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Abstract

Fountains, also called negatively buoyant jets, are widely present in environmental
settings and practical applications, such as natural ventilation, volcanic eruption, cumulus
clouds, reverse cycle air conditioning, to name just a few. A good understanding of the
behaviour of fountains in homogeneous ambient fluids has been attained attributed to
extensive past studies since the 1950s. However, the understanding of the behavior of
fountains in stratified fluids, in particular that of plane fountains, is currently lacking,
which motivates this study.

The behavior of plane fountains in linearly-stratified fluids is mainly governed by the
stratification of the ambient fluid, represented by the dimensionless temperature strat-
ification parameter (s), along with the Reynolds number (Re) and the Froude number
(Fr). In this study, a series of three-dimensional DNS runs were carried out using ANSYS
FLUENT 13 for transitional plane fountains in linearly-stratified fluids with Fr, Re and
s varying in the ranges of 1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 300 and 0 ≤ s ≤ 0.7 to examine the
effects of these governing parameters on the transient behavior of these transitional plane
fountains. In particular, the effects of Fr, Re and s on the symmetric-to-asymmetric tran-
sition, initial and time-averaged maximum fountain penetration height, characteristics of
bobbing and flapping motions, and thermal entrainment are analyzed and quantified with
the obtained DNS results and compared to the scaling relations obtained by dimensional
analysis for weak plane fountains in linearly-stratified fluids, at Fr = O(1).

Over the ranges of Fr, Re and s considered in this thesis, it was found that a transi-
tional plane fountain in a linearly-stratified fluid can be either symmetric or asymmetric.
In an asymmetric plane fountain, the fountain flow behavior becomes asymmetric at the
later developing stage, characterized by bobbing and flapping motions, although at the
early developing stage it is symmetric and no bobbing and flapping motions are present.
In a symmetric plane fountain, however, the fountain flow remains symmetric all the time
without the presence of bobbing and flapping motions. The DNS results show that plane
fountains remain symmetric for all times at a lower Fr or Re value or at a higher s value.
On the contrary, when Fr or Re is large or the stratification is weak with a small s, plane
fountains will remain symmetric only in the early developing stage and will become asym-
metric at the later, fully developed stage. The regime maps to distinguish the symmetric
plane fountains from the asymmetric ones were developed in terms of Fr, Re and s. It was
observed that the critical Fr and Re values for the asymmetric transition move up when
s increases, due to the stabilizing effect of stratification; on the other hand, the critical
Re value for the asymmetric transition reduces when Fr increases at lower Fr values, but
becomes essentially independent of Fr when Fr is high.

For symmetric plane fountains in linearly-stratified fluids, the DNS results show that
in general Fr has a much stronger effect on the maximum fountain penetration height
and the associated time than s does, whereas the effect of Re is negligible. In addition,
intrusion is an important integral part of the fountain behavior for these symmetric plane
fountains, and hence often has a substantial effect on the fountain behavior, in particular
at the later, fully developed stage. This is because the formation and the subsequent
movement of the intrusion change the stratification condition of the ambient fluid, which
results in a smaller negative buoyant force that the fountain fluid experience. This is
particularly prominent at small Fr values or very strong stratifications under which the
maximum fountain penetration height is significantly restricted. Empirical correlations to
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quantify the effects of Fr, Re and s on the the maximum fountain penetration height and
the associated time, as well as the intrusion height and velocity were developed using the
DNS results.

For asymmetric transitional plane fountains in linearly-stratified fluids, the DNS results
show that both the initial and time-averaged maximum fountain penetration height and
the time to attain the initial maximum fountain penetration height increase monotonically
with Fr, apparently due to the stronger momentum flux of the injected fountain fluid,
whereas on the contrary, due to the stronger negative buoyancy force at higher s values,
these bulk fountain behavior parameters reduce with s , although the effect of Re is
found to be negligible. The DNS results also demonstrate that the extent of both the
bobbing and flapping motion increases with Fr and Re but decreases with s. The bobbing
motions are predominated by a single dominant frequency over the ranges of Fr, Re and s
considered, and it is found that this dominant bobbing frequency decreases monotonically
with Fr, but increases with s. The flapping motions occur along both the X direction (i.e.
perpendicular to the slot) and the Y direction (i.e. along the slot). The flapping motions
along the X direction are also predominated by a single dominant frequency, and similar to
the bobbing motions, this dominant flapping frequency also decreases monotonically with
Fr, and increases with s. The effect of Re on the dominant frequencies for the bobbing
motions and the flapping motions along the X direction is found to be insignificant. On
the other hand, the flapping motions along the Y direction are more chaotic and fluctuate
with multiple dominant frequencies.

For asymmetric transitional plane fountains in linearly-stratified fluids, the DNS re-
sults further demonstrate that thermal entrainment is one of the major features of plane
fountains and plays a key role for the symmetric-to–asymmetric transition and the tur-
bulent mixing process in asymmetric fountains. Over the parameter ranges considered, it
is observed that thermal entrainment in general has a negligible effect on the core region
of the injected fountain fluid, but plays a key role in the downflow, in particular at the
interface between the upflow and the downflow, as well as at the interface between the
downflow and the ambient fluid, which becomes more dominant and stronger at the later
flow developing stages. At the early developing stage, thermal entrainment occurs mainly
in a very thin layer which is the interface of the fountain top and the ambient fluid. It
is also observed that thermal entrainment decreases with height. Thermal entrainment is
further found to be characterized by several representative average thermal entrainment
coefficients.

The DNS results were used to develop a series of empirical relations to quantify the
individual and combined effects of Fr, Re and s, over their ranges considered, on the bulk
fountain behavior parameters, including the initial and time-averaged maximum fountain
penetration heights, the time to attain the initial maximum fountain penetration height,
the onset time for the symmetric-to-asymmetric transition, the dominant frequencies of the
bobbing and flapping motions, and several representative thermal entrainment coefficients.
Notably, it is found that the scaling relations developed by Lin & Armfiled (2002) for weak
plane fountains in linearly-stratified fluids, at Fr = O(1), in general also work well for
the asymmetric transitional plane fountains in linearly-stratified fluids considered in this
thesis, which have higher Fr values. Similarly, it is also found that this is true for the
symmetric plane fountains considered in this thesis as well.
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Chapter 1

Introduction

1.1 Significance and motivation

A fountain is in fact a jet with negative buoyancy acting on it. It is hence also

called a negatively buoyant jet. When a dense fluid is injected upward into a less

dense ambient fluid, or vice versa, when a light fluid is injected downward into a

dense ambient fluid, a fountain flow forms. In both cases, buoyancy opposes the

momentum of the ejected jet fluid, leading to gradually reduced vertical jet velocity

until it becomes zero at a certain finite height (commonly called the maximum

fountain penetration height, Zm). After that, the jet flow reverses its direction and

comes back around the core of the upward or downward flow and an intrusion forms

on the base which moves outwards. This process is sketched in Fig. 1.1.

Figure 1.1: Schematic of a fountain with upflow, downflow and intrusion. Zm is the maximum
fountain penetration height in the ambient fluid.

1
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When the ejection of the jet fluid from the source into the ambient fluid is not

vertically, but at an angle smaller than 90 degrees, a fountain, called an inclined foun-

tain, also forms. Inclined fountains have numerous applications, and are particularly

common and useful in the disposal of brine effluent into the marine environment.

The effluent is produced from the desalination process in a desalination plant and

is characterised by elevated density and contaminant levels which potentially poses

a direct threat to the marine environment if the discharge does not dilute to ac-

ceptable concentrations. There have been many studies on inclined fountains (see,

e.g., Fischer et al. 1979; Bloomfield & Kerr 2002; Papakonstantis, Christodoulou,

& Papanicolaou 2011a, 2011b; Oliver 2012; Crowe 2013; Ahmad & Baddour 2014;

Ramakanth 2016), although the majority of the studies have focused on turbulent

inclined fountains. However, as the focus of this thesis is on vertical fountains, the

discussion of inclined fountains is beyond the scope of the thesis and will then not

be detailed. Furthermore, there have been significant interest and research activities

on multiple fountains due to their application importance, particularly in natural

ventilation of a space (see, e.g., Pera & Gebhart 1975; Gebhart et al. 1976; Incropera

& Yaghoubi 1980; Brahimi et al. 1989; Linden et al. 1990; Moses et al. 1993; Ching

et al. 1996; Linden & Cooper 1996; Cooper & Linden 1996; Wong & Griffiths 1999;

Kaye & Linden 2004, 2006; Lai & Lee 2012; Shrinivas & Hunt 2014b; Mahmud 2014;

Mahmud et al. 2015a, b. The readers are referred to, e.g., Linden 1999; Hughes &

Griffiths 2008; Wong & Griffiths 1999; Shrinivas & Hunt 2014a; and Mahmud 2014

for the review of some of these studies on the topic). Nevertheless, similarly, the

discussion of these multiple fountains is also beyond the scope of the thesis and will

then not be detailed.

Depending on the shape of the source from which the fountain fluid jet is ejected,

a fountain can be either a round one or a plane one. If the source is an orifice, the

resultant fountain will be a round one whereas if the source is a slot, the fountain

will be a plane fountain (also called a line or planar fountain sometimes). For either

type, if the fountain is injected into a homogeneous ambient fluid, its behavior will

be governed by the Reynolds Number, Re, which is the ratio of inertial force to

viscous force, and the Froude Number, Fr, which is the ratio of inertia force to

buoyancy force, at the source. Re and Fr at the fountain source are defined as

follows,

Re =
W0X0

ν
, (1.1)

Fr =
W0

[gX0(ρ0 − ρa)/ρa]1/2
=

W0

[gβX0(Ta − T0)]1/2
, (1.2)
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where W0 is the average inlet velocity of the ejected fluid at the source, X0 is the

radius of the orifice in the case of a round fountain or the half width of the slot

in the case of a plane fountain at the fountain source, ν is the kinematic viscosity

of fluid, g is the gravitational acceleration, ρ0, T0 and ρa, Ta are the densities and

temperatures of the ejected fluid from the fountain source and the ambient fluid,

and β is the coefficient of volumetric expansion of the fluid. The second expression

of Fr is only valid when the density difference is linearly correlated with the tem-

perature difference of the ejected fluid from the fountain source and the ambient

fluid within the Oberbeck-Boussinesq approximation. The behavior of a fountain

strongly depends on Re and Fr, with a low Re value usually related to laminar flow

and a high Re to turbulent flow, whereas forced fountains characterised by large Fr

values and weak fountains by small Fr values.

Along with Fr and Re, the density stratification parameter, Sp, also has a strong

influence on the behavior of a fountain when it is injected into a linearly-stratified

ambient fluid, since the ejected fluid from the fountain source will experience a

gradually increased negative buoyancy when it penetrations the stratified ambient

fluid. Sp is defined as,

Sp = − 1

ρa,0

dρa,Z
dZ

, (1.3)

where ρa,0 and ρa,Z are the densities of the initial ambient fluid at the bottom (i.e.,

at Z = 0) and at height Z, respectively, whereas Z denotes the vertical coordinate

as sketched in Fig. 1.2. With the Oberbeck-Boussinesq approximation, Sp can be

expressed by the temperature stratification parameter, S, which is defined as follows,

S =
dTa,Z
dZ

=
Sp
β
, (1.4)

where Ta,Z is the initial ambient fluid temperature at Z. However, the dimensionless

form of the temperature stratification parameter, s, as defined below, is normally

used,

s =
dθa,z
dz

=
X0

(Ta,0 − T0)
S =

X0

β(Ta,0 − T0)
Sp, (1.5)

where θa,z = (Ta,Z − Ta,0)/(Ta,0 − T0) and z = Z/X0 are the dimensionless initial

ambient fluid temperature at height Z and the dimensionless coordinate of Z, re-

spectively, whereas Ta,0 is the initial temperature of the ambient fluid at the bottom,

i.e., at Z = 0.

There have been strong interests and thus extensive investigations in the be-

havior of fountains since the 1950s. The majority of the investigations have been



4 Chapter 1

X0

Y

Z

2X
0

H

L

B Outflow

O
u
tflo

w

O
u
tf
lo
w

WallWall

Periodic

Periodic

Figure 1.2: Sketch of the physical system under consideration, the computational domain and
the boundary conditions.

focused on the round fountains, in particular turbulent round fountains injected into

homogeneous fluids, as will be reviewed in Chapter 2. Plane fountains, although also

present in a wide range of environmental settings and engineering applications, such

as air curtains created by injecting warm air downwards in tunnels and shop en-

trances and cold air plume arrays in buildings to create natural ventilation (see,

e.g., Vinoth & Panigrahi 2014; Burridge & Hunt 2013, 2014), have been much less

studied and thus understood, as will be reviewed in Chapter 2 as well.

The onset of asymmetry, instability and unsteadiness in transitional fountains is

the key to elucidating the mechanism for the generation and flow dynamics of tur-

bulence and entrainment in fountains, and thus is of both fundamental significance

and application importance. However, little understanding has been achieved so far.

In particular, to the best knowledge of the author, no study has been found in which

the onset of asymmetry of transitional plane fountains in stratified fluids has been

investigated. This, along with the desire to provide a much improved understand-

ing of the other aspects of the behavior of transitional plane fountains in stratified

fluids, motivates the current study.
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1.2 Problem addressed and objectives

The problem addressed in this thesis is the transient flow behavior of transitional

plane fountains in linearly-stratified ambient fluids. This is achieved by carrying out

a series of three-dimensional direct numerical simulation (DNS) runs with Fr, Re

and s varying over wide ranges.

The physical system under consideration and thus the computational domain

used for the three-dimensional DNS runs in this thesis is a rectangular container of

the dimensions H × B × L (Height × Width × Length), containing a Newtonian

fluid initially at rest and linearly stratified with a constant temperature gradient

dTa,z/dZ, as sketched in Fig. 1.2, where Z is the coordinate in the vertical direction

on which the buoyancy acting in the negative Z direction and Ta,z is the initial

temperature of the ambient fluid at the height Z. At the center of the bottom of the

container, a narrow slot with a half-width of X0 in the Y direction functions as the

source for a plane fountain, with the remainder of the bottom being a rigid non-slip

and adiabatic boundary. The two vertical surfaces in the X−Z plane, at Y = ±B/2,

are assumed to be periodic whereas the two vertical surfaces in the Y −Z plane, at

X = ±L/2, are assumed to be outflows. The top surface in the X − Y plane, at

Z = H, is also assumed to be an outflow. The origin of the Cartesian coordinate

systems is at the center of the bottom, as shown in Fig. 1.2. At time t = 0, a stream

of fluid at T0 (T0 < Ta,0, where Ta,0 is the initial temperature of the ambient fluid

at the height Z = 0, i.e., at the bottom of the container) is injected upward from

the slot with a uniform velocity W0 into the container to initiate the plane fountain

flow and this discharge is maintained over the whole course of a specific DNS run.

The main objective of this thesis is to understand the transient flow behavior of

transitional plane fountains in linearly-stratified ambient fluids, including the char-

acteristics of the symmetric-to-asymmetric transition, the bulk fountain behavior

parameters such as the maximum fountain penetration height and the associated

time scale, the bobbing and flapping motions, and the thermal entrainment, under

various conditions in terms of Fr, Re and s, through a series of three-dimensional

DNS runs. More specifically, the objectives of this thesis are as follows,

• To understand the transient flow behavior of asymmetric transitional plane

fountains in linearly-stratified fluids, in particular the effect of Fr, Re and s

on the asymmetric transition, the initial and time-averaged maximum foun-

tain penetration heights and the time to attain the initial maximum fountain
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penetration height, over the ranges of 1 ≤ Fr ≤ 10, 25 ≤ Re ≤ 300 and

0 ≤ s ≤ 0.5.

• To understand the characteristics of the bobbing and flapping motions which

are present in the later developing stages of asymmetric transitional plane

fountains in linearly-stratified fluids, in particular the effect of Fr, Re and s

on the dominant frequencies for these motions, over the ranges of 1 ≤ Fr ≤ 10,

25 ≤ Re ≤ 300 and 0 ≤ s ≤ 0.5.

• To understand the characteristics of thermal entrainment in asymmetric tran-

sitional plane fountains in linearly-stratified fluids, in particular the effect of

Fr, Re and s on various thermal entrainment coefficients, over the ranges of

1 ≤ Fr ≤ 10, 25 ≤ Re ≤ 300 and 0 ≤ s ≤ 0.5.

• To understand the transient flow behavior of symmetric plane fountains in

linearly-stratified fluids, in particular the effect of Fr, Re and s on the initial

and time-averaged maximum fountain penetration heights and the time to

attain the initial maximum fountain penetration height, as well as the intrusion

height and velocity, over the ranges of 1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 100 and

0 ≤ s ≤ 0.7.

• To obtain the critical values for Fr, Re and s which distinguish symmetric

plane fountains from asymmetric plane fountains in linearly-stratified fluids

and thus to develop the relevant regime maps over the ranges of 1 ≤ Fr ≤ 10,

10 ≤ Re ≤ 300 and 0 ≤ s ≤ 0.7.

1.3 Outline of the rest of the thesis

The rest of this thesis is organized as follows,

• In Chapter 2, the past studies on fountains, including round and plane foun-

tains, in both homogeneous and stratified fluids, will be briefly reviewed and

discussed.

• The numerical method used by this thesis will be briefly introduced in Chap-

ter 3. The governing equations for fountain flow and the appropriate boundary

and initial conditions will be detailed first, followed by a brief description of

the Finite Volume Method and the discretization schemes used to solve the

discretized equations. In particular, the discretization of governing equations
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and the solution strategy used in ANSYS FLUENT 13 are introduced in this

chapter. A brief description about the FLUENT setup to solve the problem is

also introduced.

• In Chapter 4, the transient flow behavior of asymmetric transition plane foun-

tains in linearly-stratified fluids at a fixed high Froude number of Fr = 10 will

be studied through a series of three-dimensional DNS runs over the ranges of

25 ≤ Re ≤ 300 and 0 ≤ s ≤ 0.5. In particular, the effects of Re and s on the

onset of asymmetric transition, the maximum fountain penetration height and

the associated time scale will be discussed and quantified by the DNS results.

• The study presented in Chapter 4 will be significantly extended in Chapter 5

to include the effect of Fr with smaller Fr values on the transient flow behav-

ior of asymmetric transition plane fountains in linearly-stratified fluids, again

through a series of three-dimensional DNS runs over the ranges of 1 ≤ Fr ≤ 10,

25 ≤ Re ≤ 300 and 0 ≤ s ≤ 0.7. In addition to the effects of Fr, Re and s on

the onset of asymmetric transition, the maximum fountain penetration height

and the associated time scale, the effects of these control parameters on the

bobbing and flapping motions and the thermal entrainment will also be dis-

cussed and quantified by the DNS results. The regime maps for critical values

of Fr, Re and s to distinguish the symmetric and asymmetric plane fountains

in linearly-stratified fluids will also be developed with the DNS results.

• In Chapter 6, the transient flow behavior of symmetric plane fountains in

linearly-stratified fluids will be studied through a series of three-dimensional

DNS runs over the ranges of 1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 100, and 0.1 ≤ s ≤ 0.7,

and the effects of Fr, Re and s on the maximum fountain penetration height

and the associated time scale, and the intrusion height and velocity will also

be discussed and quantified by the DNS results.

• Finally, Chapter 7 summarizes the major findings of this study with suggestions

for future work.





Chapter 2

Literature Review

2.1 Introduction

As mentioned in the previous chapter, a fountain is a special type of jet flow

with negative buoyant force acting on it, which also earns it the name of a ‘negative

buoyant jet’. As further sketched in Fig. 2.1, which is taken from Hunt & Burridge

(2015), when a denser fluid is injected vertically upward into a less dense fluid, a

fountain forms. Similarly, when a less dense fluid is injected vertically downward into

a denser fluid, a fountain also forms. In both cases, the negative buoyancy acting

on the fountain flow opposes its momentum, which results in a gradually reduced

vertical velocity of the fountain flow at its early developing stage until it becomes

zero at a certain finite height without the presence of the downflow, as depicted in

Fig. 2.1(a) and (b). Subsequently, the fountain flow reverses its direction and falls

back as a downflow around the core of the upward or downward flow, which results

in the co-existence and interaction of the upflow and the downflow, as illustrated in

Fig. 2.1(c) and (d). An horizontal intrusion then forms on the base, if present, and

moves outwards. When the fountain flow attains its fully developed, steady-state

stage, the front of the fountain flow usually fluctuates around a constant time-

averaged mean maximum height.

Fountains are ubiquitous in nature and in numerous industrial and environmental

applications. Examples include heating and cooling for human comfort (Baines et

al. 1990; Fernando 1991; Williamson et al. 2011), replenishing of cold saline water

at the bottom of a solar pond (Duffie & Beckman 1991), building ventilation when

cool air is injecting vertically into a room through vents on the floor (Linden 1999;

Coffey & Hunt 2010; Burridge et al. 2015), explosive volcanic eruption (Kaminski

9
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Figure 2.1: Schematic diagrams and experimental snapshots of a turbulent round fountain at
the early developing stage when the downflow has not yet formed ((a) and (b)), and at the fully
developed, steady-state stage when the down-flow has fully developed ((c) and (d)) (after Hunt &
Burridge 2015).

et al. 2005), replenishment of the magma chamber (Bloomfield & Kerr 1999), air

curtains created by injecting warm air downwards in tunnels and shop entrances

as a means of segregating regions of fluid and a consequence of a thermal or fire

plume in a room when the ceiling current impinges on the sidewall (Hunt & Coffey

2009), to name just a few. The readers are referred to some influential reviews and

books on the topic for more examples (such as Turner 1969; Fischer et al. 1979; List

1982; Fernando 1991; Linden 1999; Woods 2010; and Hunt & Burridge 2015). It

is therefore of both fundamental significance and practical application importance

to fully understand the flow dynamics and transient behavior of fountains under

various conditions.

Although studies on fountains commenced in the 1950s (see, e.g., Morton 1959),

they have continued to be the subjects of research (see, e.g., Williamson, Armfield &

Lin 2010, 2011; Srinarayana, Armfield & Lin 2010, 2013; Myrtroeen & Hunt 2010,

2012; Carazzo, Kaminski & Tail 2010; Burridge & Hunt 2012, 2013, 2014, 2016;

Vinoth & Panigrahi 2014; Shrinivas & Hunt 2014a, b; Burridge et al. 2015). In this

chapter, some of these studies will be briefly reviewed and discussed.

2.2 Fountains classification

In terms of the geometry of the fountain source, fountains are normally classified

as round fountains or plane/line fountains, as stated in Chapter 1. If the source

from which the fountain fluid is injected is an orifice, the resultant fountain will be
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a round one, whereas if the source is a slot, the fountain will be a plane or line one.

The ambient fluid can be homogeneous or stratified and the behavior of a fountain

in a homogeneous fluid, no matter it is a round one or plane one, will be different

from that in a stratified fluid.

Figure 2.2: Typical experimental images of fountains showing their major features such as the
vortex dynamics and the initial and steady-state maximum fountain penetration height of the
fountains in the five categories classified by Hunt & Burridge (2015) (after Hunt & Burridge 2015).

There are classifications of fountains into different categories, particularly for

round fountains. The prevailing one is that by Hunt & Burridge (2015) who, in

terms of Fr, classify round fountains in homogeneous fluids into the following five

categories:

• very weak fountains (Fr ≤ 0.7);

• weak fountains (0.7 < Fr < 1.2);

• intermediate fountains (1.2 ≤ Fr < 2.0);

• forced fountains (2.0 ≤ Fr ≤ 3.9);
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• highly forced fountains (Fr > 3.9).

The typical images showing the major fountain features, such as the vortex dynam-

ics and the initial and steady-state maximum fountain penetration heights, of the

fountains in these five categories, which were obtained experimentally by Hunt &

Burridge (2015), are depicted in Fig. 2.2. However, this classification is solely based

on Fr and does not take into account the influence of Re. Based on their exten-

sive experimental results, Williamson et al. (2008) argued that the classification of

round fountains, in addition to that by Hunt & Burridge (2015) in terms of Fr

only, should also take into account of the influence of Re. They classified round

fountains, in terms of Re, as laminar fountains (Re < 120), transitional fountains

(120 ≤ Re ≤ 2000) and turbulent fountains (Re > 2000). They also found that

some sub-categories in the low Re regime can be classified, such as steady, flapping,

bobbing, and sinuous fountains, as shown in Fig. 2.3 (Williamson et al. 2008). Hunt

& Burridge (2015) made further discussion of the major features of the fountains

according to their classification in terms of Fr, but also taking into account the

effect of Re, as summarized in Fig. 2.4, which was taken from their work.

Plane or line fountains are also classified, similar to round fountain, by Hunt &

Coffey (2009) as forced plane fountains (Fr & 5.7), weak plane fountains (2.3 .

Fr . 5.7), and very weak plane fountains (Fr . 2.3). However, this classification

again does not take into account the influence of Re like their classification of round

fountains, which has been done based on Fr solely. Srinarayana et al. (2010), based

on their experimental results, incorporated the effect of Re and further classified

plane fountains at low Re values (Re ≤ 127) into four sub-regime behavior, i.e.

steady, flapping, laminar-mixing and jet-type mixing behavior. These sub-regimes

are separated from each other with a single or multiple demarcation lines, which

strongly depend on Fr and Re. They found that the transition from a steady to

unsteady flow for Re & 60 is independent of Re and is well described by the Fr ∼ 1.0

line, while over the range of 10 < Re . 50 the transition can be approximated

by a constant FrRe2/3 line. However, for Re . 10 the transition occurs at the

demarcation line which follows Fr ∼ Re−n, where n ≈ 2− 4.

2.3 Behavior of round fountains

So far round fountains, in particular those in the turbulent regime in homo-

geneous fluids, have been the most studied ones, as regularly reviewed by some
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Figure 2.3: Typical experimental images showing (a) the steady fountain, (b) the flapping foun-
tain, (c) the bobbing fountain, and (d) the sinuous fountain (after Williamson et al. 2008).

leading researchers on the topic, such as Turner (1966, 1969), List (1982), Kaye &

Hunt (2006), Williamson et al. (2008), and Hunt & Burridge (2015).

2.3.1 In homogeneous fluids

For a forced turbulent round fountain, as sketched in Fig. 2.1, the momentum

of the ejected jet fluid is much stronger than the negative buoyancy force (thus

also named as a strong fountain). In such a forced fountain, the inner upflow of

the fountain core behaves more like a turbulent jet, with strong mixing with and

entrainment from the downflow in the outer periphery of the fountain core, as well

as the ambient fluid at the fountain top (front), while the downflow behaves like

a dense plume, with mixing with and entrainment from both the upflow and the
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Figure 2.4: Fountain classification and the major fountain features in different categories (after
Hunt & Burridge 2015).

ambient fluids across their individual interfaces. As a consequence of the turbulent

mixing and entrainment process the fountain flow never achieves self-similarity and

the flow properties vary along the axial position. As stated earlier and sketched

in Fig. 2.1, the development of a forced fountain can be divided into three stages:

the early developing stage, the transitional developing stage, and the fully devel-

oped, steady state stage. At the early developing stage, the fountain continues to

penetrate in the ambient fluid, without the formation and presence of the down-

flow, until the fountain front (top) reaches the initial maximum penetration height
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where the source momentum flux of the fountain is balanced by the negative buoy-

ancy force. Subsequently, the fountain flow reverses its direction and falls back as a

downflow around the core of the upward flow, with the co-existence and interaction

of the upflow and the downflow, and the interaction between the downflow and the

surrounding ambient fluid, leading to the transitional developing stage. This tran-

sitional developing stage will usually last for a while, before eventually the fountain

flow attains its fully-developed, steady-state stage, as illustrated in Fig. 2.1(c) and

(d), at which the maximum fountain penetration height fluctuates around a con-

stant time-averaged mean value. In addition to the feature of strong mixing and

entrainment among the upflow, the downflow, the ambient fluid, and potentially the

intrusion, if a base is present, a forced turbulent fountain is also represented by a

large maximum fountain penetration height, (Zm, as sketched in Fig. 1.1), which is

much larger than the fountain source size (i.e., Zm � X0) and is usually independent

of Re but has a linear dependence on Fr, as shown in, e.g., Turner (1966), Baines

& Turner (1969), Baines et al. (1990), Zhang & Baddour (1998), Friedman & Katz

(2000), Bloomfield & Kerr (2002), Carazzo et al. (2010), Woods (2010), Myrtroeen

& Hunt (2010), Williamson et al. (2011), and Burridge & Hunt (2012, 2013, 2014).

On the other hand, the source momentum flux of a weak or very weak fountain

is, in contrast to that in a forced fountains, weaker than the negative buoyant force,

and hence plays a less important role than the negative buoyant force. As a result,

these flows usually remain laminar or transitional (thus also known as laminar or

transitional fountains). Numerous studies have demonstrated, as reviewed below,

that the behavior of weak or very weak fountains is significantly different from that of

forced turbulent fountains. In particular, Zm in a weak or very weak round fountain

is also strongly dependent on Re, in addition to its strong dependence on Fr; Zm is

comparable to or less than X0 in a weak or very weak round fountain; there is usually

no distinguishable upflow and downflow in weak fountains, instead, the streamlines

curve and spread from the fountain sources; and there is usually little entrainment of

the ambient fluid into the fountain fluid, as shown in, e.g., Lin & Armfield (2000a,b,

2003, 2008), Philippe et al. (2005), Kaye & Hunt (2006), Williamson et al. (2008,

2010), Burridge & Hunt (2012), and Hunt & Burridge (2015), and as will be discussed

in detail below.

2.3.1.1 Maximum fountain penetration height

The maximum fountain penetration height, Zm, as sketched in Fig. 1.1, has

been the prevailing bulk fountain parameter used to illustrate, characterize and
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quantify the fountain behavior. In the literature, the dimensionless counterpart of

Zm, i.e., the dimensionless maximum fountain penetration height, zm, which is non-

dimensionalized by X0 (i.e., zm = Zm/X0), is usually the parameter used instead.

Earlier studies on the maximum fountain penetration height had mainly focused

on forced turbulent round fountains, although it has continued to attract extensive

attention even nowadays. Morton (1959) has been acknowledged as the pioneer in

analysing forced turbulent fountains in both homogeneous and stratified ambient

fluids, including the maximum fountain penetration height. He used the classical

entrainment model developed by Morton, Taylor & Turner (1956), together with

an approximate form of the governing equations for the conservation of mass, mo-

mentum and buoyancy in integral form, to develop an analytic expression for the

maximum fountain penetration height in terms of the fountain source conditions.

Nevertheless, his analysis was applicable only for the start-up flow, at the early de-

veloping stage as shown in Fig. 2.1(a) and (b), when the downflow has yet to form,

as his model does not take into account the effect of the downflow. Abraham (1967)

argued that the assumption made by Morton (1959), i.e., the vertical flux of a tracer

being contained in the jet is constant from the source to Zm, is not realistic, and

instead suggested that near Zm the vertical flux of jet fluid and the vertical flux of a

tracer carried by the jet decrease with height. He then obtained modified analytical

solution which takes this into consideration, leading to improved results. The inte-

gral approach used by Morton (1959) was further developed by Turner (1966) and

McDougall (1981) who included interactions between the upflow and the downflow,

and between the downflow and the ambient fluid, based on a method suggested by

Morton (1962) for coaxial turbulent jets, and introduced separate coefficients for

the entrainment from the ambient fluid to the downflow, from the downflow to the

upflow flow, and from the upflow to the downflow. Bloomfield & Kerr (2000) made

further improvement by modifying the approach used to determine the fountain

height and the assumptions for the characteristic velocity used in the entrainment

relation, as well as including the effect of ambient stratification.

By assuming that fountain flows are controlled by the fluxes of momentum and

buoyancy at the source, Turner (1966) obtained the following scaling for zm for

forced turbulent round fountains using dimensional analysis,

Zm = C
M0

3/4

B0
1/2

, (2.1)

where C is a proportional constant and M0 and B0 denote the momentum and

buoyancy fluxes of the fountain fluid at the source, respectively, which is defined for
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a uniform inlet velocity as follows,

M0 = πX0
2W0

2, B0 = π∆0X0
2W0, (2.2)

where ∆0 = g(ρ0 − ρa)/ρa is the reduce gravity between the fountain fluid and the

ambient fluid at the source. With the definition of Fr (see (1.2)), the above scaling

(2.1) can be written as

zm = CFr. (2.3)

To validate and quantify the obtained scaling (2.3), Turner (1966) carried out a

large number of experiments on salt water jets discharging into fresh water using

three nozzles with different sizes (1.40 cm, 0.96 cm, and 0.65 cm, respectively), over

a wide range of volume fluxes and initial density differences between the salt water

and the fresh water that led to Fr varying over 2 < Fr < 30. As expected, his

experiments showed that after the initiation of the fountain flow the first pulse of

fluid looked rather like a light starting plume, with a vortex-like front and nearly

steady plume behind; when this fountain front reached the initial fountain height, it

fell back; eventually it settled down to a nearly steady state, with the fountain front

fluctuating at the final fountain height which is a constant when time averaged. The

experimental results confirmed the scaling (2.3) and produced the value of 2.46 to C.

Surprisingly, the value 2.46 has been found by numerous subsequent studies as the

consensus value for C for forced turbulent round fountains, as noted in Table 2.1,

where the obtained values for C for forced turbulent round fountains from some

leading studies available in the literature are summarized, although the value of

C in the literature varies over a noticeable range (from 2.12 to 3.06 as shown in

Table 2.1). The variation is caused by numerous factors, including the significant

differences in experimental conditions (for example, the nozzle exit conditions as

noted by Pantzlaff & Lueptow (1999)), measurement errors, etc. It should be noted

that the results presented in Table 2.1 are for the cases when the source fluid and

the ambient fluid are miscible. There have been some similar studies on forced

turbulent round fountains with immiscible source and ambient fluids, such as those

by Clanet (1998), Friedman & Katz (1999), Friedman (2006), Friedman et al. (2006,

2007), Geyer et al. (2012), etc., as summarised in Geyer et al. (2012). The results

from these studies are not presented in Table 2.1.

It should be noted that all the values for C discussed above are for time-averaged

maximum fountain penetration heights when the forced turbulent round fountains

attain their respective fully developed, steady-state stage. It has also been shown
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that the scaling relation (2.3) is applicable for the initial maximum fountain penetra-

tion heights when the fountains reach their respective maximum penetration heights

for the first time. Turner (1966) found from his experiments that the ratio of the

initial maximum fountain penetration height to the final time-averaged maximum

fountain penetration height varies only within a narrow range, with a mean value

of 1.43 across all his experiments.

On the other hand, the scaling relation of the maximum fountain penetration

height at small Fr and lower Re conditions, i.e. weak and very weak fountains or

laminar and transitional fountains, should be not linear like the scaling relation (2.3)

for forced turbulent fountains at high Fr and large Re conditions. For these weak

and very weak fountains, or laminar and transitional fountains, it is believed that

viscosity also plays an important role in addition to momentum flux and buoyancy

flux (see, e.g., Friedman & Katz 2000; Lin & Armfield 2000a, b, c; Lin & Armfield

2003; Philippe et al. 2005; Kaye & Hunt 2006; Williamson et al. 2008). This leads

to the conclusion that Re has significance influence on zm as well in addition to Fr.
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Table 2.1: Summary of the obtained values for C for forced turbulent round fountains with miscible source fluid and ambient fluid from some leading
studies available in the literature. Note: Some information presented in the table is obtained with the consideration of the information presented in Wang et
al. (2011) and Geyer et al. (2012), in the case of the lacking of the information presented in several original studies.

Authors Method Fr Re Source fluid/Ambient fluid C

Turner (1966) Experimental 2 ∼ 30 - Saline water/Fresh water 2.46

Abraham (1967) Analytical - - - 2.74

Seban et al. (1978) Experimental 6.6 ∼ 53.5 894 ∼ 1923 Hot air/Ambient air 2.52

Mizushina et al. (1982) Experimental 3.0 ∼ 257.7 870 ∼ 2710 Fresh water/Heated fresh water 2.34

James et al. (1983) Experimental 24 ∼ 110 1550 ∼ 11000 Saline water/Fresh water 2.46

Baines et al. (1990) Experimental 5 ∼ 200 - Saline water/Fresh water 2.46

Baines et al. (1993) Experimental 31.6 ∼ 102.7 - Fresh water/Saline water 2.46

Cresswell & Szczepura (1993) Experimental 3.2 2500 Hot water/Cold water 2.46

Zhang & Baddour (1998) Experimental > 7 850 ∼ 6000 Saline water/ Fresh water 3.06

Pantzlaff & Lueptow (1999) Experimental 15.8 ∼ 78.0 1250 ∼ 10500 KCl solution/Water 2.12

Pantokratoras (1999) Analytical - - - 2.46

Bloomfield & Kerr (2000) Analytical/Experimental 10 ∼ 70 - Saline water/Fresh water 2.28

Kaye & Hunt (2006) Analytical/Experimental 2 ∼ 102 - Saline water/Fresh water 2.46

Papanicolaou & Kokkalis (2008) Experimental 1.4 ∼ 83.2 770 ∼ 5840 Fresh water/Saline water 2.46

Wang et al. (2011) Numerical > 6.0 1000 ∼ 1500 - 2.46

Burridge & Hunt (2012) Experimental > 2.8 969 ∼ 4022 Saline water/Fresh water 2.46

Vinoth & Panigrahi (2014) Experimental 2.3 ∼ 13.6 5 ∼ 102 Helium gas/Air 2.55

Burridge et al. (2015) Experimental > 4.0 > 750 Saline water/Fresh water 2.46
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For weak round fountains with small Fr values (Fr ∼ 1), at the Re values in

the laminar regime, Lin & Armfield (2003) developed the following scaling relation

for zm using dimensional analysis with the assumption that the fountain behavior

is governing by viscosity, momentum flux, and buoyancy flux,

zm = C1FrRe
n, (2.4)

where C1 is a proportional constant and the index n is also a constant. However, it is

found that n has different values which strongly depend on the values of Fr and Re.

For example, Lin & Armfield (2003) obtained n = −1/2 for Fr ∼ 1 and Re ≤ 500

which was confirmed by their direct numerical simulation results, while Philippe et

al. (2005) obtained n = 1/2 with a series of experiments on laminar round fountains

for Re < 100 over a wide range of Fr with the majority in the higher Fr region,

which was also confirmed by Williamson et al. (2008) using their experimental results

on laminar and transitional round fountains at higher Fr conditions. However, for

intermediate values of Fr and Re, Lin & Armfield (2004) found n = 1/4 with their

direct numerical simulation results over the ranges of 1 ≤ Fr ≤ 8 and 100 ≤ Re ≤
800.

For very weak round fountain (Fr � 1), Lin & Armfield (2000b) argued that

inertial effect is negligible and fountain flow predominantly control by viscous force

and buoyancy force only. They then used dimensional analysis to develop the fol-

lowing scaling relations,

zm ∼ Fr2/3Re−2/3, (2.5)

which was confirmed by their direct numerical simulation results over the ranges

of 0.0025 ≤ Fr ≤ 0.2 and 5 ≤ Re ≤ 800. This scaling relation was also con-

firmed by Kaye & Hunt (2006) with their analytical solutions by assuming that

the fountain flow for Fr . 1 is hydraulically controlled by the radial outflow and

their experimental results. The scaling relation (2.5) was further confirmed by the

experimental results of Burridge & Hunt (2012) over the ranges of 0.4 ≤ Fr ≤ 1

and 924 ≤ Re ≤ 2171 and the experimental results of Burridge et al. (2015) with

0.3 . Fr . 1. Similarly, Williamson et al. (2010) confirmed the above scaling

relation with their direct numerical simulation results when Fr < 0.4.

There have been other scaling relations developed for weak round fountains or

laminar round fountains. For example, for weak and intermediate round fountains

Kaye & Hunt (2006) developed the quantified scaling relation zm = 0.90Fr2 for

1 ≤ Fr ≤ 3 with their analytical and experimental results, which was later adjusted

slightly by Burridge & Hunt (2012) as zm = 0.86Fr2 for 1 ≤ Fr ≤ 2.8 with their
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extensive experimental results over 1015 ≤ Re ≤ 2780. The zm ∼ Fr2 scaling

relation was also found to be in agreement with the experimental results of William

et al. (2008) over comparable Fr and Re ranges. Zhang & Baddour (1998) obtained

the quantified scaling zm = 01.7Fr1.3 for Fr < 7 with their experimental results

over the range of Re < 6000. Vinoth & Panigrahi (2014) gave zm = 2.02Fr1/2 for

the weak fountains that they defined (with 0.7 . Fr . 2.1) with their experimental

results over 5 ≤ Re ≤ 204. For 2 . Fr . 4.0, Burridge et al. (2015) also developed

the quantified scaling relation zm = 2.8Fr − 2.1 with their experimental results.

William et al. (2010) found that over the transition range of 0.4 ≤ Fr ≤ 2.1 between

the very weak and weak fountains which is defined by them, the scaling relation is

in the form of zm ∼ C2Fr
2/3 + C3Fr

2, where C2 and C3 are constants.

As discussed above, the scaling relation for zm for round fountains is independent

of Re for forced turbulent fountains while it depends on Re for weak and very

weak or laminar and transitional round fountains. To examine the critical Re value

which distinguishes the independence and dependence of the scaling relation on

Re, Burridge et al. (2015) conducted an extensive and comprehensive experimental

study over wide ranges of Fr and Re (0.3 ≤ Fr ≤ 40 and 15 ≤ Re ≤ 4000). They

obtained the following threshold values for Re to distinguish the very weak, weak,

and intermediate and forced fountains,

ReT =


500Fr for very weak fountains, Fr . 1,

760 for weak fountains, 1 . Fr . 2,

75Fr + 350 for intermediate and forced fountains, Fr & 2,

(2.6)

where ReT is the threshold value of Re. When Re & ReT the scaling relation for zm

essentially is independent of Re whereas it depends on Re when Re . ReT . Their

results also resolve the inconsistency of the scaling relations in the literature, as

some noted above.

An excellent summary of the scaling relation for zm for round fountains in dif-

ferent categories, along with other major features such as the ratio of the initial

maximum fountain penetration height and its time-averaged counterpart and the

the dominant frequency for the bobbing motions present in fountains, is made by

Hunt & Burridge (2015), which is also adopted here in Fig. 2.5. They also presented

the following quantified scaling relations for different categories of round fountains

based on their own comprehensive analytical and experimental results as well as the
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prevailing results available in the literature,

zm =



2.46Fr for forced and highly forced fountains, Fr & 4.0,

2.8Fr − 2.1 for intermediate fountains, 2.0 . Fr . 4.0.

0.86Fr2 for weak fountains, 1.0 . Fr . 2.0,

0.81Fr2/3 for very weak fountains, Fr . 1.0.

(2.7)

These scaling relations are believed to be the consensus ones for different categories

of round fountains.

2.3.1.2 Entrainment

In the entrainment process, a mixing layer is formed by turbulent eddies among

the jet within its surrounding fluid. The most successful quantitative macroscopic

description of entrainment was introduced by Taylor (1945) and Morton et al.

(1956). Using the ‘top-hat’ method, in which it was assumed that the velocity

and buoyancy force remain constant across the jet and become zero outside the jet,

they stated that the entrainment rate along the periphery is proportional to the

local velocity.

Entrainment plays a significant role in any type of turbulent free-share flows,

including jets, fountains and plumes. Previous experimental and theoretical stud-

ies mostly determined the entrainment coefficient to use in the turbulent closure

model, given by Morton et al. (1956), to characterize jets, plumes and fountains.

Determination of an appropriate entrainment coefficient, which particularly varies

with height or with the local Froude number, with experimentally or theoretically,

is significant and investigations continue (Ezzamel et al. 2015).

The entrainment of the ambient fluid into the turbulent fountains plays a sig-

nificant role; where fountain flow is developed when the negative buoyancy force,

created due to the density difference between the incoming and ambient fluids, op-

poses the momentum flux of the incoming fluid from the source. In this study of

the entrainment process, mass transfer from the ambient fluid into the fountains

is important because it controls the rate of dilution, which moderates the negative

buoyancy force. In addition, entrainment plays a key role in determining the vol-

ume and physical shape of a fountain. The mixing mechanism into the fountains,

entrainment, is unquestionably complex, since ambient fluid not only enters the
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Figure 2.5: Summary of scaling relations for the maximum fountain penetration height and the
dominant frequency for the bobbing motions of round fountains in different categories (after Hunt
& Burridge 2015).

fountain (including at the top), but fluid is also exchanged via upward and down-

ward flow. Lots of attempts have been made to capture the exact dynamics of the

turbulent fountains using simplified theoretical plumes models, which is expanded

from earlier work by Morton (1959) to some further modification by Bloomfield &
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Kerr (1998), Kaye & Hunt (2006), Carazzo et al. (2010). The application of plume

theory to capture the dynamics of turbulent fountains, i.e. the initial rise and the

quasi-steady behaviour, ideally requires a clear understanding of the exchange mech-

anism of fluid, entrainment, among the fountain core and the downward flow, and

between the downward flow and the environment. A clear understanding of this ex-

change mechanism, based upon which a parametrization could be done, is not well

established; publication are scarce (e.g. Cresswell & Szczepura 1993; Williamson et

al. 2011) and it is hard to draw a firm conclusion.

However, the bulk entrainment of surrounding fluid, i.e. entrainment of ambient

fluid by fountain as a whole, can be measured with reasonable accuracy (Burridge

& Hunt 2016). It can be measured without any assumption regarding either in-

ternal flow or the nature of entrainment mechanism. Bulk entrainment estimates

the average dilution of the scalar buoyancy over the fountain as a whole, while the

local entrainment rate does not resolve. To our knowledge, Banies et al. (1993) and

Burridge & Hunt (2016) explicitly studied bulk entrainment by turbulent fountains.

Burridge & Hunt (2016) conducted a series of experiments in order to quantify the

total volume flux entrained, bulk entrainment, by an aqueous saline fountain, in

which they used a modified technique reported by Banies (1983) to determine the

entrain volume flux in a plume. In their experiments, a saline fountain was estab-

lished by injecting an aqueous sodium chloride solution (dense fluid) from a circular

source along the vertically upward direction into the fresh water (light fluid). Ini-

tially, the whole cylinder was full of fresh water. After initiating the injection from

the source at the bottom, the descending flow formed a well defined saline layer at

the base of the cylinder. This interface will propagate along the vertical direction

with time. The flow rate through the extract pump, which was installed at the bot-

tom of the tank, was varied until the interface become fixed at a unique height at

the plane of the source. In this condition, the volume flux in the downward flow of

the fountain was equal to the flow rate of the extract pump. Due to the entrainment

of the ambient fluid by the turbulent fountain, the flow rate in the downward flow,

Qout, is greater than Q0, where Q0 denotes flow rate from the source. The bulk

entrainment of ambient fluid, QE, by the turbulent fountain was then calculated

directly via QE = Qout−Q0. Their experiments were conducted over the wide range

of Fr and Re (0.004 ≤ Fr ≤ 25 and 350 ≤ Re ≤ 3460). After an extensive investi-

gation over the range of Re, where Re was always maintained above the threshold

value mentioned by Burridge et al. (2015), they did not observe any significant ef-

fect of Re on the bulk entrainment. On the other hand, their experimental results

showed that the dimensionless volume flux of entrainment, QE/Q0, strongly depends
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on the source Froude number (Fr). The author showed that the relations between

QE/Q0 and Fr were different corresponding to each class of fountains. The author

identified a distinct class of fountain when Fr ≤ 01. A set of empirical relations was

proposed by the authors for the volume flux scaling for the fountains at different

conditions of Fr, which is summarized as follows:

QE/Qi =



1.08± 0.025 if Fr ≤ 0.1,

0.37Fr2/3 if 0.1 ≤ Fr ≤ 1,

0.38Fr2 if 1 ≤ Fr ≤ 2,

0.71Fr if 2 ≤ Fr ≤ 8,

0.71Fr − 1 if Fr ≥ 8.

(2.8)

Baines et al. (1993) also reported experimentally on bulk entrainment by turbulent

fountains in which a saline solution (a dense fluid) was injected vertically in an

upward direction to establish a fountain within an initially uniform light aqueous

environment. A saline layer was produced at the base of the tank by the descending

counter flow which spread laterally on reaching the bottom of the tank. The bulk

entrainment by fountain above the interface, which separates saline and aqueous

solution, was then calculated by estimating the total volume flux in fountain above

the interface. Their studies summarized that QE/Qi ∝ Fr3 when Fri ≤ 3 (different

from Burridge & Hunt 2016) and QE/Qi ∝ Fri at moderate Fri (i.e. Fri ≥ 3),

similar to Burridge & Hunt (2016), where Qi and Fri denote the volume flux and

Froude number of the core at the level of the interface, respectively.

In addition, a number of studies have been conducted to determine entrainment

across the density interface due to localized forcing that forms a fountain-like flow.

Typically fluid from a localized source which is injected vertically in an the up-

ward direction within the stratified surroundings (often two-layer) to establish a

fountain-like flow above the interface and the entrainment flux in that case is es-

timated from the time derivative of the height of the interface (e.g. Baines 1975;

Kumagai 1984; Cardoso & Woods 1993). The entrainment in the interface indeed

becomes apparent with entrainment by fountains. On impinging with the interface,

it is typically observed that the incoming fluid from the jet (whether negatively,

positively or neutrally buoyant in the lower layer) penetrates some distance above

the interface before collapsing back around under the negative buoyancy. In other

words a fountain-like flow is developed into the upper region as a result of the lo-

calized forcing of incoming fluid at the interface. In previous experimental studies,

complementary predictive phenomenological models have been used to parametrize
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the dimensionless entrainment flux (QE/Qi) by the fountain – like flow in the upper

layer - in terms of the Froude number at the interface (Fri), where Qi indicates the

flux that is subsequently transferred across the interface. Banies (1975) conducted

a series of experiments where an axisymmetric turbulent plume impinged at the in-

terface, which separated two initially homogeneous layers of different density. With

the assumption of Turner’s hypothesis, Banies (1975) showed experimentally that

entrained volume flux QE across the interface is strongly dependent on the buoy-

ancy difference across the interface along with plume radius and vertical velocity at

the interface. Finally, the authors showed experimentally for axisymmetric turbu-

lent plumes over the range 0.25 ≤ Fr ≤ 1.8 that dimensionless entrainment flux

(QE/Qi) followed the power law,

QE/Qi ∼ Frn, (2.9)

where n is equal to 3. There is no doubt yet about this entrainment law (2.9),

however the debate about the value of power index n remains unresolved.. Kumagai

(1984) followed a similar experimental configuration to Baines (1975) and proposed a

similar entrainment law QE/Qi ∼ Fr3 for Fr � 1, however argued that entrainment

became independent of Fr at Fr � 1. Coffey & Hunt (2010) also investigated

turbulent inter-facial mixing, within a confine box, by injecting a fresh water jet from

the opening at the top on a dense fluid layer draining via opening at the bottom from

the box. Their experiment also recommended that QE/Qi ∼ Fr3 for Fr < 1, similar

to Banies (1975), and a constant value of QE/Qi at Fr > 1, similar to Kumagai

(1984). Cardoso & Woods (1993) also examined experimentally entrained volume

flux along the top of a rising axisymmetric plume from a stratified upper layer

across an interface into an almost homogeneous lower layer. The authors proposed

a quadratic relation for entrainment (QE/Qi ∼ Fr2 ) within 0.4 ≤ Fr ≤ 1.3 and

argued that this quadratic entrainment law gives a better curve fitting to Kumagai’s

(1984) data for Fr ≤ 1.4 rather than his proposed relation (QE/Qi ∼ Fr3). Similar

entrainment law, such as equation 2.9, was also proposed by Cardoso & Woods

(1993), with n = 2, and this was also justified experimentally by Ching et al. (1993)

where a turbulent line plume strikes on the sharp density interface.

These wide ranges of discrepancies in entrainment law may arise due to inherent

uncertainties in determining Qi and Fri. Experiments should be undertaken within

a confined visual tank in which the differences between setups and tank geometries

may affect the physics and analysis of measurements. Additionally, entrainment

flux is estimated by evaluating the time derivative of the interface position. Lin &
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Linden (2005a) bypass this issue by calculating entrainment straightforwardly from

a measurement of the steady interface position which was induced by a plume and

a fountain in a ventilated box - the plume to develop a two - layer system and the

fountain to impinge upon and entrain fluid across the interface. Their findings are

qualitatively similar to those obtained by Kumagai (1984), namely, where QE/Qi(∼
0.65) is independent of Fri over the region 0.9 ≤ Fri ≤ 2.2. A theoretical analysis

was conducted by Shrinvas & Hunt (2014) to determine entrainment flux in an

unconfined environment where a steady turbulent jet impinged on an interface which

separated two homogeneous fluids. They showed theoretically that entrainment flux

at low-Fri (i.e. Fri < 1.4), characterized by a semi-ellipsoidal dome at the top

of the impinging jet, is followed by a quadratic power law (i.e. QE/Qi ∝ Fri
2).

However, the entrainment flux at large-Fri (i.e. Fri > 3.8), characterized by a fully

penetrating turbulent fountain, is governed by a liner power law (i.e. QE/Qi ∝ Fri).

An explicit time average theoretical model for entrainment by fountain top was also

proposed by Shrinvas & Hunt (2014) where the fountain comprises three regions:

upflow, downflow and top. Recently, Debugne & Hunt (2016) developed a new

phenomenological model to determine entrainment of external fluid in which they

emphasised the role of the fluctuations in the entrainment process, suggesting that

the entrained volume flux is proportional to the incoming volume flux.

This discrepancy suggests the need for further investigation to characterize the

entrainment process. In additions, lack of knowledge about entrainment into the

fountains, especially in the transitional plane fountains into linearly stratified fluid,

due to their complex flow dynamics at fountain top, is one of the motivations of this

thesis. However, thermal entrainment, defined at § 5.6, will be reported at different

conditions of Fr,Re and s in this thesis.

2.3.1.3 Onset of asymmetry

In addition to the fountain maximum penetration height, understanding the

stability, transition and unsteady characteristics of the fountain are also important.

The onset of asymmetry, instability and unsteadiness in fountains is the key to eluci-

dating the mechanism for the generation of turbulence and entrainment in fountains,

but is not well understood, although some investigations have been undertaken. Lin

& Armfield (2008) studied the onset of entrainment in transitional round fountains

in a homogeneous fluid over the ranges of 1 ≤ Fr ≤ 8 and 200 ≤ Re ≤ 800 us-

ing direct numerical simulation, and found that entrainment is strongly dependent



28 Chapter 2

on Re while the effect of Fr is much smaller. Williamson et al. (2010) investi-

gated the transitional behavior of weak turbulent round fountains in a homogeneous

fluid over a wide range of Re (20 to 3494), although Fr was relatively small with

0.1 ≤ Fr ≤ 2.1. They observed that there is a continuum of behaviour over this

transitional Fr range, from hydraulically driven buoyancy dominated flow to mo-

mentum dominated flow. Williamson et al. (2008) demonstrated experimentally

that round Boussinesq fountains could be symmetrical flow (i.e. steady flow without

fluctuation) or asymmetric flow based on the condition of Fr & Re. At higher Re

(i.e. Re > 120) fountains becomes asymmetrical flow for any condition of Fr. How-

ever, at lower Re (i.e. Re ≤ 120) fountains can exhibit different types of unsteady

behavior based on Fr & Re. At first, fountain transfer from symmetric flow to

laminar flapping which leads to multimodal flapping followed by a laminar bobbing

motion at lower Re. The critical value of Fr for asymmetric transition strongly

depends on Re and followed by FrRe2/3 = 16 in the ranges of 10 ≤ Re ≤ 120 and

0.7 ≤ Fr ≤ 10. Lamorlette et al. (2011) studied the effect of inclination on “weak”

laminar round fountains using helium and a helium-air mixture (non-Boussinesq

fountains) and reported that the unstable modes are affected by the inclination of

the fountain. It also observed from previous experimental results on immiscible

fountains by Friedman (2006); Friedman & Katz (1999); Friedman et al. (2006,

2007) and Geyer et al. (2012) that fountains exhibit different flow regimes based on

Fr. Friedman (2006) showed experimentally by injecting water into diesel fuel that

fountains remain stable at Fr <
√

2 and become unstable at Fr ≥
√

2. The same

threshold value, Fr =
√

2, was also obtained by Friedman et al. (2006), where a

fountain was established by injecting glycerin-water mixtures into silicon oil. Fried-

man et al. (2007) argued that transition depends on the flow condition whether

flow is turbulent or laminar. The author showed that transition occurs at approxi-

mately Fr =
√

2 for turbulent fountain flows whereas Fr = 1/
√

2 for laminar flows.

The dependency of Re can be diminished by defining Re in terms of characteris-

tic velocity, W ∗. This idea came from the important note suggested by Friedman

et al. (2006). The characteristics velocity, W ∗, is equal to inlet velocity, W0, for

turbulent flow with uniform inlet velocity whereas W ∗ = W0

√
2 for laminar flow to

incorporate additional momentum. From the definition of characteristics velocity,

Friedman et al. (2007) incorporated the effect of Re by defining a corrected Froude

number (Frc). For the turbulent regime (nominally Re > 2, 300), Frc = Fr and

Frc = Fr/2 for the laminar regime (Re < 2, 300). In this way, the threshold value

for transition, using Frc, was obtained to Frc =
√

2 in both regimes, laminar and

turbulent. Geyer et al. (2012) conducted an extensive investigation experimentally

on immiscible round fountains by injecting dyed fresh water into rapeseed oil over
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the range 467 < Re < 5928 and 1.01 < Fr < 50. The authors reported that tran-

sition happens between stable and unstable regions at Fr ≈ 3.92, which is much

higher than the previous results obtained by Friedman and co-authors. The authors

argued about this discrepancy may be due to high inter facial tension between oil

and water.

2.3.1.4 Bobbing and flapping motions

One predominant feature of asymmetric behavior in a fountain is the bobbing

motions, which are fluctuations of the maximum fountain penetration height along

the vertical direction. Studies of bobbing motions in round fountains are scarce,

although it is well known from early experimental work by Turner (1966) that foun-

tain height starts to fluctuate around the mean value at steady state. This fountain

height fluctuation can be characterized based on the magnitude and frequency of

this vertical fluctuation. Burridge & Hunt (2012) showed experimentally that mean

fountain height fluctuation of Boussinesq turbulent round fountains into homoge-

neous medium, scaled with a mean steady height, is maximum within 1 ≤ Fr ≤ 1.7

and varied between 0.1 ∼ 0.45 depending on Fr. The authors further argued that

at higher Fr (Fr ≥ 5) fountain height fluctuations become independent of Fr,

equal to 0.92, when fountain height fluctuation scaled with fountain-top width in-

stead of mean fountain height. Burridge & Hunt (2013) also conducted a series of

experiments on miscible round axisymmetric fountains to characterize the vertical

height fluctuation of the fountain top. They proposed different scaling relations for

fountains height fluctuation (δZm,a), scaled with the radius of the orifice (X0), at dif-

ferent conditions of Fr like as δZm,a/X0 = 0.38Fr for Fr > 1.4; δZm,a/X0 ∼ Fr2/3

for 0.3 ≤ Fr ≤ 1.4 and a discontinuity was observed at Fr ≈ 1.4 among these two

trends. Burridge & Hunt (2013) also showed that at higher Fr height fluctuation,

when scaled with width of the fountain top, becomes independent of Fr like as

Burridge & Hunt (2012).

Some studies also reported on the frequency of this vertical height fluctuation,

though not extensively. Friedman (2006) reported on the oscillation of height of

immiscible round fountains, formed by water penetrating into diesel, and noted that

the fountain height starts to fluctuate periodically for Fr above 1. It was found

that the bobbing motions were dominated in the range 1.0 < Fr < 3.16 by a

constant Strouhal number, i.e. strz = 0.1, however they became more unpredictable

at Fr > 3.16, where strz ∼ fzX0/W0 and fz denotes bobbing frequency. Williamson

et al. (2008) showed experimentally that the dominant frequency of the bobbing
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motions in laminar round fountains scales with Fr like strz = CFr−2, where C is

equal to 0.15 and 0.4 for the lowest and the highest dominant frequency, respectively.

Burridge & Hunt (2013) also obtained the same scaling as Williamson et al. (2008)

for forced fountains (Fr ≥ 4), however, the value of C was proposed as 0.21 and

0.44 for the lowest and the highest frequency, respectively. Burridge & Hunt (2013)

also classified axisymmetric turbulent miscible Boussinesq fountains based on the

bobbing frequency as very weak fountains (Fr ≤ 1.0), weak fountains (1.0 ≤ Fr ≤
2.0), intermediate fountains (2.0 ≤ Fr ≤ 4.0) and forced fountains (Fr ≥ 40);

similar to Burridge & Hunt (2012) which was done based on fountain penetration

height. With suitable scaling, which varied according to each class, Burridge & Hunt

(2013) showed that bobbing frequency becomes constant for each class. The bobbing

motions of fountains with large density differences was studied by Clanet (1998) with

experiments and analytical modeling, who also found that the dominant frequency

scales with Fr as strz ∼ Fr−2. In addition, Vinode & Panigrahi (2014) scaled

dominant bobbing frequency as strz = 0.60Fr−2 for non-Boussinesqu fountains.

In addition to the bobbing motions, the asymmetric behavior of fountains is also

dominated by flapping motions which are fluctuations along the horizontal direc-

tions, as observed experimentally by Williamson et al. (2008) for round fountains

in homogeneous fluids. However, no further details were given by the author about

the frequency of flapping. Vinoth & Panigrahi (2014) showed experimentally for

non-Boussinesq round fountains that the scaling relation strx = CFr−1 is appli-

cable for the flapping frequency, where strx ∼ fxX0/W0 and fx denotes flapping

frequency and C is equal to 0.127 and 0.255 for flapping mode I and II, respectively.

Williamson et al. (2008) reported that the flapping motion possibly observed only

when a flush mounted nozzle is used to establish the fountain and not in a salient

nozzle. However, Vinode & Panigrahi (2014) argued that the fountains from a salient

nozzle also exhibit a flapping motion. The exact reason for flapping oscillation is

not yet known.

2.3.2 In stratified fluids

Studies on fountains in stratified environments have not been focused as exten-

sively as fountains, round or plane, into the homogeneous environment. However,

the behavior of fountains in stratified environments was also investigated by few

researchers, as summarized by Bloomfield & Kerr (1999, 2000), Druzhinin & Troit-

skaya (2010), Freire et al. (2010), Lin & Armfield (2002) and Mehaddi et al. (2012).
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The behaviour of axisymmetric round fountains in stratified environments is not sim-

ilar to fountains in homogeneous environments. Bloomfield & Kerr (1998) showed in

the case of turbulent round fountains in stratified environments that downward flow

either spreads along the base or intrudes at a certain height between initial height

and base, depending upon the releasing conditions (momentum and buoyancy flux

at source) and strength of the density gradient.

Round fountains in stratified environments can form under two conditions. First

one is zero buoyancy flux at the source, which means the density of the incoming fluid

is equal to ambient fluid at the bottom, and the second case is non-zero buoyancy flux

at the source. In both cases, fountains exhibit three different penetration heights,

Zm, (i.e. initial, final and spreading height). Fischer et al. (1979) developed a relation

to determine penetration height, Zm, for the first case, zero buoyancy flux at the

source, which is as follows,

Zm = C
M

1/4
0

N−1/2
, (2.10)

where momentum flux denotes by M0, define by equation 2.2, and buoyancy fre-

quency (N) is defined by

N = −

√
g

ρ

dρ

dz
. (2.11)

Bloomfield & Kerr (1998) obtained experimentally the value of C which is equal to

3.25, 3.00 and 1.53 for initial, final and spreading height for turbulent round foun-

tains in stratified environments with zero buoyancy flux at the source, respectively.

The authors also conducted a numerical analysis to obtain the values of C in equa-

tion 2.35 for initial height and obtained 3.29 which was close to the experimental

value. Bloomfield & Kerr (2000) also obtained numerically the value of C, equal to

2.98 and 1.53 for final and spreading height, respectively, using the modified theo-

retical models of plume for turbulent fountains in stratified environments. The ratio

between initial and final fountain height is equal to 1.08, obtained by Bloomfield &

Kerr (1998), much lower than the 1.43 that was observed by Turner (1966) in the

case of round fountains in homogeneous environments. Bloomfield & Kerr (1998)

argued that due to the intermediate intrusion the interaction between up and down

flows takes place over a short distance, which leads to this lower ratio.

Bloomfield & Kerr (1998) proposed a scaling relation of Zm for turbulent round

fountains for the second case, non-zero buoyancy flux at the source, by introducing
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a new term instead of a constant term at the equation 2.1 (given by Turner 1966):

Zm = f(σ∗)
M0

3/4

B0
1/2

, (2.12)

where M0 and B0 is known as momentum and buoyancy flux at the source, re-

spectively, which is defined by equation 2.2. The dimensionless parameter, σ∗, is

introduced by Fischer et al. (1979) as follows

σ∗ =
M2

0N
2

B2
0

. (2.13)

Combining equations 2.2, 2.11, 1.2, 1.3 and 1.5 with equation 2.13; the dimension-

less parameter, σ∗, can be rewritten as a function of Froude number, Fr, (i.e. see

equation 1.2) and dimensionless temperature stratification, s, (i.e. see equation 1.5)

for round Boussinesq fountains, as follows:

σ∗ = Fr2s. (2.14)

Finally the above scaling relation 2.12 leads to a turbulent round Boussinesq foun-

tain,

zm = f(Fr2s)Fr. (2.15)

Bloomfield & Kerr (1998) obtained the critical condition of σ∗, σ∗
c = 5 which is

similar to the numerical result obtained by Bloomfield & Kerr (2000), at which

downward flow spreads at a certain height above the bottom for the first time.

This indicates that downward flow spreads along the bottom when σ∗ < σ∗
c ; on the

other hand it spreads at certain height when σ∗ ≥ σ∗
c . Bloomfield & Kerr (1998)

observed experimentally and numerically that the values of f(σ∗), in equation 2.12,

strongly depends on σ∗. The authors found that fountain penetration height (both

initial and final height) solely depended on Fr, as found by Turner (1966), at lower

stratification. They proposed a set of empirical relations for initial height (zm,i), final

height (zm,a) and spreading height (zm,s) at different conditions of σ∗, as follows:

zm,i =

2.65Fr if σ∗ < 0.1,

3.25Fr0.5s−0.25 if σ∗ > 40,
(2.16)

zm,a =

1.85Fr if σ∗ < 0.1,

3.00Fr0.5s−0.25 if σ∗ > 40,
(2.17)
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zm,s =

0 if σ∗ < 5,

1.53Fr0.5s−0.25 if σ∗ > 40.
(2.18)

Mehaddi et al. (2012) proposed a closed-form solution for initial penetration height

of turbulent fountains (round) into the linearly stratified environment under the

Boussinesq approximation using plume theory, followed a similar approach used

by Kaye & Hunt (2006), and obtained same scaling relation (2.16), proposed by

Bloomfield & Kerr (1998) for initial height. In the lower stratification condition,

Mehaddi et al. (2012) also found that initial penetration height of a forced fountain

is independent of the strength of stratification as observed by Bloomfield & Kerr

(1998) and independent of entrainment in case of a weak fountain as mentioned by

Kaye & Hunt (2006). Mehaddi et al. (2012) obtained the entrainment coefficient, α,

equal to 0.068 by comparing their analytical result with the experimental result of

Bloomfield & Kerr (1998) for forced fountains. However, Bloomfield & Kerr (1998)

assumed α equal to 0.085 for their numerical analysis.

For weak round fountains with Fr = 0(1) into the linearly stratified environment,

Lin & Armfield (2002) argued that momentum flux M0, buoyancy flux (B0), kine-

matic viscosity (ν) and the stratification number (Sp, which is defined by equation

1.3) provides a complete parametrization of the penetration height. With dimen-

sionless analysis and scaling analysis, Lin & Armfield (2002) showed that maximum

fountain penetration height can be expressed as follows,

zm,s ∼
Fr2/3

Re1/3s1/3
. (2.19)

Lin & Armfield (2002) validated this scaling relation for round fountain into the

linearly stratified environment with their DNS result over the range 0.2 ≤ Fr ≤
1, 20 ≤ Re ≤ 200 and 0.1 ≤ s ≤ 0.5 and obtained the following relation:

zm,s = 0.186 + 5.842
Fr2/3

Re1/3s1/3
. (2.20)

The onset of asymmetry and three-dimensionality in transitional round fountains

in a linearly stratified fluid was explored by Gao et al. (2012) with three-dimensional

direct numerical simulation over the ranges 1 ≤ Fr ≤ 8 and 100 ≤ Re ≤ 500 at a

constant dimensionless stratification, s = 0.03. Their results show that a critical Re

exists between 100 and 200 for Fr = 2, and similarly a critical Fr exists between 1

and 2 for fountains at Re = 200, which divide the fountains into either axisymmetric

and two-dimensional or asymmetric and three dimensional. Druzhinin & Troitskaya
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(2010) observed that round fountains in stratified environments becomes unstable

at higher Fr with self-oscillation by direct numerical simulation. Their numerical

results demonstrated that fountain height fluctuation frequency decreases with Fr

and obtained strz ∼ Fr−2, similar to Williamson et al. (2008).

2.4 Behavior of plane fountains

2.4.1 In homogeneous fluids

The behavior of plane fountains is also investigated by some researchers, although

apparently not so extensively done like that for round fountains. A good summary of

these studies can be found in, e.g., Hunt & Coffey (2009), Srinarayanna et al. (2009),

van der Bremer & Hunt (2014), and more recently Hunt & Burridge (2015). The

reader is referred to these for the details. Here only the results from some leading

studies are reviewed.

As mentioned in § 2.2, plane fountains are classified by Hunt & Coffey (2009) as

the following three categories, in terms of Fr only,

• very weak plane fountains (Fr . 2.3);

• weak plane fountains (2.3 . Fr . 5.7);

• forced plane fountains (Fr & 5.7).

However, this classification does not take into account of the effect of Re. Sri-

narayana et al. (2010), based on their experimental results, further classified plane

fountain behavior at low Re values (Re ≤ 127) into four sub-regime behavior, i.e.,

steady, flapping, laminar-mixing, and jet-type mixing behavior, after taking into

account of the effect of Re.

2.4.1.1 Maximum fountain penetration height

For forced turbulent plane fountains, similar to their forced turbulent round coun-

terparts, it was also found that zm is independent of Re and solely depends on Fr.

Again by assuming that momentum flux and buoyancy flux are the main governing
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parameters, Baines et al. (1990) developed the following scaling relation for forced

turbulent plane fountains using dimensionless analysis,

Zm = Zm/X0 = C4M0B0
−2/3, (2.21)

where C4 is a constant of proportionality, M0 and B0 are the momentum flux and

buoyancy flux per unit length at the source, respectively, which are defined as follows

for a uniform velocity (W0) at the fountain source of the half-width of X0,

M0 = 2X0W0
2, B0 = 2∆0X0W0, (2.22)

where ∆0 = [g(ρ0 − ρa)/ρa] is the reduced gravity between the source fluid and the

ambient fluid at the source. The scaling relation (2.21) can also be expressed as

follows in terms of Fr, (Baines et al. 1990),

zm = C5Fr
4/3. (2.23)

They further found that the value of C5 is 0.64 for 5 . Fr . 1000 using their exper-

imental results. However, it was found that the value of C5 from Baines et al. (1990)

should be 1.64 as an error existed in the original presentation, as pointed out by Hunt

& Coffey (2009), which is supported by the experimental results obtained by Bloom-

field & Kerr who used the same experimental rig as used by Baines et al. (1990).

The experimental results by Campbell & Turner (1989) gave C5 = 1.64 ∼ 1.97 over

the range of 5.6 . Fr . 51, whereas the experimental results by Zhang & Baddour

(1997) found C5 = 2.0 for 6.5 . Fr . 113 over 325 . Re . 2700). Hunt & Cof-

fey (2009) speculated that the large discrepancy in the value of C5 among different

studies may be due to the difference in the source geometry used by these studies,

which, they argued, has a significant impact on fountain behavior, and the range of

Fr covered in their respective experiments.

Hunt & Coffey (2009) obtained an analytical solution for the initial maximum

fountain penetration height of a forced turbulent plane fountain (zm,i) by using the

plume conservation equations and the entrainment model, which supports the above

scaling relation (2.23). They then present the following quantified scaling relation

for Fr & 5.7,

zm,i = 0.84Fr4/3. (2.24)

However, Goldman & Jaluria (1986) obtained a different quantified scaling relation

for zm,i,

zm,i = 3.959Fr0.88, (2.25)
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based on their two-dimensional fountain experiments with injecting heated air verti-

cally downward from rectangular sources with aspect ratios from 30:1 to 5:1, which

is different from the configuration of the case considered by Hunt & Coffey (2009)

where the aspect ratio is assumed to be infinite.

The scaling relation (2.23) was also confirmed by the experimental and numerical

studies by Srinarayana et al. (2010, 2013). For 2.1 ≤ Fr ≤ 10, they obtained the

following quantified scaling relation,

zm = 1.53Fr4/3 + 4.45. (2.26)

For weak plane fountains with smaller Fr values, Zhang & Baddour (1997) ar-

gued that buoyancy flux dominants, and proposed two models. In the first model,

they treated the fountain to be equivalent to the one developing from a virtual source

of momentum flux and buoyancy flux only. They then obtained, using dimensional

analysis and their experimental results, the following empirical scaling relation,

zm = (2.0− 1.12Fr−2/3)Fr4/3, (2.27)

for 0.62 . Fr . 6.5. In their second model, they adopted an alternative scaling

approach by considering the time for the fountain to reach the maximum penetration

height to be scaled with the ratio of the momentum flux and the buoyancy flux and

assuming that zm is proportional to the product of this time and the characteristic

vertical velocity (i.e., W0). They then proposed the following empirical scaling

relation using their experimental results,

zm = 0.71Fr2, (2.28)

for 0.62 . Fr . 6.5. However, Hunt & Coffey (2009) used their recent comprehen-

sive experiment results to modify the above quantified scaling relation (2.28) to be

as follows,

zm = 0.5Fr2, (2.29)

for 2.3 . Fr . 5.7. The zm ∼ Fr2 scaling relation for weak plane fountains is also

confirmed by the experimental and numerical studies by Srinarayana et al. (2010,

2013), who gave the following quantified scaling relation for 1.25 ≤ Fr ≤ 2.25,

zm = 1.05Fr2 + 2.73. (2.30)
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For plane fountains at Fr ∼ 1, Lin & Armfield (2000c, 2003) argued that Re

also affects zm, similar to their round fountain counterparts, and then developed the

following scaling relation based on dimensional and scaling analysis,

zm ∼
Fr

Re1/2
, (2.31)

which was confirmed by their DNS results for 0.2 ≤ Fr ≤ 1 and 5 ≤ Re ≤ 200.

For very weak plane fountains with Fr . 1 and low Re values, Lin & Armfield

(2000c) assumed that the inertial effect is small and the fountain flow behavior is

governed by buoyancy and fluid viscosity only. They then developed the following

scaling relation using dimensional analysis,

zm ∼ Fr2/3Re−2/3. (2.32)

Their direct numerical simulation results shown that at Re = 200, the quantified

scaling relation for 0.0025 ≤ F is,

zm ≈ 1.88Fr2/3. (2.33)

To summarize, it seems that the following quantified scaling relations obtained

by Hunt & Coffey (2009), as indicated by Hunt & Burridge (2015), are probably the

most consistent and accurate ones for plane fountains in homogeneous fluids over a

wide range of Fr, from very small ones to very large ones,

zm =


0.84Fr4/3 for forced plane fountains, Fr & 5.7,

0.5Fr2 for weal plane fountains, 2.3 . Fr . 5.7,

1.5Fr2/3 for very weak plane fountains, Fr . 2.3.

(2.34)

2.4.1.2 Onset of asymmetry, Flapping and bobbing

As is the case with round fountains, it is also important to understand the onset

of asymmetry, flapping and bobbing to elucidate the plane fountain completely.

Studies on the onset of asymmetry, bobbing and flapping motions in plane fountains

are scarce. The flapping motion of plane fountains into the homogeneous fluid was

observed by Srinarayana et al. (2008, 2010 and 2013). Srinarayana et al. (2008)

showed, with numerical analysis of plane fountain into the homogeneous medium

over the range 0.25 ≤ Fr ≤ 10 and Re = 100, that steady and symmetrical flow,
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within 0.25 ≤ Fr ≤ 2, leads to unsteady with periodic oscillation, within 2 ≤ Fr ≤
4, and finally becomes unsteady with aperiodic oscillation at Fr ≥ 4. Srinarayana

et al. (2010) investigated plane fountain behavior at low-Reynolds numbers using a

series of experiments over the range 2.1 ≤ Re ≤ 127 and 0.4 ≤ Fr ≤ 42 and found

that the behavior of plane fountains could be categorized broadly into four regimes:

steady; flapping; laminar mixing; and jet-type mixing behavior. It was also found

that the critical Froude number for transition from a steady to unsteady flow varies

with Re. Srinarayana et al. (2013) also conducted a series of two-dimensional DNS

of laminar plane fountains in homogeneous ambient fluids with a parabolic inlet

velocity profile, to study the instabilities and variation of the fountain height, and

found that plane fountain exhibit three distinct regimes: steady and symmetrical,

unsteady with periodic and aperiodic lateral oscillation. The asymmetric transition

occurred at critical Fr = 2.25, reported by Srinarayana et al. (2008) with DNS

with uniform inlet velocity. Srinarayana et al. (2010) showed experimentally that

the critical Fr ≈ 1 for 50 ≤ Re ≤ 120, which is in good agreement with Srinarayana

et al. (2013). Srinarayana et al. (2013) showed that critical Fr for asymmetric

transition lies between 1 ∼ 1.15. The authors argued about the discrepancy in the

critical Froude number proposed by Srinarayana et al. (2008) and Srinarayana et al.

(2013). For a given flow rate, the uniform velocity profile has a lower momentum flux

compared to the parabolic velocity profile. This supports a higher critical Froude

number, Fr = 2.25, for asymmetric transition with uniform inlet velocity, obtained

by Srinarayana et al. (2008), and a lower critical Froude number with parabolic

inlet velocity, reported by Srinarayana et al. (2013). Srinarayana et al. (2013) also

mentioned that flapping is observed in fountains when a flush mounted nozzle is

used and not a salient nozzle.

Flapping and bobbing frequency of non-Boussinesq plane fountains in homoge-

neous environments was reported by Vinoth & Panigrahi (2014) with their exper-

imental results, considering three rectangular nozzles with aspect ratio 1, 2 and

3. The author showed that flapping and bobbing frequency from the rectangular

nozzle followed similar types of dependency on Fr like as round fountains. The

scaling relations proposed by Vinoth & Panigrahi (2014) is strz = 0.60Fr−2 for

bobbing frequency and strx = CFr−1 for flapping frequency where C is equal to

0.127 and 0.255 for flapping mode I and II, respectively. Srinarayana et al. (2008)

showed numerically with uniform inlet velocity that plane fountains flap with a

single dominant frequency strx ∼ 0.017, 0.015 and 0.013 along the horizontal direc-

tion for Fr = 2.25, 2.5 and 2.75, respectively. A less dominant mode was observed

at Fr = 3, with strx = 0.11, in addition to smaller higher and lower frequency
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modes, indicating quasi-periodic behavior. A broad-banded multi-modal structure

was observed at Fr = 4, demonstrating the aperiodic chaotic behavior. Srinarayana

et al. (2008) also observed that plane fountains fluctuate along the vertical di-

rection, bobbing, with dominant frequency strz = 0.033, 0.030, 0.026 and 0.022 for

Fr = 2.25, 2.5, 2.75 and 3, which are almost double the flapping frequency. This

happens because of the nature of the flapping motion whereby the fountain height

achieves twice the maximum and minimum values during each full cycle of flapping.

A broad branded bobbing frequency was also observed at Fr = 4, similar to the

flapping frequency. With the assumption of parabolic inlet velocity, Srinarayana et

al. (2013) showed with numerical results that plane fountains flap with a single dom-

inant frequency strx ∼ 0.037, 0.030, 0.025 and 0.021 for Fr = 1.25, 1.5, 1.75 and 2.0,

respectively. A less dominant mode was observed at Fr = 2.25, with strx = 0.018,

in addition to smaller higher and lower frequency modes, indicating quasi-periodic

behavior. A broad-banded, multi-modal structure, was observed at Fr = 2.5 demon-

strating the aperiodic chaotic behavior.

2.4.2 In stratified fluids

The behaviour of plane fountains in the stratified environments is not investi-

gated extensively, and only a few articles are available on this. Bloomfield & Kerr

(1998) showed experimentally that the flow behaviour from a line source into the

stratified environment is qualitatively similar to the round fountains in stratified

environments. Just after initiating the flow from line source into the stratified am-

bient fluid, the injected fluid penetrates through the environment until first coming

to rest by negative buoyancy force at an initial height. However, in this case, the

initial height is not reduced significantly due to the interaction between upflow and

subsequent counterflow. The reversed flow may again either spread along the base

or at certain height depending upon the strength of stratification of the ambient

fluid. The thickness of this intrusion is comparable to the intrusion height near

the fountain axis, however, it becomes thinner corresponding to the higher radial

distance. The profile of a line fountain fluctuates randomly between symmetric and

asymmetric, leading to a corresponding reduction in the final height, as a result of

deflected counterflows to one side from the upflow. This additional instability was

also observed by Banies et al. (1990) in the case of plane fountains in homogeneous

environments.

Like as round fountains in stratified environments, a plane fountain can also be

established under two conditions. The first is zero buoyancy flux at the source and
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the second is non-zero buoyancy flux at the source. Like round fountains in stratified

ambient conditions, in both cases, plane fountains in stratified environments exhibit

three different penetration heights, Zm, (i.e. initial, final and spreading height).

Bloomfield & Kerr (1998) assumed a relation to determine penetration height, Zm,

for the first case, zero buoyancy flux at the source, which is as follows,

Zm = C
M

1/3
0

N−2/3
, (2.35)

where momentum flux denotes by M0, define by equation 2.22, and buoyancy fre-

quency (N) is defined by equation 2.11. Bloomfield & Kerr (1998) showed exper-

imentally that the value of C is equal to 2.46, 2.43, 2.27 and 1.07 for initial, final

symmetric, final asymmetric and spreading heights for turbulent plane fountains in

stratified environments with zero buoyancy flux at the source, respectively.

Bloomfield & Kerr (1998) proposed a scaling relation of Zm for turbulent plane

fountain for the second case, non-zero buoyancy flux at the source, by introducing

a new term instead of a constant term at the equation 2.21 (given by Turner 1966):

Zm = f(σ)M0B0
−2/3, (2.36)

where M0 and B0 is known as momentum and buoyancy flux at the source, re-

spectively, which is defined by equation 2.22. The dimensionless parameter, σ, was

introduced by Bloomfield & Kerr (1998) as follows

σ =
M2

0N
2

B2
0

. (2.37)

Combining equation 2.22, 2.11, 1.2, 1.3 and 1.5 with equation 2.37; the dimensionless

parameter, σ, can be rewritten as follows for plane Boussinesq fountains:

σ = Fr2s. (2.38)

Finally the above scaling relation 2.36 can be written, for turbulent Boussinesq plane

fountain, as follows

zm = f(Fr2s)Fr4/3. (2.39)

Bloomfield & Kerr (1998) obtained the critical condition of σ, σc = 6 which was

similar to the numerically obtained result 5.4, at which downward flow spread at a

certain height above the bottom for the first time. This indicates that downward flow

spread along the bottom when σ < σc, on the other hand it spread at certain height

when σ ≥ σc. Bloomfield & Kerr (1998) observed experimentally and numerically
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that the values of f(σ), in equation 2.36 , strongly depend on σ. The authors found

that fountain penetration height (both initial and final height) solely depends on

Fr, as did Turner (1966), at lower stratification. They proposed a set of empirical

relations for initial height (zm,i), final symmetric height (zm,a,s), final asymmetric

height (zm,a,as) and spreading height (zm,s) at different conditions of σ as follows:

zm,i =

1.26Fr4/3 if σ < 0.1,

2.46Fr2/3s−1/3 if σ > 30,
(2.40)

zm,a,s =

0.95Fr4/3 if σ < 0.1,

2.463Fr2/3s−1/3 if σ > 100,
(2.41)

zm,a,as =

0.72Fr4/3 if σ < 0.1,

2.27Fr2/3s−1/3 if σ > 100,
(2.42)

zm,s =

0 if σ < 6,

1.07Fr2/3s−1/3 if σ > 100.
(2.43)

For weak plane fountains with Fr = 0(1) into the linearly stratified environ-

ment, Lin & Armfield (2002) argued that momentum flux (M0), buoyancy flux

(B0), kinematic viscosity (ν) and the stratification number (Sp) provide a complete

parametrization of the penetration height, like as round fountains in stratified envi-

ronments. With dimensionless analysis and scaling analysis, Lin & Armfield (2002)

showed that maximum fountain penetration height can be expressed as follows,

zm ∼
Fr2/3

Re1/3s1/3
. (2.44)

Lin & Armfield (2002) validated this scaling relation for plane fountain into the

linearly stratified environment with their DNS result over the range 0.2 ≤ Fr ≤
1, 20 ≤ Re ≤ 200 and 0.1 ≤ s ≤ 0.5 and obtained the following relation:

zm = 0.306 + 8.895
Fr2/3

Re1/3s1/3
. (2.45)

2.5 Summary

Extensive research has been conducted on fountains, however most studies have

focused on turbulent round fountain in an homogeneous medium as summarized
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at section 2.3. Some researchers, although apparently not so extensive, also in-

vestigated the behaviour of plane fountains in homogeneous environments (i.e. see

section 2.4). Studies on fountains (both, round and plane) in stratified environ-

ments is rarely available (i.e. see section 2.3.2 and 2.4.2), especially plane fountains

into stratified fluid. Previous studies mainly focused on turbulent fountains (round

or plane) either into homogeneous or stratified environments. To date, as per the

author’s knowledge, the behavior of plane fountains, especially into the transitional

regime, into the stratified environment is not well understood. This motivates the

current study.

During previous investigations mainly focused on fountain penetration height,

which was extensively done in case of round fountains in homogeneous environments

(i.e. summarized at section 2.3.1.1), moderate for plane fountain into homogeneous

ambient fluid (i.e. see section 2.4.1.1) and scarce on round or plane fountain into

stratified environments (i.e. see section 2.3.2 and 2.4.2). No study, except Lin &

Armfield (2002), has been found to demonstrate the effect of Fr,Re and s on pene-

tration height of plane fountains, especially in transitional regime, into the stratified

environment, which is the another motivation for this current study to develop a

scaling relation of penetration height in term of Fr,Re and s.

The onset of asymmetry, instability and unsteadiness in transitional fountains

is the key to elucidating the mechanism for the generation and flow dynamics of

turbulence and entrainment in fountains, and thus is of both fundamental signifi-

cance and application importance. However, little understanding has been achieved

so far. In particular, to the best knowledge of the author, no study has been found

in which the onset of asymmetry of transitional plane fountains in stratified fluids

has been investigated.This also motivates the author for this current research.

Fountain height fluctuation along the vertical direction, bobbing, is known from

early experimental work by Turner (1966), though only a few researchers have re-

ported this bobbing frequency. In addition to bobbing, fountains exhibit flapping

motion as well as. The author understands that no literature is available that can

demonstrate briefly the bobbing and flapping frequency of transition plane fountains

in stratified environments,and this also has motivated the current investigation.

Entrainment is an important feature of fountain flow, although the entrainment

mechanism is still not explained clearly. Many discrepancies have been observed

among the entrainment law, as proposed by previous researchers (i.e. see section

2.3.1.2). This motivates the author as well as to observe the effect of Fr,Re and s

on thermal entrainment by transitional plane fountain.
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These unresolved matters, along with the desire to provide a much-improved

understanding of other aspects of the behavior of transitional plane fountains in

stratified fluids, motivate the current study.





Chapter 3

Methodologies

3.1 Introduction

The physical system under consideration in this thesis and the associated compu-

tational domain used for the DNS runs was briefly described in § 1.2. The governing

equations of fountain flow and the appropriate boundary and initial conditions pro-

vide the mathematical basis for the numerical simulation of the flow behavior. For

the unsteady transitional fountains considered in this thesis, the governing equations

are the Navier-Stokes equations and the temperature equation, which are presented

in § 3.2, along with the appropriate boundary and initial conditions. In § 3.3, the Fi-

nite Volume Method to solve the governing equations employed by the commercial

CFD code ANSYS FLUENT 13, which is used in this thesis to carry out three-

dimensional direct numerical simulation (DNS), is briefly described. In particular,

the discretization of governing equations and the solution strategy are introduced

in this section. A brief description about the FLUENT setup to solve and analyze

these flow problems, numerically, is presented in § 3.5.

3.2 Governing equations and boundary and initial condi-

tions

It is always challenging to establish some basic assumptions and accurate for-

mulas for describing a problem before any numerical procedure are implemented.

Especially numerical simulation on fluid flow and heat transfer are always compli-

cated. Plane fountains into linearly stratified environment, which is considered in

45
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this thesis, include both fluid flow and heat transfer problem. Plane fountain into

linearly stratified ambient fluids satisfies continuity equation, Navier-Stokes equa-

tion and energy equation. These governing equations allow to describing all flow

variables, which are denoted by velocity ~V , temperature T , density ρ and pressure

P .

The continuity equation, derived from the conservation of mass, can be written

as,
∂ρ

∂t
+∇ · (ρ~V ) = 0. (3.1)

Equation 3.1 is valid for both compressible and incompressible flow. The first term in

equation 3.1 denotes the rate of increasing density among the control volume, second

term indicates the rate of mass flux travelling out through the control surface per

unit volume.

On the other hand, conservation of momentum is expressed by the Navier-Stokes

equations, like as follows,

∂

∂t
(ρ~V ) +∇ · (ρ~V ~V ) = ∇ · (σ̄) + ρ~g, (3.2)

where gravitational and stress tensor are represented by ~g and σ̄, respectively. The

first term on the left side of equation 3.2 denotes the rate of momentum increasing

per unit volume into the control volume and the rate of momentum lost per unit

volume by convection through the surrounding surface is denoted by the second

term on the left side of the equation. The surface force per unit volume denotes by

the first term on the right side of equation 3.2 and the second term on the right side

of the equation denotes the gravitational force per unit volume force.

Conservation of the internal energy E, ensure according to first law of thermo-

dynamics, can be expressed by the energy equation,

∂(ρE)

∂t
+∇ · (~V ρE) = ∇ · (σ̄ · ~V )−∇ · ~Q, (3.3)

where heat conduction vector denotes with ~Q and internal energy with E. In equa-

tion 3.3, the first term on the left side denotes the rate of increase of E, while total

energy lost (per unit volume) through the control surface by convection denotes

with the second term on the left side. on the other hand, first term on the right

side of equation 3.3 represents work done on the per unit control volume by surface

force, while rate of heat transfer, per unit volume, by conduction through the control

surface is denoted by the second term on the right side of the equation. In equation
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3.3, internal energy (E) can be expressed in terms of temperature (T ), pressure (P )

and density (ρ) as follows,

E = h− P

ρ
, (3.4)

where

h =

∫ T

Tref

cpdT, (3.5)

and specific heat at constant pressure is denoted by cp. Stress tensor for Newtonian

fluid is given by

σ̄ = µ[(∇~V +∇~V T ) + (−P − 2

3
∇ · ~V )I], (3.6)

where µ denotes dynamic viscosity of fluid.

The heat conduction vector ( ~Q) is expressed according to the Fourier’s Law,

~Q = −λ∇T, (3.7)

where λ denotes thermal conductivity of the fluid. Combining equations (3.4-3.7)

with equations (3.1-3.3), the equations of continuity, Navier-Stokes and temperature

can be rewritten as,

∂ρ

∂t
+∇ · (ρ~V ) = 0, (3.8)

∂

∂t
(ρ~V ) +∇ · (ρ~V ~V ) = −∇P + ρ~g +∇ · (µ[(∇~V +∇~V T )− 2

3
∇ · ~V )I]),(3.9)

∂(ρT )

∂t
+∇ · (~V ρT ) =

λ

cp
∇2T +

1

Cp

∂P

∂t
+ P · (∇~V ) +

µ

cp
Φ, (3.10)

where energy dissipation, µΦ/cp , is occurred due to viscosity and Φ is expressed as

follows,

Φ = −2

3
(∇ · ~V )

2
+ µ∇ · ([∇~V +∇~V T ] · ~V ). (3.11)

In the case of buoyancy dominant flow, like as plane fountains flow into the

linearly stratified ambient fluid which is considered in this thesis, the above Navier-

Stokes equations can be simply with the Oberbeck-Boussinesq assumption. Accord-

ing to this assumption, density is assumed as a constant value everywhere except

where body force is buoyancy force and a linear relation exists among density and

temperature, like,

ρ(T ) = ρ(P0, T0)[1− β(T − T0)], (3.12)

where β represents the coefficient of volumetric expansion of fluid. In additions,
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fluids are assumed as an incompressible fluid during these flows, as a result com-

pressibility term is ignored from the energy balance equation. Fluids properties

are also assumed constant and viscous heating is neglected during these simulations

run. By incorporating these assumptions into the equations (3.8-3.10); the conti-

nuity, momentum and energy equations can be rewrite into the simplified from as

follows,

∇ · ~V = 0, (3.13)

∂~V

∂t
+∇ · (~V ~V ) = −1

ρ
∇P +∇2~V + ~gβ(T − T0), (3.14)

∂T

∂t
+∇ · (~V T ) = κ∇2T, (3.15)

where κ = λ/cpρ and ν = µ/ρ are representing thermal diffusivity and kinematic

viscosity of fluid, respectively, and the static pressure has been excluded from the

temperature equation. Temperature range for the Oberbeck-Boussinesq assumption

has been explored by Gray & Giorgini (1976). Authors claimed for water that the

dependency of β on T is the most restrictive assumptions and error are limited

within 10% for the case of water at 250C for maximum 40C temperature difference

during Oberbeck-Boussinesq assumption. Fountains are known as Boussinesq or

non-Boussinesq fountains based on the density different between incoming fluid from

fountain source and ambient fluid. The Oberbeck-Boussinesq assumption is valid

when the relative density ratio (∆ρ/ρa, where ∆ρ = ρ0 − ρa) is much lower than

one, i.e. ∆ρ/ρa << 1 and the fountain is called Boussinesq fountain. Crapper &

Baines (1977) suggested that Oberbeck-Boussinesq assumption is valid in positively

buoyant jet up to ∆ρ/ρa ≈ 0.05. Ai et al. (2006) reported that forced plum divided

into Boussinesq or non-Boussinesq plum at ∆ρ/ρa ≈ 0.05 . Baddour & Zhang (2009)

suggested in case of fountain that the Oberbeck-Boussinesq approximation is valid

until ∆ρ/ρa ≈ 0.003 . The present study about plane fountain into linearly stratified

considered that ∆ρ/ρa ≈ 0.0009 to ensure Oberbeck-Boussinesq approximation.

Finally the governing equations (3.13–3.15) can be expressed at Cartesian coor-

dinates as follows,
∂U

∂X
+
∂V

∂Y
+
∂W

∂Z
= 0, (3.16)

∂U

∂t
+
∂(UU)

∂X
+
∂(V U)

∂Y
+
∂(WU)

∂Z
= −1

ρ

∂P

∂X
+ ν

(
∂2U

∂X2
+
∂2U

∂Y 2
+
∂2U

∂Z2

)
, (3.17)

∂V

∂t
+
∂(UV )

∂X
+
∂(V V )

∂Y
+
∂(WV )

∂Z
= −1

ρ

∂P

∂Y
+ ν

(
∂2V

∂X2
+
∂2V

∂Y 2
+
∂2V

∂Z2

)
, (3.18)
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∂W

∂t
+
∂(UW )

∂X
+
∂(VW )

∂Y
+
∂(WW )

∂Z
= −1

ρ

∂P

∂Z
+ ν

(
∂2W

∂X2
+
∂2W

∂Y 2
+
∂2W

∂Z2

)
+gβ(T − Ta,Z), (3.19)

∂T

∂t
+
∂(UT )

∂X
+
∂(V T )

∂Y
+
∂(WT )

∂Z
= κ

(
∂2T

∂X2
+
∂2T

∂Y 2
+
∂2T

∂Z2

)
, (3.20)

where U , V , and W are the velocity components in the X, Y , and Z directions,

respectively.

In this present study, the physical system under consideration is a rectangular

container of the dimensions H × B × L (Height × Width × Length), containing

a Newtonian fluid initially rest with a constant temperature gradient (dTa,z/dZ=

constant), as sketched in Fig. 1.2. At the center of the bottom of the container,

a narrow slot with half-width of X0 in the Y direction functions as a source for a

plane fountain, with the remainder of the bottom being a rigid non-slip and adiabatic

boundary. The two vertical surface in the X − Z plan, at Y = ±B/2, are assumed

to be periodic whereas the two vertical surface in the Y − Z plane, at X = ±L/2,

are assumed to be outflows. The top surface in the X − Y plane, at Z = H, is

also assumed to be an outflow boundary condition. The origin of of the Cartesian

coordinate systems is at the center of the bottom, as shown in Fig. 1.2. The

gravitational force is acting along the negative Z direction. Initially, at time t = 0,

a stream of fluids at T0 (T0 < Ta,0) is injected upward direction with a uniform

velocity W0 into the container to initiate the plane fountain flow and this discharge

is maintained over the whole course of a specific DNS run.

Initial and boundary conditions are assumed for these three-dimensional DNS

simulation, as follows,

U = V = W = 0, T (Z) = Ta,0 + s(Ta,0 − T0)
Z

X0

at all X, Y, Z

when t < 0, and

U = V = 0, W = W0, T = T0 at Z = 0, −X0 ≤ X ≤ X0 and − B

2
≤ Y ≤ B

2
;

U = V = W = 0,
∂T

∂Z
= 0 at Z = 0, X0 ≤ X ≤ L

2
and − B

2
≤ Y ≤ B

2
;

U = V = W = 0,
∂T

∂Z
= 0 at Z = 0, −L

2
≤ X ≤ −X0 and − B

2
≤ Y ≤ B

2
;

∂U

∂Z
=
∂V

∂Z
=
∂W

∂Z
=
∂T

∂Z
= 0 at Z = H, −L

2
≤ X ≤ L

2
and − B

2
≤ Y ≤ B

2
;
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∂U

∂X
=
∂V

∂X
=
∂W

∂X
=
∂T

∂X
= 0 at X = ±L

2
, −B

2
≤ Y ≤ B

2
and 0 ≤ Z ≤ H;

U(Y =
B

2
) = U(Y = −B

2
), V (Y =

B

2
) = V (Y = −B

2
), W (Y =

B

2
) = W (Y = −B

2
),

T (Y =
B

2
) = T (Y = −B

2
) at − L

2
≤ X ≤ L

2
and 0 ≤ Z ≤ H

when t > 0.

It should be noted that the “outflows” boundary conditions are applied at the

lateral boundaries of the domain (in the X direction, i.e., at the locations X =

±L/2), which assumes a zero diffusion flux for all flow variables. Such a zero diffusion

flux condition applied by Fluent at “outflow” boundaries is approached physically

in fully-developed flows. The “outflow” boundaries can also be defined at physical

boundaries where the flow is not fully developed if the assumption of a zero diffusion

flux at the exit is expected to have a negligible impact on the flow solution. In all

DNS runs carried out in thesis, H, B and L were chosen to be sufficiently large to

ensure that outflow and periodic boundary conditions assumed have negligible effect

on the flow quantities of interest.

3.3 Numerical Method

The above governing equations for unsteady transitional plane fountains are

highly nonlinear, coupled partial differential equations, and analytical solutions are

not possible to be obtained. Therefore, a numerical method should be used to get

an approximate solution of this type of flows.

A considerable number of computational fluid dynamics (CFD) packages (i.e.

ANSYS Fluent, ANSYS CFX, PHOENICS, OPENFOAM, COMSOL Multiphysics,

FLOW 3D and STAR CD etc.) are available to obtain approximate solution through

numerical simulaiton. The most effective, widely used and popular one is ANSYS

FLUENT, due to owing powerful pre and post-processing capabilities and advanced

numerical techniques. In this thesis, all these three-dimensional Direct Numerical

Simulation (DNS) runs are carried out by using ANSYS FLUENT 13.

ANSYS FLUENT have two types of solvers, i.e. pressure-based solver and density-

based solver. Traditionally, pressure base solver was designed to solve incompressible

flow problem in generally associated with low speed, while density based solver was

developed for high-speed compressible flow. However, significant modifications have

been done in both methods to cover a wide range of flow from their traditional
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or original intent. In this thesis, pressure based solver has been selected to solve

these specific flow phenomena. In pressure base solver, the velocity field is obtained

from momentum equations and pressure field is extracted by solving a pressure or

pressure correction equation which is mainly achieved by manipulating continuity

and momentum equations. In ANSYS FLUENT for both solver, either pressure

base or density base, the control volume technique is used to solve these governing

equations (i.e. conservation of mass, momentum and energy equations). In control

volume approach, first whole domain is divided into tiny control volumes by creating

a computational mesh. This governing equations are then integrated on each indi-

vidual tiny control volume to construct a set of algebraic equations with respect to

discrete unknown quantities such as pressure, velocities and temperature. Finally,

these linearized and discretized algebraic equations are solved to update the values

of the dependents variable using Semi-Implicit Method for Pressure-Linked Equa-

tion (SIMPLE, see ANSYS FLUENT Theory Guide for details). The flow chart of

pressure based solver is shown in Fig. 3.1 .

Figure 3.1: Flow chart of pressure Based Segregated Algorithm.
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3.3.1 Discretization of the governing equations

ANSYS FLUENT uses a finite volume method (already mention before) to con-

struct a large set of algebraic equations, which can be solved numerically, from the

governing equations. Only basic mathematical formulation of this finite volume

method, used in ANSYS FLUENT-13, is briefly outlined here. More detailed de-

scriptions can be found in the user manual of the ANSYS FLUENT-13, or in some

popular books in CFD, such as Versteeg & Malalasekera (2007), Ferziger & Peric

(1999), Patanker (1980) or Fletcher (1991).

Discretization of these governing equations (i.e. continuity, momentum and en-

ergy equations) can be demonstrated most easily by considering a unique unsteady

conservation equation for transport of a scalar quantity φ, which can be written in

the following form,
∂(φ)

∂t
+ φ∇ · ~V = Γφ∇2φ+ Sφ, (3.21)

where ~V = (Uî + V ĵ + Wk̂) is a velocity vector, ~A is a surface area vector, Γφ

denotes diffusion coefficient for φ,∇φ indicates the gradient of φ equal to (∂φ/∂X )̂i+

(∂φ/∂Y )ĵ+(∂φ/∂Z)k̂ in 3–D and Sφ indicates the source of φ per unit volume. The

governing equations (i.e., 3.16 – 3.20) will be obtained by substituting a specific

values of φ,Γφ and Sφ in equation 3.21, which are listed in Table 3.1.

Table 3.1: Definition of φ, Γφ and Sφ in equation 3.21 for the corresponding simplified governing
equations mention in equations 3.16 – 3.20

.

Equations φ Γφ Sφ
Continuity equation (3.16) 1 0 0
X–momentum equation (3.17) U ν −(1/ρ)(∂P/∂X)
Y –momentum equation (3.18) V ν −(1/ρ)(∂P/∂Y )
Z–momentum equation (3.19) W ν −(1/ρ)(∂P/∂Z) + gβ(T − Ta,Z)
Energy equation (3.20) T k 0

In control volume approach, the scalar transport equation 3.21 is integrated over

the each tiny control volume, created by mesh generation. As an example a two-

dimensional computational mesh is presented in Fig. 3.2. Integral form of this

unique transport equation 3.21, can be written for arbitrary control volume V as

follows, ∫
V

∂(φ)

∂t
dV +

∫
V

(φ∇ · ~V )dV =

∫
V

(Γφ∇2φ)dV +

∫
V

SφdV. (3.22)
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Applying the Divergence theory, equation 3.22 can be rewrite as,∫
V

∂(φ)

∂t
dV +

∮
φ~V · d ~A =

∮
Γφ∇φ · d ~A+

∫
V

SφdV. (3.23)

Discretization of this integral scalar transport equation 3.23 on a given cell is obtain

as follows,

∂φ

∂t
V︸ ︷︷ ︸

Transient Term

+

Nface∑
f

~Vf φf · ~Af︸ ︷︷ ︸
Convection Term

=

Nface∑
f

Γφ∇φf · ~Af︸ ︷︷ ︸
Diffusion Term

+ SφV︸︷︷︸
Source Term

, (3.24)

where the number of faces enclosing the cell indicates with Nfaces, φf indicates

convected value of φ through face f (i.e. see Fig. 3.2), ~Vf · ~Af indicates volume flux

through the face ~Af , ∇φf denotes gradient of φ at facef and cell volume represents

by V .

In order to simply this discretization process of the governing equations, first

explain for the steady state and later on for the transient state. For steady state,

discretization equation (by excluding the transient term from equation 3.24) can be

written as follows,

Nface∑
f

~Vf φf · ~Af =

Nface∑
f

Γφ∇φf · ~Af + SφV. (3.25)

By default, the discrete value of scalar φ stores in cell center in ANSYS FLUENT,

shown in Fig. 3.2 . However, for convection term, in equation 3.25, the face values

of φf at face f (i.e. Fig. 3.2) are required to interpolate from the center value

using upwind scheme. In the upwind scheme, the face values φf are calculated from

the upstream cell value corresponding to the normal velocity in equation 3.25 to

overcome the instability of the central difference scheme. There are several upwind

schemes available in ANSYS FLUENT to discretize the convection term, like as first

order upwind, power law, second-order scheme and QUICK scheme. Out of these,

QUICK scheme was selected for third order accuracy to determine the face value

of φf at face f for the convection term in equation 3.25. The diffusion terms in

equation 3.25 are discritize with second-order central-difference scheme.

QUICK scheme is a higher order discretization scheme which considers a three-

point upstream weighted quadratic interpolation to determine face value φf . One-

dimensional control volume, shown in Fig. 3.3, is assumed to explain QUICK scheme
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Figure 3.2: Control volume in 2-D to discretize the governing equations.

and the value of φf at face f can be calculated according to the equation as follows

φf = θ[
Sg

Sf + Sg
φF +

Sf
Sf + Sg

φG] + (1− θ)[Se + 2Sf
Se + Sf

φF −
Sf

Se + Sf
φE]. (3.26)

The value of θ equal to 1 in the equation 3.26 is the results of central second-order

Figure 3.3: One-dimensional Control Volumes.

interpolation and second order upwind value yields while θ equal to zero. Setting

θ = 1/8 in equation 3.26 provides the traditional QUICK scheme. ANSYS FLUENT

implement solution dependent value of θ to avoid introducing new solution extrema.

For transient simulation, which is considered in this thesis, the governing equa-

tions should be descretized in respect to both, time and space. The spatial dis-

cretization for the time-dependent case is similar to the steady state case, which

already explained in case of steady state. Temporal discretization of transient term

is done through integration over a time step ∆t of the general discretization equa-

tion, which is obtained for steady state. The integration of the time-dependent terms

is straight forward, as explained below. To explain the temporal discretization, a

generic expression of the time progress of the quantity φ is assumed by,

∂φ

∂t
= F (φ), (3.27)
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where any special discretization, explained for steady state, is incorporated with

function F . Time derivative term in equation 3.27 is discretized using backward

difference with second order discretization and implicit time integration are used to

evaluate F (φ) at the future time, as follows,

3φn+1 − 4φn + φn−1

2∆t
= F (φn+1), (3.28)

where φ is a scalar quantity, n denotes value at the current time level (t), n + 1

denotes value at the next time level (t+ ∆t) and n−1 denotes value at the previous

time level (t − ∆t). Since φn+1 at a given cell is calculating using the values of

φn+1 of the surrounding cells through F (φn+1), that’s why it is known as implicit

time integration. An unconditional stable condition with respect to time step size is

achieved using fully implicit scheme. Before moving to the next time step the implicit

equation as follows, obtain by rearranging equation 3.28, is solved iteratively at each

time step until meet the convergence criteria,

φn+1 =
4

3
φn − 1

3
φn−1 +

2

3
∆tF (φn+1). (3.29)

Other common settings used for this thesis in Fluent are: The Green-Gauss Cell-

Based method to compute the gradients, Pressure Staggering Option (PRESTO!)

scheme to interpolate the pressure value at faces and the Semi-Implicit Method for

Pressure-Linked Equation (SIMPLE) scheme is used to couple velocity and pressure

corrections to enforce mass conservation and to obtain the pressure field.

3.3.2 Solution strategy

3.3.2.1 Linear equation solving

As stated above that FLUENT use finite volume approach. In Finite volume

approach, whole computational domain is divided into tiny control volumes where

the governing equations are integrated over these each control volume to construct

a set of algebraic equations for discrete unknown quantities. A general form of these

linearized algebraic equations for scalar quantity φ is assumed as follows,

a
P
φ =

∑
nb

anbφnb + b, (3.30)

here the subscript nb indicates neighbor cells, linearized coefficient of φ and φnb are

denoted by a
P

and anb respectively. The number of neighbor cells can get for each
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cell from the mesh topology, typically (except boundary cells) is equal to number of

face enclosing the cell.

Similar type of equation can be written for each tiny control volume which is

created by grid generation. As a result a set of algebraic equations is developed with

a sparse matrix. ANSYS FLUENT is using a point implicit (Gauss-Seidel) linear

equation solver in conjunction with an algebraic multigrid (AMG) method to solve

this linear system (i.e. see FLUENT theory guide for details).

3.3.2.2 Control of the iterative process

It is essential to control the variation of the scalar quantity of φ of the equations

set, during the iteration process done by ANSYS FLUENT due to the non-linearity

properties of the equations. This is typically attained by under-relaxation of vari-

ables (also known as explicit relaxation), which is changing φ values during the

each iteration through under-relaxation factor α. The new value of φ is calculated

through the old value φold and computed change ∆φ of φ , which is expressed by

simple equation as follows,

φ = φold + α∆φ. (3.31)

Under-relaxation factor α equal to 0.3 for pressure, 0.7 for velocities and 1 for the

rest of the quantities are assumed during this present study.

3.3.3 Convergence

An appropriate converging criterion for an iteration process is important since

it determines success and efficiency of the iteration process. Convergence criterion

plays a significant role in the numerical simulations of unsteady flows and turbulence

since errors from the previous time steps transfer to the consecutive iterations. Due

to inappropriate convergence criterion setting, numerical simulation results could be

deviate from the real physical flow.

Theoretically, numerical simulation with the finite precision computer should

be converged when residuals value reach to the zero value. In reality with actual

computer, the residual drops to some small value (round off) and later on becomes

constant (level out). Therefore residuals value should be higher than level out. In

the present numerical simulation, assume specific residual for each equation, velocity

components along X, Y and Z direction. Here, it compares calculated residual for
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each equation and components after each iteration with the sets residual values to

check the converging criterion. The iteration will continue until calculated residuals

drop lower than the set residual values.

The linear discretization equation of the conservation equation of general scalar

quantity φ at a cell P can be written as

a
P
φ
P

=
∑
nb

anbφnb + b. (3.32)

The global residual Rφ of the equation 3.32 is define as the sum of the imbalance

over all the computational cell P , which is expressed as follows,

Rφ =

∑
P

∣∣∣∑
nb

anbφnb + b− a
P
φ
P

∣∣∣∑
P

∣∣∣a
P
φ
P

∣∣∣ , (3.33)

where φ is replaced by U, V and W or T , respectively, for momentum and energy

equation.

Residual for continuity equation is defined as follow as,

Rc =

∑
P

∣∣rate of mass creation in cell P
∣∣

∑
max in first 5 iteration

|rate of mass creation in cell P |
. (3.34)

Here denominator is the biggest absolute value of the continuity residual along the

first five iterations.

ANSYS FLUENT permit to drop residual value up to twelve order magnitudes

(10−12) in the case of double precision. The effect of converging criteria on the

numerical result was tested extensively for different fountain flows (at different

conditions of Fr,Re and s) by changing converging limits of continuity equation,

energy equation and velocity components (U, V and W ). As an example, these

extensive converging criteria testing results is illustrated in Fig. 3.4, where figure

demonstrates the time series of dimensionless maximum fountain penetration height

(zm = Zm/X0) at three different set of converging criteria (which denotes with a, b

and c) for different Fr,Re and s conditions. It is clearly observed from the figure

that time series of zm is same for all these three set of converging criteria for different

Fr,Re and s conditions. Considering these extensive testing results, convergence
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Figure 3.4: Time series of dimensionless maximum penetration height zm(∼ Zm/X0, where Zm
known as maximum penetration height) of different fountains at (a) Fr = 10, Re = 100 & s = 0.1;
(b)Fr = 5, Re = 300 & s = 0.1; (c)Fr = 5, Re = 100 & s = 0.5 and (d)Fr = 2, Re = 100 & s = 0.1
at three different converging criteria a, b and c. Whereas, residual values set at a is equal to 10−4

for continuity equation; 10−4 for all U, V,W and 10−5 for energy equation; at b is equal to 10−5

for continuity equation; 10−5 for all U, V,W and 10−6 for energy equation; and at c is equal to
10−6 for continuity equation; 10−6 for all U, V,W and 10−8 for energy equation. And time made
dimensionless by X0/V0.

criterion are set equal to 10−5 for continuity equation; 10−5 for all U, V,W and 10−6

for energy equation.

3.4 Result validation and Model repeatability

In this thesis, a number of DNS simulations were carried out to characterise

the behaviour of plane fountain into the linearly stratified fluid. Unfortunately any

experimental data for these specific cases, considered in the thesis, are not available

to validate these DNS results. As a result, experimental results of Srinarayana et

al. (2010) (which was conducted for line fountain into the homogeneous ambient
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condition) is used to validate the DNS model for line fountain into homogeneous

environment.

Figure 3.5 depicts the numerically obtained time series of dimensionless max-

imum fountain penetration height, zm, for different values of Fr and Re in the

homogeneous cases, which are compared to the corresponding experimental result.

It is clearly observed from Fig. 3.5 that the experimental and DNS result are al-

most identical at fully developed stage, although some discrepancy is observed at

the developing stage. This discrepancy is mainly caused by the uncertainty of the

experimental setup and measurements. As the experiments are carried out under

real conditions, while the DNS simulations were done under ideal conditions, it is

quite normal to have differences, in particular at the early stage of the fountain de-

velopment as in a real experimental case, for example, the velocity at the fountain

source is also definitely not uniform and there is entrance effect, which naturally

leads to difference at the early stage. However, at the later stage, the velocity at

the source will be fully developed in the experimental case, which will be then quite

similar to the DNS case, so the results are very close. In addition in experiment, it is

always challenging to maintain homogeneous ambient condition, which is a mixture

of 99.75 % pure NaCl and fresh water, whereas in DNS this is straight forward and

this will also leads to some discrepancy between the experimental and DNS result.
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Figure 3.5: Comparison between the time series of dimensionless maximum fountain penetration
height, zm, of line fountain into the homogeneous environment obtained experimentally by Sri-
narayana et al. (2010) and numerically by the DNS of the present thesis: (a) Fr = 0.65 & Re = 46;
(b) Fr = 1 & Re = 100 and (c) Fr = 1.32 & Re = 22.

The repeatability of the DNS model run was also tested by conducting a set

of DNS simulations at fixed Fr,Re & s condition, whereas this specific condition

of Fr,Re & s was achieved for each DNS run with the values of these controlling

parameters were determined by changing the inlet conditions and the relevant fluid

properties based on equations 1.1, 1.2 and 1.5. Table 3.2 presents three different

set of values of W0, T0, X0 and g for the corresponding condition 1, condition 2 and
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Table 3.2: Key information for DNS run for the corresponding Condition 1, Condition 2 and
Condition 3.

Fr
(-)

Re
(-)

s
(-)

X0

(mm)
g

(m/s2)
W0

(m/s)
T0

(K)
S

(K/m)

Condition-1 5 100 0.1 3 23 0.02859 298.2822 57.257
Condition-2 5 100 0.1 2 50 0.04289 297.3333 133.337
Condition-3 5 100 0.1 3 25 0.02860 298.4197 52.676

condition 3 which are at the same values of Fr = 5, Re = 100 and s = 0.1, whereas

the values of ρa, ν, β and Ta,0 retain fixed to 996.6 kg/m3, 8.58×10−7 m2, 2.76×10−4

1/K and 300 K, respectively, for all these three DNS runs. Figure 3.6 depicts the

time series of zm of fountain at Fr = 5, Re = 100 and s = 0.1 for three different

conditions. It is clearly observed from Fig. 3.6 that zm is essentially the same

for all three conditions with the same values of Fr = 5, Re = 100 and s = 0.1.

Similar results are also obtained for other Fr,Re and s values, which confirm the

repeatability of the DNS model run.
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Figure 3.6: Time series of zm of the plane fountains at Fr = 5, Re = 100 and s = 0.1 for three
different model setup conditions.

3.5 Fluent setup

To solve these fountain flow problem numerically with commercial software

ANSYS FLUENT 13, a new FLUENT fluid flow analysis system was created from
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the ANSYS Workbench under Analysis Systems in the Toolbox by double-clicking

the Fluid Flow (FLUENT) option. This creates a new FLUENT based fluid flow

analysis system in the Project Schematic which composed with five different cells

(i.e. Geometry, Mesh, Setup, Solution and Results). Mesh was imported directly

into the Mesh cell, whereas a non-uniform mesh, i.e. details specification is given

in § 4.2, 5.2 and 6.2, was created by ICME CFD mesh generation software. By

double-clicking the Setup cell in the Project Schematic, ANSYS FLUENT 13 will be

started for the first time with displaying FLUENT Launcher. In Fluent Launcher

3D was selected by default under Dimension since imported mesh was in three-

dimensional, choose Double Precision under Options and select the Parallel (Local

Machine) option under Processing Option & write 8 in the box below the Number of

Processes to reduce simulation running time. By pressing the OK button in Fluent

Launcher a graphical user interface (GUI) of FLUENT will be launched, shown in

Fig. 3.7 with appropriate leveling. In GUI, a navigation pane, located on the left

side, contains a list of items (i.e. Problem Setup, Solution and Results). When any

items at navigation pane under Problem Setup or Solution or Results is highlighted,

a task page (i.e. see Fig. 3.7) of the corresponding item will be displayed at the

right side of the navigation pane. A dialog box, separate window, of any item at the

task page will be displayed when corresponding item in the task page click double.

3.5.1 Problem Setup

3.5.1.1 General

Select General under Problem Setup in the navigation pane, which creates Gen-

eral task page at the right side, to execute the mesh related activities and to select

solver. In the General task page under the Mesh item, four options (i.e. Scale. . . ,

Check, Report Quality and Display. . . ) are available. Check option will report the

result in the console like as in Fig. 3.8, where it should be ensured that minimum

volume is not negative since calculation in ANSYS FLUENT cannot begin in this

case. Report Quality option will display mesh quality in the console. Scale. . . op-

tion is used to scale the imported domain into the lower or higher dimension if

required. For these simulations, meshes were created in the same dimension as re-

quired so that Scale option did not require to use. Display option is used to display

the imported mesh or any plane or any edge as a whole or partially, for details see

FLUENT user guide. Below the Solver option in the General task page Pressure-

Based under Type, Absolute under Velocity Formulation and Transient under Time
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Figure 3.7: FLUENT Graphical user interface (GUI).

were selected to perform these simulations. Put a tick mark on the Gravity and

set the value of gravitational acceleration along the Z axis. Units. . . option, at

the bottom of the General task page, used to change mesh dimension unit, were

not used during these simulation run since meshes were created in the same unit as

required for these simulation run.

3.5.1.2 Models

A number of modeling options are available in FLUENT 13. A list of models

(i.e. Multiphase, Energy and Viscous etc.) can see in the task page when Models in

navigation pane is highlighted, see Fig 3.9. An Energy dialog box will be open by

double-clicking on the Energy item under the Models in task page and put a tick

mark on the Energy Equation. After that press the OK button on the Energy dialog

box. In the next step, double click on the Viscous –Laminar item under Models in

the task page which will open a Viscous Models dialog box. A number of models
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Figure 3.8: Check option output in the console.

are observed in the Viscous Model dialog box. Out of these, select Laminar for DNS

simulation and press than the OK button.

3.5.1.3 Material

Specific fluid properties, used for these simulation runs, was defined through

Materials task page, shown in Fig. 3.10. A Create/Edit Material dialog box, open

by double-clicking on the Fluid item under Materials at Material task page, is used

to specify fluid properties. In Create/Edit Material dialog box, write the name of

fluid as water under Name. In §3.2, it is already mentioned that Boussinesq approxi-

mation was assumed during these simulation runs. Due to that under the Properties

list, the Density changed to Boussinesq from the drop-down list instead of constant

which leads to adding an extra fluid property, Thermal Expansion Coefficient, item

at the bottom of Properties lists. All other fluid properties, i.e. Specific Heat,

Thermal Conductivity, Viscosity and Thermal Expansion Coefficient, keep constant

instead of Density and enter the specific constant values for each of these properties

to get specific Fr,Re and s condition. After that press the Change/Create button at

the bottom of the Create/Edit Material dialog box and then a Question dialog box

will appear and selected the NO button (i.e. demonstrated with Fig. 3.10 ). Fluid

properties can also import from FLUENT Database. . . button, which is located on

the right side of the Create/Edit Material dialog box.
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Figure 3.9: Models setup in FLUENT.

3.5.1.4 Cell Zone Conditions

An appropriate fluid, define at Materials, should be assigned into whole domain

through the Cell Zone Conditions task page, which obtained when highlight Cell

Zone Conditions item in the navigation pane, to obtain an accurate result from the

simulation. In Cell Zone Condition task page, shown in Fig. 3.11, Fluid dialog



Methodologies 65

Figure 3.10: Fluid properties define by Material in FLUENT.

box will be appeared by double-clicking fluid under Zone. In the Fluid dialog box,

select right fluid, define at Material, from the Material Name drop-down list and

click the OK button. In the Operating Conditions dialog box, open by pressing

Operation Condition... button at the bottom of the Cell Zone Conditions task

page, set Operation Pressure 101325 pascal under Pressure and define Operating

Temperature 300k under Boussinesq Parameters. Other settings in the Fluid and

Operating Conditions dialog box keep the default setting, shown in Fig. 3.11.

3.5.1.5 Boundary Conditions

Appropriate boundary conditions, define at §3.2, plays an important role in any

numerical simulation to obtain accurate numerical result. In Boundary Conditions

task page, shown in Fig. 3.12, a list of boundaries, define during mesh generation,

shown under Zone. Highlight each boundary names one by one under Zone and select
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Figure 3.11: Assign working fluid and operating condition into the domain by Cell Zone Condi-
tions.

an accurate boundary condition, mention in § 3.2, from the drop-down list under

Type . A dialog box of the corresponding boundary type will appear by pressing

on the Edit button to define different properties of this boundary condition. Set an

appropriate value in the boundary condition dialog box to achieve specific Fr,Re

and s. As an example, Velocity Inlet dialog box is shown in Fig. 3.12, where can

enter Velocity Magnitude under Momentum option and temperature under Thermal

option, see ANSYS FLUENT user’s guide for more details. A periodic boundary

was created in FLUENT by using following make-periodic text command:

grid>modify-zones>make-periodic

Periodic zone [ () ] periodiczoneID

Shadow zone [ () ] shadowzoneID

Rotational periodic? (if no, translational) [ yes ] yes

Create periodic zones? [ yes ] yes

This periodic text command will create a periodic boundary by deleting shadow

zone from the boundaries list under Zone, shown in Fig. 3.12, and properties of

periodic boundary condition can be set through Periodic Condition. . . button at
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the bottom of Fig. 3.12, which option only available once when periodic boundary

creates through the text command. For more details see ANSYS FLUENT user’s

guide.

Figure 3.12: Boundary conditions define in FLUENT
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3.5.2 Solution

3.5.2.1 Solution Method

For transient state simulation, governing equations need to be discretized in

both respect of time and space, as mention at §3.2. A brief description of these

discretization methods is already given at §3.2. This specific setting was achieved in

FLUENT from the Solution Methods task page . A SIMPLE scheme from the drop-

downward list of Scheme under Pressure-Velocity Coupling was chosen for these

simulation runs. Under Spatial Discretization , Green-Gauss Cell Based method

under Gradient, PRESTO! under Pressure and QUICK under both, Momentum and

Energy, was chosen from the corresponding drop-down list. Second Order Implicit

method was also picked for the transient term under Transient Formulation, located

at the bottom , from the drop-down list.

3.5.2.2 Solution Control

It already mention at § 3.3.2.2 that it is essential to control the variation of

scalar quantity in equations set during the iteration process due to the non-linear

properties of these equations. This has been achieved by under relaxation factor,

α, which can be defined in FLUENT at Solution Control task page . In Solution

Control task page, keep the default value of α for all quantities, where the default

value of α is 0.3 for pressure, 0.7 for velocities and 1 for the rest of the quantities.

3.5.2.3 Monitors

Monitors task page have four different monitors, i.e. Residuals, Statistics and

Force Monitor; Surface Monitors; Volume Monitors and Convergence monitor. The

importance of the converging criterion for an iteration process discussed at §3.3.3.

Converging criterion set in FLUENT 13 based on the residual value by Monitors

task page. A Residual Monitors dialog box will appear when Residuals- Print, Plot

option under Residuals, Statistics and Force Monitor is highlighted and press the

Edit.. button. Enter corresponding Residual value under Equations as mention in

§3.3.3. Remaining set up keep default value .

Surface Monitors, shown in Fig. 3.13, in Monitor task page, is an important

feature for result analysis of these simulations. With this command, it is possible

to save any desired data in every time step or each iteration. To analyze fountain
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penetration height or velocity variation at a specific location, this command was used

in this study. Figure 3.13 demonstrate the procedure of using this command. To

create a new surface monitor press on the Create. . . button under Surface Monitors

and then a Surface Monitor dialog box will appear like as Fig. 3.13. In Surface

Monitor dialog box, write the name of the file under Name and put a tick mark in

Print to Console, Plot and Write under Options. X axis was changed to Time Step

and put 1 & Time Step under the Get Data Every from the drop-down list. Report

Type and Field Variable was changed according to the desired output result. As an

example, Vertex Maximum under Report Type and Mesh. . . & Z-Coordinate under

Field Variable was selected to obtain the time series of fountain penetration height,

however, Field Variable change to Velocity & the desired direction for the velocity

time series. Finally, need to highlight the specific surface, where properties are

needed to be observed, under Surfaces. Then press the OK button which will make

a surface at Surface Monitors task page. By Edit.. or Delete button, can modify

or delete the created surface. Up to maximum twenty surface monitors could be

created by this option. These surface monitors were saved in the computer, which

was analyzed to characterize the fountain flow.

3.5.2.4 Solution Initialize

Solution should be initialized in FLUENT before calculation start. Solution

initialization was done by pressing Initialize button at the bottom of the Solution

Initialization task page, shown in Fig. 3.14. It was assumed for these simulations

that initially environmental fluid is linearly stratified. This initial stratification

was assigned by Patch. . . option where a Patch dialog box appeared by pressing

the Patch. . . button. In the Patch dialog box select Temperature under Variable,

fluid under Zone, put a tick mark in the Use Field Function and highlight custom-

function-0 under Field Function. This custom-function-0 defines linear stratification

of the ambient fluid, which was obtained from the Custom Field Function Calcu-

lation dialog box. Custom Field Function Calculation dialog box will be open by

clicking Custom field function, which is located at the drop-down list of the Define

item at the menu bar.

3.5.2.5 Calculation Activities

Calculation Activities gives the option to save the simulation data file. Figure

3.15 depicts that a Autosave dialog box will be appeared by clicking on the Edit. . .



70 Chapter 3

Figure 3.13: Surface Monitors set up in FLUENT.

button below the Autosave Every (Time steps) item. Set 50 under Autosave Every

(Time steps) to save data file in every 50 time step, which can be changed to any

number according to the desire.

3.5.2.6 Run Calculation

Finally with Calculation task page , calculation was started to solve the problem

numerically by FLUENT based on the previous setting. In Calculation task page,

enter time step under Time Step Size (s) and simulation running time by number of
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Figure 3.14: Solution initialization and linear stratification condition set up of initial ambient
fluid in FLUENT.

time steps under Number of Time Steps. Set maximum number of iteration for each

time step under the Max Iteration/Time Step, which should be higher enough to

converge the simulation. At the end, press Calculate button to start the simulation.

3.5.3 Result

FLUENT have most powerful tool to analyse the numerical results by Results

option in the navigation pane. Results option allow to draw different type of con-

tour, graph, vectors etc. Figure 3.16 demonstrate, as an example, how to draw a

temperature contour on a specific plane. A Contours dialog box will be appeared

when highlight Graphics and Animations option under Results at navigation pane

and double click on the Contours under Graphics in the task page. Select Filled,

Node Values, Global Range and Auto Range under Options in the Contours dialog

box. Set Temperature & Static Temperature from the drop-list under the Contours

of to get the temperature contour and select a specific surface under Surface. If

the desired surface is not available under the Surface option, a new surface can be
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Figure 3.15: Data file save by Calculation Activities in FLUENT.

created from the New Surface option. After that press Display button on Fig. 3.16

to display the temperature contour on specific surface at graphics windows, which

can be modified by Colormap... button. Colormap dialog box, see Fig. 3.16, have

option to show all label or skip some label by Labels option. Colormap size can

be vary between 1-100 by Colormap Size option and different type of color scheme

can be choose for the contour from the drop-list of the Currently Define option and

Number Format option allow to change numbering of the corresponding color map.

Finally, this contour can be save by Save Picture dialog box (i.e. see the graphic

tool bar). Save picture dialog box, shown in Fig. 3.16, have many option to save

contour at different format, orientation, color scheme and resolution. See FLUENT

user guide for more details for result analysis tools.

FLUENT can produce an accurate XY plot along the surfaces or files using

simulation result. A Solution XY Plot dialog box will appear by double-clicking on

XY Plot under Plots option at Plots task page, shown in Fig. 3.18. Under Options

check Node Values, Position on X axis or Position on Y axis. To save the data

file also need to check Write File as well as. Plot direction needs to define under

Plot Direction option by entering the appropriate value in X, Y and Z box. The

desired item should select under Y Axis Function and X Axis Function from the
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Figure 3.16: Contour drawing in FLUENT.

Figure 3.17: Saving contour in FLUENT.

corresponding drop-down list. Finally, select the specific surface under Surfaces and

press on the Plot button to plot the graph, however, Plot option will be replaced by

Write button if the Write to File option is checked under Options and by pressing

the Write button allow to save the data file instead of plotting. In addition, FFT
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analysis can be done with FFT option under Plots at Plots task page, see FLUENT

user guide for details.

Figure 3.18: Plots task page and Solution XY Plot dialog box in FLUENT.

It is observed from the previous paragraphs that different types of surface are

required to generate among the domain to analysis the simulation result. These

surfaces can create in a different way from Surface option at the menu bar. A

typical example of the iso-surface generation in FLUENT is shown in Fig. 3.19.

First select appropriate parameter under the Surface of Constant from the drop-

down list and then press the Compute button which will display a maximum and

minimum value of the corresponding parameter under Min and Max box. Enter

the iso-value of that corresponding parameter under Iso-Value box, which should be

within the maximum and minimum value, and write down the name of the surface

under New Surface Name box. Now, press the Create button which creates an iso-

surface corresponding to that fixed value of that parameter among the whole domain

and name of that surface will appear under the From Surface. On the other hand,

if any surface is highlighted under From Surface then iso-surface only create in that

region instead of the whole domain.

3.6 Summary

In this chapter, the governing equations with initial and boundary conditions is

introduced for the transitional plane fountains into linearly stratified ambient fluid.
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Figure 3.19: Iso-Surface dialog box in FLUENT.

The Navier-Stokes equation and energy equations were simplified with Boussinequ

assumption. A brief description is presented about ANSYS Fluent 13 to solve these

governing equations using control volume approach. The governing equations were

discretized on a non-uniform rectangular mesh using three-dimensional finite volume

method, with a standard 2nd-order central difference scheme used for the viscous

and divergence terms and the 3rd-order QUICK scheme for the advection terms.

The 2nd-order Adams–Bashforth and Crank-Nicolson schemes were used for the

time integration of the advective and diffusive terms, respectively. The PRESTO

(PREssureSTaggering Option) scheme was used for the pressure gradient.





Chapter 4

Asymmetric transitional plane

fountains at a high Froude number

(Fr = 10)

4.1 Introduction

In this chapter, a series of three-dimensional DNS runs were carried out for

transitional plane fountains in linearly stratified fluids over the ranges of 25 ≤ Re ≤
300 and 0 ≤ s ≤ 0.5, all at a fixed, high Froude number of Fr = 10. These

transitional plane fountains were found to demonstrate asymmetric behavior. The

DNS results were used to illustrate and quantify the onset of asymmetric behavior

and the maximum fountain penetration height, and particularly the effects of Re

and s on these bulk fountain flow behavior parameters.

The major results presented in this chapter were reported in the following pub-

lications:

1. Inam, M. I., Lin, W., Armfield, S. W. & He, Y. 2015 Asymmetry and

penetration of transitional plane fountains in stratified fluid. Int. J. Heat Mass

Transfer 90, 1125–1142.

2. Inam, M. I., Lin, W., Armfield, S. W. & He, Y. 2014 Asymmetric

transition for high Froude number plane fountains in linearly stratified fluids.

in Proceedings of the 15th International Heat Transfer Conference (IHTC-15),

10-15 August, 2014, Kyoto, Japan, Paper ID: IHTC15-8812.
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3. Inam, M. I., Lin, W., Armfield, S. W. & He, Y. 2014 Penetration height

and onset of asymmetric behaviour of transitional plane fountains in linearly

stratified fluids. in Proceedings of the 19th Australasian Fluid Mechanics Con-

ference (19AFMC), 8-11 December 2014, Melbourne, Australia, Paper ID: 427.

The remainder of this chapter is organized as follows. In § 4.2, the details of

the DNS runs carried out in this chapter are presented, along with the mesh and

time-step independence testing results. The asymmetric transition of the Fr = 10

plane fountains over the ranges of 25 ≤ Re ≤ 300 and 0 ≤ s ≤ 0.5 is described

and discussed in § 4.3, both qualitatively and quantitatively, with the DNS results.

In § 4.4, the initial and time-averaged maximum fountain penetration heights, as

well as the time for the fountain to attain the initial maximum fountain height and

the variation of the maximum fountain height along the fountain source slot are

analysed, and the effects of Re and s on these parameters are quantified with the

DNS results. Finally, the major conclusions of this chapter are drawn in § 4.5.

4.2 DNS runs and mesh and time-step independence testing

There are totally 30 DNS runs carried out in this chapter, with the key infor-

mation about these runs listed in Table 4.1. The fluid used in the DNS runs is

water, with the density ρa = 996.6 kg/m3, the kinematic viscosity ν = 8.58 × 10−7

m2/s, and the volume expansion coefficient β = 2.76×10−4 1/K, respectively, at the

nominal temperature of Ta,0 = 300 K. These thermal property values were obtained

by interpolating the data presented in Table A-3 of Cengel & Cimbala (2006), and

were used for all DNS runs. The maximum value of (Ta,0 − T0), among all DNS

runs, is (300 - 298.0428) = 1.9572 K, which is small enough to ensure that the

Oberbeck-Boussinesq approximation is valid. For all these DNS runs, Fr is fixed at

10, Ta,0 is fixed at 300 K, the time step is fixed at 0.025 s, but Re and s vary in the

ranges of 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, respectively. In addition, the DNS runs

with s = 0 (i.e., homogeneous fluid cases) were also carried out for the purpose of

comparison.

The quality of mesh plays a significant role in the accuracy and stability of nu-

merical simulation. To capture the actual flow details, a fine mesh is required in the

region where flow variables have higher gradients. However, comparatively coarse

mesh can be used in the regions of flow where flow variables are not changing signif-

icantly. Flow variables in fountains in linearly-stratified environment, as considered
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in this thesis, have comparatively higher gradients in the region of the fountains core

in which the downward flow interacts with the upward flow and the ambient fluid,

whereas in the remaining regions flow variables have comparatively much smaller

gradients. As a result, a uniform and finer rectangular mesh was used in the foun-

tain core, i.e., in the region of –Xu ≤ X ≤ Xu, 0 ≤ Z ≤ Zu and −Yu ≤ Y ≤ Yu,

where Xu, Yu and Zu denote the widths of the uniform mesh along the X, Y and Z

directions, respectively. A coarser and non-uniform rectangular mesh with varying

expansion ratio was used in the remaining regions.

Extensive mesh and time-step independence testing was carried out to ensure

accuracy. The results of one example of such a test are presented in Fig. 4.1 for the

case of Fr = 10, Re = 50 and s = 0.1, which shows the time series of the maximum

fountain height (Zm) and the horizontal temperature and vertical velocity profiles

at the height of Z = 0.015 m on the vertical plane at Y = 0 m. Zm was determined

as the vertical distance from the bottom to the vertex point of the iso-surface at

the temperature of T (Z) = T0 − 1%(Ta,0 − T0) within the whole computational

domain. These results were obtained numerically with three different meshes, with

the coarse mesh having 2.39 million cells, the basic mesh having 3.72 million cells

and the fine mesh having 5.27 million cells, and at three different time steps of 0.025

s, 0.035 s, and 0.05 s, respectively. For all three meshes, the widths of the fine and

uniform mesh are Xu=0.03 m, Yu=0.3 m and Zu=0.09 m, respectively. However,

the grid sizes of the fine and uniform mesh for the three meshes are different, with

1.50mm× 2.85mm× 1.50mm for the coarse mesh, 1.00mm× 2.50mm× 1.10mm for

the basic mesh, and 0.75mm × 2.30mm × 0.85mm for the fine mesh, respectively.

The structures of the relatively coarse mesh in the remaining region for the three

meshed are quite similar, although with different expansion ratios. It is clear from

Fig. 4.1(a)-(c), where a comparison of the results obtained with the three meshes,

all at the same time-step of 0.025 s, is presented, that the results obtained with the

basic mesh and the fine mesh are essentially the same and only the results produced

with the coarse mesh have some noticeable deviations. Similarly, a comparison

of the results obtained with three time steps, all with the same basic mesh (3.72

million cells), as shown in Fig. 4.1(d)-(f), shows that the differences are very small.

Hence it is believed that the combination of the basic mesh with 3.72 million cells

and the time step at 0.025 s produces sufficiently accurate solutions and is the best

compromise between the accuracy and the time and computing resources among the

meshes and time steps considered, and is then chosen as the main mesh and time

step for the numerical simulations at small Re (Re ≤ 50).
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Figure 4.1: The time series of the maximum fountain height (Zm) and the horizontal temperatue
and vertical velocity profiles at t = 10 s at the height Z = 0.015 m on the vertical plane at Y = 0
m, which were obtained numerically for the case of Fr = 10, Re = 50 and s = 0.1 with three
different meshes (left column, all at the same time step of 0.025 s) and at three different time steps
(right column, all with the same basic mesh of 3.72 million cells).

For larger Re cases, the mesh and time dependency test results showed that

meshes with much larger numbers of grids, ranging from 4.45 to 6.67 million, as

presented in Table4.1, all at the time step 0.025 s, are needed to produce sufficiently

accurate simulation. The numbers of grids increases with Re at higher Re values as

a result of using larger domain heights. In these simulation runs, the use of larger

slot widths (2X0) at higher Re values leads to larger fountain heights which, in

turn, require larger domain heights. In additions, fountain penetration height also

increases at a higher Re value, as will be shown subsequently. Larger slot widths

are also required for larger s values at higher Re values to ensure the validity of

the Oberbeck-Boussinesq approximation, based on the definition of Fr, Re and s,

(i.e.(1.1), (1.2) and (1.5)). From the mesh dependency results for fountains at higher

Re values, it is found that the same grid sizes used for the fine and uniform meshing

region (which is equal equal to 1 mm, 2.5 mm and 1.1 mm along the X, Y and Z

direction, respectively) and at coarse meshing region can produce sufficient accurate

simulation result. Though the width of the of uniform mesh is required to increase
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Table 4.1: Key information about the DNS runs.

Re s X0 W0 T0 S H ×B × L Grids

(-) (-) (m) (m/s) (K) (K/m) (m×m×m) (million)

25 0.0 0.002 0.01072 299.7876 0.0 0.215×0.3×0.8 3.72

25 0.1 0.002 0.01072 299.7876 10.6 0.172×0.3×0.8 3.72

25 0.2 0.002 0.01072 299.7876 21.2 0.172×0.3×0.8 3.72

25 0.3 0.002 0.01072 299.7876 31.9 0.172×0.3×0.8 3.72

25 0.4 0.002 0.01072 299.7876 42.5 0.172×0.3×0.8 3.72

25 0.5 0.002 0.01072 299.7876 53.1 0.172×0.3×0.8 3.72

50 0.0 0.002 0.02145 299.1505 0.0 0.215×0.3×0.8 3.72

50 0.1 0.002 0.02145 299.1505 42.5 0.172×0.3×0.8 3.72

50 0.2 0.002 0.02145 299.1505 85.0 0.172×0.3×0.8 3.72

50 0.3 0.002 0.02145 299.1505 127.4 0.172×0.3×0.8 3.72

50 0.4 0.002 0.02145 299.1505 169.9 0.172×0.3×0.8 3.72

50 0.5 0.002 0.02145 299.1505 212.4 0.172×0.3×0.8 3.72

100 0.0 0.003 0.02860 298.9932 0.0 0.325×0.3×0.8 5.77

100 0.1 0.003 0.02860 298.9932 33.6 0.260×0.3×0.8 5.77

100 0.2 0.003 0.02860 298.9932 67.1 0.260×0.3×0.8 5.77

100 0.3 0.003 0.02860 298.9932 100.7 0.260×0.3×0.8 5.77

100 0.4 0.003 0.02860 298.9932 134.2 0.260×0.3×0.8 5.77

100 0.5 0.003 0.02860 298.9932 167.8 0.260×0.3×0.8 5.77

200 0.0 0.005 0.03432 299.1301 0.0 0.535×0.3×0.8 6.67

200 0.1 0.005 0.03432 299.1301 17.4 0.430×0.3×0.8 6.67

200 0.2 0.005 0.03432 299.1301 34.8 0.430×0.3×0.8 6.67

200 0.3 0.005 0.03432 299.1301 52.2 0.430×0.3×0.8 6.67

200 0.4 0.005 0.03432 299.1301 69.6 0.430×0.3×0.8 6.67

200 0.5 0.005 0.03432 299.1301 87.0 0.430×0.3×0.8 6.67

300 0.0 0.006 0.05148 298.0428 0.0 0.645×0.1×0.8 4.45

300 0.1 0.005 0.05148 298.0428 39.1 0.430×0.3×0.8 6.67

300 0.2 0.006 0.04290 298.8673 37.8 0.516×0.1×0.8 4.45

300 0.3 0.006 0.04290 298.8673 56.6 0.516×0.1×0.8 4.45

300 0.4 0.006 0.04290 298.8673 75.5 0.516×0.1×0.8 4.45

300 0.5 0.006 0.04290 298.8673 94.4 0.516×0.1×0.8 4.45

at higher Re as a result of fountains having higher fountains height and width at

higher Re. The width of uniform mesh (Xu, Yu & Zu) change to (40 mm, 300 mm &

120 mm), (45 mm, 300 mm & 130 mm) and (140 mm, 100 mm & 230 mm) at higher

Re equal to 100, 200 and 300 respectively. Mesh and time independency results is

presented at Fig. 4.2 for higher Re values equal 100, 200 and 300; all at Fr = 10

and s = 0.2; for three different meshes and three different time steps (0.025 s, 0.035
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s and 0.05 s). These three different meshes are coarse, basic and fine mesh with

(3.71, 5.77 & 8.03 million cell), (5.72, 6.67 & 11.50 million cells) and (2.64, 4.45 &

6.28 million cell) for Re equal to 100, 200 and 300, respectively. Figure 4.2 depicts

the horizontal temperature profile for three different meshes and three different time

steps for three different Re conditions equal to 100, 200 and 300; all at Fr = 10

and s = 0.2. It is clearly seen from this figure that variation between the horizontal

temperature profiles is negligible, indicating basic mesh with 5.77, 6.67 and 4.45

million cell for Re equal to 100, 200 and 300, respectively, can produce sufficient

accurate solutions with the time step 0.025s.
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Figure 4.2: Horizontal temperature profile at t = 10 s at height Z = 0.03 m on the vertical plane
for the cases Re equal to 100, 200 and 300; all at Fr = 10 and s = 0.2; with three different meshes
(left column, all at same time step 0.025 s) and at three different time steps (right column; use
basic mesh with 5.77, 6.67 and 4.45 million cell for Re equal to100, 200 and 300, respectively).
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In additions, the dimensions of the computational domain, H,B and L were

chosen sufficiently large to ensure negligible effectd of the boundary conditions on

the flow quantities of interest. The domain height, H, which is higher at a larger

Re (see Table 4.1), was always more than three times larger than the maximum

fountain penetration height for all Re and s conditions. The domain length L was

chosen to be 800 mm, whereas the domain width B = 300 mm was used over the

range 25 ≤ Re ≤ 200 but B = 100 mm was used for higher Re cases to minimize

the computational time. The effect of the domain size on computational results is

present in Fig. 4.3, which depicts the time series of the maximum penetration height,

Zm, for the case Fr = 10, Re = 300 and s = 0.2 with three different domain sizes:

H×B×L = 516mm×100mm×800mm, H×B×L = 600mm×200mm×1000mm

and H × B × L = 700mm × 300mm × 1200mm. The meshes were generated on

these three domains in the similar pattern as that described earlier. Figure 4.3

clearly shows that the domain with the dimensions 516 mm × 100 mm × 800 mm

can produce sufficient accurate simulation results with a negligible boundary effect

on the flow quantities of interest. For a typical run, it usually took 10 ∼ 18 days

on a Dell OptiPlex (TM) desktop with processor “Intel(R) Core(TM) i7–3770 CPU

3.40GHz”, RAM 32.0 GB and operation system 64–bit, which usually took one week

to finish one simulation.

Figure 4.3: Time series of the maximum fountain penetration height (Zm) for the case Fr =
10, Re = 300 and s = 0.2 for three different domain size H × B × L equal to 516 mm × 100 mm
× 800 mm , 600 mm × 200 mm × 1000 mm and 700 mm × 300 mm ×1200 mm.
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4.3 Asymmetric transition

4.3.1 Qualitative observations

4.3.1.1 Evolution of transient temperature and velocity fields

Figure 4.4 presents the transient temperature contours of a typical plane fountain

with Fr = 10, Re = 100 and s = 0.1 at the instants of τ = 25, 120, 145, 165, 260,

and 570, respectively, on three specific planes in each of the X, Y , and Z directions,

where τ is the dimensionless time, made dimensionless by X0/W0. The results show

that at Y = 0 in the X − Z plane the fountain flow maintains symmetry in the

X−Z plane with respect to X = 0 at its early development stage, until at τ ≈ 165,

when it starts to become asymmetric and unstable, leading to flapping motions

(i.e., the horizontal oscillations) around X = 0 in the X direction. The transition

from a symmetric flow to an asymmetric one in the Y direction in the Y − Z plane

occurs at a later time, as the temperature contours at X = 0 in the Y − Z plane

demonstrate that the fountain height is basically the same along the Y direction for

each time instant until τ ≈ 260, when the height is observed to fluctuate along the Y

direction, indicating that the symmetry has collapsed and the fountain has become

asymmetric in the Y direction. This is also true in the horizontal, X − Y plane, as

the temperature contours at Z = 10X0 in the X − Y plane show that the fountain

width at this specific height is essentially the same in the X direction for each time

instant until τ ≈ 260, when the width varies considerably along the X direction,

confirming that the symmetry collapses and the fountain becomes asymmetric in the

Y direction of the X − Y plane. The behavior of the fountain flow becomes quasi-

steady at the later development stage because the time-averaged behavior essentially

attains a steady state, although the instantaneous behaviour still changes with time.

The onset of asymmetry and unsteady behaviour, observed above in the tem-

perature fields, is also exhibited by the corresponding transient velocity contours,

as shown in Fig. 4.5 where the transient contours of U/W0 and V/W0 at X = 0 in

the Y − Z plane are presented. When a plane fountain maintains symmetry with

respect to X = 0 in the X − Z plane, U should be zero everywhere at X = 0 in

the Y − Z plane. Any non-zero U value on this plane will indicate asymmetric

behaviour in the X direction. Similarly, when a plane fountain maintains symmetry

in the Y direction on the Y − Z plane, V should be zero everywhere at X = 0 in

the Y −Z plane. Any non-zero V on this plane will indicate asymmetric behaviour

in the Y direction. From Fig. 4.5, it is clearly seen that when τ ≤ 120, both U/W0
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Figure 4.4: Evolution of transient temperature contours of the plane fountain with Fr = 10,
Re = 100 and s = 0.1 at Y = 0 in the X − Z plane (top row), X = 0 in the Y − Z plane (middle
row), and Z = 10X0 in the X − Y plane (bottom row), respectively. The temperature contours in
each subfigure are normalized with [T (Z)− T0]/(Ta,Z=60X0 − T0).

and V/W0 are zero, indicating that symmetry is maintained both in the X direc-

tion in the X − Z plane and in the Y direction in the Y − Z plane. At τ ≈ 145,

significant asymmetric features are observed in the X direction in the X − Z plane

and the extent of the asymmetry increases when τ is further increased. At τ ≈ 165,

marginal asymmetric features are shown in the Y direction in the Y − Z plane and

the extent of the asymmetry also increases for large τ , although the magnitude of

the asymmetry in the Y direction is much smaller than that in the X direction at

the corresponding time instants.

Figure 4.5: Evolution of transient contours of U/W0 (top row) and V/W0 (bottom row), both
in percentage, at X = 0 in the Y − Z plane for the plane fountain with Fr = 10, Re = 100 and
s = 0.1.

4.3.1.2 Effect of Re

The effect of Re on the asymmetric and unsteady behaviour of plane fountains

is demonstrated in Fig. 4.6 where representative temperature contours at the quasi-

steady state on three individual planes with Re varying in the range 25 ≤ Re ≤ 300,

all with Fr = 10 and s = 0.1 are shown. The results show that at the quasi-steady

state all these plane fountains become asymmetric and unsteady. The fountain flow

in the X − Z plane flaps in the X direction and the fountain heights at higher Re

values (200 and 300) are considerably larger than those at smaller Re values. It
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is also observed that the extent of entrainment increases with Re. In the Y − Z

plane, the increase of Re leads to larger fluctuations of the fountain height along

the Y direction. Similarly, the increase in Re results in a larger fountain width and

increased fluctuation of the width in the X − Y plane as well.

Figure 4.6: Representative temperature contours of plane fountains at the quasi-steady state for
different Re values with Fr = 10 and s = 0.1 at Y = 0 in the X − Z plane (top row), X = 0 in
the Y − Z plane (middle row), and Z = 0.5Zm,i in the X − Y plane (bottom row), respectively,
where Zm,i is the initial maximum fountain height.

Figure 4.7 presents the corresponding representative contours of U/W0 and V/W0

at the quasi-steady stage at X = 0 in the Y −Z plane for the same plane fountains

as for Fig. 4.6. It is seen that non-zero U values are present at X = 0 in the

Y − Z plane, indicating that the fountain flow in the X − Z plane flaps in the X

direction, which is in agreement with the observation from the temperature contours

shown in Fig. 4.6 and confirms that all these plane fountains become asymmetric

and unsteady. It is further observed that the extent of flapping and entrainment

increases when Re increases. In the Y direction of the Y − Z plane, the increase in

Re leads to an increased non-zero V value, although the magnitude is smaller than

that of the corresponding U value, indicating an increasing extent of asymmetric

behaviour in this direction.

Figure 4.7: Representative contours of U/W0 (top row) and V/W0 (bottom row) of plane foun-
tains at the quasi-steady stage for different Re values with Fr = 10 and s = 0.1 at X = 0 in the
Y − Z plane, where U/W0 and V/W0 are in percentage.
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A more evident demonstration of the effect of Re on the asymmetric behaviour

of plane fountains in both the X and Y directions of the Y − Z plane is presented

in Fig. 4.8, where the time series of Umax/W0 and Vmax/W0 at X = 0 in the Y − Z
plane with Re varying in the range 25 ≤ Re ≤ 300, all at Fr = 10 and s = 0.1, are

presented. Umax and Vmax represent the maximum values of U and V at X = 0 in

the Y − Z plane, respectively. From this figure, it is seen that both Umax/W0 and

Vmax/W0 are essentially zero at the early developing stage for all cases considered,

indicating that these plane fountains are initially symmetric in both the X and Y

directions. However, subsequently all fountains under consideration exhibit asym-

metric behaviour, with their Umax/W0 and Vmax/W0 values becoming significant.

When Re is small, the fountain starts to show the asymmetric behaviour at a much

later time. For example, the Re = 25 fountain starts to become asymmetric in the

X direction of the Y − Z plane at τ ≈ 450 whereas when Re increases to 50, 100,

and 200, the time for the onset of the asymmetric behaviour in this direction reduces

to τ ≈ 200, 120, and 105, respectively. It is further observed that the magnitude

of Umax/W0 increases when Re increases, although the rate of increase decreases

with Re. Similar behaviour is observed in the Y direction of the Y − Z plane, but

the onset of the asymmetric behaviour in this direction occurs at a much later time

than that in the X direction for each corresponding case when Re is no more than

100. For higher Re cases, the onset of the asymmetric behaviour in the Y direction

occurs at essentially the same time as that in the X direction for each corresponding

case. A quantitative analysis on the time for the onset of the asymmetric behavior

(also termed the asymmetric transition time) in both the X and Y directions of the

Y − Z plane will be presented in § 4.3.2.

4.3.1.3 Effect of s

Figure 4.9 presents the representative temperature contours at the quasi-steady

stage on the same three individual planes as those in Fig. 4.6 when s varies in the

range 0 ≤ s ≤ 0.5, with Fr and Re kept constant at Fr = 10 and Re = 100. The

results with s = 0, which represents the case with a homogeneous ambient fluid, are

also included for comparison. Again all these plane fountains become asymmetric

and unsteady, although the extent of asymmetry and unsteadiness decreases with

increasing s. It is also observed that the fountain height, as shown by the contours in

the X−Z plane, decreases when s increases, due to the increasing negative buoyancy

that the fountain fluid has to overcome to penetrate in the linearly-stratified ambient

fluid. In the Y − Z plane, the increase in s leads to a lower fountain height and a
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Figure 4.8: Time series of (a) Umax/W0 and (b) Vmax/W0 for plane fountains at X = 0 in the
Y − Z plane with Re varying in the range 25 ≤ Re ≤ 300 but all at Fr = 10 and s = 0.1.

smaller extent of the fluctuation of the height along the Y direction. Similarly, the

increase in s leads to a smaller extent of the fluctuation of the width in the X − Y
plane as well. All these clearly demonstrate that the stratification of the ambient

fluid plays a positive role to stabilize the flow and to alleviate its asymmetric and

unsteady behavior.

Figure 4.9: Representative temperature contours of plane fountains at the quasi-steady stage for
different s values in the range 0 ≤ s ≤ 0.5, all at Fr = 10 and Re = 100, at Y = 0 in the X − Z
plane (top row), X = 0 in the Y − Z plane (middle row), and Z = 0.5Zm,i in the X − Y plane
(bottom row), respectively.

Figure 4.10 presents the corresponding representative contours of U/W0 and

V/W0 at the quasi-steady stage at X = 0 in the Y − Z plane for the same plane
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fountains as for Fig. 4.9. It is observed that significant non-zero U values are present

at X = 0 in the Y −Z plane at the quasi-steady stage, indicating that these fountains

flap in the X direction in the X − Z plane and become asymmetric and unsteady,

which is in agreement with that observed from Fig. 4.9. However, due to the in-

fluence of the stratification to stabilize the flow and to reduce the asymmetric and

unsteady behavior, as discussed above, it is observed that the extent of flapping and

entrainment decreases when s increases, although the effect of s on the asymmetry

and unsteadiness of the fountains is not as strong as that of Re. Similar observation

can be made in the Y direction of the Y −Z plane as well, although the magnitudes

are smaller than those in the X direction.

Figure 4.10: Representative contours of U/W0 (top row) and V/W0 (bottom row) of plane
fountains at the quasi-steady state for different s values with Fr = 10 and Re = 100 at X = 0 in
the Y − Z plane, where U/W0 and V/W0 are in percentage.

Figure 4.11 presents the time series of Umax/W0 and Vmax/W0 at X = 0 in

the Y − Z plane with s varying in the range 0.1 ≤ s ≤ 0.5, all at Fr = 10 and

Re = 100, which provides a better exhibition of the effect of s on the asymmetric

behaviour of plane fountains in both the X and Y directions in the Y − Z plane.

For all s values considered, it is found that the fountains maintain symmetry in

both directions at their respective early developing stages and become asymmetric

and unsteady after that, which is in agreement with the above observation. Another

noticeable observation is that the times for the onset of asymmetry in both directions

do not change significantly when s varies, although it is evident that the onset of

asymmetry in the Y direction occurs at a later time than that in the X direction

for each corresponding case, as will be further analyzed quantitatively in the next

section. A further observation is that the extent of asymmetry and unsteadiness in

either direction, from a time-averaged perspective, is essentially the same for all s

considered.
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Figure 4.11: Time series of (a) Umax/W0 and (b) Vmax/W0 for plane fountains at X = 0 in the
Y − Z plane with s varying in the range 0.1 ≤ s ≤ 0.5 but all at Fr = 10 and Re = 100.

4.3.2 Quantitative analysis of the asymmetric transition time

4.3.2.1 In the X direction

To conduct a quantitative analysis of the time for the onset of the asymmetric

behaviour of a plane fountain (i.e., the asymmetric transition time) in the X direc-

tion, which is denoted as τasy,x, an appropriate threshold in terms of Umax/W0 must

be determined. To this end, τasy,x determined by the thresholds of Umax/W0 =2%,

3% and 4%, respectively, are presented in Fig. 4.12 for varying s and Re. From

this figure, it is seen that, for all three thresholds, τasy,x decreases when s increases,

which is in agreement with the qualitative observations as described above, although

τasy,x changes in a relatively narrow range (from about 100 to 135) when s varies

in the range 0.1 ≤ s ≤ 0.5. Similarly, it is observed that τasy,x decreases when

Re increases, which is again in agreement with the above qualitative observations,

but with a much wider range of changes (from about 530 to 100) when Re varies

between 25 and 300. The figure also demonstrates that all three thresholds pro-

duce consistent results with similar trends and their differences are relatively small,

in particular those between the thresholds with Umax/W0 = 3% and 4%. Hence



Asymmetric transitional plane fountains at a high Froude number (Fr = 10) 91

the threshold of Umax/W0 = 3% is considered to be the appropriate threshold to

determine τasy,x and is thus used in this study.
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Figure 4.12: τasy,x, determined by the thresholds of Umax/W0 =2%, 3% and 4%, respectively,
plotted against (a) s when Fr = 10 and Re = 100 and (b) Re when Fr = 10 and s = 0.1.

It is assumed that the effects of Re and s on τasy,x can be quantified by the

following relation,

τasy,x = Casy,xRe
−as−b, (4.1)

where Casy,x is the constant of proportionality and the indices a and b are constants

which can be determined by a multivariable regression technique applied to the DNS

results. Over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, the DNS results for

the Fr = 10 plane fountains, as shown in Fig. 4.13(a), give the following quantified

relations for τasy,x when the threshold of Umax/W0 = 3% is used,

τasy,x = 4064.1Re−0.731s−0.189 − 42.1. (4.2)

The regression coefficient of this correlation is 0.9362, indicating that this is a rea-

sonably good relation. However, it is clearly seen from Fig. 4.13(a) that the DNS

results at Re = 25 are significantly removed from the rest of the data, in terms

of the relation (4.1). Such significant deviations at Re = 25 can also be seen in
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Fig. 4.12(b) where τasy,x drops dramatically when Re increases from 25 to 50. All

these imply that the behavior of the fountains at Re = 25, in terms of τasy,x, is not

in the same regime as the other fountains considered. This needs further study but

is not considered here. It is also found that the datum for the case of s = 0.5 and

Re = 50 is noticeably away from the rest of the data in terms of the relation (4.1)

and thus should also be excluded. With the exclusion of this datum and all the data

for Re = 25, the remaining DNS data presented in Fig. 4.13(a) are found to be in

very good agreement with the relation (4.1), as shown in Fig. 4.13(b), which leads

to the following quantified correlation,

τasy,x = 632.5Re−0.433s−0.252 − 3.8. (4.3)

The regression coefficient of this correlation is 0.9711, confirming that this is a very

good fit.

The noticeable deviation of the Re = 50 and s = 0.5 data from the quantified

correlation is most likely due to the extremely large temperature gradient of the

ambient fluid used in this DNS run, at S = 212.4 K/m as listed in Table 4.1, which

is the largest among all DNS runs considered in this study. One consequency of the

use of such an extremely large temperature gradient is that the Oberbeck-Boussinesq

approximation assumed in the DNS run may not be appropriate. Furthermore, the

use of such an extremely large temperature gradient for the Re = 50 and s = 0.5

case is found to lead to large deviations in other situations as well, as will be detailed

subsequently in this paper.

As the index a for Re is signficantly larger than the index b for s, the effect of

Re on τasy,x is stronger than that of s, which confirms the qualitative observations

as described above.

4.3.2.2 In the Y direction

Similarly, the asymmetric transition time in the Y direction, denoted as τasy,y,

also needs to be determined by using an appropriate threshold in terms of Vmax/W0.

Figure 4.14 presents τasy,y, determined by different Vmax/W0 thresholds for vary-

ing Re and s. However, unlike the τasy,x case, it is seen that the thresholds with

Vmax/W0 ≥ 1% lead to inconsistent and significantly different values of τasy,y for

varying Re and s. But thresholds with Vmax/W0 of no more than 0.5% are found

to produce consistent results with similar trends and slight differences. In particu-

lar, the numerical results presented in this figure demonstrate that the thresholds
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Figure 4.13: τasy,x, determined with the Umax/W0 =3% threshold, plotted against (a)
Re−0.731s−0.189 over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5 and (b) Re−0.433s−0.252 over the
ranges 50 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5. The solid lines are the linear fits of the data, with the
s = 0.5 and Re = 50 datum excluded in (b).

of Vmax/W0 = 0.1% and 0.2% produce almost identical values of τasy,y. Hence,

the threshold of Vmax/W0 = 0.2% is considered to be the appropriate threshold to

determine τasy,y and is thus used in this study.

Similar to τasy,x, the effects of Re and s on τasy,y is assumed to be quantified by

the following relation,

τasy,y = Casy,yRe
−cs−d, (4.4)

where again the indices c and d and the constant of proportionality Casy,y are con-

stants which are determined by applying the multivariable regression technique to

the DNS results. With the DNS results for τasy,y, over the ranges 25 ≤ Re ≤ 300

and 0.1 ≤ s ≤ 0.5, as shown in Fig. 4.15(a), the following quantified relation is

obtained for τasy,y with the threshold of Vmax/W0 = 0.2%,

τasy,y = 34038.0Re−0.992s−0.027 − 154.1. (4.5)

From Fig. 4.15(a), it is apparent that the DNS results are not in good agreement
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Figure 4.14: (a) τasy,y, determined by the thresholds of Vmax/W0 = 0.1%, 0.2%, 0.5%, 1%,
2%, 3%, and 4%, respectively, plotted against s when Fr = 10 and Re = 100, and (b) τasy,y,
determined by the thresholds of Vmax/W0 = 0.1%, 0.2%, and 0.5%, respectively, plotted against
Re when Fr = 10 and s = 0.1.

with the relation (4.4), which is also confirmed by the low regression coefficient,

at R = 0.7964, for the above quantified correlation. Similar to that for τasy,x, the

behavior of the fountains at Re = 25, in terms of τasy,y, is also in a different regime

from that of the other fountains considered, and thus should be excluded from the

regression. Furthermore, the DNS datum for the case of Re = 50 and s = 0.5

should also be excluded from the regression for the same reason as that for τasy,x, as

discussed above. With the exclusion of this datum and all the data at Re = 25, the

remaining DNS data presented in Fig. 4.15(a) are found in very good agreement with

the relation (4.4), as shown in Fig. 4.15(b), which leads to the following quantified

correlation,

τasy,y = 1533.2Re−0.542s−0.129 − 4.2. (4.6)

The regression coefficient of this correlation is 0.9904, confirming that this is a very

good fit.

As the index c for Re is more than three times larger than the index d for s, the

effect of Re on τasy,y is much stronger than that of s. A comparison of the values of
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a, b, c and d in the quantified relations (4.3) and (4.6) further shows that the effect

of Re on τasy,y is also stronger than on τasy,x, whereas on the contrary the effect of s

on τasy,y is much weaker than on τasy,x. All these are consistent with the qualitative

observations as described above.
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Figure 4.15: τasy,y, determined with the Vmax/W0 = 0.2% threshold, plotted against (a)
Re−0.992s−0.027 over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5 and (b) Re−0.532s−0.129 over the
ranges 50 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5. The solid lines are the linear fits of the data, with the
s = 0.5 and Re = 50 datum excluded in (b).

4.4 Maximum fountain penetration height

4.4.1 Time series of the maximum fountain height

A typical time series of the dimensionless maximum fountain height, zm (zm =

Zm/X0, where Zm is the maximum fountain height), obtained from DNS, is pre-

sented as an example in Fig. 4.16 for the case of Fr = 10, Re = 300 and s = 0.2.

It is seen that initially the fountain rises continuously after initiation until at τm,i

when it attains an initial maximum height zm,i. After that, zm falls slightly before
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it rises again, followed by a short period of transition before it becomes fully de-

veloped subsequently, with zm fluctuating around an almost constant value, zm,a,

which is denoted as the time-averaged maximum fountain height. τm,i (the time for

the fountain to attain the initial maximum height zm,i), zm,i, zm,a, σ which is the

standard deviation of zm around zm,a at the fully developed stage (the quasi-steady

state), and the time period used for determining zm,a are illustrated in Fig. 4.16.
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Figure 4.16: Illustration of zm,i, τm,i, zm,a and σ based on the time series of the dimensionless
maximum fountain height, zm, obtained from DNS for the case of Fr = 10, Re = 300 and s = 0.2.
σ is the standard deviatons of zm around zm,a at the fully developed stage (i.e., quasi-steady state).

The DNS results for the time series of zm for fountains with s and Re varying

over the ranges 0.1 ≤ s ≤ 0.5 and 25 ≤ Re ≤ 300, all at Fr = 10, are presented in

Fig. 4.17. It is observed that in general zm decreases when s increases due to the

increasing negative buoyancy, but increases when Re increases, largely due to the

increased mixing and entrainment effects. It is also observed that τm,i reduces when

s increases, again due to the increasing negative buoyancy which results in reduced

zm. τm,i is also observed to reduce when Re increases.

4.4.2 Initial maximum fountain height

4.4.2.1 Effect of Re

The effect of Re on zm,i is demonstrated by the DNS results presented in Fig. 4.18

for fountains over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5. It is seen that when

Re ≤ 100, zm,i increases when Re increases. However, the dependence of zm,i on

Re when Re > 100 is not monotonic and is strongly s dependent. For s = 0.1, zm,i

continues to increase when Re increases, but for s = 0.2, it reduces at Re = 200

but increases again when Re = 300, and for s = 0.3 it continues to reduce when Re

increases, whereas for s = 0.4 and 0.5, zm,i is almost constant for Re ≥ 100. This

implies that the fountain behavior, in terms of zm,i, may be in different regimes
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Figure 4.17: Time series of the maximum fountains height (zm) within the whole computational
domain for different value of s in the range 0.1 ≤ s ≤ 0.5 at (a) Re = 25, (b) Re = 50, (c) Re = 100,
(d) Re = 200, and (e) Re = 300, respectively, all at Fr = 10.

when Re ≤ 100 and when Re ≥ 100. It is also observed that the dependence of zm,i

on Re is in general not linear.

It is assumed that the dependence of zm,i on Re can be represented by the

following relation,

zm,i = Cm,i,ReRe
a, (4.7)

where Cm,i,Re is a constant of proportionality and the index a is also a constant. The

regression results with this relation using the DNS data presented in Fig. 4.18(a),

as demonstrated in Figs. 4.18(b) and 4.18(c) for 25 ≤ Re ≤ 300 and 25 ≤ Re ≤ 100,

respectively, are listed in Table 4.2. It is found that over the range of 25 ≤ Re ≤ 300,

only the data with s = 0.1 agrees well with the relation (4.7), and at other s
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Figure 4.18: (a) zm,i plotted againstRe and (b) ln(zm,i) plotted against ln(Re) for 25 ≤ Re ≤ 300
and 0.1 ≤ s ≤ 0.5, and (c) ln(zm,i) plotted against ln(Re) for 25 ≤ Re ≤ 100 and 0.1 ≤ s ≤ 0.5,
all at Fr = 10. The solid lines are linear fit lines.

values, no very satisfactory agreement can be obtained. However, over the range of

25 ≤ Re ≤ 100, the dependence of zm,i on Re is well predicted by the relation (4.7).

4.4.2.2 Effect of s

The effect of s on zm,i is shown in Fig. 4.19 for the fountains over the ranges

25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5. In contrast to the effect of Re, it is seen
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Table 4.2: Regression results for the dependence of zm,i on Re for 25 ≤ Re ≤ 300 and 25 ≤ Re ≤
100, respectively.

For 25 ≤ Re ≤ 300 For 25 ≤ Re ≤ 100
s Cm,i,Re a R Cm,i,Re a R

0.1 17.409 0.083 0.9744 15.904 0.108 0.9709
0.2 15.191 0.067 0.8738 12.566 0.118 0.9882
0.3 13.208 0.068 0.8306 10.509 0.129 0.9814
0.4 11.082 0.086 0.8528 8.034 0.172 0.9741
0.5 10.753 0.074 0.7803 7.492 0.171 0.9597
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Figure 4.19: (a) zm,i plotted against s and (b) ln(zm,i) plotted against ln(s) for 25 ≤ Re ≤ 300
and 0.1 ≤ s ≤ 0.5, all at Fr = 10. The solid lines are linear fit lines.

from Fig. 4.19(a) that zm,i decreases monotonically with increasing s, which is the

result of the increasing negative buoyancy that the fountains have to overcome when

penetrating the stratified ambient fluid. Similarly, the dependence of zm,i on s is in

general not linear, and the DNS results presented in Fig. 4.19(b) clearly demonstrate

that this dependence can be expressed by the following relation,

zm,i = Cm,i,ss
b, (4.8)
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Table 4.3: Regression results for the dependence of zm,i on s for 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5.

Re Cm,i,s b R

25 10.124 -0.350 0.9955
50 12.344 -0.303 0.9998
100 13.328 -0.290 0.9990
200 12.742 -0.320 0.9886
300 12.419 -0.353 0.9963

where Cm,i,s is a constant of proportionality and the index b is also a constant.

The regression results are listed in Table 4.3. It is found that over the ranges

25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, all data agree very well with the relation (4.8),

indicating that the dependence of zm,i on s is well represented by this relation.

4.4.2.3 Combined effect of Re and s

As the dependences of zm,i on Re and s are represented by the relations (4.7)

and (4.8), respectively, the combined effect of Re and s on zm,i can be quantified by

the following relation,

zm,i = Cm,iRe
asb, (4.9)

where Cm,i is a constant of proportionality and the indices a and b are again con-

stants. The values of these constants are determined by the multivariable regression

method using the DNS results over the ranges of 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5,

which gives the following quantified correlation,

zm,i = 8.527Re0.076s−0.323 + 0.200. (4.10)

The regression coefficient of this correlation is R = 0.9835, indicating that the DNS

results over the ranges of 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5 are in very good

agreement with the relation (4.9), as demonstrated in Fig. 4.20(a) where the DNS

results for zm,i over the ranges of 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5 are plotted

against Re0.076s−0.323. In view of the not very satisfactory agreement between the

DNS results over the whole range of 25 ≤ Re ≤ 300 with the relation (4.7), as

described above, this is a surprising outcome. Nevertheless, this is the result of the

much weaker dependence of zm,i on Re than on s, as the magnitude of b for s is more

than three times larger than that of a for Re, as shown by the quantified correlation
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(4.10), and hence the contribution from Re to zm,i is significantly weakened in the

combined effect of Re and s and the contribution from s is dominant.

There is no doubt that the separation of the range of Re, into the ranges 25 ≤
Re ≤ 100 and 200 ≤ Re ≤ 300 respectively, will further improve the agreement

between the DNS results and the relation (4.9). Nevertheless, the improvements are

found to be marginal, as shown in Fig. 4.20(b) for the range of 25 ≤ Re ≤ 100 and

Fig. 4.20(c) for the range of 200 ≤ Re ≤ 300. The regression analysis gives

zm,i = 6.673Re0.140s−0.315 + 0.490, (4.11)

for the range of 25 ≤ Re ≤ 100, and

zm,i = 9.828Re0.044s−0.336 + 0.021, (4.12)

for the range of 200 ≤ Re ≤ 300. The regression coefficients for these two quantified

correlations are 0.9922 and 0.9925, respectively, which confirm that the improve-

ments are indeed very marginal. These results further show that the effect of Re

on zm,i is significantly weakened when Re is large, with the value of a for the range

of 200 ≤ Re ≤ 300 less than one third of that for the range 25 ≤ Re ≤ 100. It is

expected that a further increase of Re, beyond Re = 300, will further weaken the

effect of Re, and ultimately zm,i will be independent of Re when Re is sufficiently

high. In fact, even for the range of 200 ≤ Re ≤ 300, as shown in Fig. 4.20(d), the

complete elimination of Re from the relation (4.9) is found to only very marginally

weaken the agreement between the DNS results and the reduced relation (4.9), i.e.,

zm,i = 12.583s−0.336 + 0.013, (4.13)

with the regression coefficient of 0.9906, which is only very slightly lower than 0.9925

for the relation (4.12).

A further observation from Fig. 4.20 is that the value of b in the relation (4.9)

barely changed when Re is in different regimes or no Re is included at all. This

further demonstrates that in the combined effect ofRe and s on zm,i, the contribution

from s is dominant.

4.4.3 Time to reach the initial maximum fountain height

The effects of s and Re on the time to reach the initial maximum fountain height,

τm,i, which is made dimensionless by X0/W0, are shown in Fig. 4.21 over the ranges
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Figure 4.20: (a) zm,i plotted against Re0.076s−0.323 over the ranges of 25 ≤ Re ≤ 300 and
0.1 ≤ s ≤ 0.5, (b) zm,i plotted against Re0.140s−0.315 over the ranges of 25 ≤ Re ≤ 100 and
0.1 ≤ s ≤ 0.5, (c) zm,i plotted against Re0.044s−0.336 over the ranges of 200 ≤ Re ≤ 300 and
0.1 ≤ s ≤ 0.5, and (d) zm,i plotted against s−0.336 over the ranges of 200 ≤ Re ≤ 300 and
0.1 ≤ s ≤ 0.5, respectively, all at Fr = 10. The solid lines are linear fit lines.

0.1 ≤ s ≤ 0.5 and 25 ≤ Re ≤ 300. From Figs. 4.21(a) and 4.21(b) it is seen that

in general τm,i decreases when s or Re increases, which is similar to that for the

asymmetric transition time as discussed in § 4.3.2. The dependence of τm,i on s or

Re is again not linear, and may be assumed to have the following relations,

τm,i = Cτ,ss
b, (4.14)

and

τm,i = Cτ,ReRe
a, (4.15)

where Cτ,s and Cτ,Re are constants of proportionality, and the indices a and b are

also constants. The regression analysis of the DNS results presented in Figs. 4.21(a)

and 4.21(b) with these two relations gives the values of Cτ,s, Cτ,Re, a and b as

listed in Table 4.4. The DNS results are in very good agreement with the relations

(4.14) and (4.15), as shown in Figs. 4.21(c) and 4.21(d). The results presented in
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Figure 4.21: τm,i plotted against (a) s and (b) Re, and ln(τm,i) plotted against (c) ln(s) and (d)
ln(Re), respectively, for the Fr = 10 fountains over the ranges of 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5.
The solid lines are linear fit lines.

Table 4.4: Regression results for the dependence of τm,i on s and Re respectively for 25 ≤ Re ≤
300 and 0.1 ≤ s ≤ 0.5.

For τm,i = Cτ,ss
b For τm,i = Cτ,ReRe

a

Re Cτ,s b R s Cτ,Re a R

25 128.1 -0.471 0.9971 0.1 1715.4 -0.486 0.9950
50 105.6 -0.354 0.9826 0.2 906.6 -0.389 0.9874
100 104.0 -0.236 0.9938 0.3 691.6 -0.357 0.9853
200 80.3 -0.204 0.9855 0.4 556.8 -0.332 0.9943
300 66.5 -0.240 0.9937 0.5 522.0 -0.329 0.9954

Table 4.4 show that the magnitude of the index a, which represents the extent of

the dependence of τm,i on s, generally decreases when Re increases, indicating that

the dependence of τm,i on s becomes weakened when Re increases. Similarly, the

magnitude of the index b, which represents the extent of the dependence of τm,i on

Re, generally decreases when s increases, indicating that the dependence of τm,i on

Re becomes weakened when s increases.

As the dependence of τm,i on Re and s is represented by the relations (4.14) and
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(4.15), respectively, the combined effect of Re and s on τm,i can be quantified by

the following relation,

τm,i = Cτ,iRe
asb, (4.16)

where Cτ,i is a constant of proportionality and the indices a and b are again constants.

With all data over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, the regression

analysis gives the values of -0.379 and -0.3 to a and b, respectively. However, as

demonstrated in Fig. 4.22, the DNS results for Re = 25 and s = 0.1 and s = 0.2 are

considerably removed from the other data in terms of the relation (4.16), most likely

for a similar reason to that of the asymmetric transition time as discussed above

(i.e., the behavior at Re = 25 is in a different regime) and should be excluded in

the regression. With the exclusion of the data at Re = 25 and s = 0.1 and s = 0.2,

the regression analysis with the remaining DNS results presented in Fig. 4.22 gives

the following quantified correlation,

τm,i = 493.2Re−0.379s−0.3 + 7.101. (4.17)

The regression coefficient of this correlation is R = 0.9836, confirming that this is a

very good agreement.
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Figure 4.22: τm,i plotted against Re−0.379s−0.3 over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5.
The solid line is the linear fit of the data with the data at Re = 25 and s = 0.1 and s = 0.2 excluded.

4.4.4 Time-averaged maximum fountain height

4.4.4.1 Effect of Re

The effect of Re on zm,a is demonstrated by the DNS results presented in Fig. 4.23

for fountains over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, all at Fr = 10.

From Fig. 4.23(a), it is observed that in general zm,a increases when Re increases
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fit lines.

for each s value, which is slightly different from that for zm,i in which the fountain

behavior, in terms of zm,i, may be in different regimes when Re ≤ 100 and when

Re ≥ 100, as discussed above. The results also show that the dependence of zm,a on

Re is in general not linear, and thus the following relation may be assumed,

zm,a = Cm,a,ReRe
a, (4.18)
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Table 4.5: Regression results for the dependence of zm,a on Re for 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤
0.5.

s Cm,a,Re a R

0.1 14.579 0.119 0.9745
0.2 14.907 0.074 0.9907
0.3 13.480 0.065 0.9038
0.4 11.433 0.080 0.9953
0.5 9.996 0.094 0.9758

where Cm,a,Re is a constant of proportionality and the index a is again a con-

stant. The regression results with this relation using the DNS data presented in

Fig. 4.23(a), as demonstrated in Fig. 4.23(b), are listed in Table 4.5. It is found that

over the ranges 25 ≤ Re ≤ 300, the data for each s value, except for s = 0.3, are

in very good agreement with the relation (4.18). For s = 0.3, it is noted that the

data at Re = 50 is noticeably removed from the quantified linear fit line. This is ex-

pected to have a similar cause to that discussed above for τasy,x in the case of s = 0.5

and Re = 50, but a further investigation on this, which is beyond the scope of the

current study, is needed. The DNS results for the time-averaged standard deviation

of zm around zm,a at the fully developed stage, σm,a, as illustrated in Fig. 4.16, are

presented in Fig. 4.23(c). It is seen that over the ranges of 25 ≤ Re ≤ 300 and

0.1 ≤ s ≤ 0.5, σm,a varies between 0.5 and 2.0, and has no noticeable dependence

on either Re or s.

4.4.4.2 Effect of s

The effect of s on zm,a is shown in Fig. 4.24 for the fountains over the ranges

25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, all at Fr = 10. The DNS results presented in

Fig. 4.24(a) show that zm,a decreases monotically with increasing s, which is similar

to that for zm,i, as described above. This is again due to the increasing negative

buoyancy that the fountains have to overcome when penetrating the stratified am-

bient fluid when s increases. Similarly, the dependence of zm,a on s is in general not

linear, and the DNS results presented in Fig. 4.24(b) clearly demonstrate that this

dependence can be expressed by the following relation,

zm,a = Cm,a,ss
b, (4.19)
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where Cm,a,s is a constant of proportionality and the index b is also a constant.

The regression results are listed in Table 4.6. It is found that over the ranges

25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, all data agree very well with the relation (4.19),

indicating that the dependence of zm,a on s is well represented by this relation. The

DNS results for σm,a are presented in Fig. 4.24(c), which again demonstrate that

σm,a has no noticeable dependence on either Re or s.
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Table 4.6: Regression results for the dependence of zm,a on s for 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5.

Re Cm,a,s b R

25 11.948 0.255 0.9638
50 11.581 0.323 0.9954
100 11.971 0.337 0.9959
200 13.110 0.312 0.9972
300 13.769 0.314 0.9992

4.4.4.3 Combined effect of Re and s

Similar to zm,i, the combined effect of Re and s on zm,a can be quantified by the

following relation,

zm,a = Cm,aRe
asb, (4.20)

where Cm,a is a constant of proportionality and the indices a and b are again con-

stants. With all data over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, the

regression analysis gives the following quantified correlation,

zm,a = 8.434Re0.086s−0.310 − 0.042. (4.21)

The regression coefficient of this correlation is R = 0.9902, indicating that the DNS

results over the ranges 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5 are in very good agreement

with the relation (4.20), as illustrated in Fig. 4.25 where the DNS results for zm,a are

plotted against Re0.086s−0.310. It is found that the values of the indices a and b, 0.086

and -0.310, are very close to those obtained for zm,i (0.076 and -0.323, respectively),

which also demonstrates that the dependence of zm,a on Re is much weaker than

that on s, again similar to zm,i.

4.4.5 Variation of maximum fountain height at X = 0 on the Y −Z plane

Before the onset of the asymmetric behavior, the maximum fountain height at

X = 0 on the Y −Z plane should be constant along the Y direction. However, after

the onset of the asymmetric behavior, it is expected that the maximum fountain

height on the Y − Z plane will vary along the Y direction, as depicted in Fig. 4.26,

where the Y -direction profile of the maximum fountain height (zx=0) at X = 0 on

the Y −Z plane, at time τ = 1072.4, is presented for the case of Re = 100, s = 0.2,

and Fr = 10. The parameter to quantify the variation of zx=0 in the Y direction is
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0.5, all at Fr = 10. The solid line is a linear fit line.

the standard deviation of zx=0 around its average in the Y direction, zx=0,a, which

is denoted as σx=0 and is made dimensionless by X0.

The time series of σx=0 for the Fr = 10 plane fountains over the ranges 25 ≤
Re ≤ 300 and 0.1 ≤ s ≤ 0.5, obtained by DNS, are presented in Fig. 4.27. The

results show that for 25 ≤ Re ≤ 100, in general the value of σx=0 increases when Re

increases, and at Re = 25 the value is small, normally within 0.3, but dramatically

increases to up to 4 when Re increases from 25 to 50. However, a further increase

of Re, to beyond Re = 100, does not lead to a further increase in σx=0, as the

results show that at Re = 200 and 300, the values of σx=0 are very close to those

at Re = 100 for each s value. Another noticeable observation is that in general the

values of σx=0 decrease when s increases, which is apparently due to the positive

role of the stratification of the ambient fluid in stabilizing the flow and reducing the

asymmetric and unsteady behavior of the fountains, as discussed above.

The dependence of σx=0 on s can be further demonstrated by the DNS results

presented in Fig. 4.28 where σx=0,a, which is the time average of σx=0 over the

period from the instant when σx=0 becomes significant to the end of the DNS run

(which is essentially the fully developed stage), is plotted against s over the ranges

of 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5. It is seen that for each Re value, the

data with different s values fall approximately on the same straight line, with a

negative gradient, confirming that σx=0 decreases when s increases. The relation

between σx=0,a and s for each Re value can then be quantified by the following

linear relation,

σx=0,a = c+ ds, (4.22)
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Table 4.7: Regression results for the dependence of σx=0,a on s for 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤
0.5.

Re c d R

25 0.255 -0.490 0.891
50 2.637 -4.702 0.982
100 3.035 -3.379 0.985
200 3.258 -3.678 0.993
300 3.676 -4.217 0.964

where c and d are constants. The values of c and d are obtained by the regression

analysis of the DNS results presented in Fig. 4.28 and the results are listed in

Table 4.7. From these results, it is observed that in general the DNS results are

in good agreement with the linear relation (4.22) for each Re value. It is further

observed that the magnitudes of c and d for Re = 25 are significantly smaller than

those for the other Re values, which further indicates that the behavior of the

fountains at Re = 25 is in a different regime from the fountains at the other Re

values considered. Again the datum at Re = 50 and s = 0.5 is considerably away

from the other data in the trend, apparently due to the similar reason as discussed

above for τasy,x.
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Figure 4.26: The DNS results for the Y -direction profile of the maximum fountain height zx=0

at X = 0 on the Y − Z plane at time τ = 1072.4 for the case of Re = 100, s = 0.2, and Fr = 10,
and the illustration of zx=0,a, which is the average of zx=0 along the Y direction, and the standard
deviation σx=0 of zx=0 around zx=0,a along the Y direction, where y = Y/X0 is the dimensionless
form of Y .

4.5 Summary

In this chapter, the three-dimensional DNS results for transitional plane foun-

tains in linearly-stratified fluids with 25 ≤ Re ≤ 300 and 0 ≤ s ≤ 0.5, all at
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Figure 4.27: Time-series of σx=0 at X = 0 on the Y − Z plane for the Fr = 10 fountains over
the ranges of 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5: (a) Re = 25, (b) Re = 50, (c) Re = 100, (d)
Re = 200, and (e) Re = 300.

Fr = 10, are used to analyze, both qualitatively and quantitatively, the transi-

tion of the fountains to asymmetry, their asymmetric behavior, and their maximum

penetration heights.

It is found that over the ranges of Re and s considered, fountains are symmetric

in the early developing stage, but become asymmetric and unsteady after that. The

fountains flap around X = 0 in the X − Z plane, with the fountain heights and

the extent of entrainment increasing with Re. The increase of Re also leads to a
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solid lines are linear fit lines.

larger fluctuation of the fountain height in the Y direction of the Y − Z plane and

a larger fountain width and increased fluctuation in the X − Y plane. However,

the stratification of the ambient fluid (i.e., s) is shown to play a positive role in

stabilizing the flow and reducing its asymmetric and unsteady behavior.

The results further demonstrate that the asymmetric behaviour of plane foun-

tains in both the X and Y directions of the Y −Z plane can be well represented by

Umax/W0 and Vmax/W0 at X = 0 of the plane, where Umax and Vmax are the maxi-

mum values of U and V at X = 0 in the Y − Z plane, respectively. Any non-zero

Umax or Vmax indicates the asymmetric behaviour in the X or Y direction on the

plane. It is found that the magnitude of Umax/W0 increases when Re increases, al-

though the rate of the increase decreases with Re. Similar behaviour is also observed

in the Y direction of the Y −Z plane, but the onset of the asymmetric behaviour in

this direction in general occurs at a much later time than that in the X direction. It

is further observed that the extent of flapping and entrainment decreases when s in-

creases, although the effect of s on the asymmetry and unsteadiness of the fountains

is not as strong as that of Re. Empirical correlations which quantify the effects of

Re and s are developed for the times for the onset of the asymmetric behaviour of

plane fountains both in the X and Y directions, using the numerical results.

The numerical results further show that s has a stronger effect on zm,i and zm,a

than Re does, but the dependence of τm,i on Re weakens when s increases, where

zm,i and zm,a are the initial and time-averaged maximum fountain heights, and τm,i

is the time to attain the initial maximum fountain height. Empirical correlations

are developed to quantify the individual and combined effects of Re and s on these

three parameters.
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The numerical results also demonstrate that the behavior of the plane fountains

at Re = 25 is not in the same regime as the other fountains considered, which needs

further investigation but is beyond the scope of this thesis.





Chapter 5

Asymmetric transitional plane

fountains at lower Froude numbers

5.1 Introduction

In the previous chapter, only the effects of Re and s on the onset of asymmetric

behavior and the maximum fountain penetration height of transitional plane foun-

tains in linearly stratified fluids over the ranges of 25 ≤ Re ≤ 300 and 0 ≤ s ≤ 0.5

were studied at the fixed high Froude number of Fr = 10. As one of the major

parameters governing the fountain behavior, it is expected that Fr should also have

significant influence on the onset of asymmetric behavior and the maximum fountain

penetration height of transitional plane fountains in linearly stratified fluids, as well

as on other important bulk fountain flow behavior, such as bobbing and flapping

motions and thermal entrainment. However, the effect of Fr is not addressed in

Chapter 4 as it is fixed at Fr = 10.

This chapter is the extension of Chapter 4. In this chapter, the effect of Fr

at smaller values on the onset of asymmetric behavior and the maximum fountain

penetration height of transitional plane fountains in linearly stratified fluids will be

addressed, along with the combined effects of Fr, Re and s, through a series of

three-dimensional DNS runs over the ranges of 2.75 ≤ Fr ≤ 10, 25 ≤ Re ≤ 300,

and 0 ≤ s ≤ 0.7. In addition, the effects of Fr, Re and s on other important

bulk fountain flow behavior, including bobbing and flapping motions and thermal

entrainment, which are not addressed in Chapter 4, will also be studied with the

DNS results over the same ranges of Fr, Re and s.

115
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Some of the results presented in this chapter were reported in the following

publications:

1. Inam, M. I., Lin, W., Armfield, S. W. & He, Y. 2016 Correlations

for maximum penetration heights of transitional plane fountains in linearly

stratified fluids. Int. Commun. Heat Mass Transfer 77, 64–77.

2. Inam, M. I., Lin, W., Armfield, S. W. & He, Y. 2014 Penetration height

and onset of asymmetric behaviour of transitional plane fountains in linearly

stratified fluids. in Proceedings of the 19th Australasian Fluid Mechanics Con-
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The remainder of this chapter is organized as follows. In § 5.2, the details

of the DNS runs carried out in this chapter are presented, along with the mesh

and time-step independence testing. In § 5.3, the asymmetric transition of the

transitional plane fountains over the ranges of 2.875 ≤ Fr ≤ 10, 28 ≤ Re ≤ 300,

and 0 ≤ s ≤ 0.5 is described and discussed, both qualitatively and quantitatively,

with the DNS results. In § 5.4, the effects of Fr, Re and s on the initial and

time-averaged maximum fountain penetration heights, the time to attain the initial

maximum fountain height, and the variation of the maximum fountain height along

the fountain source slot, are analysed and quantified with the DNS results. The

characteristics of the bobbing and flapping motions present in these transitional

plane fountains and the thermal entrainment are then analysed and quantified with

the DNS results in § 5.5 and § 5.6, respectively. Finally, the major conclusions of

this chapter are drawn in § 5.7.

5.2 DNS runs and mesh and time-step independence testing

There are totally 46 DNS runs carried out in this chapter using ANSYS Fluent

13, with the key information about these runs listed in Table 5.1. For all DNS run,

the fluid used is again water with density ρ0 = 996.6kg/m3, kinematic viscosity

ν = 8.58 × 10−7m2/s, and volume of expansion coefficient β = 2.76 × 10−4 1/K.

Ta,0 was fixed at 300 K. The specific Fr, Re and s values, over the ranges of 3 ≤
Fr ≤ 10, 28 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, were determined by changing W0,

T0 and s according to the definitions of Fr, Re and s, respectively. The half slot

width, X0, was assumed to be fixed at 0.002 m for all Fr, Re and s (in contrast to

that used in Chapter 4), whereas g is changing to ensure the Oberbeck-Boussinesq
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approximation. In this way, only a single computational domain is needed for all

DNS simulation runs considered in this chapter, which has the benefit to significantly

shorten the time to complete these DNS runs.

Table 5.1: Key information about the DNS run of this chapter.

s Re Fr

0.1 100 2.75, 3, 4, 5, 6, 7, 8, 9, 10
0.2 100 3.5, 4, 5, 6, 7, 8, 9, 10
0.3 100 4, 5, 6, 7, 8, 9, 10
0.4 100 4.5, 5, 6, 7, 8, 9, 10
0.5 100 4.875, 5, 6, 7, 8, 9, 10
0.1 25, 28, 30, 35, 50, 100, 200, 300 5

For all DNS runs, the computational domain size (H × B × L) is chosen to

be 0.2 m × 0.1 m × 1.5 m. It is observed from the numerical results that the

chosen values of H, B and L are large enough to ensure that the influence of the

boundary conditions on the flow variables of interest is negligible. A fine and uniform

rectangular mesh was used in the region of −25 ≤ X/X0 ≤ 25, 0 ≤ Z/X0 ≤ 50, and

−50 ≤ Y/X0 ≤ 50 for all DNS runs, since the velocity and temperature gradients

in this region are relatively large, similar to the cases considered in Chapter 4. A

coarse, non-uniform rectangular mesh was created with different expansion rates in

the remaining regions due to much smaller temperature and velocity gradients. The

grid sizes of the fine, uniform mesh are 1 mm, 2.5 mm and 1.1 mm along the X, Y

and Z directions, respectively.

Again extensive mesh and time-step independency testing was carried out to

ensure the accuracy of the obtained DNS results. The results from one mesh and

time-step independency test, as an example, are presented in Fig. 5.1 for the specific

case of Fr = 7, Re = 100 and s = 0.1, which depicts the horizontal profiles of

temperature and vertical velocity at height Z = 0.02 m in the X–Z plane at the

location Y = 0, and the vertical profiles of temperature and vertical velocity along

the centerline (at X = Y = 0) in the Z direction, all at t = 7.5 s. These results were

obtained with three different meshes (i.e.the coarse mesh with 1.17 million cells, the

basic mesh with 2.1 million cells and the fine mesh with 3.6 million cells) and at four

time steps (i.e.0.0125 s, 0.025 s, 0.035 s and 0.05 s). It is clear from Fig. 5.1(a) ∼ (d),

where the DNS results obtained with the three meshes but with the same time

step of 0.025 s are shown, that the results produced with the basic mesh and the

fine mesh are essentially the same and only the results produced with the coarse

mesh have some noticeable deviations. The comparison of the DNS results obtained

with four time steps, but all with the basic mesh of 2.1 million cells, as shown in
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Fig. 5.1 (e ∼ h), clearly demonstrates that the differences are very insignificant

among the four time steps. Hence, it is believed that the combination of the basic

mesh of 2.1 million cells and the time step of 0.025 s can produce sufficiently accurate

solutions. Such a mesh and time-step independency test was also conducted for other

conditions and the combination of the basic mesh of 2.1 million cells and the time

step of 0.025 s can also produce sufficient accurate solutions. In addition, the effect

of the domain size on the numerical results was also examined and it was found that

the domain size of H × B × L of 0.2 m × 0.1 m × 1.5 m produces the numerical

results with negligible boundary effects on the flow quantities of interest. For a

typical run, it usually took 10 18 days on a Dell OptiPlex (TM) 64-bit desktop with

the Intel(R) Core(TM) i7–3770 CPU @ 3.40GHz processor and the 32 GB RAM.

5.3 Asymmetric transition

5.3.1 Diagnosis of asymmetric transition

The onset of asymmetric behavior was explained qualitatively with Fig. 4.5, where

transient contours of U/W0 and V/W0 at X = 0 in the Y −Z plane were presented

for a plane fountain with Fr = 10, Re = 100 and s = 0.1 at different instants

of time. A quantitative identification of the onset of asymmetry along the X and

Y directions can be made through the time series of Umax/W0 and Vmax/W0, as

shown as an example in Fig. 5.2 for the plane fountain at Fr = 10, Re = 100 and

s = 0.1. The figure shows that Umax/W0 and Vmax/W0 are essentially zero at the

early developing stage until τ ≈ 124 and 171, respectively, which indicates that

the asymmetric transition starts earlier along the X direction than that in the Y

direction. The extent of the asymmetry along both directions becomes significant

at subsequent stages, which can be quantified by umax,a and vmax,a, respectively, as

shown in Fig. 5.2. umax,a and vmax,a are the time averaged values of Umax/W0 and

Vmax/W0 at the fully developed stage, which are made dimensionless by W0. It is

also seen from the figure that the extent of asymmetry along the X direction is

stronger than that along the Y direction, as umax,a is larger than vmax,a. The times

for the onset of asymmetry along the X and Y directions, denoted by τasy,x and τasy,y,

respectively, can be determined with the time series of Umax/W0 and Vmax/W0 by

selecting an appropriate threshold value for Umax/W0 or Vmax/W0, similar to that

in Chapter 4. To this end, the values of τasy,x and τasy,y determined by using the

threshold values of Umax/W0 and Vmax/W0 at 0.3%, 0.4%, 0.5%, 1%, 2% and 3%,

respectively, are presented in Fig. 5.3 for different values of Fr, Re and s. From
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Figure 5.1: The horizontal profiles of temperature T (K) ((a) and (e)) and vertical velocity W
(m/s) ((b) and (f)) at Z = 0.02 m in the X − Z plane at the location Y = 0, and the vertical
profiles of temperature T (K) ((c) and (g)) and vertical velocity W (m/s) ((d) and (h)) along the
centerline (at X = Y = 0) in the Z direction, all at t = 7.5 s, which were obtained numerically for
the case of Fr = 7, Re = 100 and s = 0.1 with three different meshes (left column, all at the same
time step of 0.025 s) and at four different time steps (right column, all with the same basic mesh
of 2.1 million cells).

this figure, it is clearly seen that any threshold value no more than 0.5% will be



120 Chapter 5

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

τ

U
m
a
x
/W

0
(
%
)

Fully developed stage

u
max,a

(a)

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

τ

V
m
a
x
/W

0
(
%
)

Fully developed stage

v
max,a

(b)

Figure 5.2: Time series of Umax/W0 and Vmax/W0 of the plane fountain at Fr = 10, Re = 100
and s = 0.1, where Umax and Vmax represent the maximum values of U and V respectively at
X = 0 in the Y − Z plane, and umax,a and vmax,a are their time averaged values at the fully
developed stage. umax,a and vmax,a are made dimensionless by W0.

appropriate for the determination of τasy,x and τasy,y so in this chapter 0.5% was

chosen as the threshold value to determine τasy,x and τasy,y.

From Fig. 5.3, it is also seen that when Fr ≤ 5, both τasy,x and τasy,y decrease

dramatically with increasing Fr; however, when Fr is beyond 5, both τasy,x and

τasy,y change little. Similarly, when Re ≤ 100, both τasy,x and τasy,y also decrease

dramatically with increasing Re, but almost do not change beyond Re = 100. On

the contrary, at very weak stratification (when s is no more than 0.1), τasy,x and

τasy,y change very marginally; however, they increase significantly with the increase

of stratification when s is larger than 0.1.

5.3.2 Effects of Fr, Re and s

5.3.2.1 Effects of Fr

Figure 5.4 presents the snapshots of transient contours of U/W0 and V/W0 at the

fully developed stage at X = 0 in the Y − Z plane for plane fountains over the

range of 2.875 ≤ Fr ≤ 10, all at Re = 100 and s = 0.1. It is found that, although

the values of U/W0 and V/W0 are essentially zero when Fr = 2.875, meaning that

the fountain remains symmetric even at the fully developed stage, the values of

U/W0 and V/W0 at the fully developed stage for Fr ≥ 3 are non-zero, even it was

observed that they are also zero in the early developing stage. This implies that

a critical value between Fr = 2.875 and Fr = 3 exists for Fr when Re and s are

fixed at Re = 100 and s = 0.1, which distinguishes the symmetric plane fountains

from asymmetric plane fountains, i.e., a plane fountain will be symmetric all the
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Figure 5.3: τasy,x (left column) and τasy,y (right column), determined by using different threshold
values of Umax/W0 and Vmax/W0 respectively in the range of 0.3% to 3%, plotted against Fr at
Re = 100 and s = 0.1 ((a) and (d)); Re at Fr = 5 and s = 0.1 ((b) and (e)); and s at Fr = 5 and
Re = 100 ((c) and (f)).

times when Fr is less than this critical Fr, but will become asymmetric at the fully

developed stage when Fr is larger than this critical values.

The observed features from Fig. 5.4 are more evidently shown in Fig. 5.5, where

the time series of Umax/W0 and Vmax/W0 with different Fr over the range of 2.875 ≤
Fr ≤ 10, all at Re = 100 and s = 0.1, are presented. From this figure, it is seen

that at Fr = 2.875, Umax/W0 is no more than 0.2% at any time, whereas Vmax/W0

is even smaller, no more than 0.01% over the whole time series, indicating that the

Fr = 2.875 fountain has been symmetric at all developing stages. However, when
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Figure 5.4: Snapshots of transient contours of U/W0 (first column) and V/W0 (second column),
both in percentage, at fully developed stage at X = 0 in the Y − Z plane for plane fountains over
the range of 2.875 ≤ Fr ≤ 10 at Re = 100 and s = 0.1.

Fr increases slightly to 3, both Umax/W0 and Vmax/W0 increase dramatically at

the later developing stage, to be as high as 25% and 12% respectively. This clearly

shows that at Fr = 3 the fountain becomes asymmetric at the later developing stage.

Nevertheless, a further increase in Fr does not lead to a proportional increase in
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Figure 5.5: Time series of Umax/W0 (left column) and Vmax/W0 (right column) of plane fountains
with different Fr over the range of 2.875 ≤ Fr ≤ 10, all at Re = 100 and s = 0.1.

the time-averaged values of Umax/W0 and Vmax/W0, as clearly shown in the figure.

Hence the quantitative results presented in Fig. 5.5 confirm that a critical value

between Fr = 2.875 and Fr = 3 exists for Fr when Re and s are fixed at Re = 100

and s = 0.1 which distinguishes the symmetric plane fountains from asymmetric
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plane fountains. From Fig. 5.5, it is also seen that the onset of the asymmetric

behavior along the X direction in general occurs slightly earlier than that along the

Y direction for each Fr, meaning that τasy,x is in general slightly smaller than τasy,y

for each Fr.
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Figure 5.6: (a) τasy,x; (b) umax,a; (c) σmax,u; (d) τasy,y; (e) vmax,a; and (f) σmax,v plotted
against Fr over the range of 2.875 ≤ Fr ≤ 10 with s varying in the range of 0.1 ≤ s ≤ 0.5, all at
Re = 100, where, umax,a, vmax,a, σmax,u, and σmax,v, which are made dimensionless by W0, denote
respectively the time averaged values and the corresponding standard deviations of the time series
of Umax/W0 and Vmax/W0 at the fully developed stage.

The quantitative effect of Fr on the onset time of the asymmetry and the extent

of the asymmetric behavior at the fully developed stage along both the X and Y

directions is more evidently demonstrated in Fig. 5.6, where τasy,x, τasy,y, umax,a,

vmax,a, σmax,u, and σmax,v are plotted against Fr over the range of 2.875 ≤ Fr ≤ 10
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with s varying in the range of 0.1 ≤ s ≤ 0.5, all at Re = 100. From Fig. 5.6(a)

and (d), it is seen that the effect of Fr on τasy,x and τasy,y is essentially the same,

with almost the same trend for each s value, although for each case, τasy,x is slightly

smaller than the corresponding τasy,y. However, there are significant variations in

τasy,x and τasy,y for each s value when Fr increases. For example, at s = 0.1, it

is observed that when Fr is increased from 3 to 5, both τasy,x and τasy,y reduce

sharply and almost linearly; however, when Fr is further increased, beyond Fr = 5,

there are almost no change in either τasy,x or τasy,y, indicating that over the range

of 5 ≤ Fr ≤ 10 considered in this thesis the effect of Fr on τasy,x or τasy,y, at

s = 0.1 and Re = 100, is negligible. Similar trends are also observed for other

s values considered, although the specific value of Fr to separate these two quite

different effects of Fr on τasy,x or τasy,y are different and in general increases when

s is increased, as clearly shown in Fig. 5.6(a) and (d).

Likewise, as shown in Fig. 5.6(b) and (e), the effect of Fr on umax,a and vmax,a, for

each s value, can be divided into two different regimes. For example, it is observed

that when Fr is increased from 3 to 5, umax,a increases sharply and essentially

linearly, but when Fr is further increased to be beyond Fr = 5, umax,a essentially

does not vary, indicating that over the range of 5 ≤ Fr ≤ 10 the effect of Fr on

umax,a, at s = 0.1 and Re = 100, is also negligible. For vmax,a at s = 0.1, the trend is

slightly different, as although when Fr is increased from 3 to 5, vmax,a also increases

sharply and linearly, however, when Fr is further increased until Fr = 8, vmax,a

continues to increase, also almost linearly, but at a smaller rate. Beyond Fr = 8,

the variation of vmax,a is slightly differently. Nevertheless, the general trends are in

general quite similar for umax,a and vmax,a, and for other s values considered as well.

On the other hand, it is observed from Fig. 5.6(c) and (f) that no unique trends

in the effect of Fr on σmax,u and σmax,v can be found.

5.3.2.2 Effect of Re

Figure 5.7 presents the snapshots of transient contours of U/W0 and V/W0 at the

fully developed stage at X = 0 in the Y −Z plane for plane fountains over the range

of 25 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1. It is found that, although the values

of U/W0 and V/W0 are essentially zero when Re = 25 and Re = 30 respectively,

meaning that the fountain remains symmetric even at the fully developed stage, the

values of U/W0 and V/W0 at the fully developed stage for Re ≥ 30 are non-zero. In

fact, it was observed that even the values of U/W0 and V/W0 at the early developing
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Figure 5.7: Snapshots of transient contours of U/W0 (first column) and V/W0 (second column),
both in percentage, at fully developed stage at X = 0 in the Y − Z plane for plane fountains over
the range 25 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1.

stage are non-zero for Re ≥ 30. This indicates that a critical value between Re = 25

and Re = 30 exists for Re when Fr and s are fixed at Fr = 5 and s = 0.1 which

distinguishes the symmetric plane fountains from asymmetric plane fountains, i.e.,

a plane fountain will be symmetric all the times when Re is less than this critical

Re, but will become asymmetric not only at the fully developed stage but also at

the early developing stage when Re is larger than this critical value.
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Figure 5.8: Time series of Umax/W0 (left column) and Vmax/W0 (right column) of plane fountains
with different Re over the range of 25 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1.

Similar to the Fr effect case, the observed features from Fig. 5.7 are more ev-

idently shown in Fig. 5.8, where the time series of Umax/W0 and Vmax/W0 with

different Re over the range of 25 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1, are

presented. From this figure, it is seen that at Re = 25, Umax/W0 is no more than

0.2% at any time, whereas Vmax/W0 is even smaller, no more than 0.01% over the

whole time series, indicating that the Re = 25 fountain has been symmetric at all

developing stages. However, when Re increases slightly, to 30, Umax/W0 increases

dramatically at the later developing stage, to be as high as 6%; Vmax/W0 also in-

creases sharply, although much smaller than that of Umax/W0, to be as high as 0.8%

only. A further slight increase of Re, to Re = 35, results in a dramatic increase

in both Umax/W0 and Vmax/W0, to be as high as 20%. This clearly shows that at
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Re = 30 the fountain becomes asymmetric at the later developing stage. On the

other hand, beyond Re = 50, any further increase in Re does not lead to noticeable

variations in the time-averaged values of Umax/W0 and Vmax/W0, as clearly shown

in the figure. Hence the quantitative results presented in Fig. 5.8 confirm that a

critical value between Re = 25 and Re = 30 exists for Re when Fr and s are fixed

at Fr = 5 and s = 0.1 which distinguishes the symmetric plane fountains from

asymmetric plane fountains. From Fig. 5.8, it is also seen that the onset of the

asymmetric behavior along the X direction occurs in general noticeably earlier than

that along the Y direction for each Re, meaning that τasy,x is in general smaller than

τasy,y for each Re value.
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Figure 5.9: (a) τasy,x and τasy,y; (b) umax,a and vmax,a; and (c) σmax,u and σmax,v plotted
against Re over the range 30 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1.

The quantitative effect of Re on the onset time of the asymmetry and the extent

of the asymmetric behavior at the fully developed stage along both the X and Y

directions is more evidently demonstrated in Fig. 5.9, where τasy,x, τasy,y, umax,a,

vmax,a, σmax,u, and σmax,v are plotted against Re over the range of 30 ≤ Re ≤ 300,

all at Fr = 5 and s = 0.1. From Fig. 5.9(a), it is seen that the effect of Re

on τasy,x and τasy,y is essentially the same, with almost the same trend, although
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τasy,x is slightly smaller than the corresponding τasy,y. However, there are significant

variations in τasy,x and τasy,y when Re increases. When Re is increased from 30 to

100, both τasy,x and τasy,y reduce dramatically, from around 1200 at Re = 30 to

about 150 at Re = 100; however, when Re is further increased, beyond Re = 100,

there is almost no change in either τasy,x or τasy,y, indicating that over the range of

30 ≤ Re ≤ 300 considered in this thesis the effect of Re on τasy,x or τasy,y, at s = 0.1

and Fr = 5, is negligible. This trend with significant different regions for the effect

of Re on τasy,x and τasy,y is very similar to that for the effect of Fr on τasy,x and

τasy,y, as discussed above.

Likewise, as shown in Fig. 5.9(b), the effect of Re on umax,a and vmax,a can be

divided into two different regions. When Re is increased from 30 to 100, both umax,a

and vmax,a increases sharply and essentially linearly, but when Re is further increased

to be beyond Re = 100, umax,a essentially does not vary, indicating that over the

range of 100 ≤ Re ≤ 300 the effect of Re on umax,a is negligible. Similar trend is

also observed for vmax,a, with only a slight variation observed.

Similar to the Fr effect case as discussed above, it is observed from Fig. 5.9(c)

that no unique trends in the effect of Re on σmax,u and σmax,v can be found.

5.3.2.3 Effect of s

Figure 5.10 presents the snapshots of transient contours of U/W0 and V/W0 at

the fully developed stage at X = 0 in the Y − Z plane for plane fountains over the

range of 0 ≤ s ≤ 0.7, all at Fr = 5 and Re = 100. It is found that at s = 0.7 the

values of U/W0 and V/W0 are essentially zero, meaning that the fountain remains

symmetric even at the fully developed stage. However, the values of U/W0 and

V/W0 at the fully developed stage for s ≤ 0.7 are non-zero, even it was observed

that they are also zero in the early developing stage. This implies that a critical

value between s = 0.5 and s = 0.7 exists for s when Fr and Re are fixed at Fr = 5

and Re = 100 which distinguishes the symmetric plane fountains from asymmetric

plane fountains, i.e., a plane fountain will be symmetric all the times when s is

larger than this critical s, but will become asymmetric at the fully developed stage

when s is smaller than this critical values.

The observed features from Fig. 5.10 are more clearly shown in Fig. 5.11, where

the time series of Umax/W0 and Vmax/W0 with different s over the range of 0 ≤ s ≤
0.7, all at Fr = 5 and Re = 100, are presented. From this figure, it is seen that

at s = 0.7, Umax/W0 is no more than 0.08% at any time, whereas Vmax/W0 is even
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Figure 5.10: Snapshots of transient contours of U/W0 (first column) and V/W0 (second column),
both in percentage, at fully developed stage at X = 0 in the Y − Z plane for plane fountains over
the range 0 ≤ s ≤ 0.7, all at Fr = 5 and Re = 100.

smaller, no more than 0.02%, over the whole time series, indicating that the s = 0.7

fountain has been symmetric at all developing stages, which is in agreement with

the observation from Fig. 5.10. However, when s decreases to 0.5, both Umax/W0
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Figure 5.11: Time series of Umax/W0 (left column) and Vmax/W0 (right column) of plane foun-
tains with different Re over the range 0 ≤ s ≤ 0.7, all at Fr = 5 and Re = 100.

and Vmax/W0 increase significantly at the later developing stage, to be as high as

25% and 8% respectively. This clearly shows that at s = 0.5 the fountain becomes

asymmetric at the later developing stage. Nevertheless, a further decrease in s does

not lead to a proportional increase in the time-averaged values of Umax/W0 and

Vmax/W0, as clearly shown in the figure. Hence the quantitative results presented in

Fig. 5.11 confirm that a critical value between s = 0.7 and s = 0.5 exists for s when

Fr and Re are fixed at Fr = 5 and Re = 100, which distinguishes the symmetric
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Figure 5.12: (a) τasy,x; (b) umax,a; (c) σmax,u; (d) τasy,y; (e) vmax,a; and (f) σmax,v plotted
against s over the range of 0 ≤ s ≤ 0.7 with Fr varying in the range of 5 ≤ Fr ≤ 10, all at
Re = 100.

plane fountains from asymmetric plane fountains. From Fig. 5.11, it is also seen

that the onset of the asymmetric behavior along the X direction occurs in general

earlier than that along the Y direction for each s, meaning that τasy,x is in general

smaller than τasy,y for each s.

The quantitative effect of s on the onset time of the asymmetry and the extent

of the asymmetric behavior at the fully developed stage along both the X and Y

directions is more evidently demonstrated in Fig. 5.12, where τasy,x, τasy,y, umax,a,

vmax,a, σmax,u, and σmax,v are plotted against s over the range of 0.1 ≤ s ≤ 0.5

with Fr varying in the range of 5 ≤ Fr ≤ 10, all at Re = 100. From Fig. 5.12(a)

and (d), it is seen that the effect of s on τasy,x and τasy,y is strongly dependent on
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the value of Fr. When Fr ≤ 7, τasy,x and τasy,y in general increase when Fr is

increased; however, both τasy,x and τasy,y are essentially constant when Fr is further

increased, indicating they are essentially independent of s when Fr is beyond 7.

Another feature that can be observed from Fig. 5.12(a) and (d) is that the trends in

τasy,x and τasy,y are in generally the same, although for each s value, τasy,x is smaller

than the corresponding τasy,y.

The effect of s on umax,a and vmax,a, as shown in Fig. 5.12(b) and (e), is observed

to be in a similar fashion as that of s on τasy,x and τasy,y, although when Fr ≤ 7,

umax,a and vmax,a in general decrease, not increase, when Fr is increased. umax,a

is essentially constant when Fr is further increased, indicating it is essentially in-

dependent of s when Fr is beyond 7. vmax,a decreases slightly when Fr is further

increased beyond Fr = 7. One more feature can be observed from the figure is

that in general vmax,a is smaller than umax,a for the same case, as clearly shown in

Fig. 5.12(b) and (e).

Once again, it is observed from Fig. 5.12(c) and (f) that no unique trends in the

effect of s on σmax,u and σmax,v can be found.

5.3.3 Regime maps for asymmetric transition

The results described and discussed above can be used to create regime maps for

the symmetric-to-asymmetric transition in plane fountains in linearly stratified fluids

with varying Fr, Re and s considered in this study. Such regime maps are shown

in Fig. 5.13 for the asymmetric transition in the Fr − s domain at Re = 100, in

the Re− s domain at Fr = 5, and in the Re− Fr domain at s = 0.1, respectively.

In each of these regime maps, a demarcation line can be drawn to distinguish the

symmetric fountain regime from the asymmetric fountain regime, as shown in the

figure.

In the Fr − s domain at Re = 100, as shown in Fig. 5.13(a), the demarcation

line can be approximated by the following empirical relation,

Frcri,Re=100 = 4.8s+ 2.445, (5.1)

with R = 0.9975, which is obtained from the DNS results over the ranges of 2.75 ≤
Fr ≤ 10 and 0.1 ≤ s ≤ 0.5, all at Re = 100. This relation clearly shows that the

critical Fr at Re = 100 for the symmetric-to-asymmetric transition increases linearly

with the increase of s over the ranges of Fr and s considered. This is apparently
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Figure 5.13: Regime maps for the symmetric-to-asymmetric transition in plane fountains in
linearly stratified fluids with varying Fr, Re and s considered in this study: (a) in the Fr − s
domain at Re = 100; (b) in the Re − s domain at Fr = 5; and (c) in the Re − Fr domain at
s = 0.1. The solid lines are the demarcation lines to distinguish the symmetric fountain regime
from the asymmetric fountain regime.

due to the flow-stabilizing role played by the stratification of the ambient fluid, as

discussed in Chapter 4.

In the Re− s domain at Fr = 5, as shown in Fig. 5.13(b), the demarcation line

can be approximated by the following empirical relation,

Recri,Fr=5 = 19.375e3.035s, (5.2)

with R = 0.9934, which is obtained from the DNS results over the ranges of 25 ≤
Re ≤ 300 and 0.1 ≤ s ≤ 0.5, all at Fr = 5. The relation shows that for a fixed Fr

(when Fr = 5), the critical Re for the symmetric-to-asymmetric transition increases

exponentially with the increase of s over the ranges of Re and s considered, again

due to the flow-stabilizing role played by the stratification of the ambient fluid,

similar to that for the Fr − s domain, as described above.

In the Re−Fr domain at s = 0.1, as shown in Fig. 5.13(c), the demarcation line

can be approximated by the following empirical relation,

Recri,s=0.1 = 34599Fr−5.653 + 21.69, (5.3)
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with R = 0.9995, which is obtained from the DNS results over the ranges of 25 ≤
Re ≤ 300 and 2.875 ≤ Fr ≤ 10, all at s = 0.1. The relation shows that for a fixed s

(when s = 0.1), the critical Re for the symmetric-to-asymmetric transition decreases

dramatically and exponentially with the increase of Fr when Fr is no more than 4;

however, when Fr is beyond, over the ranges of Re and Fr considered, the critical

Re for the symmetric-to-asymmetric transition decreases only marginally when Fr

is further increased. A better understanding of the mechanism for this trend needs

many further DNS runs, which is beyond the scope of this thesis.

It should be noted that the exact location of such a demarcation line in each

regime map is not determined, rather than just estimated from the DNS results

over the ranges of Fr, Re and s considered in this thesis, as represented by the

above empirical relations (5.1)-(5.3). The determination of the exact location of

such a demarcation line for each domain, plus those in each of the regime maps for

other values of Fr, or Re or s that are not considered, will require many more DNS

runs to be carried out, which is beyond the scope of this thesis and hence will not

be proceeded further.

5.4 Maximum fountain penetration height

5.4.1 Qualitative observation

The typical flow behavior of an asymmetric plane fountain is demonstrated in

Fig. 4.4 by the evolution of transient temperature contours of a plane fountain at

Fr = 10, Re = 100 and s = 0.1 at several selected instants of time.

The effect of Fr on the transition of plane fountain from symmetric to asymmet-

ric and unsteady behaviour is depicted in Fig. 5.14 where representative temperature

contours at the quasi-steady state on three individual planes with Fr varying in the

range of 3 ≤ Fr ≤ 10, all at Re = 100 and s = 0.1 are shown. The results show that

at the quasi-steady state all these plane fountains become asymmetric and unsteady.

The fountain flow in the X−Z plane flaps in the X direction and the fountain height

increases when Fr increases. It is also observed that the extent of entrainment in-

creases with Fr. In the Y −Z plane, the increase of Fr leads to larger fluctuations

of the fountain height along the Y direction. Similarly, the fountain width and the

fluctuation of the fountain width in the X − Y plane increase with Fr as well.
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Figure 5.14: Snapshots of temperature contours at the fully developed stage for Fr in the range
of 3 ≤ Fr ≤ 10, all at Re = 100 and s = 0.1, at Y = 0 in the X − Z plane (first column),
X = 0 in the Y − Z plane (second column), and Z = 0.5Zm,i in the X − Y plane (third column),
respectively, where Zm,i is the initial maximum fountain penetration height. The temperature
contours are normalized with [T (Z)− T0]/(Ta,Z=100X0 − T0).

The effect ofRe on the transition of plane fountain from symmetric to asymmetric

and unsteady behaviour is exhibited in Fig. 5.15 where representative temperature

contours at the quasi-steady state on three individual planes with Re varying in

the range 30 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1, are shown. The results

show that at the quasi-steady state all these plane fountains become asymmetric

and unsteady. The fountain flow in the X − Z plane flaps in the X direction and

the fountain height at higher Re values (100 ≤ Re ≤ 300) is essentially independent

of Re, whereas it increases with Re at smaller Re values. In the Y − Z plane, the

fountain height along the Y direction is essentially constant at Re ≤ 50, but varies

at higher Re values, with the fluctuation in the fountain height along the Y direction

increasing with Re. Similarly, the increase in Re results in a larger fountain width

and increased fluctuation of the width in the X − Y plane. It is also observed that
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the extent of entrainment increases with Re.

Figure 5.15: Snapshots of temperature contours at the fully developed stage for Re in the range
of 30 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1, at Y = 0 in the X −Z plane (first column), X = 0 in
the Y −Z plane (second column), and Z = 0.5Zm,i in the X−Y plane (third column), respectively.
The temperature contours are normalized with [T (Z)− T0]/(Ta,Z=100X0

− T0).

Figure 5.16 presents the representative temperature contours at the quasi-steady

stage on the same three individual planes as those in Figs. 5.14 and 5.15 when s varies

in the range 0 ≤ s ≤ 0.5, with Fr and Re kept constant at Fr = 5 and Re = 100.

The results with s = 0, which represents the case with a homogeneous ambient fluid,

are also included for comparison. Again all these plane fountains become asymmetric

and unsteady at the quasi-steady state, although the extent of asymmetry and

unsteadiness decreases with increasing s, as clearly exhibited in the figure. It is also

observed that the fountain height, as shown by the contours in the X − Z plane,

decreases when s increases. This is due to the increasing negative buoyancy that the

fountain fluid has to overcome to penetrate in the linearly-stratified ambient fluid.

In the Y −Z plane, the increase in s leads to a lower fountain height and a smaller

extent of the fluctuation of the height along the Y direction. Similarly, the increase

in s leads to a smaller extent of the fluctuation of the width in the X − Y plane as

well. All these clearly demonstrate that the stratification of the ambient fluid plays

a positive role to stabilize the flow and to alleviate its asymmetric and unsteady

behavior.
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Figure 5.16: Snapshots of temperature contours at the fully developed stage for s in the range of
0 ≤ s ≤ 0.5, all at Fr = 5 and Re = 100, at Y = 0 in the X−Z plane (first column), X = 0 in the
Y − Z plane (second column), and Z = 0.5Zm,i in the X − Y plane (third column), respectively.
The temperature contours are normalized with [T (Z)− T0]/(Ta,Z=100X0

− T0).

5.4.2 Time series of fountain penetration height

The fountain penetration height, Zm, is determined as the vertical distance from

the bottom of the domain to the vertex point of the iso-surface at the temperature

of T (Z) = T0 − 1%(Ta,0 − T0) within the whole computational domain. A typical

time series of the dimensionless fountain penetration height, zm (zm = Zm/X0),

obtained from DNS, is presented as an example in Fig. 5.17 for the case of Fr = 6,

Re = 100 and s = 0.2. It is seen that initially the fountain rises continuously

after initiation until at τm,i when it attains an initial maximum penetration height

zm,i. After that, zm falls slightly before it rises again, followed by a short period

of transition before it becomes fully developed and attains the quasi-steady state

subsequently, with zm fluctuating around an almost constant value, zm,a, which is

denoted as the time-averaged maximum penetration height. τm,i (the dimensionless

time for the fountain to attain the initial maximum penetration height zm,i, which

is made dimensionless by X0/W0), zm,i, zm,a, σm which is the standard deviation of

zm around zm,a at the quasi-steady state, and the time period used for determining

zm,a are illustrated in Fig. 5.17.
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Figure 5.17: Illustration of zm,i, τm,i, zm,a and σm based on the time series of the dimensionless
maximum fountain penetration height, zm, obtained from DNS for the case of Fr = 6, Re = 100
and s = 0.1. σm is the standard deviation of zm around zm,a at the quasi-steady state.

The DNS results for the time series of zm with varying Fr, Re and s in the ranges

of 3 ≤ Fr ≤ 10, 35 ≤ Re ≤ 300, and 0 ≤ s ≤ 0.5 are presented in Fig. 5.18. It is

observed that in general zm increases with Fr due to stronger momentum flux of the

fountain fluid at a higher Fr, but on the contrary, decreases when s increases due

to larger negative buoyancy. However, at the quasi-steady state, zm is essentially

independent on Re for the Re range considered, indicating that the effect of Re on

zm,a at the quasi-steady state is negligible, although Re does have effect on zm,i when

Re ≤ 100, as clearly exhibited in the figure. It is also observed that τm,i increases

with Fr as at a higher Fr it will take a longer time for the negative buoyancy to

reduce the stronger momentum of the fountain fluid to be zero, whereas τm,i reduces

when s increases, again due to the increasing negative buoyancy which results in

reduced zm,i. τm,i is also observed to reduce when Re increases, although with small

amounts of reduction. These results imply that the stratification of the ambient

fluid plays a positive role to stabilize the fountain flow and to reduce its transition

to asymmetry and unsteadiness, whereas on the contrary Fr plays a negative role

and the effect of Re is small in this regard.

5.4.3 Scalings from dimensional analysis

For weak fountains with Fr = O(1), Lin and Armfield (2002) argued that the

specific momentum flux M0, the specific buoyancy flux B0, the kinematic viscosity

ν, and the stratification of the ambient fluid Sp provide a complete parametrization
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Figure 5.18: Time series of zm for (a) varying s in the range of 0 ≤ s ≤ 0.5 at Fr = 5 and
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of the maximum fountain penetration height, where M0 and B0 are defined for plane

fountains as

M0 = 2W 2
0X0, B0 = 2W0X0g

ρ0 − ρa,0
ρa,0

= 2W0X0gβ(Ta,0 − T0), (5.4)

in which ρa,0 is the ambient fluid density at the bottom (i.e., at Z = 0). With

these four parameters, they conducted a dimensional analysis and gave the following

scaling for the maximum penetration height for weak plane fountains,

zm ∼ Fr
2
3

(2+2a−b)Re−bsa, (5.5)
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where the indexes a and b are constants whose values can be determined from

experimental or numerical results. Apparently this scaling is applicable for both

zm,i and zm,a.

From scaling point of view, as tm,i ∼ Zm,i/W0, which leads to τm,i(X0/W0) ∼
zm,iX0/W0, i.e., τm,i ∼ zm,i, it is therefore believed that the above scaling (5.5) will

also be applicable for τm,i, i.e.,

τm ∼ Fr
2
3

(2+2c−d)Re−dsc, (5.6)

where the indexes c and d are not necessarily to be the same as a and b.

In this study, the above scalings obtained for weak plane fountains will be exam-

ined, as shown subsequently with the DNS results, to show if they are also applicable

for transitional plane fountains with higher Fr values considered here.

5.4.4 Initial maximum penetration height

The effect of Fr, Re and s on zm,i is demonstrated by the DNS results presented

in Fig. 5.19 for transitional plane fountains over the ranges of 3 ≤ Fr ≤ 10, 28 ≤
Re ≤ 300 and 0.1 ≤ s ≤ 0.5. From Fig. 5.19(a), it is seen that at Re = 100,

for each s value, zm,i increases monotonically when Fr increases. This is because

when Fr increases, the momentum flux of the fountain will become stronger and

hence the fountain will penetrate higher in the ambient fluid. However, when the

stratification of the ambient fluid increases, the negative buoyancy that the fountain

has to overcome to penetrate in the ambient fluid will become stronger as well,

leading to smaller zm,i. The results presented in Fig. 5.19(a) clearly support this.

The DNS results further demonstrate, as shown in Fig. 5.19(b), that at a fixed Re

the dependence of zm,i on Fr for each s value can be quantified by the following

relation,

zm,i = C1Fr
a1 (5.7)

where C1 is a constant of proportionality and the index a1 is also a constant. The

values of these two constants were determined by linear regression analysis of the

data presented in Fig. 5.19(b), and the results are listed in Table 5.2. It is seen

that the value of C1 decreases with s, apparently due to stronger stratification, thus

stronger negative buoyancy. However, the value of a1 increases slightly with s.

For Fr = 5 and s = 0.1, it is found that zm,i increases monotonically with

Re when Re ≤ 100, but becomes almost constant when Re > 100, as shown in
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Figure 5.19: (a) zm,i plotted against Fr and (b) ln(zm,i) plotted against ln(Fr) over 3 ≤ Fr ≤ 10
at Re = 100 with different s values; (c) zm,i plotted against Re and (d) ln(zm,i) plotted against
ln(Re) over 28 ≤ Re ≤ 300 at Fr = 5 and s = 0.1; and (e) zm,i plotted against s and (f) ln(zm,i)
plotted against ln(s) over 0.1 ≤ s ≤ 0.5 at Re = 100 with different Fr values. The solid lines are
linear fit lines.

Table 5.2: Regression results for the dependence of zm,i on Fr for 3 ≤ Fr ≤ 10 at Re = 100
with different s.

s C1 a1 R

0.1 2.456 1.048 0.9868
0.2 1.586 1.156 0.9885
0.3 1.375 1.160 0.9907
0.4 1.099 1.218 0.9915
0.5 0.952 1.239 0.9978

Fig. 5.19(c). This implies that the fountain behavior, in terms of zm,i, may be in

different regimes when Re ≤ 100 and when Re ≥ 100. For Re ≤ 100, the dependence
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of zm,i on Re can be quantified with the DNS results over the range of 28 ≤ Re ≤ 100

by the following correlation, as shown in Fig. 5.19(d),

zm,i = 4.731Re0.244. (5.8)

Table 5.3: Regression results for the dependence of zm,i on s for 0.1 ≤ s ≤ 0.5 at Re = 100 with
different Fr.

Fr C2 c1 R

5 5.040 -0.459 0.9997
6 6.783 -0.413 0.9803
7 9.102 -0.336 0.9801
8 11.219 -0.282 0.9998
9 12.147 -0.292 0.9991
10 12.606 -0.329 0.9987

The effect of s on zm,i is illustrated in Fig. 5.19(e) for the fountains over the

ranges 0.1 ≤ s ≤ 0.5 and 5 ≤ Fr ≤ 10, all at Re = 100. In contrast to the effect

of Fr and Re on zm,i, it is seen that zm,i decreases monotonically with increasing

s, which is the result of the increasing negative buoyancy that the fountain has to

overcome when penetrating the stratified ambient fluid. Similarly, the dependence

of zm,i on s is in general not linear, and the DNS results presented in Fig. 5.19(f)

clearly demonstrate that this dependence can be expressed by the following relation,

zm,i = C2s
c1 (5.9)

where C2 is a constant of proportionality and the index c1 is also a constant. The

values of these two constants were determined by linear regression analysis of the

data presented in Fig. 5.19(f), with the results listed in Table 5.3. It is seen that

the value of C2 increases with Fr due to larger momentum flux of the fountain fluid

which leads to larger fountain penetration height, and the value of c1 is also found

in general to increases with Fr, possibly due to the same mechanism.

As the dependence of zm,i on Fr, Re and s can be represented by the relations

(5.7), (5.8) and (5.9), respectively, the combined effect of these governing parameters

on zm,i can be quantified by the following relation,

zm,i = C3Fr
a2Reb1sc2 , (5.10)

where C3 is a constant of proportionality and the indexes a2, b1 and c2 are again

constants. The values of these constants are determined by multivariable regression
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Figure 5.20: zm,i plotted against (a) Fr1.152Re0.158s−0.360 and (b) Fr0.958Re0.158s−0.360 over
the ranges of 3 ≤ Fr ≤ 10, 28 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5. The solid lines are linear fit lines.

method using the DNS results over the ranges of 3 ≤ Fr ≤ 10, 28 ≤ Re ≤ 300 and

0.1 ≤ s ≤ 0.5, which gives the following quantified correlation,

zm,i = 0.407Fr1.152Re0.158s−0.360 + 0.741. (5.11)

The regression coefficient of this correlation is R = 0.9893, indicating that the DNS

results over the ranges of Fr, Re and s considered are in very good agreement with

the relation (5.10), as clearly demonstrated in Fig. 5.20(a) where the DNS results

for zm,i over the ranges of 3 ≤ Fr ≤ 10, 28 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5 are

plotted against Fr1.152Re0.158s−0.360.

If the scaling obtained by Lin and Armfield (2002) for weak plane fountains,

i.e., (5.5), is also applicable for transitional plane fountains considered here, and

the values of a and b determined with the DNS results, as presented in (5.11), are

valid, i.e., a = −0.360 and b = −0.158, the index for Fr, from (5.5), should be
2
3
(2 + 2a− b) = 0.958. However, from (5.11), it is found that the index for Fr

obtained with the DNS results over the ranges of Fr, Re and s considered is 1.152,

which is (1.152 − 0.958)/0.958 = 20% higher than the value expected from the
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dimensional analysis for weak fountains. Nevertheless, the DNS results show that

the scaling (5.5) obtained for weak fountains still works very well for transitional

plane fountains considered here, as it is seen that Fr0.958Re0.158s−0.360 collapses all

DNS data well onto the straight line quantified by the following correlation, as shown

in Fig. 5.20(b),

zm,i = 0.669Fr0.958Re0.158s−0.360 − 0.977, (5.12)

with the regression coefficient of R = 0.9883.

5.4.5 Time-averaged maximum fountain height
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Figure 5.21: (a) zm,a plotted against Fr and (b) ln(zm,a) plotted against ln(Fr) over 3 ≤ Fr ≤ 10
at Re = 100 with different s values; (c) zm,a plotted against Re and (d) ln(zm,a) plotted against
ln(Re) over 28 ≤ Re ≤ 300 at Fr = 5 and s = 0.1; and (e) zm,a plotted against s and (f) ln(zm,a)
plotted against ln(s) over 0.1 ≤ s ≤ 0.5 at Re = 100 with different Fr values. The solid lines are
linear fit lines.
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Table 5.4: Regression results for the dependence of zm,a on Fr for 3 ≤ Fr ≤ 10 at Re = 100
with different s.

s C4 a3 R

0.1 2.524 0.987 0.9999
0.2 2.466 0.895 0.9986
0.3 2.654 0.801 0.9932
0.4 2.242 0.835 0.9984
0.5 2.178 0.820 0.9974

Similar results are also obtained for the time-averaged maximum fountain

height, zm,a, as shown in Fig. 5.21 and Fig. 5.22.

Figure 5.21 presents the effect of Fr, Re and s on zm,a, obtained numerically

for the same transitional plane fountains as those in Fig. 5.19. Similar to zm,i, it is

seen from Fig. 5.21(a) that for each s value, zm,a also increases monotonically when

Fr increases, due to stronger fountain momentum flux, but decreases when s in-

creases, due to larger negative buoyancy. The DNS results, as shown in Fig. 5.21(b),

demonstrate that at Re = 100 the dependence of zm,a on Fr for each s value can be

quantified by the following relation,

zm,a = C4Fr
a3 . (5.13)

The constants C4 and a3 in the above relation were determined by linear regression

analysis of the data presented in Fig. 5.21(b), which are listed in Table 5.4. It is

seen that in general both C4 and a3 decrease slightly with s due to stronger negative

buoyancy.

For Fr = 5 and s = 0.1, as shown in Figs. 5.21(c) and 5.21(d), it is found that

zm,a increases very marginally when Re increases, indicating that zm,a is essentially

independent of Re over the ranges considered, which is in agreement with the results

presented in Fig. 5.18(b), as discussed above.

Fig. 5.21(e) demonstrates the effect of s on zm,a over the ranges 0.1 ≤ s ≤ 0.5

and 5 ≤ Fr ≤ 10, all at Re = 100. Similarly to the zm,i case, it is seen that

zm,a decreases monotonically with increasing s, which is again due to the increasing

negative buoyancy that the fountain has to overcome when penetrating the stratified

ambient fluid. The dependence of zm,a on s, as shown by the DNS results presented

in Fig. 5.21(f), can be quantified by the following relation,

zm,a = C5s
c3 . (5.14)
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Figure 5.22: zm,a plotted against (a) Fr0.854Re0.026s−0.267, (b) Fr0.995Re0.026s−0.267, and (c)
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The constants C5 and c3 were determined by linear regression analysis of the data

presented in Fig. 5.21(f) and listed in Table 5.5. It is seen that the value of C5

increases significantly with Fr due to larger momentum flux of the fountain fluid

which leads to larger fountain penetration height, whereas the value of c3 is found

to decrease with Fr, which is on the contrary to the case for zm,i.

Similarly, the combined effect of Fr, Re and s on zm,a can be quantified by the

following relation,

zm,a = C6Fr
a4Reb2sc4 , (5.15)
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where C6 is a constant of proportionality and the indexes a4, b2 and c4 are again

constants. The values of these constants are determined by multivariable regression

method using the DNS results over the ranges of 3 ≤ Fr ≤ 10, 28 ≤ Re ≤ 300 and

0.1 ≤ s ≤ 0.5, which gives the following quantified correlation,

zm,a = 1.556Fr0.854Re0.026s−0.267 − 0.231. (5.16)

The regression coefficient of this correlation is R = 0.9925, indicating that the DNS

results over the ranges of Fr, Re and s considered are in very good agreement with

the relation (5.15), as clearly demonstrated in Fig. 5.22(a) where the DNS results

for zm,a over the ranges of 3 ≤ Fr ≤ 10, 28 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5 are

plotted against Fr0.854Re0.026s−0.267.

Similar to zm,i, if the scaling obtained by Lin & Armfield (2002) for weak plane

fountains, i.e., (5.5), is also applicable for transitional plane fountains considered

here, and the values of a and b determined with the DNS results, as presented in

(5.16), are valid, i.e., a = −0.267 and b = −0.026, the index for Fr, from (5.5),

should be 2
3
(2 + 2a− b) = 0.995. However, from (5.16), it is found that the index

for Fr obtained with the DNS results over the ranges of Fr, Re and s considered is

0.854, which is (0.995−0.854)/0.995 = 14% smaller than the value expected from the

dimensional analysis for weak fountains. Nevertheless, the DNS results show that

the scaling (5.5) obtained for weak fountains again works very well for transitional

plane fountains considered here, as it is seen that Fr0.995Re0.026s−0.267 collapses all

DNS data well onto the straight line quantified by the following correlation, as shown

in Fig. 5.22(b),

zm,a = 1.059Fr0.995Re0.026s−0.267 + 1.220, (5.17)

with the regression coefficient of R = 0.9900.

Table 5.5: Regression results for the dependence of zm,a on s for 0.1 ≤ s ≤ 0.5 at Re = 100 with
different Fr.

Fr C5 c3 R

5 6.859 -0.256 0.9984
6 8.017 -0.267 0.9837
7 8.713 -0.293 0.9966
8 9.779 -0.305 0.9946
9 10.521 -0.321 0.9997
10 11.173 -0.345 0.9984

As shown in Figs. 5.21(c) and 5.21(d) and discussed above, zm,a is essentially
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independent of Re over the ranges considered and the index for Re in the relation

(5.17), i.e., 0.026, is negligible and thus can be assumed to be zero. It is also

interesting to note that the index for s in the relation (5.17), i.e., -0.267, is very

close to -1/4. It is reasonable to speculate that in the relation (5.17) the index for

s should be -1/4 and the index for Re should be 0 for transition plane fountains

over the ranges of Fr, Re and s studied in this study. These will result in the index

for Fr in the scaling (5.5) obtained for weak fountains, if it works for transitional

plane fountains as well, to be 2
3
(2 + 2× (−1/4)− 0) = 1. It is found that Frs−1/4

collapses all DNS data very well onto the straight line quantified by the following

correlation, as shown in Fig. 5.22(c),

zm,a = 1.205Frs−1/4 + 1.252, (5.18)

with the regression coefficient of R = 0.9852. It is thus believed that the relation

(5.18) is the more appropriate scaling relation to represent the dependence of zm,a

on Fr, Re and s over their respective ranges considered in this paper. Nevertheless,

it is apparent that further studies are necessary to find the underpinning physics to

support this speculation.

5.4.6 Time to reach the initial maximum fountain height

The effect of Fr, Re and s on τm,i is presented in Fig. 5.23 with the DNS

results obtained for the same transitional plane fountains as those for Figs. 5.19

and 5.21. When Fr increases, a fountain will penetrate higher in the ambient fluid

due to stronger fountain momentum flux, and thus will take a longer time to attain

zm,i, which leads to a larger τm,i. The DNS results presented in Fig. 5.23(a) clearly

demonstrate this as it is seen that for each s value, τm,i increases monotonically when

Fr increases, similar to zm,i and zm,a. The DNS results, as shown in Fig. 5.23(b),

further show that at Re = 100 the dependence of τm,i on Fr for each s value can be

quantified by the following relation,

τm,i = C7Fr
a5 . (5.19)

The constants C7 and a5 in the above relation were determined by linear regression

analysis of the data presented in Fig. 5.23(b), which are listed in Table 5.6. It is

seen that C7 decreases with s but a5 increases with s.

For Fr = 5 and s = 0.1, as shown in Fig. 5.23(c), it is found that τm,i decreases

when Re increases, which can be quantified with the DNS results over the range of
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Figure 5.23: (a) τm,i plotted against Fr and (b) ln(τm,i) plotted against ln(Fr) over 3 ≤ Fr ≤ 10
at Re = 100 with different s values; (c) τm,i plotted against Re and (d) ln(τm,i) plotted against
ln(Re) over 28 ≤ Re ≤ 300 at Fr = 5 and s = 0.1; and (e) τm,i plotted against s and (f) ln(τm,i)
plotted against ln(s) over 0.1 ≤ s ≤ 0.5 at Re = 100 with different Fr values. The solid lines are
linear fit lines.

28 ≤ Re ≤ 300 by the following correlation, as shown in Fig. 5.23(d),

τm,i = 156.29Re−0.018, (5.20)

with the regression coefficient of R = 0.9221. However, as the index for Re is -

0.018, which is very small, the effect of Re on τm,i for the ranges considered is not

significant.

When s increases, the negative buoyancy becomes stronger and a fountain will

penetrate lower in the ambient fluid. This will lead to the fountain to take a shorter

time, thus smaller τm,i, to attain zm,i. The DNS results presented in Fig. 5.23(e),
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Figure 5.24: τm,i plotted against (a) Fr0.865Re−0.091s−0.317 and (b) Fr0.851Re−0.091s−0.317 over
the ranges of 3.5 ≤ Fr ≤ 10, 28 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5. The solid lines are linear fit lines.

Table 5.6: Regression results for the dependence of τm,i on Fr for 3 ≤ Fr ≤ 10 at Re = 100
with different s.

s C7 a5 R

0.1 30.382 0.766 0.9895
0.2 24.777 0.777 0.9957
0.3 16.679 0.908 0.9961
0.4 14.472 0.923 0.9950
0.5 13.113 0.929 0.9865

which demonstrates the effect of s on τm,i over the ranges 0.1 ≤ s ≤ 0.5 and

5 ≤ Fr ≤ 10, all at Re = 100, clearly show this. Similarly to zm,i and zm,a, it is seen

that τm,i decreases monotonically with increasing s, and the dependence of τm,i on

s, as shown in Fig. 5.23(f), can be quantified by the following relation,

τm,i = C8s
c5 . (5.21)

The constants C8 and c5 were determined by linear regression analysis of the data

presented in Fig. 5.23(f) and listed in Table 5.7. It is seen that the value of C8

increases significantly with Fr due to larger momentum flux of the fountain fluid
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which leads to larger fountain penetration height and thus longer time to attain the

initial fountain height, whereas the value of c3 is relatively constant, at about -0.31.

Table 5.7: Regression results for the dependence of τm,i on s for 0.1 ≤ s ≤ 0.5 at Re = 100 with
different Fr.

Fr C8 c5 R

5 45.801 -0.359 0.9902
6 58.608 -0.311 0.9721
7 69.180 -0.297 0.9881
8 74.306 -0.307 0.9822
9 82.697 -0.299 0.9787
10 90.202 -0.310 0.9904

Again similarly the combined effect of Fr, Re and s on τm,i can be quantified by

the following relation,

τm,i = C9Fr
a6Reb3sc6 , (5.22)

where C9 is a constant of proportionality and the indexes a6, b3 and c6 are again

constants. The values of these constants are determined by multivariable regression

method using the DNS results over the ranges of 3 ≤ Fr ≤ 10, 28 ≤ Re ≤ 300 and

0.1 ≤ s ≤ 0.5, which gives the following quantified correlation,

τm,i = 18.73Fr0.865Re−0.091s−0.317 − 0.998. (5.23)

The regression coefficient of this correlation is R = 0.9912, indicating that the DNS

results over the ranges of Fr, Re and s considered are in very good agreement with

the relation (5.22), as clearly demonstrated in Fig. 5.24(a) where the DNS results

for τm,i over the ranges of 3 ≤ Fr ≤ 10, 28 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5 are

plotted against Fr0.865Re−0.091s−0.317.

Similar to zm,i and zm,a, if the scaling obtained by Lin & Armfield (2002) for

weak plane fountains, i.e., (5.6), is also applicable for transitional plane fountains

considered here, and the values of c and d determined with the DNS results, as

presented in (5.23), are valid, i.e., c = −0.317 and d = 0.091, the index for Fr, from

(5.6), should be 2
3
(2 + 2c− d) = 0.851. From (5.23), it is found that the index for

Fr obtained with the DNS results over the ranges of Fr, Re and s considered is

0.865, which is only (0.865 − 0.851)/0.851 = 1.6% larger than the value expected

from the dimensional analysis for weak fountains. This indicates that the scaling

(5.6) obtained for weak fountains works extremely well for transitional plane foun-

tains considered here, as it is seen that Fr0.851Re−0.091s−0.317 collapses all DNS data
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very well onto the straight line quantified by the following correlation, as shown in

Fig. 5.24(b),

τm,i = 19.46Fr0.851Re−0.091s−0.317 − 2.055, (5.24)

with the regression coefficient of R = 0.9909.

5.4.7 Fluctuations of the maximum fountain penetration height at the

quasi-steady state

As illustrated in Fig. 5.17, at the quasi-steady state, the maximum fountain pen-

etration height, zm, fluctuates around its time-averaged counterpart, zm,a, with the

standard deviation, σm, where zm is defined as the dimensionless vertical distance

from the bottom of the domain to the vertex point of the iso-surface at the dimen-

sional temperature of T (Z) = T0 − 1%(Ta,0 − T0) within the whole computational

domain. Although it was found that zm,a depends on Fr, Re and s and the depen-

dence can be quantified by scaling and empirical correlations as described above,

however, no clear dependence of σm on Fr, Re and s can be found, as illustrated by

the results presented in Fig. 23 of Inam et al. (2015) for transitional plane fountains

in stratified fluids over the ranges of 25 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5 at Fr = 10.

Nevertheless, it is found that a clear dependence of σm,c on Fr, Re and s can be

found, as will be shown in § 5.4.7.1, where σm,c is the standard deviation of the time

series of zm,c at the quasi-steady state. zm,c is defined as the dimensionless vertical

distance from the origin (i.e., the center point of the slot at x = 0 and y = 0)

to the point on the vertical axis passing through the origin where the dimensional

temperature is at T (Z) = T0 − 1%(Ta,0 − T0). Similarly, it is also found that a

clear dependence of σm,x=0,a on Fr, Re and s can be found, where σm,x=0,a is the

time-averaged value of the time series of σm,x=0 at the quasi-steady state. σm,x=0 is

the standard deviation of zm,x=0(y), which is the dimensionless maximum fountain

height along the slot at the location x = 0, around its average value along the slot

in the Y direction, zm,x=0,a, as will be described in § 5.4.7.2.

5.4.7.1 σm,c

σm,c is illustrated in Fig. 5.25 by the time series of zm,c obtained from DNS for

the case of Fr = 10, Re = 100 and s = 0.2. It is expected that zm,c,a, which is the

time-averaged value of zm,c at the quasi-steady state, should have similar dependence

on Fr, Re and s as zm,a does so only the results for σm,c are presented here.
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Figure 5.25: Illustration of zm,c,a and σm,c based on the time series of the dimensionless maximum
fountain penetration height at the centre of the domain (i.e., at x = 0 and y = 0), zm,c, obtained
from DNS for the case of Fr = 10, Re = 100 and s = 0.2. σm,c is the standard deviation of zm,c
around the time-averaged zm,c,a at the quasi-steady state.

Table 5.8: Regression results for the dependence of σm,c on Fr for 3 ≤ Fr ≤ 10 at Re = 100
with different s.

s C10 a7 R

0.1 0.0421 1.689 0.9959
0.2 0.0171 2.021 0.9937
0.3 0.0171 1.922 0.9977
0.4 0.0098 2.078 0.9951
0.5 0.0087 2.127 0.9941

Figure 5.26 presents the effect of Fr, Re and s on σm,c, obtained numerically

for the same transitional plane fountains as those in Fig. 5.21. Similar to zm,a, it

is seen from Fig. 5.26(a) that for each s value, σm,c also increases monotonically

when Fr increases, but decreases when s increases. The DNS results, as shown in

Fig. 5.26(b), demonstrate that at Re = 100 the dependence of σm,c on Fr for each

s value can be quantified by the following relation,

σm,c = C10Fr
a7 . (5.25)

The constants C10 and a7 in the above relation were determined by linear regression

analysis of the data presented in Fig. 5.26(b), which are listed in Table 5.8.

The influence of Re on σm,c is demonstrated by the DNS results with Fr = 5

and s = 0.1, as shown in Figs. 5.26(c). It is seen that σm,c increases monotonically,
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Figure 5.26: (a) σm,c plotted against Fr and (b) ln(σm,c) plotted against ln(Fr) over 3 ≤ Fr ≤ 10
at Re = 100 with different s values; (c) σm,c plotted against Re and (d) ln(σm,c) plotted against
ln(Re) over 35 ≤ Re ≤ 300 at Fr = 5 and s = 0.1; and (e) σm,c plotted against s and (f) ln(σm,c)
plotted against ln(s) over 0.1 ≤ s ≤ 0.5 at Re = 100 with different Fr values. The solid lines are
linear fit lines.

almost linearly, with Re when Re < 200, but the rate of increase drops significantly

when Re is higher. The dependence of σm,c on Re can be quantified with the DNS

results over the range of 28 ≤ Re ≤ 300 by the following correlation, as shown in

Fig. 5.26(d),

σm,c = 0.0988Re0.399, (5.26)

with the regression constant of R = 9839.

Fig. 5.26(e) demonstrates the effect of s on σm,c over the ranges 0.1 ≤ s ≤ 0.5

and 5 ≤ Fr ≤ 10, all at Re = 100. Similarly to the zm,a case, it is seen that σm,c

decreases monotonically with increasing s, due to stronger negative buoyancy. The
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Figure 5.27: σm,c plotted against Fr1.896Re0.406s−0.505 over the ranges of 3 ≤ Fr ≤ 10, 28 ≤
Re ≤ 300 and 0.1 ≤ s ≤ 0.5. The solid line is the linear fit line.

Table 5.9: Regression results for the dependence of σm,c on s for 0.1 ≤ s ≤ 0.5 at Re = 100 with
different Fr.

Fr C11 c7 R

5 0.8737 -0.379 0.9806
6 0.6565 -0.459 0.9890
7 0.5309 -0.449 0.9778
8 0.4499 -0.413 0.9570
9 0.2502 -0.551 0.9520
10 0.1871 -0.513 0.9856

dependence of σm,c on s, as shown by the DNS results presented in Fig. 5.26(f), can

be quantified by the following relation,

σm,c = C11s
c7 . (5.27)

The constants C11 and c7 were determined by linear regression analysis of the data

presented in Fig. 5.26(f) and listed in Table 5.9. It is seen that the value of C11

decreases significantly with Fr due to larger momentum flux of the fountain fluid

which leads to larger fountain penetration height, whereas the value of c7 is found

to decrease with Fr, which is on the contrary to the case for zm,i.

Similarly, the combined effect of Fr, Re and s on σm,c can be quantified by the

following relation,

σm,c = C12Fr
a8Reb4sc8 , (5.28)

where C12 is a constant of proportionality and the indexes a8, b4 and c8 are again

constants. The values of these constants are determined by multivariable regression

method using the DNS results over the ranges of 3 ≤ Fr ≤ 10, 28 ≤ Re ≤ 300 and
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0.1 ≤ s ≤ 0.5, which gives the following quantified correlation,

σm,c = 0.0014Fr1.896Re0.406s−0.505 + 0.030. (5.29)

The regression coefficient of this correlation is R = 0.9862, indicating that the DNS

results over the ranges of Fr, Re and s considered are in very good agreement with

the relation (5.28), as clearly demonstrated in Fig. 5.27 where the DNS results for

σm,c over the ranges of 3 ≤ Fr ≤ 10, 28 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5 are plotted

against Fr1.896Re0.406s−0.505.

5.4.7.2 σm,x=0,a

As discussed in § 5.4.1, at the early developing stage, a transitional plane fountain

is symmetric along the slot (in the Y direction), represented by the same maximum

fountain height along the Y direction in the Y − Z plane. However, at a specific

time instant, this symmetric flow will transition to an asymmetric one, represented

by the fluctuations of the maximum fountain height along the Y direction. If the

dimensionless maximum fountain height along the slot, at the location x = 0, is

denoted by zm,x=0, which is made dimensionless by X0, it is apparent that at the

quasi-steady state in which the flow is asymmetric, zm,x=0 at each time instant is

a function of y, i.e., zm,x=0(y). The instantaneous profiles of zm,x=0(y) at different

time instants are presented in Fig. 5.28 for the plane fountain at Fr = 5, Re = 100,

and s = 0.1, as an example.
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Figure 5.28: Instantaneous profiles of zm,x=0(y) along the slot (in the Y direction) at X = 0) at
different time instants for Fr = 5, Re = 100, and s = 0.1.
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The standard deviation of zm,x=0(y) around its average value, zm,x=0,a, along the

slot, is denoted as σm,x=0, as illustrated in Fig. 5.29(a). The time series of σm,x=0 is

presented in Fig. 5.29(b) for the plane fountain at Fr = 7, Re = 100, and s = 0.1.

It is seen that at the early developing stage, the flow is symmetric so σm,x=0 is zero;

however, after the flow becomes asymmetric in the Y direction, σm,x=0 is not zero

anymore and its value fluctuates. At the quasi-steady state, σm,x=0 fluctuates around

its time-averaged values, denoted as σm,x=0,a, as illustrated in Fig. 5.29(b). Fig. 5.30

present the time series of σm,x=0 for the majority of transitional plane fountains

considered in this study, which show that in general the behavior of transitional

plane fountains, in terms of σm,x=0, is similar for different Fr, Re and s.

Similar to zm,c,a, it is expected that the time-averaged value of zm,x=0,a at the

quasi-steady state should have similar dependence on Fr, Re and s as zm,a does so

only the results for σm,x=0,a are presented here.
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Figure 5.29: (a) Illustration of zm,X=0,a and σm,X=0 based on the instantaneous profile of
zm,x=0(y) along the slot (in the Y direction) at x = 0 for Fr = 7, Re = 100, and s = 0.1. σm,x=0

is the standard deviation of zm,x=0(y) around its averaged value along the slot, zm,x=0,a, at the
instant of time; and (b) Time series of σm,x=0 for Fr = 7, Re = 100, and s = 0.1, where σm,X=0,a

is the time-averaged value of σm,x=0 at the quasi-steady state.

Figure 5.31 presents the effect of Fr, Re and s on σm,x=0,a, obtained numerically

for the same transitional plane fountains as those in Fig. 5.21. Similar to zm,a, it is
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seen from Fig. 5.31(a) that for each s value, σm,x=0,a also increases monotonically

when Fr increases, but decreases when s increases. The DNS results, as shown in

Fig. 5.31(b), demonstrate that at Re = 100 the dependence of σm,x=0,a on Fr for

each s value can be quantified by the following relation,

σm,x=0,a = C13Fr
a9 . (5.30)

The constants C13 and a9 in the above relation were determined by linear regression

analysis of the data presented in Fig. 5.31(b), which are listed in Table 5.10.

Table 5.10: Regression results for the dependence of σm,x=0,a on Fr for 3 ≤ Fr ≤ 10 at Re = 100
with different s.

s C13 a9 R

0.1 0.0060 2.669 0.9973
0.2 0.0001 3.375 0.9938
0.3 0.0003 3.796 0.9963
0.4 0.00005 4.612 0.9867
0.5 0.00002 4.853 0.9958

The influence of Re on σm,x=0,a is demonstrated by the DNS results with Fr = 5

and s = 0.1, as shown in Figs. 5.31(c) and 5.31(d). From the results, it is seen that

there are two distinct regimes, with Re = 100 as the dividing point, for Fr = 5 and

s = 0.1. In either regime, σm,x=0,a increases monotonically, essentially linearly, with
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Figure 5.31: (a) σm,x=0,a plotted against Fr and (b) ln(σm,x=0,a) plotted against ln(Fr) over
3 ≤ Fr ≤ 10 at Re = 100 with different s values; (c) σm,x=0,a plotted against Re and (d)
ln(σm,x=0,a) plotted against ln(Re) over 28 ≤ Re ≤ 300 at Fr = 5 and s = 0.1; and (e) σm,x=0,a

plotted against s and (f) ln(σm,x=0,a) plotted against ln(s) over 0.1 ≤ s ≤ 0.5 at Re = 100 with
different Fr values. The solid lines are linear fit lines.

Re, but the rate of increase in the regime beyond Re = 100 is smaller than that in

the regime below Re = 100. The dependence of σm,x=0,a on Re in each of these two

regimes can be quantified with the DNS results, with the relations shown below,

σm,x=0,a = 0.0166Re0.7437, (5.31)

for Re ≤ 100 and

σm,x=0,a = 0.1569Re0.2574, (5.32)

for Re ≥ 100. The regression constants for these two relations are R = 0.9999 and

R = 0.9994, respectively.
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Table 5.11: Regression results for the dependence of σm,x=0,a on s for 0.1 ≤ s ≤ 0.5 at Re = 100
with different Fr.

Fr C14 c9 R

5 0.0212 -1.482 0.9897
6 0.0848 -0.925 0.9618
7 0.3219 -0.528 0.9893
8 0.5493 -0.490 0.9491
9 0.8816 -0.395 0.9983
10 1.1396 -0.384 0.9973

Fig. 5.31(e) demonstrates the effect of s on σm,x=0,a over the ranges 0.1 ≤ s ≤ 0.5

and 5 ≤ Fr ≤ 10, all at Re = 100. Similarly to the zm,a case, it is seen that

σm,x=0,a decreases monotonically with increasing s. The dependence of σm,x=0,a on

s, as shown by the DNS results presented in Fig. 5.31(f), can be quantified by the

following relation,

σm,x=0,a = C14s
c9 . (5.33)

The constants C14 and c9 were determined by linear regression analysis of the data

presented in Fig. 5.31(f) and listed in Table 5.11.

The combined effect of Fr, Re and s on σm,x=0,a can also be quantified by the

following relation,

σm,x=0,a = C15Fr
a10Reb5sc10 , (5.34)

where C15 is a constant of proportionality and the indexes a10, b5 and c10 are again

constants. The values of these constants are determined by multivariable regression

method using the DNS results over the ranges of 3 ≤ Fr ≤ 10, 28 ≤ Re ≤ 300 and
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0.1 ≤ s ≤ 0.5, which gives the following quantified correlation,

σm,x=0,a = 0.0002Fr2.6Re0.6s−0.38 − 0.104. (5.35)

The regression coefficient of this correlation is R = 0.9820, indicating that the DNS

results over the ranges of Fr, Re and s considered are in very good agreement with

the relation (5.34), as clearly demonstrated in Fig. 5.32 where the DNS results for

σm,x=0,a over the ranges of 3 ≤ Fr ≤ 10, 28 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5 are

plotted against Fr2.6Re0.6s−0.38.

5.5 Characteristics of bobbing and flapping behavior

5.5.1 Diagnosis of bobbing and flapping frequencies

Figure 5.33 presents the time series of zm,c and its corresponding power spectral

density spectrum for the plane fountain at Fr = 10, Re = 100 and s = 0.1, where

strz =
fz

(W0/X0)
, (5.36)

is the Strouhal number for bobbing motions, which is the dimensionless form of the

bobbing frequency fz. fz is determined by a fast Fourier transform (FFT) algorithm

with the time series of zm,c, where zm,c = Zm,c/X0 is the dimensionless form of Zm,c,

which is the maximum fountain height on the vertical axis passing through the centre

of the domain and the fountain source slot (i.e., the origin). Zm,c is determined as the

vertical distance from the origin to the height on the vertical axis passing through

the origin where the temperature is T (Z) = T0 − 1%(Ta,0 − T0). From Fig. 5.33(a),

it is observed that zm,c behaves similarly to zm, as illustrated in Fig. 4.16. Initially

zm,c increases continuously after the initiation of the fountain until it attains an

initial maximum height, followed by a short period of transition before it becomes

fully developed subsequently, with zm,c fluctuating around a time-averaged value

over a quite long period of time at the later developing stage. These fluctuations

in height are known as the bobbing motions. The FFT analysis was carried out

over this long period of fluctuations, starting from the instant at τc which is made

dimensionless by X0/W0, as illustrated in Fig. 5.33(a). To ensure that the selected

value for τc, which is somehow arbitrary, does not affect the dominant frequencies

for fz, different values for τc were selected and tested, with the results presented in

Fig. 5.33(b). The results clearly show that the dominant frequencies are essentially
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the same when τc ≥ 300, over the range of 0.011 ≤ strz ≤ 0.012, meaning that

any value between 300 and 600 can be selected for τc in this case. The range of

τ (τc ∼ τend) and number of data into the respective rage; which is used for FFT

analysis to determine fz for the corresponding Fr,Re and s condition; is listed into

the Table 5.12.
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Figure 5.33: (a) Time series of zm,c and (b) the corresponding power spectral density spectrum
of zm,c for the plane fountain at Fr = 10, Re = 100 and s = 0.1, where strz is the Strouhal number
for bobbing motions, which is the dimensionless form of the bobbing frequency fz.

In addition to the bobbing motions in the vertical direction (i.e., the Z direction),

it is observed that an asymmetric plane fountain also demonstrates flapping motions

along both the X and Y directions at the fully developed stage, as depicted in

Figs.5.34 and 5.35, respectively, where the time series of U5/W0 and V5/W0 and

their respective corresponding power spectral density spectra are presented for the

plane fountain at Fr = 3, Re = 100 and s = 0.1. U5 and V5 are the velocities

of U and V respectively at the point X = 0, Y = 0 and Z = 5X0. The flapping

frequencies along the X and Y directions are denoted by fx and fy, respectively.

However, their dimensionless counterparts, strx and stry, which are the Strouhal

numbers for the flapping motions along the X and Y directions, respectively, are

used in the figures. strx and stry are defined as follows,

strx =
fx

(W0/X0)
, stry =

fy
(W0/X0)

. (5.37)



164 Chapter 5

Table 5.12: Key information of the FFT analysis for fz and fx.

Fr Re s
FFT analysis for fz FFT analysis for fx

Range of τ
(τc ∼ τend)

Number of point
used for FFT

Range of τ
(τc ∼ τend)

Number of point
used for FFT

5 100 0 100 ∼ 1000 3600 100 ∼ 1000 3600
5 100 0.05 200 ∼ 1000 3200 100 ∼ 1000 3600
5 100 0.1 200 ∼ 1000 3200 100 ∼ 1000 3600
5 100 0.2 500 ∼ 1000 2000 400 ∼ 1000 2400
5 100 0.3 500 ∼ 1000 2000 400 ∼ 1000 2400
5 100 0.4 600 ∼ 1200 2400 500 ∼ 1200 2800
5 100 0.5 1000 ∼ 1360 1440 900 ∼ 1360 1840
5 35 0.1 950 ∼ 1700 3000 850 ∼ 1700 3400
5 50 0.1 700 ∼ 1360 2640 500 ∼ 1360 3440
5 100 0.1 300 ∼ 1000 2800 100 ∼ 1000 3600
5 200 0.1 200 ∼ 1350 4600 100 ∼ 1350 5000
5 300 0.1 100 ∼ 1150 3800 100 ∼ 1150 4200
3 100 0.1 950 ∼ 1700 3000 850 ∼ 1700 3400
4 100 0.1 550 ∼ 1000 1800 450 ∼ 1000 2200
5 100 0.1 200 ∼ 1000 3200 100 ∼ 1000 3600
6 100 0.1 200 ∼ 1000 3200 100 ∼ 1000 3600
7 100 0.1 200 ∼ 1000 3200 100 ∼ 1000 3600
8 100 0.1 200 ∼ 1000 3200 100 ∼ 1000 3600
9 100 0.1 200 ∼ 1200 4000 100 ∼ 1200 4400
10 100 0.1 200 ∼ 1400 4800 100 ∼ 1400 5200
4 100 0.2 600 ∼ 1250 2600 500 ∼ 1250 3000
5 100 0.2 500 ∼ 1000 2000 400 ∼ 1000 2400
6 100 0.2 200 ∼ 1000 3200 100 ∼ 1000 3600
7 100 0.2 200 ∼ 1000 3200 100 ∼ 1000 3600
8 100 0.2 200 ∼ 1000 3200 100 ∼ 1000 3600
9 100 0.2 200 ∼ 1000 3200 100 ∼ 1000 3600
10 100 0.2 200 ∼ 1000 3200 100 ∼ 1000 3600
5 100 0.3 500 ∼ 1000 2000 400 ∼ 1000 2400
6 100 0.3 600 ∼ 1900 5200 500 ∼ 1900 5600
7 100 0.3 350 ∼ 1500 4600 250 ∼ 1500 5000
8 100 0.3 300 ∼ 1700 5600 200 ∼ 1700 6000
9 100 0.3 300 ∼ 2000 6800 200 ∼ 2000 7200
10 100 0.3 300 ∼ 2000 6800 200 ∼ 2000 7200
5 100 0.4 600 ∼ 1200 2400 500 ∼ 1200 2800
6 100 0.4 600 ∼ 1400 3200 500 ∼ 1400 3600
7 100 0.4 550 ∼ 1340 3160 450 ∼ 1340 3560
8 100 0.4 300 ∼ 2000 6800 200 ∼ 2000 7200
9 100 0.4 300 ∼ 2000 6800 200 ∼ 2000 7200
10 100 0.4 300 ∼ 2000 6800 200 ∼ 2000 7200
6 100 0.5 550 ∼ 1280 2920 250 ∼ 1280 4120
7 100 0.5 550 ∼ 1070 2080 450 ∼ 1070 2480
8 100 0.5 350 ∼ 2000 6600 250 ∼ 2000 7000
9 100 0.5 350 ∼ 2000 6600 250 ∼ 2000 7000
10 100 0.5 350 ∼ 2000 6600 250 ∼ 2000 7000
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Figure 5.34: (a) Time series of U5/W0 and (b) the corresponding power spectral density spectrum
of U5/W0 for the plane fountain at Fr = 3, Re = 100 and s = 0.1, where U5 is the velocity of U
at the point X = 0, Y = 0 and Z = 5X0 and strx is the Strouhal number for flapping motions
along the X direction, which is the dimensionless form of the flapping frequency fx along the X
direction.

From Fig. 5.34(a), it is seen that the value of U5/W0 is essentially zero until τ ≈
800, implying that initially the flapping motions are absent along the X direction.

Nevertheless, the fountain subsequently experiences flapping motions along the X

direction as the value of U5/W0 fluctuates, within ±20%, at the later fully developed

stage. fx was also obtained using FFT, with the results presented in Fig. 5.34(b) in

terms of strx. Similar to the strz case, to ensure that the selected value for τc to

determine fx does not affect the dominant frequencies for fx, different values for τc

were also selected and tested, with the results presented in Fig. 5.34(b) as well. The

results clearly show that the dominant frequencies are essentially the same when

τc ≥ 600, over the range of 0.0208 ≤ strz ≤ 0.0216, meaning that any value between

600 and 1200 can be selected for τc in this case. The range of τ (τc ∼ τend) and

number of data into the respective rage; which is used for FFT analysis to determine

fx for the corresponding Fr,Re and s condition; is listed into the Table 5.12.

Likewise, as shown in Fig. 5.35(a), the time series of V5/W0 indicates that initially

there is no flapping motion along the Y direction, but from around 900, flapping
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Figure 5.35: (a) Time series of V5/W0 and (b) the corresponding power spectral density spectrum
of V5/W0 for the plane fountain at Fr = 3, Re = 100 and s = 0.1, where V5 is the velocity of V
at the point X = 0, Y = 0 and Z = 5X0 and stry is the Strouhal number for flapping motions
along the Y direction, which is the dimensionless form of the flapping frequency fy along the Y
direction.

motions appear at the later fully developed stage. However, in contrast to the flap-

ping motions along the X direction which have only one single dominant frequency,

the flapping motions along the Y direction have at least two dominant frequen-

cies. This is more evidently exhibited in Fig. 5.35(b), where the flapping frequencies

along the Y direction are presented in terms of stry. Two dominant frequencies, at

stry ≈ 0.008 and 0.042, can be identified from the power spectral density spectrum.

Also presented in Fig. 5.35(b) are the power spectral density spectra for different

values of τc used to determine fy, which clearly show that the dominant frequencies

for fy are not affected by τc when τc ≥ 800.
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Figure 5.36: Time series of zm,c of plane fountains at (a) s = 0, (b) s = 0.05, (c) s = 0.1, (d)
s = 0.2, (e) s = 0.3, (f) s = 0.4, and (g) s = 0.5, all at Fr = 5 and Re = 100, and their respective
power spectral density spectra ((h) to (n)).
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Figure 5.37: (a) strz,d plotted against s and (b) ln(strz,d) plotted against ln(s) for s over the
range of 0.1 ≤ s ≤ 0.5 and Fr over the range of 5 ≤ Fr ≤ 10, all at Re = 100. The solid lines are
power curve-fitting lines.

5.5.2 Characteristics of bobbing motions

5.5.2.1 Effect of s

The effect of s on the bobbing behavior is demonstrated in Fig. 5.36 where the

time series of zm,c and the corresponding power spectral density spectra for different

s values in the range of 0 ≤ s ≤ 0.5, all at Fr = 5 and Re = 100, are presented.

It is observed that the extent of the bobbing motions decreases when s increases,

as s plays a positive role in stabilizing the flow, as discussed in Chapter 4 and in

Inam et al. (2015). It is also observed that at Fr = 5 and Re = 100, when s is low

(s ≤ 0.2), although zm,c fluctuates at the fully developed stage, its average value is

essentially constant. However, when s is increased beyond s = 0.2, the average zm,c

continues to increase at the fully developed stage, with fluctuations at considerably

smaller extents. This continual increase in the average zm,c at the fully developed

stage when the stratification is strong is caused by the intrusion height. At a higher

s, zm,c is smaller, and the intrusion height becomes larger and substantial which

reduces the negative buoyancy that the fountain fluid experiences. This continuous
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Table 5.13: Regression results for the dependence of strz,d on s over the range of 0.1 ≤ s ≤ 0.5
with different Fr over the range of 5 ≤ Fr ≤ 10, all at Re = 100.

Fr Cz,d,s c R

5 0.0308 0.139 0.9975
6 0.0410 0.312 0.9978
7 0.0347 0.317 0.9920
8 0.0333 0.383 0.9911
9 0.0313 0.420 0.9989
10 0.0298 0.439 0.9989

reduction of the negative buoyancy due to a larger intrusion height pushes zm,c to

be higher and higher with the time passing by.

From the frequency spectra presented in Fig. 5.36(h)-(n), it is seen that at the

fully developed stage, the bobbing motions are dominated by a single dominant fre-

quency for each s considered. This dominant frequency for the bobbing motions,

denoted as strz,d, which is also the dominant Strouhal number for the bobbing mo-

tions, is found to be 0.007, 0.016, 0.022, 0.025, 0.026, 0.027 and 0.028, for s = 0, 0.05,

0.1, 0.2, 0.3, 0.4, and 0.5, respectively. Hence, strz,d increases when s is increased,

indicating that fountain height fluctuates with a higher dominant frequency in a

stronger stratified environment, although the increase in strz,d is very small when

s ≥ 0.2.

The effect of s on strz,d is quantitatively shown in Fig. 5.37, where strz,d is

plotted against s for s over the range of 0.1 ≤ s ≤ 0.5 and Fr over the range of

5 ≤ Fr ≤ 10, all at Re = 100. It is observed that for each Fr value considered,

strz,d is in general larger when s increases, and the dependence of strz,d on s can be

quantified by the following relation,

strz,d = Cz,d,ss
c, (5.38)

where Cz,d,s is a constant of proportionality and the power index c is also a constant.

The values of these constants were determined by regression analysis with the DNS

results over the ranges 0.1 ≤ s ≤ 0.5 and 5 ≤ Fr ≤ 10, all at Re = 100, and the

results are listed in Table 5.13. It is seen that the relation (5.38) is in general a

good approximation to quantify the effect of s on strz,d. It is also observed that in

general the value of the power index c increases with the increase of Fr, implying

the stronger effect of Fr when Fr is increased, as will be further discussed below.
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5.5.2.2 Effect of Fr
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Figure 5.38: Time series of zm,c of plane fountains at (a) Fr = 3, (b) Fr = 4, (c) Fr = 5, (d)
Fr = 6, (e) Fr = 7, (f) Fr = 8, (g) Fr = 9, and (h) Fr = 10, all at Re = 100 and s = 0.1, and
their respective power spectral density spectra ((i) to (p)).
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Figure 5.39: (a) strz,d plotted against Fr and (b) ln(strz,d) plotted against ln(Fr) for Fr over
the range of 3 ≤ Fr ≤ 10 and s over the range of 0.1 ≤ s ≤ 0.5, all at Re = 100. The solid lines
are power curve-fitting lines.

The effect of Fr on the bobbing behavior is demonstrated in Fig. 5.38 where

the time series of zm,c and the corresponding power spectral density spectra for

different Fr values in the range of 3 ≤ s ≤ 10, all at Re = 100 and s = 0.1, are

presented. It is observed that the extent of the bobbing motions increases when

Fr increases due to stronger effect of Fr when Fr increases. It is also observed

that, at Re = 100 and s = 0.1, zm,c in generally fluctuates around essentially a

constant average value at the fully developed stage. The only exception is for the

Fr = 3 case, in which the average zm,c continues to increase at the fully developed

stage, with fluctuations at considerably smaller extents. Again it is speculated that

this continual increase in the average zm,c at the fully developed stage when Fr is

relatively small is also caused by the intrusion height. At a smaller Fr, zm,c is again

smaller, and the intrusion height becomes larger and substantial which reduces the

negative buoyancy that the fountain fluid experiences, and the continuous reduction

of the negative buoyancy leads to a larger intrusion height which pushes zm,c to be

higher and higher with the time passing by.

From the frequency spectra presented in Fig. 5.38(i)-(p), it is seen that at the
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Table 5.14: Regression results for the dependence of strz,d on Fr over the range of 6 ≤ Fr ≤ 10
with different s over the range of 0.1 ≤ s ≤ 0.5, all at Re = 100.

s Cz,d,Fr c R

0.1 0.1721 -1.206 0.9963
0.2 0.1578 -1.039 0.9995
0.3 0.1489 -0.924 0.9999
0.4 0.0935 -0.661 0.9820
0.5 0.0900 -0.615 0.9840

fully developed stage, the bobbing motions are again dominated by a single dominant

frequency for each Fr considered, although a second, even third, dominant frequency

is also present for several Fr values. The most dominant frequency for the bobbing

motions (strz,d) is found to be 0.042, 0.0342, 0.0224, 0.0201, 0.0165, 0.0136, 0.012

and 0.011, for Fr = 3, 4, 5, 6, 7, 8, 9, and 10, respectively, which clearly show

that strz,d reduces monotonically when Fr is increased, indicating that the bobbing

motions have a smaller dominant frequency when Fr is increased.

The effect of Fr on strz,d is quantitatively shown in Fig. 5.39, where strz,d is

plotted against Fr for Fr over the range of 3 ≤ Fr ≤ 10 and s over the range of

0.1 ≤ s ≤ 0.5, all at Re = 100. It is observed that for each s value considered, strz,d

is smaller when Fr increases, and the dependence of strz,d on Fr can be quantified

by the following relation,

strz,d = Cz,d,Frs
c, (5.39)

where Cz,d,Fr is a constant of proportionality and the power index c is also a constant.

The values of these constants were determined by regression analysis with the DNS

results over the ranges 0.1 ≤ s ≤ 0.5 and 6 ≤ Fr ≤ 10, all at Re = 100, and the

results are listed in Table 5.14. It is seen that the relation (5.39) is in general a

good approximation to quantify the effect of Fr on strz,d. It is also observed that in

general the magnitude of the power index c decreases with the increase of Fr, due

to the stabilizing effect of s on the flow as discussed above.

However, when Fr ≤ 5, as shown in Fig. 5.39(b), the DNS results do not follow

the same empirical correlation as those for Fr ≥ 6 for each s. This implies that the

dependence of strz,d on Fr when Fr ≤ 5 is in a different regime and the quantified

relation (5.39) for each s will no longer be valid. The mechanism for this different

dependence is not very clear and this thesis does not go further due to the limitation

of the scope.
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5.5.2.3 Effect of Re
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Figure 5.40: Time series of zm,c of plane fountains at (a) Re = 35, (b) Re = 50, (c) Re = 100,
(d) Re = 200, and (e) Re = 300, all at Fr = 5 and s = 0.1, and their respective power spectral
density spectra ((f) to (j)).
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Figure 5.41: strz,d plotted against Re for Re over the range of 35 ≤ Re ≤ 300, all at Fr = 5
and s = 0.1.
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The effect of Re on the bobbing behavior is demonstrated in Fig. 5.40 where

the time series of zm,c and the corresponding power spectral density spectra for

different Re values in the range of 35 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1, are

presented. It is observed that the extent of the bobbing motions increases when Re

increases due to stronger entrainment and mixing when Re increases, in particular

when Re is over 100. It is also observed that, at Fr = 5 and s = 0.1, zm,c in generally

fluctuates around essentially a constant average value at the fully developed stage.

From the frequency spectra presented in Fig. 5.40(f)-(j), it is seen that at the

fully developed stage, the bobbing motions are again dominated by a single dominant

frequency for each s considered, although a second, even third, dominant frequency

is also present for several Re values. The most dominant frequency for the bobbing

motions (strz,d) is found to be 0.0208, 0.0198, 0.0224, 0.0183 and 0.0216, for Re = 35,

50, 100, 200 and 300, respectively, which clearly show that the effect of Re on strz,d is

negligible, as strz,d is essentially constant and varies in a very narrow range, between

0.0183 and 0.0224, when Re varies between 35 and 300. This negligible effect of Re

on strz,d is more evidently shown in Fig. 5.41, where strz,d is plotted against Re for

Re over the range of 35 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1.

5.5.2.4 Combined effects of s, Fr and Re

From the above results on the dependency of strz,d on s, Fr and Re over the

ranges of these parameters considered, it is reasonable to propose that the combined

effects of s, Fr and Re on strz,d can be quantified by the following relation

strz,d = Cstr,z,dFr
asc, (5.40)

where Cstr,z,d is a constant of proportionality and the power indexes a and c are

also constants. The values of these constants can be determined by multi-variable

regression analysis with the DNS results over the ranges of 6 ≤ Fr ≤ 10 and

0.1 ≤ s ≤ 0.5 at the fixed Re = 100, giving the following empirical correlation,

strz,d = 0.258Fr−0.989s0.387. (5.41)

The regression constant of this correlation is R = 0.9863, indicating that the DNS

results are in good agreement with the relation (5.40) over the ranges of 6 ≤ Fr ≤ 10

and 0.1 ≤ s ≤ 0.5 at Re = 100, as demonstrated in Fig. 5.42(a). The DNS results

for other Re values are not included as the effect of Re on strz,d is negligible over

the ranges of Fr, Re and s considered in this thesis, as discussed above. The DNS
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Figure 5.42: strz,d plotted against (a) Fr−0.989s0.387, (b) Fr−0.818s0.387, (c) Fr−1s1/3, and (d)
Fr−1s2/5 over the ranges of 6 ≤ Fr ≤ 10, 0.1 ≤ s ≤ 0.5, all at Re = 100. The solid lines are line
fit lines.

results for Fr ≤ 5 are also not included as the dependence of strz,d on Fr for these

Fr values is in a different regime, as discussed above as well.

As shown in § 5.4.3, for weak plane fountains with Fr = O(1) in linearly-stratified

fluids, Lin & Armfield (2002) used dimensional analysis to obtain the scaling relation

(5.6) for the time scale related to the maximum fountain height, i.e.,

τm ∼ Fr
2
3

(2+2c−d)Re−dsc, (5.42)

where c and d are constants. The dominant frequency for bobbing motions, fz,d, is

inversely proportional to τm(X0/W0), hence,

strz,d =
fz,d

(W0/X0)
=

1/[τm(X0/W0)]

(W0/X0)
∼ 1

τm
∼ Fr−

2
3

(2+2c−d)Reds−c. (5.43)

It should be noted that the values of c and d for strz,d are not necessary to be the

same as the values of c and d for τm.

If the scaling relation (5.43), which is developed for weak plane fountains, is

also applicable for the transitional plane fountains considered in this thesis, from

the quantified relation (5.41), c = −0.387 and d = 0, it is then expected that
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−2
3
(2 + 2c− d) = −2

3
[2 + 2× (−0.387)− 0] = −0.818 for the value of the index for

Fr. However, the value obtained is -0.989, as shown in (5.41), which is [−0.989 −
(−0.818)]/(−0.818) = 21% away from the expected value of −0.818. In view of

much large values of Fr for the transitional plane fountains considered than the

expected weak plane fountains with Fr = O(1) under which the scaling relation

(5.43) was developed, this result is remarkable, showing that the scaling relation

(5.43) developed for weak plane fountains is still a reasonably good representation

for the transitional plane fountains over the ranges of Fr, Re and s considered in

this thesis. This is further confirmed by the good agreement of the DNS results over

the ranges of 6 ≤ Fr ≤ 10 and 0.1 ≤ s ≤ 0.5 at Re = 100, as shown in Fig. 5.42(b),

with the scaling relation Fr−0.818s0.387, which is the scaling relation obtained from

the dimensional analysis. The regression analysis with the DNS results over the

ranges of 6 ≤ Fr ≤ 10 and 0.1 ≤ s ≤ 0.5 at Re = 100 gives the following quantified

correlation between strz,d and the scaling relation Fr−0.818s0.387,

strz,d = 0.191Fr−0.818s0.387 − 0.0003, (5.44)

with the regression constant of R = 0.9799.

The examination of the values obtained from the DNS results for the indexes of

Fr and s, i.e., -0.989 and 0.387, reveals that -0.989 is very close to -1 whereas 0.387

is very close to 2/5 or 1/3. Burridge & Hunt (2013) also found that for intermediate

round fountains strz,d ∼ Fr−1, although in homogeneous fluids (i.e., s = 0). It is

then reasonable to speculate that the value for the index of Fr should be -1 and

the value for the index of s should be either 1/3 or 2/5. strz,d obtained from the

DNS results over the ranges of 6 ≤ Fr ≤ 10 and 0.1 ≤ s ≤ 0.5 at Re = 100 is

also plotted against the scaling relations Fr−1s1/3 and Fr−1s2/5 in Figs. 5.42(c) and

5.42(d), respectively, which gives the following quantified correlations,

strz,d = 0.263Fr−1s1/3 + 0.0006, (5.45)

and

strz,d = 0.262Fr−1s2/5 + 0.0012. (5.46)

The regression constants for these two correlations are R = 0.9829 and R = 0.9857,

respectively, indicating that the scaling relations Fr−1s1/3 and Fr−1s2/5 are also

good representations of the quantitative relation between strz,d and Fr, Re and s

over the ranges of these parameters considered. However, a further study should be

conducted to explore why such scaling relations like Fr−1s1/3 and Fr−1s2/5 are also
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Table 5.15: Regression results for the dependence of strx,d on Fr over the range of 3 ≤ Fr ≤ 10
with different s over the range of 0.1 ≤ s ≤ 0.4, all at Re = 100.

s Cx,d,Fr c R

0.1 0.0671 -1.069 0.9943
0.2 0.0893 -1.091 0.9959
0.3 0.1219 -1.156 0.9904
0.4 0.1191 -1.092 0.9918

good representations of the quantitative relation between strz,d and Fr, Re and s

for transitional plane fountains in linearly-stratified fluids.

5.5.3 Characteristics of flapping motions along the X direction

5.5.3.1 Effect of Fr

The effect of Fr on the flapping behavior along the X direction is demonstrated

in Fig. 5.43 where the time series of U5/W0 and the corresponding power spectral

density spectra for different Fr values in the range of 3 ≤ Fr ≤ 10, all at Re = 100

and s = 0.1, are presented. It is observed that at the early developing stage, no

flapping motions along the X direction. However, for each Fr value presented in

the figure, at a certain instant of time, flapping motions commence and persist in

the subsequent fully developed stage. It is observed that in general the onset of the

flapping motions along the X direction occurs earlier when Fr is increased, and the

extent of the flapping motions does not have noticeable changes when Fr increases,

essentially within ±20% for all Fr values at the fully developed stage.

From the frequency spectra presented in Fig. 5.43(i)-(p), it is seen that at the

fully developed stage, the flapping motions along the X direction are also dominated

by a single dominant frequency for each Fr considered. The dominant frequency

for the flapping motions along the X direction (strx,d) is found to be 0.0208,0.0158,

0.0117, 0.0093, 0.0086, 0.0077, 0.006 and 0.006, for Fr = 3, 4, 5, 6, 7, 8, 9, and

10, respectively, which clearly show that strx,d reduces monotonically when Fr is

increased, indicating that the flapping motions along the X direction have a smaller

dominant frequency when Fr is increased.

The effect of Fr on strx,d is quantitatively shown in Fig. 5.44, where strx,d is

plotted against Fr for Fr over the range of 3 ≤ Fr ≤ 10 and s over the range of

0.1 ≤ s ≤ 0.4, all at Re = 100. It is observed that for each s value considered, strx,d
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Figure 5.43: Time series of U5/W0 of plane fountains at (a) Fr = 3, (b) Fr = 4, (c) Fr = 5, (d)
Fr = 6, (e) Fr = 7, (f) Fr = 8, (g) Fr = 9, and (h) Fr = 10, all at Re = 100 and s = 0.1, and
their respective power spectrum density distributions ((i) to (p)).

is smaller when Fr increases, similar to that in the strz,d case, and the dependence
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Figure 5.44: (a) strx,d plotted against Fr and (b) ln(strx,d) plotted against ln(Fr) for Fr over
the range of 3 ≤ Fr ≤ 10 and s over the range of 0.1 ≤ s ≤ 0.5, all at Re = 100. The solid lines
are power curve-fitting lines.

of strx,d on Fr can be quantified by the following relation,

strx,d = Cx,d,FrFr
c, (5.47)

where Cx,d,Fr is a constant of proportionality and the power index c is again a

constant. The values of these constants were determined by regression analysis with

the DNS results over the ranges 0.1 ≤ s ≤ 0.4 and 3 ≤ Fr ≤ 10, all at Re = 100,

and the results are listed in Table 5.15. It is seen that the relation (5.47) is an

excellent approximation to quantify the effect of Fr on strx,d, as clearly shown in

Fig. 5.44(b). However, different from the strz,d case in which the magnitude of the

power index c in general decreases with the increase of Fr, it is observed here that

the value of the index c for the strx,d case is essentially the same for different Fr

values, at an average value of -1.102.

The DNS results at s = 0.5 were not included in Fig. 5.44(b) and in the deter-

mination of the values of Cx,d,Fr and c listed in Table 5.15, as only three sets of

DNS results available for the regression analysis. The DNS results at Fr = 3 and
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Fr = 4 for s = 0.5 were unable to produce the expected strx,d as these fountains

start to flap along the X direction at a much later time, which results in a very

narrow period of time for the FFT analysis and hence the DNS results at these Fr

values were excluded from the regression analysis.

5.5.3.2 Effect of Re
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Figure 5.45: Time series of U5/W0 of plane fountains at (a) Re = 35, (b) Re = 50, (c) Re = 100,
(d) Re = 200, and (e) Re = 300, all at Fr = 5 and s = 0.1, and their respective power spectrum
density distributions ((f) to (j)).

The effect of Re on the flapping behavior along the X direction is shown

in Fig. 5.45 where the time series of U5/W0 and the corresponding power spectral

density spectra for different Re values in the range of 35 ≤ Re ≤ 300, all at Fr = 5

and s = 0.1, are presented. It is observed that at the early developing stage, no

flapping motions along the X direction. However, for each Re value presented in

the figure, at a certain instant of time, flapping motions commence and persist in
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Figure 5.46: strx,d plotted against Re for Re over the range of 35 ≤ Re ≤ 300, all at Fr = 5
and s = 0.1.

the subsequent fully developed stage. It is also observed that in general the onset

of the flapping motions along the X direction occurs earlier when Re is increased.

This is very similar to the Fr effect case, as discussed above. The extent of the

flapping motions increases when Re increases, in particular when Re is beyond 50,

although the amounts of increase are not significant.

From the frequency spectra presented in Fig. 5.45(f)-(j), it is seen that at the

fully developed stage, the flapping motions along the X direction are also dominated

by a single dominant frequency for each Re considered. The dominant frequency

for the flapping motions along the X direction (strx,d) is found to be 0.0099, 0.013,

0.0117, 0.0108 and 0.011, for Re = 35, 50, 100, 200 and 300, respectively, which

clearly show that the effect of Re on strx,d is negligible, as strx,d is essentially

constant, at an average of 0.0112, and varies in a very narrow range, between 0.0099

and 0.013, when Re varies between 35 and 300. This is very similar to the case

for the bobbing motions, in which it was also found, as shown above, that Re has

a negligible effect on strz,d. This negligible effect of Re on strx,d is more evidently

shown in Fig. 5.46, where strx,d is plotted against Re for Re over the range of

35 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1.

5.5.3.3 Effect of s

The effect of s on the flapping behavior along the X direction is demonstrated

in Fig. 5.47 where the time series of U5/W0 and the corresponding power spectral

density spectra for different s values in the range of 0 ≤ s ≤ 0.5, all at Fr = 5 and

Re = 100, are presented. It is observed that at the early developing stage, again

no flapping motions along the X direction. However, for each s value presented in
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Figure 5.47: Time series of U5/W0 of plane fountains at (a) s = 0, (b) s = 0.05, (c) s = 0.1, (d)
s = 0.2, (e) s = 0.3, (f) s = 0.4, and (g) s = 0.5, all at Fr = 5 and Re = 100, and their respective
power spectrum density distributions ((h) to (n)).

the figure, at a certain instant of time, flapping motions commence and persist in

the subsequent fully developed stage. It is observed that in general the onset of the

flapping motions along the X direction occurs later when s is increased, and the

extent of the flapping motions does not have noticeable changes when s increases,

essentially within ±20% for all s values at the fully developed stage.
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Figure 5.48: strx,d plotted against s for s over the range of 0.1 ≤ s ≤ 0.5 and for Fr over the
range of 5 ≤ Fr ≤ 10, all at Re = 100. The solid lines are power curve-fitting lines.

Table 5.16: Regression results for the dependence of strx,d on s over the range of 0.1 ≤ s ≤ 0.5
with different Fr over the range of 5 ≤ Fr ≤ 10, all at Re = 100.

Fr Cx,d,s c R

5 0.0322 0.437 0.9989
6 0.0254 0.435 0.9766
7 0.0182 0.332 0.9961
8 0.0160 0.324 0.9917
9 0.0159 0.421 0.9964
10 0.0139 0.373 0.9949

From the frequency spectra presented in Fig. 5.47(h)-(n), it is seen that at the

fully developed stage, the flapping motions along the X direction are also dominated

by a single dominant frequency for each s considered, although a second dominant

frequency is also present for the s = 0.3 case. The dominant frequency strx,d for

s = 0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 is found to be 0.0047, 0.0088, 0.0117, 0.0162,

0.0188, 0.0144, and 0.0147, respectively, which show that strx,d increases with s

when s ≤ 0.3, but reduces at higher s values considered.

The effect of s on strx,d is quantitatively shown in Fig. 5.48, where strx,d is
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plotted against s for s over the range of 0.1 ≤ s ≤ 0.5 and Fr over the range of

5 ≤ Fr ≤ 10, all at Re = 100. It is observed that for each Fr value considered,

strx,d is in general larger when s increases, which is similar to that in the strz,d case,

and the dependence of strx,d on s can be quantified by the following relation,

strx,d = Cx,d,ss
c, (5.48)

where Cx,d,s is a constant of proportionality and the power index c is again a constant.

The values of these constants were determined by regression analysis with the DNS

results over the ranges 0.1 ≤ s ≤ 0.5 and 5 ≤ Fr ≤ 10, all at Re = 100, and

the results are listed in Table 5.16. It is seen that the relation (5.48) is in general

an excellent approximation to quantify the effect of s on strx,d, as clearly shown in

Fig. 5.48(b). However, different from the strz,d case in which the magnitude of the

power index c in general increases with the increase of Fr, it is observed here that

the value of the index c for the strx,d case does not follow any consistent trend, as

shown in Table 5.16.

Similarly the DNS results at s = 0.5 were not included in Fig. 5.48(b) and in the

determination of the values of Cx,d,s and c listed in Table 5.16 when Fr ≤ 7, again

due to the very narrow period of time for the FFT analysis which is a consequence

of the much later time for the onset of the flapping motions at these cases.

5.5.3.4 Combined effects of Fr, Re and s

Similar to strz,d, based on the above results on the dependency of strx,d on Fr,

Re and s over the ranges of these parameters considered, the combined effects of

Fr, Re and s on strx,d can also be quantified by the following relation

strx,d = Cstr,x,dFr
asc, (5.49)

where Cstr,x,d is a constant of proportionality and the power indexes a and c are

again constants. The values of these constants can be determined by multivariable

regression analysis with the DNS results over the ranges of 3 ≤ Fr ≤ 10 and

0.1 ≤ s ≤ 0.5 at the fixed Re = 100, giving the following empirical correlation,

strx,d = 0.169Fr−1.085s0.382. (5.50)

The regression constant of this correlation is R = 0.9927, indicating that the DNS

results are in very good agreement with the relation (5.49) over the ranges of 3 ≤
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Figure 5.49: strx,d plotted against (a) Fr−1.085s0.382, (b) Fr−0.824s0.382, (c) Fr−1s1/3, and (d)
Fr−1s2/5 over the ranges of 3 ≤ Fr ≤ 10, 0.1 ≤ s ≤ 0.5, all at Re = 100. The solid lines are line
fit lines.

Fr ≤ 10 and 0.1 ≤ s ≤ 0.5 at Re = 100, as demonstrated in Fig. 5.49(a). The

DNS results for other Re values are again not included as the effect of Re on strx,d

is negligible over the ranges of Fr, Re and s considered in this thesis, as discussed

above.

The scaling relation (5.43) developed for strz,d, obtained from the dimensional

analysis by Lin & Armfield (2002) for weak plane fountains with Fr = O(1) in

linearly-stratified fluids, is expected to be applicable for strx,d as well. From the

quantified relation (5.50), it is found that c = −0.382 and d = 0. It is then expected

that the value of the index for Fr should be−2
3
(2+2c−d) = −2

3
[2+2×(−0.382)−0] =

−0.824. However, the value obtained from the DNS results is -1.085, as shown in

(5.50), which is [−1.085− (−0.824)]/(−0.824) = 32% away from the expected value

of −0.824. In view of much large values of Fr for the transitional plane fountains

considered than the expected weak plane fountains with Fr = O(1) under which

the scaling relation (5.43) was developed, this result is again remarkable, similar

to the strz,d case, showing that the scaling relation (5.43) developed for weak plane

fountains is still a reasonably good representation for the transitional plane fountains

over the ranges of Fr, Re and s considered in this thesis. This is further confirmed

by the good agreement of the DNS results over the ranges of 3 ≤ Fr ≤ 10 and
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0.1 ≤ s ≤ 0.5 at Re = 100, as shown in Fig. 5.49(b), with the scaling relation

Fr−0.824s0.382, which is the scaling relation obtained from the dimensional analysis.

The regression analysis with the DNS results over the ranges of 3 ≤ Fr ≤ 10 and

0.1 ≤ s ≤ 0.5 at Re = 100 gives the following quantified correlation between strx,d

and the scaling relation Fr−0.824s0.382,

strx,d = 0.128Fr−0.824s0.382 − 0.0031, (5.51)

with the regression constant of R = 0.9696.

Similar to the strz,d case, the examination of the values obtained from the DNS

results for the indexes of Fr and s, i.e., -1.085 and 0.382, reveals that -1.085 is

very close to -1 whereas 0.382 is very close to 2/5 or 1/3. It is then reasonable to

speculate that the value for the index of Fr should also be -1 and the value for the

index of s should also be either 1/3 or 2/5. strx,d obtained from the DNS results over

the ranges of 3 ≤ Fr ≤ 10 and 0.1 ≤ s ≤ 0.5 at Re = 100 is also plotted against the

scaling relations Fr−1s1/3 and Fr−1s2/5 in Figs. 5.42(c) and 5.42(d), respectively,

which gives the following quantified correlations,

strx,d = 0.146Fr−1s1/3 − 0.0013, (5.52)

and

strx,d = 0.158Fr−1s2/5 − 0.0011. (5.53)

The regression constants for these two correlations are R = 0.9916 and R = 0.9854,

respectively, indicating that the scaling relations Fr−1s1/3 and Fr−1s2/5 are also

good representations of the quantitative relation between strx,d and Fr, Re and s

over the ranges of these parameters considered, similar to the strz,d case. However,

as stated above for the strz,d case, a further study should be conducted to explore

why such scaling relations like Fr−1s1/3 and Fr−1s2/5 are also good representations

of the quantitative relation between strx,d and Fr, Re and s for transitional plane

fountains in linearly-stratified fluids.

5.5.4 Characteristics of flapping motions along the Y direction

5.5.4.1 Effect of Fr

The effect of Fr on the flapping behavior along the Y direction is demonstrated

in Fig. 5.50 where the time series of V5/W0 and the corresponding power spectral
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Figure 5.50: Time series of V5/W0 of plane fountains at (a) Fr = 3, (b) Fr = 4, (c) Fr = 5, (d)
Fr = 6, (e) Fr = 7, (f) Fr = 8, (g) Fr = 9, and (h) Fr = 10, all at Re = 100 and s = 0.1, and
their respective power spectrum density distributions ((i) to (p)).

density spectra for different Fr values in the range of 3 ≤ Fr ≤ 10, all at Re =

100 and s = 0.1, are presented. Similar to the case along the X direction, it is

also observed that at the early developing stage, no flapping motions along the Y

direction. However, for each Fr value presented in the figure, at a certain instant

of time, flapping motions commence and persist in the subsequent fully developed
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Figure 5.51: stry,d plotted against Fr for Fr over the range of 3 ≤ Fr ≤ 10, all at Re = 100
and s = 0.1.

stage. Different from the flapping motions along the X direction, it is observed that

there is no consistent trend for the onset time of the flapping motions along the Y

direction when Fr increases. Similarly, the extent of the flapping motions is also

found to have no consistent trend.

From the frequency spectra presented in Fig. 5.50(h)-(n), it is seen that at the

fully developed stage, the flapping motions along the Y direction are in general

multi-modal and chaotic, dominated by a series of dominant frequencies for each

Fr considered. For example, at Fr = 4, there are three dominant frequencies, at

0.025, 0.001 and 0.0005, respectively. This is significantly different from the flapping

motions along the X direction, which are in general dominated by a single dominant

frequency.

Figure 5.51 presents stry,d plotted against Fr for Fr over the range of 3 ≤ Fr ≤
10, all at Re = 100 and s = 0.1, where stry,d is the most dominant frequency for

the flapping motions along the Y direction, which is determined as the frequency

corresponding to the largest value of the power spectral density spectrum shown in

Fig. 5.50(h)-(n). From this figure, it is seen that there is no consistent trend on the

dependence of stry,d on Fr.

5.5.4.2 Effect of Re

The effect of Re on the flapping behavior along the Y direction is demonstrated

in Fig. 5.52 where the time series of V5/W0 and the corresponding power spectral

density spectra for different Re values in the range of 50 ≤ Re ≤ 300, all at Fr = 5

and s = 0.1, are presented. Similarly, at the early developing stage, no flapping

motions along the Y direction, but at a certain instant of time, flapping motions
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Figure 5.52: Time series of V5/W0 of plane fountains at (a) Re = 50, (b) Re = 100, (c) Re = 200,
and (d) Re = 300, all at Fr = 5 and s = 0.1, and their respective power spectrum density
distributions ((e) to (h)).
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Figure 5.53: stry,d plotted against Re for Re over the range of 50 ≤ Re ≤ 300, all at Fr = 5
and s = 0.1.

commence and persist in the subsequent fully developed stage. The time for the

onset of the flapping motions along the Y direction in general becomes earlier when

Re increases, although the reductions of the time are very small when Re is beyond

100. Similarly, the extent of the flapping motions is also found to have no consistent

trend.
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From the frequency spectra presented in Fig. 5.52(e)-(h), it is seen that at the

fully developed stage, the flapping motions along the Y direction are again in general

multi-modal and chaotic, dominated by a series of dominant frequencies for each Re

considered. It is further found, as shown in Fig. 5.53 where stry,d is plotted against

Re for Re over the range of 50 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1, that there is

no consistent trend on the dependence of stry,d on Re, similar to that on Fr.

5.5.4.3 Effect of s

The effect of s on the flapping behavior along the Y direction is demonstrated

in Fig. 5.54 where the time series of V5/W0 and the corresponding power spectral

density spectra for different s values in the range of 0 ≤ s ≤ 0.5, all at Fr = 5

and Re = 100, are presented. It is obsered that at the early developing stage, again

no flapping motions along the Y direction. However, at a certain instant of time,

flapping motions commence and persist in the subsequent fully developed stage. The

time for the onset of the flapping motions along the Y direction in general becomes

later when s increases, although no clear consistent trend observed when s increases.

However, the extent of the flapping motions is in general reduces when s increases,

apparently due to the stabilizing effect of the stratification.

From the frequency spectra presented in Fig. 5.54(h)-(n), it is seen that at the

fully developed stage, the flapping motions along the Y direction are also in general

multi-modal and chaotic, dominated by a series of dominant frequencies for each

s considered. It is further shown in Fig. 5.55, where stry,d is plotted against s for

s over the range of 0 ≤ s ≤ 0.5, all at Fr = 5 and Re = 100, that there is no

consistent trend on the dependence of stry,d on s as well, similar to that on Fr and

Re.

5.6 Thermal entrainment

5.6.1 Introduction

Entrainment is an important process and flow feature for any sheared flow. In

a fountain, due to the density difference between the injected fountain fluid and

the ambient, entrainment, in particular thermal entrainment due to the density

difference, becomes even more predominant and contributes substantially to the



Asymmetric transitional plane fountains at lower Froude numbers 191

0 200 400 600 800 1000

-10

0

10

V
5

/W
0
(%

)

(a) s = 0

0.00 0.02 0.04 0.06

0.000

0.003

0.006

P
o

w
er

/W
0

2
(%

) (h) s = 0

0 200 400 600 800 1000

-10

0

10

V
5

/W
0
(%

)

(b) s = 0.05

0.00 0.02 0.04 0.06

0.000

0.001

0.002

0.003

P
o

w
er

/W
0

2
(%

) (i) s = 0.05

0 500 1000

-10

0

10

V
5

/W
0
(%

)

(c) s = 0.1

0.00 0.02 0.04 0.06

0.000

0.005

0.010

P
o

w
er

/W
0

2
(%

) (j) s = 0.1

0 200 400 600 800 1000

-10

0

10

V
5

/W
0
(%

)

(d) s = 0.2

0.00 0.02 0.04 0.06

0.000

0.003

0.006

P
o

w
er

/W
0

2
(%

) (k) s = 0.2

0 200 400 600 800 1000

-10

0

10

V
5

/W
0
(%

)

(e) s = 0.3

0.00 0.02 0.04 0.06

0.000

0.001

0.002

0.003

P
o

w
er

/W
0

2
(%

) (l) s = 0.3

0 200 400 600 800 1000 1200

-10

0

10

V
5

/W
0
(%

)

(f) s = 0.4

0.00 0.02 0.04 0.06

0.000

0.001

0.002

P
o

w
er

/W
0

2
(%

) (m) s = 0.4

300 500 700 900 1100 1300

-10

0

10

τ

V
5

/W
0
(%

)

(g) s = 0.5

0.00 0.02 0.04 0.06

0.0000

0.0004

0.0008

stry

P
o

w
er

/W
0

2
(%

) (n) s = 0.5

Figure 5.54: Time series of V5/W0 of plane fountains at (a) s = 0, (b) s = 0.05, (c) s = 0.1, (d)
s = 0.2, (e) s = 0.3, (f) s = 0.4, and (g) s = 0.5, all at Fr = 5 and Re = 100, and their respective
power spectrum density distributions ((h) to (n)).

symmetric-to-asymmetric transition and the turbulent mixing processes. It is there-

fore of significant importance to study the thermal entrainment in fountains to reveal

its effect on fountain behavior, in particular on transitional fountains in which ther-

mal entrainment plays a key role for the asymmetric transition. In this section,

the thermal entrainment in transitional plane fountains in linearly-stratified fluids
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Figure 5.55: stry,d plotted against s for s over the range of 0 ≤ s ≤ 0.5, all at Fr = 5 and
Re = 100.

is studied using DNS results over the ranges of 2.875 ≤ Fr ≤ 10, 25 ≤ Re ≤ 300

and 0 ≤ s ≤ 0.7.

5.6.2 Definition of thermal entrainment

Thermal entrainment, represented by the thermal entrainment coefficient αt, quan-

tifies the extent of the mixing effect between the fountain fluid and the ambient

fluid due to their density difference. For fluids considered in this thesis where the

Oberbeck-Boussinesq approximation is applicable for the relation between the den-

sity and the temperature, Thermal entrainment coefficient αt can be defined as

follows,

αt =
T − T0

Ta,Z − T0

, (5.54)

where T is the local temperature of fluid in the flow field, T0 is the temperature of

the injected fountain fluid at the fountain source, and Ta,Z is the initial temperature

of the ambient fluid at height Z at t = 0.

αt will be zero if the local temperature of fluid is equal to the temperature of

the injected fountain fluid at the fountain source (i.e., when T = T0), and will be

one when the local temperature of fluid is the same as the initial temperature of the

ambient fluid at height Z at t = 0 (i.e., when T = Ta,Z). αt can be larger than one,

for example when the ambient fluid at a higher height is entrained into the fountain

fluid.

Figure 5.56 presents the evolution of transient contours of thermal entrainment

coefficient, αt, of the plane fountain at Fr = 10, Re = 100 and s = 0.1 at Y = 0 in
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Figure 5.56: Evolution of transient contours of thermal entrainment coefficient, α, of the plane
fountain at Fr = 10, Re = 100 and s = 0.1 at Y = 0 in the X − Z plane (first column), at X = 0
in the Y − Z plane (second column), and at Z = 10X0 in the X − Y plane (third column).

the X−Z plane, at X = 0 in the Y −Z plane, and at Z = 10X0 in the X−Y plane

at the instants of time at τ = 25, 50, 100, 200, 500 and 900, respectively, which

were obtained from DNS results. It is seen from the first column that thermal

entrainment in general has a negligible effect on the core of the incoming fountain

fluid at any time considered (i.e., αt is essentially zero at the core of the incoming

fountain fluid), whereas thermal entrainment plays a significant role in the downflow,

in particular at the interface between the upflow of the fountain fluid core and the

downflow, which becomes stronger and stronger at lateral flow developing stages.

It is also observed that αt becomes larger than one in some regions when τ ≥ 200,

due to the entrainment of the ambient fluid at a higher height into the incoming

fountain fluid, which is mainly caused by the circulation. The contours of αt at

X = 0 in the Y − Z planes (second column) show that at the early flow developing

stage (when τ ≤ 100), thermal entrainment occurs mainly in a very thin layer which

is the interface between the top of the injected fountain fluid and the ambient fluid.
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αt experiences a sharp change, from zero to about 1, across this very thin interface

layer where the heat transfer is mainly through conduction. It is also observed that

at the early developing stage, αt does not vary along the Y direction, implying that

the flow is symmetric along the Y direction. At the later developing stages, however,

the change of αt is no longer limited to the thin interface layer between the top of the

injected fountain fluid and the ambient fluid, but to other regions of the flow field as

well, and the sizes of these regions grow substantially with the continual development

of the flow. At the very later stages (when τ ≥ 500), the change of αt is observed to

occurs across a substantially thick layer between the top of the injected fountain fluid

and the ambient fluid. It is further observed that at the later developing stages αt

varies significantly along the Y direction, indicating that the flow becomes symmetric

along the Y direction, which is in agreement with the observations discussed in the

section about the asymmetric transition (§ 5.3). The evolution of the transient

contours of αt at the height Z = 10X0 in the X−Y plane (third column) also shows

the significant role of αt and its evolution during the different developing stages, as

observed above. At the early developing stage (when τ ≤ 100), thermal entrainment

occurs at small limited regions where the injected fountain fluid and the ambient

mix, and the flow along the Y direction is again symmetric. However, at the later

developing stages (when τ ≥ 200), the regions for the thermal entrainment become

very substantial and at the very late stages (when τ ≥ 500), the thermal entrainment

occurs essentially over the entire plane at Z = 10X0. It is also very obvious that

at the later developing stage the flow along the Y direction is strongly asymmetric,

again in good agreement with the observations discussed in the section about the

asymmetric transition (§ 5.3). Another noticeable observation is that at the fully

developed stage there are substantial regions where αt is larger than one, implying

very strong thermal entrainment due to strong circulation and turbulent flow.

5.6.3 Calculation of thermal entrainment coefficient

The instantaneous horizontal profiles of αt at different heights (Z/X0 = 2, 4, 6,

8, 10, 15, and 20) at Y = 0 in the X − Z plane at τ = 150 for the fountain at

Fr = 10, Re = 100 and s = 0.1, calculated from the DNS results, are presented in

Fig. 5.57. It is observed that in the core of the fountain fluid (within the region of

−1 ≤ X/X0 ≤ 1) αt at each height is essentially zero, indicating that there is no

thermal entrainment in the core of the fountain fluid. However, at other X locations,

αt is in general not zero, and varies along the X direction, with αt approaches to
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Figure 5.57: Instantaneous horizontal profiles of αt at different heights (z = 2, 4, 6, 8, 10, 15,
and 20) at Y = 0 in the X − Z plane at τ = 150 for the fountain at Fr = 10, Re = 100 and
s = 0.1, where z = Z/X0.

one near the boundaries between the fountain fluid and the ambient fluid. It is also

observed that in general αt is smaller at a higher height.

A more useful and appropriate parameter to quantify the thermal entrainment
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Figure 5.58: (a) The whole fountain region enclosed by the interface between the fountain and
the ambient fluid and (b) the fountain width at Z/X0 = 2, 4, 6, 8, 10, 15 and 20 at Y = 0 in the
X − Z plane at τ = 150 for the fountain at Fr = 10, Re = 100 and s = 0.1.

at any instant of time is the instantaneous global average thermal entrainment co-

efficient, denoted as αt,Y=0, within the whole fountain region in which thermal en-

trainment occurs. This whole fountain region is defined as the region enclosed by

the interface between the fountain and the ambient fluid at Y = 0 in the X − Z

plane, which is the region enclosed by the X axis, the iso-temperature line at

T0−1%(Ta,0−T0) and the vertical lines at X = ±10X0 at Y = 0 in the X−Z plane,

as illustrated in Fig. 5.58(a). Another more useful and appropriate parameter to

quantify the overall thermal entrainment at any instant of time at a specific height z

is the instantaneous local average thermal entrainment coefficient at z (z = Z/X0),

denoted as αt,z, which is the averaged value of αt across the fountain width at z

(i.e., averaged value horizontally across the region at z where thermal entrainment

occurs, as illustrated in Fig. 5.58(b)). The value of αt,z at a specific vertical location,

denoted by αt,z=2, αt,z=4, αt,z=6, etc., at z = Z/X0 = 2, 4, 6, etc., respectively, as

depicted in Fig. 5.57, is used further to explain the effect of Fr, Re and s on the

thermal entrainment coefficient at that specific location.
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Figure 5.59: Vertical profiles of the instantaneous local average thermal entrainment coefficient
along the fountain width, αt,z, at different instants of time for the fountain at Fr = 10, Re = 100
and s = 0.1.
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Figure 5.60: Time series of αt,z=2, αt,z=4, αt,z=6, and αt,Y=0 of the plane fountain at Fr = 10,
Re = 100 and s = 0.1.

Figure 5.59 presents the vertical profiles of the instantaneous local average ther-

mal entrainment coefficient αt,z at several instants of time for the fountain at

Fr = 10, Re = 100 and s = 0.1. It is seen that in general αt,z decreases when

the height increases at any time. It is also observed that at any specific height, αt,z

in general decreases with the time passing by when τ ≤ 100, but reverses the trend

to be significantly increased at τ = 200. The subsequent value of αt,z is slightly

larger, as observed for the values at τ = 800. It is believed that the asymmetric

transition occurred at τ ≈ 200 may be the reason for the sharp turning of αt,z

observed at each height.

The time series of αt,z=2, αt,z=4, αt,z=6, and αt,Y=0, which are depicted in Fig. 5.57,

of the plane fountain at Fr = 10, Re = 100 and s = 0.1 are presented in Fig. 5.60,

which more evidently show the evolution of the instantaneous local average thermal

entrainment coefficients at several heights and the instantaneous global average ther-

mal entrainment coefficient. It is seen that all these thermal entrainment coefficients

vary significantly during the early developing stage, but at the later developing stage,

each fluctuates around essentially a time-average value which does not change with

time, implying the development of thermal entrainment attains the fully developed
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stage. The fluctuations are apparently due to the combined effects of the asymmet-

ric behavior, the bobbing and flapping motions. One noticeable observation is that

αt,Y=0 has the smallest values among the four average thermal entrainment coeffi-

cients considered. It is also observed that in general at any time the instantaneous

local average thermal entrainment coefficient is smaller at a higher height, which is

in agreement with the results shown in Fig. 5.59.

In the subsequent sections, the time averaged values of αt,z=2, αt,z=4, αt,z=6, and

αt,Y=0 at the fully developed stage, denoted as αt,z=2,a, αt,z=4,a, αt,z=6,a, and αt,Y=0,a,

respectively, as illustrated in Fig. 5.60, will be used to quantify the effects of Fr, Re

and s on the thermal entrainment.

5.6.4 Effect of s, Fr and Re

5.6.4.1 Effect of s

Figure 5.61 presents the snapshots of transient contours of thermal entrainment

coefficient, αt, at the fully developed stage for the plane fountain at different s in

the range of 0 ≤ s ≤ 0.7, all at Fr = 5 and Re = 100, at three specific locations in

the X − Z, Y − Z, and X − Y planes, respectively. It is seen that at Y = 0 in the

X − Z plane (first column) and at Z = 10X0 in the X − Y plane (third column)

thermal entrainment plays a key role in the downflows, whereas its effect becomes

negligible in the core upflows of the injected fountain fluid. It is also observed

that the extent of the effect of thermal entrainment on the downflows becomes

weaker when the stratification is stronger, apparently due to the stabilizing effect

of the stratification. At a very strong stratification, such as at s = 0.7, thermal

entrainment becomes minimal, mainly at the interface between the fountain fluid

and the ambient fluid through conduction only, as can be seen from the second

column in Fig. 5.61. The contour of αt at such a strong stratification is also seen to

be the same along the Y direction. It is further observed from the third column that

the size, in the X direction, of the core region where substantial thermal entrainment

occurs is gradually reduced when s increases.

The vertical profiles of the instantaneous local average thermal entrainment co-

efficient αt,z at two instants of time, one at the developing stage and one at the fully

developed stage, are presented in Fig. 5.62 for fountains at different s in the range

of 0 ≤ s ≤ 0.5, all at Fr = 5 and Re = 100. It is seen that for each s value αt,z in

general decreases when the height increases and at each height αt,z in general also

decreases when s increases.
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Figure 5.61: Snapshots of transient contours of thermal entrainment coefficient, αt, at the fully
developed stage for the plane fountain at different s in the range of 0 ≤ s ≤ 0.7, all at Fr = 5
and Re = 100, at Y = 0 in the X − Z plane (first column), at X = 0 in the Y − Z plane (second
column), and at Z = 10X0 in the X − Y plane (third column).

Figure 5.63 presents the time series of αt,Y=0 and αt,z=2 at Y = 0 in the X − Z
plane for the fountains at different s in the range of 0 ≤ s ≤ 0.7, all at Fr = 5 and

Re = 100, which demonstrate the evolution of αt,Y=0 and αt,z=2 under the influence

of s. It is seen from the figure that the values of αt,Y=0 and αt,z=2 drop significantly

at the early developing stage when s is increased, again due to the stabilizing effect of

the stratification. Similarly, the values of αt,Y=0 and αt,z=2 also reduces considerably

at the fully developed stage, also due to the stabilizing effect of the stratification,
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Figure 5.62: Instantaneous vertical profiles of αt,z at Y = 0 in the X−Z plane for the fountains
at different s in the range of 0 ≤ s ≤ 0.5, all at Fr = 5 and Re = 100: (a) at τ = 50 at the
developing stage and (b) at τ = 800 at the fully developed stage.

although these values are in general larger than the values at the early developing

stage, in particular at higher s values, due to the combined effects of asymmetric

behavior, bobbing and flapping motions. It is further observed that the fluctuations

in the time series of αt,Y=0 and αt,z=2 occur at almost the same times as those for

the onset of the corresponding asymmetric behavior in the X direction, as shown in

Fig. 5.11. This implies that the asymmetric behavior should be the main cause for

the stronger thermal entrainment in asymmetric fountains.

Figure 5.64 presents αt,Y=0,a, αt,z=2,a, αt,z=4,a, and αt,z=6,a, which are the respec-

tive time-averaged values of αt,Y=0, αt,z=2, αt,z=4, and αt,z=6 at the fully developed

stage, plotted against s over the ranges of 0 ≤ s ≤ 0.7 and 5 ≤ Fr ≤ 10, all at

Re = 100. It is seen that for each Fr value, all the four time-averaged thermal

entrainment coefficients decrease monotonically with the increase of s, due to the

stabilizing effect of the stratification. In general each thermal entrainment coeffi-

cient increases when Fr increases at the same s value, except at Fr = 10 which has

the trend that is noticeably different from those at other Fr values considered. The

reason for this is not clear. It may be caused by the different regimes of the Fr ≥ 10

fountains and the Fr < 10 fountains. It is apparent that a further investigation is

required for this but it is beyond the scoep of this thesis.

The DNS results presented in Fig. 5.64 suggest that the effect of s on αt,Y=0,a,

αt,z=2,a, αt,z=4,a, and αt,z=6,a can be quantified by the following relation,

αt,i,a = Cα,ss
c, (5.55)

where Cα,s is a constant of proportionality, the index c is a constant, and i represents

Y = 0, z = 2, z = 4 and z = 6, respectively. The values of Cα,s and c were
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Figure 5.63: Time series of αt,Y=0 (left column) and αt,z=2 (right column) at Y = 0 in the X−Z
plane for the fountains at different s in the range of 0 ≤ s ≤ 0.7, all at Fr = 5 and Re = 100.

determined by regression analysis for αt,Y=0,a, αt,z=2,a, αt,z=4,a, and αt,z=6,a using

the DNS results over the ranges of 0.1 ≤ s ≤ 0.5 and 5 ≤ Fr ≤ 10 at Re = 100 and

the results are listed in Table 5.17.

It is seen from Table 5.17 that in general the magnitude of c decreases when Fr

increases until Fr = 9 for each of the four thermal entrainment coefficients. It is
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Figure 5.64: (a) αt,Y=0,a, (b) αt,z=2,a, (c) αt,z=4,a, and (d) αt,z=6,a at Y = 0 in the X −Z plane
plotted against s over the ranges of 0 ≤ s ≤ 0.7 and 5 ≤ Fr ≤ 10, all at Re = 100. The solid lines
represent power fitting curves for different Fr values.

also seen that the magnitude of c increases when the height increases for each Fr

value and the magnitude of c for αt,Y=0,a is normally smaller than the magnitudes for

αt,z=2,a, αt,z=4,a, and αt,z=6,a. The magnitude of Cα,s, on the other hand, decreases

when the height increases for each Fr value whereas the magnitude of Cα,s for

αt,Y=0,a is normally smaller than the magnitude for αt,z=2,a but in general larger

than those for αt,z=4,a and αt,z=6,a. Again the exception occurs at Fr = 10, which

does not follow the trends observed for lower Fr values.

5.6.4.2 Effect of Fr

Figure 5.65 presents the snapshots of transient contours of αt at the fully devel-

oped stage for the plane fountain at different Fr in the range of 2.875 ≤ Fr ≤ 10, all

at Re = 100 and s = 0.1, at three specific locations in the X−Z, Y −Z, and X−Y
planes, respectively. It is seen that at Fr = 2.875 thermal entrainment is almost

absent due to the symmetric behavior of the flow at such a small Fr value; however,

when Fr is increased, it is observed that the extent of thermal entrainment at each

of the three planes presented in the figure increases significantly, again mainly in the

downflows as well as near the interface between the fountain top and the ambient
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Table 5.17: Regression results for the dependence of thermal entrainment coefficients αt,Y=0,a,
αt,z=2,a, αt,z=4,a, and αt,z=6,a on s over the range of 0.1 ≤ s ≤ 0.5 with different Fr over the range
of 5 ≤ Fr ≤ 10, all at Re = 100.

Fr αt,i,a Cα,s c R Fr αt,i,a Cα,s c R

5 αt,Y=0,a 0.0624 -0.546 0.9883 8 αt,Y=0,a 0.1578 -0.300 0.9970
αt,z=2,a 0.0793 -0.576 0.9690 αt,z=2,a 0.2404 -0.319 0.9432
αt,z=4,a 0.0353 -0.911 0.9557 αt,z=4,a 0.1327 -0.536 0.9792
αt,z=6,a 0.0145 -1.197 0.9579 αt,z=6,a 0.0845 -0.665 0.9763

6 αt,Y=0,a 0.0961 -0.438 0.9966 9 αt,Y=0,a 0.1651 -0.300 0.9970
αt,z=2,a 0.1388 -0.443 0.9732 αt,z=2,a 0.2848 -0.301 0.9432
αt,z=4,a 0.0769 -0.655 0.9934 αt,z=4,a 0.1656 -0.453 0.9792
αt,z=6,a 0.0435 -0.791 0.9917 αt,z=6,a 0.1071 -0.584 0.9900

7 αt,Y=0,a 0.1227 -0.400 0.9954 10 αt,Y=0,a 0.1050 -0.509 0.9968
αt,z=2,a 0.1800 -0.407 0.9816 αt,z=2,a 0.2010 -0.495 0.9901
αt,z=4,a 0.1044 -0.567 0.9951 αt,z=4,a 0.1258 -0.605 0.9901
αt,z=6,a 0.0599 -0.755 0.9964 αt,z=6,a 0.0954 -0.642 0.9986

fluid. It is also observed from the figure that at high Fr values (Fr ≥ 5) the value

of αt can be larger than one at some regions of the downflows. This is a result of

the trapping of the ambient fluid at higher temperature from a higher level into the

fluid with lower temperature due to strong circulation at high Fr values. All these

provide further evidence that the asymmetric behavior should be the main cause for

the stronger thermal entrainment in asymmetric fountains, as discussed above.

Fig. 5.66 presents the vertical profiles of the instantaneous local average thermal

entrainment coefficient αt,z at two instants of time, again one at the developing stage

and one at the fully developed stage, for fountains at different Fr in the range of

4 ≤ Fr ≤ 10, all at Re = 100 and s = 0.1. It is seen that for each Fr value αt,z in

general decreases when the height increases due to weaker entrainment. However, at

each height it is observed that αt,z in general increases when Fr increases, a result

of the stronger entrainment and circulation at higher Fr values, as discussed above.

Figure 5.67 presents the time series of αt,Y=0 and αt,z=2 at Y = 0 in the X − Z
plane for the fountains at different Fr in the range of 2.875 ≤ Fr ≤ 10, all at

Re = 100 and s = 0.1, to demonstrate the effect of Fr on the evolution of αt,Y=0

and αt,z=2. It is seen from the figure that the values of αt,Y=0 and αt,z=2 do not

vary much at the early developing stage when Fr is increased, due to the relatively

weak entrainment at such an early developing stage of the flow. However, at the

subsequent fully developed stage, the values of αt,Y=0 and αt,z=2 are increased when

compared to their values at the early developing stage due to much stronger and

active entrainment and they in general increase, although not at a significant rate of
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Figure 5.65: Snapshots of transient contours of thermal entrainment coefficient, αt, at the fully
developed stage for the plane fountain at different s in the range of 0 ≤ s ≤ 0.7, all at Fr = 5
and Re = 100, at Y = 0 in the X − Z plane (first column), at X = 0 in the Y − Z plane (second
column), and at Z = 10X0 in the X − Y plane (third column).

increase, when Fr increases. Also fluctuations are present in the time series when

Fr is beyond 2.875, and the extent of the fluctuations becomes stronger when Fr

increases, which is particularly apparent in the time series of αt,z=2.

Figure 5.68 presents αt,Y=0,a, αt,z=2,a, αt,z=4,a, and αt,z=6,a, plotted against Fr
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Figure 5.66: Instantaneous vertical profiles of αt,z at Y = 0 in the X−Z plane for the fountains
at different Fr in the range of 4 ≤ Fr ≤ 10, all at Re = 100 and s = 0.1: (a) at τ = 50 at the
developing stage and (b) at τ = 800 at the fully developed stage.

Table 5.18: Regression results for the dependence of thermal entrainment coefficients αt,Y=0,a,
αt,z=2,a, αt,z=4,a, and αt,z=6,a on Fr over the range of 3 ≤ Fr ≤ 9 with different s over the range
of 0.1 ≤ s ≤ 0.5, all at Re = 100.

s αt,i,a Cα,Fr a R

0.1 αt,Y=0,a 0.0957 0.561 0.9692
αt,z=2,a 0.0467 1.135 0.9811
αt,z=4,a 0.0732 0.834 0.9815
αt,z=6,a 0.0271 1.249 0.9888

0.2 αt,Y=0,a 0.0352 0.954 0.9862
αt,z=2,a 0.0280 1.308 0.9953
αt,z=4,a 0.0400 0.998 0.9766
αt,z=6,a 0.0045 1.950 0.9836

0.3 αt,Y=0,a 0.0252 1.040 0.9937
αt,z=2,a 0.0195 1.401 0.9949
αt,z=4,a 0.0123 1.449 0.9864
αt,z=6,a 0.0025 2.082 0.9889

0.4 αt,Y=0,a 0.0142 1.280 0.9851
αt,z=2,a 0.0095 1.720 0.9869
αt,z=4,a 0.0051 1.806 0.9794
αt,z=6,a 0.0016 2.173 0.9760

0.5 αt,Y=0,a 0.0087 1.464 0.9732
αt,z=2,a 0.0050 1.934 0.9902
αt,z=4,a 0.0016 2.290 0.9623
αt,z=6,a 0.0003 2.999 0.9577

over the ranges of 3 ≤ Fr ≤ 9 and 5 ≤ Fr ≤ 10, all at Re = 100. It is seen

that for each s value, all the four time-averaged thermal entrainment coefficients

increase monotonically with the increase of Fr, due to the stronger entrainment and

circulation. It is also observed that in general each thermal entrainment coefficient

decreases when s increases at the same Fr value, apparently due to the stabilizing
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Figure 5.67: Time series of αt,Y=0 (left column) and αt,z=2 (right column) at Y = 0 in the
X − Z plane for the fountains at different Fr in the range of 2.875 ≤ Fr ≤ 10, all at Re = 100
and s = 0.1.

effect of stratification. The results for Fr = 10 are excluded due to the possibly

different regime of the Fr ≥ 10 fountains from that of the Fr < 10 fountains.
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Figure 5.68: (a) αt,Y=0,a, (b) αt,z=2,a, (c) αt,z=4,a, and (d) αt,z=6,a at Y = 0 in the X −Z plane
plotted against Fr over the ranges of 3 ≤ Fr ≤ 9 and 0.1 ≤ s ≤ 0.5, all at Re = 100. The solid
lines represent power fitting curves for different s values.

The DNS results presented in Fig. 5.68 suggest that the effect of Fr on αt,Y=0,a,

αt,z=2,a, αt,z=4,a, and αt,z=6,a can be quantified by the following relation,

αt,i,a = Cα,FrFr
a, (5.56)

where Cα,Fr is a constant of proportionality, the index a is a constant, and i repre-

sents Y = 0, z = 2, z = 4 and z = 6, respectively. The values of Cα,Fr and a were

determined by regression analysis for αt,Y=0,a, αt,z=2,a, αt,z=4,a, and αt,z=6,a using the

DNS results over the ranges of 3 ≤ Fr ≤ 9 and 0.1 ≤ s ≤ 0.5, all at Re = 100, and

the results are listed in Table 5.18.

It is seen from Table 5.18 that in general the magnitude of a increases but

the magnitude of Cα,Fr decreases when s increases for each of the four thermal

entrainment coefficients. It is also seen that the magnitude of a increases but the

magnitude of Cα,Fr decreases when the height increases for each s value when s ≥
0.3. However, these trends are not valid for weaker stratification, when s = 0.1

and s = 0.2. It is further observed that the magnitude of a for αt,Y=0,a is smaller

than the magnitudes for αt,z=2,a, αt,z=4,a, and αt,z=6,a, whereas, on the contrary, the

magnitude of Cα,Fr is larger than the magnitudes for αt,z=2,a, αt,z=4,a, and αt,z=6,a
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for each s value.

5.6.4.3 Effect of Re

Figure 5.69: Snapshots of transient contours of thermal entrainment coefficient, αt, at the fully
developed stage for the plane fountain at different s in the range of 0 ≤ s ≤ 0.7, all at Fr = 5
and Re = 100, at Y = 0 in the X − Z plane (first column), at X = 0 in the Y − Z plane (second
column), and at Z = 10X0 in the X − Y plane (third column).

Figure 5.69 presents the snapshots of transient contours of thermal entrainment

coefficient, αt, at the fully developed stage for the plane fountain at different Re in

the range of 25 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1, at three specific locations in

the X−Z, Y −Z, and X−Y planes, respectively. It is seen that at lower Re values

(Re ≤ 30), thermal entrainment is essentially absent from the fountain fluid due

to negligible entrainment and circulation at such low Re values. The flow remains
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Figure 5.70: Instantaneous vertical profiles of αt,z at Y = 0 in the X−Z plane for the fountains
at different Re in the range of 30 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1: (a) at τ = 50 at the
developing stage and (b) at τ = 800 at the fully developed stage.

symmetric at these lower Re values, even at the fully developed stage. However,

a further increase of Re, even at a very small amount, to Re = 35, as shown

in the figure, leads to noticeable thermal entrainment, although mainly near the

interface between the fountain top and the ambient fluid and thermal entrainment

is still essentially absent from the core regions of the fountain fluid. The flow starts

to become asymmetric. Further increases of Re result in significantly increased

thermal entrainment, along with the asymmetric behavior and the bobbing and

flapping motions as discussed in previous sections. When Re is 100 and beyond,

the strong circulation brings the ambient fluid at higher temperature from a higher

height to the core regions of the fountain fluid, which results in larger than one

thermal entrainment in these regions, as clearly shown in the figure, in particular in

the first and third columns. This demonstrates that Re has a strong effect on the

thermal entrainment.

Fig. 5.70 presents the vertical profiles of the instantaneous local average thermal

entrainment coefficient αt,z at two instants of time, again one at the developing stage

and one at the fully developed stage, for fountains at different Fr in the range of

30 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1. It is seen that for each Re value αt,z

in general decreases when the height increases due to weaker entrainment, except

at Fr = 10 in which some different trends are present. However, at each height it

is observed that αt,z in general increases when Re increases, again a result of the

stronger entrainment and circulation at higher Re values, similar to the Fr effect

as discussed above.

Figure 5.71 presents the time series of αt,Y=0 and αt,z=2 at Y = 0 in the X − Z
plane for the fountains at different Re in the range of 25 ≤ Re ≤ 300, all at Fr = 5

and s = 0.1, to demonstrate the effect of Re on the evolution of αt,Y=0 and αt,z=2.
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Figure 5.71: Time series of αt,Y=0 (left column) and αt,z=2 (right column) at Y = 0 in the X−Z
plane for the fountains at different Re in the range of 25 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1.

The results show that the effect of Re on the evolution of αt,Y=0 and αt,z=2 is very

similar to that of Fr; at the early developing stage the values of αt,Y=0 and αt,z=2

do not vary much when Re is increased, in particular when Re is low (Re ≤ 50)

due to the relatively weak entrainment at such an early developing stage of the flow,

although values of αt,Y=0 and αt,z=2 become larger at higher Re values at the early

developing stage. Again, at the subsequent fully developed stage, the values of αt,Y=0

and αt,z=2 are increased when compared to their values at the early developing stage,

particularly when Re is beyond 30, due to much stronger and active entrainment

and circulation, and they in general increase, although not at a significant rate of
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Figure 5.72: (a) αt,Y=0,a, αt,z=2,a, αt,z=4,a, and αt,z=6,a plotted against Re in the range of
35 ≤ Re ≤ 300, and (b) ln(αY=0,a), ln(αz=2,a), ln(αz=4,a), and ln(αz=6,a) plotted against ln(Re)
in the range of 50 ≤ Re ≤ 300, all at Fr = 5 and Re = 100. The solid lines represent power fitting
curves.

increase, when Re increases. Fluctuations are also present in the time series when

Re is beyond 30, again due to much stronger and active entrainment and circulation.

Figure 5.72 presents αt,Y=0,a, αt,z=2,a, αt,z=4,a, and αt,z=6,a, plotted against Re

over the ranges of 35 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1. It is seen that

all four time-averaged thermal entrainment coefficients increase monotonically with

the increase of Re, due to the stronger entrainment and circulation, although their

values at Re = 35 are apparently not following the trends of the higher Re values

very well, apparently due to the flow not being significantly asymmetric.

The DNS results presented in Fig. 5.72 suggest that the effect of Re on αt,Y=0,a,

αt,z=2,a, αt,z=4,a, and αt,z=6,a, when Re is above 35 as shown in Fig. 5.72(b), can be

quantified by the following relation,

αt,i,a = Cα,ReRe
b, (5.57)

where Cα,Re is a constant of proportionality, the index b is a constant, and i repre-

sents Y = 0, z = 2, z = 4 and z = 6, respectively. The values of Cα,Re and b were

determined by regression analysis for αt,Y=0,a, αt,z=2,a, αt,z=4,a, and αt,z=6,a using the

DNS results over the ranges of 50 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1, and the

results are listed in Table 5.19.

5.6.4.4 Combined effects of s, Fr and Re

From the above results on the effects of s, Fr and Re on the four time-averaged

thermal entrainment coefficients (αt,Y=0,a, αt,z=2,a, αt,z=4,a, and αt,z=6,a) over the
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Table 5.19: Regression results for the dependence of thermal entrainment coefficients αt,Y=0,a,
αt,z=2,a, αt,z=4,a, and αt,z=6,a on Re over the range of 50 ≤ Re ≤ 300, all at Fr = 5 and s = 0.1.

αt,i,a Cα,Re b R

αt,Y=0,a 0.0799 0.208 0.9989
αt,z=2,a 0.1163 0.192 0.9952
αt,z=4,a 0.1407 0.130 0.9617
αt,z=6,a 0.1045 0.136 0.9687
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Figure 5.73: (a) αt,Y=0,a plotted against Fr1.107Re0.201s−0.430, (b) αt,z=2,a plotted against
Fr1.502Re0.180s−0.455, (c) αt,z=4,a plotted against Fr1.363Re0.107s−0.664, and (d) αt,z=6,a plotted
against Fr1.363Re0.107s−0.664 over the ranges of 5 ≤ Fr ≤ 9, 50 ≤ Re ≤ 300, and 0.1 ≤ s ≤ 0.5.
The solid lines represent linear fitting curves with the data at Fr = 8 and 9 at Re = 100 and
s = 0.1 excluded.

ranges of these parameters considered, it is reasonable to propose that the combined

effects of s, Fr and Re on these parameters can be quantified by the following

relation

αt,i,a = CαFr
aRebsc, (5.58)

where Cα is again a constant of proportionality and the power indexes a, b and c are

also constants. The values of these constants can be determined by multivariable

regression analysis with the DNS results over the ranges of 5 ≤ Fr ≤ 9, 50 ≤
Re ≤ 300 and 0.1 ≤ s ≤ 0.5 for each of the four time-averaged thermal entrainment
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coefficients, giving the following empirical correlations,

αt,Y=0,a = 0.0050Fr1.107Re0.201s−0.430 + 0.0008, (5.59)

αt,z=2,a = 0.0038Fr1.502Re0.180s−0.455 + 0.0116, (5.60)

αt,z=4,a = 0.0037Fr1.363Re0.107s−0.664 + 0.0180, (5.61)

αt,z=6,a = 0.0035Fr1.363Re0.107s−0.664 + 0.0375, (5.62)

with the regression constants of R = 0.9865, 0.9863, 0.9736, and 0.9916, which

indicate that the DNS results are in good agreement with the relation (5.58) over

the ranges of 5 ≤ Fr ≤ 9, 50 ≤ Re ≤ 300 and 0.1 ≤ s ≤ 0.5, as demonstrated in

Fig. 5.73. The DNS results for Fr = 10 fountains are excluded from the regression

analysis, as explained above. In addition, the results for Fr = 8 and Fr = 9

fountains at Re = 100 and s = 0.1 are also not included in the regression analysis

results as they do not follow the trends well as other Fr fountains, as clearly shown

in Fig. 5.73. A further study is needed to explore the reason for this, but again it is

beyond the scope of this thesis.

5.7 Summary

In this chapter, the flow behavior of transitional plane fountains in linearly-

stratified fluids is studied in detail using a series of three-dimensional DNS runs

over the ranges of 2.75 ≤ Fr ≤ 10, 25 ≤ Re ≤ 300, and 0 ≤ s ≤ 0.7. In par-

ticular, the effects of Fr, Re and s on the onset of the asymmetric behavior, as

well as the fountain bulk behavior parameters, such as the maximum fountain pen-

etration heights and the associated time, the dominant frequencies of the bobbing

and flapping motions, and the thermal entrainment coefficients, are discussed and

quantified by the DNS results. The major results and conclusions of this chapter

can be summarized below.

The results show that plane fountains remain symmetric for all times at a lower

Fr or Re value or at a higher s value. On the contrary, when Fr or Re is large

or the stratification is weak with a small s, plane fountains will remain symmetric

only in the early developing stage and will become asymmetric at the later, fully

developed stage. Regime maps to distinguish the symmetric plane fountains from

the asymmetric one were developed in terms of Fr, Re and s. It was observed

that the critical Fr and Re values for the asymmetric transition move up when

s increases, due to the stabilizing effect of stratification; on the other hand, the
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critical Re value for the asymmetric transition reduces when Fr increases at lower

Fr values, but becomes essentially independent of Fr when Fr is high.

The results further demonstrate that both the initial and time-average maximum

fountain penetration height and the time to attain the initial maximum fountain

penetration height increase monotonically with Fr, apparently due to the stronger

momentum flux of the injected fountain fluid, whereas on the contrary, due to the

stronger negative buoyancy force at higher s values, these bulk fountain behavior

parameters reduce with s. It was also shown that the effect of Fr on these parameters

is much stronger that those of s, although the effect of Re is found to be negligible.

The DNS results also show that bobbing and flapping motions are present in

asymmetric plane fountains, with the extent of both the bobbing and flapping mo-

tion increasing with Fr and Re but decreasing with s. The bobbing motions are

predominated by a single dominant frequency over the ranges of Fr, Re and s consid-

ered, and it is found that this dominant bobbing frequency decreases monotonically

with Fr, but increases with s. The flapping motions in asymmetric plane fountains

occur along both the X direction and the Y direction. The flapping motions along

the X direction are also predominated by a single dominant frequency, and similar

to the bobbing motions, this dominant flapping frequency also decreases monoton-

ically with Fr, but increases with s. The effect of Re on the dominant frequencies

for the bobbing motions and the flapping motions along the X direction is found to

be insignificant. On the other hand, the flapping motions along the Y direction is

more chaotic and fluctuate with multiple dominant frequencies.

The results further demonstrate that thermal entrainment is one of the major

features of plane fountains and plays a key role for the symmetric-to–asymmetric

transition and the turbulent mixing process in asymmetric fountains. For the pa-

rameter ranges considered, it is observed that thermal entrainment in general has a

negligible effect on the core region of the injected fountain fluid, but plays a key role

in the downflow, in particular at the interface between the upflow and the downflow,

as well as at the interface between the downflow and the ambient fluid, which be-

comes more dominant and stronger at the later flow developing stages. At the early

developing stage, thermal entrainment occurs mainly in a very thin layer which is

the interface of the fountain top and the ambient fluid. It is also observed that ther-

mal entrainment decreases with height. Thermal entrainment is further found to be

characterized by several representative average thermal entrainment coefficients.

Additional, the DNS results are used to develop a series of empirical relations

to quantify the individual and combined effects of Fr, Re and s, over their ranges
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considered, on the bulk fountain behavior parameters, including the initial and time-

averaged maximum fountain penetration heights, the time to attain the initial max-

imum fountain penetration height, the onset time for the symmetric-to-asymmetric

transition, the dominant frequencies of the bobbing and flapping motions, and the

thermal entrainment coefficients. Notably, it is found that the scaling relations de-

veloped by Lin & Armfiled (2002) for weak plane fountains in linearly-stratified

fluids, at Fr = O(1), in general also work well for the asymmetric plane fountains

in linearly-stratified fluids considered in this thesis, which have higher Fr values.
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Symmetric plane fountains

6.1 Introduction

In the previous two chapters, the flow behavior of transitional plane fountains

in linearly-stratified fluids was investigated using a series of three-dimensional DNS

runs over the ranges of 2.75 ≤ Fr ≤ 10, 25 ≤ Re ≤ 300, and 0 ≤ s ≤ 0.7.

The major feature of these fountains studied is that almost all of them become

asymmetric at the later developing stage, although at the early developing stage

they are symmetric. At a smaller Re value and a stronger stratification than those

studied, it is expected that a plane fountain in linearly-stratified fluids may remain

symmetric all the time, including at the fully developed stage. In this chapter, the

flow behavior of such symmetric plane fountains in linearly-stratified fluids is studied

using the results obtained through a series of three-dimensional DNS runs over the

ranges of 1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 100, and 0.1 ≤ s ≤ 0.7.

The remainder of this chapter is organized as follows. In § 6.2, the details of

the DNS runs carried out in this chapter are presented, along with the mesh and

time-step independence testing results. In § 6.3, the general flow behavior of sym-

metric plane fountains in linearly-stratified fluids, and the influence of Fr, Re and s,

are described qualitatively with the transient temperature contours. A quantitative

analysis of the maximum fountain penetration height of these symmetric plane foun-

tains was conducted in § 6.4 using the DNS results. Particularly the effects of Fr,

Re and s on the initial and time-averaged maximum fountain penetration heights,

the time to attain the initial maximum fountain height, and the transient maximum

fountain height are analyzed and quantified with the DNS results. The height and

velocity of intrusion, which is found to be an important part for the symmetric plane

217
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fountains considered, are also analyzed and quantified with the DNS results in § 6.5.

Finally, the major conclusions of this chapter are drawn in § 6.6.

6.2 DNS runs and mesh and time-step independence testing

There are totally 49 DNS runs carried out in this chapter using ANSYS Fluent 13,

with key information about these runs listed in Table 6.1. The DNS run mainly focus

on symmetric plane fountains, which remain symmetric throughout the simulation

run, over the range 1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 100 and 0.1 ≤ s ≤ 0.7, which is noted

in Table 6.1. For all DNS run, the fluid used was water with the same properties

mentions at Chapter 5.2. X0 and Ta,0 was fixed at 0.002 m and 300 K, respectively.

Specific Fr,Re and s conditions, over the range mentioned, was also achieved in

similar way mention in Chapter 5.2. Same domain with same mesh specification

was also used to produce accurate simulation with time step 0.025 s.

Table 6.1: Key information about DNS run of this chapter.

s Re Fr Symmetric?
(Yes/No)

0.1 100 1,1.5,2,2.75,2.875,3 Yes
0.1 50 3 Yes
0.1 10,15,20,25,28,30,35 5 Yes
0.1 15,20 9 Yes
0.1 15,18 10 Yes
0.2 100 1,2,3,3.25,3.5 Yes
0.2 35 5 Yes
0.3 100 1,2,3,3.5,3.75,4 Yes
0.3 45 5 Yes
0.4 100 1,2,3,4,4.35,4.5,5 Yes
0.4 60 5 Yes
0.5 100 1,2,3,4,4.75,4.875,5 Yes
0.7 100 5 Yes
1 100 5 Yes

Accurate simulations had been ensured with extension mesh and time-step de-

pendency test. one example of such testing result are presented in Fig. 6.1 for

Fr = 2, Re = 100 and s = 0.1, which depicts the horizontal profile of temperature

and vertical velocity at height Z = 0.005 m in the X–Z plane at the location Y = 0,

and the vertical profiles of temperature and vertical velocity along the centerline

(at X = Y = 0) in the Z direction, all at t = 20 s. These results were obtained

numerically with three different meshes (i.e. coarse mesh with 1.17 million cells,

basic mesh with 2.1 million cells and fine mesh with 3.6 million cells) and with three



Symmetric plane fountains 219

time steps (i.e. 0.025 s, 0.035 s and 0.05 s) It is clear from Fig. 6.1 (a ∼ d), which

is presenting DNS results with the three meshes, all at the same time step of 0.025

s, that the results obtained with the basic mesh and the fine mesh are essentially

same and only the results produce with the coarse mesh have some noticeable de-

viations. Similarly, a comparison of the results obtained with three time steps, all

with basic mesh (2.1 million cells), as shown Fig. 6.1 (e ∼ h), shows that the dif-

ferences are very insignificant. Hence it is believe that the combination of the basic

mesh with 2.1 million cells and the time step with 0.025 s can produces sufficiently

accurate solutions with neglecting mesh and time dependency effects on the simula-

tion. Similarly, these mesh and time dependency test was also conducted for other

conditions as well as and observed that numerical simulation can produce sufficient

accurate simulation result with basic mesh (2.1 million cells) with time step 0.025 s.

In additions, effect of domain size on the numerical result is also tested and found

that domain size H ×B × L equal to 0.2 m × 0.1 m × 1.5 m can ensure negligible

effect of boundary condition on the flow quantities of interest. For a typical run,

it usually took 10 ∼ 18 days Dell OptiPlex (TM) desktop with processor “Intel(R)

Core(TM) i7–3770 CPU @ 3.40GHz”, RAM 32.0 GB and operation system 64-bit,

which usually took one week to finish one simulation.

6.3 Qualitative Observation

6.3.1 Evolution of transient temperature contour

Figure 6.2 shows the evolution of transient temperature contours of the plane

fountain at Fr = 3.25, Re = 100 and s = 0.1 on three specific planes. It is

observed that at each instant of time considered the temperature contours (thus the

temperature fields) are symmetric about X = 0 in the X − Z plane, as shown in

the first column, and there is no temperature variation along the Y direction (i.e.,

along the fountain source slot), as exhibited in the second and third columns. The

bobbing and flapping motions observed for asymmetric plane fountains as discussed

in the previous chapter are not present as well. All these clearly demonstrate that

the fountain flow in this specific case remains symmetric all the time, no matter

at the early developing stage or at the fully developed stage. These are the major

features that a symmetric plane fountain is different from an asymmetric fountains

as those studied in the previous two chapters.
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Figure 6.1: The horizontal profiles of temperature T (K) ((a) and (e)) and vertical velocity W
(m/s) ((b) and (f)) at Z = 0.005 m in the X–Z plane at the location Y = 0, and the vertical
profiles of temperature T (K) ((c) and (g)) and vertical velocity W (m/s) ((d) and (h)) along the
centerline (at X = Y = 0) in the Z direction all at t = 20 s, which are obtained numerically for
the case of Fr = 2, Re = 100 and s = 0.1 with three different meshes (left column, all at the same
time step of 0.025 s) and at three different time steps (right column, all with the same basic mesh
of 2.1 million cells).
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Figure 6.2: Evolution of transient temperature contours of the plane fountain with Fr = 3.25,
Re = 100 and s = 0.2 at Y = 0 in the X − Z plane (first column), X = 0 in the Y − Z plane
(second column), and Z = 0.5Zm,i in the X − Y plane (third column), respectively, where Zm,i is
the initial maximum fountain height. The temperature contours in each subfigure are normalized
with [T (Z)− T0]/(Ta,Z=60X0 − T0).

6.3.2 Effect of Fr

The effect of Fr on symmetric plane fountains is demonstrated in Fig. 6.3, where

the snapshots of the temperature contours, at the fully developed stage, of plane

fountains at different Fr between 1 and 3.5, all at Re = 100 and s = 0.2, at the same

three specific planes as those in Fig. 6.2 are presented. It is seen that at the fully

developed stage all these plane fountains remain symmetric. Fountains at larger Fr

values penetrate higher due to stronger momentum fluxes. It is also seen that there

is little entrainment of the ambient fluid into the core region of the fountain fluid,

as the upflow and the downflow become indistinguishable. It is also observed from

the first column that the intrusion thickness becomes substantial with respect to the

fountain height, particularly when Fr is small, which has a significant effect on the

maximum fountain penetration height, as will be discussed later in this chapter.
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Figure 6.3: Snapshots of the temperature contours at the fully developed stage of plane fountains
at different Fr over the range of 1 ≤ Fr ≤ 3.5, all at Re = 100 and s = 0.2, at Y = 0 in the XZ
plane (first column), at X = 0 in the Y Z plane (second column), and at Z = 0.5Zm,i in the XY
plane (third column), respectively. The temperature contours in each subfigure are normalized
with [T (Z)− T0]/(Ta,Z=60X0

− T0).

6.3.3 Effect of Re

The effect of Re on symmetric plane fountains is demonstrated in Fig. 6.4, where

the snapshots of the temperature contours, at the fully developed stage, of plane

fountains at different Re over the range of 10 ≤ Re ≤ 35, all at Fr = 5 and

s = 0.1, at the same three specific planes as those in Figs. 6.2 and 6.3 are presented.

It is seen that at the fully developed stage again all these plane fountains remain

symmetric, and there is little entrainment of the ambient fluid into the core region of

the fountain fluid, leading to indistinguishable upflow and downflow. The intrusion

thickness also becomes substantial with respect to the fountain height, particularly

when Re is small. One particular feature of these low Re plane fountains is that

Re has an insignificant effect on the fountain penetration height. It also has an

insignificant effect on the intrusion height, although the intrusion structure varies

with Re, as clearly shown in the first and third columns. At very low Re (when

Re = 10), the intrusion is a substantial part of the downflow, whereas at larger Re
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(when Re ≥ 25), the core region of the intrusion is essentially separated from the

downflow, thus its effect on the downflow becomes minimal.

Figure 6.4: Snapshots of the temperature contours at the fully developed stage of plane fountains
at different Re over the range of 10 ≤ Re ≤ 35, all at Fr = 5 and s = 0.1, at Y = 0 in the XZ
plane (first column), at X = 0 in the Y Z plane (second column), and at Z = 0.5Zm,i in the XY
plane (third column), respectively. The temperature contours in each subfigure are normalized
with [T (Z)− T0]/(Ta,Z=60X0

− T0).

6.3.4 Effect of s

Fig. 6.5 presents the snapshots of the temperature contours, at the fully devel-

oped stage, of plane fountains at different s over the range of 0.1 ≤ s ≤ 0.5, all at

Fr = 2 and Re = 100, at the same three specific planes as those in Figs. 6.2, 6.3

and 6.4, which demonstrate the effect of s on symmetric plane fountains. Again it

is observed that all these plane fountains remain symmetric, with little entrainment

between the ambient fluid and the core region of the fountain fluid, leading to in-

distinguishable upflow and downflow. The intrusion thickness again is substantial

with respect to the fountain height, in particular when s is large. The fountain

penetration height is observed to decrease when s increases, apparently due to the

stabilizing effect of the stratification as discussed in the previous chapters, indicat-

ing that s has a significant effect on the fountain penetration height as well as the

intrusion height.



224 Chapter 6

Figure 6.5: Snapshots of the temperature contours at the fully developed stage of plane fountains
at different s over the range of 0.1 ≤ s ≤ 0.5, all at Fr = 2 and Re = 100, at Y = 0 in the XZ
plane (first column), at X = 0 in the Y Z plane (second column), and at Z = 0.5Zm,i in the XY
plane (third column), respectively. The temperature contours in each subfigure are normalized
with [T (Z)− T0]/(Ta,Z=60X0

− T0).

6.4 Quantitative analysis of fountain penetration height

6.4.1 Time series fountain penetration height
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Figure 6.6: Illustration of zm,i, τm,i, and zm,a based on the time series of the dimensionless
maximum fountain height, zm, obtained from DNS for the case of Fr = 2, Re = 100 and s = 0.1.
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Figure 6.7: Time series of the maximum fountains height (zm) within the whole computational
domain for (a) different s values in the range of 0.1 ≤ s ≤ 0.5 at Fr = 2 and Re = 100, (b) different
Re values in the range of 10 ≤ Re ≤ 35 at Fr = 5 and s = 0.1, and (c) different Fr values in the
range of 1 ≤ Fr ≤ 3 at Re = 100 and s = 0.1.

A time series of the dimensionless maximum fountain height, zm, obtained

from DNS, is presented as an example in Fig. 6.6 for a typical symmetric plane

fountain at Fr = 2, Re = 100 and s = 0.1. It is seen that initially the fountain

rises continuously after initiation until at τm,i when it attains an initial maximum

height zm,i. After that, zm falls slightly, and shortly, before it rises again and it

continue to rise all the time subsequently, almost at a constant rate of rise. This

is quite different from an asymmetric plane fountain. For an asymmetric plane

fountain, after it reaches zm,i, a short period of transition will be followed, before

the fountain becomes fully developed subsequently, with zm fluctuating around an

almost constant value (zm,a), which does not change when the time passes by, as

illustrated in Fig. 4.16. The continual rise of zm at the later, fully developed stage
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in a symmetric plane fountain is believed to be a result of the associated continuous

rise of the intrusion height, as will be discussed in detail later of this chapter, which

reduces continuously the negative buoyant force that the fountain experiences when

the flow is further developed. The time-averaged value of zm, denoted as zm,a, which

is determined as the time averaged value of zm over the duration between τ = 200

and τ = 1000, as illustrated in Fig. 6.6, is used as the parameter to represent and

quantify the maximum fountain penetration height of a symmetric plane fountain

at the fully developed stage.

The DNS results for the time series of zm for symmetric plane fountains with Fr,

Re and s varying over the ranges of 1 ≤ Fr ≤ 3, 10 ≤ Re ≤ 35 and 0.1 ≤ s ≤ 0.5

are presented in Fig. 6.7. It is observed that in general zm decreases when s increases

due to the increasing negative buoyancy, but increases, although only slightly, when

Re increases, largely due to the increased mixing effect. When Fr increases, zm

increases due to stronger momentum flux, and the increase is substantial at smaller

Fr values. It is also observed that τm,i reduces when s increases, again due to the

increasing negative buoyancy which results in reduced zm. However, τm,i increases

significantly when Fr increases due to increased fountain momentum flux which

leads to higher zm and thus a longer time for the fountain to attain zm,i. It is also

observed that when Re increases, τm,i increases, although only slightly.

6.4.2 Initial maximum fountain height

The effect of Fr, Re and s on zm,i is demonstrated by the DNS results presented

in Fig. 6.8 for symmetric plane fountains. From Fig. 6.8(a), it is seen that at

Re = 100, for each s value, zm,i increases monotonically when Fr increases, due to

the stronger momentum flux of the fountain. The DNS results further demonstrate,

as shown in Fig. 6.8(b), that at Re = 100 for each s value the dependence of zm,i on

Fr can be quantified by the following relation,

zm,i = Cm,i,FrFr
a1 (6.1)

where Cm,i,Fr is a constant of proportionality and the index a1 is also a constant.

The values of these two constants were determined by linear regression analysis of

the data presented in Fig. 6.8(b), with the results listed in Table 6.2. It is seen that

the value of Cm,i,Fr decreases monotonically with s, from 2.371 at s = 0.1 to 1.793 at

s = 0.5, apparently due to stronger stratification, thus stronger negative buoyancy.

However, the value of a1 is essentially constant over the range of 0.1 ≤ s ≤ 0.5,
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Figure 6.8: (a) zm,i plotted against Fr and (b) ln(zm,i) plotted against ln(Fr) for 1 ≤ Fr ≤ 5 at
Re = 100 and s in the range of 0.1 ≤ s ≤ 0.5, (c) zm,i plotted against Re and (d) ln(zm,i) plotted
against ln(Re) for 10 ≤ Re ≤ 35 at Fr = 5 and s = 0.1, and (e) zm,i plotted against s and (f)
ln(zm,i) plotted against ln(s) for 0.1 ≤ s ≤ 0.5 at Re = 100 and Fr in the range of 1 ≤ Fr ≤ 3.
The solid lines are linear fit lines.

at about 0.82, with only the s = 0.1 case having a slightly higher value at 0.874,

indicating that the effect of Fr on zm,i is not noticeably influenced by s.

From Fig. 6.8(c) and (d), it is seen that at Fr = 5 and s = 0.1, zm,i increases

almost linearly with Re over the small range of 10 ≤ Re ≤ 35, although the rate of

the increase in zm,i is not substantial. The dependence of zm,i on Re over this small

range, at Fr = 5 and s = 0.1, is found to be quantified by the DNS results over this

range with the following correlation, as shown in Fig. 6.8(d),

zm,i = 0.0834Re+ 8.3443, (6.2)
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Table 6.2: Regression results for the dependence of zm,i on Fr over the range of 1 ≤ Fr ≤ 5 for
different s, all at Re = 100.

s Cm,i,Fr a1 R

0.1 2.371 0.874 0.9960
0.2 2.196 0.822 0.9949
0.3 2.043 0.814 0.9955
0.4 1.909 0.816 0.9953
0.5 1.793 0.823 0.9948

Table 6.3: Regression results for the dependence of zm,i on s over the range of 0.1 ≤ s ≤ 0.5 for
different Fr, all at Re = 100.

Fr Cm,i,s c1 R

1 1.721 -0.161 0.9894
2 2.654 -0.198 0.9967
3 3.455 -0.269 0.9992

with the regression constant of R = 0.9974.

The effect of s on zm,i is illustrated in Fig. 6.8(e) for the fountains over the ranges

of 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 3, all at Re = 100. On the contrary, it is seen that

zm,i decreases monotonically with increasing s, which is the result of the increasing

negative buoyancy that the fountain has to overcome when penetrating the stratified

ambient fluid. From Fig. 6.8(f), it is seen that the dependence of zm,i on s can be

represented by the following relation,

zm,i = Cm,i,ss
c1 (6.3)

where Cm,i,s is a constant of proportionality and the index c1 is also a constant. The

values of these two constants were determined by linear regression analysis of the

data presented in Fig. 6.8(f), with the results listed in Table 6.3. It is seen that the

value of Cm,i,s increases with Fr due to larger momentum flux of the fountain fluid

which leads to larger fountain penetration height, and the magnitude of c1 is also

found to increase with Fr, indicating that the effect of s on zm,i becomes stronger

at a higher Fr. Another noticeable observation is that the magnitude of c1 is much

smaller than the magnitude of a1, implying that Fr has a stronger effect on zm,i

than s does.

As the dependence of zm,i on Fr, Re and s can be represented by the relations
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Figure 6.9: zm,i plotted against (a) Fr0.913Re0.062s−0.273 and (b) Fr1.011Re0.062s−0.273 over the
ranges 1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 100 and 0.1 ≤ s ≤ 0.7, where only the DNS results for symmetric
plane fountains over the ranges are included.

(6.1), (6.2) and (6.3), respectively, the combined effect of these governing parameters

on zm,i can be quantified by the following relation,

zm,i = Cz,m,iFr
a2Reb1sc2 , (6.4)

where Cz,m,i is a constant of proportionality and the indexes a2, b1 and c2 are again

constants. The values of these constants are determined by multivariable regression

method using the DNS results for the symmetric plane fountains over the ranges of

1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 100 and 0.1 ≤ s ≤ 0.7, which gives the following quantified

correlation,

zm,i = 1.036Fr0.913Re0.062s−0.273 − 0.2132. (6.5)

The regression coefficient of this correlation is R = 0.9956, indicating that the DNS

results over the ranges of Fr, Re and s considered are in excellent agreement with

the relation (6.4), as clearly demonstrated in Fig. 6.9(a) where the DNS results for

zm,i the symmetric plane fountains over the ranges of 1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 100

and 0.1 ≤ s ≤ 0.7 are plotted against Fr0.913Re0.062s−0.273. This correlation also
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shows that the effect of Fr on zm,i is much stronger than s, whereas the effect of Re

is negligible, as demonstrated by the magnitudes of their indexes, which are 0.913,

0.273 and 0.062 for Fr, s and Re, respectively.

As shown in § 5.4.3, a dimensional analysis conducted by Lin & Armfield (2002)

developed the scaling relation (5.5), as shown below, for weak plane fountains at

Fr = O(1) in linearly-stratified fluids,

zm ∼ Fr
2
3

(2+2c−b)Re−bsc, (6.6)

where zm represents either zm,i or zm,a.

If the above scaling relation obtained by Lin & Armfield (2002) for weak plane

fountains at Fr = O(1) in linearly-stratified fluids is also valid for the symmetric

plane fountains considered here, the index for Fr in (6.6) should be a2 = 2/3 ×
(2 + 2c − b) = 2/3 × (2 − 2 × 0.273 + 0.062) = 1.011, where c = −0.273 and

b = −0.062 from the quantified correlation (6.28). However, a2 obtained from

the DNS results, as shown in the quantified correlation (6.28), is 0.913, which is

(0.913 − 1.011)/1.011 = 9.7% lower than the value expected from the dimension

analysis results for weak plane fountains in linearly-stratified fluids, indicating that

the scaling relation (6.6) developed for weak plane fountains in linearly-stratified

fluids still works quite well for the symmetric plane fountains in linearly-stratified

fluids considered here, which has higher Fr values involved. The results presented

in Fig. 6.9(b), where the DNS results for zm,i are plotted against the scaling relation

Fr1.011Re0.062s−0.273 obtained from the dimensional analysis, show that the scaling

relation Fr1.011Re0.062s−0.273 collapse all DNS results onto a straight line, which can

be quantified by,

zm,i = 0.813Fr1.011Re0.062s−0.273 + 0.4341, (6.7)

with the regression coefficient of R = 0.9953.

6.4.3 Time-averaged maximum fountain height

Similar results are also obtained for the time-averaged maximum fountain height,

zm,a, as shown in Fig. 6.10 and Fig. 6.11.

Figure 6.10 presents the effect of Fr, Re and s on zm,a, obtained numerically for

the same symmetric plane fountains as those in Fig. 6.8. Similar to zm,i, it is seen

from Fig. 6.10(a) that for each s value, zm,a also increases monotonically when Fr
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Figure 6.10: (a) zm,a plotted against Fr and (b) ln(zm,a) plotted against ln(Fr) for 1 ≤ Fr ≤ 5
at Re = 100 and s in the range of 0.1 ≤ s ≤ 0.5, (c) zm,a plotted against Re and (d) ln(zm,a)
plotted against ln(Re) for 10 ≤ Re ≤ 35 at Fr = 5 and s = 0.1, and (e) zm,a plotted against
s and (f) ln(zm,a) plotted against ln(s) for 0.1 ≤ s ≤ 0.5 at Re = 100 and Fr in the range of
1 ≤ Fr ≤ 3. The solid lines are linear fit lines.

increases, due to stronger fountain momentum flux. The DNS results, as shown in

Fig. 6.10(b), demonstrate that at Re = 100 the dependence of zm,a on Fr for each

s value can be quantified by the following relation,

zm,a = Cm,a,FrFr
a3 . (6.8)

The constants Cm,a,Fr and a3 in the above relation were determined by linear re-

gression analysis of the data presented in Fig. 6.10(b), which are listed in Table 6.4.

It is seen that the value of Cm,a,Fr decreases monotonically with s, from 3.421 at

s = 0.1 to 2.676 at s = 0.5, apparently due to stronger stratification, thus stronger

negative buoyancy. However, the value of a3 is essentially constant over the range
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Figure 6.11: zm,a plotted against (a) Fr0.805Re0.121s−0.307 and (b) FrRe0.121s−0.307 over the
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Table 6.4: Regression results for the dependence of zm,a on Fr over the range of 1 ≤ Fr ≤ 5 for
different s, all at Re = 100.

s Cm,a,Fr a3 R

0.1 3.421 0.674 0.9929
0.2 3.167 0.641 0.9918
0.3 2.982 0.640 0.9946
0.4 2.817 0.639 0.9942
0.5 2.676 0.644 0.9943

of 0.1 ≤ s ≤ 0.5, at about 0.641, with only the s = 0.1 case having a slightly higher

value at 0.674, indicating that the effect of Fr on zm,a is not noticeably influenced

by s. These are very similar to those for zm,i, as discussed in the previous section.

However, the larger value of a1 than a3 for each s value, as shown in Tables 6.2 and

6.4 indicates that Fr has a relatively stronger effect on zm,i than on zm,a.

From Fig. 6.10(c) and (d), it is seen that at Fr = 5 and s = 0.1, zm,a increases
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almost linearly with Re over the small range of 10 ≤ Re ≤ 35, which is very similar

to the case for zm,i as observed in the previous section. The dependence of zm,a on

Re over this small range, at Fr = 5 and s = 0.1, is found to be quantified by the

DNS results over this range with the following correlation, as shown in Fig. 6.10(d),

zm,a = 0.0491Re+ 10.353, (6.9)

with the regression constant of R = 0.9979.

The effect of s on zm,a is illustrated in Fig. 6.10(e) for the fountains over the

ranges of 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 3, all at Re = 100. It is seen that zm,a,

similar to zm,i, decreases monotonically with increasing s, again a result of the

increasing negative buoyancy that the fountain has to overcome when penetrating

the stratified ambient fluid. From Fig. 6.10(f), it is seen that the dependence of

zm,a on s can be represented by the following relation,

zm,a = Cm,a,ss
c3 (6.10)

where Cm,a,s is a constant of proportionality and the index c3 is also a constant. The

values of these two constants were determined by linear regression analysis of the

data presented in Fig. 6.10(f), with the results listed in Table 6.5. It is seen that the

value of Cm,a,s increases with Fr due to larger momentum flux of the fountain fluid

which leads to larger fountain penetration height, and the magnitude of c3 is also

found to increase with Fr, indicating that the effect of s on zm,a becomes stronger

at a higher Fr. Another noticeable observation is that the magnitude of c3 is much

smaller than the magnitude of a3, implying that Fr has a stronger effect on zm,a

than s does. All these results show that the dependence of zm,a on Fr, Re and s,

under the same conditions, is very similar to that of zm,i.

Similar to zm,i, as the dependence of zm,a on Fr, Re and s can be represented

by the relations (6.8), (6.9) and (6.10), respectively, the combined effect of these

governing parameters on zm,a can be quantified by the following relation,

zm,a = Cz,m,aFr
a4Reb2sc4 , (6.11)

where Cz,m,a is a constant of proportionality and the indexes a4, b2 and c4 are again

constants. The values of these constants are determined by multivariable regression

method using the DNS results for the symmetric plane fountains over the ranges of

1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 100 and 0.1 ≤ s ≤ 0.7, which gives the following quantified
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Table 6.5: Regression results for the dependence of zm,a on s over the range of 0.1 ≤ s ≤ 0.5 for
different Fr, all at Re = 100.

Fr Cm,i,s c3 R

1 2.562 -0.146 0.9956
2 3.581 -0.165 0.9976
3 4.427 -0.223 0.9993

correlation,

zm,a = 1.057Fr0.805Re0.121s−0.307 − 0.3945. (6.12)

The regression coefficient of this correlation is R = 0.9891, indicating that the DNS

results over the ranges of Fr, Re and s considered are in very good agreement with

the relation (6.11), as clearly demonstrated in Fig. 6.11(a) where the DNS results for

zm,a the symmetric plane fountains over the ranges of 1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 100

and 0.1 ≤ s ≤ 0.7 are plotted against Fr0.805Re0.121s−0.307. This correlation also

shows that similarly the effect of Fr on zm,a is much stronger than s, whereas the

effect of Re is much weaker, as demonstrated by the magnitudes of their indexes,

which are 0.805, 0.307 and 0.121 for Fr, s and Re, respectively.

If the scaling relation (6.6) obtained by Lin & Armfield (2002) for weak plane

fountains at Fr = O(1) in linearly-stratified fluids is also valid for the symmet-

ric plane fountains considered here, the index for Fr in (6.6) for zm,a should be

a4 = 2/3 × (2 + 2c − b) = 2/3 × (2 − 2 × 0.307 + 0.121) = 1, where c = −0.307

and b = −0.121 from the quantified correlation (6.12). However, a4 obtained from

the DNS results, as shown in the quantified correlation (6.12), is 0.805, which is

(0.805 − 1)/1 = 19.5% lower than the value expected from the dimension analy-

sis results for weak plane fountains in linearly-stratified fluids, indicating that the

scaling relation (6.6) developed for weak plane fountains in linearly-stratified fluids

works reasonably well for zm,a for the symmetric plane fountains in linearly-stratified

fluids considered here, which has higher Fr values involved. The results presented

in Fig. 6.11(b), where the DNS results for zm,a are plotted against the scaling rela-

tion FrRe0.121s−0.307 obtained from the dimensional analysis, show that the scaling

relation FrRe0.121s−0.307 collapse all DNS results approximately onto a straight line,

which can be quantified by,

zm,a = 0.642FrRe0.121s−0.307 + 1.1404, (6.13)

with the regression coefficient of R = 0.9915.



Symmetric plane fountains 235

6.4.4 Time to reach initial height

0 2 4 6

0

20

40

60

80

Fr

τ
m

,i

(a)

s = 0.1

s = 0.2

s = 0.3

s = 0.4

s = 0.5

-0.2 0.3 0.8 1.3 1.8

2

3

4

5

ln(Fr)

ln
( τ

m
,i
)

(b)

s = 0.1

s = 0.2

s = 0.3

s = 0.4

s = 0.5

0 10 20 30 40

0

50

100

150

Re

τ
m

,i

(c)
Fr = 5 & s = 0.1

2.0 2.5 3.0 3.5 4.0

4.0

4.5

5.0

ln(Re)

l
n

(
τ

m
,i

)

(d)
Fr = 5 & s = 0.1

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0

20

40

60

80

s

τ
m

,i

(e)

Fr = 3

Fr = 2

Fr = 1

-2.5 -2.0 -1.5 -1.0 -0.5

2

3

4

5

ln(s)

l
n

(
τ

m
,i

)

(f)

Fr = 3

Fr = 2

Fr = 1

Figure 6.12: (a) τm,i plotted against Fr and (b) ln(τm,i) plotted against ln(Fr) for 1 ≤ Fr ≤ 5
at Re = 100 and s in the range of 0.1 ≤ s ≤ 0.5, (c) τm,i plotted against Re and (d) ln(τm,i)
plotted against ln(Re) for 10 ≤ Re ≤ 35 at Fr = 5 and s = 0.1, and (e) τm,i plotted against s and
(f) ln(τm,i) plotted against ln(s) for 0.1 ≤ s ≤ 0.5 at Re = 100 and Fr in the range of 1 ≤ Fr ≤ 3.
The solid lines are linear fit lines.

The effect of Fr, Re and s on τm,i is presented in Fig. 6.12 with the DNS

results obtained for the same symmetric plane fountains as those for Figs. 6.8 and

6.10. When Fr increases, a fountain will penetrate higher in the ambient fluid due

to stronger fountain momentum flux, and thus will take a longer time to attain

zm,i, which leads to a larger τm,i. The DNS results presented in Fig. 6.12(a) clearly

demonstrate this as it is seen that for each s value, τm,i increases monotonically when

Fr increases, similar to zm,i and zm,a. The DNS results, as shown in Fig. 6.12(b),

further show that at Re = 100 the dependence of τm,i on Fr for each s value can be
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Table 6.6: Regression results for the dependence of τm,i on Fr over the range of 1 ≤ Fr ≤ 5 for
different s, all at Re = 100.

s Ct,m,i,Fr a5 R

0.1 15.580 1.329 0.9984
0.2 13.022 1.227 0.9971
0.3 12.235 1.151 0.9967
0.4 11.215 1.378 0.9949
0.5 10.254 1.139 0.9960

quantified by the following relation,

τm,i = Ct,m,i,FrFr
a5 . (6.14)

The constants Ct,m,i,Fr and a5 in the above relation were determined by linear re-

gression analysis of the data presented in Fig. 6.12(b), which are listed in Table 6.6.

Similar to those for zm,i and zm,a, it is observed that the value of Ct,m,i,Fr decreases

monotonically with s, from 15.580 at s = 0.1 to 10.254 at s = 0.5, again due to

stronger stratification and stronger negative buoyancy; however, the value of a5 is

also essentially constant over the range of 0.1 ≤ s ≤ 0.5, at about 1.2, indicating

that the effect of Fr on τm,i is not noticeably influenced by s. However, the larger

value of a5 than both a1 and a3 for each s value indicates that Fr has a stronger

effect on τm,i than on zm,i and zm,a.

For Fr = 5 and s = 0.1, as shown in Fig. 6.12(c), it is found that τm,i increases

when Re increases, although only slightly over this small range of 10 ≤ Re ≤ 35,

which can be quantified with the DNS results over this small range by the following

correlation, as shown in Fig. 6.12(d),

τm,i = 0.5375Re+ 89.805, (6.15)

with the regression coefficient of R = 0.9942.

When s increases, the negative buoyancy becomes stronger and a fountain will

penetrate lower in the ambient fluid. This will lead to the fountain to take a shorter

time, thus smaller τm,i, to attain zm,i. The DNS results presented in Fig. 6.12(e)

clear demonstrate this effect of s on τm,i. Similarly to zm,i and zm,a, it is seen that

τm,i decreases monotonically with increasing s, and the dependence of τm,i on s, as
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Table 6.7: Regression results for the dependence of τm,i on s over the range of 0.1 ≤ s ≤ 0.5 for
different Fr, all at Re = 100.

Fr Ct,m,i,s c5 R

1 9.634 -0.220 0.9922
2 16.512 -0.348 0.9990
3 23.988 -0.453 0.9999

shown in Fig. 6.12(f), can be quantified by the following relation,

τm,i = Ct,m,i,ss
c5 . (6.16)

The constants Ct,m,i,s and c5 were determined by linear regression analysis of the

data presented in Fig. 6.12(f) and listed in Table 6.7.

It is seen that the value of Ct,m,i,s increases with Fr due to larger momentum

flux of the fountain fluid which leads to larger fountain penetration height, and the

magnitude of c5 is also found to increase with Fr, indicating that the effect of s on

τm,i becomes stronger at a higher Fr. It is also observed that the magnitude of c5 is

much smaller than the magnitude of a5, implying that Fr has a stronger effect on

τm,i than s does. All these results show that the dependence of τm,i on Fr, Re and

s, under the same conditions, is very similar to that of zm,i and zm,a.

Again similarly the combined effect of Fr, Re and s on τm,i can be quantified by

the following relation,

τm,i = Ct,m,iFr
a6Reb3sc6 , (6.17)

where Ct,m,i is a constant of proportionality and the indexes a6, b3 and c6 are again

constants. The values of these constants are determined by multivariable regression

method using the DNS results for the symmetric plane fountains over the ranges of

1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 100 and 0.1 ≤ s ≤ 0.7, which gives the following quantified

correlation,

τm,i = 5.27Fr1.173Re0.077s−0.396 − 2.148. (6.18)

The regression coefficient of this correlation is R = 0.9977, indicating that the DNS

results over the ranges of Fr, Re and s considered are in excellent agreement with the

relation (6.17), as clearly demonstrated in Fig. 6.13(a) where the DNS results for τm,i

for the symmetric plane fountains over the ranges of 1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 100

and 0.1 ≤ s ≤ 0.7 are plotted against Fr1.173Re0.077s−0.396.
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Figure 6.13: τm,i plotted against (a) Fr1.173Re0.077s−0.396 and (b) Fr0.857Re0.077s−0.396 over the
ranges 1 ≤ Fr ≤ 5, 10 ≤ Re ≤ 35 and 0.15 ≤ s ≤ 0.5, where only the DNS results for symmetric
plane fountains over the ranges are included.

As shown in § 5.4.3, if the scaling obtained by Lin & Armfield (2002) for weak

plane fountains in linearly-stratified fluids, i.e., (5.6), is also applicable for symmet-

ric plane fountains considered here, dimensional consistence will give the following

scaling relation for τm,i,

τm ∼ Fr
2
3

(2+2c−d)Re−dsc, (6.19)

where the indexes c and d are constants, which are not necessarily to be the same

as a and b presented in (6.6) for zm,i and zm,a. If this scaling relation (6.19) is also

applicable for the symmetric plane fountains considered here, and the values of c and

d determined with the DNS results, as presented in (6.18), are valid, i.e., c = −0.396

and d = −0.077, the index for Fr, from (6.19), should be 2
3
(2 + 2c− d) = 0.857.

From (6.18), it is found that the index for Fr obtained with the DNS results over the

ranges of Fr, Re and s considered is 1.173, which is (1.173− 0.857)/0.857 = 36.9%

larger than the value expected from the dimensional analysis for weak fountains.

However, as shown in Fig. 6.13(b), it is seen that Fr0.857Re0.077s−0.396 still collapses
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all DNS data reasonably well onto a straight line quantified by the following corre-

lation,

τm,i = 11.21Fr0.857Re0.077s−0.396 − 24.08, (6.20)

with the regression coefficient of R = 0.9865. This indicates that the scaling (6.19)

obtained for weak fountains still works well for τm,i for the symmetric plane fountains

considered here.

6.4.5 Penetration height at specific times
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Figure 6.14: (a) zm(τ = 100) plotted against Fr0.845Re0.086s−0.275 and (b) zm(τ = 500) plotted
against Fr0.808Re0.116s−0.307 over the ranges 1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 100 and 0.1 ≤ s ≤ 0.7,
where only the DNS results for symmetric plane fountains over the ranges are included.

As illustrated in Fig. 6.6, zm continuously increases with time even at the fully

developed stage for all symmetric plane fountains considered here, indicating that

zm is a function of time τ at the fully developed stage. It is therefore expected

that zm at a specific time at the fully developed stage, zm(τ), should have similar

dependency on Fr, Re and s to that by zm,i and zm,a, with the combined effects of
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Fr, Re and s on zm(τ) can be represent and quantify by a similar relation, i.e.,

zm(τ) = Ct,mFr
a7Reb4sc7 , (6.21)

where Ct,m is a constant of proportionality and the indexes a7, b4 and c7 are again

constants which may vary at different time τ .

The results at two specific times, τ = 100 and 500, were obtained from the DNS

results for symmetric plane fountains in linearly-stratified fluids with varying Fr,

Re and s. The results are used to demonstrate whether the relation (6.21) works

for zm(τ). The results are presented in Fig. 6.14, and it is found that the following

quantified relations can be obtained from the DNS results for zm at these two times,

zm(τ = 100) = 1.029Fr0.845Re0.086s−0.273, (6.22)

zm(τ = 500) = 1.049Fr0.808Re0.116s−0.307, (6.23)

with the regression constants of R = 0.9914 and R = 0.9911, respectively. These

clearly show that the relation (6.21) works very well for zm(τ).

A comparison between the values of the indexes for Fr, Re and s of the quan-

tified relations (6.22) for zm(τ = 100) and (6.23) for zm(τ = 500) and those of the

quantified relation (6.12) for zm,a shows that these values are very comparable.

6.5 Intrusion

Figure 6.15: (a) The temperature contour at Y = 0 in the X −Z plane, (b) The outer boundary
of the fountain and intrusion region at Y = 0 in the X − Z plane, which is the iso-temperature
line at T (Z) = T0− 1%(Ta,0−T0), and (c) The vertical profiles of the instantaneous dimensionless
intrusion velocity, uint, at different horizontal locations (X/X0) at Y = 0 in the X − Z plane for
the symmetric plane fountain at Fr = 10, Re = 18 and s = 0.1 and at the instant of τ = 1600.
uint is made dimensionless by W0.

As mentioned above, for symmetric plane fountains in linearly-stratified fluids,

intrusion is an important integral part of the fountain behavior and hence often has a



Symmetric plane fountains 241

substantial effect on the fountain behavior, in particular at the later, fully developed

stage. Intrusion forms on the bottom floor only after the upflowing fountain fluid

falls back around the fountain core and it moves outwards on the bottom floor. The

formation and the subsequent movement of the intrusion change the stratification

condition of the ambient fluid, resulting in smaller negative buoyant force that the

fountain fluid experience. This is particularly prominent at small Fr values or

very strong stratification under which the maximum fountain penetration height is

significantly restricted.

The intrusion and its evolution is illustrated, as an example, in Fig. 6.15 where

the temperature contour, the outer boundary of the fountain and intrusion region,

which is the iso-temperature line at T (Z) = T0 − 1%(Ta,0 − T0), and the verti-

cal profiles of the instantaneous dimensionless intrusion velocity, uint, at different

horizontal locations (X/X0), all at Y = 0 in the X − Z plane, are shown for the

symmetric plane fountain at Fr = 10, Re = 18 and s = 0.1 and at the instant of

τ = 1600. The dimensionless maximum intrusion height, denotes as zint,m and made

dimensionless by X0, is depicted in Fig. 6.15(b). The intrusion velocity has a strong

influence on the formation and evolution of the intrusion thickness, as demonstrated

in Fig. 6.15(c), where it is seen that uint attains its maximum value, uint,m, not far

away from the bottom floor, but reduces rapidly when the height is increased. This

is the same at different horizontal locations.
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Figure 6.16: Time series of zint,m and uint,m of the symmetric plane fountain at Fr = 1, Re = 100
and s = 0.2 and the illustration of zint,m,a and uint,m,a.

The time series of zint,m and uint,m of a symmetric plane fountain at Fr = 1,

Re = 100 and s = 0.2, obtained from DNS, is presented in Fig. 6.16. It is seen that

the time series of zint,m is very similar to that of zm, as shown in Fig. 6.6. However,
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the time series of uint,m is quite different, with larger variations in uint,m at the

early developing stage but it remains almost constant at the fully developed stage.

The time-averages values of zint,m and uint,m at the fully developed stage, denoted

as zint,m,a and uint,m,a, respectively, as illustrated in Fig. 6.16 are used below to

demonstrate and quantify the effects of Fr, Re and s on the intrusion height and

intrusion velocity, respectively.

6.5.1 Intrusion height
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Figure 6.17: Time series of zint,m for (a) different s values in the range of 0.1 ≤ s ≤ 0.5 at
Fr = 2 and Re = 100, (b) different Re values in the range of 10 ≤ Re ≤ 35 at Fr = 5 and s = 0.1,
and (c) different Fr values in the range of 1 ≤ Fr ≤ 3 at Re = 100 and s = 0.1.

The DNS results for the time series of zint,m for symmetric plane fountains

with varying Fr, Re and s are presented in Fig. 6.17. It is observed that, similar

to zm, zint,m decreases when s increases due to the increasing negative buoyancy.
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Figure 6.18: (a) zint,m,a plotted against Fr and (b) ln(zint,m,a) plotted against ln(Fr) for
1 ≤ Fr ≤ 5 at Re = 100 and s in the range of 0.1 ≤ s ≤ 0.5, (c) zint,m,a plotted against Re and
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However, zint,m essentially does not change when Re varies, indicating that over this

very small range of Re, zint,m is not influenced by Re. On the other hand, when

Fr increases, zint,m increases due to stronger momentum flux, and the increase is

substantial at smaller Fr values, again very similar to zm.

The effect of Fr, Re and s on zint,m,a is demonstrated by the DNS results pre-

sented in Fig. 6.18 for symmetric plane fountains. From Fig. 6.18(a), it is seen that

at Re = 100, for each s value, zint,m,a increases monotonically when Fr increases,

due to the stronger momentum flux of the fountain. The DNS results further demon-

strate, as shown in Fig. 6.18(b), that at Re = 100 for each s value the dependence
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Table 6.8: Regression results for the dependence of zint,m,a on Fr over the range of 1 ≤ Fr ≤ 5
for different s, all at Re = 100.

s Cz,int,Fr a8 R

0.1 3.407 0.429 0.9959
0.2 3.073 0.429 0.9970
0.3 2.871 0.424 0.9998
0.4 2.734 0.392 0.9957
0.5 2.623 0.372 0.9958

of zint,m,a on Fr can be quantified by the following relation,

zint,m,a = Cz,int,FrFr
a8 (6.24)

where Cz,int,Fr is a constant of proportionality and the index a8 is also a constant.

The values of these two constants were determined by linear regression analysis of

the data presented in Fig. 6.18(b), with the results listed in Table 6.8. It is seen that

the value of Cz,int,Fr decreases monotonically with s, from 3.407 at s = 0.1 to 2.623

at s = 0.5, apparently due to stronger stratification and stronger negative buoyancy.

The value of a8 also decreases with s, but only very slightly, from 0.429 at s = 0.1

to 0.372 at s = 0.5, indicating that the effect of Fr on zint,m,a is not significantly

influenced by s.

From Fig. 6.18(c) and (d), it is seen that at Fr = 5 and s = 0.1, zint,m,a increases

almost linearly with Re over the small range of 10 ≤ Re ≤ 35, but the rate of the

increase in zint,m,a is very small, making zint,m,a almost constant over the range of

10 ≤ Re ≤ 35. The dependence of zint,m,a on Re over this small range, at Fr = 5 and

s = 0.1, is found to be quantified by the DNS results with the following correlation,

as shown in Fig. 6.18(d),

zint,m,a = 0.0134Re+ 8.0956, (6.25)

with the regression constant of R = 0.8289.

The effect of s on zint,m,a is illustrated in Fig. 6.18(e) for the fountains over

the ranges of 0.1 ≤ s ≤ 0.5 and 1 ≤ Fr ≤ 3, all at Re = 100. zint,m,a is found

to decrease monotonically with increasing s, which is the result of the increasing

negative buoyancy that the fountain has to overcome when penetrating the stratified

ambient fluid. From Fig. 6.18(f), it is seen that the dependence of zint,m,a on s can
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Table 6.9: Regression results for the dependence of zint,a on s over the range of 0.1 ≤ s ≤ 0.5
for different Fr, all at Re = 100.

Fr Cz,int,s c8 R

1 2.286 -0.185 0.9972
2 3.108 -0.163 0.9962
3 3.606 -0.189 0.9977

be represented by the following relation,

zint,m,a = Cz,int,ss
c8 (6.26)

where Cz,int,s is a constant of proportionality and the index c8 is also a constant.

The values of these two constants were determined by linear regression analysis of

the data presented in Fig. 6.18(f), with the results listed in Table 6.9. It is seen that

the value of Cz,int,s increases with Fr due to larger momentum flux of the fountain

fluid which leads to larger fountain penetration height, but the magnitude of c8 is

almost constant, at about 0.18, when Fr varies between 1 and 3, indicating that the

effect of s on zint,m,a is not under the influence of Fr. Again the magnitude of c8 is

much smaller than the magnitude of a8, implying that Fr has a stronger effect on

zint,m,a than s does.
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Figure 6.19: zint,m,a plotted against Fr0.397Re−0.093s−0.227 over the ranges 1 ≤ Fr ≤ 10,
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As the dependence of zint,m,a on Fr, Re and s can be represented by the rela-

tions (6.24), (6.25) and (6.26), respectively, the combined effect of these governing
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parameters on zint,m,a can be quantified by the following relation,

zint,m,a = Cz,int,mFr
a9Reb5sc9 , (6.27)

where Cz,int,m is a constant of proportionality and the indexes a9, b5 and c9 are again

constants. The values of these constants are determined by multivariable regression

method using the DNS results for the symmetric plane fountains over the ranges of

1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 100 and 0.1 ≤ s ≤ 0.7, which gives the following quantified

correlation,

zint,m,a = 3.3608Fr0.397Re−0.093s−0.227 − 0.00063. (6.28)

The regression coefficient of this correlation is R = 0.9911, indicating that the DNS

results over the ranges of Fr, Re and s considered are in excellent agreement with the

relation (6.27), as clearly demonstrated in Fig. 6.19 where the DNS results for zint,m,a

for the symmetric plane fountains over the ranges of 1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 100

and 0.1 ≤ s ≤ 0.7 are plotted against Fr0.397Re−0.093s−0.227. This correlation also

shows that the effect of Fr on zm,i is stronger than s, whereas the effect of Re is

negligible, as demonstrated by the magnitudes of their indexes, which are 0.397,

0.227 and 0.093 for Fr, s and Re, respectively.

6.5.2 Intrusion velocity

The DNS results for the time series of uint,m for symmetric plane fountains with

varying Fr, Re and s are presented in Fig. 6.20. It is observed from Fig. 6.20(a) that

uint,m is not affected by s as all time series at different s are essentially the same.

However, as shown in Fig. 6.20(b), uint,m increases when Re increases, apparently

due to the larger value of W0 associated with the increase of Re. Similar to the

effect of s, as shown in Fig. 6.20(c), it is observed that when Fr increases, the time

series of uint,m are essentially the same, except for Fr = 1 which has the very similar

trend to the other Fr values but differs in magnitudes a little bit. This indicates

that Fr, in the small range considered, has an insignificant effect on uint,m, similar

to s, as observed above.

The effect of Fr, Re and s on uint,m,a is demonstrated by the DNS results pre-

sented in Fig. 6.21 for symmetric plane fountains. From Fig. 6.21(a), it is seen that

at Re = 100, uint,m,a essentially does not change with Fr, indicating that Fr also

has a negligible effect on uint,m,a, similar to that on uint,m. It is further observed that

uint,m,a is essentially the same for different s values as well, also indicating that s

also has a negligible effect on uint,m,a, similar to its insignificant effect on uint,m. The
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Figure 6.20: Time series of uint,m for (a) different s values in the range of 0.1 ≤ s ≤ 0.5 at
Fr = 2 and Re = 100, (b) different Re values in the range of 10 ≤ Re ≤ 35 at Fr = 5 and s = 0.1,
and (c) different Fr values in the range of 1 ≤ Fr ≤ 3 at Re = 100 and s = 0.1.

results presented in Fig. 6.21(c) further confirm these features. From Fig. 6.21(b),

however, it is seen that uint,m,a increases monotonically when Re increases, which is

very similar to that for uint,m, confirming that Re has a noticeable effect on uint,m,a

as well.

6.6 Summary

In this chapter, the flow behavior of symmetric plane fountains in linearly-

stratified fluids is studied using the numerical results obtained through a series
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Figure 6.21: (a) uint,m,a plotted against Fr for 1 ≤ Fr ≤ 5 at Re = 100 and s in the range of
0.1 ≤ s ≤ 0.5, (b) zint,m,a plotted against Re for 10 ≤ Re ≤ 35 at Fr = 5 and s = 0.1, and (c)
zint,m,a plotted against s for 0.1 ≤ s ≤ 0.5 at Re = 100 and Fr in the range of 1 ≤ Fr ≤ 3.

of three-dimensional DNS runs over the ranges of 1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 100,

and 0.1 ≤ s ≤ 0.7. The considered bulk behavior parameters to characterize the

fountain behavior include the maximum fountain penetration height, both initial

and time-averaged, the time to attain the initial maximum fountain height, as well

as the height and velocity of intrusion.

Symmetric plane fountains differ from asymmetric plane fountains in that the

bobbing and flapping motions present in asymmetric plane fountains are absent in
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symmetric plane fountains. The DNS results show that in general Fr has a much

stronger effect on the maximum fountain penetration height and the associated time

than s does, whereas the effect of Re is negligible. Empirical correlations to quantify

the effects of Fr, Re and s on these bulk fountain flow behavior were developed

using the DNS results and it was found that the scaling relations developed by

Lin & Armfield (2002) for weak plane fountains at Fr = O(1) in linearly-stratified

fluids in general also works well for the symmetric plane fountains considered in this

chapter.





Chapter 7

Conclusion and future work

The major objective of this thesis is to understand the transient flow behavior

of transitional plane fountains in linearly-stratified ambient fluids, in particular the

characteristics of the symmetric-to-asymmetric transition, bulk fountain behavior

parameters including the maximum fountain penetration height and the associated

time scale, bobbing and flapping motions, and thermal entrainment, under various

conditions in terms of Fr, Re and s. This is achieved through a series of three-

dimensional DNS runs over the ranges of 1 ≤ Fr ≤ 10, 10 ≤ Re ≤ 300 and

0 ≤ s ≤ 0.7, which were carried out using the commercial CFD code ANSYS

FLUENT 13.

In § 7.1, the major conclusions of this thesis are drawn. Some suggestions for

future work on this topic are presented in § 7.2.

7.1 Conclusion of the thesis

The major conclusions of this thesis can be summarized as follows:

• Over the ranges of Fr, Re and s considered in this thesis, it was found that a

transitional plane fountain in a linearly-stratified fluid can be either symmetric

or asymmetric. In an asymmetric plane fountain, the fountain flow behavior

becomes asymmetric at the later developing stage, characterized by bobbing

and flapping motions, although at the early developing stage it is symmet-

ric and no bobbing and flapping motions are present. In a symmetric plane

fountain, however, the fountain flow remains symmetric all the time without

the presence of bobbing and flapping motions. The DNS results show that

251
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plane fountains remain symmetric for all times at a lower Fr or Re value or

at a higher s value. On the contrary, when Fr or Re is large or the strat-

ification is weak with a small s, plane fountains will remain symmetric only

in the early developing stage and will become asymmetric at the later, fully

developed stage.

• Regime maps to distinguish the symmetric plane fountains from the asym-

metric one were developed in terms of Fr, Re and s. It was observed that

the critical Fr and Re values for the asymmetric transition move up when s

increases, due to the stabilizing effect of stratification; on the other hand, the

critical Re value for the asymmetric transition reduces when Fr increases at

lower Fr values, but becomes essentially independent of Fr when Fr is high.

• For symmetric plane fountains in linearly-stratified fluids, the DNS results

show that in general Fr has a much stronger effect on the maximum fountain

penetration height and the associated time than s does, whereas the effect of

Re is negligible. In addition, for these symmetric plane fountains, intrusion

is an important integral part of the fountain behavior and hence often has

a substantial effect on the fountain behavior, in particular at the later, fully

developed stage. This is because the formation and the subsequent movement

of the intrusion change the stratification condition of the ambient fluid, which

results in smaller negative buoyant force that the fountain fluid experience.

This is particularly prominent at small Fr values or very strong stratifica-

tion under which the maximum fountain penetration height is significantly

restricted. Empirical correlations to quantify the effects of Fr, Re and s on

the the maximum fountain penetration height and the associated time, as well

as the intrusion height and velocity were developed using the DNS results.

• For asymmetric transitional plane fountains in linearly-stratified fluids, the

DNS results show that both the initial and time-average maximum fountain

penetration height and the time to attain the initial maximum fountain pene-

tration height increase monotonically with Fr, apparently due to the stronger

momentum flux of the injected fountain fluid, whereas on the contrary, due to

the stronger negative buoyancy force at higher s values, these bulk fountain

behavior parameters reduce with s. The effect of Fr on these parameters was

also found to be much stronger that those of s, although the effect of Re is

found to be negligible.

• For asymmetric transitional plane fountains in linearly-stratified fluids, the

DNS results also demonstrate that the extent of both the bobbing and flapping
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motion increases with Fr and Re but decreases with s. The bobbing motions

are predominated by a single dominant frequency over the ranges of Fr, Re and

s considered, and it is found that this dominant bobbing frequency decreases

monotonically with Fr, but increases with s. The flapping motions occur

along both the X direction and the Y direction. The flapping motions along

the X direction are also predominated by a single dominant frequency, and

similar to the bobbing motions, this dominant flapping frequency also decreases

monotonically with Fr, but increases with s. The effect of Re on the dominant

frequencies for the bobbing motions and the flapping motions along the X

direction is found to be insignificant. On the other hand, the flapping motions

along the Y direction is more chaotic and fluctuate with multiple dominant

frequencies.

• For asymmetric transitional plane fountains in linearly-stratified fluids, the

DNS results further demonstrate that thermal entrainment is one of the major

features of plane fountains and plays a key role for the symmetric-to–asymmetric

transition and the turbulent mixing process in asymmetric fountains. Over the

parameter ranges considered, it is observed that thermal entrainment in gen-

eral has a negligible effect on the core region of the injected fountain fluid, but

plays a key role in the downflow, in particular at the interface between the

upflow and the downflow, as well as at the interface between the downflow and

the ambient fluid, which becomes more dominant and stronger at the later flow

developing stages. At the early developing stage, thermal entrainment occurs

mainly in a very thin layer which is the interface of the fountain top and the

ambient fluid. It is also observed that thermal entrainment decreases with

height. Thermal entrainment is further found to be characterized by several

representative average thermal entrainment coefficients.

• The DNS results were used to develop a series of empirical relations to quantify

the individual and combined effects of Fr, Re and s, over their ranges consid-

ered, on the bulk fountain behavior parameters, including the initial and time-

averaged maximum fountain penetration heights, the time to attain the initial

maximum fountain penetration height, the onset time for the symmetric-to-

asymmetric transition, the dominant frequencies of the bobbing and flapping

motions, and several representative thermal entrainment coefficients.

• Notably, it is found that the scaling relations developed by Lin & Armfiled

(2002) for weak plane fountains in linearly-stratified fluids, at Fr = O(1), in

general also work well for the asymmetric plane fountains in linearly-stratified
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fluids considered in this thesis, which have higher Fr values. This is also found

true for the symmetric plane fountains considered in this chapter as well.

7.2 Future work

It is apparent that this thesis provides only a preliminary study on transitional

plane fountains in linearly-stratified fluids and the understanding of the transient

flow behavior of these fountains gained from the current thesis is still very limited

due to many limitations that this thesis has experienced. Substantial future work

is needed to be done before a much improved understanding of the transient flow

behavior of these fountains can be obtained.

The following are just some suggestions for future work on this topic and it

should be noted that they are not complete and exhaustive:

• The ranges of Fr, Re and s considered in this thesis are quite limited. In

the future work, these ranges should be significantly expanded to reveal the

transient flow behavior of plane fountains in linearly-stratified fluids over much

wide ranges of the flow control parameters. Future studies with such a sub-

stantial expansion of the parameter ranges will surely help to develop more

accurate and complete regime maps to distinguish the symmetric and asym-

metric plane fountains in linearly-stratified fluids over much wide parameter

ranges.

• Only three-dimensional DNS results were obtained in this thesis, which are not

benckmarked due to the lack of accurate experimental or numerical results. In

the future work, accurate experimental measurements of these plane fountains

in linearly-stratified fluids should be carried out over wide ranges of Fr, Re

and s.

• The various expirical relations developed in this thesis for the bulk fountain

behavior paramters, such as the maximum fountain penetration heights, the

time for the fountains to attain the initial maximum fountain height, the time

for the onset of asymmetric transition, the dominant frequencies of the bobbing

and flapping motions, the thermal entrainment coefficients, etc., should be

revised based on these experimental results and the numerical results over

much expanded ranges of Fr, Re and s.
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• The transient plane fountains in linearly-stratified fluids at much higher Fr and

Re values should be investigated in the future, which are more widely encoun-

tered in applications. This can be achieved by using advanced experimental

techniques and facilities such as Particle Image Velocimetry and advanced nu-

merical simulation approaches such as Large-Eddy Simulation and turbulence

modelling.
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