary type will appear by pressing
on the Edit button to define different properties of this boundary condition. Set an
appropriate value in the boundary condition dialog box to achieve specific F'r, Re
and s. As an example, Velocity Inlet dialog box is shown in Fig. 3.12, where can
enter Velocity Magnitude under Momentum option and temperature under Thermal
option, see ANSYS FLUENT user’s guide for more details. A periodic boundary
was created in FLUENT by using following make-periodic text command:
grid>modify-zones>make-periodic

Periodic zone [ () | periodiczonelD

Shadow zone [ () | shadowzonelD

Rotational periodic? (if no, translational) [ yes ] yes

Create periodic zones? [ yes | yes

This periodic text command will create a periodic boundary by deleting shadow
zone from the boundaries list under Zone, shown in Fig. 3.12, and properties of

periodic boundary condition can be set through Periodic Condition... button at
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the bottom of Fig. 3.12, which option only available once when periodic boundary
creates through the text command. For more details see ANSYS FLUENT user’s
guide.

Boundary Conditions
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F1cURE 3.12: Boundary conditions define in FLUENT
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3.5.2 Solution

3.5.2.1 Solution Method

For transient state simulation, governing equations need to be discretized in
both respect of time and space, as mention at §3.2. A brief description of these
discretization methods is already given at §3.2. This specific setting was achieved in
FLUENT from the Solution Methods task page . A SIMPLE scheme from the drop-
downward list of Scheme under Pressure-Velocity Coupling was chosen for these
simulation runs. Under Spatial Discretization , Green-Gauss Cell Based method
under Gradient, PRESTO! under Pressure and QUICK under both, Momentum and
Energy, was chosen from the corresponding drop-down list. Second Order Implicit
method was also picked for the transient term under Transient Formulation, located

at the bottom , from the drop-down list.

3.5.2.2 Solution Control

It already mention at § 3.3.2.2 that it is essential to control the variation of
scalar quantity in equations set during the iteration process due to the non-linear
properties of these equations. This has been achieved by under relaxation factor,
«, which can be defined in FLUENT at Solution Control task page . In Solution
Control task page, keep the default value of « for all quantities, where the default

value of «v is 0.3 for pressure, 0.7 for velocities and 1 for the rest of the quantities.

3.5.2.3 Monitors

Monitors task page have four different monitors, 7.e. Residuals, Statistics and
Force Monitor; Surface Monitors; Volume Monitors and Convergence monitor. The
importance of the converging criterion for an iteration process discussed at §3.3.3.
Converging criterion set in FLUENT 13 based on the residual value by Monitors
task page. A Residual Monitors dialog box will appear when Residuals- Print, Plot
option under Residuals, Statistics and Force Monitor is highlighted and press the
Edit.. button. Enter corresponding Residual value under Equations as mention in

63.3.3. Remaining set up keep default value .

Surface Monitors, shown in Fig. 3.13, in Monitor task page, is an important
feature for result analysis of these simulations. With this command, it is possible

to save any desired data in every time step or each iteration. To analyze fountain
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penetration height or velocity variation at a specific location, this command was used
in this study. Figure 3.13 demonstrate the procedure of using this command. To
create a new surface monitor press on the Create... button under Surface Monitors
and then a Surface Monitor dialog box will appear like as Fig. 3.13. In Surface
Monitor dialog box, write the name of the file under Name and put a tick mark in
Print to Console, Plot and Write under Options. X axis was changed to Time Step
and put 1 & Time Step under the Get Data Every from the drop-down list. Report
Type and Field Variable was changed according to the desired output result. As an
example, Vertex Maximum under Report Type and Mesh. .. & Z-Coordinate under
Field Variable was selected to obtain the time series of fountain penetration height,
however, Field Variable change to Velocity & the desired direction for the velocity
time series. Finally, need to highlight the specific surface, where properties are
needed to be observed, under Surfaces. Then press the OK button which will make
a surface at Surface Monitors task page. By Edit.. or Delete button, can modify
or delete the created surface. Up to maximum twenty surface monitors could be
created by this option. These surface monitors were saved in the computer, which

was analyzed to characterize the fountain flow.

3.5.2.4 Solution Initialize

Solution should be initialized in FLUENT before calculation start. Solution
initialization was done by pressing Initialize button at the bottom of the Solution
Initialization task page, shown in Fig. 3.14. It was assumed for these simulations
that initially environmental fluid is linearly stratified. This initial stratification
was assigned by Patch... option where a Patch dialog box appeared by pressing
the Patch... button. In the Patch dialog box select Temperature under Variable,
fluid under Zone, put a tick mark in the Use Field Function and highlight custom-
function-0 under Field Function. This custom-function-0 defines linear stratification
of the ambient fluid, which was obtained from the Custom Field Function Calcu-
lation dialog box. Custom Field Function Calculation dialog box will be open by
clicking Custom field function, which is located at the drop-down list of the Define

item at the menu bar.

3.5.2.5 Calculation Activities

Calculation Activities gives the option to save the simulation data file. Figure

3.15 depicts that a Autosave dialog box will be appeared by clicking on the Edit. . .
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FIGURE 3.13: Surface Monitors set up in FLUENT.

button below the Autosave Every (Time steps) item. Set 50 under Autosave Every
(Time steps) to save data file in every 50 time step, which can be changed to any

number according to the desire.

3.5.2.6 Run Calculation

Finally with Calculation task page , calculation was started to solve the problem
numerically by FLUENT based on the previous setting. In Calculation task page,

enter time step under Time Step Size (s) and simulation running time by number of
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FIGURE 3.14: Solution initialization and linear stratification condition set up of initial ambient
fluid in FLUENT.

time steps under Number of Time Steps. Set maximum number of iteration for each
time step under the Max Iteration/Time Step, which should be higher enough to

converge the simulation. At the end, press Calculate button to start the simulation.

3.5.3 Result

FLUENT have most powerful tool to analyse the numerical results by Results
option in the navigation pane. Results option allow to draw different type of con-
tour, graph, vectors etc. Figure 3.16 demonstrate, as an example, how to draw a
temperature contour on a specific plane. A Contours dialog box will be appeared
when highlight Graphics and Animations option under Results at navigation pane
and double click on the Contours under Graphics in the task page. Select Filled,
Node Values, Global Range and Auto Range under Options in the Contours dialog
box. Set Temperature & Static Temperature from the drop-list under the Contours
of to get the temperature contour and select a specific surface under Surface. If

the desired surface is not available under the Surface option, a new surface can be
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F1cURE 3.15: Data file save by Calculation Activities in FLUENT.

created from the New Surface option. After that press Display button on Fig. 3.16
to display the temperature contour on specific surface at graphics windows, which
can be modified by Colormap... button. Colormap dialog box, see Fig. 3.16, have
option to show all label or skip some label by Labels option. Colormap size can
be vary between 1-100 by Colormap Size option and different type of color scheme
can be choose for the contour from the drop-list of the Currently Define option and
Number Format option allow to change numbering of the corresponding color map.
Finally, this contour can be save by Save Picture dialog box (i.e. see the graphic
tool bar). Save picture dialog box, shown in Fig. 3.16, have many option to save
contour at different format, orientation, color scheme and resolution. See FLUENT

user guide for more details for result analysis tools.

FLUENT can produce an accurate XY plot along the surfaces or files using
simulation result. A Solution XY Plot dialog box will appear by double-clicking on
XY Plot under Plots option at Plots task page, shown in Fig. 3.18. Under Options
check Node Values, Position on X axis or Position on Y axis. To save the data
file also need to check Write File as well as. Plot direction needs to define under
Plot Direction option by entering the appropriate value in X, Y and Z box. The

desired item should select under Y Axis Function and X Axis Function from the
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r |
i

Format Coloring File Type Resolution

) EPs @ Color © Raster width [9g0 @
©) IPEG (©) Gray Scale Vector £3
O PPM '::) Monod'\rane t p— @
© Postsaipt et S
@) VRML 7] Land Orientation | indow Dump Command
Window Dump | | [¥] White Background “import -window %w
|save... | [ Apply | [Preview| | Close | [ Help |

FIGURE 3.17: Saving contour in FLUENT.

corresponding drop-down list. Finally, select the specific surface under Surfaces and
press on the Plot button to plot the graph, however, Plot option will be replaced by
Write button if the Write to File option is checked under Options and by pressing
the Write button allow to save the data file instead of plotting. In addition, FFT
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analysis can be done with FFT option under Plots at Plots task page, see FLUENT
user guide for details.
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F1GURE 3.18: Plots task page and Solution XY Plot dialog box in FLUENT.

It is observed from the previous paragraphs that different types of surface are
required to generate among the domain to analysis the simulation result. These
surfaces can create in a different way from Surface option at the menu bar. A
typical example of the iso-surface generation in FLUENT is shown in Fig. 3.19.
First select appropriate parameter under the Surface of Constant from the drop-
down list and then press the Compute button which will display a maximum and
minimum value of the corresponding parameter under Min and Max box. Enter
the iso-value of that corresponding parameter under Iso-Value box, which should be
within the maximum and minimum value, and write down the name of the surface
under New Surface Name box. Now, press the Create button which creates an iso-
surface corresponding to that fixed value of that parameter among the whole domain
and name of that surface will appear under the From Surface. On the other hand,
if any surface is highlighted under From Surface then iso-surface only create in that

region instead of the whole domain.

3.6 Summary

In this chapter, the governing equations with initial and boundary conditions is

introduced for the transitional plane fountains into linearly stratified ambient fluid.
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FIGURE 3.19: Iso-Surface dialog box in FLUENT.

The Navier-Stokes equation and energy equations were simplified with Boussinequ
assumption. A brief description is presented about ANSYS Fluent 13 to solve these
governing equations using control volume approach. The governing equations were
discretized on a non-uniform rectangular mesh using three-dimensional finite volume
method, with a standard 2nd-order central difference scheme used for the viscous
and divergence terms and the 3rd-order QUICK scheme for the advection terms.
The 2nd-order Adams—Bashforth and Crank-Nicolson schemes were used for the
time integration of the advective and diffusive terms, respectively. The PRESTO
(PREssureSTaggering Option) scheme was used for the pressure gradient.






Chapter 4

Asymmetric transitional plane

fountains at a high Froude number
(F'r = 10)

4.1 Introduction

In this chapter, a series of three-dimensional DNS runs were carried out for
transitional plane fountains in linearly stratified fluids over the ranges of 25 < Re <
300 and 0 < s < 0.5, all at a fixed, high Froude number of Fr = 10. These
transitional plane fountains were found to demonstrate asymmetric behavior. The
DNS results were used to illustrate and quantify the onset of asymmetric behavior
and the maximum fountain penetration height, and particularly the effects of Re

and s on these bulk fountain flow behavior parameters.

The major results presented in this chapter were reported in the following pub-

lications:

1. Inam, M. I., LiN, W., ARMFIELD, S. W. & HE, Y. 2015 Asymmetry and
penetration of transitional plane fountains in stratified fluid. Int. J. Heat Mass
Transfer 90, 1125-1142.

2. Inam, M. I., Lin, W., ARMFIELD, S. W. & HE, Y. 2014 Asymmetric
transition for high Froude number plane fountains in linearly stratified fluids.
in Proceedings of the 15th International Heat Transfer Conference (IHTC-15),
10-15 August, 2014, Kyoto, Japan, Paper ID: IHTC15-8812.
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3. InaMm, M. I., LiN, W., ARMFIELD, S. W. & HE, Y. 2014 Penetration height
and onset of asymmetric behaviour of transitional plane fountains in linearly
stratified fluids. in Proceedings of the 19th Australasian Fluid Mechanics Con-
ference (19AFMC), 8-11 December 2014, Melbourne, Australia, Paper ID: 427.

The remainder of this chapter is organized as follows. In § 4.2, the details of
the DNS runs carried out in this chapter are presented, along with the mesh and
time-step independence testing results. The asymmetric transition of the Fr = 10
plane fountains over the ranges of 25 < Re < 300 and 0 < s < 0.5 is described
and discussed in § 4.3, both qualitatively and quantitatively, with the DNS results.
In § 4.4, the initial and time-averaged maximum fountain penetration heights, as
well as the time for the fountain to attain the initial maximum fountain height and
the variation of the maximum fountain height along the fountain source slot are
analysed, and the effects of Re and s on these parameters are quantified with the

DNS results. Finally, the major conclusions of this chapter are drawn in § 4.5.

4.2 DNS runs and mesh and time-step independence testing

There are totally 30 DNS runs carried out in this chapter, with the key infor-
mation about these runs listed in Table 4.1. The fluid used in the DNS runs is
water, with the density p, = 996.6 kg/m?, the kinematic viscosity v = 8.58 x 1077
m? /s, and the volume expansion coefficient 3 = 2.76 x 10~* 1/K, respectively, at the
nominal temperature of 7,y = 300 K. These thermal property values were obtained
by interpolating the data presented in Table A-3 of Cengel & Cimbala (2006), and
were used for all DNS runs. The maximum value of (7,0 — 7), among all DNS
runs, is (300 - 298.0428) = 1.9572 K, which is small enough to ensure that the
Oberbeck-Boussinesq approximation is valid. For all these DNS runs, F'r is fixed at
10, Ty is fixed at 300 K, the time step is fixed at 0.025 s, but Re and s vary in the
ranges of 25 < Re < 300 and 0.1 < s < 0.5, respectively. In addition, the DNS runs
with s = 0 (i.e., homogeneous fluid cases) were also carried out for the purpose of

comparison.

The quality of mesh plays a significant role in the accuracy and stability of nu-
merical simulation. To capture the actual flow details, a fine mesh is required in the
region where flow variables have higher gradients. However, comparatively coarse
mesh can be used in the regions of flow where flow variables are not changing signif-

icantly. Flow variables in fountains in linearly-stratified environment, as considered
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in this thesis, have comparatively higher gradients in the region of the fountains core
in which the downward flow interacts with the upward flow and the ambient fluid,
whereas in the remaining regions flow variables have comparatively much smaller
gradients. As a result, a uniform and finer rectangular mesh was used in the foun-
tain core, i.e., in the region of - X, < X < X,,0< 7 < Z, and —-Y, <Y <Y,
where X, Y, and Z, denote the widths of the uniform mesh along the X, Y and Z
directions, respectively. A coarser and non-uniform rectangular mesh with varying

expansion ratio was used in the remaining regions.

Extensive mesh and time-step independence testing was carried out to ensure
accuracy. The results of one example of such a test are presented in Fig. 4.1 for the
case of Fr =10, Re = 50 and s = 0.1, which shows the time series of the maximum
fountain height (Z,,) and the horizontal temperature and vertical velocity profiles
at the height of Z = 0.015 m on the vertical plane at Y = 0 m. Z,, was determined
as the vertical distance from the bottom to the vertex point of the iso-surface at
the temperature of T(Z) = Ty — 1%(Ta0 — Tp) within the whole computational
domain. These results were obtained numerically with three different meshes, with
the coarse mesh having 2.39 million cells, the basic mesh having 3.72 million cells
and the fine mesh having 5.27 million cells, and at three different time steps of 0.025
s, 0.035 s, and 0.05 s, respectively. For all three meshes, the widths of the fine and
uniform mesh are X,=0.03 m, Y,=0.3 m and Z,=0.09 m, respectively. However,
the grid sizes of the fine and uniform mesh for the three meshes are different, with
1.50mm x 2.85mm x 1.50mm for the coarse mesh, 1.00mm x 2.50mm x 1.10mm for
the basic mesh, and 0.75mm X 2.30mm x 0.85mm for the fine mesh, respectively.
The structures of the relatively coarse mesh in the remaining region for the three
meshed are quite similar, although with different expansion ratios. It is clear from
Fig. 4.1(a)-(c), where a comparison of the results obtained with the three meshes,
all at the same time-step of 0.025 s, is presented, that the results obtained with the
basic mesh and the fine mesh are essentially the same and only the results produced
with the coarse mesh have some noticeable deviations. Similarly, a comparison
of the results obtained with three time steps, all with the same basic mesh (3.72
million cells), as shown in Fig. 4.1(d)-(f), shows that the differences are very small.
Hence it is believed that the combination of the basic mesh with 3.72 million cells
and the time step at 0.025 s produces sufficiently accurate solutions and is the best
compromise between the accuracy and the time and computing resources among the
meshes and time steps considered, and is then chosen as the main mesh and time

step for the numerical simulations at small Re (Re < 50).
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FIGURE 4.1: The time series of the maximum fountain height (Z,,) and the horizontal temperatue
and vertical velocity profiles at t = 10 s at the height Z = 0.015 m on the vertical plane at Y =0
m, which were obtained numerically for the case of Fr = 10, Re = 50 and s = 0.1 with three
different meshes (left column, all at the same time step of 0.025 s) and at three different time steps
(right column, all with the same basic mesh of 3.72 million cells).

For larger Re cases, the mesh and time dependency test results showed that
meshes with much larger numbers of grids, ranging from 4.45 to 6.67 million, as
presented in Table4.1, all at the time step 0.025 s, are needed to produce sufficiently
accurate simulation. The numbers of grids increases with Re at higher Re values as
a result of using larger domain heights. In these simulation runs, the use of larger
slot widths (2X,) at higher Re values leads to larger fountain heights which, in
turn, require larger domain heights. In additions, fountain penetration height also
increases at a higher Re value, as will be shown subsequently. Larger slot widths
are also required for larger s values at higher Re values to ensure the validity of
the Oberbeck-Boussinesq approximation, based on the definition of F'r, Re and s,
(i.e.(1.1), (1.2) and (1.5)). From the mesh dependency results for fountains at higher
Re values, it is found that the same grid sizes used for the fine and uniform meshing
region (which is equal equal to 1 mm, 2.5 mm and 1.1 mm along the XY and Z
direction, respectively) and at coarse meshing region can produce sufficient accurate

simulation result. Though the width of the of uniform mesh is required to increase
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TABLE 4.1: Key information about the DNS runs.

Re s Xo Wo T S HxBxL Grids
-) () (m) (m/s) (K) (K/m) (mXxmxm) (million)
25 0.0 0.002 0.01072 299.7876 0.0 0.215%x0.3x0.8 3.72
25 0.1 0.002 0.01072 299.7876 10.6  0.172x0.3x0.8 3.72
25 0.2 0.002 0.01072 299.7876  21.2  0.172x0.3x0.8 3.72
25 0.3 0.002 0.01072 299.7876  31.9 0.172x0.3x0.8 3.72
25 0.4 0.002 0.01072 299.7876  42.5  0.172x0.3x0.8 3.72
25 0.5 0.002 0.01072 299.7876  53.1  0.172x0.3x0.8 3.72
50 0.0 0.002 0.02145 299.1505 0.0 0.215%x0.3x0.8 3.72
50 0.1 0.002 0.02145 299.1505 42.5 0.172x0.3x0.8 3.72
50 0.2 0.002 0.02145 299.1505 85.0 0.172x0.3x0.8 3.72
50 0.3 0.002 0.02145 299.1505 127.4 0.172x0.3x0.8 3.72
50 0.4 0.002 0.02145 299.1505 169.9 0.172x0.3x0.8 3.72
50 0.5 0.002 0.02145 299.1505 212.4 0.172x0.3x0.8 3.72
100 0.0 0.003 0.02860 298.9932 0.0 0.325%x0.3x0.8 5.77
100 0.1 0.003 0.02860 298.9932 33.6 0.260x0.3x0.8 5.77
100 0.2 0.003 0.02860 298.9932 67.1 0.260%x0.3x0.8 5.77
100 0.3 0.003 0.02860 298.9932 100.7 0.260%x0.3x0.8 5.77
100 0.4 0.003 0.02860 298.9932 134.2 0.260x0.3x0.8 5.77
100 0.5 0.003 0.02860 298.9932 167.8 0.260%x0.3x0.8 5.77
200 0.0 0.005 0.03432 299.1301 0.0 0.935%0.3x0.8 6.67
200 0.1 0.005 0.03432 299.1301 174 0.430x0.3x0.8 6.67
200 0.2 0.005 0.03432 299.1301 34.8 0.430x0.3x0.8 6.67
200 0.3 0.005 0.03432 299.1301 52.2  0.430x0.3x0.8 6.67
200 0.4 0.005 0.03432 299.1301 69.6 0.430x0.3x0.8 6.67
200 0.5 0.005 0.03432 299.1301 87.0 0.430x0.3x0.8 6.67
300 0.0 0.006 0.05148 298.0428 0.0  0.645%x0.1x0.8 4.45
300 0.1 0.005 0.05148 298.0428 39.1  0.430x0.3x0.8 6.67
300 0.2 0.006 0.04290 298.8673 37.8 0.516x0.1x0.8 4.45
300 0.3 0.006 0.04290 298.8673 56.6 0.516x0.1x0.8 4.45
300 0.4 0.006 0.04290 298.8673 75.5  0.516x0.1x0.8 4.45
300 0.5 0.006 0.04290 298.8673 94.4 0.516%x0.1x0.8 4.45

at higher Re as a result of fountains having higher fountains height and width at
higher Re. The width of uniform mesh (X,,Y, & Z,) change to (40 mm, 300 mm &
120 mm), (45 mm, 300 mm & 130 mm) and (140 mm, 100 mm & 230 mm) at higher
Re equal to 100, 200 and 300 respectively. Mesh and time independency results is
presented at Fig. 4.2 for higher Re values equal 100, 200 and 300; all at F'r = 10
and s = 0.2; for three different meshes and three different time steps (0.025 s, 0.035
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s and 0.05 s). These three different meshes are coarse, basic and fine mesh with
(3.71, 5.77 & 8.03 million cell), (5.72, 6.67 & 11.50 million cells) and (2.64, 4.45 &
6.28 million cell) for Re equal to 100, 200 and 300, respectively. Figure 4.2 depicts
the horizontal temperature profile for three different meshes and three different time
steps for three different Re conditions equal to 100, 200 and 300; all at Fr = 10
and s = 0.2. It is clearly seen from this figure that variation between the horizontal
temperature profiles is negligible, indicating basic mesh with 5.77, 6.67 and 4.45
million cell for Re equal to 100, 200 and 300, respectively, can produce sufficient

accurate solutions with the time step 0.025s.
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FIGURE 4.2: Horizontal temperature profile at ¢ = 10 s at height Z = 0.03 m on the vertical plane
for the cases Re equal to 100, 200 and 300; all at F'r = 10 and s = 0.2; with three different meshes
(left column, all at same time step 0.025 s) and at three different time steps (right column; use
basic mesh with 5.77, 6.67 and 4.45 million cell for Re equal t0100, 200 and 300, respectively).
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In additions, the dimensions of the computational domain, H, B and L were
chosen sufficiently large to ensure negligible effectd of the boundary conditions on
the flow quantities of interest. The domain height, H, which is higher at a larger
Re (see Table 4.1), was always more than three times larger than the maximum
fountain penetration height for all Re and s conditions. The domain length L was
chosen to be 800 mm, whereas the domain width B = 300 mm was used over the
range 25 < Re < 200 but B = 100 mm was used for higher Re cases to minimize
the computational time. The effect of the domain size on computational results is
present in Fig. 4.3, which depicts the time series of the maximum penetration height,
Zm, for the case F'r = 10, Re = 300 and s = 0.2 with three different domain sizes:
H x B x L =>516mm x 100mm x 800mm, H x B x L = 600mm x 200mm x 1000mm
and H x B x L = 700mm x 300mm x 1200mm. The meshes were generated on
these three domains in the similar pattern as that described earlier. Figure 4.3
clearly shows that the domain with the dimensions 516 mm x 100 mm x 800 mm
can produce sufficient accurate simulation results with a negligible boundary effect
on the flow quantities of interest. For a typical run, it usually took 10 ~ 18 days
on a Dell OptiPlex (TM) desktop with processor “Intel(R) Core(TM) i7-3770 CPU
3.40GHz”, RAM 32.0 GB and operation system 64—bit, which usually took one week

to finish one simulation.
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FIGURE 4.3: Time series of the maximum fountain penetration height (Z,,) for the case Fr =
10, Re = 300 and s = 0.2 for three different domain size H x B x L equal to 516 mm x 100 mm
x 800 mm , 600 mm x 200 mm x 1000 mm and 700 mm x 300 mm x1200 mm.
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4.3 Asymmetric transition

4.3.1 Qualitative observations
4.3.1.1 Evolution of transient temperature and velocity fields

Figure 4.4 presents the transient temperature contours of a typical plane fountain
with F'r = 10, Re = 100 and s = 0.1 at the instants of 7 = 25, 120, 145, 165, 260,
and 570, respectively, on three specific planes in each of the X, Y, and Z directions,
where 7 is the dimensionless time, made dimensionless by X,/W,. The results show
that at Y = 0 in the X — Z plane the fountain flow maintains symmetry in the
X — Z plane with respect to X = 0 at its early development stage, until at 7 =~ 165,
when it starts to become asymmetric and unstable, leading to flapping motions
(i.e., the horizontal oscillations) around X = 0 in the X direction. The transition
from a symmetric flow to an asymmetric one in the Y direction in the Y — Z plane
occurs at a later time, as the temperature contours at X = 0 in the Y — Z plane
demonstrate that the fountain height is basically the same along the Y direction for
each time instant until 7 ~ 260, when the height is observed to fluctuate along the Y’
direction, indicating that the symmetry has collapsed and the fountain has become
asymmetric in the Y direction. This is also true in the horizontal, X — Y plane, as
the temperature contours at Z = 10X, in the X — Y plane show that the fountain
width at this specific height is essentially the same in the X direction for each time
instant until 7 &~ 260, when the width varies considerably along the X direction,
confirming that the symmetry collapses and the fountain becomes asymmetric in the
Y direction of the X — Y plane. The behavior of the fountain flow becomes quasi-
steady at the later development stage because the time-averaged behavior essentially

attains a steady state, although the instantaneous behaviour still changes with time.

The onset of asymmetry and unsteady behaviour, observed above in the tem-
perature fields, is also exhibited by the corresponding transient velocity contours,
as shown in Fig. 4.5 where the transient contours of U/Wy and V/Wy at X =0 in
the Y — Z plane are presented. When a plane fountain maintains symmetry with
respect to X = 0 in the X — Z plane, U should be zero everywhere at X = 0 in
the Y — Z plane. Any non-zero U value on this plane will indicate asymmetric
behaviour in the X direction. Similarly, when a plane fountain maintains symmetry
in the Y direction on the Y — Z plane, V should be zero everywhere at X = 0 in
the Y — Z plane. Any non-zero V' on this plane will indicate asymmetric behaviour
in the Y direction. From Fig. 4.5, it is clearly seen that when 7 < 120, both U/Wj
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FIGURE 4.4: Evolution of transient temperature contours of the plane fountain with Fr = 10,
Re =100 and s = 0.1 at Y =0 in the X — Z plane (top row), X =0 in the Y — Z plane (middle
row), and Z = 10X, in the X — Y plane (bottom row), respectively. The temperature contours in
each subfigure are normalized with [T(Z) — Tp]/ (T4, z=60x, — T0)-

and V/Wj are zero, indicating that symmetry is maintained both in the X direc-
tion in the X — Z plane and in the Y direction in the Y — Z plane. At 7 ~ 145,
significant asymmetric features are observed in the X direction in the X — Z plane
and the extent of the asymmetry increases when 7 is further increased. At 7~ 165,
marginal asymmetric features are shown in the Y direction in the ¥ — Z plane and
the extent of the asymmetry also increases for large 7, although the magnitude of
the asymmetry in the Y direction is much smaller than that in the X direction at

the corresponding time instants.
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FIGURE 4.5: Evolution of transient contours of U/W (top row) and V/W, (bottom row), both
in percentage, at X = 0 in the Y — Z plane for the plane fountain with Fr = 10, Re = 100 and
s =0.1.

4.3.1.2 Effect of Re

The effect of Re on the asymmetric and unsteady behaviour of plane fountains
is demonstrated in Fig. 4.6 where representative temperature contours at the quasi-
steady state on three individual planes with Re varying in the range 25 < Re < 300,
all with F'r =10 and s = 0.1 are shown. The results show that at the quasi-steady
state all these plane fountains become asymmetric and unsteady. The fountain flow
in the X — Z plane flaps in the X direction and the fountain heights at higher Re

values (200 and 300) are considerably larger than those at smaller Re values. It
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is also observed that the extent of entrainment increases with Re. In the Y — Z
plane, the increase of Re leads to larger fluctuations of the fountain height along
the Y direction. Similarly, the increase in Re results in a larger fountain width and

increased fluctuation of the width in the X — Y plane as well.

Re =25 Re =50 Re =100 Re =200 Re =300

FIGURE 4.6: Representative temperature contours of plane fountains at the quasi-steady state for
different Re values with F'r = 10 and s = 0.1 at Y = 0 in the X — Z plane (top row), X =0 in
the Y — Z plane (middle row), and Z = 0.5Z,,; in the X — Y plane (bottom row), respectively,
where Z,, ; is the initial maximum fountain height.

Figure 4.7 presents the corresponding representative contours of U/W, and V/W
at the quasi-steady stage at X = 0 in the Y — Z plane for the same plane fountains
as for Fig. 4.6. It is seen that non-zero U values are present at X = 0 in the
Y — Z plane, indicating that the fountain flow in the X — Z plane flaps in the X
direction, which is in agreement with the observation from the temperature contours
shown in Fig. 4.6 and confirms that all these plane fountains become asymmetric
and unsteady. It is further observed that the extent of flapping and entrainment
increases when Re increases. In the Y direction of the Y — Z plane, the increase in
Re leads to an increased non-zero V' value, although the magnitude is smaller than

that of the corresponding U value, indicating an increasing extent of asymmetric

behaviour in this direction.

Re =25 Re =50 Re =100 Re =200 Re =300

FIGURE 4.7: Representative contours of U/Wy (top row) and V/W, (bottom row) of plane foun-
tains at the quasi-steady stage for different Re values with F'r = 10 and s = 0.1 at X = 0 in the
Y — Z plane, where U/Wj and V/W, are in percentage.
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A more evident demonstration of the effect of Re on the asymmetric behaviour
of plane fountains in both the X and Y directions of the Y — Z plane is presented
in Fig. 4.8, where the time series of Uya, /Wy and Ve /Wo at X =0 in the Y — 7
plane with Re varying in the range 25 < Re < 300, all at F'r = 10 and s = 0.1, are
presented. U,,., and V,,., represent the maximum values of U and V at X = 0 in
the Y — Z plane, respectively. From this figure, it is seen that both U,,../W, and
Vinaz/Wo are essentially zero at the early developing stage for all cases considered,
indicating that these plane fountains are initially symmetric in both the X and Y
directions. However, subsequently all fountains under consideration exhibit asym-
metric behaviour, with their U,,../Wy and V4. /Wy values becoming significant.
When Re is small, the fountain starts to show the asymmetric behaviour at a much
later time. For example, the Re = 25 fountain starts to become asymmetric in the
X direction of the Y — Z plane at 7 ~ 450 whereas when Re increases to 50, 100,
and 200, the time for the onset of the asymmetric behaviour in this direction reduces
to 7 &~ 200, 120, and 105, respectively. It is further observed that the magnitude
of Upnar/Wo increases when Re increases, although the rate of increase decreases
with Re. Similar behaviour is observed in the Y direction of the Y — Z plane, but
the onset of the asymmetric behaviour in this direction occurs at a much later time
than that in the X direction for each corresponding case when Re is no more than
100. For higher Re cases, the onset of the asymmetric behaviour in the Y direction
occurs at essentially the same time as that in the X direction for each corresponding
case. A quantitative analysis on the time for the onset of the asymmetric behavior
(also termed the asymmetric transition time) in both the X and Y directions of the
Y — Z plane will be presented in § 4.3.2.

4.3.1.3 Effect of s

Figure 4.9 presents the representative temperature contours at the quasi-steady
stage on the same three individual planes as those in Fig. 4.6 when s varies in the
range 0 < s < 0.5, with F'r and Re kept constant at F'r = 10 and Re = 100. The
results with s = 0, which represents the case with a homogeneous ambient fluid, are
also included for comparison. Again all these plane fountains become asymmetric
and unsteady, although the extent of asymmetry and unsteadiness decreases with
increasing s. It is also observed that the fountain height, as shown by the contours in
the X —Z plane, decreases when s increases, due to the increasing negative buoyancy
that the fountain fluid has to overcome to penetrate in the linearly-stratified ambient

fluid. In the Y — Z plane, the increase in s leads to a lower fountain height and a
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FIGURE 4.8: Time series of (a) Upae/Wo and (b) Vinar/Wo for plane fountains at X = 0 in the
Y — Z plane with Re varying in the range 25 < Re < 300 but all at Fr =10 and s = 0.1.

smaller extent of the fluctuation of the height along the Y direction. Similarly, the
increase in s leads to a smaller extent of the fluctuation of the width in the X — Y
plane as well. All these clearly demonstrate that the stratification of the ambient
fluid plays a positive role to stabilize the flow and to alleviate its asymmetric and

unsteady behavior.
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FIGURE 4.9: Representative temperature contours of plane fountains at the quasi-steady stage for
different s values in the range 0 < s < 0.5, all at F'r = 10 and Re = 100, at Y = 0 in the X — Z
plane (top row), X = 0 in the Y — Z plane (middle row), and Z = 0.5Z,,; in the X — Y plane
(bottom row), respectively.

Figure 4.10 presents the corresponding representative contours of U/W, and
V/Wy at the quasi-steady stage at X = 0 in the Y — Z plane for the same plane
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fountains as for Fig. 4.9. It is observed that significant non-zero U values are present
at X = 0in the Y —Z plane at the quasi-steady stage, indicating that these fountains
flap in the X direction in the X — Z plane and become asymmetric and unsteady,
which is in agreement with that observed from Fig. 4.9. However, due to the in-
fluence of the stratification to stabilize the flow and to reduce the asymmetric and
unsteady behavior, as discussed above, it is observed that the extent of flapping and
entrainment decreases when s increases, although the effect of s on the asymmetry
and unsteadiness of the fountains is not as strong as that of Re. Similar observation
can be made in the Y direction of the Y — Z plane as well, although the magnitudes
are smaller than those in the X direction.

s=0.1 s=0.2

FIGURE 4.10: Representative contours of U/Wy (top row) and V/W, (bottom row) of plane
fountains at the quasi-steady state for different s values with F'r = 10 and Re = 100 at X =0 in
the Y — Z plane, where U/Wj and V/W, are in percentage.

Figure 4.11 presents the time series of Upuer/Wo and Vi /Wy at X = 0 in
the Y — Z plane with s varying in the range 0.1 < s < 0.5, all at F'r = 10 and
Re = 100, which provides a better exhibition of the effect of s on the asymmetric
behaviour of plane fountains in both the X and Y directions in the Y — Z plane.
For all s values considered, it is found that the fountains maintain symmetry in
both directions at their respective early developing stages and become asymmetric
and unsteady after that, which is in agreement with the above observation. Another
noticeable observation is that the times for the onset of asymmetry in both directions
do not change significantly when s varies, although it is evident that the onset of
asymmetry in the Y direction occurs at a later time than that in the X direction
for each corresponding case, as will be further analyzed quantitatively in the next
section. A further observation is that the extent of asymmetry and unsteadiness in
either direction, from a time-averaged perspective, is essentially the same for all s

considered.
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FIGURE 4.11: Time series of (a) Upaz/Wo and (b) Viner/Wo for plane fountains at X = 0 in the
Y — Z plane with s varying in the range 0.1 < s < 0.5 but all at F'r = 10 and Re = 100.

4.3.2 Quantitative analysis of the asymmetric transition time

4.3.2.1 1In the X direction

To conduct a quantitative analysis of the time for the onset of the asymmetric
behaviour of a plane fountain (i.e., the asymmetric transition time) in the X direc-
tion, which is denoted as 7,4, ,, an appropriate threshold in terms of Uy, /W must
be determined. To this end, 7,4, determined by the thresholds of Ue./Wo =2%,
3% and 4%, respectively, are presented in Fig. 4.12 for varying s and Re. From
this figure, it is seen that, for all three thresholds, 7,4, , decreases when s increases,
which is in agreement with the qualitative observations as described above, although
Tasyw changes in a relatively narrow range (from about 100 to 135) when s varies
in the range 0.1 < s < 0.5. Similarly, it is observed that 7., , decreases when
Re increases, which is again in agreement with the above qualitative observations,
but with a much wider range of changes (from about 530 to 100) when Re varies
between 25 and 300. The figure also demonstrates that all three thresholds pro-
duce consistent results with similar trends and their differences are relatively small,
in particular those between the thresholds with Up,a./Wo = 3% and 4%. Hence
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the threshold of U,,../Wo = 3% is considered to be the appropriate threshold to

determine 7,4, , and is thus used in this study.
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FIGURE 4.12: 7,4y, determined by the thresholds of Upya./Wo =2%, 3% and 4%, respectively,
plotted against (a) s when Fr = 10 and Re = 100 and (b) Re when Fr = 10 and s = 0.1.

It is assumed that the effects of Re and s on 7,4, , can be quantified by the
following relation,
Tasy,x — Casy,acRe_as_b; (41)

where Cgsy - is the constant of proportionality and the indices a and b are constants
which can be determined by a multivariable regression technique applied to the DNS
results. Over the ranges 25 < Re < 300 and 0.1 < s < 0.5, the DNS results for
the F'r = 10 plane fountains, as shown in Fig. 4.13(a), give the following quantified
relations for 7,4, , when the threshold of U,,q,/Wy = 3% is used,

Tasyw = 4064.1Re 0170189 _ 49 1, (4.2)

The regression coefficient of this correlation is 0.9362, indicating that this is a rea-
sonably good relation. However, it is clearly seen from Fig. 4.13(a) that the DNS
results at Re = 25 are significantly removed from the rest of the data, in terms

of the relation (4.1). Such significant deviations at Re = 25 can also be seen in
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Fig. 4.12(b) where 7,4, drops dramatically when Re increases from 25 to 50. All
these imply that the behavior of the fountains at Re = 25, in terms of 7,4, ,, is not
in the same regime as the other fountains considered. This needs further study but
is not considered here. It is also found that the datum for the case of s = 0.5 and
Re = 50 is noticeably away from the rest of the data in terms of the relation (4.1)
and thus should also be excluded. With the exclusion of this datum and all the data
for Re = 25, the remaining DNS data presented in Fig. 4.13(a) are found to be in
very good agreement with the relation (4.1), as shown in Fig. 4.13(b), which leads

to the following quantified correlation,
Tasye = 632.5Re” 157022 _ 38, (4.3)

The regression coefficient of this correlation is 0.9711, confirming that this is a very
good fit.

The noticeable deviation of the Re = 50 and s = 0.5 data from the quantified
correlation is most likely due to the extremely large temperature gradient of the
ambient fluid used in this DNS run, at S = 212.4 K/m as listed in Table 4.1, which
is the largest among all DNS runs considered in this study. One consequency of the
use of such an extremely large temperature gradient is that the Oberbeck-Boussinesq
approximation assumed in the DNS run may not be appropriate. Furthermore, the
use of such an extremely large temperature gradient for the Re = 50 and s = 0.5
case is found to lead to large deviations in other situations as well, as will be detailed

subsequently in this paper.

As the index a for Re is signficantly larger than the index b for s, the effect of
Re on 744, , is stronger than that of s, which confirms the qualitative observations

as described above.

4.3.2.2 1In the Y direction

Similarly, the asymmetric transition time in the Y direction, denoted as 745y,
also needs to be determined by using an appropriate threshold in terms of V,,../W.
Figure 4.14 presents 7,s,,, determined by different V,,,,/W, thresholds for vary-
ing Re and s. However, unlike the 7,5, , case, it is seen that the thresholds with
Vinaz/Wo > 1% lead to inconsistent and significantly different values of 7,,, for
varying Re and s. But thresholds with Vj,../W, of no more than 0.5% are found
to produce consistent results with similar trends and slight differences. In particu-

lar, the numerical results presented in this figure demonstrate that the thresholds
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FIGURE 4.13: T4sy4, determined with the Ueu/Wo =3% threshold, plotted against (a)
Re=0-731570-189 gyer the ranges 25 < Re < 300 and 0.1 < s < 0.5 and (b) Re™0433570:252 gyer the
ranges 50 < Re < 300 and 0.1 < s < 0.5. The solid lines are the linear fits of the data, with the
s = 0.5 and Re = 50 datum excluded in (b).

of Viaa/Wo = 0.1% and 0.2% produce almost identical values of 7,4,,. Hence,
the threshold of Vj,../Wy = 0.2% is considered to be the appropriate threshold to

determine 7,,, and is thus used in this study.

Similar to 74y 4, the effects of Re and s on 7,44y, is assumed to be quantified by
the following relation,
Tasy,y = Casy,yRe_CS_da (44)

where again the indices ¢ and d and the constant of proportionality Cys,, are con-
stants which are determined by applying the multivariable regression technique to
the DNS results. With the DNS results for 7,4,,, over the ranges 25 < Re < 300
and 0.1 < s < 0.5, as shown in Fig. 4.15(a), the following quantified relation is
obtained for 7., with the threshold of V,,q./Wy = 0.2%,

Tasyy = 34038.0Re™ 0992570027 _ 154 1. (4.5)

From Fig. 4.15(a), it is apparent that the DNS results are not in good agreement
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FIGURE 4.14: (a) Tasy,y, determined by the thresholds of Viee/Wo = 0.1%, 0.2%, 0.5%, 1%,
2%, 3%, and 4%, respectively, plotted against s when Fr = 10 and Re = 100, and (b) Tusy,y,
determined by the thresholds of Vj,../Wo = 0.1%, 0.2%, and 0.5%, respectively, plotted against
Re when Fr =10 and s = 0.1.

with the relation (4.4), which is also confirmed by the low regression coefficient,
at R = 0.7964, for the above quantified correlation. Similar to that for 7,4, ., the
behavior of the fountains at Re = 25, in terms of 7,4,,, is also in a different regime
from that of the other fountains considered, and thus should be excluded from the
regression. Furthermore, the DNS datum for the case of Re = 50 and s = 0.5
should also be excluded from the regression for the same reason as that for 7,4, ., as
discussed above. With the exclusion of this datum and all the data at Re = 25, the
remaining DNS data presented in Fig. 4.15(a) are found in very good agreement with
the relation (4.4), as shown in Fig. 4.15(b), which leads to the following quantified
correlation,

Tasyy = 1533.2Re™ 712570129 _ 49, (4.6)

The regression coefficient of this correlation is 0.9904, confirming that this is a very
good fit.

As the index ¢ for Re is more than three times larger than the index d for s, the

effect of Re on 7,4, is much stronger than that of s. A comparison of the values of
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a, b, ¢ and d in the quantified relations (4.3) and (4.6) further shows that the effect
of Re on 7,4y, is also stronger than on 7., ., whereas on the contrary the effect of s
Ol Ty, is much weaker than on 7,4, ,. All these are consistent with the qualitative

observations as described above.
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FIGURE 4.15: 744, determined with the Vi,0./Wo = 0.2% threshold, plotted against (a)
Re=0:9925-0.027 qyer the ranges 25 < Re < 300 and 0.1 < s < 0.5 and (b) Re=05324-0.129 Gyer the
ranges 50 < Re < 300 and 0.1 < s < 0.5. The solid lines are the linear fits of the data, with the
s = 0.5 and Re = 50 datum excluded in (b).

4.4 Maximum fountain penetration height

4.4.1 Time series of the maximum fountain height

A typical time series of the dimensionless maximum fountain height, z,, (2, =
Zm/Xo, where Z,, is the maximum fountain height), obtained from DNS; is pre-
sented as an example in Fig. 4.16 for the case of F'r = 10, Re = 300 and s = 0.2.
It is seen that initially the fountain rises continuously after initiation until at 7,,;

when it attains an initial maximum height z,, ;. After that, z,, falls slightly before
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it rises again, followed by a short period of transition before it becomes fully de-
veloped subsequently, with z,, fluctuating around an almost constant value, 2, q,
which is denoted as the time-averaged maximum fountain height. 7,,; (the time for
the fountain to attain the initial maximum height z,,;), Zm.i, Zma, 0 which is the
standard deviation of z,, around z,,, at the fully developed stage (the quasi-steady

state), and the time period used for determining z,,, are illustrated in Fig. 4.16.

30 T T T T T T T

25 k—— Time period for time averaging

20

Z, 15

10

0 Tmi 200 400 600

8

FIGURE 4.16: Illustration of 2y, s, Tm,i, 2m,a and o based on the time series of the dimensionless
maximum fountain height, z,,, obtained from DNS for the case of F'r = 10, Re = 300 and s = 0.2.
o is the standard deviatons of z,, around z,, , at the fully developed stage (i.e., quasi-steady state).

The DNS results for the time series of z,, for fountains with s and Re varying
over the ranges 0.1 < s < 0.5 and 25 < Re < 300, all at F'r = 10, are presented in
Fig. 4.17. It is observed that in general z,, decreases when s increases due to the
increasing negative buoyancy, but increases when Re increases, largely due to the
increased mixing and entrainment effects. It is also observed that 7,,; reduces when
s increases, again due to the increasing negative buoyancy which results in reduced

Zm. Tm,i 18 also observed to reduce when Re increases.

4.4.2 Initial maximum fountain height
4.4.2.1 Effect of Re

The effect of Re on z,,; is demonstrated by the DNS results presented in Fig. 4.18
for fountains over the ranges 25 < Re < 300 and 0.1 < s < 0.5. It is seen that when
Re < 100, z,,; increases when Re increases. However, the dependence of z,,; on
Re when Re > 100 is not monotonic and is strongly s dependent. For s = 0.1, 2, ;
continues to increase when Re increases, but for s = 0.2, it reduces at Re = 200
but increases again when Re = 300, and for s = 0.3 it continues to reduce when Re
increases, whereas for s = 0.4 and 0.5, z,,; is almost constant for Re > 100. This

implies that the fountain behavior, in terms of z,,,;, may be in different regimes
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FIGURE 4.17: Time series of the maximum fountains height (z,,) within the whole computational
domain for different value of s in the range 0.1 < s < 0.5 at (a) Re = 25, (b) Re = 50, (¢) Re = 100,
(d) Re =200, and (e) Re = 300, respectively, all at F'r = 10.

when Re < 100 and when Re > 100. It is also observed that the dependence of z,, ;

on Re is in general not linear.

It is assumed that the dependence of z,; on Re can be represented by the
following relation,
Zmyi = m,i,ReReaa (47)

where C,, ; ge is a constant of proportionality and the index a is also a constant. The
regression results with this relation using the DNS data presented in Fig. 4.18(a),
as demonstrated in Figs. 4.18(b) and 4.18(c) for 25 < Re < 300 and 25 < Re < 100,
respectively, are listed in Table 4.2. Tt is found that over the range of 25 < Re < 300,
only the data with s = 0.1 agrees well with the relation (4.7), and at other s
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all at F'r = 10. The solid lines are linear fit lines.

values, no very satisfactory agreement can be obtained. However, over the range of

25 < Re <100, the dependence of z,,; on Re is well predicted by the relation (4.7).

4.4.2.2 Effect of s

The effect of s on z,,; is shown in Fig. 4.19 for the fountains over the ranges

25 < Re < 300 and 0.1 < s < 0.5.

In contrast to the effect of Re, it is seen
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TABLE 4.2: Regression results for the dependence of z,, ; on Re for 25 < Re < 300 and 25 < Re <
100, respectively.

For 25 < Re < 300 For 25 < Re < 100
S Cm,i,Re a R Cm,i,Re a R
0.1 17.409 0.083 0.9744 15.904 0.108 0.9709
0.2 15.191 0.067 0.8738 12.566 0.118 0.9882
0.3 13.208 0.068 0.8306 10.509 0.129 0.9814
0.4 11.082 0.086 0.8528 8.034 0.172 0.9741
0.5 10.753 0.074 0.7803 7.492 0.171 0.9597
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FIGURE 4.19: (a) zn,; plotted against s and (b) In(z,,,;) plotted against in(s) for 25 < Re < 300
and 0.1 < s < 0.5, all at Fr = 10. The solid lines are linear fit lines.

from Fig. 4.19(a) that z,,; decreases monotonically with increasing s, which is the
result of the increasing negative buoyancy that the fountains have to overcome when
penetrating the stratified ambient fluid. Similarly, the dependence of z,,; on s is in
general not linear, and the DNS results presented in Fig. 4.19(b) clearly demonstrate

that this dependence can be expressed by the following relation,

Zmyi = Cm,i,ssby (48>
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TABLE 4.3: Regression results for the dependence of z, ; on s for 25 < Re < 300 and 0.1 < 5 < 0.5.

Re  Cpis b R

25 10.124 -0.350 0.9955
50 12.344 -0.303 0.9998
100 13.328 -0.290 0.9990
200 12.742 -0.320 0.9886
300 12.419 -0.353 0.9963

where (), ;s is a constant of proportionality and the index b is also a constant.
The regression results are listed in Table 4.3. It is found that over the ranges
25 < Re <300 and 0.1 < s < 0.5, all data agree very well with the relation (4.8),

indicating that the dependence of z,,; on s is well represented by this relation.

4.4.2.3 Combined effect of Re and s

As the dependences of z,,; on Re and s are represented by the relations (4.7)
and (4.8), respectively, the combined effect of Re and s on z,,; can be quantified by
the following relation,

Zmi = O iRe®s’, (4.9)

where C),; is a constant of proportionality and the indices a and b are again con-
stants. The values of these constants are determined by the multivariable regression
method using the DNS results over the ranges of 25 < Re < 300 and 0.1 < 5 < 0.5,

which gives the following quantified correlation,
Zm.i = 8.52TRe% 070570323 4 (.200. (4.10)

The regression coefficient of this correlation is R = 0.9835, indicating that the DNS
results over the ranges of 25 < Re < 300 and 0.1 < s < 0.5 are in very good
agreement with the relation (4.9), as demonstrated in Fig. 4.20(a) where the DNS
results for z,,; over the ranges of 25 < Re < 300 and 0.1 < s < 0.5 are plotted
against Re%70570-323  In view of the not very satisfactory agreement between the
DNS results over the whole range of 25 < Re < 300 with the relation (4.7), as
described above, this is a surprising outcome. Nevertheless, this is the result of the
much weaker dependence of z,,; on Re than on s, as the magnitude of b for s is more

than three times larger than that of a for Re, as shown by the quantified correlation
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(4.10), and hence the contribution from Re to z,,; is significantly weakened in the

combined effect of Re and s and the contribution from s is dominant.

There is no doubt that the separation of the range of Re, into the ranges 25 <
Re < 100 and 200 < Re < 300 respectively, will further improve the agreement
between the DNS results and the relation (4.9). Nevertheless, the improvements are
found to be marginal, as shown in Fig. 4.20(b) for the range of 25 < Re < 100 and
Fig. 4.20(c) for the range of 200 < Re < 300. The regression analysis gives

Zm,i = 6.6T3Re™ 0570315 40,490, (4.11)
for the range of 25 < Re < 100, and

Zmi = 9.828 Re" 570330 4 0,021, (4.12)

for the range of 200 < Re < 300. The regression coefficients for these two quantified
correlations are 0.9922 and 0.9925, respectively, which confirm that the improve-
ments are indeed very marginal. These results further show that the effect of Re
on Zp,; is significantly weakened when Re is large, with the value of a for the range
of 200 < Re < 300 less than one third of that for the range 25 < Re < 100. It is
expected that a further increase of Re, beyond Re = 300, will further weaken the
effect of Re, and ultimately z,,; will be independent of Re when Re is sufficiently
high. In fact, even for the range of 200 < Re < 300, as shown in Fig. 4.20(d), the
complete elimination of Re from the relation (4.9) is found to only very marginally

weaken the agreement between the DNS results and the reduced relation (4.9), i.e.,
Zmi = 125835703 4.0.013, (4.13)

with the regression coefficient of 0.9906, which is only very slightly lower than 0.9925
for the relation (4.12).

A further observation from Fig. 4.20 is that the value of b in the relation (4.9)
barely changed when Re is in different regimes or no Re is included at all. This
further demonstrates that in the combined effect of Re and s on z,, ;, the contribution

from s is dominant.

4.4.3 Time to reach the initial maximum fountain height

The effects of s and Re on the time to reach the initial maximum fountain height,

Tim.i» Which is made dimensionless by X,/W), are shown in Fig. 4.21 over the ranges
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0.1 <s<0.5and 25 < Re < 300. From Figs. 4.21(a) and 4.21(b) it is seen that
in general 7,,; decreases when s or Re increases, which is similar to that for the
asymmetric transition time as discussed in § 4.3.2. The dependence of 7,,,; on s or

Re is again not linear, and may be assumed to have the following relations,

Tm,i = 7,5367 (414)

and

Tmi = CT,ReReau (415>

where C; ; and C; g, are constants of proportionality, and the indices @ and b are
also constants. The regression analysis of the DNS results presented in Figs. 4.21(a)
and 4.21(b) with these two relations gives the values of C;;, C;pge, a and b as
listed in Table 4.4. The DNS results are in very good agreement with the relations
(4.14) and (4.15), as shown in Figs. 4.21(c) and 4.21(d). The results presented in
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TABLE 4.4: Regression results for the dependence of 7,,, ; on s and Re respectively for 25 < Re <
300 and 0.1 < s <0.5.

For 7, = C’T,Ssb For 7, ; = Cr geRe®

Re Crg b R s Cr Re a R

25 128.1 -0.471 0.9971 0.1 17154 -0.486 0.9950
50 105.6 -0.354 0.9826 0.2 906.6 -0.389 0.9874
100 104.0 -0.236 0.9938 0.3 691.6 -0.357 0.9853
200 80.3 -0.204 0.9855 0.4 556.8 -0.332 0.9943
300 66.5 -0.240 0.9937 0.5 522.0 -0.329 0.9954

Table 4.4 show that the magnitude of the index a, which represents the extent of
the dependence of 7, ; on s, generally decreases when Re increases, indicating that
the dependence of 7,,; on s becomes weakened when Re increases. Similarly, the
magnitude of the index b, which represents the extent of the dependence of 7, ; on
Re, generally decreases when s increases, indicating that the dependence of 7, ; on

Re becomes weakened when s increases.

As the dependence of 7,,; on Re and s is represented by the relations (4.14) and
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(4.15), respectively, the combined effect of Re and s on 7,,; can be quantified by
the following relation,
Tmi = C’T’iRe“sb, (4.16)

where C';; is a constant of proportionality and the indices a and b are again constants.
With all data over the ranges 25 < Re < 300 and 0.1 < s < 0.5, the regression
analysis gives the values of -0.379 and -0.3 to a and b, respectively. However, as
demonstrated in Fig. 4.22, the DNS results for Re = 25 and s = 0.1 and s = 0.2 are
considerably removed from the other data in terms of the relation (4.16), most likely
for a similar reason to that of the asymmetric transition time as discussed above
(i.e., the behavior at Re = 25 is in a different regime) and should be excluded in
the regression. With the exclusion of the data at Re = 25 and s = 0.1 and s = 0.2,
the regression analysis with the remaining DNS results presented in Fig. 4.22 gives

the following quantified correlation,
T = 493.2Re” 9375793 4+ 7.101. (4.17)

The regression coefficient of this correlation is R = 0.9836, confirming that this is a

very good agreement.

400 T T T T T T T T T T T

o
L s=0.1""
o Re=25 —
s=0.2
30— o Re=50 Ny .
| ¢ Re=100 o i
PE 20— v —

100 —

0 0.1 0.2 0.3 0.4 0.5 0.6
Re—0.3798-0.3

FIGURE 4.22: 7, ; plotted against Re= 9375703 gyer the ranges 25 < Re < 300 and 0.1 < s < 0.5.
The solid line is the linear fit of the data with the data at Re = 25 and s = 0.1 and s = 0.2 excluded.

4.4.4 Time-averaged maximum fountain height

4.4.4.1 Effect of Re

The effect of Re on z,, , is demonstrated by the DNS results presented in Fig. 4.23
for fountains over the ranges 25 < Re < 300 and 0.1 < s < 0.5, all at Fr = 10.

From Fig. 4.23(a), it is observed that in general z,,, increases when Re increases
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for each s value, which is slightly different from that for z,,; in which the fountain
behavior, in terms of z,,,, may be in different regimes when Re < 100 and when
Re > 100, as discussed above. The results also show that the dependence of z,, , on

Re is in general not linear, and thus the following relation may be assumed,

= Cha,re e, (4.18)

Zm,a
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TABLE 4.5: Regression results for the dependence of z,, , on Re for 25 < Re <300 and 0.1 < s <
0.5.

s CmaRe a R

0.1 14579 0.119 0.9745
0.2 14.907 0.074 0.9907
0.3 13.480 0.065 0.9038
0.4 11.433 0.080 0.9953
0.5 9996 0.094 0.9758

where C), 4 re 1S a constant of proportionality and the index a is again a con-
stant. The regression results with this relation using the DNS data presented in
Fig. 4.23(a), as demonstrated in Fig. 4.23(b), are listed in Table 4.5. It is found that
over the ranges 25 < Re < 300, the data for each s value, except for s = 0.3, are
in very good agreement with the relation (4.18). For s = 0.3, it is noted that the
data at Re = 50 is noticeably removed from the quantified linear fit line. This is ex-
pected to have a similar cause to that discussed above for 7, , in the case of s = 0.5
and Re = 50, but a further investigation on this, which is beyond the scope of the
current study, is needed. The DNS results for the time-averaged standard deviation
of z,, around z,,, at the fully developed stage, 0,,,, as illustrated in Fig. 4.16, are
presented in Fig. 4.23(c). It is seen that over the ranges of 25 < Re < 300 and
0.1 < s < 0.5, 0y, varies between 0.5 and 2.0, and has no noticeable dependence

on either Re or s.

4.4.4.2 Effect of s

The effect of s on z,,, is shown in Fig. 4.24 for the fountains over the ranges
25 < Re < 300 and 0.1 < s < 0.5, all at F'r = 10. The DNS results presented in
Fig. 4.24(a) show that z,,, decreases monotically with increasing s, which is similar
to that for z,,;, as described above. This is again due to the increasing negative
buoyancy that the fountains have to overcome when penetrating the stratified am-
bient fluid when s increases. Similarly, the dependence of z,, , on s is in general not
linear, and the DNS results presented in Fig. 4.24(b) clearly demonstrate that this

dependence can be expressed by the following relation,

Zm,a = m,a,ssby (419)
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where (), .5 1S a constant of proportionality and the index b is also a constant.

The regression results are listed in Table 4.6.

It is found that over the ranges
25 < Re < 300 and 0.1 < s < 0.5, all data agree very well with the relation (4.19),

indicating that the dependence of z,, , on s is well represented by this relation. The

DNS results for o,,, are presented in Fig. 4.24(c¢), which again demonstrate that

Om,q has no noticeable dependence on either Re or s.
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TABLE 4.6: Regression results for the dependence of 2, , on s for 25 < Re < 300 and 0.1 <5 < 0.5.

Re Cpas b R

25 11.948 0.255 0.9638
50 11.581 0.323 0.9954
100 11.971 0.337 0.9959
200 13.110 0.312 0.9972
300 13.769 0.314 0.9992

4.4.4.3 Combined effect of Re and s

Similar to z,;, the combined effect of Re and s on z,, , can be quantified by the
following relation,
Zma = C’m,aRe“Sb, (4.20)

where C,, , is a constant of proportionality and the indices a and b are again con-
stants. With all data over the ranges 25 < Re < 300 and 0.1 < s < 0.5, the

regression analysis gives the following quantified correlation,
Zma = 8.434Re™ 0570310 — 0.042. (4.21)

The regression coefficient of this correlation is R = 0.9902, indicating that the DNS
results over the ranges 25 < Re < 300 and 0.1 < s < 0.5 are in very good agreement
with the relation (4.20), as illustrated in Fig. 4.25 where the DNS results for z,, , are
plotted against Re®80s709-310 Tt is found that the values of the indices a and b, 0.086
and -0.310, are very close to those obtained for z,,; (0.076 and -0.323, respectively),
which also demonstrates that the dependence of z,,, on Re is much weaker than

that on s, again similar to z,, ;.

4.4.5 Variation of maximum fountain height at X =0 on the Y — 7 plane

Before the onset of the asymmetric behavior, the maximum fountain height at
X = 0on the Y — Z plane should be constant along the Y direction. However, after
the onset of the asymmetric behavior, it is expected that the maximum fountain
height on the Y — Z plane will vary along the Y direction, as depicted in Fig. 4.26,
where the Y-direction profile of the maximum fountain height (z,—0) at X = 0 on
the Y — Z plane, at time 7 = 1072.4, is presented for the case of Re = 100, s = 0.2,

and F'r = 10. The parameter to quantify the variation of z,—q in the Y direction is
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the standard deviation of z,—o around its average in the Y direction, 2z,—¢,, which

is denoted as 0,—¢ and is made dimensionless by Xj.

The time series of o,—¢ for the F'r = 10 plane fountains over the ranges 25 <
Re < 300 and 0.1 < s < 0.5, obtained by DNS, are presented in Fig. 4.27. The
results show that for 25 < Re < 100, in general the value of o,— increases when Re
increases, and at Re = 25 the value is small, normally within 0.3, but dramatically
increases to up to 4 when Re increases from 25 to 50. However, a further increase
of Re, to beyond Re = 100, does not lead to a further increase in o,—g, as the
results show that at Re = 200 and 300, the values of o,—y are very close to those
at Re = 100 for each s value. Another noticeable observation is that in general the
values of 0,—y decrease when s increases, which is apparently due to the positive
role of the stratification of the ambient fluid in stabilizing the flow and reducing the

asymmetric and unsteady behavior of the fountains, as discussed above.

The dependence of o,—9 on s can be further demonstrated by the DNS results
presented in Fig. 4.28 where 0,-¢,, which is the time average of o,— over the
period from the instant when o,—y becomes significant to the end of the DNS run
(which is essentially the fully developed stage), is plotted against s over the ranges
of 25 < Re < 300 and 0.1 < s < 0.5. It is seen that for each Re value, the
data with different s values fall approximately on the same straight line, with a
negative gradient, confirming that o,—y decreases when s increases. The relation
between o0,-¢, and s for each Re value can then be quantified by the following
linear relation,

Op—0.q = C+ds, (4.22)
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TABLE 4.7: Regression results for the dependence of 0,—g 4 on s for 25 < Re < 300 and 0.1 < s <

0.5.

Re c d R

25 0.255 -0.490 0.891
50 2.637 -4.702 0.982
100 3.035 -3.379 0.985
200 3.258 -3.678 0.993
300 3.676 -4.217 0.964

where ¢ and d are constants. The values of ¢ and d are obtained by the regression

analysis of the DNS results presented in Fig. 4.28 and the results are listed in

Table 4.7. From these results, it is observed that in general the DNS results are

in good agreement with the linear relation (4.22) for each Re value. It is further

observed that the magnitudes of ¢ and d for Re = 25 are significantly smaller than

those for the other Re values, which further indicates that the behavior of the

fountains at Re = 25 is in a different regime from the fountains at the other Re

values considered. Again the datum at Re = 50 and s = 0.5 is considerably away

from the other data in the trend, apparently due to the similar reason as discussed

above for Tusy 4.

25

FI1GURE 4.26: The DNS results for the Y-direction profile of the maximum fountain height z,—
at X =0 on the Y — Z plane at time 7 = 1072.4 for the case of Re = 100, s = 0.2, and Fr = 10,
and the illustration of z;—g 4, Which is the average of z,—o along the Y direction, and the standard
deviation 04— of zy=( around z;—¢,, along the Y direction, where y = Y/ Xy is the dimensionless

form of Y.

4.5 Summary

In this chapter, the three-dimensional DNS results for transitional plane foun-
tains in linearly-stratified fluids with 25 < Re < 300 and 0 < s < 0.5, all at
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FIGURE 4.27: Time-series of 0,9 at X = 0 on the Y — Z plane for the F'r = 10 fountains over
the ranges of 25 < Re < 300 and 0.1 < s < 0.5: (a) Re = 25, (b) Re = 50, (¢) Re = 100, (d)
Re = 200, and (e) Re = 300.

Fr = 10, are used to analyze, both qualitatively and quantitatively, the transi-
tion of the fountains to asymmetry, their asymmetric behavior, and their maximum

penetration heights.

It is found that over the ranges of Re and s considered, fountains are symmetric
in the early developing stage, but become asymmetric and unsteady after that. The
fountains flap around X = 0 in the X — Z plane, with the fountain heights and

the extent of entrainment increasing with Re. The increase of Re also leads to a
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FIGURE 4.28: 0,-0,, plotted against s over the ranges 25 < Re < 300 and 0.1 < s < 0.5. The
solid lines are linear fit lines.

larger fluctuation of the fountain height in the Y direction of the Y — Z plane and
a larger fountain width and increased fluctuation in the X — Y plane. However,
the stratification of the ambient fluid (i.e., s) is shown to play a positive role in

stabilizing the flow and reducing its asymmetric and unsteady behavior.

The results further demonstrate that the asymmetric behaviour of plane foun-
tains in both the X and Y directions of the Y — Z plane can be well represented by
Umaz/Wo and V. /Wy at X = 0 of the plane, where Uy, and V., are the maxi-
mum values of U and V at X = 0 in the Y — Z plane, respectively. Any non-zero
Unnaz Or Ve indicates the asymmetric behaviour in the X or Y direction on the
plane. It is found that the magnitude of U,,q, /Wy increases when Re increases, al-
though the rate of the increase decreases with Re. Similar behaviour is also observed
in the Y direction of the Y — Z plane, but the onset of the asymmetric behaviour in
this direction in general occurs at a much later time than that in the X direction. It
is further observed that the extent of flapping and entrainment decreases when s in-
creases, although the effect of s on the asymmetry and unsteadiness of the fountains
is not as strong as that of Re. Empirical correlations which quantify the effects of
Re and s are developed for the times for the onset of the asymmetric behaviour of

plane fountains both in the X and Y directions, using the numerical results.

The numerical results further show that s has a stronger effect on z,,; and z,,,
than Re does, but the dependence of 7,,; on Re weakens when s increases, where
Zm,i and 2, , are the initial and time-averaged maximum fountain heights, and 7, ;
is the time to attain the initial maximum fountain height. Empirical correlations
are developed to quantify the individual and combined effects of Re and s on these

three parameters.



Asymmetric transitional plane fountains at a high Froude number (Fr = 10) 113

The numerical results also demonstrate that the behavior of the plane fountains
at Re = 25 is not in the same regime as the other fountains considered, which needs

further investigation but is beyond the scope of this thesis.






Chapter 5

Asymmetric transitional plane

fountains at lower Froude numbers

5.1 Introduction

In the previous chapter, only the effects of Re and s on the onset of asymmetric
behavior and the maximum fountain penetration height of transitional plane foun-
tains in linearly stratified fluids over the ranges of 25 < Re < 300 and 0 < s < 0.5
were studied at the fixed high Froude number of F'r = 10. As one of the major
parameters governing the fountain behavior, it is expected that F'r should also have
significant influence on the onset of asymmetric behavior and the maximum fountain
penetration height of transitional plane fountains in linearly stratified fluids, as well
as on other important bulk fountain flow behavior, such as bobbing and flapping
motions and thermal entrainment. However, the effect of F'r is not addressed in
Chapter 4 as it is fixed at F'r = 10.

This chapter is the extension of Chapter 4. In this chapter, the effect of F'r
at smaller values on the onset of asymmetric behavior and the maximum fountain
penetration height of transitional plane fountains in linearly stratified fluids will be
addressed, along with the combined effects of F'r, Re and s, through a series of
three-dimensional DNS runs over the ranges of 2.75 < Fr < 10, 25 < Re < 300,
and 0 < s < 0.7. In addition, the effects of Fr, Re and s on other important
bulk fountain flow behavior, including bobbing and flapping motions and thermal
entrainment, which are not addressed in Chapter 4, will also be studied with the

DNS results over the same ranges of F'r, Re and s.

115



116 Chapter 5

Some of the results presented in this chapter were reported in the following

publications:

1. InaMm, M. I., LiN, W., ARMFIELD, S. W. & HE, Y. 2016 Correlations
for maximum penetration heights of transitional plane fountains in linearly
stratified fluids. Int. Commun. Heat Mass Transfer 77, 64-77.

2. InaMm, M. I., LIN, W., ARMFIELD, S. W. & HE, Y. 2014 Penetration height
and onset of asymmetric behaviour of transitional plane fountains in linearly
stratified fluids. in Proceedings of the 19th Australasian Fluid Mechanics Con-
ference (19AFMC), 8-11 December 2014, Melbourne, Australia, Paper ID: 427.

The remainder of this chapter is organized as follows. In § 5.2, the details
of the DNS runs carried out in this chapter are presented, along with the mesh
and time-step independence testing. In § 5.3, the asymmetric transition of the
transitional plane fountains over the ranges of 2.875 < Fr < 10, 28 < Re < 300,
and 0 < s < 0.5 is described and discussed, both qualitatively and quantitatively,
with the DNS results. In § 5.4, the effects of F'r, Re and s on the initial and
time-averaged maximum fountain penetration heights, the time to attain the initial
maximum fountain height, and the variation of the maximum fountain height along
the fountain source slot, are analysed and quantified with the DNS results. The
characteristics of the bobbing and flapping motions present in these transitional
plane fountains and the thermal entrainment are then analysed and quantified with
the DNS results in § 5.5 and § 5.6, respectively. Finally, the major conclusions of

this chapter are drawn in § 5.7.

5.2 DNS runs and mesh and time-step independence testing

There are totally 46 DNS runs carried out in this chapter using ANSYS Fluent
13, with the key information about these runs listed in Table 5.1. For all DNS run,
the fluid used is again water with density py = 996.6kg/m?, kinematic viscosity
v = 858 x 107 "m?/s, and volume of expansion coefficient 3 = 2.76 x 10~* 1/K.
Th0 was fixed at 300 K. The specific F'r, Re and s values, over the ranges of 3 <
Fr <10, 28 < Re < 300 and 0.1 < s < 0.5, were determined by changing Wy,
Ty and s according to the definitions of F'r, Re and s, respectively. The half slot
width, Xy, was assumed to be fixed at 0.002 m for all F'r, Re and s (in contrast to

that used in Chapter 4), whereas ¢ is changing to ensure the Oberbeck-Boussinesq
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approximation. In this way, only a single computational domain is needed for all
DNS simulation runs considered in this chapter, which has the benefit to significantly

shorten the time to complete these DNS runs.

TABLE 5.1: Key information about the DNS run of this chapter.

S Re Fr

0.1 100 2.75,3,4,5,6,7,8,9, 10
0.2 100 3.5,4,5,6,7,8,9, 10
0.3 100 4,5,6,7,8,9, 10

0.4 100 4.5,5,6,7,8,9, 10

0.5 100 4.875,5,6,7,8,9, 10

0.1 25,28, 30, 35, 50, 100, 200, 300 5

For all DNS runs, the computational domain size (H x B x L) is chosen to
be 0.2 m x 0.1 m x 1.5 m. It is observed from the numerical results that the
chosen values of H, B and L are large enough to ensure that the influence of the
boundary conditions on the flow variables of interest is negligible. A fine and uniform
rectangular mesh was used in the region of —25 < X/ X, < 25,0 < Z/X, < 50, and
—50 < Y/X, < 50 for all DNS runs, since the velocity and temperature gradients
in this region are relatively large, similar to the cases considered in Chapter 4. A
coarse, non-uniform rectangular mesh was created with different expansion rates in
the remaining regions due to much smaller temperature and velocity gradients. The
grid sizes of the fine, uniform mesh are 1 mm, 2.5 mm and 1.1 mm along the X, Y

and Z directions, respectively.

Again extensive mesh and time-step independency testing was carried out to
ensure the accuracy of the obtained DNS results. The results from one mesh and
time-step independency test, as an example, are presented in Fig. 5.1 for the specific
case of Fr = 7, Re = 100 and s = 0.1, which depicts the horizontal profiles of
temperature and vertical velocity at height Z = 0.02 m in the X-Z plane at the
location Y = 0, and the vertical profiles of temperature and vertical velocity along
the centerline (at X =Y = 0) in the Z direction, all at t = 7.5 s. These results were
obtained with three different meshes (i.e.the coarse mesh with 1.17 million cells, the
basic mesh with 2.1 million cells and the fine mesh with 3.6 million cells) and at four
time steps (4.€.0.0125 s, 0.025 s, 0.035 s and 0.05 s). It is clear from Fig. 5.1(a) ~ (d),
where the DNS results obtained with the three meshes but with the same time
step of 0.025 s are shown, that the results produced with the basic mesh and the
fine mesh are essentially the same and only the results produced with the coarse
mesh have some noticeable deviations. The comparison of the DNS results obtained

with four time steps, but all with the basic mesh of 2.1 million cells, as shown in
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Fig. 5.1 (e ~ h), clearly demonstrates that the differences are very insignificant
among the four time steps. Hence, it is believed that the combination of the basic
mesh of 2.1 million cells and the time step of 0.025 s can produce sufficiently accurate
solutions. Such a mesh and time-step independency test was also conducted for other
conditions and the combination of the basic mesh of 2.1 million cells and the time
step of 0.025 s can also produce sufficient accurate solutions. In addition, the effect
of the domain size on the numerical results was also examined and it was found that
the domain size of H x B x L of 0.2 m x 0.1 m x 1.5 m produces the numerical
results with negligible boundary effects on the flow quantities of interest. For a
typical run, it usually took 10 18 days on a Dell OptiPlex (TM) 64-bit desktop with
the Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz processor and the 32 GB RAM.

5.3 Asymmetric transition

5.3.1 Diagnosis of asymmetric transition

The onset of asymmetric behavior was explained qualitatively with Fig. 4.5, where
transient contours of U/Wj and V/W, at X = 0 in the Y — Z plane were presented
for a plane fountain with Fr = 10, Re = 100 and s = 0.1 at different instants
of time. A quantitative identification of the onset of asymmetry along the X and
Y directions can be made through the time series of Uae/Wo and Viue./Wo, as
shown as an example in Fig. 5.2 for the plane fountain at F'r = 10, Re = 100 and
s = 0.1. The figure shows that Up../Wy and V,../ Wy are essentially zero at the
early developing stage until 7 ~ 124 and 171, respectively, which indicates that
the asymmetric transition starts earlier along the X direction than that in the Y
direction. The extent of the asymmetry along both directions becomes significant
at subsequent stages, which can be quantified by %pazq and vy,44.4, respectively, as
shown in Fig. 5.2. Umaza and Upaqq are the time averaged values of Uppa, /Wy and
Vinaz/Wo at the fully developed stage, which are made dimensionless by Wy. It is
also seen from the figure that the extent of asymmetry along the X direction is
stronger than that along the Y direction, as tmeqz,q is larger than v,,4, 4. The times
for the onset of asymmetry along the X and Y directions, denoted by 7,4y » and 74,
respectively, can be determined with the time series of Uy, /Wo and Ve, /Wo by
selecting an appropriate threshold value for U,/ Wy or Ve, /Wo, similar to that
in Chapter 4. To this end, the values of 7,4, and 74, determined by using the
threshold values of Upa:/Wo and Vi /Wo at 0.3%, 0.4%, 0.5%, 1%, 2% and 3%,

respectively, are presented in Fig. 5.3 for different values of F'r, Re and s. From
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this figure, it is clearly seen that any threshold value no more than 0.5% will be
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FIGURE 5.2: Time series of Upae/Wo and Vi, /Wo of the plane fountain at Fr = 10, Re = 100
and s = 0.1, where U,,q; and V4, represent the maximum values of U and V respectively at
X = 0 in the Y — Z plane, and upqaq,qa a0d Upgz,q are their time averaged values at the fully
developed stage. Umaz,q and Vmaz,q are made dimensionless by Wy.
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appropriate for the determination of 7,4, , and 7,s,, so in this chapter 0.5% was

chosen as the threshold value to determine 7,4y, and 7,4y .

From Fig. 5.3, it is also seen that when F'r <5, both 7,4, , and 74, decrease
dramatically with increasing F'r; however, when Fr is beyond 5, both 7., , and
Tasyy change little. Similarly, when Re < 100, both 7,4, , and 7,4, also decrease
dramatically with increasing Re, but almost do not change beyond Re = 100. On
the contrary, at very weak stratification (when s is no more than 0.1), 7,4, , and
Tasyy change very marginally; however, they increase significantly with the increase

of stratification when s is larger than 0.1.

5.3.2 Effects of Fr, Re and s
5.3.2.1 Effects of Fr

Figure 5.4 presents the snapshots of transient contours of U/W, and V/Wj at the
fully developed stage at X = 0 in the Y — Z plane for plane fountains over the
range of 2.875 < Fr < 10, all at Re = 100 and s = 0.1. It is found that, although
the values of U/Wy and V/Wj are essentially zero when Fr = 2.875, meaning that
the fountain remains symmetric even at the fully developed stage, the values of
U/Wy and V/Wj at the fully developed stage for F'r > 3 are non-zero, even it was
observed that they are also zero in the early developing stage. This implies that
a critical value between Fr = 2.875 and Fr = 3 exists for F'r when Re and s are
fixed at Re = 100 and s = 0.1, which distinguishes the symmetric plane fountains

from asymmetric plane fountains, 7.e., a plane fountain will be symmetric all the
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FIGURE 5.3: Tusy,» (left column) and 744y, (right column), determined by using different threshold
values of Upnaz/Wo and Vie./Wo respectively in the range of 0.3% to 3%, plotted against Fr at
Re =100 and s = 0.1 ((a) and (d)); Re at Fr =5 and s = 0.1 ((b) and (e)); and s at F'r =5 and
Re =100 ((¢) and (f)).

times when Fr is less than this critical F'r, but will become asymmetric at the fully

developed stage when F'r is larger than this critical values.

The observed features from Fig. 5.4 are more evidently shown in Fig. 5.5, where
the time series of Upuae/Wo and Ve, /Wy with different F'r over the range of 2.875 <
Fr <10, all at Re = 100 and s = 0.1, are presented. From this figure, it is seen
that at F'r = 2.875, Uyyae/Wo is no more than 0.2% at any time, whereas V,,4../Wo
is even smaller, no more than 0.01% over the whole time series, indicating that the

Fr = 2.875 fountain has been symmetric at all developing stages. However, when
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FIGURE 5.4: Snapshots of transient contours of U/W; (first column) and V/Wj (second column),
both in percentage, at fully developed stage at X =0 in the Y — Z plane for plane fountains over
the range of 2.875 < Fr < 10 at Re = 100 and s = 0.1.

Fr increases slightly to 3, both Upe./Wo and Vi, /Wy increase dramatically at
the later developing stage, to be as high as 25% and 12% respectively. This clearly
shows that at F'r = 3 the fountain becomes asymmetric at the later developing stage.

Nevertheless, a further increase in F'r does not lead to a proportional increase in
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FIGURE 5.5: Time series of Up,ae/Wo (left column) and V6. /Wo (right column) of plane fountains
with different F'r over the range of 2.875 < Fr < 10, all at Re = 100 and s = 0.1.

the time-averaged values of Upa./Wo and Ve, /Wo, as clearly shown in the figure.
Hence the quantitative results presented in Fig. 5.5 confirm that a critical value
between Fr = 2.875 and F'r = 3 exists for I'r when Re and s are fixed at Re = 100

and s = 0.1 which distinguishes the symmetric plane fountains from asymmetric



124 Chapter 5

plane fountains. From Fig. 5.5, it is also seen that the onset of the asymmetric
behavior along the X direction in general occurs slightly earlier than that along the
Y direction for each F'r, meaning that 7., , is in general slightly smaller than 7, ,

for each F'r.
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FIGURE 5.6: (@) Tasy,z; (0) Umaz,a; (€) Omaz,u; (d) Tasyy; (€) Vmaz,a; and (f) Omaz,e plotted
against F'r over the range of 2.875 < F'r < 10 with s varying in the range of 0.1 < s < 0.5, all at
Re = 100, where, Umaz,a; Vmaz,as Omaz,u, a0d Omaqg.v, which are made dimensionless by Wy, denote
respectively the time averaged values and the corresponding standard deviations of the time series
of Unaz/Wo and Vi /Wo at the fully developed stage.

The quantitative effect of F'r on the onset time of the asymmetry and the extent
of the asymmetric behavior at the fully developed stage along both the X and Y
directions is more evidently demonstrated in Fig. 5.6, where T,sy 2, Tasyys Umaz.a,

Umaz.as Omazu, A Omaes o are plotted against F'r over the range of 2.875 < F'r < 10
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with s varying in the range of 0.1 < s < 0.5, all at Re = 100. From Fig. 5.6(a)
and (d), it is seen that the effect of Fr on 7,4, and 7., is essentially the same,
with almost the same trend for each s value, although for each case, 7,4, is slightly
smaller than the corresponding 7,4,,. However, there are significant variations in
Tasy,z and Tog, ., for each s value when F'r increases. For example, at s = 0.1, it
is observed that when F'r is increased from 3 to 5, both 7,4, and 7., reduce
sharply and almost linearly; however, when F'r is further increased, beyond F'r = 5,
there are almost no change in either 74, , or 7,4, indicating that over the range
of 5 < Fr < 10 considered in this thesis the effect of F'r on 7us, . O Tusy,, at
s = 0.1 and Re = 100, is negligible. Similar trends are also observed for other
s values considered, although the specific value of F'r to separate these two quite
different effects of F'r on 7,4y, Or T4y, are different and in general increases when

s is increased, as clearly shown in Fig. 5.6(a) and (d).

Likewise, as shown in Fig. 5.6(b) and (e), the effect of F'r on w4z q and vygy 4, for
each s value, can be divided into two different regimes. For example, it is observed
that when F'r is increased from 3 to 5, Umesq increases sharply and essentially
linearly, but when F'r is further increased to be beyond F'r = 5, e, essentially
does not vary, indicating that over the range of 5 < Fr < 10 the effect of Fr on
Umaz.a, at s = 0.1 and Re = 100, is also negligible. For v;,,45 4 at s = 0.1, the trend is
slightly different, as although when F'r is increased from 3 to 5, Ve also increases
sharply and linearly, however, when F'r is further increased until F'r = 8, Vpmaz.
continues to increase, also almost linearly, but at a smaller rate. Beyond F'r = 8§,
the variation of vVp,q , is slightly differently. Nevertheless, the general trends are in

general quite similar for w444 and Vpnes.q, and for other s values considered as well.

On the other hand, it is observed from Fig. 5.6(c) and (f) that no unique trends

in the effect of F'r on 0,45, and 0pe.,» can be found.

5.3.2.2 Effect of Re

Figure 5.7 presents the snapshots of transient contours of U/Wj, and V/W, at the
fully developed stage at X = 0 in the Y — Z plane for plane fountains over the range
of 25 < Re < 300, all at F'r =5 and s = 0.1. It is found that, although the values
of U/Wy and V/W, are essentially zero when Re = 25 and Re = 30 respectively,
meaning that the fountain remains symmetric even at the fully developed stage, the
values of U/W, and V/W, at the fully developed stage for Re > 30 are non-zero. In
fact, it was observed that even the values of U/Wj and V/Wj at the early developing
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FIGURE 5.7: Snapshots of transient contours of U/Wy (first column) and V/Wj (second column),
both in percentage, at fully developed stage at X =0 in the Y — Z plane for plane fountains over
the range 25 < Re < 300, all at F'r =5 and s =0.1.

stage are non-zero for Re > 30. This indicates that a critical value between Re = 25
and Re = 30 exists for Re when F'r and s are fixed at F'r = 5 and s = 0.1 which
distinguishes the symmetric plane fountains from asymmetric plane fountains, i.e.,
a plane fountain will be symmetric all the times when Re is less than this critical
Re, but will become asymmetric not only at the fully developed stage but also at

the early developing stage when Re is larger than this critical value.
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FIGURE 5.8: Time series of U4,/ Wo (left column) and V4. /Wy (right column) of plane fountains
with different Re over the range of 25 < Re < 300, all at Fr =5 and s = 0.1.

Similar to the F'r effect case, the observed features from Fig. 5.7 are more ev-
idently shown in Fig. 5.8, where the time series of Upe:/Wo and Vie./Wo with
different Re over the range of 25 < Re < 300, all at Fr = 5 and s = 0.1, are
presented. From this figure, it is seen that at Re = 25, Upuee/Wy is no more than
0.2% at any time, whereas V,,../W, is even smaller, no more than 0.01% over the
whole time series, indicating that the Re = 25 fountain has been symmetric at all
developing stages. However, when Re increases slightly, to 30, Uyu../Wo increases
dramatically at the later developing stage, to be as high as 6%; Vy,:/Wo also in-
creases sharply, although much smaller than that of U,,,./Wp, to be as high as 0.8%
only. A further slight increase of Re, to Re = 35, results in a dramatic increase
in both Uppee/Wo and Ve /Wo, to be as high as 20%. This clearly shows that at
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Re = 30 the fountain becomes asymmetric at the later developing stage. On the
other hand, beyond Re = 50, any further increase in Re does not lead to noticeable
variations in the time-averaged values of U,,q./Wo and V. /Wo, as clearly shown
in the figure. Hence the quantitative results presented in Fig. 5.8 confirm that a
critical value between Re = 25 and Re = 30 exists for Re when Fr and s are fixed
at Fr = 5 and s = 0.1 which distinguishes the symmetric plane fountains from
asymmetric plane fountains. From Fig. 5.8, it is also seen that the onset of the
asymmetric behavior along the X direction occurs in general noticeably earlier than
that along the Y direction for each Re, meaning that 7., , is in general smaller than

Tasyy fOr each Re value.
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FIGURE 5.9: (a) Tasys and Tesyy; (D) Umaz,a a0d Vpmazq; and (¢) Omag,e and opmasz o plotted
against Re over the range 30 < Re < 300, all at F'r =5 and s = 0.1.

The quantitative effect of Re on the onset time of the asymmetry and the extent
of the asymmetric behavior at the fully developed stage along both the X and Y
directions is more evidently demonstrated in Fig. 5.9, where 7,5y 2, Tasyys Umaz.a,
Umaz.as Omaz.u, a0d Omaey, are plotted against Re over the range of 30 < Re < 300,
all at F'r = 5 and s = 0.1. From Fig. 5.9(a), it is seen that the effect of Re

O Tyueyr and Tug . is essentially the same, with almost the same trend, although
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Tasy,z 15 slightly smaller than the corresponding 7,4, ,. However, there are significant
variations in 7, ., and T.s, When Re increases. When Re is increased from 30 to
100, both 74y, and 74y, reduce dramatically, from around 1200 at Re = 30 to
about 150 at Re = 100; however, when Re is further increased, beyond Re = 100,
there is almost no change in either 744, , Or 7,44,,, indicating that over the range of
30 < Re < 300 considered in this thesis the effect of Re on 745y 4 OF Tosyy, at s = 0.1
and F'r = 5, is negligible. This trend with significant different regions for the effect
of Re on Tuey, and 7u,, is very similar to that for the effect of Fr on 7,4, and

Tasyys @s discussed above.

Likewise, as shown in Fig. 5.9(b), the effect of Re on upmerq and Ve, can be
divided into two different regions. When Re is increased from 30 to 100, both %44 4
and Vp,qe,¢ increases sharply and essentially linearly, but when Re is further increased
to be beyond Re = 100, pqq, essentially does not vary, indicating that over the
range of 100 < Re < 300 the effect of Re on 44,4 is negligible. Similar trend is

also observed for v,4, 4, With only a slight variation observed.

Similar to the Fr effect case as discussed above, it is observed from Fig. 5.9(c)

that no unique trends in the effect of Re on 04424 and 0444, can be found.

5.3.2.3 Effect of s

Figure 5.10 presents the snapshots of transient contours of U/W, and V/W, at
the fully developed stage at X = 0 in the Y — Z plane for plane fountains over the
range of 0 < s < 0.7, all at F'r =5 and Re = 100. It is found that at s = 0.7 the
values of U/Wj and V/W, are essentially zero, meaning that the fountain remains
symmetric even at the fully developed stage. However, the values of U/W, and
V/Wy at the fully developed stage for s < 0.7 are non-zero, even it was observed
that they are also zero in the early developing stage. This implies that a critical
value between s = 0.5 and s = 0.7 exists for s when F'r and Re are fixed at F'r =5
and Re = 100 which distinguishes the symmetric plane fountains from asymmetric
plane fountains, i.e., a plane fountain will be symmetric all the times when s is
larger than this critical s, but will become asymmetric at the fully developed stage

when s is smaller than this critical values.

The observed features from Fig. 5.10 are more clearly shown in Fig. 5.11, where
the time series of Upar/Wo and Ve, /Wo with different s over the range of 0 < s <
0.7, all at F'r = 5 and Re = 100, are presented. From this figure, it is seen that

at s = 0.7, Upax/Wo is no more than 0.08% at any time, whereas Vj,q../Wy is even
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FIGURE 5.10: Snapshots of transient contours of U/Wj (first column) and V/Wj (second column),
both in percentage, at fully developed stage at X =0 in the Y — Z plane for plane fountains over
the range 0 < 5 < 0.7, all at F'r =5 and Re = 100.

smaller, no more than 0.02%, over the whole time series, indicating that the s = 0.7
fountain has been symmetric at all developing stages, which is in agreement with

the observation from Fig. 5.10. However, when s decreases to 0.5, both U,../Wo
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FIGURE 5.11: Time series of Upaz/Wo (left column) and Viy,ee/Wo (right column) of plane foun-
tains with different Re over the range 0 < s < 0.7, all at F'r =5 and Re = 100.

and Vj,./Wy increase significantly at the later developing stage, to be as high as
25% and 8% respectively. This clearly shows that at s = 0.5 the fountain becomes
asymmetric at the later developing stage. Nevertheless, a further decrease in s does
not lead to a proportional increase in the time-averaged values of U,,,,/Wy and
Vinaz/Wo, as clearly shown in the figure. Hence the quantitative results presented in
Fig. 5.11 confirm that a critical value between s = 0.7 and s = 0.5 exists for s when

Fr and Re are fixed at F'r = 5 and Re = 100, which distinguishes the symmetric
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FIGURE 5.12: (a) Tusy,z; (0) Umaz,a; (€) Omazw; () Tasyy; (€) Vmaz,a; and (f) Omazw plotted
against s over the range of 0 < s < 0.7 with Fr varying in the range of 5 < Fr < 10, all at
Re = 100.

plane fountains from asymmetric plane fountains. From Fig. 5.11, it is also seen
that the onset of the asymmetric behavior along the X direction occurs in general
earlier than that along the Y direction for each s, meaning that 7,4, , is in general

smaller than 7,4, , for each s.

The quantitative effect of s on the onset time of the asymmetry and the extent
of the asymmetric behavior at the fully developed stage along both the X and Y
directions is more evidently demonstrated in Fig. 5.12, where 7,5y 2, Tasyy, Umaz.a,
Umaz.ar Omazu, A Omeq, are plotted against s over the range of 0.1 < s < 0.5
with F'r varying in the range of 5 < Fr < 10, all at Re = 100. From Fig. 5.12(a)

and (d), it is seen that the effect of s on 7.4, , and 7,4, is strongly dependent on
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the value of F'r. When Fr < 7, 7,4, and 7,4, in general increase when Fr is
increased; however, both 7., , and 7,4, are essentially constant when F'r is further
increased, indicating they are essentially independent of s when F'r is beyond 7.
Another feature that can be observed from Fig. 5.12(a) and (d) is that the trends in
Tasy,z ald Tugy, are in generally the same, although for each s value, 7,4, . is smaller

than the corresponding 7,y -

The effect of s on Upaz.q and Vynas.q, as shown in Fig. 5.12(b) and (e), is observed
to be in a similar fashion as that of s on 7,4, and 7,4, although when Fr <7,
Umaz,a ANd Upayq in general decrease, not increase, when F'r is increased. Uz q
is essentially constant when F'r is further increased, indicating it is essentially in-
dependent of s when F'r is beyond 7. ¥pesq decreases slightly when F'r is further
increased beyond Fr = 7. One more feature can be observed from the figure is
that in general vy,qz, i smaller than 4, for the same case, as clearly shown in

Fig. 5.12(b) and (e).

Once again, it is observed from Fig. 5.12(¢) and (f) that no unique trends in the

effect of s on 04424 a0d Opyee, can be found.

5.3.3 Regime maps for asymmetric transition

The results described and discussed above can be used to create regime maps for
the symmetric-to-asymmetric transition in plane fountains in linearly stratified fluids
with varying F'r, Re and s considered in this study. Such regime maps are shown
in Fig. 5.13 for the asymmetric transition in the Fr — s domain at Re = 100, in
the Re — s domain at F'r =5, and in the Re — F'r domain at s = 0.1, respectively.
In each of these regime maps, a demarcation line can be drawn to distinguish the
symmetric fountain regime from the asymmetric fountain regime, as shown in the

figure.

In the F'r — s domain at Re = 100, as shown in Fig. 5.13(a), the demarcation

line can be approximated by the following empirical relation,
FTcM,Re:lOO =4.8s+ 2445, (51)

with R = 0.9975, which is obtained from the DNS results over the ranges of 2.75 <
Fr <10 and 0.1 < s < 0.5, all at Re = 100. This relation clearly shows that the
critical F'r at Re = 100 for the symmetric-to-asymmetric transition increases linearly

with the increase of s over the ranges of F'r and s considered. This is apparently
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FIGURE 5.13: Regime maps for the symmetric-to-asymmetric transition in plane fountains in
linearly stratified fluids with varying Fr, Re and s considered in this study: (a) in the Fr — s
domain at Re = 100; (b) in the Re — s domain at F'r = 5; and (c¢) in the Re — Fr domain at
s = 0.1. The solid lines are the demarcation lines to distinguish the symmetric fountain regime
from the asymmetric fountain regime.

due to the flow-stabilizing role played by the stratification of the ambient fluid, as
discussed in Chapter 4.

In the Re — s domain at Fr =5, as shown in Fig. 5.13(b), the demarcation line

can be approximated by the following empirical relation,
Re i pres = 19.375¢>035, (5.2)

with R = 0.9934, which is obtained from the DNS results over the ranges of 25 <
Re < 300 and 0.1 < s < 0.5, all at Fr = 5. The relation shows that for a fixed F'r
(when F'r = 5), the critical Re for the symmetric-to-asymmetric transition increases
exponentially with the increase of s over the ranges of Re and s considered, again
due to the flow-stabilizing role played by the stratification of the ambient fluid,

similar to that for the F'r — s domain, as described above.

In the Re — F'r domain at s = 0.1, as shown in Fig. 5.13(c¢), the demarcation line

can be approximated by the following empirical relation,

Regris—01 = 34599 Fr~ >3 4 21,69, (5.3)
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with R = 0.9995, which is obtained from the DNS results over the ranges of 25 <
Re < 300 and 2.875 < Fr < 10, all at s = 0.1. The relation shows that for a fixed s
(when s = 0.1), the critical Re for the symmetric-to-asymmetric transition decreases
dramatically and exponentially with the increase of F'r when F'r is no more than 4;
however, when Fr is beyond, over the ranges of Re and F'r considered, the critical
Re for the symmetric-to-asymmetric transition decreases only marginally when F'r
is further increased. A better understanding of the mechanism for this trend needs

many further DNS runs, which is beyond the scope of this thesis.

It should be noted that the exact location of such a demarcation line in each
regime map is not determined, rather than just estimated from the DNS results
over the ranges of Fr, Re and s considered in this thesis, as represented by the
above empirical relations (5.1)-(5.3). The determination of the exact location of
such a demarcation line for each domain, plus those in each of the regime maps for
other values of F'r, or Re or s that are not considered, will require many more DNS
runs to be carried out, which is beyond the scope of this thesis and hence will not

be proceeded further.

5.4 Maximum fountain penetration height

5.4.1 Qualitative observation

The typical flow behavior of an asymmetric plane fountain is demonstrated in
Fig. 4.4 by the evolution of transient temperature contours of a plane fountain at

Fr =10, Re = 100 and s = 0.1 at several selected instants of time.

The effect of F'r on the transition of plane fountain from symmetric to asymmet-
ric and unsteady behaviour is depicted in Fig. 5.14 where representative temperature
contours at the quasi-steady state on three individual planes with F'r varying in the
range of 3 < Fr < 10, all at Re = 100 and s = 0.1 are shown. The results show that
at the quasi-steady state all these plane fountains become asymmetric and unsteady.
The fountain flow in the X — Z plane flaps in the X direction and the fountain height
increases when F'r increases. It is also observed that the extent of entrainment in-
creases with F'r. In the Y — Z plane, the increase of F'r leads to larger fluctuations
of the fountain height along the Y direction. Similarly, the fountain width and the

fluctuation of the fountain width in the X — Y plane increase with F'r as well.
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FIGURE 5.14: Snapshots of temperature contours at the fully developed stage for Fr in the range
of 3 < Fr < 10, all at Re = 100 and s = 0.1, at Y = 0 in the X — Z plane (first column),
X =0in the Y — Z plane (second column), and Z = 0.5Z,,; in the X —Y plane (third column),
respectively, where Z,,; is the initial maximum fountain penetration height. The temperature
contours are normalized with [T(Z) — To]/(Ta,z=100x, — L0)-
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The effect of Re on the transition of plane fountain from symmetric to asymmetric
and unsteady behaviour is exhibited in Fig. 5.15 where representative temperature
contours at the quasi-steady state on three individual planes with Re varying in
the range 30 < Re < 300, all at Fr = 5 and s = 0.1, are shown. The results
show that at the quasi-steady state all these plane fountains become asymmetric
and unsteady. The fountain flow in the X — Z plane flaps in the X direction and
the fountain height at higher Re values (100 < Re < 300) is essentially independent
of Re, whereas it increases with Re at smaller Re values. In the Y — Z plane, the
fountain height along the Y direction is essentially constant at Re < 50, but varies
at higher Re values, with the fluctuation in the fountain height along the Y direction
increasing with Re. Similarly, the increase in Re results in a larger fountain width

and increased fluctuation of the width in the X — Y plane. It is also observed that
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FIGURE 5.15: Snapshots of temperature contours at the fully developed stage for Re in the range
of 30 < Re < 300, all at F'r =5 and s = 0.1, at Y = 0 in the X — Z plane (first column), X = 0 in
the Y — Z plane (second column), and Z = 0.5Z,, ; in the X —Y plane (third column), respectively.
The temperature contours are normalized with [T'(Z) — Ty]/ (T4, z=100x, — T0)-

Figure 5.16 presents the representative temperature contours at the quasi-steady
stage on the same three individual planes as those in Figs. 5.14 and 5.15 when s varies
in the range 0 < s < 0.5, with F'r and Re kept constant at F'r = 5 and Re = 100.
The results with s = 0, which represents the case with a homogeneous ambient fluid,
are also included for comparison. Again all these plane fountains become asymmetric
and unsteady at the quasi-steady state, although the extent of asymmetry and
unsteadiness decreases with increasing s, as clearly exhibited in the figure. It is also
observed that the fountain height, as shown by the contours in the X — Z plane,
decreases when s increases. This is due to the increasing negative buoyancy that the
fountain fluid has to overcome to penetrate in the linearly-stratified ambient fluid.
In the Y — Z plane, the increase in s leads to a lower fountain height and a smaller
extent of the fluctuation of the height along the Y direction. Similarly, the increase
in s leads to a smaller extent of the fluctuation of the width in the X — Y plane as
well. All these clearly demonstrate that the stratification of the ambient fluid plays
a positive role to stabilize the flow and to alleviate its asymmetric and unsteady

behavior.
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FI1GURE 5.16: Snapshots of temperature contours at the fully developed stage for s in the range of
0<s<0.5,allat Fr =5 and Re = 100, at Y = 0 in the X — Z plane (first column), X = 0 in the
Y — Z plane (second column), and Z = 0.5Z,,; in the X — Y plane (third column), respectively.
The temperature contours are normalized with [T'(Z) — To]/ (T4, z=100x, — T0)-

5.4.2 Time series of fountain penetration height

The fountain penetration height, Z,,, is determined as the vertical distance from
the bottom of the domain to the vertex point of the iso-surface at the temperature
of T(Z) = To — 1%(To0 — Tp) within the whole computational domain. A typical
time series of the dimensionless fountain penetration height, z, (z, = Zn./Xo),
obtained from DNS, is presented as an example in Fig. 5.17 for the case of F'r = 6,
Re = 100 and s = 0.2. It is seen that initially the fountain rises continuously
after initiation until at 7,,, when it attains an initial maximum penetration height
Zmq. After that, z,, falls slightly before it rises again, followed by a short period
of transition before it becomes fully developed and attains the quasi-steady state
subsequently, with z,, fluctuating around an almost constant value, z,, ,, which is
denoted as the time-averaged maximum penetration height. 7,,; (the dimensionless
time for the fountain to attain the initial maximum penetration height z,,;, which
is made dimensionless by Xo/Ws), 2mi, Zm.a, Om Which is the standard deviation of
Zm around z,, , at the quasi-steady state, and the time period used for determining

Zm,q are illustrated in Fig. 5.17.
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FIGURE 5.17: Illustration of 2, i, Tm. i, Zm,a and o, based on the time series of the dimensionless
maximum fountain penetration height, z,,, obtained from DNS for the case of Fr = 6, Re = 100
and s = 0.1. o,y is the standard deviation of z,, around z,, , at the quasi-steady state.

The DNS results for the time series of z,, with varying F'r, Re and s in the ranges
of 3 < Fr <10, 35 < Re <300, and 0 < s < 0.5 are presented in Fig. 5.18. It is
observed that in general z,, increases with F'r due to stronger momentum flux of the
fountain fluid at a higher Fr, but on the contrary, decreases when s increases due
to larger negative buoyancy. However, at the quasi-steady state, z,, is essentially
independent on Re for the Re range considered, indicating that the effect of Re on
Zm.q at the quasi-steady state is negligible, although Re does have effect on z,, ; when
Re < 100, as clearly exhibited in the figure. It is also observed that 7,,; increases
with F'r as at a higher F'r it will take a longer time for the negative buoyancy to
reduce the stronger momentum of the fountain fluid to be zero, whereas 7, ; reduces
when s increases, again due to the increasing negative buoyancy which results in
reduced 2, ;. T, is also observed to reduce when Re increases, although with small
amounts of reduction. These results imply that the stratification of the ambient
fluid plays a positive role to stabilize the fountain flow and to reduce its transition
to asymmetry and unsteadiness, whereas on the contrary F'r plays a negative role

and the effect of Re is small in this regard.

5.4.3 Scalings from dimensional analysis

For weak fountains with F'r = O(1), Lin and Armfield (2002) argued that the
specific momentum flux My, the specific buoyancy flux By, the kinematic viscosity

v, and the stratification of the ambient fluid S, provide a complete parametrization
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FIGURE 5.18: Time series of z, for (a) varying s in the range of 0 < s < 0.5 at Fr = 5 and
Re = 100, (b) varying Re in the range of 35 < Re < 300 at Fr =5 and s = 0.1, and (c¢) varying
Fr in the range of 3 < Fr < 10 at Re = 100 and s = 0.1.

of the maximum fountain penetration height, where M, and B, are defined for plane

fountains as

My = 2W2X,, By= QWOXng = W XogB(Tuo — To),  (5.4)
a,0

in which p, is the ambient fluid density at the bottom (i.e., at Z = 0). With
these four parameters, they conducted a dimensional analysis and gave the following

scaling for the maximum penetration height for weak plane fountains,

2 ~ Fri(t2-b) pe-bga (5.5)
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where the indexes ¢ and b are constants whose values can be determined from
experimental or numerical results. Apparently this scaling is applicable for both

Zmi and Zp, 4.

From scaling point of view, as t,,; ~ Z,,;/Wp, which leads to 7,,,:(Xo/Wo) ~
Zm,iXo/Wo, i.€., Tmi ~ Zm,, it is therefore believed that the above scaling (5.5) will

also be applicable for 7,,;, i.e.,
T ~ Fri@t2e-d po-dge (5.6)

where the indexes ¢ and d are not necessarily to be the same as a and b.

In this study, the above scalings obtained for weak plane fountains will be exam-
ined, as shown subsequently with the DNS results, to show if they are also applicable

for transitional plane fountains with higher F'r values considered here.

5.4.4 Initial maximum penetration height

The effect of F'r, Re and s on z,,; is demonstrated by the DNS results presented
in Fig. 5.19 for transitional plane fountains over the ranges of 3 < Fr < 10, 28 <
Re < 300 and 0.1 < s < 0.5. From Fig. 5.19(a), it is seen that at Re = 100,
for each s value, z,,; increases monotonically when F'r increases. This is because
when F'r increases, the momentum flux of the fountain will become stronger and
hence the fountain will penetrate higher in the ambient fluid. However, when the
stratification of the ambient fluid increases, the negative buoyancy that the fountain
has to overcome to penetrate in the ambient fluid will become stronger as well,
leading to smaller z,,;. The results presented in Fig. 5.19(a) clearly support this.
The DNS results further demonstrate, as shown in Fig. 5.19(b), that at a fixed Re
the dependence of z,,; on Fr for each s value can be quantified by the following
relation,

Zmi = C1Fr (5.7)

where (' is a constant of proportionality and the index a; is also a constant. The
values of these two constants were determined by linear regression analysis of the
data presented in Fig. 5.19(b), and the results are listed in Table 5.2. It is seen
that the value of C decreases with s, apparently due to stronger stratification, thus

stronger negative buoyancy. However, the value of a; increases slightly with s.

For Fr = 5 and s = 0.1, it is found that z,,; increases monotonically with

Re when Re < 100, but becomes almost constant when Re > 100, as shown in
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FIGURE 5.19: (a) 2z, ; plotted against F'r and (b) In(z, ;) plotted against In(Fr) over 3 < Fr < 10
at Re = 100 with different s values; (¢) z,,,; plotted against Re and (d) In(z,,;) plotted against
In(Re) over 28 < Re <300 at F'r =5 and s = 0.1; and (e) 2, ; plotted against s and (f) In(zm;)
plotted against In(s) over 0.1 < s < 0.5 at Re = 100 with different F'r values. The solid lines are
linear fit lines.

TABLE 5.2: Regression results for the dependence of z,,; on Fr for 3 < Fr < 10 at Re = 100

with different s.

Fig. 5.19(c).

different regimes when Re < 100 and when Re > 100. For Re < 100, the dependence

S 01 ai R
0.1 2.456 1.048 0.9868
0.2 1.586 1.156 0.9885
0.3 1.375 1.160 0.9907
0.4 1.099 1.218 0.9915
0.5 0.952 1.239 0.9978

This implies that the fountain behavior, in terms of z,,;, may be in
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of z,,; on Re can be quantified with the DNS results over the range of 28 < Re < 100
by the following correlation, as shown in Fig. 5.19(d),

Zm.i = 4.T31Re%2*, (5.8)

TABLE 5.3: Regression results for the dependence of z,,; on s for 0.1 < s < 0.5 at Re = 100 with
different F'r.

Fr 02 C1 R

) 5.040 -0.459 0.9997
6 6.783 -0.413 0.9803
7 9.102 -0.336 0.9801
8
9

11.219 -0.282 0.9998
12.147  -0.292 0.9991
10 12.606 -0.329 0.9987

The effect of s on z,,; is illustrated in Fig. 5.19(e) for the fountains over the
ranges 0.1 < s < 0.5 and 5 < Fr < 10, all at Re = 100. In contrast to the effect
of F'r and Re on z,,;, it is seen that z,,, decreases monotonically with increasing
s, which is the result of the increasing negative buoyancy that the fountain has to
overcome when penetrating the stratified ambient fluid. Similarly, the dependence
of 2, on s is in general not linear, and the DNS results presented in Fig. 5.19(f)

clearly demonstrate that this dependence can be expressed by the following relation,
Zm,i = CQSCI (59)

where (5 is a constant of proportionality and the index ¢; is also a constant. The
values of these two constants were determined by linear regression analysis of the
data presented in Fig. 5.19(f), with the results listed in Table 5.3. It is seen that
the value of (5 increases with F'r due to larger momentum flux of the fountain fluid
which leads to larger fountain penetration height, and the value of ¢; is also found

in general to increases with F'r, possibly due to the same mechanism.

As the dependence of z,,; on F'r, Re and s can be represented by the relations
(5.7), (5.8) and (5.9), respectively, the combined effect of these governing parameters

on z,; can be quantified by the following relation,
Zmi = C3Fr® ReP s, (5.10)

where (3 is a constant of proportionality and the indexes as, b; and ¢y are again

constants. The values of these constants are determined by multivariable regression



144 Chapter 5

30

s=05

(@)
0 20 40 60 80
Frl.lSZReO.15BS-O.360

N
o
1

[ ()

0 10 20 30 40 50
Fr0.958Re0.1585-0.360

FIGURE 5.20: z,,; plotted against (a) Fr!-192Re%158570:360 and () Fr0-958 ReV-158570:360 gyer
the ranges of 3 < F'r <10, 28 < Re < 300 and 0.1 < s < 0.5. The solid lines are linear fit lines.

method using the DNS results over the ranges of 3 < F'r < 10, 28 < Re < 300 and
0.1 < s < 0.5, which gives the following quantified correlation,

Zmi = 0.407Fr! 192 ReX 198570390 4 0,741, (5.11)

The regression coefficient of this correlation is R = 0.9893, indicating that the DNS
results over the ranges of F'r, Re and s considered are in very good agreement with
the relation (5.10), as clearly demonstrated in Fig. 5.20(a) where the DNS results
for z,; over the ranges of 3 < Fr < 10, 28 < Re < 300 and 0.1 < s < 0.5 are

plotted against Fr!1°2 Re0-198 570360,

If the scaling obtained by Lin and Armfield (2002) for weak plane fountains,
i.e., (5.5), is also applicable for transitional plane fountains considered here, and
the values of a and b determined with the DNS results, as presented in (5.11), are
valid, i.e., @ = —0.360 and b = —0.158, the index for Fr, from (5.5), should be
2(242a—b) = 0.958. However, from (5.11), it is found that the index for Fr
obtained with the DNS results over the ranges of F'r, Re and s considered is 1.152,
which is (1.152 — 0.958)/0.958 = 20% higher than the value expected from the
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dimensional analysis for weak fountains. Nevertheless, the DNS results show that

the scaling (5.5) obtained for weak fountains still works very well for transitional

0'958R€0'158 —0.360

plane fountains considered here, as it is seen that F'r S collapses all

DNS data well onto the straight line quantified by the following correlation, as shown
in Fig. 5.20(b),

Zm,i = 0.669 Fr09%8 Rel1985=0360 () 977, (5.12)
with the regression coefficient of R = 0.9883.
5.4.5 Time-averaged maximum fountain height
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FIGURE 5.21: (a) zm q plotted against F'r and (b) in(zm,q) plotted against In(F'r) over 3 < F'r < 10
at Re = 100 with different s values; (¢) 2, plotted against Re and (d) In(zp,,q) plotted against
In(Re) over 28 < Re < 300 at F'r =5 and s = 0.1; and (e) 2y, plotted against s and (f) In(zm,q)
plotted against In(s) over 0.1 < s < 0.5 at Re = 100 with different F'r values. The solid lines are
linear fit lines.
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TABLE 5.4: Regression results for the dependence of z,, , on Fr for 3 < Fr < 10 at Re = 100
with different s.

S 04 as R
0.1 2.524 0.987 0.9999
0.2 2.466 0.895 0.9986
0.3 2.654 0.801 0.9932
0.4 2242 0.835 0.9984
0.5 2178 0.820 0.9974

Similar results are also obtained for the time-averaged maximum fountain

height, z,, ., as shown in Fig. 5.21 and Fig. 5.22.

Figure 5.21 presents the effect of F'r, Re and s on z,,,, obtained numerically
for the same transitional plane fountains as those in Fig. 5.19. Similar to 2, it is
seen from Fig. 5.21(a) that for each s value, 2, , also increases monotonically when
Fr increases, due to stronger fountain momentum flux, but decreases when s in-
creases, due to larger negative buoyancy. The DNS results, as shown in Fig. 5.21(b),
demonstrate that at e = 100 the dependence of z,, , on I'r for each s value can be

quantified by the following relation,
Zma = CaFr®. (5.13)

The constants Cy and a3 in the above relation were determined by linear regression
analysis of the data presented in Fig. 5.21(b), which are listed in Table 5.4. It is
seen that in general both Cy and a3 decrease slightly with s due to stronger negative

buoyancy.

For Fr =5 and s = 0.1, as shown in Figs. 5.21(c) and 5.21(d), it is found that
Zm,q iNCreases very marginally when Re increases, indicating that z,, , is essentially
independent of Re over the ranges considered, which is in agreement with the results

presented in Fig. 5.18(b), as discussed above.

Fig. 5.21(e) demonstrates the effect of s on z,,, over the ranges 0.1 < s < 0.5
and 5 < Fr < 10, all at Re = 100. Similarly to the z,,; case, it is seen that
Zm,q decreases monotonically with increasing s, which is again due to the increasing
negative buoyancy that the fountain has to overcome when penetrating the stratified
ambient fluid. The dependence of z,, , on s, as shown by the DNS results presented

in Fig. 5.21(f), can be quantified by the following relation,

Zm.a = C55%. (5.14)
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The constants Cy and c3 were determined by linear regression analysis of the data
presented in Fig. 5.21(f) and listed in Table 5.5. It is seen that the value of Cj
increases significantly with Fr due to larger momentum flux of the fountain fluid
which leads to larger fountain penetration height, whereas the value of c3 is found

to decrease with F'r, which is on the contrary to the case for z,, ;.

Similarly, the combined effect of F'r, Re and s on z,,, can be quantified by the

following relation,
Zma = CoFrot ReP s, (5.15)
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where Cg is a constant of proportionality and the indexes a4, by and ¢4 are again
constants. The values of these constants are determined by multivariable regression
method using the DNS results over the ranges of 3 < F'r < 10, 28 < Re < 300 and
0.1 < s < 0.5, which gives the following quantified correlation,

Zma = 1.556Fr0854 Re0026570-26T _ 931 (5.16)

The regression coefficient of this correlation is R = 0.9925, indicating that the DNS
results over the ranges of F'r, Re and s considered are in very good agreement with
the relation (5.15), as clearly demonstrated in Fig. 5.22(a) where the DNS results
for 2, over the ranges of 3 < Fr < 10, 28 < Re < 300 and 0.1 < s < 0.5 are

0'854R60'026 —0.267

plotted against F'r S

Similar to z,;, if the scaling obtained by Lin & Armfield (2002) for weak plane
fountains, i.e., (5.5), is also applicable for transitional plane fountains considered
here, and the values of a and b determined with the DNS results, as presented in
(5.16), are valid, i.e., a = —0.267 and b = —0.026, the index for Fr, from (5.5),
should be %(2 4 2a — b) = 0.995. However, from (5.16), it is found that the index
for F'r obtained with the DNS results over the ranges of F'r, Re and s considered is
0.854, which is (0.995—0.854)/0.995 = 14% smaller than the value expected from the
dimensional analysis for weak fountains. Nevertheless, the DNS results show that
the scaling (5.5) obtained for weak fountains again works very well for transitional
plane fountains considered here, as it is seen that Fr9%99 Reb0265=0267 collapses all
DNS data well onto the straight line quantified by the following correlation, as shown
in Fig. 5.22(b),

Zmia = 1.059F 799 Re0-0205=0-267 4 1 990 (5.17)

with the regression coefficient of R = 0.9900.

TABLE 5.5: Regression results for the dependence of z,, , on s for 0.1 < s < 0.5 at Re = 100 with
different F'r.

Fr C5 C3 R
5 6.859 -0.256 0.9984
6 8017 -0.267 0.9837
7 8713 -0.293 0.9966
8 9779 -0.305 0.9946
9 10.521 -0.321 0.9997

—_
[an}

11.173 -0.345 0.9984

As shown in Figs. 5.21(c) and 5.21(d) and discussed above, z,,, is essentially
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independent of Re over the ranges considered and the index for Re in the relation
(5.17), i.e., 0.026, is negligible and thus can be assumed to be zero. It is also
interesting to note that the index for s in the relation (5.17), i.e., -0.267, is very
close to -1/4. It is reasonable to speculate that in the relation (5.17) the index for
s should be -1/4 and the index for Re should be 0 for transition plane fountains
over the ranges of F'r, Re and s studied in this study. These will result in the index
for F'r in the scaling (5.5) obtained for weak fountains, if it works for transitional
plane fountains as well, to be 2(2+ 2 x (—1/4) — 0) = 1. It is found that Frs~'/*
collapses all DNS data very well onto the straight line quantified by the following

correlation, as shown in Fig. 5.22(c),
Zma = 1.205Frs™1/* +1.252, (5.18)

with the regression coefficient of R = 0.9852. It is thus believed that the relation
(5.18) is the more appropriate scaling relation to represent the dependence of z,,,
on F'r; Re and s over their respective ranges considered in this paper. Nevertheless,
it is apparent that further studies are necessary to find the underpinning physics to

support this speculation.

5.4.6 Time to reach the initial maximum fountain height

The effect of F'r, Re and s on 7,,; is presented in Fig. 5.23 with the DNS
results obtained for the same transitional plane fountains as those for Figs. 5.19
and 5.21. When F'r increases, a fountain will penetrate higher in the ambient fluid
due to stronger fountain momentum flux, and thus will take a longer time to attain
Zm.i» which leads to a larger 7,,, ;. The DNS results presented in Fig. 5.23(a) clearly
demonstrate this as it is seen that for each s value, 7, ; increases monotonically when
Fr increases, similar to z,,; and z,,. The DNS results, as shown in Fig. 5.23(b),
further show that at Re = 100 the dependence of 7,,,; on F'r for each s value can be

quantified by the following relation,
Tmi = C7Fr®. (5.19)

The constants C'; and a5 in the above relation were determined by linear regression
analysis of the data presented in Fig. 5.23(b), which are listed in Table 5.6. It is

seen that C7 decreases with s but as increases with s.

For Fr =5 and s = 0.1, as shown in Fig. 5.23(¢), it is found that 7,,; decreases

when Re increases, which can be quantified with the DNS results over the range of
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28 < Re < 300 by the following correlation, as shown in Fig. 5.23(d),

Timi = 156.29Re™"%'%, (5.20)

with the regression coefficient of R = 0.9221. However, as the index for Re is -
0.018, which is very small, the effect of Re on 7,,; for the ranges considered is not

significant.

When s increases, the negative buoyancy becomes stronger and a fountain will
penetrate lower in the ambient fluid. This will lead to the fountain to take a shorter

time, thus smaller 7,,,;, to attain z,,;. The DNS results presented in Fig. 5.23(e),
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TABLE 5.6: Regression results for the dependence of 7, ; on Fr for 3 < Fr < 10 at Re = 100
with different s.

S C7 as R
0.1 30.382 0.766 0.9895
0.2 24777 0.777 0.9957
0.3 16.679 0.908 0.9961
0.4 14.472 0.923 0.9950
0.5 13.113 0.929 0.9865

which demonstrates the effect of s on 7,,; over the ranges 0.1 < s < 0.5 and
5 < Fr <10, all at Re = 100, clearly show this. Similarly to z,,; and z,, 4, it is seen
that 7,,,; decreases monotonically with increasing s, and the dependence of 7,,; on

s, as shown in Fig. 5.23(f), can be quantified by the following relation,
Tmi = Cs8%. (5.21)

The constants Cs and c; were determined by linear regression analysis of the data
presented in Fig. 5.23(f) and listed in Table 5.7. It is seen that the value of Cy

increases significantly with F'r due to larger momentum flux of the fountain fluid
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which leads to larger fountain penetration height and thus longer time to attain the

initial fountain height, whereas the value of c3 is relatively constant, at about -0.31.

TABLE 5.7: Regression results for the dependence of 7,,, ; on s for 0.1 < s < 0.5 at Re = 100 with
different F'r.

Fr Cg Cs R
5 45.801 -0.359 0.9902
6 58.608 -0.311 0.9721
7 69.180 -0.297 0.9881
8§ 74306 -0.307 0.9822
9 82.697 -0.299 0.9787

—_
[an}

90.202 -0.310 0.9904

Again similarly the combined effect of F'r, Re and s on 7,,; can be quantified by
the following relation,
Tmi = OgFTaGRGb?’SCG, (5.22)

where Cy is a constant of proportionality and the indexes ag, b3 and cg are again
constants. The values of these constants are determined by multivariable regression
method using the DNS results over the ranges of 3 < F'r < 10, 28 < Re < 300 and
0.1 < s < 0.5, which gives the following quantified correlation,

Ty = 18.73F 0% Re~ 0091570317 — () 998, (5.23)

The regression coefficient of this correlation is R = 0.9912, indicating that the DNS
results over the ranges of F'r, Re and s considered are in very good agreement with
the relation (5.22), as clearly demonstrated in Fig. 5.24(a) where the DNS results
for 7,,,; over the ranges of 3 < F'r < 10, 28 < Re < 300 and 0.1 < s < 0.5 are

plotted against Fr0-865 Re=0:0915-031T

Similar to z,,; and z,,,, if the scaling obtained by Lin & Armfield (2002) for
weak plane fountains, i.e., (5.6), is also applicable for transitional plane fountains
considered here, and the values of ¢ and d determined with the DNS results, as
presented in (5.23), are valid, i.e., ¢ = —0.317 and d = 0.091, the index for F'r, from
(5.6), should be 2(2 4 2¢ — d) = 0.851. From (5.23), it is found that the index for
Fr obtained with the DNS results over the ranges of F'r, Re and s considered is
0.865, which is only (0.865 — 0.851)/0.851 = 1.6% larger than the value expected
from the dimensional analysis for weak fountains. This indicates that the scaling
(5.6) obtained for weak fountains works extremely well for transitional plane foun-

tains considered here, as it is seen that Fr98!Re=0-0915-0317 collapses all DNS data
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very well onto the straight line quantified by the following correlation, as shown in
Fig. 5.24(b),
Ty = 19.46Fr0 % Re™ 00170317 — 2 055, (5.24)

with the regression coefficient of R = 0.9909.

5.4.7 Fluctuations of the maximum fountain penetration height at the

quasi-steady state

As illustrated in Fig. 5.17, at the quasi-steady state, the maximum fountain pen-
etration height, z,,, fluctuates around its time-averaged counterpart, z,, ,, with the
standard deviation, o,,, where z,, is defined as the dimensionless vertical distance
from the bottom of the domain to the vertex point of the iso-surface at the dimen-
sional temperature of T'(Z) = Ty — 1%(T, 0 — Tp) within the whole computational
domain. Although it was found that z,, , depends on F'r, Re and s and the depen-
dence can be quantified by scaling and empirical correlations as described above,
however, no clear dependence of ¢, on F'r, Re and s can be found, as illustrated by
the results presented in Fig. 23 of Inam et al. (2015) for transitional plane fountains
in stratified fluids over the ranges of 25 < Re < 300 and 0.1 < s < 0.5 at F'r = 10.
Nevertheless, it is found that a clear dependence of ,,. on Fr, Re and s can be
found, as will be shown in § 5.4.7.1, where o,, . is the standard deviation of the time
series of z,, . at the quasi-steady state. z,,. is defined as the dimensionless vertical
distance from the origin (i.e., the center point of the slot at z = 0 and y = 0)
to the point on the vertical axis passing through the origin where the dimensional
temperature is at 7'(Z) = Ty — 1%(T,0 — To). Similarly, it is also found that a
clear dependence of 0, ,—0, on Fr, Re and s can be found, where o0, ;—0, is the
time-averaged value of the time series of 0,, ,—¢ at the quasi-steady state. o, ,—¢ is
the standard deviation of z,, ,—o(y), which is the dimensionless maximum fountain
height along the slot at the location z = 0, around its average value along the slot

in the Y direction, 2, z—04, as will be described in § 5.4.7.2.

5.4.7.1 ope

Om,c is illustrated in Fig. 5.25 by the time series of z,, . obtained from DNS for
the case of F'r = 10, Re = 100 and s = 0.2. It is expected that z,, .4, Which is the
time-averaged value of z,, . at the quasi-steady state, should have similar dependence

on I'r, Re and s as z,,, does so only the results for o, . are presented here.
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FIGURE 5.25: Illustration of 2, ¢ o and o, . based on the time series of the dimensionless maximum
fountain penetration height at the centre of the domain (i.e., at x = 0 and y = 0), 2z, obtained
from DNS for the case of F'r = 10, Re = 100 and s = 0.2. o, is the standard deviation of z, .
around the time-averaged z,, ¢, at the quasi-steady state.

TABLE 5.8: Regression results for the dependence of o, . on Fr for 3 < Fr < 10 at Re = 100
with different s.

S Cl() ay R
0.1 0.0421 1.689 0.9959
0.2 0.0171 2.021 0.9937
0.3 0.0171 1.922 0.9977
0.4 0.0098 2.078 0.9951
0.5 0.0087 2.127 0.9941

Figure 5.26 presents the effect of F'r, Re and s on 0,,., obtained numerically
for the same transitional plane fountains as those in Fig. 5.21. Similar to z,,,, it
is seen from Fig. 5.26(a) that for each s value, 0,,. also increases monotonically
when F'r increases, but decreases when s increases. The DNS results, as shown in
Fig. 5.26(b), demonstrate that at Re = 100 the dependence of oy, . on Fr for each

s value can be quantified by the following relation,
Om,c = CloFTa7. (525)

The constants (g and a7 in the above relation were determined by linear regression
analysis of the data presented in Fig. 5.26(b), which are listed in Table 5.8.

The influence of Re on o, . is demonstrated by the DNS results with F'r = 5

and s = 0.1, as shown in Figs. 5.26(c). It is seen that o, . increases monotonically,
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FIGURE 5.26: (a) 0, ¢ plotted against F'r and (b) In(om,,c) plotted against In(F'r) over 3 < F'r < 10
at Re = 100 with different s values; (¢) o, plotted against Re and (d) In(opm, ) plotted against
In(Re) over 35 < Re < 300 at F'r =5 and s = 0.1; and (e) oy, plotted against s and (f) in(om,,c)
plotted against In(s) over 0.1 < s < 0.5 at Re = 100 with different F'r values. The solid lines are
linear fit lines.

almost linearly, with Re when Re < 200, but the rate of increase drops significantly
when Re is higher. The dependence of o,, . on Re can be quantified with the DNS
results over the range of 28 < Re < 300 by the following correlation, as shown in
Fig. 5.26(d),

Om.e = 0.0988 Re?3% (5.26)

with the regression constant of R = 9839.

Fig. 5.26(e) demonstrates the effect of s on o, . over the ranges 0.1 < s < 0.5
and 5 < Fr < 10, all at Re = 100. Similarly to the z,,, case, it is seen that o,, .

decreases monotonically with increasing s, due to stronger negative buoyancy. The
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TABLE 5.9: Regression results for the dependence of o, . on s for 0.1 < s < 0.5 at Re = 100 with
different F'r.

Fr CH (64 R

5 08737 -0.379 0.9806
6 0.6565 -0.459 0.9890
7 0.5309 -0.449 0.9778
8 04499 -0.413 0.9570
9 0.2502 -0.551 0.9520

10 0.1871 -0.513 0.9856

dependence of 0, . on s, as shown by the DNS results presented in Fig. 5.26(f), can
be quantified by the following relation,

Om,c = C118C7. (527)

The constants C; and c; were determined by linear regression analysis of the data
presented in Fig. 5.26(f) and listed in Table 5.9. It is seen that the value of Cy;
decreases significantly with F'r due to larger momentum flux of the fountain fluid
which leads to larger fountain penetration height, whereas the value of ¢; is found

to decrease with F'r, which is on the contrary to the case for z,, ;.

Similarly, the combined effect of F'r, Re and s on o, . can be quantified by the

following relation,
Ome = ChoFr® Reb 568, (5.28)

where (', is a constant of proportionality and the indexes ag, by and cg are again
constants. The values of these constants are determined by multivariable regression
method using the DNS results over the ranges of 3 < F'r < 10, 28 < Re < 300 and
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0.1 < s < 0.5, which gives the following quantified correlation,
Ome = 0.0014F 73 Re0400 570505 4 0,030, (5.29)

The regression coefficient of this correlation is R = 0.9862, indicating that the DNS
results over the ranges of F'r, Re and s considered are in very good agreement with
the relation (5.28), as clearly demonstrated in Fig. 5.27 where the DNS results for
Om,c over the ranges of 3 < F'r <10, 28 < Re < 300 and 0.1 < s < 0.5 are plotted

against FT1.896R60.406870.505'

5.4.7.2  Oma—oa

As discussed in § 5.4.1, at the early developing stage, a transitional plane fountain
is symmetric along the slot (in the Y direction), represented by the same maximum
fountain height along the Y direction in the Y — Z plane. However, at a specific
time instant, this symmetric flow will transition to an asymmetric one, represented
by the fluctuations of the maximum fountain height along the Y direction. If the
dimensionless maximum fountain height along the slot, at the location x = 0, is
denoted by z,, z—0, which is made dimensionless by Xy, it is apparent that at the
quasi-steady state in which the flow is asymmetric, z,,,—¢ at each time instant is
a function of y, i.e., zy,,-0(y). The instantaneous profiles of z,, ,—o(y) at different
time instants are presented in Fig. 5.28 for the plane fountain at Fr =5, Re = 100,

and s = 0.1, as an example.
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FIGURE 5.28: Instantaneous profiles of z,, »—o(y) along the slot (in the Y direction) at X = 0) at
different time instants for F'r =5, Re = 100, and s = 0.1.



158 Chapter 5

The standard deviation of z,, ,—o(y) around its average value, 2, »—o 4, along the
slot, is denoted as 0y, ,—0, as illustrated in Fig. 5.29(a). The time series of oy, ;- is
presented in Fig. 5.29(b) for the plane fountain at Fr = 7, Re = 100, and s = 0.1.
It is seen that at the early developing stage, the flow is symmetric so oy, ,— is zero;
however, after the flow becomes asymmetric in the Y direction, o, ;—o is not zero
anymore and its value fluctuates. At the quasi-steady state, 0y, ,—o fluctuates around
its time-averaged values, denoted as 0, 0.4, as illustrated in Fig. 5.29(b). Fig. 5.30
present the time series of o,,,—¢ for the majority of transitional plane fountains
considered in this study, which show that in general the behavior of transitional

plane fountains, in terms of o, ,—¢, is similar for different F'r, Re and s.

Similar to 2z, .4, it is expected that the time-averaged value of z,, ;—0, at the
quasi-steady state should have similar dependence on F'r, Re and s as z,,, does so

only the results for o, ,—o., are presented here.
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FIGURE 5.29: (a) Ilustration of z,, x—=0,, and o, x=o based on the instantaneous profile of
Zm,z=0(y) along the slot (in the Y direction) at x = 0 for F'r =7, Re = 100, and s = 0.1. 0., 4=0
is the standard deviation of z,, z=o(y) around its averaged value along the slot, z, y=04, at the
instant of time; and (b) Time series of 0y, 4= for F'r =7, Re = 100, and s = 0.1, where 0., x=0.q
is the time-averaged value of 0, ;=0 at the quasi-steady state.

Figure 5.31 presents the effect of F'r, Re and s on 0y, 0,4, obtained numerically

for the same transitional plane fountains as those in Fig. 5.21. Similar to 2, ,, it is
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seen from Fig. 5.31(a) that for each s value, 0y, -0, also increases monotonically
when F'r increases, but decreases when s increases. The DNS results, as shown in
Fig. 5.31(b), demonstrate that at Re = 100 the dependence of o, ,—9, on Fr for

each s value can be quantified by the following relation,
Om,z=0,a = Cl?)FTag- (530)

The constants ('3 and ag in the above relation were determined by linear regression
analysis of the data presented in Fig. 5.31(b), which are listed in Table 5.10.

TABLE 5.10: Regression results for the dependence of 0, ;=0 , on Fr for 3 < Fr < 10 at Re = 100
with different s.

S 013 ag R
0.1 0.0060 2.669 0.9973
0.2 0.0001 3.375 0.9938
0.3 0.0003 3.796 0.9963
0.4 0.00005 4.612 0.9867
0.5 0.00002 4.853 0.9958

The influence of Re on 0y, ;—0 4 is demonstrated by the DNS results with F'r = 5
and s = 0.1, as shown in Figs. 5.31(c) and 5.31(d). From the results, it is seen that
there are two distinct regimes, with Re = 100 as the dividing point, for F'r =5 and

s = 0.1. In either regime, 0, ;-0 increases monotonically, essentially linearly, with
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FIGURE 5.31: (a) Oy 0=0,q0 Plotted against Fr and (b) In(om z=0,a) plotted against in(E'r) over
3 < Fr < 10 at Re = 100 with different s values; (¢) 0y 2=0, plotted against Re and (d)
In(0m z=0,a) plotted against in(Re) over 28 < Re < 300 at F'r =5 and s = 0.1; and (€) om,z=0.q
plotted against s and (f) In(om z=0,a) plotted against In(s) over 0.1 < s < 0.5 at Re = 100 with
different F'r values. The solid lines are linear fit lines.

Re, but the rate of increase in the regime beyond Re = 100 is smaller than that in
the regime below Re = 100. The dependence of 0y, ;—0, on Re in each of these two

regimes can be quantified with the DNS results, with the relations shown below,
Oma=0.a = 0.0166Re* ™37 (5.31)

for Re < 100 and
Oma—0.a = 0.1569Re* 2™ (5.32)

for Re > 100. The regression constants for these two relations are R = 0.9999 and
R = 0.9994, respectively.
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TABLE 5.11: Regression results for the dependence of oy, z—0,, on s for 0.1 < s < 0.5 at Re = 100
with different F'r.

Fr 014 C9 R

5 0.0212 -1.482 0.9897
6 0.0848 -0.925 0.9618
7 0.3219 -0.528 0.9893
8 0.5493 -0.490 0.9491
9 0.8816 -0.395 0.9983

10 1.1396 -0.384 0.9973

Fig. 5.31(e) demonstrates the effect of s on 0, 0, over the ranges 0.1 < s < 0.5
and 5 < Fr < 10, all at Re = 100. Similarly to the z,, case, it is seen that
Om,z=0,a decreases monotonically with increasing s. The dependence of 0, ;—0, On
s, as shown by the DNS results presented in Fig. 5.31(f), can be quantified by the
following relation,

Om,x=0,a = C114509- (533)

The constants C4 and ¢9 were determined by linear regression analysis of the data
presented in Fig. 5.31(f) and listed in Table 5.11.

The combined effect of F'r, Re and s on 0y, -0, can also be quantified by the
following relation,
Om,z=0,a = 015FTGIOR€b5SCIO, (534)

where (15 is a constant of proportionality and the indexes ag, b5 and ¢ig are again
constants. The values of these constants are determined by multivariable regression
method using the DNS results over the ranges of 3 < F'r < 10, 28 < Re < 300 and
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0.1 < s < 0.5, which gives the following quantified correlation,
Om.z=0.a = 0.0002Fr*0Re®05703% —0.104. (5.35)

The regression coefficient of this correlation is R = 0.9820, indicating that the DNS
results over the ranges of F'r, Re and s considered are in very good agreement with
the relation (5.34), as clearly demonstrated in Fig. 5.32 where the DNS results for
Om,z=0,a Over the ranges of 3 < Fr < 10, 28 < Re < 300 and 0.1 < s < 0.5 are

plotted against Fr?6Re%6570-38,

5.5 Characteristics of bobbing and flapping behavior

5.5.1 Diagnosis of bobbing and flapping frequencies

Figure 5.33 presents the time series of z,, . and its corresponding power spectral

density spectrum for the plane fountain at F'r = 10, Re = 100 and s = 0.1, where

[

str, = W/ Xo) (5.36)
is the Strouhal number for bobbing motions, which is the dimensionless form of the
bobbing frequency f,. f, is determined by a fast Fourier transform (FFT) algorithm
with the time series of z,, ., where z,, . = Z,,, /X is the dimensionless form of Z,,, .,
which is the maximum fountain height on the vertical axis passing through the centre
of the domain and the fountain source slot (i.e., the origin). Z,, . is determined as the
vertical distance from the origin to the height on the vertical axis passing through
the origin where the temperature is 7'(2) = Ty — 1%(T,, 0 — Tp). From Fig. 5.33(a),
it is observed that z,, . behaves similarly to z,,, as illustrated in Fig. 4.16. Initially
Zm, increases continuously after the initiation of the fountain until it attains an
initial maximum height, followed by a short period of transition before it becomes
fully developed subsequently, with z,,. fluctuating around a time-averaged value
over a quite long period of time at the later developing stage. These fluctuations
in height are known as the bobbing motions. The FFT analysis was carried out
over this long period of fluctuations, starting from the instant at 7. which is made
dimensionless by X,/Wj, as illustrated in Fig. 5.33(a). To ensure that the selected
value for 7., which is somehow arbitrary, does not affect the dominant frequencies
for f,, different values for 7, were selected and tested, with the results presented in

Fig. 5.33(b). The results clearly show that the dominant frequencies are essentially
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the same when 7. > 300, over the range of 0.011 < str, < 0.012, meaning that
any value between 300 and 600 can be selected for 7. in this case. The range of
T (Te ~ Tena) and number of data into the respective rage; which is used for FFT
analysis to determine f, for the corresponding F'r, Re and s condition; is listed into
the Table 5.12.
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FIGURE 5.33: (a) Time series of z,, . and (b) the corresponding power spectral density spectrum
of 2,  for the plane fountain at F'r = 10, Re = 100 and s = 0.1, where str, is the Strouhal number
for bobbing motions, which is the dimensionless form of the bobbing frequency f..

In addition to the bobbing motions in the vertical direction (i.e., the Z direction),
it is observed that an asymmetric plane fountain also demonstrates flapping motions
along both the X and Y directions at the fully developed stage, as depicted in
Figs.5.34 and 5.35, respectively, where the time series of Us/W, and V;/W, and
their respective corresponding power spectral density spectra are presented for the
plane fountain at Fr = 3, Re = 100 and s = 0.1. Us and Vj are the velocities
of U and V respectively at the point X = 0, Y =0 and Z = 5X,. The flapping
frequencies along the X and Y directions are denoted by f, and f,, respectively.
However, their dimensionless counterparts, str, and str,, which are the Strouhal
numbers for the flapping motions along the X and Y directions, respectively, are

used in the figures. str, and str, are defined as follows,

fa fy

Stry = ——F—~, Stry= (WO/XO)'

(Wo/Xo)' (5.37)
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TABLE 5.12: Key information of the FFT analysis for f, and f,.
Fr Re 5 FFT analysis for f, FFT analysis for f,
Range of 7 Number of point Range of 7 Number of point
(Te ™~ Tend) used for FFT (Te ™~ Tend) used for FFT
5 100 O 100 ~ 1000 3600 100 ~ 1000 3600
5 100 0.05 200 ~ 1000 3200 100 ~ 1000 3600
5 100 0.1 200 ~ 1000 3200 100 ~ 1000 3600
5 100 0.2 500 ~ 1000 2000 400 ~ 1000 2400
5 100 0.3 500 ~ 1000 2000 400 ~ 1000 2400
5 100 04 600 ~ 1200 2400 500 ~ 1200 2800
5 100 0.5 1000 ~ 1360 1440 900 ~ 1360 1840
5 35 0.1 950 ~ 1700 3000 850 ~ 1700 3400
5 50 0.1 700 ~ 1360 2640 500 ~ 1360 3440
5 100 0.1 300 ~ 1000 2800 100 ~ 1000 3600
5 200 0.1 200 ~ 1350 4600 100 ~ 1350 5000
5 300 0.1 100 ~ 1150 3800 100 ~ 1150 4200
3 100 0.1 950 ~ 1700 3000 850 ~ 1700 3400
4 100 0.1 550 ~ 1000 1800 450 ~ 1000 2200
5 100 0.1 200 ~ 1000 3200 100 ~ 1000 3600
6 100 0.1 200 ~ 1000 3200 100 ~ 1000 3600
7 100 0.1 200 ~ 1000 3200 100 ~ 1000 3600
8 100 0.1 200 ~ 1000 3200 100 ~ 1000 3600
9 100 0.1 200 ~ 1200 4000 100 ~ 1200 4400
10 100 0.1 200 ~ 1400 4800 100 ~ 1400 5200
4 100 0.2 600 ~ 1250 2600 500 ~ 1250 3000
5 100 0.2 500 ~ 1000 2000 400 ~ 1000 2400
6 100 0.2 200 ~ 1000 3200 100 ~ 1000 3600
7 100 0.2 200 ~ 1000 3200 100 ~ 1000 3600
8 100 0.2 200 ~ 1000 3200 100 ~ 1000 3600
9 100 0.2 200 ~ 1000 3200 100 ~ 1000 3600
10 100 0.2 200 ~ 1000 3200 100 ~ 1000 3600
5 100 0.3 500 ~ 1000 2000 400 ~ 1000 2400
6 100 0.3 600 ~ 1900 5200 500 ~ 1900 5600
7 100 0.3 350 ~ 1500 4600 250 ~ 1500 5000
8§ 100 0.3 300 ~ 1700 5600 200 ~ 1700 6000
9 100 0.3 300 ~ 2000 6800 200 ~ 2000 7200
10 100 0.3 300 ~ 2000 6800 200 ~ 2000 7200
5 100 0.4 600 ~ 1200 2400 500 ~ 1200 2800
6 100 0.4 600 ~ 1400 3200 500 ~ 1400 3600
7 100 0.4 550 ~ 1340 3160 450 ~ 1340 3560
8§ 100 0.4 300 ~ 2000 6800 200 ~ 2000 7200
9 100 0.4 300 ~ 2000 6800 200 ~ 2000 7200
10 100 0.4 300 ~ 2000 6800 200 ~ 2000 7200
6 100 0.5 550 ~ 1280 2920 250 ~ 1280 4120
7 100 0.5 550 ~ 1070 2080 450 ~ 1070 2480
8 100 0.5 350 ~ 2000 6600 250 ~ 2000 7000
9 100 0.5 350 ~ 2000 6600 250 ~ 2000 7000
10 100 0.5 350 ~ 2000 6600 250 ~ 2000 7000
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FIGURE 5.34: (a) Time series of Us /Wy and (b) the corresponding power spectral density spectrum
of Us /Wy for the plane fountain at Fr = 3, Re = 100 and s = 0.1, where Uj is the velocity of U
at the point X =0, Y =0 and Z = 5X; and str, is the Strouhal number for flapping motions
along the X direction, which is the dimensionless form of the flapping frequency f, along the X
direction.

From Fig. 5.34(a), it is seen that the value of Us /W) is essentially zero until 7 ~
800, implying that initially the flapping motions are absent along the X direction.
Nevertheless, the fountain subsequently experiences flapping motions along the X
direction as the value of Us /W, fluctuates, within +20%, at the later fully developed
stage. f, was also obtained using FFT, with the results presented in Fig. 5.34(b) in
terms of str,. Similar to the str, case, to ensure that the selected value for 7. to
determine f, does not affect the dominant frequencies for f,, different values for 7.
were also selected and tested, with the results presented in Fig. 5.34(b) as well. The
results clearly show that the dominant frequencies are essentially the same when
T. > 600, over the range of 0.0208 < str, < 0.0216, meaning that any value between
600 and 1200 can be selected for 7. in this case. The range of 7 (7, ~ Tenq) and
number of data into the respective rage; which is used for FFT analysis to determine

fz for the corresponding F'r, Re and s condition; is listed into the Table 5.12.

Likewise, as shown in Fig. 5.35(a), the time series of V;/W} indicates that initially
there is no flapping motion along the Y direction, but from around 900, flapping
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FIGURE 5.35: (a) Time series of V5 /W, and (b) the corresponding power spectral density spectrum
of V5/Wy for the plane fountain at Fr = 3, Re = 100 and s = 0.1, where V5 is the velocity of V
at the point X =0,Y =0 and Z = 5X;, and str, is the Strouhal number for flapping motions
along the Y direction, which is the dimensionless form of the flapping frequency f, along the Y
direction.

motions appear at the later fully developed stage. However, in contrast to the flap-
ping motions along the X direction which have only one single dominant frequency;,
the flapping motions along the Y direction have at least two dominant frequen-
cies. This is more evidently exhibited in Fig. 5.35(b), where the flapping frequencies
along the Y direction are presented in terms of str,. Two dominant frequencies, at
str, ~= 0.008 and 0.042, can be identified from the power spectral density spectrum.
Also presented in Fig. 5.35(b) are the power spectral density spectra for different
values of 7, used to determine f,, which clearly show that the dominant frequencies

for f, are not affected by 7. when 7. > 800.
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5.5.2 Characteristics of bobbing motions
5.5.2.1 Effect of s

The effect of s on the bobbing behavior is demonstrated in Fig. 5.36 where the
time series of z,, . and the corresponding power spectral density spectra for different
s values in the range of 0 < s < 0.5, all at F'r = 5 and Re = 100, are presented.
It is observed that the extent of the bobbing motions decreases when s increases,
as s plays a positive role in stabilizing the flow, as discussed in Chapter 4 and in
Inam et al. (2015). It is also observed that at F'r = 5 and Re = 100, when s is low
(s <0.2), although z,, . fluctuates at the fully developed stage, its average value is
essentially constant. However, when s is increased beyond s = 0.2, the average z,
continues to increase at the fully developed stage, with fluctuations at considerably
smaller extents. This continual increase in the average z,,. at the fully developed
stage when the stratification is strong is caused by the intrusion height. At a higher
S, Zm, 1s smaller, and the intrusion height becomes larger and substantial which

reduces the negative buoyancy that the fountain fluid experiences. This continuous
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TABLE 5.13: Regression results for the dependence of str, 4 on s over the range of 0.1 <5 < 0.5
with different F'r over the range of 5 < Fr < 10, all at Re = 100.

Fr Cz,d,s Cc R
5 0.0308 0.139 0.9975
6 0.0410 0.312 0.9978
7 0.0347 0.317 0.9920
& 0.0333 0.383 0.9911
9 0.0313 0.420 0.9989

—_
o

0.0298 0.439 0.9989

reduction of the negative buoyancy due to a larger intrusion height pushes z,, . to

be higher and higher with the time passing by.

From the frequency spectra presented in Fig. 5.36(h)-(n), it is seen that at the
fully developed stage, the bobbing motions are dominated by a single dominant fre-
quency for each s considered. This dominant frequency for the bobbing motions,
denoted as str, 4, which is also the dominant Strouhal number for the bobbing mo-
tions, is found to be 0.007, 0.016, 0.022, 0.025, 0.026, 0.027 and 0.028, for s = 0, 0.05,
0.1, 0.2, 0.3, 0.4, and 0.5, respectively. Hence, str, , increases when s is increased,
indicating that fountain height fluctuates with a higher dominant frequency in a
stronger stratified environment, although the increase in str, 4 is very small when
s> 0.2.

The effect of s on str,, is quantitatively shown in Fig. 5.37, where str, 4 is
plotted against s for s over the range of 0.1 < s < 0.5 and Fr over the range of
5 < Fr <10, all at Re = 100. It is observed that for each Fr value considered,
str, q is in general larger when s increases, and the dependence of str, 4 on s can be

quantified by the following relation,
stroq = C, a5, (5.38)

where C, 4 is a constant of proportionality and the power index c is also a constant.
The values of these constants were determined by regression analysis with the DNS
results over the ranges 0.1 < s < 0.5 and 5 < Fr < 10, all at Re = 100, and the
results are listed in Table 5.13. It is seen that the relation (5.38) is in general a
good approximation to quantify the effect of s on str, 4. It is also observed that in
general the value of the power index ¢ increases with the increase of Fr, implying

the stronger effect of F'r when Fr is increased, as will be further discussed below.
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The effect of F'r on the bobbing behavior is demonstrated in Fig. 5.38 where
the time series of 2, . and the corresponding power spectral density spectra for
different F'r values in the range of 3 < s < 10, all at Re = 100 and s = 0.1, are
presented. It is observed that the extent of the bobbing motions increases when
Fr increases due to stronger effect of F'r when Fr increases. It is also observed
that, at Re = 100 and s = 0.1, z,,. in generally fluctuates around essentially a
constant average value at the fully developed stage. The only exception is for the
Fr = 3 case, in which the average z,, . continues to increase at the fully developed
stage, with fluctuations at considerably smaller extents. Again it is speculated that
this continual increase in the average z,,. at the fully developed stage when F'r is
relatively small is also caused by the intrusion height. At a smaller F'r, 2, . is again
smaller, and the intrusion height becomes larger and substantial which reduces the
negative buoyancy that the fountain fluid experiences, and the continuous reduction
of the negative buoyancy leads to a larger intrusion height which pushes z,, . to be

higher and higher with the time passing by.

From the frequency spectra presented in Fig. 5.38(7)-(p), it is seen that at the
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TABLE 5.14: Regression results for the dependence of str, 4 on Fr over the range of 6 < Fr < 10
with different s over the range of 0.1 < s < 0.5, all at Re = 100.

S Cz,d,FT C R
0.1 0.1721 -1.206 0.9963
0.2 0.1578 -1.039 0.9995
0.3 0.1489 -0.924 0.9999
0.4 0.0935 -0.661 0.9820
0.5 0.0900 -0.615 0.9840

fully developed stage, the bobbing motions are again dominated by a single dominant
frequency for each F'r considered, although a second, even third, dominant frequency
is also present for several F'r values. The most dominant frequency for the bobbing
motions (str,q) is found to be 0.042, 0.0342, 0.0224, 0.0201, 0.0165, 0.0136, 0.012
and 0.011, for F'r = 3, 4, 5, 6, 7, 8, 9, and 10, respectively, which clearly show
that str, 4 reduces monotonically when F'r is increased, indicating that the bobbing

motions have a smaller dominant frequency when F'r is increased.

The effect of F'r on str, 4 is quantitatively shown in Fig. 5.39, where str, 4 is
plotted against F'r for F'r over the range of 3 < Fr < 10 and s over the range of
0.1 <s5<0.5, all at Re = 100. It is observed that for each s value considered, str, 4
is smaller when F'r increases, and the dependence of str, ; on F'r can be quantified
by the following relation,

stroq = Charrs, (5.39)

where C, 4 p, is a constant of proportionality and the power index c is also a constant.
The values of these constants were determined by regression analysis with the DNS
results over the ranges 0.1 < s < 0.5 and 6 < Fr < 10, all at Re = 100, and the
results are listed in Table 5.14. It is seen that the relation (5.39) is in general a
good approximation to quantify the effect of F'r on str, 4. It is also observed that in
general the magnitude of the power index ¢ decreases with the increase of F'r, due

to the stabilizing effect of s on the flow as discussed above.

However, when F'r < 5, as shown in Fig. 5.39(b), the DNS results do not follow
the same empirical correlation as those for F'r > 6 for each s. This implies that the
dependence of str, 4 on Fr when Fr <5 is in a different regime and the quantified
relation (5.39) for each s will no longer be valid. The mechanism for this different
dependence is not very clear and this thesis does not go further due to the limitation

of the scope.
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The effect of Re on the bobbing behavior is demonstrated in Fig. 5.40 where
the time series of z,,. and the corresponding power spectral density spectra for
different Re values in the range of 35 < Re < 300, all at F'r =5 and s = 0.1, are
presented. It is observed that the extent of the bobbing motions increases when Re
increases due to stronger entrainment and mixing when Re increases, in particular
when Re is over 100. It is also observed that, at F'r = 5 and s = 0.1, 2,,, . in generally

fluctuates around essentially a constant average value at the fully developed stage.

From the frequency spectra presented in Fig. 5.40(f)-(j), it is seen that at the
fully developed stage, the bobbing motions are again dominated by a single dominant
frequency for each s considered, although a second, even third, dominant frequency
is also present for several Re values. The most dominant frequency for the bobbing
motions (str, 4) is found to be 0.0208, 0.0198, 0.0224, 0.0183 and 0.0216, for Re = 35,
50, 100, 200 and 300, respectively, which clearly show that the effect of Re on str, 4 is
negligible, as str, 4 is essentially constant and varies in a very narrow range, between
0.0183 and 0.0224, when Re varies between 35 and 300. This negligible effect of Re
on str, 4 is more evidently shown in Fig. 5.41, where str, 4 is plotted against Re for
Re over the range of 35 < Re < 300, all at F'r =5 and s = 0.1.

5.5.2.4 Combined effects of s, F'r and Re

From the above results on the dependency of str,, on s, F'r and Re over the
ranges of these parameters considered, it is reasonable to propose that the combined

effects of s, F'r and Re on str, 4 can be quantified by the following relation
Strz,d = Cstr,z,dFrascy (540)

where Cy;, .4 1s a constant of proportionality and the power indexes a and c are
also constants. The values of these constants can be determined by multi-variable
regression analysis with the DNS results over the ranges of 6 < Fr < 10 and
0.1 < s <0.5 at the fixed Re = 100, giving the following empirical correlation,

str.q = 0.258 Fr~ 098940357, (5.41)

The regression constant of this correlation is R = 0.9863, indicating that the DNS
results are in good agreement with the relation (5.40) over the ranges of 6 < Fr < 10
and 0.1 < s < 0.5 at Re = 100, as demonstrated in Fig. 5.42(a). The DNS results
for other Re values are not included as the effect of Re on str,, is negligible over

the ranges of F'r, Re and s considered in this thesis, as discussed above. The DNS
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results for F'r <5 are also not included as the dependence of str, ; on F'r for these

Fr values is in a different regime, as discussed above as well.

As shown in § 5.4.3, for weak plane fountains with F'r = O(1) in linearly-stratified
fluids, Lin & Armfield (2002) used dimensional analysis to obtain the scaling relation

(5.6) for the time scale related to the maximum fountain height, i.e.,
T~ Fra@t2e=d) po-dge (5.42)

where ¢ and d are constants. The dominant frequency for bobbing motions, f, 4, is

inversely proportional to 7,,(Xo/Ws), hence,

St'rz,d _ fZ,d _ 1/[TW(X0/WO)] ~ i ~ FT*%(2+267d)R€dec.

(Wo/Xo) (Wo/Xo) . (5.43)

It should be noted that the values of ¢ and d for str, 4 are not necessary to be the

same as the values of ¢ and d for 7,,.

If the scaling relation (5.43), which is developed for weak plane fountains, is
also applicable for the transitional plane fountains considered in this thesis, from
the quantified relation (5.41), ¢ = —0.387 and d = 0, it is then expected that
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—2(242c—d) = —%[2+ 2 x (—0.387) — 0] = —0.818 for the value of the index for
Fr. However, the value obtained is -0.989, as shown in (5.41), which is [-0.989 —
(—0.818)]/(—0.818) = 21% away from the expected value of —0.818. In view of
much large values of F'r for the transitional plane fountains considered than the
expected weak plane fountains with F'r = O(1) under which the scaling relation
(5.43) was developed, this result is remarkable, showing that the scaling relation
(5.43) developed for weak plane fountains is still a reasonably good representation
for the transitional plane fountains over the ranges of F'r, Re and s considered in
this thesis. This is further confirmed by the good agreement of the DNS results over
the ranges of 6 < F'r < 10 and 0.1 < s < 0.5 at Re = 100, as shown in Fig. 5.42(b),
with the scaling relation Fr=081850-387 which is the scaling relation obtained from
the dimensional analysis. The regression analysis with the DNS results over the
ranges of 6 < F'r < 10 and 0.1 < s < 0.5 at Re = 100 gives the following quantified

correlation between str, 4 and the scaling relation Fr~981850-387

bl

straq = 0.191Fr~ 18537 — 0.0003, (5.44)

with the regression constant of R = 0.9799.

The examination of the values obtained from the DNS results for the indexes of
Fr and s, i.e., -0.989 and 0.387, reveals that -0.989 is very close to -1 whereas 0.387
is very close to 2/5 or 1/3. Burridge & Hunt (2013) also found that for intermediate

1 although in homogeneous fluids (i.e., s = 0). It is

round fountains str, 4 ~ Fr~
then reasonable to speculate that the value for the index of Fr should be -1 and
the value for the index of s should be either 1/3 or 2/5. str, 4 obtained from the
DNS results over the ranges of 6 < Fr < 10 and 0.1 < s < 0.5 at Re = 100 is
also plotted against the scaling relations Fr~'s'/3 and Fr~'s%5 in Figs. 5.42(c) and

5.42(d), respectively, which gives the following quantified correlations,
str, 4 = 0.263Fr~ts'/? 4 0.0006, (5.45)

and
str.q = 0.262Fr~'s%/® +0.0012. (5.46)

The regression constants for these two correlations are R = 0.9829 and R = 0.9857,
respectively, indicating that the scaling relations Fr—'s'/3 and Fr—'s?/® are also
good representations of the quantitative relation between str,,; and Fr, Re and s
over the ranges of these parameters considered. However, a further study should be

conducted to explore why such scaling relations like Fr~'s'/3 and Fr—'s*° are also
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TABLE 5.15: Regression results for the dependence of str, g on F'r over the range of 3 < Fr < 10
with different s over the range of 0.1 < s < 0.4, all at Re = 100.

S C:p,d,Fr C R
0.1 0.0671 -1.069 0.9943
0.2 0.0893 -1.091 0.9959
0.3 0.1219 -1.156 0.9904
0.4 0.1191 -1.092 0.9918

good representations of the quantitative relation between str,,; and Fr, Re and s

for transitional plane fountains in linearly-stratified fluids.

5.5.3 Characteristics of flapping motions along the X direction
5.5.3.1 Effect of F'r

The effect of F'r on the flapping behavior along the X direction is demonstrated
in Fig. 5.43 where the time series of Us/W, and the corresponding power spectral
density spectra for different F'r values in the range of 3 < Fr < 10, all at Re = 100
and s = 0.1, are presented. It is observed that at the early developing stage, no
flapping motions along the X direction. However, for each Fr value presented in
the figure, at a certain instant of time, flapping motions commence and persist in
the subsequent fully developed stage. It is observed that in general the onset of the
flapping motions along the X direction occurs earlier when Fr is increased, and the
extent of the flapping motions does not have noticeable changes when F'r increases,

essentially within +20% for all F'r values at the fully developed stage.

From the frequency spectra presented in Fig. 5.43(i)-(p), it is seen that at the
fully developed stage, the flapping motions along the X direction are also dominated
by a single dominant frequency for each Fr considered. The dominant frequency
for the flapping motions along the X direction (str,4) is found to be 0.0208,0.0158,
0.0117, 0.0093, 0.0086, 0.0077, 0.006 and 0.006, for Fr = 3, 4, 5, 6, 7, 8, 9, and
10, respectively, which clearly show that str, 4 reduces monotonically when F'r is
increased, indicating that the flapping motions along the X direction have a smaller

dominant frequency when F'r is increased.

The effect of F'r on str,q is quantitatively shown in Fig. 5.44, where str, g is
plotted against F'r for Fr over the range of 3 < Fr < 10 and s over the range of
0.1 <s5<0.4, all at Re = 100. It is observed that for each s value considered, str, 4
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is smaller when F'r increases, similar to that in the str, 4 case, and the dependence
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of stry q on F'r can be quantified by the following relation,
strya = Cypap F'76, (5.47)

where C, 4 pr is a constant of proportionality and the power index c is again a
constant. The values of these constants were determined by regression analysis with
the DNS results over the ranges 0.1 < s < 0.4 and 3 < Fr < 10, all at Re = 100,
and the results are listed in Table 5.15. It is seen that the relation (5.47) is an
excellent approximation to quantify the effect of F'r on str, 4, as clearly shown in
Fig. 5.44(b). However, different from the str, 4 case in which the magnitude of the
power index c in general decreases with the increase of F'r, it is observed here that
the value of the index c for the str, , case is essentially the same for different F'r

values, at an average value of -1.102.

The DNS results at s = 0.5 were not included in Fig. 5.44(b) and in the deter-
mination of the values of Cy 4 p, and c listed in Table 5.15, as only three sets of

DNS results available for the regression analysis. The DNS results at F'r = 3 and
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Fr = 4 for s = 0.5 were unable to produce the expected str, 4 as these fountains
start to flap along the X direction at a much later time, which results in a very
narrow period of time for the FFT analysis and hence the DNS results at these F'r

values were excluded from the regression analysis.

5.5.3.2 Effect of Re
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The effect of Re on the flapping behavior along the X direction is shown
in Fig. 5.45 where the time series of Us/W, and the corresponding power spectral
density spectra for different Re values in the range of 35 < Re < 300, all at Fr =5
and s = 0.1, are presented. It is observed that at the early developing stage, no
flapping motions along the X direction. However, for each Re value presented in

the figure, at a certain instant of time, flapping motions commence and persist in
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the subsequent fully developed stage. It is also observed that in general the onset
of the flapping motions along the X direction occurs earlier when Re is increased.
This is very similar to the F'r effect case, as discussed above. The extent of the
flapping motions increases when Re increases, in particular when Re is beyond 50,

although the amounts of increase are not significant.

From the frequency spectra presented in Fig. 5.45(f)-(j), it is seen that at the
fully developed stage, the flapping motions along the X direction are also dominated
by a single dominant frequency for each Re considered. The dominant frequency
for the flapping motions along the X direction (str, 4) is found to be 0.0099, 0.013,
0.0117, 0.0108 and 0.011, for Re = 35, 50, 100, 200 and 300, respectively, which
clearly show that the effect of Re on str,q is negligible, as str,, is essentially
constant, at an average of 0.0112, and varies in a very narrow range, between 0.0099
and 0.013, when Re varies between 35 and 300. This is very similar to the case
for the bobbing motions, in which it was also found, as shown above, that Re has
a negligible effect on str, 4. This negligible effect of Re on str, 4 is more evidently
shown in Fig. 5.46, where str, 4 is plotted against Re for Re over the range of
35 < Re <300, all at F'r =5 and s = 0.1.

5.5.3.3 Effect of s

The effect of s on the flapping behavior along the X direction is demonstrated
in Fig. 5.47 where the time series of Us/W, and the corresponding power spectral
density spectra for different s values in the range of 0 < s < 0.5, all at Fr =5 and
Re = 100, are presented. It is observed that at the early developing stage, again

no flapping motions along the X direction. However, for each s value presented in
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the figure, at a certain instant of time, flapping motions commence and persist in
the subsequent fully developed stage. It is observed that in general the onset of the
flapping motions along the X direction occurs later when s is increased, and the
extent of the flapping motions does not have noticeable changes when s increases,

essentially within £20% for all s values at the fully developed stage.
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TABLE 5.16: Regression results for the dependence of str, q on s over the range of 0.1 < s < 0.5
with different F'r over the range of 5 < Fr < 10, all at Re = 100.

Fr C:Jc,d,s C R

5 0.0322 0.437 0.9989
6 0.0254 0.435 0.9766
7 0.0182 0.332 0.9961
8
9

0.0160 0.324 0.9917
0.0159 0.421 0.9964
10 0.0139 0.373 0.9949

From the frequency spectra presented in Fig. 5.47(h)-(n), it is seen that at the
fully developed stage, the flapping motions along the X direction are also dominated
by a single dominant frequency for each s considered, although a second dominant
frequency is also present for the s = 0.3 case. The dominant frequency str, 4 for
s =0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 is found to be 0.0047, 0.0088, 0.0117, 0.0162,
0.0188, 0.0144, and 0.0147, respectively, which show that str,, increases with s

when s < 0.3, but reduces at higher s values considered.

The effect of s on str, 4 is quantitatively shown in Fig. 5.48, where str,q is
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plotted against s for s over the range of 0.1 < s < 0.5 and Fr over the range of
5 < Fr <10, all at Re = 100. It is observed that for each F'r value considered,
stry q is in general larger when s increases, which is similar to that in the str, 4 case,

and the dependence of str, 4 on s can be quantified by the following relation,
stry.q = Cyass, (5.48)

where C, 4 5 is a constant of proportionality and the power index c is again a constant.
The values of these constants were determined by regression analysis with the DNS
results over the ranges 0.1 < s < 0.5 and 5 < Fr < 10, all at Re = 100, and
the results are listed in Table 5.16. It is seen that the relation (5.48) is in general
an excellent approximation to quantify the effect of s on str, 4, as clearly shown in
Fig. 5.48(b). However, different from the str, 4 case in which the magnitude of the
power index ¢ in general increases with the increase of F'r, it is observed here that
the value of the index c for the str, 4 case does not follow any consistent trend, as
shown in Table 5.16.

Similarly the DNS results at s = 0.5 were not included in Fig. 5.48(b) and in the
determination of the values of C, 45 and c listed in Table 5.16 when F'r <7, again
due to the very narrow period of time for the FFT analysis which is a consequence

of the much later time for the onset of the flapping motions at these cases.

5.5.3.4 Combined effects of F'r, Re and s

Similar to str, 4, based on the above results on the dependency of str, 4 on Fr,
Re and s over the ranges of these parameters considered, the combined effects of

Fr, Re and s on str, 4 can also be quantified by the following relation
Str&d = Cstr,x,dF’rascy (549)

where Cy, 2.4 is a constant of proportionality and the power indexes a and c are
again constants. The values of these constants can be determined by multivariable
regression analysis with the DNS results over the ranges of 3 < Fr < 10 and
0.1 <5 <0.5 at the fixed Re = 100, giving the following empirical correlation,

Stryq = 0.169Fr~ 0% 40352, (5.50)

The regression constant of this correlation is R = 0.9927, indicating that the DNS

results are in very good agreement with the relation (5.49) over the ranges of 3 <
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Fr <10 and 0.1 < s < 0.5 at Re = 100, as demonstrated in Fig. 5.49(a). The
DNS results for other Re values are again not included as the effect of Re on str, 4
is negligible over the ranges of F'r, Re and s considered in this thesis, as discussed

above.

The scaling relation (5.43) developed for str, 4, obtained from the dimensional
analysis by Lin & Armfield (2002) for weak plane fountains with Fr = O(1) in
linearly-stratified fluids, is expected to be applicable for str, 4 as well. From the
quantified relation (5.50), it is found that ¢ = —0.382 and d = 0. It is then expected
that the value of the index for F'r should be —2(2+2c—d) = —2[2+2x(—0.382)—0] =
—0.824. However, the value obtained from the DNS results is -1.085, as shown in
(5.50), which is [-1.085 — (—0.824)]/(—0.824) = 32% away from the expected value
of —0.824. In view of much large values of F'r for the transitional plane fountains
considered than the expected weak plane fountains with Fr = O(1) under which
the scaling relation (5.43) was developed, this result is again remarkable, similar
to the str, 4 case, showing that the scaling relation (5.43) developed for weak plane
fountains is still a reasonably good representation for the transitional plane fountains
over the ranges of F'r, Re and s considered in this thesis. This is further confirmed

by the good agreement of the DNS results over the ranges of 3 < Fr < 10 and
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0.1 < s < 0.5 at Re = 100, as shown in Fig. 5.49(b), with the scaling relation
Fr=082450382 "which is the scaling relation obtained from the dimensional analysis.
The regression analysis with the DNS results over the ranges of 3 < Fr < 10 and
0.1 <5 <0.5at Re = 100 gives the following quantified correlation between str, 4

and the scaling relation Fr—0-82450-382

stryq = 0.128Fr~ %5082 — 0.0031, (5.51)

with the regression constant of R = 0.9696.

Similar to the str, 4 case, the examination of the values obtained from the DNS
results for the indexes of F'r and s, i.e., -1.085 and 0.382, reveals that -1.085 is
very close to -1 whereas 0.382 is very close to 2/5 or 1/3. It is then reasonable to
speculate that the value for the index of F'r should also be -1 and the value for the
index of s should also be either 1/3 or 2/5. str, 4 obtained from the DNS results over
the ranges of 3 < Fr < 10 and 0.1 < s < 0.5 at Re = 100 is also plotted against the
scaling relations F'r—1s'/? and Fr='s?/® in Figs. 5.42(c) and 5.42(d), respectively,

which gives the following quantified correlations,
stryq = 0.146 Fr~1s'/3 —0.0013, (5.52)

and
Stryq = 0.158Fr~1s*® — 0.0011. (5.53)

The regression constants for these two correlations are R = 0.9916 and R = 0.9854,
respectively, indicating that the scaling relations Fr—'s'/3 and Fr~'s*® are also
good representations of the quantitative relation between str, 4 and Fr, Re and s
over the ranges of these parameters considered, similar to the str, ; case. However,
as stated above for the str, 4 case, a further study should be conducted to explore
why such scaling relations like Fr—'s'/3 and Fr—'s*° are also good representations
of the quantitative relation between str, 4 and F'r, Re and s for transitional plane

fountains in linearly-stratified fluids.

5.5.4 Characteristics of flapping motions along the Y direction
5.5.4.1 Effect of F'r

The effect of Fr on the flapping behavior along the Y direction is demonstrated

in Fig. 5.50 where the time series of V5/W, and the corresponding power spectral
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density spectra for different F'r values in the range of 3 < Fr < 10, all at Re =
100 and s = 0.1, are presented. Similar to the case along the X direction, it is
also observed that at the early developing stage, no flapping motions along the Y
direction. However, for each F'r value presented in the figure, at a certain instant

of time, flapping motions commence and persist in the subsequent fully developed
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FIGURE 5.51: stry, 4 plotted against F'r for F'r over the range of 3 < Fr < 10, all at Re = 100
and s = 0.1.

stage. Different from the flapping motions along the X direction, it is observed that
there is no consistent trend for the onset time of the flapping motions along the Y
direction when F'r increases. Similarly, the extent of the flapping motions is also

found to have no consistent trend.

From the frequency spectra presented in Fig. 5.50(h)-(n), it is seen that at the
fully developed stage, the flapping motions along the Y direction are in general
multi-modal and chaotic, dominated by a series of dominant frequencies for each
F'r considered. For example, at F'r = 4, there are three dominant frequencies, at
0.025, 0.001 and 0.0005, respectively. This is significantly different from the flapping
motions along the X direction, which are in general dominated by a single dominant

frequency.

Figure 5.51 presents str, 4 plotted against F'r for F'r over the range of 3 < F'r <
10, all at Re = 100 and s = 0.1, where str, 4 is the most dominant frequency for
the flapping motions along the Y direction, which is determined as the frequency
corresponding to the largest value of the power spectral density spectrum shown in
Fig. 5.50(h)-(n). From this figure, it is seen that there is no consistent trend on the

dependence of str, 4 on F'r.

5.5.4.2 Effect of Re

The effect of Re on the flapping behavior along the Y direction is demonstrated
in Fig. 5.52 where the time series of V5/W, and the corresponding power spectral
density spectra for different Re values in the range of 50 < Re < 300, all at F'r =5
and s = 0.1, are presented. Similarly, at the early developing stage, no flapping

motions along the Y direction, but at a certain instant of time, flapping motions
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commence and persist in the subsequent fully developed stage. The time for the
onset of the flapping motions along the Y direction in general becomes earlier when
Re increases, although the reductions of the time are very small when Re is beyond
100. Similarly, the extent of the flapping motions is also found to have no consistent

trend.
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From the frequency spectra presented in Fig. 5.52(e)-(h), it is seen that at the
fully developed stage, the flapping motions along the Y direction are again in general
multi-modal and chaotic, dominated by a series of dominant frequencies for each Re
considered. It is further found, as shown in Fig. 5.53 where str, 4 is plotted against
Re for Re over the range of 50 < Re < 300, all at F'r =5 and s = 0.1, that there is

no consistent trend on the dependence of str, ; on Re, similar to that on F'r.

5.5.4.3 Effect of s

The effect of s on the flapping behavior along the Y direction is demonstrated
in Fig. 5.54 where the time series of V5/W, and the corresponding power spectral
density spectra for different s values in the range of 0 < s < 0.5, all at Fr = 5
and Re = 100, are presented. It is obsered that at the early developing stage, again
no flapping motions along the Y direction. However, at a certain instant of time,
flapping motions commence and persist in the subsequent fully developed stage. The
time for the onset of the flapping motions along the Y direction in general becomes
later when s increases, although no clear consistent trend observed when s increases.
However, the extent of the flapping motions is in general reduces when s increases,

apparently due to the stabilizing effect of the stratification.

From the frequency spectra presented in Fig. 5.54(h)-(n), it is seen that at the
fully developed stage, the flapping motions along the Y direction are also in general
multi-modal and chaotic, dominated by a series of dominant frequencies for each
s considered. It is further shown in Fig. 5.55, where stry, 4 is plotted against s for
s over the range of 0 < s < 0.5, all at F'r = 5 and Re = 100, that there is no
consistent trend on the dependence of str, 4 on s as well, similar to that on F'r and

Re.

5.6 Thermal entrainment

5.6.1 Introduction

Entrainment is an important process and flow feature for any sheared flow. In
a fountain, due to the density difference between the injected fountain fluid and
the ambient, entrainment, in particular thermal entrainment due to the density

difference, becomes even more predominant and contributes substantially to the
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symmetric-to-asymmetric transition and the turbulent mixing processes. It is there-
fore of significant importance to study the thermal entrainment in fountains to reveal
its effect on fountain behavior, in particular on transitional fountains in which ther-
mal entrainment plays a key role for the asymmetric transition. In this section,

the thermal entrainment in transitional plane fountains in linearly-stratified fluids
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FIGURE 5.55: stry 4 plotted against s for s over the range of 0 < s < 0.5, all at F'r = 5 and
Re = 100.

is studied using DNS results over the ranges of 2.875 < Fr < 10, 25 < Re < 300
and 0 < s <0.7.

5.6.2 Definition of thermal entrainment

Thermal entrainment, represented by the thermal entrainment coefficient ay, quan-
tifies the extent of the mixing effect between the fountain fluid and the ambient
fluid due to their density difference. For fluids considered in this thesis where the
Oberbeck-Boussinesq approximation is applicable for the relation between the den-
sity and the temperature, Thermal entrainment coefficient a; can be defined as

follows,
T—"1Ty

Oy = )
1wz — 1o

(5.54)

where T is the local temperature of fluid in the flow field, Ty is the temperature of
the injected fountain fluid at the fountain source, and Tj, 7 is the initial temperature
of the ambient fluid at height Z at ¢t = 0.

oy will be zero if the local temperature of fluid is equal to the temperature of
the injected fountain fluid at the fountain source (i.e., when T' = Tj), and will be
one when the local temperature of fluid is the same as the initial temperature of the
ambient fluid at height Z at t = 0 (i.e., when T'= T, 7). o can be larger than one,
for example when the ambient fluid at a higher height is entrained into the fountain
fluid.

Figure 5.56 presents the evolution of transient contours of thermal entrainment
coefficient, a4, of the plane fountain at F'r = 10, Re = 100 and s = 0.1 at Y =0 in
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FIGURE 5.56: Evolution of transient contours of thermal entrainment coefficient, «, of the plane
fountain at Fr = 10, Re = 100 and s = 0.1 at Y = 0 in the X — Z plane (first column), at X =0
in the Y — Z plane (second column), and at Z = 10X, in the X — Y plane (third column).

the X — Z plane, at X = 0 in the Y — Z plane, and at Z = 10X, in the X —Y plane
at the instants of time at 7 = 25, 50, 100, 200, 500 and 900, respectively, which
were obtained from DNS results. It is seen from the first column that thermal
entrainment in general has a negligible effect on the core of the incoming fountain
fluid at any time considered (i.e., o is essentially zero at the core of the incoming
fountain fluid), whereas thermal entrainment plays a significant role in the downflow,
in particular at the interface between the upflow of the fountain fluid core and the
downflow, which becomes stronger and stronger at lateral flow developing stages.
It is also observed that a; becomes larger than one in some regions when 7 > 200,
due to the entrainment of the ambient fluid at a higher height into the incoming
fountain fluid, which is mainly caused by the circulation. The contours of «; at
X =0in the Y — Z planes (second column) show that at the early flow developing
stage (when 7 < 100), thermal entrainment occurs mainly in a very thin layer which

is the interface between the top of the injected fountain fluid and the ambient fluid.
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oy experiences a sharp change, from zero to about 1, across this very thin interface
layer where the heat transfer is mainly through conduction. It is also observed that
at the early developing stage, o; does not vary along the Y direction, implying that
the flow is symmetric along the Y direction. At the later developing stages, however,
the change of oy is no longer limited to the thin interface layer between the top of the
injected fountain fluid and the ambient fluid, but to other regions of the flow field as
well, and the sizes of these regions grow substantially with the continual development
of the flow. At the very later stages (when 7 > 500), the change of a; is observed to
occurs across a substantially thick layer between the top of the injected fountain fluid
and the ambient fluid. It is further observed that at the later developing stages a4
varies significantly along the Y direction, indicating that the flow becomes symmetric
along the Y direction, which is in agreement with the observations discussed in the
section about the asymmetric transition (§ 5.3). The evolution of the transient
contours of a; at the height Z = 10X, in the X —Y plane (third column) also shows
the significant role of a; and its evolution during the different developing stages, as
observed above. At the early developing stage (when 7 < 100), thermal entrainment
occurs at small limited regions where the injected fountain fluid and the ambient
mix, and the flow along the Y direction is again symmetric. However, at the later
developing stages (when 7 > 200), the regions for the thermal entrainment become
very substantial and at the very late stages (when 7 > 500), the thermal entrainment
occurs essentially over the entire plane at Z = 10X,. It is also very obvious that
at the later developing stage the flow along the Y direction is strongly asymmetric,
again in good agreement with the observations discussed in the section about the
asymmetric transition (§ 5.3). Another noticeable observation is that at the fully
developed stage there are substantial regions where «; is larger than one, implying

very strong thermal entrainment due to strong circulation and turbulent flow.

5.6.3 Calculation of thermal entrainment coefficient

The instantaneous horizontal profiles of «; at different heights (Z/Xy, = 2, 4, 6,
8, 10, 15, and 20) at ¥ = 0 in the X — Z plane at 7 = 150 for the fountain at
Fr =10, Re = 100 and s = 0.1, calculated from the DNS results, are presented in
Fig. 5.57. It is observed that in the core of the fountain fluid (within the region of
—1 < X/Xy < 1) oy at each height is essentially zero, indicating that there is no
thermal entrainment in the core of the fountain fluid. However, at other X locations,

ay is in general not zero, and varies along the X direction, with «; approaches to
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FIGURE 5.57: Instantaneous horizontal profiles of «; at different heights (2 = 2, 4, 6, 8, 10, 15,
and 20) at Y = 0 in the X — Z plane at 7 = 150 for the fountain at F'r = 10, Re = 100 and
s = 0.1, where z = Z/X,.

one near the boundaries between the fountain fluid and the ambient fluid. It is also

observed that in general o4 is smaller at a higher height.

A more useful and appropriate parameter to quantify the thermal entrainment
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FIGURE 5.58: (a) The whole fountain region enclosed by the interface between the fountain and
the ambient fluid and (b) the fountain width at Z/ X, = 2, 4, 6, 8, 10, 15 and 20 at Y = 0 in the
X — Z plane at 7 = 150 for the fountain at F'r = 10, Re = 100 and s = 0.1.

at any instant of time is the instantaneous global average thermal entrainment co-
efficient, denoted as ayy—p, within the whole fountain region in which thermal en-
trainment occurs. This whole fountain region is defined as the region enclosed by
the interface between the fountain and the ambient fluid at ¥ = 0 in the X — 7
plane, which is the region enclosed by the X axis, the iso-temperature line at
To—1%(T,0—To) and the vertical lines at X = +10X, at Y = 0 in the X — Z plane,
as illustrated in Fig. 5.58(a). Another more useful and appropriate parameter to
quantify the overall thermal entrainment at any instant of time at a specific height 2
is the instantaneous local average thermal entrainment coefficient at z (z = Z/ X)),
denoted as oy ., which is the averaged value of o, across the fountain width at z
(i.e., averaged value horizontally across the region at z where thermal entrainment
occurs, as illustrated in Fig. 5.58(b)). The value of ;. at a specific vertical location,
denoted by oy ,—2, .4, 4 .-, etc., at z = Z/ Xy = 2, 4, 6, etc., respectively, as
depicted in Fig. 5.57, is used further to explain the effect of Fr, Re and s on the

thermal entrainment coefficient at that specific location.
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FIGURE 5.59: Vertical profiles of the instantaneous local average thermal entrainment coefficient
along the fountain width, o4 ., at different instants of time for the fountain at F'r = 10, Re = 100
and s = 0.1.
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Re =100 and s = 0.1.

Figure 5.59 presents the vertical profiles of the instantaneous local average ther-
mal entrainment coefficient oy, at several instants of time for the fountain at
Fr =10, Re = 100 and s = 0.1. It is seen that in general a;, decreases when
the height increases at any time. It is also observed that at any specific height, o .
in general decreases with the time passing by when 7 < 100, but reverses the trend
to be significantly increased at 7 = 200. The subsequent value of oy, is slightly
larger, as observed for the values at 7 = 800. It is believed that the asymmetric
transition occurred at 7 ~ 200 may be the reason for the sharp turning of a;

observed at each height.

The time series of oy ,—2, ¢ s—4, 04 .—¢, and oy y—o, which are depicted in Fig. 5.57,
of the plane fountain at Fr = 10, Re = 100 and s = 0.1 are presented in Fig. 5.60,
which more evidently show the evolution of the instantaneous local average thermal
entrainment coefficients at several heights and the instantaneous global average ther-
mal entrainment coefficient. It is seen that all these thermal entrainment coefficients
vary significantly during the early developing stage, but at the later developing stage,
each fluctuates around essentially a time-average value which does not change with

time, implying the development of thermal entrainment attains the fully developed
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stage. The fluctuations are apparently due to the combined effects of the asymmet-
ric behavior, the bobbing and flapping motions. One noticeable observation is that
oy y—p has the smallest values among the four average thermal entrainment coeffi-
cients considered. It is also observed that in general at any time the instantaneous
local average thermal entrainment coefficient is smaller at a higher height, which is

in agreement with the results shown in Fig. 5.59.

In the subsequent sections, the time averaged values of oy .—2, 0 =4, 0 -6, and
oy y=o at the fully developed stage, denoted as o =24, 0 2=4,4, Q¢ 2=6,4, a0d Q¢ y =0 4,
respectively, as illustrated in Fig. 5.60, will be used to quantify the effects of F'r, Re

and s on the thermal entrainment.

5.6.4 Effect of s, F'r and Re
5.6.4.1 Effect of s

Figure 5.61 presents the snapshots of transient contours of thermal entrainment
coefficient, o4, at the fully developed stage for the plane fountain at different s in
the range of 0 < s < 0.7, all at Fr =5 and Re = 100, at three specific locations in
the X — 7, Y — Z, and X — Y planes, respectively. It is seen that at Y = 0 in the
X — Z plane (first column) and at Z = 10X, in the X — Y plane (third column)
thermal entrainment plays a key role in the downflows, whereas its effect becomes
negligible in the core upflows of the injected fountain fluid. It is also observed
that the extent of the effect of thermal entrainment on the downflows becomes
weaker when the stratification is stronger, apparently due to the stabilizing effect
of the stratification. At a very strong stratification, such as at s = 0.7, thermal
entrainment becomes minimal, mainly at the interface between the fountain fluid
and the ambient fluid through conduction only, as can be seen from the second
column in Fig. 5.61. The contour of «; at such a strong stratification is also seen to
be the same along the Y direction. It is further observed from the third column that
the size, in the X direction, of the core region where substantial thermal entrainment

occurs is gradually reduced when s increases.

The vertical profiles of the instantaneous local average thermal entrainment co-
efficient o , at two instants of time, one at the developing stage and one at the fully
developed stage, are presented in Fig. 5.62 for fountains at different s in the range
of 0 < s <0.5,all at Fr =5 and Re = 100. It is seen that for each s value o, in
general decreases when the height increases and at each height «; , in general also

decreases when s increases.
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FIGURE 5.61: Snapshots of transient contours of thermal entrainment coefficient, ay, at the fully
developed stage for the plane fountain at different s in the range of 0 < s < 0.7, all at Fr =5
and Re = 100, at Y = 0 in the X — Z plane (first column), at X = 0 in the Y — Z plane (second
column), and at Z = 10X, in the X — Y plane (third column).

Figure 5.63 presents the time series of a;y—¢ and o ,— at ¥ = 0 in the X — Z
plane for the fountains at different s in the range of 0 < s < 0.7, all at F'r =5 and
Re = 100, which demonstrate the evolution of a;y—¢ and a4 ,—» under the influence
of s. It is seen from the figure that the values of oy y—o and oy .—o drop significantly
at the early developing stage when s is increased, again due to the stabilizing effect of
the stratification. Similarly, the values of o y—¢ and a4 .—2 also reduces considerably

at the fully developed stage, also due to the stabilizing effect of the stratification,
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FIGURE 5.62: Instantaneous vertical profiles of a; , at Y = 0 in the X — Z plane for the fountains
at different s in the range of 0 < s < 0.5, all at F'r = 5 and Re = 100: (a) at 7 = 50 at the
developing stage and (b) at 7 = 800 at the fully developed stage.

although these values are in general larger than the values at the early developing
stage, in particular at higher s values, due to the combined effects of asymmetric
behavior, bobbing and flapping motions. It is further observed that the fluctuations
in the time series of ayy—o and oy .—9 occur at almost the same times as those for
the onset of the corresponding asymmetric behavior in the X direction, as shown in
Fig. 5.11. This implies that the asymmetric behavior should be the main cause for

the stronger thermal entrainment in asymmetric fountains.

Figure 5.64 presents oy —o.a, Q¢ 2=2.4, Ot =44, a0d 04 .—6 4, Which are the respec-
tive time-averaged values of oy y—g, Q¢ .=2, ¢ .—4, and oy .—¢ at the fully developed
stage, plotted against s over the ranges of 0 < s < 0.7 and 5 < Fr < 10, all at
Re = 100. It is seen that for each F'r value, all the four time-averaged thermal
entrainment coefficients decrease monotonically with the increase of s, due to the
stabilizing effect of the stratification. In general each thermal entrainment coeffi-
cient increases when F'r increases at the same s value, except at F'r = 10 which has
the trend that is noticeably different from those at other F'r values considered. The
reason for this is not clear. It may be caused by the different regimes of the F'r > 10
fountains and the Fr < 10 fountains. It is apparent that a further investigation is

required for this but it is beyond the scoep of this thesis.

The DNS results presented in Fig. 5.64 suggest that the effect of s on ayy—ga,

O 2=2.0, Ot z=44, a0d oy ,—6 , can be quantified by the following relation,
Qtia = Ca,ssca (555)

where C, 5 is a constant of proportionality, the index c is a constant, and ¢ represents

Y =0, 2 =2, 2z =4 and z = 6, respectively. The values of C, and c were
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FIGURE 5.63: Time series of oy y=o (left column) and ¢y ,=o (right column) at ¥ = 0 in the X —Z
plane for the fountains at different s in the range of 0 < s < 0.7, all at F'r =5 and Re = 100.

determined by regression analysis for ayy—oq4, Qt:=24, V=44, a0d Q4 ,—¢, USIDG
the DNS results over the ranges of 0.1 < s < 0.5 and 5 < Fr <10 at Re = 100 and
the results are listed in Table 5.17.

It is seen from Table 5.17 that in general the magnitude of ¢ decreases when F'r

increases until Fr = 9 for each of the four thermal entrainment coefficients. It is
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FIGURE 5.64: (a) o v=0,a; (b) @t 2224, (¢) @t =44, and (d) o4 =64 at ¥ = 0 in the X — Z plane
plotted against s over the ranges of 0 < s < 0.7 and 5 < Fr < 10, all at Re = 100. The solid lines
represent power fitting curves for different F'r values.

also seen that the magnitude of ¢ increases when the height increases for each F'r
value and the magnitude of ¢ for a; y—¢ 4 is normally smaller than the magnitudes for
Ot z=2.0, Ot y—4q, DA 4 ,—6,. The magnitude of C, 5, on the other hand, decreases
when the height increases for each Fr value whereas the magnitude of C, , for
Oy =0, 15 normally smaller than the magnitude for oy .—2, but in general larger
than those for ay ,—4, and oy .—¢,. Again the exception occurs at F'r = 10, which

does not follow the trends observed for lower F'r values.

5.6.4.2 Effect of Fr

Figure 5.65 presents the snapshots of transient contours of «; at the fully devel-
oped stage for the plane fountain at different F'r in the range of 2.875 < F'r < 10, all
at Re = 100 and s = 0.1, at three specific locations in the X — 7, Y — 7, and X - Y
planes, respectively. It is seen that at F'r = 2.875 thermal entrainment is almost
absent due to the symmetric behavior of the flow at such a small F'r value; however,
when F'r is increased, it is observed that the extent of thermal entrainment at each
of the three planes presented in the figure increases significantly, again mainly in the

downflows as well as near the interface between the fountain top and the ambient
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TABLE 5.17: Regression results for the dependence of thermal entrainment coefficients oy —o,q,
O, 2=2.q, Ot z=4,q, ANd Q4 ,—¢ o ON s over the range of 0.1 < s < 0.5 with different F'r over the range
of 5 < Fr <10, all at Re = 100.

Fr tia Ca,s c R Fr tia Co,s c R
5 apy—0. 0.0624 -0.546 09883 8 aty—o. 0.1578 -0.300 0.9970
ar.—2, 0.0793 -0.576 0.9690 ap.—2, 0.2404 -0.319 0.9432
Qp.—44 0.0353 -0.911 0.9557 Q=44 0.1327 -0.536 0.9792
at.—6, 0.0145 -1.197 0.9579 at.—6, 0.0845 -0.665 0.9763
6  ary—o. 0.0961 -0.438 09966 9 ory—oq 0.1651 -0.300 0.9970
Qpn—2q 0.1388 -0.443 0.9732 Qy—2q 0.2848 -0.301 0.9432
at =4, 0.0769 -0.655 0.9934 Q=40 0.1656 -0.453 0.9792
at =6, 0.0435 -0.791 0.9917 Qtz—6q 0.1071 -0.584 0.9900
7 ogy—o0. 01227 -0.400 0.9954 10 oyy—o. 0.1050 -0.509 0.9968
ai.—2, 0.1800 -0.407 0.9816 ap =2, 0.2010 -0.495 0.9901
Q-4 0.1044 -0.567 0.9951 Qy—4q 0.1258 -0.605 0.9901
ai.—6, 0.0599 -0.755 0.9964 ai.—6,. 0.0954 -0.642 0.9986

fluid. It is also observed from the figure that at high F'r values (F'r > 5) the value
of ay can be larger than one at some regions of the downflows. This is a result of
the trapping of the ambient fluid at higher temperature from a higher level into the
fluid with lower temperature due to strong circulation at high F'r values. All these
provide further evidence that the asymmetric behavior should be the main cause for

the stronger thermal entrainment in asymmetric fountains, as discussed above.

Fig. 5.66 presents the vertical profiles of the instantaneous local average thermal
entrainment coefficient o, at two instants of time, again one at the developing stage
and one at the fully developed stage, for fountains at different F'r in the range of
4 < Fr <10, all at Re = 100 and s = 0.1. It is seen that for each F'r value o4, in
general decreases when the height increases due to weaker entrainment. However, at
each height it is observed that «; . in general increases when F'r increases, a result

of the stronger entrainment and circulation at higher F'r values, as discussed above.

Figure 5.67 presents the time series of a;y—o and a;,—9 at ¥ = 0 in the X — Z
plane for the fountains at different F'r in the range of 2.875 < Fr < 10, all at
Re = 100 and s = 0.1, to demonstrate the effect of F'r on the evolution of oy
and a;,—o. It is seen from the figure that the values of a;y—o and o4 .- do not
vary much at the early developing stage when F'r is increased, due to the relatively
weak entrainment at such an early developing stage of the flow. However, at the
subsequent fully developed stage, the values of oy y—¢ and oy -9 are increased when
compared to their values at the early developing stage due to much stronger and

active entrainment and they in general increase, although not at a significant rate of
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FIGURE 5.65: Snapshots of transient contours of thermal entrainment coefficient, «y, at the fully
developed stage for the plane fountain at different s in the range of 0 < s < 0.7, all at Fr =5
and Re =100, at Y = 0 in the X — Z plane (first column), at X = 0 in the Y — Z plane (second
column), and at Z = 10X, in the X — Y plane (third column).

increase, when F'r increases. Also fluctuations are present in the time series when
Fr is beyond 2.875, and the extent of the fluctuations becomes stronger when Fr

increases, which is particularly apparent in the time series of o ,—o.

Figure 5.68 presents oy y—o4, O :=24, =44, a0d o ,—¢ 4, plotted against F'r
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FIGURE 5.66: Instantaneous vertical profiles of a; , at Y = 0 in the X — Z plane for the fountains
at different F'r in the range of 4 < Fr < 10, all at Re = 100 and s = 0.1: (a) at 7 = 50 at the
developing stage and (b) at 7 = 800 at the fully developed stage.

TABLE 5.18: Regression results for the dependence of thermal entrainment coefficients oy —g,q,
Ot 2=2.q, Ot z=4.q, a0d ay =6, On F'r over the range of 3 < Fr <9 with different s over the range

of 0.1 <5 <0.5, all at Re = 100.

S At i.a Oa,Fr a R
0.1 oaty=0q 0.0957 0.561 0.9692
Orsna 00467 1135 0.9811
Qtosa 00732 0.834 0.9815
Oroga 00271 1.249 0.9888
0.2 apy=0a 0.0352 0.954 0.9862
ot .—2, 0.0280 1.308 0.9953
ot =44 0.0400 0.998 0.9766
at.—6q 0.0045 1.950 0.9836
0.3 oagy=0q 0.0252 1.040 0.9937
Orszg 00195 1401 0.9949
Ototq 00123 1.449 0.9864
Qoo 00025 2082 0.9889
04 ary—0a 00142 1.280 0.9851
at.—2, 0.0095 1.720 0.9869
ot =44 0.0051 1.806 0.9794
Qtoga 00016 2173 0.9760
05 ary_o. 0.0087 1464 0.0732
ot z—24 0.0050 1.934 0.9902
ot =4, 0.0016 2.290 0.9623
ot 2—60 0.0003 2.999 0.9577

over the ranges of 3 < Fr < 9 and 5 < Fr < 10, all at Re = 100. It is seen

that for each s value, all the four time-averaged thermal entrainment coefficients

increase monotonically with the increase of F'r, due to the stronger entrainment and

circulation. It is also observed that in general each thermal entrainment coefficient

decreases when s increases at the same F'r value, apparently due to the stabilizing
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FIGURE 5.67: Time series of ayy—o (left column) and «;.—o (right column) at ¥ = 0 in the
X — Z plane for the fountains at different F'r in the range of 2.875 < Fr < 10, all at Re = 100
and s = 0.1.

effect of stratification. The results for F'r = 10 are excluded due to the possibly
different regime of the F'r > 10 fountains from that of the F'r < 10 fountains.
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FIGURE 5.68: (a) o y=0,a; (b) @t 2=2,4, (€) Q1 z=4,4, and (d) o =64 at ¥ = 0 in the X — Z plane
plotted against Fr over the ranges of 3 < Fr < 9 and 0.1 < s < 0.5, all at Re = 100. The solid
lines represent power fitting curves for different s values.

The DNS results presented in Fig. 5.68 suggest that the effect of F'r on oy y—.4,

O z=2.0, Ot =44, a0d ¢ ,—6 , can be quantified by the following relation,
Qtia = Coe,FrFTaa (556)

where C, p, is a constant of proportionality, the index a is a constant, and ¢ repre-
sents Y =0, 2 = 2, 2 = 4 and z = 6, respectively. The values of C,, p, and a were
determined by regression analysis for c y—o a4, Q¢ 2=2.a, O =44, a0d @ ,—¢ o Using the
DNS results over the ranges of 3 < F'r < 9 and 0.1 < s < 0.5, all at Re = 100, and
the results are listed in Table 5.18.

It is seen from Table 5.18 that in general the magnitude of a increases but
the magnitude of C, p, decreases when s increases for each of the four thermal
entrainment coefficients. It is also seen that the magnitude of a increases but the
magnitude of C,, p, decreases when the height increases for each s value when s >
0.3. However, these trends are not valid for weaker stratification, when s = 0.1
and s = 0.2. It is further observed that the magnitude of a for a;y—o, is smaller
than the magnitudes for oy ,—2 4, Q¢ 2=4,4, and a; ,—¢ o, Whereas, on the contrary, the

magnitude of C, p, is larger than the magnitudes for a; ,—24, Q¢ =14, and oy .64
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for each s value.

5.6.4.3 Effect of Re
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FIGURE 5.69: Snapshots of transient contours of thermal entrainment coefficient, ay, at the fully
developed stage for the plane fountain at different s in the range of 0 < s < 0.7, all at Fr =5
and Re = 100, at Y = 0 in the X — Z plane (first column), at X = 0 in the Y — Z plane (second
column), and at Z = 10X in the X — Y plane (third column).

Figure 5.69 presents the snapshots of transient contours of thermal entrainment
coefficient, a4, at the fully developed stage for the plane fountain at different Re in
the range of 25 < Re < 300, all at F'r =5 and s = 0.1, at three specific locations in
the X —Z,Y —Z, and X —Y planes, respectively. It is seen that at lower Re values
(Re < 30), thermal entrainment is essentially absent from the fountain fluid due

to negligible entrainment and circulation at such low Re values. The flow remains
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FIGURE 5.70: Instantaneous vertical profiles of a; , at Y = 0 in the X — Z plane for the fountains
at different Re in the range of 30 < Re < 300, all at Fr =5 and s = 0.1: (a) at 7 = 50 at the
developing stage and (b) at 7 = 800 at the fully developed stage.

symmetric at these lower Re values, even at the fully developed stage. However,
a further increase of Re, even at a very small amount, to Re = 35, as shown
in the figure, leads to noticeable thermal entrainment, although mainly near the
interface between the fountain top and the ambient fluid and thermal entrainment
is still essentially absent from the core regions of the fountain fluid. The flow starts
to become asymmetric. Further increases of Re result in significantly increased
thermal entrainment, along with the asymmetric behavior and the bobbing and
flapping motions as discussed in previous sections. When Re is 100 and beyond,
the strong circulation brings the ambient fluid at higher temperature from a higher
height to the core regions of the fountain fluid, which results in larger than one
thermal entrainment in these regions, as clearly shown in the figure, in particular in
the first and third columns. This demonstrates that Re has a strong effect on the

thermal entrainment.

Fig. 5.70 presents the vertical profiles of the instantaneous local average thermal
entrainment coefficient o, , at two instants of time, again one at the developing stage
and one at the fully developed stage, for fountains at different F'r in the range of
30 < Re < 300, all at Fr =5 and s = 0.1. It is seen that for each Re value o,
in general decreases when the height increases due to weaker entrainment, except
at F'r = 10 in which some different trends are present. However, at each height it
is observed that a; . in general increases when Re increases, again a result of the
stronger entrainment and circulation at higher Re values, similar to the F'r effect

as discussed above.

Figure 5.71 presents the time series of a;y—o and a;,—2 at ¥ = 0 in the X — Z
plane for the fountains at different Re in the range of 25 < Re < 300, all at F'r =5

and s = 0.1, to demonstrate the effect of Re on the evolution of a;y—o and oy .—.
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FIGURE 5.71: Time series of oy, y=o (left column) and ¢ ,=2 (right column) at ¥ = 0 in the X —Z
plane for the fountains at different Re in the range of 25 < Re < 300, all at Fr =5 and s = 0.1.

The results show that the effect of Re on the evolution of a;y—¢ and «a; ,—9 is very
similar to that of F'r; at the early developing stage the values of a;y—¢ and ay .-
do not vary much when Re is increased, in particular when Re is low (Re < 50)
due to the relatively weak entrainment at such an early developing stage of the flow,
although values of a;y—¢ and oy .- become larger at higher Re values at the early
developing stage. Again, at the subsequent fully developed stage, the values of a; y—
and oy ,—9 are increased when compared to their values at the early developing stage,
particularly when Re is beyond 30, due to much stronger and active entrainment

and circulation, and they in general increase, although not at a significant rate of
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FIGURE 5.72: (a) aty=0,a, Otz=2,a, Ot z=4,a, a0d 0y -6, plotted against Re in the range of
35 < Re < 300, and (b) In(ay=o0,q), In(z=2,4), In(@z=4,4), and In(a,=¢,.) plotted against in(Re)
in the range of 50 < Re < 300, all at F'r = 5 and Re = 100. The solid lines represent power fitting
curves.

increase, when Re increases. Fluctuations are also present in the time series when

Re is beyond 30, again due to much stronger and active entrainment and circulation.

Figure 5.72 presents oy y—04, Ot 2=24, Ot s=44, a0d Q4 ,—¢4, Plotted against Re
over the ranges of 35 < Re < 300, all at F'r = 5 and s = 0.1. It is seen that
all four time-averaged thermal entrainment coefficients increase monotonically with
the increase of Re, due to the stronger entrainment and circulation, although their
values at Re = 35 are apparently not following the trends of the higher Re values

very well, apparently due to the flow not being significantly asymmetric.

The DNS results presented in Fig. 5.72 suggest that the effect of Re on ayy—o.q,
Ot =90, Ot s—dq, aNd 4 ¢4, When Re is above 35 as shown in Fig. 5.72(b), can be

quantified by the following relation,
Ot ja = Ooe,ReReb; (557)

where C, ge is a constant of proportionality, the index b is a constant, and ¢ repre-
sents Y =0, z = 2, 2 = 4 and z = 6, respectively. The values of C,, g. and b were
determined by regression analysis for a y—oq, Q¢ 2=2.a, O =44, a0d @ ,—¢ o Using the
DNS results over the ranges of 50 < Re < 300, all at F'r =5 and s = 0.1, and the
results are listed in Table 5.19.

5.6.4.4 Combined effects of s, F'r and Re

From the above results on the effects of s, F'r and Re on the four time-averaged

thermal entrainment coefficients (o4 y—0a, Qt:=2.4, Qt2—44, and aq,—g,) over the
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TABLE 5.19: Regression results for the dependence of thermal entrainment coefficients oy —¢,q,
O, 2=2.q, Ot =44, a0d oy ,—¢ 4 O Re over the range of 50 < Re < 300, all at F'r =5 and s = 0.1.

Qtia Ca,Re b R
ary—=0,a 0.0799 0.208 0.9989
ot .—2, 0.1163 0.192 0.9952
Qizegq  0.1407 0130 0.9617
ar.—6q 0.1045 0.136 0.9687
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FIGURE 5.73: (a) aty—o.a plotted against Frl-107Re0-2015=0430 " () o, ., , plotted against
Frl:502Re01805=0455 " () o, ., , plotted against Fr!363Re0-107570:664 " and (d) oy .6 plotted
against Fr!-363 Re0-1075=0.664 gyer the ranges of 5 < F'r < 9, 50 < Re < 300, and 0.1 < s < 0.5.
The solid lines represent linear fitting curves with the data at Fr = 8 and 9 at Re = 100 and
s = 0.1 excluded.

ranges of these parameters considered, it is reasonable to propose that the combined
effects of s, F'r and Re on these parameters can be quantified by the following

relation
Qg = CoFroRebse, (5.58)

where C,, is again a constant of proportionality and the power indexes a, b and ¢ are
also constants. The values of these constants can be determined by multivariable
regression analysis with the DNS results over the ranges of 5 < Fr < 9, 50 <
Re <300 and 0.1 < s < 0.5 for each of the four time-averaged thermal entrainment
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coefficients, giving the following empirical correlations,

Qy—0a = 0.0050F7r!107 Re0-201570430 10 008,
Qpoena = 0.0038Fr!502Re0180570455 1 0 0116,
Qpomsa = 0.0037Fr!303 Re0-107570664 10 0180,
Qpoega = 0.0035F7!303 Re0-10740664 4 0375,

5.59
5.60
5.61

(
(
(
(5.62

)
)
)
)

with the regression constants of R = 0.9865, 0.9863, 0.9736, and 0.9916, which
indicate that the DNS results are in good agreement with the relation (5.58) over
the ranges of 5 < Fr <9, 50 < Re < 300 and 0.1 < s < 0.5, as demonstrated in
Fig. 5.73. The DNS results for F'r = 10 fountains are excluded from the regression
analysis, as explained above. In addition, the results for F'r = 8 and Fr = 9
fountains at Re = 100 and s = 0.1 are also not included in the regression analysis
results as they do not follow the trends well as other F'r fountains, as clearly shown
in Fig. 5.73. A further study is needed to explore the reason for this, but again it is
beyond the scope of this thesis.

5.7 Summary

In this chapter, the flow behavior of transitional plane fountains in linearly-
stratified fluids is studied in detail using a series of three-dimensional DNS runs
over the ranges of 2.75 < Fr < 10, 25 < Re < 300, and 0 < s < 0.7. In par-
ticular, the effects of F'r, Re and s on the onset of the asymmetric behavior, as
well as the fountain bulk behavior parameters, such as the maximum fountain pen-
etration heights and the associated time, the dominant frequencies of the bobbing
and flapping motions, and the thermal entrainment coefficients, are discussed and
quantified by the DNS results. The major results and conclusions of this chapter

can be summarized below.

The results show that plane fountains remain symmetric for all times at a lower
Fr or Re value or at a higher s value. On the contrary, when F'r or Re is large
or the stratification is weak with a small s, plane fountains will remain symmetric
only in the early developing stage and will become asymmetric at the later, fully
developed stage. Regime maps to distinguish the symmetric plane fountains from
the asymmetric one were developed in terms of Fr, Re and s. It was observed
that the critical F'r and Re values for the asymmetric transition move up when

s increases, due to the stabilizing effect of stratification; on the other hand, the
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critical Re value for the asymmetric transition reduces when F'r increases at lower

Fr values, but becomes essentially independent of F'r when Fr is high.

The results further demonstrate that both the initial and time-average maximum
fountain penetration height and the time to attain the initial maximum fountain
penetration height increase monotonically with F'r, apparently due to the stronger
momentum flux of the injected fountain fluid, whereas on the contrary, due to the
stronger negative buoyancy force at higher s values, these bulk fountain behavior
parameters reduce with s. It was also shown that the effect of F'r on these parameters

is much stronger that those of s, although the effect of Re is found to be negligible.

The DNS results also show that bobbing and flapping motions are present in
asymmetric plane fountains, with the extent of both the bobbing and flapping mo-
tion increasing with F'r and Re but decreasing with s. The bobbing motions are
predominated by a single dominant frequency over the ranges of F'r, Re and s consid-
ered, and it is found that this dominant bobbing frequency decreases monotonically
with F'r, but increases with s. The flapping motions in asymmetric plane fountains
occur along both the X direction and the Y direction. The flapping motions along
the X direction are also predominated by a single dominant frequency, and similar
to the bobbing motions, this dominant flapping frequency also decreases monoton-
ically with F'r, but increases with s. The effect of Re on the dominant frequencies
for the bobbing motions and the flapping motions along the X direction is found to
be insignificant. On the other hand, the flapping motions along the Y direction is

more chaotic and fluctuate with multiple dominant frequencies.

The results further demonstrate that thermal entrainment is one of the major
features of plane fountains and plays a key role for the symmetric-to—asymmetric
transition and the turbulent mixing process in asymmetric fountains. For the pa-
rameter ranges considered, it is observed that thermal entrainment in general has a
negligible effect on the core region of the injected fountain fluid, but plays a key role
in the downflow, in particular at the interface between the upflow and the downflow,
as well as at the interface between the downflow and the ambient fluid, which be-
comes more dominant and stronger at the later flow developing stages. At the early
developing stage, thermal entrainment occurs mainly in a very thin layer which is
the interface of the fountain top and the ambient fluid. It is also observed that ther-
mal entrainment decreases with height. Thermal entrainment is further found to be

characterized by several representative average thermal entrainment coefficients.

Additional, the DNS results are used to develop a series of empirical relations

to quantify the individual and combined effects of F'r, Re and s, over their ranges
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considered, on the bulk fountain behavior parameters, including the initial and time-
averaged maximum fountain penetration heights, the time to attain the initial max-
imum fountain penetration height, the onset time for the symmetric-to-asymmetric
transition, the dominant frequencies of the bobbing and flapping motions, and the
thermal entrainment coefficients. Notably, it is found that the scaling relations de-
veloped by Lin & Armfiled (2002) for weak plane fountains in linearly-stratified
fluids, at F'r = O(1), in general also work well for the asymmetric plane fountains

in linearly-stratified fluids considered in this thesis, which have higher F'r values.






Chapter 6

Symmetric plane fountains

6.1 Introduction

In the previous two chapters, the flow behavior of transitional plane fountains
in linearly-stratified fluids was investigated using a series of three-dimensional DNS
runs over the ranges of 2.75 < Fr < 10, 25 < Re < 300, and 0 < s < 0.7.
The major feature of these fountains studied is that almost all of them become
asymmetric at the later developing stage, although at the early developing stage
they are symmetric. At a smaller Re value and a stronger stratification than those
studied, it is expected that a plane fountain in linearly-stratified fluids may remain
symmetric all the time, including at the fully developed stage. In this chapter, the
flow behavior of such symmetric plane fountains in linearly-stratified fluids is studied
using the results obtained through a series of three-dimensional DNS runs over the
ranges of 1 < Fr <10, 10 < Re <100, and 0.1 < s < 0.7.

The remainder of this chapter is organized as follows. In § 6.2, the details of
the DNS runs carried out in this chapter are presented, along with the mesh and
time-step independence testing results. In § 6.3, the general flow behavior of sym-
metric plane fountains in linearly-stratified fluids, and the influence of F'r, Re and s,
are described qualitatively with the transient temperature contours. A quantitative
analysis of the maximum fountain penetration height of these symmetric plane foun-
tains was conducted in § 6.4 using the DNS results. Particularly the effects of F'r,
Re and s on the initial and time-averaged maximum fountain penetration heights,
the time to attain the initial maximum fountain height, and the transient maximum
fountain height are analyzed and quantified with the DNS results. The height and

velocity of intrusion, which is found to be an important part for the symmetric plane
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fountains considered, are also analyzed and quantified with the DNS results in § 6.5.

Finally, the major conclusions of this chapter are drawn in § 6.6.

6.2 DNS runs and mesh and time-step independence testing

There are totally 49 DNS runs carried out in this chapter using ANSYS Fluent 13,
with key information about these runs listed in Table 6.1. The DNS run mainly focus
on symmetric plane fountains, which remain symmetric throughout the simulation
run, over the range 1 < Fr < 10,10 < Re < 100 and 0.1 < s < 0.7, which is noted
in Table 6.1. For all DNS run, the fluid used was water with the same properties
mentions at Chapter 5.2. X, and T, was fixed at 0.002 m and 300 K, respectively.
Specific F'r, Re and s conditions, over the range mentioned, was also achieved in
similar way mention in Chapter 5.2. Same domain with same mesh specification

was also used to produce accurate simulation with time step 0.025 s.

TABLE 6.1: Key information about DNS run of this chapter.

S Re Fr Symmetric?
(Yes/No)
0.1 100 1,1.5,2,2.75,2.875,3 Yes
0.1 50 3 Yes
0.1 10,15,20,25,28,30,35 5 Yes
0.1 15,20 9 Yes
0.1 15,18 10 Yes
0.2 100 1,2,3,3.25,3.5 Yes
0.2 35 5 Yes
0.3 100 1,2,3,3.5,3.75,4 Yes
0.3 45 5 Yes
0.4 100 1,2,3,4,4.35,4.5,5 Yes
0.4 60 5 Yes
0.5 100 1,2,3,4,4.75,4.875,5 Yes
0.7 100 5 Yes
1 100 ) Yes

Accurate simulations had been ensured with extension mesh and time-step de-
pendency test. one example of such testing result are presented in Fig. 6.1 for
Fr =2,Re = 100 and s = 0.1, which depicts the horizontal profile of temperature
and vertical velocity at height Z = 0.005 m in the X7 plane at the location ¥ = 0,
and the vertical profiles of temperature and vertical velocity along the centerline
(at X =Y = 0) in the Z direction, all at t = 20 s. These results were obtained
numerically with three different meshes (i.e. coarse mesh with 1.17 million cells,

basic mesh with 2.1 million cells and fine mesh with 3.6 million cells) and with three
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time steps (i.e. 0.025 s, 0.035 s and 0.05 s) It is clear from Fig. 6.1 (a ~ d), which
is presenting DNS results with the three meshes, all at the same time step of 0.025
s, that the results obtained with the basic mesh and the fine mesh are essentially
same and only the results produce with the coarse mesh have some noticeable de-
viations. Similarly, a comparison of the results obtained with three time steps, all
with basic mesh (2.1 million cells), as shown Fig. 6.1 (e ~ h), shows that the dif-
ferences are very insignificant. Hence it is believe that the combination of the basic
mesh with 2.1 million cells and the time step with 0.025 s can produces sufficiently
accurate solutions with neglecting mesh and time dependency effects on the simula-
tion. Similarly, these mesh and time dependency test was also conducted for other
conditions as well as and observed that numerical simulation can produce sufficient
accurate simulation result with basic mesh (2.1 million cells) with time step 0.025 s.
In additions, effect of domain size on the numerical result is also tested and found
that domain size H X B x L equal to 0.2 m x 0.1 m X 1.5 m can ensure negligible
effect of boundary condition on the flow quantities of interest. For a typical run,
it usually took 10 ~ 18 days Dell OptiPlex (TM) desktop with processor “Intel(R)
Core(TM) i7-3770 CPU @ 3.40GHz”, RAM 32.0 GB and operation system 64-bit,

which usually took one week to finish one simulation.

6.3 Qualitative Observation

6.3.1 Evolution of transient temperature contour

Figure 6.2 shows the evolution of transient temperature contours of the plane
fountain at Fr = 3.25, Re = 100 and s = 0.1 on three specific planes. It is
observed that at each instant of time considered the temperature contours (thus the
temperature fields) are symmetric about X = 0 in the X — Z plane, as shown in
the first column, and there is no temperature variation along the Y direction (i.e.,
along the fountain source slot), as exhibited in the second and third columns. The
bobbing and flapping motions observed for asymmetric plane fountains as discussed
in the previous chapter are not present as well. All these clearly demonstrate that
the fountain flow in this specific case remains symmetric all the time, no matter
at the early developing stage or at the fully developed stage. These are the major
features that a symmetric plane fountain is different from an asymmetric fountains

as those studied in the previous two chapters.
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FIGURE 6.1: The horizontal profiles of temperature T (K) ((a) and (e)) and vertical velocity W
(m/s) ((b) and (f)) at Z = 0.005 m in the X—Z plane at the location ¥ = 0, and the vertical
profiles of temperature T (K) ((¢) and (g)) and vertical velocity W (m/s) ((d) and (h)) along the
centerline (at X =Y = 0) in the Z direction all at ¢ = 20 s, which are obtained numerically for
the case of Fr =2, Re = 100 and s = 0.1 with three different meshes (left column, all at the same
time step of 0.025 s) and at three different time steps (right column, all with the same basic mesh
of 2.1 million cells).
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F1GURE 6.2: Evolution of transient temperature contours of the plane fountain with Fr = 3.25,
Re = 100 and s = 0.2 at Y = 0 in the X — Z plane (first column), X = 0 in the Y — Z plane
(second column), and Z = 0.5Z,, ; in the X — Y plane (third column), respectively, where Z,, ; is
the initial maximum fountain height. The temperature contours in each subfigure are normalized
Wlth [T(Z) — TO]/(Ta,Z=6OX0 — To)

6.3.2 Effect of Fr

The effect of F'r on symmetric plane fountains is demonstrated in Fig. 6.3, where
the snapshots of the temperature contours, at the fully developed stage, of plane
fountains at different F'r between 1 and 3.5, all at Re = 100 and s = 0.2, at the same
three specific planes as those in Fig. 6.2 are presented. It is seen that at the fully
developed stage all these plane fountains remain symmetric. Fountains at larger F'r
values penetrate higher due to stronger momentum fluxes. It is also seen that there
is little entrainment of the ambient fluid into the core region of the fountain fluid,
as the upflow and the downflow become indistinguishable. It is also observed from
the first column that the intrusion thickness becomes substantial with respect to the
fountain height, particularly when F'r is small, which has a significant effect on the

maximum fountain penetration height, as will be discussed later in this chapter.
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FIGURE 6.3: Snapshots of the temperature contours at the fully developed stage of plane fountains
at different F'r over the range of 1 < Fr < 3.5, all at Re = 100 and s = 0.2, at Y = 0 in the XZ
plane (first column), at X = 0 in the YZ plane (second column), and at Z = 0.5Z,,; in the XY
plane (third column), respectively. The temperature contours in each subfigure are normalized
with [T(Z) - TO]/(Ta,Z=6OX0 — To)

6.3.3 Effect of Re

The effect of Re on symmetric plane fountains is demonstrated in Fig. 6.4, where
the snapshots of the temperature contours, at the fully developed stage, of plane
fountains at different Re over the range of 10 < Re < 35, all at F'r = 5 and
s = 0.1, at the same three specific planes as those in Figs. 6.2 and 6.3 are presented.
It is seen that at the fully developed stage again all these plane fountains remain
symmetric, and there is little entrainment of the ambient fluid into the core region of
the fountain fluid, leading to indistinguishable upflow and downflow. The intrusion
thickness also becomes substantial with respect to the fountain height, particularly
when Re is small. One particular feature of these low Re plane fountains is that
Re has an insignificant effect on the fountain penetration height. It also has an
insignificant effect on the intrusion height, although the intrusion structure varies
with Re, as clearly shown in the first and third columns. At very low Re (when

Re = 10), the intrusion is a substantial part of the downflow, whereas at larger Re
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(when Re > 25), the core region of the intrusion is essentially separated from the

. 1.0

downflow, thus its effect on the downflow becomes minimal.
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FIGURE 6.4: Snapshots of the temperature contours at the fully developed stage of plane fountains
at different Re over the range of 10 < Re < 35, all at Fr =5 and s = 0.1, at Y = 0 in the X7
plane (first column), at X = 0 in the YZ plane (second column), and at Z = 0.5Z,, ; in the XY
plane (third column), respectively. The temperature contours in each subfigure are normalized
with [T(Z) - TO}/(Ta,Z:(iOXO - To)

6.3.4 Effect of s

Fig. 6.5 presents the snapshots of the temperature contours, at the fully devel-
oped stage, of plane fountains at different s over the range of 0.1 < s < 0.5, all at
Fr = 2 and Re = 100, at the same three specific planes as those in Figs. 6.2, 6.3
and 6.4, which demonstrate the effect of s on symmetric plane fountains. Again it
is observed that all these plane fountains remain symmetric, with little entrainment
between the ambient fluid and the core region of the fountain fluid, leading to in-
distinguishable upflow and downflow. The intrusion thickness again is substantial
with respect to the fountain height, in particular when s is large. The fountain
penetration height is observed to decrease when s increases, apparently due to the
stabilizing effect of the stratification as discussed in the previous chapters, indicat-
ing that s has a significant effect on the fountain penetration height as well as the

intrusion height.
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FIGURE 6.5: Snapshots of the temperature contours at the fully developed stage of plane fountains
at different s over the range of 0.1 < s < 0.5, all at F'r = 2 and Re = 100, at Y = 0 in the X7
plane (first column), at X = 0 in the YZ plane (second column), and at Z = 0.5Z,, ; in the XY
plane (third column), respectively. The temperature contours in each subfigure are normalized
with [T(Z) — TO}/(Ta,ZZGOXo - To)
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6.4 Quantitative analysis of fountain penetration height

6.4.1 Time series fountain penetration height

4— Time period for time averaging ———————— |

Zm,a

I " " " " 1 " " " " 1 " " " " 1

200 400 600 800 1000
T

FIGURE 6.6: Illustration of zp, i, Tm,i, and 2, , based on the time series of the dimensionless
maximum fountain height, z,,, obtained from DNS for the case of F'r =2, Re =100 and s = 0.1.
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FIGURE 6.7: Time series of the maximum fountains height (z,,) within the whole computational
domain for (a) different s values in the range of 0.1 < s < 0.5 at F'r = 2 and Re = 100, () different
Re values in the range of 10 < Re < 35 at F'r =5 and s = 0.1, and (c¢) different F'r values in the
range of 1 < F'r <3 at Re =100 and s = 0.1.

A time series of the dimensionless maximum fountain height, z,,, obtained
from DNS, is presented as an example in Fig. 6.6 for a typical symmetric plane
fountain at F'r = 2, Re = 100 and s

rises continuously after initiation until at 7,,; when it attains an initial maximum

= 0.1. It is seen that initially the fountain
height z,,,. After that, z,, falls slightly, and shortly, before it rises again and it
continue to rise all the time subsequently, almost at a constant rate of rise. This
is quite different from an asymmetric plane fountain. For an asymmetric plane
fountain, after it reaches z,,;, a short period of transition will be followed, before
the fountain becomes fully developed subsequently, with z,, fluctuating around an
almost constant value (z,,,), which does not change when the time passes by, as

illustrated in Fig. 4.16. The continual rise of z,, at the later, fully developed stage
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in a symmetric plane fountain is believed to be a result of the associated continuous
rise of the intrusion height, as will be discussed in detail later of this chapter, which
reduces continuously the negative buoyant force that the fountain experiences when
the flow is further developed. The time-averaged value of z,,, denoted as z,, 4, which
is determined as the time averaged value of z,, over the duration between 7 = 200
and 7 = 1000, as illustrated in Fig. 6.6, is used as the parameter to represent and
quantify the maximum fountain penetration height of a symmetric plane fountain

at the fully developed stage.

The DNS results for the time series of z,, for symmetric plane fountains with F'r,
Re and s varying over the ranges of 1 < Fr < 3, 10 < Re < 35 and 0.1 < 5 < 0.5
are presented in Fig. 6.7. It is observed that in general z,, decreases when s increases
due to the increasing negative buoyancy, but increases, although only slightly, when
Re increases, largely due to the increased mixing effect. When F'r increases, z,,
increases due to stronger momentum flux, and the increase is substantial at smaller
Fr values. It is also observed that 7,,; reduces when s increases, again due to the
increasing negative buoyancy which results in reduced z,,. However, 7,,; increases
significantly when F'r increases due to increased fountain momentum flux which
leads to higher z,, and thus a longer time for the fountain to attain z,,;. It is also

observed that when Re increases, 7,,,; increases, although only slightly.

6.4.2 Initial maximum fountain height

The effect of F'r, Re and s on z,,; is demonstrated by the DNS results presented
in Fig. 6.8 for symmetric plane fountains. From Fig. 6.8(a), it is seen that at
Re = 100, for each s value, z,,; increases monotonically when F'r increases, due to
the stronger momentum flux of the fountain. The DNS results further demonstrate,
as shown in Fig. 6.8(b), that at Re = 100 for each s value the dependence of z,,; on
Fr can be quantified by the following relation,

R 'r‘rz,z’,F7"F1Ta1 (61)

where C),; pr is a constant of proportionality and the index a; is also a constant.
The values of these two constants were determined by linear regression analysis of
the data presented in Fig. 6.8(b), with the results listed in Table 6.2. It is seen that
the value of Cy, ; p, decreases monotonically with s, from 2.371 at s = 0.1 to 1.793 at
s = 0.5, apparently due to stronger stratification, thus stronger negative buoyancy.

However, the value of a; is essentially constant over the range of 0.1 < s < 0.5,
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at about 0.82, with only the s = 0.1 case having a slightly higher value at 0.874,

indicating that the effect of F'r on z,,; is not noticeably influenced by s.

From Fig. 6.8(c) and (d), it is seen that at F'r =5 and s = 0.1, z,,; increases
almost linearly with Re over the small range of 10 < Re < 35, although the rate of
the increase in z,,; is not substantial. The dependence of z,,;, on Re over this small
range, at F'r =5 and s = 0.1, is found to be quantified by the DNS results over this

range with the following correlation, as shown in Fig. 6.8(d),

Zmi = 0.0834Re + 8.3443, (6.2)
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TABLE 6.2: Regression results for the dependence of z,, ; on F'r over the range of 1 < F'r <5 for
different s, all at Re = 100.

S Cm,i,Fr ai R

0.1 2371 0.874 0.9960
0.2 2196 0.822 0.9949
0.3 2043 0.814 0.9955
0.4 1909 0.816 0.9953
0.5 1.793 0.823 0.9948

TABLE 6.3: Regression results for the dependence of z,, ; on s over the range of 0.1 < s < 0.5 for
different F'r, all at Re = 100.

Fr Cm,i”g C1 R

1 1.721 -0.161 0.9894
2 2654 -0.198 0.9967
3 3455 -0.269 0.9992

with the regression constant of R = 0.9974.

The effect of s on z,; is illustrated in Fig. 6.8(e) for the fountains over the ranges
of 0.1 <s<05and 1< Fr <3, all at Re = 100. On the contrary, it is seen that
Zm,i decreases monotonically with increasing s, which is the result of the increasing
negative buoyancy that the fountain has to overcome when penetrating the stratified
ambient fluid. From Fig. 6.8(f), it is seen that the dependence of z,,; on s can be

represented by the following relation,
Zmyi = m,i,sSCl (63)

where C,, ; s is a constant of proportionality and the index ¢; is also a constant. The
values of these two constants were determined by linear regression analysis of the
data presented in Fig. 6.8(f), with the results listed in Table 6.3. It is seen that the
value of C,,; s increases with F'r due to larger momentum flux of the fountain fluid
which leads to larger fountain penetration height, and the magnitude of ¢; is also
found to increase with F'r, indicating that the effect of s on z,,; becomes stronger
at a higher F'r. Another noticeable observation is that the magnitude of ¢; is much
smaller than the magnitude of a;, implying that F'r has a stronger effect on z,,;

than s does.

As the dependence of z,,; on F'r, Re and s can be represented by the relations



Symmetric plane fountains 229

20 s=0.1
s=0.2
| $s=0.3
15 s=0.4
— s=0.5
3 s=0.7
NE 10 [~ s = l
5 -
(a)
O M 1 M 1 M 1 M
0 5 10 15 20
Fr0'913Re0'0625'0'273
20
A
A
15F
GRS v
5 -
(b)
0 M 1 M 1 M 1 M 1 M
0 5 10 15 20 25

Frl.OlReO.OGZS—O.ZYS

FIGURE 6.9: 2,,; plotted against (a) Fr0-913Re0-0625=0-2T3 and (p) Frl-011 Re0-062570-273 gyer the
ranges 1 < Fr <10, 10 < Re <100 and 0.1 < s < 0.7, where only the DNS results for symmetric
plane fountains over the ranges are included.

(6.1), (6.2) and (6.3), respectively, the combined effect of these governing parameters

on z,; can be quantified by the following relation,
Zmy = Cz,m,iFra2R€b1 5027 (64)

where C ,,; is a constant of proportionality and the indexes ay, by and ¢y are again
constants. The values of these constants are determined by multivariable regression
method using the DNS results for the symmetric plane fountains over the ranges of
1< Fr<10,10 < Re <100 and 0.1 < s < 0.7, which gives the following quantified
correlation,

Zmi = 1.036 Fr0913 Ret 062570273 _ () 2132, (6.5)

The regression coefficient of this correlation is R = 0.9956, indicating that the DNS
results over the ranges of F'r, Re and s considered are in excellent agreement with
the relation (6.4), as clearly demonstrated in Fig. 6.9(a) where the DNS results for
Zm,; the symmetric plane fountains over the ranges of 1 < F'r <10, 10 < Re < 100

and 0.1 < s < 0.7 are plotted against Fr%913 Re0-0625=0-273 = This correlation also
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shows that the effect of F'r on z,,; is much stronger than s, whereas the effect of Re
is negligible, as demonstrated by the magnitudes of their indexes, which are 0.913,
0.273 and 0.062 for F'r, s and Re, respectively.

As shown in § 5.4.3, a dimensional analysis conducted by Lin & Armfield (2002)
developed the scaling relation (5.5), as shown below, for weak plane fountains at
Fr = 0(1) in linearly-stratified fluids,

2~ Fri@t2eb pe-bge (6.6)

where z,, represents either z,,; or 2z, ..

If the above scaling relation obtained by Lin & Armfield (2002) for weak plane
fountains at F'r = O(1) in linearly-stratified fluids is also valid for the symmetric
plane fountains considered here, the index for Fr in (6.6) should be ay = 2/3 x
(24 2c—b) = 2/3 x(2—-2x0.273 + 0.062) = 1.011, where ¢ = —0.273 and
b = —0.062 from the quantified correlation (6.28). However, ay obtained from
the DNS results, as shown in the quantified correlation (6.28), is 0.913, which is
(0.913 — 1.011)/1.011 = 9.7% lower than the value expected from the dimension
analysis results for weak plane fountains in linearly-stratified fluids, indicating that
the scaling relation (6.6) developed for weak plane fountains in linearly-stratified
fluids still works quite well for the symmetric plane fountains in linearly-stratified
fluids considered here, which has higher F'r values involved. The results presented
in Fig. 6.9(b), where the DNS results for z,,; are plotted against the scaling relation
Frl0ll Reb0625=0273 ghtained from the dimensional analysis, show that the scaling
relation FirtOt Re%-0625-0-273 collapse all DNS results onto a straight line, which can

be quantified by,
Zm,i — 0.813FT1'011R€0'062570'273 + 043417 (67)

with the regression coefficient of R = 0.9953.

6.4.3 Time-averaged maximum fountain height

Similar results are also obtained for the time-averaged maximum fountain height,

Zm.a, as shown in Fig. 6.10 and Fig. 6.11.

Figure 6.10 presents the effect of F'r, Re and s on z,, 4, obtained numerically for
the same symmetric plane fountains as those in Fig. 6.8. Similar to z,,;, it is seen

from Fig. 6.10(a) that for each s value, z,,, also increases monotonically when F'r
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increases, due to stronger fountain momentum flux. The DNS results, as shown in
Fig. 6.10(b), demonstrate that at Re = 100 the dependence of z,,, on Fr for each

s value can be quantified by the following relation,
Zm,a = Om,a,F'rFTag- (68)

The constants C,, o pr and as in the above relation were determined by linear re-
gression analysis of the data presented in Fig. 6.10(b), which are listed in Table 6.4.
It is seen that the value of C,, , r, decreases monotonically with s, from 3.421 at
s = 0.1 to 2.676 at s = 0.5, apparently due to stronger stratification, thus stronger

negative buoyancy. However, the value of as is essentially constant over the range



232

Chapter 6

25
© 15
&
N 10
0
25
20
© 15
e
N 10
0

FrReO.lle—O.SOY

A s5s=01
v 5s=0.2
B $s=0.3
® s5s=04
. ® s=05
A 5s=07
v s=1
(@)
1 1 1 M
0 5 10 15 20
Fr0'805Re0'121s'0'307
i A
(b)
M 1 M 1 M 1 M 1 M 1 M
0 5 10 15 20 25 30 35

FIGURE 6.11: z,,, plotted against (a) Fr080°Re0121570307 and (b) FrRe%121s70-397 over the
ranges 1 < Fr <10, 10 < Re <100 and 0.1 < s < 0.7, where only the DNS results for symmetric
plane fountains over the ranges are included.

TABLE 6.4: Regression results for the dependence of z, , on F'r over the range of 1 < Fr <5 for

different s, all at Re = 100.

S Cm,a,Fr az R
0.1 3.421 0.674 0.9929
0.2 3.167 0.641 0.9918
0.3 2.982 0.640 0.9946
0.4 2817 0.639 0.9942
0.5 2.676 0.644 0.9943

of 0.1 < s < 0.5, at about 0.641, with only the s = 0.1 case having a slightly higher

value at 0.674, indicating that the effect of F'r on z,,, is not noticeably influenced

by s. These are very similar to those for z,,;, as discussed in the previous section.

However, the larger value of a; than az for each s value, as shown in Tables 6.2 and

6.4 indicates that F'r has a relatively stronger effect on z,,; than on z,,,.

From Fig. 6.10(c) and (d), it is seen that at Fr =5 and s = 0.1, 2,,, increases



Symmetric plane fountains 233

almost linearly with Re over the small range of 10 < Re < 35, which is very similar
to the case for z,,; as observed in the previous section. The dependence of z,,, on
Re over this small range, at Fr = 5 and s = 0.1, is found to be quantified by the

DNS results over this range with the following correlation, as shown in Fig. 6.10(d),
ma = 0.0491Re + 10.353, (6.9)

with the regression constant of R = 0.9979.

The effect of s on z,,, is illustrated in Fig. 6.10(e) for the fountains over the
ranges of 0.1 < s < 0.5 and 1 < Fr < 3, all at Re = 100. It is seen that z,,,,
similar to z,;, decreases monotonically with increasing s, again a result of the
increasing negative buoyancy that the fountain has to overcome when penetrating
the stratified ambient fluid. From Fig. 6.10(f), it is seen that the dependence of

Zm.a O0 S can be represented by the following relation,
Zm,a = m,a,ssc3 (610)

where C,, , s is a constant of proportionality and the index c3 is also a constant. The
values of these two constants were determined by linear regression analysis of the
data presented in Fig. 6.10(f), with the results listed in Table 6.5. It is seen that the
value of C), o s increases with F'r due to larger momentum flux of the fountain fluid
which leads to larger fountain penetration height, and the magnitude of c3 is also
found to increase with F'r, indicating that the effect of s on z,,, becomes stronger
at a higher Fr. Another noticeable observation is that the magnitude of ¢3 is much
smaller than the magnitude of as, implying that F'r has a stronger effect on z,,,
than s does. All these results show that the dependence of z,,, on Fr, Re and s,

under the same conditions, is very similar to that of z,, ;.

Similar to z,,;, as the dependence of z,,, on F'r, Re and s can be represented
by the relations (6.8), (6.9) and (6.10), respectively, the combined effect of these

governing parameters on z,, , can be quantified by the following relation,
Zma = ComaFr** Res™, (6.11)

where C ,, , is a constant of proportionality and the indexes a4, by and ¢4 are again
constants. The values of these constants are determined by multivariable regression
method using the DNS results for the symmetric plane fountains over the ranges of
1 < Fr<10,10 < Re <100 and 0.1 < s < 0.7, which gives the following quantified
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TABLE 6.5: Regression results for the dependence of z,, , on s over the range of 0.1 < s < 0.5 for
different Fr, all at Re = 100.

Fr Cm,i,s C3 R
1 2562 -0.146 0.9956
2 3581 -0.165 0.9976
3 4427 -0.223 0.9993

correlation,
Zma = L.OSTErO80 Re¥ 121570307 _ (93945, (6.12)

The regression coefficient of this correlation is R = 0.9891, indicating that the DNS
results over the ranges of F'r, Re and s considered are in very good agreement with
the relation (6.11), as clearly demonstrated in Fig. 6.11(a) where the DNS results for
Zm,o the symmetric plane fountains over the ranges of 1 < F'r <10, 10 < Re < 100
and 0.1 < s < 0.7 are plotted against Fr0805 Re0-1215=0-307 = Thig correlation also
shows that similarly the effect of F'r on z,,, is much stronger than s, whereas the

effect of Re is much weaker, as demonstrated by the magnitudes of their indexes,
which are 0.805, 0.307 and 0.121 for F'r, s and Re, respectively.

If the scaling relation (6.6) obtained by Lin & Armfield (2002) for weak plane
fountains at Fr = O(1) in linearly-stratified fluids is also valid for the symmet-
ric plane fountains considered here, the index for Fr in (6.6) for z,,, should be
ag = 2/3x (2+2c—0b) =2/3x(2—2x0.307+ 0.121) = 1, where ¢ = —0.307
and b = —0.121 from the quantified correlation (6.12). However, a4 obtained from
the DNS results, as shown in the quantified correlation (6.12), is 0.805, which is
(0.805 — 1)/1 = 19.5% lower than the value expected from the dimension analy-
sis results for weak plane fountains in linearly-stratified fluids, indicating that the
scaling relation (6.6) developed for weak plane fountains in linearly-stratified fluids
works reasonably well for z,, , for the symmetric plane fountains in linearly-stratified
fluids considered here, which has higher F'r values involved. The results presented
in Fig. 6.11(b), where the DNS results for z,,, are plotted against the scaling rela-
tion F'rRe%?1s79397 ohtained from the dimensional analysis, show that the scaling

0.121 ,—0.307

relation F'rRe”"s collapse all DNS results approximately onto a straight line,

which can be quantified by,
Zm.a = 0.642Fr Re® 121570397 4 11404, (6.13)

with the regression coefficient of R = 0.9915.
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6.4.4 Time to reach initial height
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FIGURE 6.12: (a) 7p,; plotted against F'r and (b) In(7y,;) plotted against In(Fr) for 1 < Fr <5
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The effect of F'r, Re and s on 7,,; is presented in Fig. 6.12 with the DNS
results obtained for the same symmetric plane fountains as those for Figs. 6.8 and
6.10. When F'r increases, a fountain will penetrate higher in the ambient fluid due
to stronger fountain momentum flux, and thus will take a longer time to attain
Zm.i» which leads to a larger 7,,, ;. The DNS results presented in Fig. 6.12(a) clearly
demonstrate this as it is seen that for each s value, 7,,, ; increases monotonically when
Fr increases, similar to z,,; and z,,. The DNS results, as shown in Fig. 6.12(b),

further show that at Re = 100 the dependence of 7,,,; on F'r for each s value can be
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TABLE 6.6: Regression results for the dependence of 7, ; on F'r over the range of 1 < F'r <5 for
different s, all at Re = 100.

S Ct,m,i,Fr as R

0.1 15.580 1.329 0.9984
0.2 13.022 1.227 0.9971
0.3 12.235 1.151 0.9967
04 11215 1.378 0.9949
0.5 10.254 1.139 0.9960

quantified by the following relation,
Tmi = Ct,m,i,FrF'raE)- (614)

The constants C} ,,; pr and as in the above relation were determined by linear re-
gression analysis of the data presented in Fig. 6.12(b), which are listed in Table 6.6.
Similar to those for z,,; and z,,,, it is observed that the value of C,,,; r, decreases
monotonically with s, from 15.580 at s = 0.1 to 10.254 at s = 0.5, again due to
stronger stratification and stronger negative buoyancy; however, the value of as is
also essentially constant over the range of 0.1 < s < 0.5, at about 1.2, indicating
that the effect of F'r on 7,; is not noticeably influenced by s. However, the larger
value of as than both a; and a3 for each s value indicates that F'r has a stronger

effect on 7,,,; than on z,,,; and z,, 4.

For Fr =5 and s = 0.1, as shown in Fig. 6.12(c), it is found that 7, increases
when Re increases, although only slightly over this small range of 10 < Re < 35,
which can be quantified with the DNS results over this small range by the following

correlation, as shown in Fig. 6.12(d),
Tmi = 0.5375Re + 89.805, (6.15)

with the regression coefficient of R = 0.9942.

When s increases, the negative buoyancy becomes stronger and a fountain will
penetrate lower in the ambient fluid. This will lead to the fountain to take a shorter
time, thus smaller 7,,;, to attain z,;. The DNS results presented in Fig. 6.12(e)
clear demonstrate this effect of s on 7,,;. Similarly to z,,; and z,,,, it is seen that

Tm,i decreases monotonically with increasing s, and the dependence of 7,,; on s, as
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TABLE 6.7: Regression results for the dependence of 7, ; on s over the range of 0.1 < s < 0.5 for
different Fr, all at Re = 100.

Fr Ct,m,i,s Cs R

1 9.634 -0.220 0.9922
2 16.512 -0.348 0.9990
3 23988 -0.453 0.9999

shown in Fig. 6.12(f), can be quantified by the following relation,
Tm,i = Ct,m,i,sscs- (616)

The constants Cy ;s and c; were determined by linear regression analysis of the
data presented in Fig. 6.12(f) and listed in Table 6.7.

It is seen that the value of Ci,, ;s increases with F'r due to larger momentum
flux of the fountain fluid which leads to larger fountain penetration height, and the
magnitude of c5 is also found to increase with F'r, indicating that the effect of s on
Tm, becomes stronger at a higher F'r. It is also observed that the magnitude of ¢5 is
much smaller than the magnitude of a5, implying that F'r has a stronger effect on
Tm than s does. All these results show that the dependence of 7,,,; on F'r, Re and

s, under the same conditions, is very similar to that of z,,; and z,, ,.

Again similarly the combined effect of F'r, Re and s on 7,,,; can be quantified by
the following relation,
Tmi = 6115,771,2'P17‘a6}%@b3 SCG, (617)

where C},,; is a constant of proportionality and the indexes ag, b3 and cs are again
constants. The values of these constants are determined by multivariable regression
method using the DNS results for the symmetric plane fountains over the ranges of
1< Fr<10,10 < Re <100 and 0.1 < s < 0.7, which gives the following quantified
correlation,

T = D 2TFrt B Re00TT 0396 _ 9 148, (6.18)

The regression coefficient of this correlation is R = 0.9977, indicating that the DNS
results over the ranges of F'r, Re and s considered are in excellent agreement with the
relation (6.17), as clearly demonstrated in Fig. 6.13(a) where the DNS results for 7, ;
for the symmetric plane fountains over the ranges of 1 < Fr < 10, 10 < Re < 100
and 0.1 < s < 0.7 are plotted against Fr!173 Re0-0775=0-39
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As shown in § 5.4.3, if the scaling obtained by Lin & Armfield (2002) for weak
plane fountains in linearly-stratified fluids, i.e., (5.6), is also applicable for symmet-
ric plane fountains considered here, dimensional consistence will give the following
scaling relation for 7,,,,

242c—d) p,—d 4

2
Ton ~ Fr3l e s,

(6.19)

where the indexes ¢ and d are constants, which are not necessarily to be the same
as a and b presented in (6.6) for z,,; and z,,,. If this scaling relation (6.19) is also
applicable for the symmetric plane fountains considered here, and the values of ¢ and
d determined with the DNS results, as presented in (6.18), are valid, i.e., ¢ = —0.396
and d = —0.077, the index for Fr, from (6.19), should be %(2 +2c—d) = 0.857.
From (6.18), it is found that the index for F'r obtained with the DNS results over the
ranges of F'r, Re and s considered is 1.173, which is (1.173 — 0.857)/0.857 = 36.9%
larger than the value expected from the dimensional analysis for weak fountains.

However, as shown in Fig. 6.13(b), it is seen that Fr0857 Re%977570-3% gtil] collapses
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all DNS data reasonably well onto a straight line quantified by the following corre-
lation,
Tmi = 1121 Fr08T Re0T 57039 _ 94 08, (6.20)

with the regression coefficient of R = 0.9865. This indicates that the scaling (6.19)
obtained for weak fountains still works well for 7, ; for the symmetric plane fountains

considered here.

6.4.5 Penetration height at specific times
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FIGURE 6.14: (a) 2, (7 = 100) plotted against Fr0-845 Re0-0865=0-275 and (b) z,,(7 = 500) plotted
against Fr0-808 Re0-116 50307 oyer the ranges 1 < Fr < 10, 10 < Re < 100 and 0.1 < s < 0.7,
where only the DNS results for symmetric plane fountains over the ranges are included.

As illustrated in Fig. 6.6, z,, continuously increases with time even at the fully
developed stage for all symmetric plane fountains considered here, indicating that
Zm is a function of time 7 at the fully developed stage. It is therefore expected
that z,, at a specific time at the fully developed stage, z,,(7), should have similar

dependency on F'r, Re and s to that by z,,; and z,, ,, with the combined effects of
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Fr, Re and s on z,(7) can be represent and quantify by a similar relation, i.e.,

2m(T) = Cp Fro™ Reb 57, (6.21)
where C,, is a constant of proportionality and the indexes az, by, and c; are again
constants which may vary at different time 7.

The results at two specific times, 7 = 100 and 500, were obtained from the DNS
results for symmetric plane fountains in linearly-stratified fluids with varying F'r,
Re and s. The results are used to demonstrate whether the relation (6.21) works
for z,,(7). The results are presented in Fig. 6.14, and it is found that the following

quantified relations can be obtained from the DNS results for z,, at these two times,
Zm (T = 100) = 1.029F 084 Re0086,4-0-273, (6.22)

2 (T = 500) = 1.049F 70808 Re0-116,470-307, (6.23)

with the regression constants of R = 0.9914 and R = 0.9911, respectively. These

clearly show that the relation (6.21) works very well for z,,(7).

A comparison between the values of the indexes for F'r, Re and s of the quan-
tified relations (6.22) for z,,(7 = 100) and (6.23) for z,,(7 = 500) and those of the

quantified relation (6.12) for z,,, shows that these values are very comparable.

6.5 Intrusion

Uing (%)

FIGURE 6.15: (a) The temperature contour at Y = 0 in the X — Z plane, (b) The outer boundary
of the fountain and intrusion region at ¥ = 0 in the X — Z plane, which is the iso-temperature
line at T(Z) = Ty — 1% (Tu,0 — To), and (¢) The vertical profiles of the instantaneous dimensionless
intrusion velocity, u;nt, at different horizontal locations (X/Xj) at Y = 0 in the X — Z plane for
the symmetric plane fountain at Fr = 10, Re = 18 and s = 0.1 and at the instant of 7 = 1600.
Ujnt 18 made dimensionless by W.

As mentioned above, for symmetric plane fountains in linearly-stratified fluids,

intrusion is an important integral part of the fountain behavior and hence often has a
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substantial effect on the fountain behavior, in particular at the later, fully developed
stage. Intrusion forms on the bottom floor only after the upflowing fountain fluid
falls back around the fountain core and it moves outwards on the bottom floor. The
formation and the subsequent movement of the intrusion change the stratification
condition of the ambient fluid, resulting in smaller negative buoyant force that the
fountain fluid experience. This is particularly prominent at small Fr values or
very strong stratification under which the maximum fountain penetration height is

significantly restricted.

The intrusion and its evolution is illustrated, as an example, in Fig. 6.15 where
the temperature contour, the outer boundary of the fountain and intrusion region,
which is the iso-temperature line at T(Z) = Ty — 1%(To0 — 1p), and the verti-
cal profiles of the instantaneous dimensionless intrusion velocity, wu;,;, at different
horizontal locations (X/Xj), all at Y = 0 in the X — Z plane, are shown for the
symmetric plane fountain at Fr = 10, Re = 18 and s = 0.1 and at the instant of
7 = 1600. The dimensionless maximum intrusion height, denotes as 2, and made
dimensionless by X, is depicted in Fig. 6.15(b). The intrusion velocity has a strong
influence on the formation and evolution of the intrusion thickness, as demonstrated
in Fig. 6.15(c), where it is seen that u;,, attains its maximum value, ¢, not far
away from the bottom floor, but reduces rapidly when the height is increased. This

is the same at different horizontal locations.
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FIGURE 6.16: Time series of zint m and wint, m, of the symmetric plane fountain at F'r = 1, Re = 100
and s = 0.2 and the illustration of zint m o and Uint,m.a-

The time series of zjntm and i, of a symmetric plane fountain at Fr = 1,
Re =100 and s = 0.2, obtained from DNS; is presented in Fig. 6.16. It is seen that

the time series of Zjn , is very similar to that of z,,, as shown in Fig. 6.6. However,
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the time series of ., is quite different, with larger variations in ., at the
early developing stage but it remains almost constant at the fully developed stage.
The time-averages values of zjntm, and Ui, at the fully developed stage, denoted
as Zintm,a aNd Uinemq, Tespectively, as illustrated in Fig. 6.16 are used below to
demonstrate and quantify the effects of F'r, Re and s on the intrusion height and

intrusion velocity, respectively.

6.5.1 Intrusion height

Zintm
o [ N w S (] (o))

0 200 400 600 800 1000

Zint,m
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FIGURE 6.17: Time series of zj:m, for (a) different s values in the range of 0.1 < s < 0.5 at
Fr =2 and Re = 100, (b) different Re values in the range of 10 < Re < 35 at Fr =5 and s = 0.1,
and (c) different F'r values in the range of 1 < Fr < 3 at Re = 100 and s = 0.1.

The DNS results for the time series of 2., for symmetric plane fountains
with varying F'r, Re and s are presented in Fig. 6.17. It is observed that, similar

to0 Zm, Zintm decreases when s increases due to the increasing negative buoyancy.
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(d) In(%int,m,a) plotted against in(Re) for 10 < Re < 35 at Fr =5 and s = 0.1, and (€) Zint,m.a
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However, 2, essentially does not change when Re varies, indicating that over this
very small range of Re, zjn., is not influenced by Re. On the other hand, when
Fr increases, Zjn: ., increases due to stronger momentum flux, and the increase is

substantial at smaller F'r values, again very similar to z,,.

The effect of F'r, Re and s on Zjnsm,q is demonstrated by the DNS results pre-
sented in Fig. 6.18 for symmetric plane fountains. From Fig. 6.18(a), it is seen that
at Re = 100, for each s value, 2 m  increases monotonically when F'r increases,
due to the stronger momentum flux of the fountain. The DNS results further demon-

strate, as shown in Fig. 6.18(b), that at Re = 100 for each s value the dependence
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TABLE 6.8: Regression results for the dependence of zins,m,e on F'r over the range of 1 < Fr <5
for different s, all at Re = 100.

S Cz,int,F'r as R

0.1 3.407  0.429 0.9959
0.2 3.073  0.429 0.9970
0.3 2871  0.424 0.9998
04 2734 0.392 0.9957
0.5 2623 0.372 0.9958

of Zint.m,a o0 F'r can be quantified by the following relation,
Zint,m,a — z,int,FrF'raS (624)

where C, ;n: pr is a constant of proportionality and the index ag is also a constant.
The values of these two constants were determined by linear regression analysis of
the data presented in Fig. 6.18(b), with the results listed in Table 6.8. It is seen that
the value of C ;nt pr decreases monotonically with s, from 3.407 at s = 0.1 to 2.623
at s = 0.5, apparently due to stronger stratification and stronger negative buoyancy.
The value of ag also decreases with s, but only very slightly, from 0.429 at s = 0.1
to 0.372 at s = 0.5, indicating that the effect of F'r on 2, mq is not significantly

influenced by s.

From Fig. 6.18(c) and (d), it is seen that at F'r =5 and s = 0.1, Zjptm.q iNCreases
almost linearly with Re over the small range of 10 < Re < 35, but the rate of the
increase in 2t m,q is very small, making zin¢m, almost constant over the range of
10 < Re < 35. The dependence of 2, m,o 00 Re over this small range, at F'r = 5 and
s = 0.1, is found to be quantified by the DNS results with the following correlation,
as shown in Fig. 6.18(d),

Zintma = 0.0134Re + 8.0956, (6.25)

with the regression constant of R = 0.8289.

The effect of s on 2z mq is illustrated in Fig. 6.18(e) for the fountains over
the ranges of 0.1 < s < 0.5 and 1 < Fr < 3, all at Re = 100. zjptm,q is found
to decrease monotonically with increasing s, which is the result of the increasing
negative buoyancy that the fountain has to overcome when penetrating the stratified

ambient fluid. From Fig. 6.18(f), it is seen that the dependence of 2, mq On s can
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TABLE 6.9: Regression results for the dependence of z;,:, on s over the range of 0.1 < s < 0.5
for different F'r, all at Re = 100.

Fr Cz,int,s Cs R

1 2.286 -0.185 0.9972
2 3.108  -0.163 0.9962
3 3.606 -0.189 0.9977

be represented by the following relation,
Zint,;m,a — Cz,int,sscs (626)

where C ;s i a constant of proportionality and the index cg is also a constant.
The values of these two constants were determined by linear regression analysis of
the data presented in Fig. 6.18(f), with the results listed in Table 6.9. It is seen that
the value of C, ;s increases with F'r due to larger momentum flux of the fountain
fluid which leads to larger fountain penetration height, but the magnitude of cg is
almost constant, at about 0.18, when F'r varies between 1 and 3, indicating that the
effect of s on zinmq is not under the influence of Fr. Again the magnitude of cg is
much smaller than the magnitude of ag, implying that F'r has a stronger effect on

Zint,m,a the
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FIGURE 6.19: Zjni,m,a plotted against Fr0-397T Re=0:0935=0.227 oyer the ranges 1 < Fr < 10,
10 < Re <100 and 0.1 < s < 0.7, where only the DNS results for symmetric plane fountains over
the ranges are included.

As the dependence of 2, mq on F'r, Re and s can be represented by the rela-

tions (6.24), (6.25) and (6.26), respectively, the combined effect of these governing
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parameters on 2., can be quantified by the following relation,
Zint,m,a = Cz,int,mFTag RebSSCg; (627)

where C, jnim 15 a constant of proportionality and the indexes ag, b5 and ¢y are again
constants. The values of these constants are determined by multivariable regression
method using the DNS results for the symmetric plane fountains over the ranges of
1< Fr<10,10 < Re <100 and 0.1 < s < 0.7, which gives the following quantified
correlation,

Zintma = 3.3608 Fr0397 Re00935=0-27 _ () 00063. (6.28)

The regression coefficient of this correlation is R = 0.9911, indicating that the DNS
results over the ranges of F'r, Re and s considered are in excellent agreement with the
relation (6.27), as clearly demonstrated in Fig. 6.19 where the DNS results for 2int m o
for the symmetric plane fountains over the ranges of 1 < Fr < 10, 10 < Re < 100
and 0.1 < s < 0.7 are plotted against Fr9397 Re=00935-0-22T " Thjig correlation also
shows that the effect of F'r on z,,; is stronger than s, whereas the effect of Re is
negligible, as demonstrated by the magnitudes of their indexes, which are 0.397,
0.227 and 0.093 for F'r, s and Re, respectively.

6.5.2 Intrusion velocity

The DNS results for the time series of w;p , for symmetric plane fountains with
varying F'r, Re and s are presented in Fig. 6.20. It is observed from Fig. 6.20(a) that
Uint,m 15 Not affected by s as all time series at different s are essentially the same.
However, as shown in Fig. 6.20(b), wnt,, increases when Re increases, apparently
due to the larger value of Wy associated with the increase of Re. Similar to the
effect of s, as shown in Fig. 6.20(c), it is observed that when F'r increases, the time
series of Uy, are essentially the same, except for F'r = 1 which has the very similar
trend to the other Fr values but differs in magnitudes a little bit. This indicates
that F'r, in the small range considered, has an insignificant effect on i, ,, similar

to s, as observed above.

The effect of F'r, Re and s on wjusm,q is demonstrated by the DNS results pre-
sented in Fig. 6.21 for symmetric plane fountains. From Fig. 6.21(a), it is seen that
at Re = 100, wjnsm,q essentially does not change with F'r, indicating that F'r also
has a negligible effect on w4, similar to that on . It is further observed that
Uint,m,qa 15 essentially the same for different s values as well, also indicating that s

also has a negligible effect on w;, m o, similar to its insignificant effect on ;¢ . The
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FIGURE 6.20: Time series of wnm, for (a) different s values in the range of 0.1 < s < 0.5 at
Fr =2 and Re = 100, (b) different Re values in the range of 10 < Re < 35 at Fr =5 and s = 0.1,
and (c) different F'r values in the range of 1 < F'r < 3 at Re = 100 and s = 0.1.

results presented in Fig. 6.21(c) further confirm these features. From Fig. 6.21(b),
however, it is seen that w; m , increases monotonically when Re increases, which is

very similar to that for ., confirming that Re has a noticeable effect on insm.a
as well.

6.6 Summary

In this chapter, the flow behavior of symmetric plane fountains in linearly-

stratified fluids is studied using the numerical results obtained through a series
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FIGURE 6.21: (a) Wint,m,a plotted against F'r for 1 < Fr <5 at Re = 100 and s in the range of
0.1 <5 <0.5, (b) Zint,m,e plotted against Re for 10 < Re < 35 at F'r = 5 and s = 0.1, and (c)
Zint.m,a Dlotted against s for 0.1 < s < 0.5 at Re = 100 and F'r in the range of 1 < Fr < 3.

of three-dimensional DNS runs over the ranges of 1 < Fr < 10, 10 < Re < 100,
and 0.1 < s < 0.7. The considered bulk behavior parameters to characterize the
fountain behavior include the maximum fountain penetration height, both initial
and time-averaged, the time to attain the initial maximum fountain height, as well

as the height and velocity of intrusion.

Symmetric plane fountains differ from asymmetric plane fountains in that the

bobbing and flapping motions present in asymmetric plane fountains are absent in
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symmetric plane fountains. The DNS results show that in general F'r has a much
stronger effect on the maximum fountain penetration height and the associated time
than s does, whereas the effect of Re is negligible. Empirical correlations to quantify
the effects of F'r, Re and s on these bulk fountain flow behavior were developed
using the DNS results and it was found that the scaling relations developed by
Lin & Armfield (2002) for weak plane fountains at Fr = O(1) in linearly-stratified
fluids in general also works well for the symmetric plane fountains considered in this

chapter.






Chapter 7

Conclusion and future work

The major objective of this thesis is to understand the transient flow behavior
of transitional plane fountains in linearly-stratified ambient fluids, in particular the
characteristics of the symmetric-to-asymmetric transition, bulk fountain behavior
parameters including the maximum fountain penetration height and the associated
time scale, bobbing and flapping motions, and thermal entrainment, under various
conditions in terms of F'r, Re and s. This is achieved through a series of three-
dimensional DNS runs over the ranges of 1 < Fr < 10, 10 < Re < 300 and
0 < s < 0.7, which were carried out using the commercial CFD code ANSYS
FLUENT 13.

In § 7.1, the major conclusions of this thesis are drawn. Some suggestions for

future work on this topic are presented in § 7.2.

7.1 Conclusion of the thesis

The major conclusions of this thesis can be summarized as follows:

e Over the ranges of F'r, Re and s considered in this thesis, it was found that a
transitional plane fountain in a linearly-stratified fluid can be either symmetric
or asymmetric. In an asymmetric plane fountain, the fountain flow behavior
becomes asymmetric at the later developing stage, characterized by bobbing
and flapping motions, although at the early developing stage it is symmet-
ric and no bobbing and flapping motions are present. In a symmetric plane
fountain, however, the fountain flow remains symmetric all the time without

the presence of bobbing and flapping motions. The DNS results show that
251
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plane fountains remain symmetric for all times at a lower F'r or Re value or
at a higher s value. On the contrary, when Fr or Re is large or the strat-
ification is weak with a small s, plane fountains will remain symmetric only
in the early developing stage and will become asymmetric at the later, fully

developed stage.

e Regime maps to distinguish the symmetric plane fountains from the asym-
metric one were developed in terms of Fr, Re and s. It was observed that
the critical F'r and Re values for the asymmetric transition move up when s
increases, due to the stabilizing effect of stratification; on the other hand, the
critical Re value for the asymmetric transition reduces when F'r increases at

lower F'r values, but becomes essentially independent of F'r when F'r is high.

e For symmetric plane fountains in linearly-stratified fluids, the DNS results
show that in general F'r has a much stronger effect on the maximum fountain
penetration height and the associated time than s does, whereas the effect of
Re is negligible. In addition, for these symmetric plane fountains, intrusion
is an important integral part of the fountain behavior and hence often has
a substantial effect on the fountain behavior, in particular at the later, fully
developed stage. This is because the formation and the subsequent movement
of the intrusion change the stratification condition of the ambient fluid, which
results in smaller negative buoyant force that the fountain fluid experience.
This is particularly prominent at small Fr values or very strong stratifica-
tion under which the maximum fountain penetration height is significantly
restricted. Empirical correlations to quantify the effects of F'r, Re and s on
the the maximum fountain penetration height and the associated time, as well

as the intrusion height and velocity were developed using the DNS results.

e For asymmetric transitional plane fountains in linearly-stratified fluids, the
DNS results show that both the initial and time-average maximum fountain
penetration height and the time to attain the initial maximum fountain pene-
tration height increase monotonically with F'r, apparently due to the stronger
momentum flux of the injected fountain fluid, whereas on the contrary, due to
the stronger negative buoyancy force at higher s values, these bulk fountain
behavior parameters reduce with s. The effect of F'r on these parameters was
also found to be much stronger that those of s, although the effect of Re is
found to be negligible.

e For asymmetric transitional plane fountains in linearly-stratified fluids, the

DNS results also demonstrate that the extent of both the bobbing and flapping
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motion increases with F'r and Re but decreases with s. The bobbing motions
are predominated by a single dominant frequency over the ranges of Fr, Re and
s considered, and it is found that this dominant bobbing frequency decreases
monotonically with Fr, but increases with s. The flapping motions occur
along both the X direction and the Y direction. The flapping motions along
the X direction are also predominated by a single dominant frequency, and
similar to the bobbing motions, this dominant flapping frequency also decreases
monotonically with F'r, but increases with s. The effect of Re on the dominant
frequencies for the bobbing motions and the flapping motions along the X
direction is found to be insignificant. On the other hand, the flapping motions
along the Y direction is more chaotic and fluctuate with multiple dominant

frequencies.

e For asymmetric transitional plane fountains in linearly-stratified fluids, the
DNS results further demonstrate that thermal entrainment is one of the major
features of plane fountains and plays a key role for the symmetric-to—asymmetric
transition and the turbulent mixing process in asymmetric fountains. Over the
parameter ranges considered, it is observed that thermal entrainment in gen-
eral has a negligible effect on the core region of the injected fountain fluid, but
plays a key role in the downflow, in particular at the interface between the
upflow and the downflow, as well as at the interface between the downflow and
the ambient fluid, which becomes more dominant and stronger at the later flow
developing stages. At the early developing stage, thermal entrainment occurs
mainly in a very thin layer which is the interface of the fountain top and the
ambient fluid. It is also observed that thermal entrainment decreases with
height. Thermal entrainment is further found to be characterized by several

representative average thermal entrainment coefficients.

e The DNS results were used to develop a series of empirical relations to quantify
the individual and combined effects of F'r, Re and s, over their ranges consid-
ered, on the bulk fountain behavior parameters, including the initial and time-
averaged maximum fountain penetration heights, the time to attain the initial
maximum fountain penetration height, the onset time for the symmetric-to-
asymmetric transition, the dominant frequencies of the bobbing and flapping

motions, and several representative thermal entrainment coefficients.

e Notably, it is found that the scaling relations developed by Lin & Armfiled
(2002) for weak plane fountains in linearly-stratified fluids, at Fr = O(1), in

general also work well for the asymmetric plane fountains in linearly-stratified
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fluids considered in this thesis, which have higher F'r values. This is also found

true for the symmetric plane fountains considered in this chapter as well.

7.2 Future work

It is apparent that this thesis provides only a preliminary study on transitional
plane fountains in linearly-stratified fluids and the understanding of the transient
flow behavior of these fountains gained from the current thesis is still very limited
due to many limitations that this thesis has experienced. Substantial future work
is needed to be done before a much improved understanding of the transient flow

behavior of these fountains can be obtained.

The following are just some suggestions for future work on this topic and it

should be noted that they are not complete and exhaustive:

e The ranges of F'r, Re and s considered in this thesis are quite limited. In
the future work, these ranges should be significantly expanded to reveal the
transient flow behavior of plane fountains in linearly-stratified fluids over much
wide ranges of the flow control parameters. Future studies with such a sub-
stantial expansion of the parameter ranges will surely help to develop more
accurate and complete regime maps to distinguish the symmetric and asym-
metric plane fountains in linearly-stratified fluids over much wide parameter

ranges.

e Only three-dimensional DNS results were obtained in this thesis, which are not
benckmarked due to the lack of accurate experimental or numerical results. In
the future work, accurate experimental measurements of these plane fountains
in linearly-stratified fluids should be carried out over wide ranges of F'r, Re

and s.

e The various expirical relations developed in this thesis for the bulk fountain
behavior paramters, such as the maximum fountain penetration heights, the
time for the fountains to attain the initial maximum fountain height, the time
for the onset of asymmetric transition, the dominant frequencies of the bobbing
and flapping motions, the thermal entrainment coefficients, etc., should be
revised based on these experimental results and the numerical results over

much expanded ranges of F'r, Re and s.
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e The transient plane fountains in linearly-stratified fluids at much higher F'r and
Re values should be investigated in the future, which are more widely encoun-
tered in applications. This can be achieved by using advanced experimental
techniques and facilities such as Particle Image Velocimetry and advanced nu-
merical simulation approaches such as Large-Eddy Simulation and turbulence

modelling.
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