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stract: A new view is emerging of the interplay between muta-
n at the genomic level, substitution at the population level, and
versification at the lineage level. Many studies have suggested that
te of molecular evolution is linked to rate of diversification, but few
ve evaluated competing hypotheses. By analyzing sequences from
0 families of angiosperms, we show that variation in the synony-
ous substitution rate is correlated among genes from the mito-
ondrial, chloroplast, and nuclear genomes and linked to differences
traits among families (average height and genome size). Within
ch genome, synonymous rates are correlated to nonsynonymous
bstitution rates, suggesting that increasing the mutation rate results
a faster rate of genome evolution. Substitution rates are correlated
th species richness in protein-coding sequences from the chloro-
ast and nuclear genomes. These data suggest that species traits con-
bute to lineage-specific differences in the mutation rate that drive
th synonymous and nonsynonymous rates of change across all
ree genomes, which in turn contribute to greater rates of diver-
nce between populations, generating higher rates of diversification.
ese observations link mutation in individuals to population-level
ocesses and to patterns of lineage divergence.

ywords: comparative, phylogeny, substitution rates, angiosperm,
versification rate.

Introduction

iversification is the process of changes in diversity by the
dition of new species through speciation and the loss
species by extinction. Phylogenies allow a way of com-
ring the rate of diversification between lineages, for ex-
ple, by comparing the number of extant species in clades

lative to their age (the net diversification rate). In addi- in
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n to allowing widespread comparison of diversification
tes, molecular phylogenies have been used to compare
e net rate of diversification to the rate of molecular evo-
tion, estimated fromphylogenetic branch lengths.Agrow-
g number of studies have reported significant links be-
een rates of molecular evolution and net diversification
r a range of different genes and lineages. Some of these
udies compared rates of molecular evolution in sister pairs
lineages that differ in the number of extant species, show-
g that the lineages with a greater net rate of diversification
nd to have higher substitution rates (Barraclough and
volainen 2001; Davies et al. 2004b; Eo and DeWoody
10; Lancaster 2010; Lanfear et al. 2010a; Duchene and
romham 2013). Others have shown that estimates of mo-
cular change along paths through phylogenies are corre-
ted to the number of inferred speciation events (Webster
al. 2003; Pagel et al. 2006; Ezard et al. 2013).
The link between rates of genome change (as measured
om molecular phylogenetic branch lengths) and net di-
rsification (as measured by extant species richness) pro-
des a fascinating insight into evolutionary processes. The
le of genetic change in speciation has been intensively
udied for more than a century (Bateson 1894), but most
search has focused on specific loci or mechanisms that
use populations to become genetically isolated from one
other (e.g., Nosil and Schluter 2011; Strasburg et al. 2012;
bbott et al. 2013). Molecular phylogenetic studies provide
very different view of the relationship between genetic
ange and diversification, because they typically do not
clude genes likely to be involved with mate recognition or
cal adaptation. Instead, they are usually based on “house-
eping genes” with general metabolic and biochemical
nctions. Since phylogenetic markers come from a range
loci across nuclear and organellar genomes, any general

lationship between phylogenetic branch lengths and spe-
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508 The American Naturalist
es richness suggests that genome-wide rates of molecular
ange are correlated with diversification rate.
However, while there is growing evidence for a wide-
read relationship between rates of genome evolution and
t diversification (though not universal; see Pagel et al.
06; Goldie et al. 2011), there has been relatively little
ogress in explaining this pattern. Broadly speaking, there
e three possible explanations for the link between the
versification and molecular evolution rates. First, an in-
eased rate of molecular evolution could promote a higher
te of diversification. A higher rate of genomic change
uld speed the accumulation of substitutions that cause
nomic incompatibility between hybrids, thus reinforcing
productive isolation between incipient species. Increas-
g the supply of variation might also provide more ge-
tic variation for selection for local adaptations or isolat-
g mechanisms, or reduce the likelihood of extinction by
creasing standing genetic variation.
Second, a link between the rates of diversification and
olecular evolution might be mediated by an association
tween the process of speciation increasing the rate of
olecular evolution, for example, due to adaptation or
rough the influences of population subdivision on sub-
itution. If speciation is typically accompanied by a reduc-
n in effective population size, for example, through iso-
ted founder populations, then genetic drift may have a
rge effect on substitution rates immediately after the for-
ation of a new, isolated population (Venditti and Pagel
09). This could lead to a transient rise in the fixation of
arly neutral substitutions. Conversely, speciation may be
sociated with a burst of substitutions in loci under posi-
e selection corresponding to adaptations to new niches
reproductive isolating mechanisms.
A third possibility is that there is some other factor that
correlated with both diversification rate and rate of
olecular evolution, such as life-history or environmental
ctors, that causes an indirect correlation between the two.
r example, rapid generational turnover could increase
th the rate of molecular evolution (through the genera-
n time effect on DNA mutation rates; Bromham 2009)
d the rate of diversification (if higher intrinsic rates of
pulation growth reduce extinction risk; Davies et al.
04a). It has also been suggested that the relationship be-
een species richness and substitution rate in plants could
an artefact of both variables being correlated with envi-
nmental energy (Davies et al. 2004b).
Our aim in this study was to weigh up evidence for each
these alternative (nonexclusive) hypotheses concerning
e link between rates of molecular evolution and diver-
cation by building on the analysis of an earlier study
at used a broad, family-level database to study rates of
olecular evolution in flowering plants. While the focus

that paper was on the relationship between plant height (M

This content downloaded from 137.21
All use subject to University of Chicago Press Terms a
d rate of molecular evolution, it also reported a signif-
ant positive correlation between chloroplast substitution
tes and species richness and a similar, but nonsignificant,
sitive correlation with nuclear ribosomal RNA (rRNA;
nfear et al. 2013). Here we wish to investigate this re-
rted correlation, in the hope that additional data and
ore detailed analysis may help to uncover the underlying
uses of the link between species richness and rate of
olecular evolution. To this end, we expand the database to
clude genes from all three genomes, add data on an ad-
tional explanatory variable (genome size), and perform
ore detailed statistical analyses in order to dissect the re-
tionship between life history, environment, species rich-
ss, and rates of molecular evolution in plants. Our aims
this study were to (a) test for a link between rate of mo-
cular evolution and net diversification rate in each of the
ree plant genomes (nuclear, mitochondrial, chloroplast);
) ask whether patterns of substitution can distinguish be-
een proposed explanations for the relationship between
tes of net diversification andmolecular evolution; (c) eval-
te the possible causes of this correlation by investigat-
g the relationship between substitution rate, family traits,
d environment; and (d) discern any links between the sub-
itution rates of the chloroplast, mitochondrial, and nuclear
Material and Methods

Traits

r the sake of brevity, we will use the term traits to refer to
e explanatory variables that describe the average charac-
ristics (height, genome size) and environmental condi-
ns (latitude, temperature, ultraviolet [UV] radiation) for
taxon. Our starting point for this analysis is a data set
nsisting of phylogenetically independent comparisons
tween sister families of flowering plants (Lanfear et al.
13) because it has previously been shown to support a
neral, broadscale correlation between species richness
d rates of molecular evolution for chloroplast genes. We
ild on this database in order to undertake a more com-
ehensive investigation of rates of molecular evolution in
ant families by extending the analysis to protein-coding
nes from all three genomes (chloroplast, nuclear, mito-
ondrial). We also add genome size, which is potentially
important correlate of life history, species richness, ecol-
y, and rate of molecular evolution in some plant lineages
.g., Bennett 1972; Beaulieu et al. 2007, 2008, 2010; Knight
d Beaulieu 2008; Hodgson et al. 2010; Kraaijeveld 2010;
vergne et al. 2010; Herben et al. 2012; Kang et al. 2014).
Family-level estimates of average height were derived
om a large database of maximum recorded plant height

oles et al. 2009) by first calculating the mean log-
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Molecular Evolution and Diversification 509
ansformed height for all species in each genus and then
lculating the mean of all genera in each family (table S1;
bles S1–S9 available online in a zip file). We included three
vironmental variables for each family, each of which is
lculated for the entire range of the family (i.e., the poly-
n that contains the range of all species in that family):
e mean level of current UV irradiance experienced by each
mily, the mean current temperature experienced by each
mily, and centroid of each family’s absolute latitude (Da-
es et al. 2004a; Lanfear et al. 2013). Clearly many families
ill contain species with a great diversity of heights, and the
ean environmental variables for widespread families will
t reflect the conditions encountered by all of the species
ithin that family. But these clade averages have been shown
be correlated with rates of molecular evolution, and the
rrelations they reveal are broadly consistent with finer-
ale investigations of the effect of body size and life-history
aracters on rates of molecular evolution (e.g., Smith and
onoghue 2008). This implies that, for the purposes of in-
stigating general patterns in rates of molecular evolution,
ese family-level averages provide an adequate approxima-
n of the difference in average body size between sister lin-
ges since they last shared a common ancestor (given that
uch of this history will be shared by all species in a family).
this study, we are specifically concerned with explaining
e intriguing relationship already detected in family-level
timates of species richness and substitution rates, rather
an a more general test of the influence of environmental
d life-history traits on diversification rates.
We used clade size (extant species richness for each
mily) to represent net diversification rate. For each phy-
genetically independent pair of sister clades, any differ-
ce in the number of species between sister families must
ve arisen since they last shared a common ancestor
rough a difference in the speciation rate or extinction rate
both (Lanfear et al. 2011). The number of recognized
ecies per family was derived from the Families of Flow-
ing Plants database (http://delta-intkey.com). Although
e absolute numbers of species per family may vary with
xonomic treatment, the relative differences in species
tween sister families in this database have been shown
be associated with rates of molecular evolution (Lanfear
al. 2013).
To represent genome size, we collected 1C-values from
e Royal Botanic Gardens, Kew, Plant DNA C-values
tabase (Bennett and Leitch 2012) for plant families in
r comparisons. The C-value, representing the amount
DNA in a haploid nucleus in picograms, is the most

idely used measure of genome size and so is available for
large number of species. Variation in C-value is influ-
ced by many different aspects of genome content and
ganization, including number of genes, degree of dupli-

tion within the genome, repetitive elements, transposa- it

This content downloaded from 137.21
All use subject to University of Chicago Press Terms a
e elements, and endogenous viruses, but separate esti-
ates of these different components of genome size are
t available for a large enough sample of species to al-
w comparison between the sister-family comparisons in-
uded in this study. The 1C measure of genome size has
en shown to correlate with cell size and cell generation
e (Bennett and Leitch 2005), making it an appropriate

easure of genome size for this analysis.
To estimate the average genome size for each family, we
st averaged all available species estimates in each genus
d then averaged the genus-level means to get the ge-
me size estimates for the family. Given that compre-
nsive phylogenies are not available for the majority of
milies included in this study, this taxonomic averaging
proach approximates a phylogenetic average and helps
make life-history and molecular rate estimates more
rectly comparable (Welch and Waxman 2008). Since
-value estimates are not available for all families, we
uld not include an average genome size for all of our
mparisons. In total, there were 44 comparisons for
hich we had genome size estimates for both sister fami-
Rates

r convenience, we will use the term rates to describe all
timates of substitution rate made from analyses of DNA
quences. We estimate the rate of all substitutions (total),
nonymous substitution rate (dS), nonsynonymous sub-
itution rate (dN), and the ratio of nonsynonymous to
nonymous substitutions (dN/dS). Synonymous changes
pically do not affect the phenotype so are expected to
neutral with respect to fitness (or very nearly so). As a
sult, the synonymous substitution rate is largely deter-
ined by the rate at which synonymous changes are gen-
ated by mutation (Kimura 1983). Nonsynonymous sub-
itutions are expected to show a range of fitness effects,
om deleterious to neutral to advantageous, so nonsyn-
ymous substitution rates may therefore be influenced by
e mutation rate (which determines the rate of generation
variants), by selection (which affects the rate of substi-
tion of advantageous mutations or the removal of dele-
rious changes), and by population size (which influences
e rate of substitution of nearly neutral mutations that
ve small selective effects). Changes in the action of se-
ction or variation in population size may be reflected in
e ratio of nonsynonymous to synonymous changes.
To compare synonymous and nonsynonymous mutation
tes from all three genomes between families, we collected
ailable sequence data for sister pairs of plant families from
otein-coding genes from the nuclear, chloroplast, and mi-
chondrial genomes. For a gene to be suitable for this study,

needed to be available for a large enough number of plant
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510 The American Naturalist
milies that we could make sufficient sister-family com-
risons for this statistical analysis. The genes needed to be
fficiently conserved to allow alignment across diverse
ant families yet variable enough to allow estimation of
th synonymous and nonsynonymous substitution rates.
e used four mitochondrial genes (atp1, matR, nad5, and
s3) taken from the data set of Soltis et al. (2011), resulting
48 comparisons for the mitochondrial alignment (192
xa, 5,211 bp; table S2). For the chloroplast genome, we
ed the substitution rate differences previously estimated
r the 65 sister-family comparisons (Lanfear et al. 2013)
sed on the protein-coding genes atpB and rbcL (196 taxa,
897 bp). For the nuclear genome, we could find only one
itable protein-coding gene that was available for enough
the sister-family comparisons: we assembled an align-
ent of sequences from the protein-coding gene xanthine
hydrogenase (Xdh; Gorniak et al. 2010; Morton 2011),
presenting 23 sister-family comparisons (62 taxa, 1,113
; table S3). We also included previous estimates of sub-
itution rates for these sister families from the nuclear
NA genes 18s and 26s (196 taxa, 5,275 bp; Burleigh et al.
09; Lanfear et al. 2013).
For each comparison, we used the same number of taxa
represent each sister clade. Balancing the number of
s in each sister clade helps to reduce the impact of the
de-density effect, which is the propensity for molecular
tes to be underestimated on long branches. Substitution
te estimates will tend to increase as more taxa are added
a clade, because adding more lineages will tend to break
the internal edges of the phylogeny, allowing better in-

rence of multiple hits (substitutions overwritten by subse-
ent changes). While node density is most clearly a prob-
m for parsimony reconstructions (Sanderson 1990), it
ay also impact maximum likelihood estimates of branch
ngth (Hugall and Lee 2007). Node-density effect is a par-
ular concern for studies examining the relationship be-
een diversification rate and rate of molecular evolution,
cause it can generate spurious correlations between the
bstitution rate estimates and clade size by increasing sub-
itution rate estimates in more species-rich clades (those
ntaining more nodes relative to age). While tests of the
de-density effect have been developed, these are designed
r whole-tree analyses, comparing the root-to-tip path
ngths to the number of descendant lineages (Venditti
al. 2008). The best strategy for avoiding node-density ef-
ct for sister-clade analyses is careful data selection (Lan-
ar et al. 2010b).
Where we had a choice of several taxa, we preferentially
lected taxa with the greatest coverage of sequence data,
t all else being equal we chose taxa at random. In most
the comparisons, each sister lineage was represented
sequences from a single taxon; but in seven compari-

ns, each family is represented by two taxa (tables S2, tio

This content downloaded from 137.21
All use subject to University of Chicago Press Terms a
). While a single sequence will not capture species-
ecific variation in rate of molecular evolution within
milies, comparisons between single sequences will rep-
sent much of the shared history of each family, and this
proach has previously demonstrated an association be-
een clade size and rate of molecular evolution (Davies
al. 2004b; Lanfear et al. 2010a; Duchene and Bromham
13).
Initial alignments of mitochondrial and nuclear protein-
ding genes were performed using the MAFFT transla-
n alignment plug-in for Geneious 6.0 (Katoh et al. 2002;
rummond et al. 2011). Wemanually removed any incom-
ete codons, for example, due to gaps in the original se-
ence or truncated codons at the ends of the sequences.
e then created separate mitochondrial and nuclear align-
ents for each sister-clade comparison, including represen-
tive sequences for each of the sister families, plus a closely
lated family as an outgroup (see tables S2, S3). For each of
ese sister-clade alignments, we included only sequences
at had coverage for both families in the pair. For the mi-
chondrial data, 32 of the 48 comparisons had complete
verage for all four mitochondrial genes, 14 comparisons
d two or three genes, and two comparisons had only
e gene (table S2). The topology for these sister pairs plus
tgroups were taken from the maximum likelihood phy-
geny (Lanfear et al. 2013) by extracting subtrees using
e APE package in R (Paradis et al. 2004).
For each comparison, we estimated synonymous (dS)
d nonsynonymous (dN) branch lengths and dN/dS ratios
ing the GY94 codon substitution model (Goldman and
ang 1994) in the codeml program of the PAML package
er. 4.4b; Yang 2007), with dN/dS values free to vary across
e tree. For comparisons with more than one taxon per
mily, we calculated clade averages for dS and dN and a
ngle dN/dS ratio for the family (Lanfear et al. 2013). For
e Xdh gene, we also estimated total branch length using
e baseml program in PAML. This was to facilitate com-
rison with the nuclear rRNA genes, since dS and dN can-
t be estimated for RNA-coding genes.
All the variables were calculated as the differences in
mily-average estimates between the two sister families in
ch comparison. We performed diagnostic tests on the
ta, as described in Lanfear et al. (2010b), to evaluate the
ree basic assumptions of generalized linear models for
ta generated by phylogenetic comparative methods. The
st criterion is whether variance of trait differences is still
lated to their absolute values after appropriate data trans-
rmation. The second criterion is whether variance of trait
d rate differences still increases linearly with evolution-
y time after standardizing the sister pairs by branch
ngths: differences in shallow pairs tend to decrease with
olutionary time due to stochastic fluctuations in substitu-

n numbers (Welch and Waxman 2008); therefore, these
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Molecular Evolution and Diversification 511
allow pairs are problematic data points. The third crite-
n is whether there still exists a negative relationship be-
een contrasts and evolutionary time after excluding shal-
w pairs. These tests indicated that log transformations
ere appropriate for all the contrasts except for the envi-
nmental variables, for which temperature and UV were
uared and latitude was not transformed.
Based on the diagnostic tests, only substitution rate esti-
ates were standardized by branch length. Standardization
rate estimates by the relative depth of the comparison is
cessary to ensure that the data meet the assumptions of
mogeneity of variance by accounting for the fact that
th trait and rate differences are expected to increase with
olutionary time. Ideally, we would use the time since the
st common ancestor for each sister pair to standardize
e comparison, but unfortunately, dates of divergence (in-
pendent of molecular data) are not available for the ma-
rity of the comparisons in our study. Therefore, we use
e best estimator for evolutionary time that we could ob-
in, which is the square root of the total number of substi-
tions in the chloroplast genes and nuclear rRNA (as these
o sequences are available for all the family comparisons).
hile using branch length to standardize the comparisons
not perfect, it is preferable to not using any standardiza-
n for comparison depth.
We applied the test of Welch and Waxman (2008) to
tect and remove sister pairs for which we were unable to
ake reliable estimates of differences in molecular branch
ngths. This test removes shallow sister pairs until there
longer exists a negative relationship between contrasts
d evolutionary time, and is not based on the absolute
lue of the difference between the sister lineages. After re-
oving these problematic pairs, our sample sizes for analy-
s were as follows: 65 sister-family comparisons for both
e chloroplast genes and nuclear rRNA; 48 sister-family
mparisons for mitochondrial genes; and 22 sister-family
mparisons for the nuclear protein-coding gene, Xdh. Be-
use genome size estimates were not available for all fam-
es in the data set, the set of comparisons that includes
nome size for both sister families was reduced to 42 com-
risons for chloroplast genes, 40 for nuclear rRNA, 27 for
itochondrial genes, and 14 for the nuclear Xdh gene. Be-
use the reduction in the number of comparisonsmight re-
lt in lower power, we repeated key analyses on both the
ll set of comparisons without genome size and on the re-

ced data set including genome size. sh

no
ra
cl
be
W
no
Analysis

ur aims were to describe the relationships between traits
d the rates of molecular evolution and net diversifica-
n and to ask whether any associations are due to direct

indirect relationships. Therefore, we employed a num- (S
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r of statistical methods that control for colinearity of
riables and that accounted for relationship structures
re Traits Correlated with Rates?We began by asking how
mily traits are associated with substitution rates and spe-
es richness, respectively. The environmental variables (lati-
de, temperature, and UV) are highly correlated with one
other (P ! 1025; table S4), so in order to minimize the
fect of multicollinearity, we performed ridge regression
d partial least squares regression (Izenman 2008). Ridge
gression reduces the mean squared errors of regression
efficients that are inflated by multicollinearity. Partial
ast squares regression (PLSR) finds the components on
hich explanatory and response variables have the largest
variance.
We performed ridge regression and PLSR using the
vironmental variables, plant height, and genome size as
e explanatory variables and the substitution rates and
ecies richness as the response variables. We also per-
rmed ridge regressions using the substitution rates from
e chloroplast, mitochondrial, and nuclear genes as the
planatory variables and the species richness as the re-
onse variable. The root mean square error of prediction,
lculated by jackknifing cross validation, was used for
oosing the optimal number of components. Jackknifing
as used to estimate the variances of PLSR coefficients,
though the resulting P value is not as reliable as ridge
gression (Mevik et al. 2011). To further reduce the impact
multicollinearity and clarify the effects of environmental
riables on substitution rates and species richness, we
rformed principal component analysis on latitude, tem-
rature, and UV and then performed ridge regression
ing all three principal components as the explanatory
re Rates Correlated across Genomes? Variation in rates
molecular evolution may be correlated across the three
llular genomes, either directly, through selection for com-
nsating mutations that allow the genomes to continue to
ork together in the face of genomic change, or indirectly,
rough common effects such as cell generation time and
py frequency. Therefore, any attempt to understand the
iving forces of rate variation across flowering plants
ould ideally take into account correlation between ge-
mes. We looked for correlations between substitution
te estimates from the chloroplast, mitochondrial, and nu-
ear alignments with the aim of detecting any interactions
tween rates of molecular evolution in different genomes.
e used Kendall’s rank correlation analysis because it does
t rely on the assumption that missing data is random

okal and Rohlf 1995).
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512 The American Naturalist
re Rates Correlated with Species Richness?We performed
th analysis to explore the nature of the link between
mily-average traits (height, genome size, and environmen-
l variables), substitution rates, and species richness. Path
alysis (and structural equation modeling in general) cal-
lates the fit of a predefined causal structure among vari-
les by comparing the actual covariance matrices among
riables and the estimated covariance matrices of the fit-
d structure. Dependence between variables can be repre-
nted by lines in a diagram, with only those paths that
present a plausible interpretation of the data included in
e model (Wright 1934). This provides a way to assess the
lationships between variables, including through the ef-
ct on other variables. While path analysis cannot be used
establish causal mechanisms, correlations in the data do
ply some causal connection (whether direct or indirect)
tween the variables (Shipley 2002). The role of path anal-
is is to evaluate the relative strengths of alternative mod-
s by asking how well the pattern of correlations matches
edefined links between variables. Because path analysis
ovides a way of assessing the support in the data for pre-
fined causal models, researchers must explicitly describe
asonable hypotheses for the relationships between vari-
les (Lleras 2005). We based our models on a priori hy-
theses discussed in the literature (see “Introduction” and
iscussion”) but also use the results of the regression anal-
es to inform these models, as we do not include links
tween variables if they are not correlated with each other.
We test the data against four models that describe the
usal relationship between traits, rates, and species rich-
ss (fig. A1, available online). Models 1 and 2 differ in the
rection of the causal relationship between substitution
tes and species richness. Model 1 represents an influence
rates of molecular evolution on rates of diversification,
substitution rates may influence species richness, and

aits (environment and life history) can influence both
tes and species richness. Model 2 represents an effect of
tes of diversification on rates of molecular evolution, so in
is model species richness may influence rates, while traits
eight, genome size, environment) can influence both
tes and species richness. Model 3 represents a direct con-
ction between molecular evolution and diversification
tes, so traits can influence both species richness and rates,
d species richness has residual covariance with substi-
tion rates. Model 4 represents an indirect connection
tween species richness and substitution, so traits can
fluence species richness and rates, but species richness
s no residual covariance with substitution rates.
Path analysis does not provide proof of causal mecha-
sms; instead, it provides a way of rejecting some causal
potheses as being a less adequate description of the data
it does not fit the pattern of covariance as well as an al-

rnative model. For example, in model 1, we assume sub- (l

This content downloaded from 137.21
All use subject to University of Chicago Press Terms a
itution rates have a direct effect on diversification rates,
the estimated covariance matrix involves the variance
diversification rates conditional on the substitution rates;
model 2, we assume diversification rates have a direct
fect on substitution rates, so the estimated covariance
atrix involves the variance of substitution rates condi-
nal on the diversification rates. As a result, different pre-
fined causal structures lead to different estimated covari-
ce matrices among variables, and the best structure is the
e whose estimated covariance matrices are most similar
the actual covariance matrices.
We compare the relative fit of different models using
e Aikake information criterion (AIC), which compares
e goodness of fit of different models with respect to the
mber of parameters of the model. In this way, the AIC
mpares models with respect to both their explanatory
wer and complexity. We use a x2 test to reject models,
hich compares the difference between the observed co-
riance matrix among variables and the expected covari-
ce matrix given the predefined casual structure against a
null distribution.
All the statistical analyses were performed in R (R De-
lopment Core Team 2013), for ridge regression using
e ridge package (Cule 2012), for partial least squares
gression using the pls package (Mevik et al. 2011), and
r path analysis using the lavaan package (Rosseel 2012).
ll data used have been deposited in the Dryad Digital
epository: http://dx.doi.org/10.5061/dryad.31614 (Brom-
re Traits Correlated with Rates? Results of ridge regres-
on and partial least squares regression confirm a consistent
gative association between average height in flowering
ant families and substitution rates, for synonymous sub-
itutions in the mitochondrial and chloroplast genes, and
r total branch length in the nuclear rRNA (table 1). Fam-
es with lower average height also tend to have a lower ra-
of nonsynonymous to synonymous substitution rates

N/dS) in the chloroplast genes (table 1), a pattern also seen
the mitochondrial genes (tables S5, S6, S8) though not

gnificant for the reduced data set (which has fewer com-
risons due to the inclusion of genome size; tables 1, S7,
). Plant families with smaller average genome sizes tend to
ve faster synonymous substitution rates, total substitution
tes, and lower dN/dS in the nuclear protein-coding gene
dh (table 1).
In the principal component analysis, temperature
oading p 20.58), latitude (loading p 0.58), and UV

oadingp20.58) have the same absolute loadings on the
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nd Conditions (http://www.journals.uchicago.edu/t-and-c).



T
ab
le

1:
R
es
ul
ts
of

ri
dg
e
re
gr
es
si
on

fo
r
su
bs
ti
tu
ti
on

ra
te
s
an
d
sp
ec
ie
s
ri
ch
ne
ss

ag
ai
ns
t
pl
an
t
he
ig
ht
,g
en
om

e
si
ze
,a
nd

pr
in
ci
pa
l
co
m
po

ne
nt
s
1–
3
(P
C
1–
P
C
3)

of
en
vi
ro
nm

en
ta
l

va
ri
ab
le
s

C
hl
or
op

la
st

M
it
oc
ho

n
dr
ia
l

N
uc
le
ar

dN
dS

dN
/d
S

dN
dS

dN
/d
S

dN
dS

dN
/d
S

X
dh

to
ta
l

rR
N
A

to
ta
l

Sp
ec
ie
s
ri
ch
ne
ss

H
ei
gh

t:
r

2
.0
0

2
1.
53

.8
2

2
.3
9

2
2.
06

.5
8

2
.0
0

2
.1
7

.0
8

2
.0
8

2
3.
25

.3
2

P
.6
6

.0
1

.0
5

.5
4

.0
2

.1
3

.6
1

.6
9

.8
5

.7
5

.0
0

.8
1

G
en
om

e
si
ze
:

r
.0
0

2
.1
5

.3
1

.6
1

.5
7

.1
3

2
.0
0

2
1.
21

1.
61

2
.5
5

.3
7

1.
27

P
.5
7

.8
0

.4
7

.3
3

.5
3

.7
1

.5
4

.0
0

.0
0

.0
3

.6
6

.3
5

P
C
1: r

2
.0
2

2
.6
2

2
.3
3

.5
4

1.
29

2
.2
8

2
.0
0

2
.4
6

.4
5

2
.2
6

.6
7

.1
4

P
.0
5

.2
8

.4
4

.4
0

.1
5

.4
5

.8
2

.2
8

.2
5

.3
3

.4
3

.9
2

P
C
2: r

.0
0

.0
8

2
.0
1

2
.3
3

.3
5

2
.4
2

2
.0
0

2
.1
5

2
.0
6

2
.0
7

.1
6

3.
81

P
.9
1

.8
8

.9
7

.6
0

.7
0

.2
5

.9
9

.7
2

.8
8

.7
8

.8
5

.0
0

P
C
3: r

2
.0
0

2
.1
6

.1
9

2
1.
21

2
1.
45

.1
0

2
.0
0

2
.2
1

.0
3

2
.1
9

.3
9

.7
1

P
.9
9

.7
8

.4
7

.0
6

.1
1

.7
9

.9
9

.5
9

.9
5

.4
4

.6
5

.6
0

R
2

.0
1

.1
5

.1
1

.1
4

.1
5

.1
1

.0
0

.3
6

.5
5

.2
2

.3
0

.1
8

Sp
ec
ie
s
ri
ch
ne
ss
:

r
4.
50

4.
38

2
.0
6

2.
47

1.
13

.2
4

.8
4

.5
1

2
.3
5

–
.3
5

–
P

.0
6

.0
7

.9
0

.1
5

.5
1

.6
9

.4
0

.6
1

.7
2

–
.3
3

–
R
2

–
.1
2

.0
0

–
.0
5

.0
0

–
.0
3

.0
1

–
.0
2

–

N
ot
e:
P
C
1
ac
co
un

ts
fo
r
th
e
ge
n
er
al
tr
en
d
of

lo
w
er

te
m
pe
ra
tu
re

an
d
lo
w
er

U
V

in
hi
gh

er
la
ti
tu
de
.P

C
2
ac
co
un

ts
fo
r
te
m
pe
ra
tu
re

va
ri
at
io
n
th
at

ca
nn

ot
be

ex
pl
ai
n
ed

by
la
ti
tu
de
.P

C
3
ac
co
un

ts
fo
r
U
V
va
ri
at
io
n

th
at

is
in
de
pe
n
de
n
t
to

te
m
pe
ra
tu
re

an
d
la
ti
tu
de
.F

or
pr
ot
ei
n-
co
di
ng

ge
ne
s,
sy
no

n
ym

ou
s
(d
S)

an
d
no

n
sy
n
on

ym
ou

s
(d
N
)
su
bs
ti
tu
ti
on

ra
te
s
w
er
e
es
ti
m
at
ed
,a
s
w
el
la
s
dN

/d
S.
In

ad
di
ti
on

,f
or

th
e
nu

cl
ea
r
ri
bo
so
m
al

R
N
A
(r
R
N
A
)
ge
ne
s
an
d
X
dh

,t
ot
al
su
bs
ti
tu
ti
on

ra
te

w
as

es
ti
m
at
ed

to
fa
ci
lit
at
e
co
m
pa
ri
so
n
be
tw

ee
n
th
e
rR
N
A
ge
n
e
an
d
th
e
pr
ot
ei
n-
co
di
ng

ge
ne
.I
n
th
e
fi
rs
t
se
ct
io
n
of

th
e
ta
bl
e
(“
H
ei
gh
t”

th
ro
ug
h
“P
C
3”

ro
w
s)
,

ea
ch

co
lu
m
n
sh
ow

s
th
e
re
gr
es
si
on

co
ef
fi
ci
en
ts

(r
)
an
d
P
va
lu
es

of
di
ff
er
en
t
ex
pl
or
at
or
y
va
ri
ab
le
s
on

a
re
sp
on

se
va
ri
ab
le
,a
s
w
el
l
as

th
e
to
ta
l
ef
fe
ct

si
ze

(R
2 )
of

al
l
th
e
ex
pl
or
at
or
y
va
ri
ab
le
s.
T
he

se
co
n
d
se
ct
io
n

(“
Sp

ec
ie
s
ri
ch
n
es
s”

ro
w
s)

sh
ow

s
th
e
re
gr
es
si
on

co
ef
fi
ci
en
ts
(r
),
P
va
lu
es
,a
n
d
th
e
to
ta
le
ff
ec
ts
iz
e
(R

2 )
of

no
ns
yn

on
ym

ou
s
an
d
sy
no

n
ym

ou
s
su
bs
ti
tu
ti
on

ra
te
s
on

sp
ec
ie
s
ri
ch
n
es
s,
as

w
el
la
s
th
os
e
va
lu
es

of
dN

/d
S
on

sp
ec
ie
s
ri
ch
n
es
s.
Si
gn
ifi
ca
nt

co
ef
fi
ci
en
ts

an
d
th
ei
r
P
va
lu
es

ar
e
in
di
ca
te
d
in

bo
ld
fa
ce
.
T
he

nu
m
be
rs

of
co
m
pa
ri
so
n
s
fo
r
ea
ch

da
ta

se
t
ar
e
as

fo
llo

w
s:
ch
lo
ro
pl
as
t,
42
;
m
it
oc
ho

n
dr
ia
l,
27
;n

uc
le
ar

X
dh

,1
4;

nu
cl
ea
r

rR
N
A
,
40
.
A

da
sh

in
di
ca
te
s
an

an
al
ys
is
w
as

no
t
pe
rf
or
m
ed
.

This content downloaded from 137.219.126.133 on June 22, 2017 17:03:35 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



fir
al
an
co
in
di
in
pr
(0
po
PC
in
ac
w
in

th
no
no
al
av
an
no
an
or
siz

A
ni

ac
no
ar
tu
sy
m
su
m
m
ge
ac

A
an
in
in
an
rR
cl
ab
ne

w
ne
ca
H
ne
no

514 The American Naturalist
st principal component (PC1), indicating that variation
ong PC1 shows the general trend of lower temperature
d lower UV at higher latitudes. On the second principal
mponent (PC2), the loading of temperature (20.82) is
the opposite direction to that expected for the latitu-
nal gradient, and temperature has higher absolute load-
gs than latitude (20.37) and UV (0.45). On the third
incipal component (PC3), only latitude (0.73) and UV
.68) have loadings, and the loading of UV is in the op-
site direction to the latitudinal trend. Thus, PC2 and
3 together account for environmental variation that is
dependent of latitudinal gradient, with PC2 primarily
counting for temperature (e.g., decrease in temperature
ith altitude) and PC3 primarily accounting for UV (e.g.,
creasing UV with altitude).
Results of ridge regression using the three PCs show
at plant families at lower latitudes tend to have higher
nsynonymous substitution rates in their chloroplast ge-
mes (tables 1, S5). Ridge regression on the three PCs
so suggests that plant families that are exposed to higher
erage levels of UV tend to have lower substitution rates
d higher dN/dS in chloroplast and mitochondrial ge-
mes (table S5; this is also suggested by other regression
alyses: see tables S6–S8), but this result is not consistent
significant in the reduced data set that includes genome
e (tables 1, S9).

re Rates Correlated across Genomes? We identified sig-

ficant pairwise correlations between substitution rates m

Ta
dr nd nucle and ribo NA [rR

C M M

Cp
.
.

Cp
. 2
.

M
.
.

M
.
.

Xd
.
.

Xd
.

dS p synonymous substitution rate.

This content downloaded from 137.21
All use subject to University of Chicago Press Terms a
ross the three genomes (table 2). Within each of the ge-
mes, synonymous and nonsynonymous substitution rates
e correlated with each other (fig. 1). Synonymous substi-
tion rates in the chloroplast genome are correlated with
nonymous and nonsynonymous rates estimated from
itochondrial and nuclear genes and nuclear rRNA total
bstitution rates. Synonymous substitution rates in the
itochondrial genome are correlated with nonsynony-
ous substitution rates and total rRNA rates in the nuclear
ne. Nonsynonymous substitution rates are not correlated
ross genomes.

re Rates Correlated with Species Richness? For the path
alysis, we tested four models (see appendix, fig. A1) but
cluded only variables that show significant correlations
any of the regression analyses. So we include height in
alyses of rates in mitochondrial, chloroplast, and nuclear
NA genes and genome size only in the analysis of nu-
ear protein-coding gene. Because the environmental vari-
les are highly intercorrelated, we use principal compo-
nts in the path analysis.
For chloroplast genes, the best-fit model is model 3,
hich includes a direct connection between species rich-
ss and substitution rates, in addition to the connection
used by the species traits examined in the study (table 3).
owever, model 1 (substitution rate influences species rich-
ss)fits the data nearly as well, given that its AIC value does
t differ much from model 3 (DAIC ! 2). We can reject

odel 4 (no direct association between substitution rates
ble 2: Pairwise correlation between substitution rates among three genomes: chloroplast (Cp), mitochon-

nes
ial (Mt), a
 ar (Xdh
 somal R
 NA]) ge
Xd
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d species richness) for the chloroplast sequences. For the
clear Xdh gene, the best-fitting model is model 1 (substi-
tion rates influence species richness), and it fits the
ta significantly better than other models (all DAIC 1 2).
r mitochondrial and nuclear rRNA genes, the best-fit
odel is model 4 (no direct association between rates and
ecies richness), but none of the models can be rejected
favor of any of the others.
Figure 2 shows the results of significance tests on path co-
ficients. Synonymous substitution rates in the chloroplast
d nuclear protein-coding genes are significantly corre-
ted with species richness, and the analyses suggest that
ese correlations are not explained by an indirect covaria-
n between species richness and rates with the family-
erage traits. Chloroplast substitution rates are also posi-

ely correlatedwith species richness in the ridge regression ta

esu soc

pla nd

A A

7 1 4. 80
7 1 5. 80
4 1 4. 80

icated in boldface. Figure 1 shows the detailed results of model 3.

This content downloaded from 137.21
All use subject to University of Chicago Press Terms a
alysis, though this is not significant (dS, Pp .07; dN, Pp
6; table 1). These analyses do not provide any evidence
a link between species richness and substitution rates
the mitochondrial genes or the nuclear rRNA sequences
g. 2).
This study focuses on the relationship between diver-
fication rates and substitution rates and was not designed
test the influence of environmental or species traits on
ecies richness. However, we note that temperature is
so identified as a significant correlate of species richness
entified in the regression analysis (tables 1, S5, S6, S8, S9).
s suggested by PC2, this negative association between
mperature and net diversification rate is independent of
y latitudinal trend in temperature or diversification rates
d is likely caused by other environmental gradients. This
ttern may be an artifact of taking average measurements
er the family geographic range: a family with more spe-
es might cover a larger area, which might contain a wider
nge of environmental conditions (such as variation in
evation), and thus family mean values calculated over the
nge might be lower than the mean values of locations in
hich members of the family are found. For example, a
rger family range might include more high-elevation re-
ons even if the species in the family are not distributed at
gh altitude, so the average temperature of the range may
lower than the actual temperature niche of the constitu-
t species. Alternatively, if environmental heterogeneity
ives diversification (e.g., montane speciation), then more
terogeneous environments might contain larger families,
tentially making the mean temperature of more species-
ch families lower than that of smaller and less widely dis-
Discussion

e show that plant traits can have a consistent effect on
tes of molecular evolution across all three genomes, with
tterns of substitutions suggesting that differences in mu-
Chloroplast

dS

dN

Nuclear

dS

dN

Mitochondrial

dS

dN

gure 1: Schematic diagram of the significant correlations between
e estimated substitution rates for chloroplast, nuclear, and mito-
ondrial genomes. For correlation coefficients and P values, see
ble 2. dN p nonsynonymous substitution rate; dS p synonymous
tion rate generate variation in both synonymous and
rat ss
ble 3: R
 lts of path analysis on the as
 iations between substitution
4
9
8

9.126.13
nd Cond
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Chloro
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 Mitocho
 rial
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A

1,
1,
1,

.edu/t-and-c).
odel
 x2 (P)
 IC (df)
 x2 (P)
 IC (df)
 x2 (P)
 IC (df)
 x2 (P)
 IC (df )
.01 (.54)
 ,271 (8)
 55 (.80)
 7.1 (8)
 .44 (.82)
 2.1 (8)
 73 (.98)
 104 (5)
.51 (.48)
 ,272 (8)
 47 (.71)
 8.0 (8)
 .16 (.33)
 6.8 (8)
 39 (1.00)
 104 (5)
.67 (.79)
 ,269 (8)
 28 (.83)
 6.8 (8)
 .65 (.37)
 6.3 (8)
 77 (.98)
 104 (5)

18.70 (.04) 1,279 (10) 7.78 (.65) 805.7 (10) 15.77 (.11) 269.4 (10) 1.45 (.96) 1,103 (6)

Note: Four variants of the model are fitted to each data set. In model 1, substitution rates influence species richness. In model 2, species richness influences
bstitution rates. In model 3, species richness and substitutions are correlated. In model 4, species richness and substitutions are not correlated. Model fitness is
aluated by x2 (with P value in parentheses) and Aikake information criterion (AIC) value (with degrees of freedom in parentheses). Significant results are
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nsynonymous rates in all three genomes. We do not find
y significant associations between nonsynonymous rates
timated from the three different genomes, so these data
ovide no evidence that the patterns observed are largely
iven by compensatory substitutions to maintain genome
mpatibility. For chloroplast andmitochondrial genes and
clear rRNA, our analyses confirm that plant families with
orter average height have faster rates of molecular evo-
tion. Analysis of the nuclear protein-coding gene, Xdh,
ggests that greater family-average genome size is associ-
ed with lower mutation rate. There is some evidence of
vironmental influence on rates of molecular evolution,
ith the signal of increased substitution rates at lower lat-
des in chloroplast and mitochondrial genomes. The path

alyses support a link between species richness and sub- ra

This content downloaded from 137.21
All use subject to University of Chicago Press Terms a
itution rates for the chloroplast and mitochondrial ge-
mes. While the strongest support in the data is for either
direct influence of rates of molecular evolution on di-
rsification rate or a direct link between them after ac-
unting for the influence of family traits, we cannot reject
e alternative explanation that differences in diversifica-
n rates drive differences in substitution rates. However,
ven that the patterns of rate variation are most strongly
flected in the synonymous substitution rate, which re-
cts the mutation rate, we think the most likely explana-
n is that differences in mutation rates between lineages,
least partly driven by differences in family-average traits,
fluence both synonymous and nonsynonymous rates of
ange across all three genomes, which in turn drive greater
A  Chloroplast

dS dN
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0.25 

0.
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gure 2: Results of path analysis. Single arrows indicate causal relationship, and double arrows indicate correlation. Arrows for correlations
ong explanatory variables are not shown, for the sake of clarity. Values along each path are path coefficients with significant level (one
terisk, P ! .05; two asterisks, P ! .01). Nonsignificant coefficients are not shown. Gray indicates a path with no significant coefficients in
tes of divergence between populations, generating higher
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tes of diversification (fig. 3). We will discuss each of these

ks in more detail. la
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Plant Height and Mutation Rate

e clearest and most consistent pattern that emerges
om our analyses is that plant families with a shorter av-
age height have faster rates of molecular evolution. This
consistent with previous analysis of these nuclear rRNA
d chloroplast sequences (Lanfear et al. 2013), but our
udy extends this result to all three plant genomes. Height
related to synonymous substitution rate and dN/dS in
e chloroplast and mitochondrial genomes and to sub-
itution rate in the nuclear rRNA sequences. Since syn-
ymous substitution rate (dS) is primarily influenced by
e mutation rate, this suggests that taller plants have
wer rates of mutation per year.
Size is an important determinant of rate of molecular
olution for many taxa, a pattern often attributed to an
sumed difference in the number of genome replications
r unit time (Sarich and Wilson 1973; Ohta 1993; Brom-
m et al. 1996; Thomas et al. 2010). While the relationship
tween body size, cell divisions, and generation time is
mplicated in plants, we can make predictions about the
lationship between plant height and genome turnover.
rger plants often have lower absolute growth rates (Petit
d Hampe 2006) and thus undergo fewer cell divisions
r unit time than shorter plants (Lanfear et al. 2013).
wer cell divisions means fewer opportunities for repli-
tion errors to occur, so for the same per-replication mu-
tion rate, we would expect a taller plant to have fewer
NA replication errors per unit time than a shorter plant.
e effect of number of cell divisions on the per-unit-time
utation rate can be demonstrated through male-driven
olution in paternally inherited organelle genomes: pollen

oduction requires more cell divisions than ovule pro- gl

nificant correlations are shown.
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ction, so genes passed through the male line accumu-
te more copy errors per unit time (Whittle and Johnston
02).
Reduction in the per-unit-time mutation rate is ex-
cted for taller plants on purely mechanistic grounds
ewer opportunities for replication errors), but it may be
hanced by the influence of selection on mutation rates.
plants, germ lines are not sequestered early in devel-
ment but arise from the apical meristem (growing tip)
hen it becomes a reproductive apex. So taller plants will
nd to have more cell generations per reproductive gen-
ation (Schultz and Scofield 2009). The taller the plant,
e more cell divisions occur between the seed and the
ical meristem, so the more opportunity for mutations
occur per generation (Petit and Hampe 2006; Bobiwash
al. 2013). Therefore, a taller plant is at greater risk of
cumulating deleterious mutations during its lifetime.
hese deleterious mutations may or may not be selected
ainst in somatic tissues (Klekowski and Godfrey 1989;
arcotrigiano 2000; Morgan 2001), but if they accumu-
te in a cell line that gives rise to reproductive cells, then
fspring fitness may be reduced. Populations formed by
getative propagation can accumulate somatic mutations
er time (Warren 2009), even if these mutations are del-
erious (Gross et al. 2012). One way for taller plants to
oid the mutation costs of more cell divisions per gen-
ation is to reduce the error rate per replication. Selection
essure to reduce the per-genome-replication mutation
te could result in a lower per-site, per-replication mu-
tion rate, which should be reflected in the rate of syn-
ymous substitutions per site (Sung et al. 2012). Our re-
lts are consistent with this hypothesis, because we see a
nsistent negative relationship between synonymous sub-
itution rates and height in the mitochondrial and chlo-
plast genes. We do not detect this relationship for the sin-

e protein-coding nuclear gene tested, although the nuclear
Life
History

Environment

Genome
size

Mutation
Mitochondrial

Nuclear

Substitution

Species
Richness

Height

Nuclear

Temperature

Chloroplast Chloroplast

Mitochondrial

LatitudeUV

gure 3: Schematic diagram of the inferred links between life history, environmental variables, mutation rates, substitution rates, and
ecies richness suggested by the results of our analysis. Each arrow is based on a significant correlation in one of the analyses, but not all
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NA genes show a negative association between substitu-

n rate and height. an

dN
H
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2008; Whitney et al. 2010; Ai et al. 2012).
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Genome Size and Molecular Evolution

milies with larger average genomes have lower synon-
ous substitution rates and higher dN/dS in the nuclear
otein-coding gene. One possible explanation for the link
tween genome size and synonymous substitution rate
that, if increased genome size correlates with larger cells
d reduction in growth rates, then plants with larger
nomes might have fewer genome replications per unit
e and, therefore, less opportunity to accumulate mu-

tions. But cell division rates should affect all three ge-
mes, and we see no evidence of a link between genome
e and organelle mutation rates. Alternatively, increased
nome size may result in selection for lower mutation
tes to reduce the per-genome number of mutations per
neration. This might explain why we see a link between
clear genome size and substitution rates in the nu-
ear protein-coding gene although this relationship is not
flected in organelle substitution rates, since organelle ge-
mes vary less in size between families and are copied
ing, at least in part, their ownDNAreplicationmachinery.
While some variation in total genome size is related to
nome duplications, much of the variation is accounted
r by differences in the amount of repetitive DNA, in-
uding transposable elements (Bennetzen et al. 2005;
rover and Wendel 2010; Tenaillon et al. 2010). Given
at mutations in transposon sequences should typically
rry no fitness cost to the host, it has been suggested that
e relevant parameter is the mutation rate per replication
r base of the effective genome, which is that part of the
nome where mutations can produce deleterious effects
which selection can act (Drake et al. 1998). An excep-
n is the fitness cost of gain-of-function mutations in
ncoding DNA: the more DNA there is in the genome,
e more chance of amutation that accidentally changes the
gulation and maintenance of the working parts of the
nome (Lynch 2007). Unfortunately, the coding fraction
the genome and the relative proportion of transposable
ements is not available for sufficient species to allow us to
ake the distinction between total genome size and effec-
e genome size in this study.
Genome size might be indirectly linked to rates of mo-
cular evolution through effective population size. If the
lective cost of increase in transposon copy number is
pically only slightly deleterious, then we can expect more
fective reduction in transposon copies in larger popula-
ns where selection against slightly deleterious alleles is
ost effective (Grover andWendel 2010). If this is the case,
en lineages characterized by smaller populations should

cumulate more transposon copies and more nearly neu- (M
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al substitutions, leading to an increase in both genome size
d dN/dS. This is consistent with our observation of higher
/dS in families with larger average genome size (table 1).

owever, this effect does not provide an easy explanation
r the observation that plant families with larger average
nome sizes also have lower mutation rates. Furthermore,
e evidence for a link between genome size and effective
pulation size in plants has been mixed (Lockton et al.
Mutation Rate and Diversification

ur finding of a link between synonymous substitution
te and species richness in this analysis is consistent with
evious findings in plants (Barraclough and Savolainen
01; Duchene and Bromham 2013; Lanfear et al. 2013),
h (Venditti and Pagel 2009), and birds and reptiles (Eo
d DeWoody 2010; Lanfear et al. 2010a). Mutation rate
ight affect the net rate of diversification by contributing
hybrid incompatibility, which can arise from any non-
mpatible substitutions, even of alleles that have no fitness
st or benefit in their own population. The more sub-
itutions acquired by either population, the less chance
at genomes drawn from the different populations could
combined in one individual to produce a viable hybrid
rr 1995). These Dobzhansky-Muller incompatibilities
e typically modeled with a relatively small number of loci
ieseberg and Willis 2007) but could occur through the
ntinuous accumulation of substitutions of small effect
ross a large number of loci (Hua and Wiens 2013). Even
the initial formation of reproductive isolation is due to
rticular changes in few key genes, the accumulation of
bstitutions in each of the separated lineages thereafter
difies the reproductive isolation (Coyne and Orr 2004), so
e number of loci contributing to isolation might increase
ith the square of time or even more rapidly (Matute et al.
10). If many loci across the genome can contribute to
brid incompatibility, then the genome-wide substitution
te could influence the speed of evolution of barriers to
production between populations. Because the accumula-
n of incompatible alleles does not need to be symmetri-
l (Welch 2004), a faster rate of molecular evolution in
e lineage should speed the evolution of reproductive iso-
tion between the two.
Faster substitution rates in all three plant genomes might
ntribute to cytonuclear conflict, which plays an impor-
nt role in some cases of hybrid incompatibility (Levin
03; Greiner et al. 2011; Greiner and Bock 2013), although
general contribution to patterns of speciation is not yet

ear (Crespi and Nosil 2012). For example, changes to mi-
chondrial genes that alter their interaction with nuclear-
oduced proteins can induce cytoplasmic male sterility

a 2013), but male function can be restored by compensa-
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Molecular Evolution and Diversification 519
ry changes to nuclear genes (Luo et al. 2013). Organelle-
cleus interactions could potentially involve many differ-
t genes: for example, scores of nuclear genes must work
ith the dozen or so mitochondrial genes on the oxidative
osphorylation pathway (Burton and Barreto 2012). Crit-
ally, these are housekeeping genes typical of those in-
uded in phylogenetic studies. For example, substitutions
the mitochondrial nad and atp1 genes, included in this
udy, have been shown to drive cytoplasmic male sterility
reiner and Bock 2013; Yoshimi et al. 2013). However,
e did not find any direct support for cytonuclear incom-
tibility in the sequences analyzed for this study, as we
e no evidence of a link between nonsynonymous substi-
tion rates across genomes.
Is it possible that the causal arrow runs the other way, so
at higher diversification rates drive increased synony-
ous substitution rates? It is difficult to imagine how diver-
cation rate could directly impact mutation rate, though
may do so indirectly through reduction in effective popu-
tion size. Population size could be negatively associated
ith diversification rate if speciation tends to divide popula-
ns. Selection on mutations of small selective effect is less
ficient in small populations, so slightly beneficial changes
DNA repair may fail to go to fixation, but slightly delete-
us decreases in replication fidelity may be fixed by drift
ynch 2007, 2010). If this were a common phenomenon,
en we would expect increased mutation rates to be asso-
ated with smaller population sizes. Our results are in the
posite direction, with increase in dS associated with de-
ease in dN/dS (table 1). This suggests that highermutation
tes are not associated with relaxed selection in small pop-
ations, unless the increase in dN across the genome due to
ation of nearly neutral alleles by drift is much greater in
agnitude than the increase in dS due to erosion of DNA

pair systems. U
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Environmental Effects on Molecular Evolution

ur results are compatible with a latitudinal gradient in
ganelle substitution rates (Wright et al. 2006, 2010, 2011;
illman et al. 2009; Lourenço et al. 2012; Lanfear et al.
13), though these associations are inconsistently identi-
d in our analyses and not always significant. It is impor-
nt to note that our comparisons were not chosen specifi-
lly to test the latitudinal gradient: sister families may
ve overlapping latitudinal ranges, limiting the power to
tect latitudinal patterns (Cardillo 1999). However, we can
k whether the patterns we have detected in this data are
nsistent with different hypothesized links between envi-
nmental conditions and rate of molecular evolution.
Environmental variables have been proposed as both
rect and indirect determinants of rates of molecular evo-

tion in plants. The indirect link between environment th

This content downloaded from 137.21
All use subject to University of Chicago Press Terms a
d molecular evolution is primarily discussed in terms of
e latitudinal gradient in plant productivity and diversity
rown 2014). Energy availability, determined by temper-
ure, light, and water, has been proposed as the primary
iver of patterns of species richness through its effects
plant growth and, therefore, on primary productivity
awkins et al. 2003). Growth rates could influence the
te of molecular evolution by affecting the number of cell
visions per unit time and, therefore, rates of genome
rnover. Consistent with this hypothesis, temperature has
en identified as a correlate of rate of molecular evolution
plants (Davies et al. 2004b), as has water availability
oldie et al. 2010). Average temperature and length of
owing season tend to decrease with increasing latitude
e Frenne et al. 2013), so it is reasonable to expect that
ants at low latitude can undergo more cell divisions per
ar than plants at higher latitudes and thus accumulate
ore copy errors in their genomes (Gillman et al. 2009;
illman and Wright 2014). If the latitudinal effect on rates
molecular evolution was primarily driven by higher
owth rates causing more replication errors per unit time,
en we would expect to see this reflected in both the syn-
ymous and nonsynonymous substitution rates. But we
tect a latitudinal gradient only in the rate of nonsyn-
ymous substitutions in the chloroplast genes.
A direct link between environmental factors and mo-
cular evolution has been suggested by proposing that
pects of the environment, particularly temperature and
V, could have a directly mutagenic effect on the genome
ohde 1992; Willis et al. 2009; Flenley 2011). UV-B can
mage cellular structures and induce mutations and ge-
me rearrangements. Since UV exposure increases to-
ard the equator, plants living at low latitudes might ex-
rience more UV-induced DNA damage. On this basis,
V-inducedmutagenesis has been cited as a potential driver
species richness in plants (Willis et al. 2009). However,
r data provide no support for this hypothesis and indeed
ggest the opposite pattern: average UV exposure is neg-
ively correlated with organelle mutation rate. The role of
V as a determinant of substitution rate is also undermined
patterns of variation in rate of molecular evolution with

titude (Dowle et al. 2013). UV exposure increases with al-
ude, yet several studies have shown that rates of molec-
ar evolution decrease with altitude (Gillman et al. 2009;
right et al. 2010).
The negative relationship between UV exposure and
utation rate might be explained by the adjustment of
NA repair in response to mutagen levels. There are many
NA repair pathways that ameliorate the effect of UV, and
e efficiency of these pathways can vary between spe-
es, impacting on the mutation rate (Lucas-Lledo and
nch 2009). Lineages may adapt to different environments

rough changes to the activity or efficiency of DNA repair
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520 The American Naturalist
echanism; for example, species in low UV environments
ay lose photolyase enzymes (Eisen and Hanawalt 1999).
ants living at high altitude may be adapted to resist UV-B
mage (Sullivan et al. 1992), for example, through changes
DNA repair systems (Albarracín et al. 2012). Moreover,
V acclimation responses can be inducible, employed at
level appropriate to conditions (Jansen et al. 1998), in-
uding through moderation of DNA repair (Ries et al.
00). For example, photoreactivation, which repairs thy-
ine dimers caused by UV light, is driven by energy from
V-A radiation, so the capacity for repairing UV damage
ay increase with the level of insolation (Jansen et al. 1998).
lthough plant families distributed at lower average lati-
des may be exposed to greater levels of UV-B, the effect
UV-B on mutation rates may be ameliorated by invest-
ent in cellular mechanisms that prevent or repair UV-
duced DNA damage. So while we do find some support
r a link between environment conditions and rate molec-
ar evolution, we do not see any clear pattern that envi-
nment directly influences themutation rate (e.g., through
creased mutagenic burden in warmer, brighter environ-
ents) nor indirectly (e.g., increasing mutation rates in en-

ronmental areas likely to stimulate higher growth rates). su

po
no
ca
ex
lin
be
be
ce
specific selection for adaptation or isolating mechanisms.
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Population Size, Selection, and Diversification

has been suggested that the link between diversification
d rates of molecular evolution is mediated by changes in
pulation size accompanying speciation, for example,
e to the founder effect as a new habitat is colonized or
e reproductive isolation of small peripheral populations
ebster et al. 2003; Pagel et al. 2006; Venditti and Pagel
09). Following population subdivision, neutral alleles
rried over from the larger parent population will be either
st or fixed, potentially providing a burst of substitutions
enditti and Pagel 2009). In smaller populations, nega-
e selection will be less efficient at removing slightly del-
erious mutations, so these alleles will have an increased
ance of going to fixation by drift. If slightly deleterious
utations make up a nontrivial proportion of all mutations
yre-Walker and Keightley 2007), then small populations
ill tend to have higher rates of nonsynonymous substi-
tion relative to the rate of synonymous substitutions
harlesworth 2009; Woolfit 2009).
Comparative studies have demonstrated that lineages
ith reduced population size can have consistently higher
/dS (e.g., Woolfit and Bromham 2003, 2005). But, thus

r, there has been little direct evidence that population
e changes are driving the link between substitution rates
d net diversification rate: studies have either not directly
oked for the signature of population size change (Bar-

clough et al. 1996; Webster et al. 2003; Pagel et al. 2006; of
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All use subject to University of Chicago Press Terms a
ncaster 2010) or, if they have looked for such evidence,
ve failed to find it (Barraclough and Savolainen 2001;
enditti and Pagel 2009; Lanfear et al. 2010a; Duchene
d Bromham 2013; Lanfear et al. 2013). While we find a
nsistent association between family-average traits and
/dS in these data (height for the organelle genes, ge-
me size for the nuclear Xdh gene), we do not see a pos-
ve association between dN/dS and species richness. This
ay be because there is no consistent pattern of popu-
tion size reduction associated with speciation or that
y such effects are too transient to have a significant im-
ct on family-average substitution rates. Or it may be that
her factors that influence substitution rates override or
ssemble any effect of population size associated with
eciation.
An alternative explanation for the link between substi-
tion rate and net diversification rate observed in this
udy is that selection on these genes is either a cause of,
a response to, speciation. While speciation may be ac-
mpanied by selection to adapt to a new habitat or rein-
rce reproductive isolation, it seems unlikely that the genes
pically included in phylogenetic studies would all be
bject to strong directional selection in a newly isolated
pulation. If widespread positive selection across the ge-
me were to account for the link between net diversifi-
tion rate and rate of molecular evolution, then we would
pect to see this reflected in raised dN/dS in species-rich
eages. Instead, phylogenetic studies of the relationship
tween molecular rates and net diversification rates can
more easily interpreted as reflecting genome-wide pro-
sses such as mutation rate and drift, rather than locus-
Conclusion

hile details of the processes of diversification are lost
hen taking the broad, comparative view, phylogenetic
udies do permit the search for general patterns that may
ghlight some common mechanisms. This study of rates
molecular evolution in flowering plant families provides
idence that families of taller plants are characterized
lower mutation rates per unit of time than families of
orter plants in genes from the nuclear, chloroplast, and
itochondrial genomes. Substitution rates estimated from
otein-coding sequences from the chloroplast and nuclear
nomes are associated with differential rates of diversifi-
tion in flowering plant families. Environmental factors
e also associated with variation in rates of molecular
olution, but we find no support in these data for the
pothesis that this is driven by higher rates of mutation at
wer latitudes, whether due to a direct association (impact

temperature or UV on mutation generation) or indirect
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nnection (raised growth rates increasing the accumula-
n of replication errors). Our findings are consistent with
role for the accumulation of substitutions across all three
nomes in driving diversification through their cumula-
e action on genetic incompatibility between sister pop-
ations and thus the pace of formation of species. This
ding links change at the genomic level to species charac-
ristics and biodiversity generation, highlighting the con-
uity of processes of mutation (generation of variation),
icroevolution (population divergence), and macroevolu-

n (lineage diversification). Bu

Bu

Ca

Ch

Co
Cr

Cu

D

D

D

D

D

D

D

Ei

Eo
Literature Cited

bott, R., D. Albach, S. Ansell, J. W. Arntzen, S. J. E. Baird, N.
Bierne, J. Boughman, et al. 2013. Hybridization and speciation.
Journal of Evolutionary Biology 26:229–246.
, B., Z.-S. Wang, and S. Ge. 2012. Genome size is not correlated
with effective population size in the Oryza species. Evolution
66:3302–3310.
barracín, V. H., G. P. Pathak, T. Douki, J. Cadet, C. D. Borsarelli,
W. Gärtner, and M. E. Farias. 2012. Extremophilic Acinetobacter
strains from high-altitude lakes in Argentinean Puna: remarkable
UV-B resistance and efficient DNA damage repair. Origins of Life
and Evolution of Biospheres 42:201–221.
rraclough, T. G., P. H. Harvey, and S. Nee. 1996. Rate of rbcL gene
sequence evolution and species diversification in flowering plants
(angiosperms). Proceedings of the Royal Society B: Biological
Sciences 263:589–591.
rraclough, T. G., and V. Savolainen. 2001. Evolutionary rates and
species diversity in flowering plants. Evolution 55:677–683.
teson, W. 1894. Materials for the study of variation treated with
especial regard to discontinuity in the origin of species. Macmil-
lan, London.
aulieu, J. M., I. J. Leitch, S. Patel, A. Pendharkar, and C. A. Knight.
2008. Genome size is a strong predictor of cell size and stomatal
density in angiosperms. New Phytologist 179:975–986.
aulieu, J. M., A. T. Moles, I. J. Leitch, M. D. Bennett, J. B. Dickie,
and C. A. Knight. 2007. Correlated evolution of genome size and
seed mass. New Phytologist 173:422–437.
aulieu, J. M., S. A. Smith, and I. J. Leitch. 2010. On the tempo of
genome size evolution in angiosperms. Journal of Botany, http://
dx.doi.org/10.1155/2010/989152.
nnett, M. D. 1972. Nuclear DNA content and minimum genera-
tion time in herbaceous plants. Proceedings of the Royal Society B:
Biological Sciences 181:109–135.
nnett, M. D., and I. J. Leitch. 2005. Genome size evolution in
plants. Pages 89–162 in T. Gregory, ed. The evolution of the ge-
nome. Elsevier, London.
——. 2012. Plant DNA C-values database. Release 6.0. December
2012. http://data.kew.org/cvalues/.
nnetzen, J. L., J. Ma, and K. M. Devos. 2005. Mechanisms of recent
genome size variation in flowering plants. Annals of Botany 95:
127–132.
biwash, K., S. Schultz, and D. Schoen. 2013. Somatic deleterious
mutation rate in a woody plant: estimation from phenotypic data.

Heredity 111:338–344.

This content downloaded from 137.21
All use subject to University of Chicago Press Terms a
omham, L. 2009. Why do species vary in their rate of molecular
evolution? Biology Letters 5:401–404.
omham, L., X Hua, R. Lanfear, and P. F. Cowman. 2015. Exploring
the relationships between mutation rates, life history, genome size,
environment, and species richness in flowering plants. American
Naturalist, Dryad Digital Repository, http://dx.doi.org/10.5061
/dryad.31614.
omham, L., A. Rambaut, and P. H. Harvey. 1996. Determinants of
rate variation in mammalian DNA sequence evolution. Journal of
Molecular Evolution 43:610–621.
own, J. H. 2014. Why are there so many species in the tropics?
Journal of Biogeography 41:8–22.
rleigh, J. G., K. Hilu, and D. Soltis. 2009. Inferring phylogenies
with incomplete data sets: a 5-gene, 567-taxon analysis of angio-
sperms. BMC Evolutionary Biology 9:61.
rton, R. S., and F. S. Barreto. 2012. A disproportionate role for
mtDNA in Dobzhansky-Muller incompatibilities? Molecular Ecol-
ogy 21:4942–4957.
rdillo, M. 1999. Latitude and rates of diversification in birds and
butterflies. Proceedings of the Royal Society B: Biological Sciences
266:1221–1225.
arlesworth, B. 2009. Effective population size and patterns of mo-
lecular evolution and variation. Nature Reviews Genetics 10:195–
205.
yne, J. A., andH. A. Orr. 2004. Speciation, Sinauer, Sunderland,MA.
espi, B., and P. Nosil. 2012. Conflictual speciation: species for-
mation via genomic conflict. Trends in Ecology and Evolution
28:48–57.
le, E. 2012. ridge: Ridge Regression with automatic selection of
the penalty parameter. Version 2.1. R package.
avies, T. J., T. G. Barraclough, V. Savolainen, and M. W. Chase.
2004a. Environmental causes for plant biodiversity gradients. Phil-
osophical Transactions of the Royal Society B: Biological Sciences
359:1645–1656.
avies, T. J., V. Savolainen, M. W. Chase, J. Moat, and T. G.
Barraclough. 2004b. Environmental energy and evolutionary rates
in flowering plants. Proceedings of the Royal Society B: Biological
Sciences 271:2195–2220.
e Frenne, P., B. J. Graae, F. Rodríguez-Sánchez, A. Kolb, O.
Chabrerie, G. Decocq, H. De Kort, et al. 2013. Latitudinal gradi-
ents as natural laboratories to infer species’ responses to tem-
perature. Journal of Ecology 101:784–795.
owle, E., M. Morgan-Richards, and S. Trewick. 2013. Molecular
evolution and the latitudinal biodiversity gradient. Heredity 110:
501–510.
rake, J., B. Charlesworth, D. Charlesworth, and J. Crow. 1998.
Rates of spontaneous mutation. Genetics 148:1667–1686.
rummond, A. J., B. Ashton, S. Buxton, M. Cheung, A. Cooper,
C. Duran,M. Field, et al. 2011. Geneious. http://www.geneious.com.
uchene, D., and L. Bromham. 2013. Rates of molecular evolution
and diversification in plants: chloroplast substitution rates cor-
relate with species richness in the Proteaceae. BMC Evolutionary
Biology 13:65.
sen, J. A., and P. C. Hanawalt. 1999. A phylogenomic study of
DNA repair genes, proteins, and processes. Mutation Research/
DNA Repair 435:171–213.
, S. H., and J. A. DeWoody. 2010 Evolutionary rates of mito-
chondrial genomes correspond to diversification rates and to
contemporary species richness in birds and reptiles. Proceedings

of the Royal Society B: Biological Sciences 277:3587–3592.

9.126.133 on June 22, 2017 17:03:35 PM
nd Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?crossref=10.1098%2Frspb.1996.0088
http://www.journals.uchicago.edu/action/showLinks?pmid=22994153&crossref=10.1111%2Fmec.12006
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1098%2Frspb.1996.0088
http://www.journals.uchicago.edu/action/showLinks?pmid=22994153&crossref=10.1111%2Fmec.12006
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2F1365-2745.12074
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1098%2Frspb.1999.0766
http://www.journals.uchicago.edu/action/showLinks?pmid=15596462&crossref=10.1093%2Faob%2Fmci008
http://www.journals.uchicago.edu/action/showLinks?pmid=11392385&crossref=10.1554%2F0014-3820%282001%29055%5B0677%3AERASDI%5D2.0.CO%3B2
http://www.journals.uchicago.edu/action/showLinks?pmid=23486082&crossref=10.1038%2Fhdy.2013.4
http://www.journals.uchicago.edu/action/showLinks?pmid=9560386
http://www.journals.uchicago.edu/action/showLinks?pmid=19204717&crossref=10.1038%2Fnrg2526
http://www.journals.uchicago.edu/action/showLinks?pmid=23778990&crossref=10.1038%2Fhdy.2013.57
http://www.journals.uchicago.edu/action/showLinks?pmid=19364710&crossref=10.1098%2Frsbl.2009.0136
http://www.journals.uchicago.edu/action/showLinks?pmid=18564303&crossref=10.1111%2Fj.1469-8137.2008.02528.x
http://www.journals.uchicago.edu/action/showLinks?pmid=23497266&crossref=10.1186%2F1471-2148-13-65
http://www.journals.uchicago.edu/action/showLinks?pmid=23497266&crossref=10.1186%2F1471-2148-13-65
http://www.journals.uchicago.edu/action/showLinks?pmid=23323997&crossref=10.1111%2Fj.1420-9101.2012.02599.x
http://www.journals.uchicago.edu/action/showLinks?pmid=8995058&crossref=10.1007%2FBF02202109
http://www.journals.uchicago.edu/action/showLinks?pmid=17204088&crossref=10.1111%2Fj.1469-8137.2006.01919.x
http://www.journals.uchicago.edu/action/showLinks?pmid=10606811&crossref=10.1016%2FS0921-8777%2899%2900050-6
http://www.journals.uchicago.edu/action/showLinks?pmid=8995058&crossref=10.1007%2FBF02202109
http://www.journals.uchicago.edu/action/showLinks?pmid=10606811&crossref=10.1016%2FS0921-8777%2899%2900050-6
http://www.journals.uchicago.edu/action/showLinks?pmid=4403285&crossref=10.1098%2Frspb.1972.0042
http://www.journals.uchicago.edu/action/showLinks?pmid=23025618&crossref=10.1111%2Fj.1558-5646.2012.01674.x
http://www.journals.uchicago.edu/action/showLinks?pmid=4403285&crossref=10.1098%2Frspb.1972.0042
http://www.journals.uchicago.edu/action/showLinks?pmid=20610427&crossref=10.1098%2Frspb.2010.0965
http://www.journals.uchicago.edu/action/showLinks?pmid=15519979&crossref=10.1098%2Frstb.2004.1524
http://www.journals.uchicago.edu/action/showLinks?pmid=25684838&crossref=10.1111%2Fjbi.12228
http://www.journals.uchicago.edu/action/showLinks?pmid=20610427&crossref=10.1098%2Frspb.2010.0965
http://www.journals.uchicago.edu/action/showLinks?pmid=15519979&crossref=10.1098%2Frstb.2004.1524
http://www.journals.uchicago.edu/action/showLinks?pmid=22644565&crossref=10.1007%2Fs11084-012-9276-3
http://www.journals.uchicago.edu/action/showLinks?pmid=19292928&crossref=10.1186%2F1471-2148-9-61
http://www.journals.uchicago.edu/action/showLinks?pmid=22644565&crossref=10.1007%2Fs11084-012-9276-3
http://www.journals.uchicago.edu/action/showLinks?pmid=15475341&crossref=10.1098%2Frspb.2004.2849
http://www.journals.uchicago.edu/action/showLinks?pmid=15475341&crossref=10.1098%2Frspb.2004.2849


Ey

Ez

Fl

Gi

Gi

Go

Go

Go

Go

Gr

Gr

Gr

Gr

H

H

H

H

H

Iz

Ja

Ka

Ka

Ki

Kl

Kn

Kr

La

La

La

La

La

La

Le

Ll

Lo

Lo

Lu

Lu

Ly

—

M

522 The American Naturalist
re-Walker, A., and P. D. Keightley. 2007. The distribution of fit-
ness effects of new mutations. Nature Reviews Genetics 8:610–618.
ard, T. H. G., G. H. Thomas, and A. Purvis. 2013. Inclusion of a
near-complete fossil record reveals speciation-related molecular
evolution. Methods in Ecology and Evolution 4:745–753.
enley, J. R. 2011. Why is pollen yellow? and why are there so many
species in the tropical rain forest? Journal of Biogeography 38:
809–816.
llman, L. N., D. J. Keeling, H. A. Ross, and S. D. Wright. 2009.
Latitude, elevation and the tempo of molecular evolution in mam-
mals. Proceedings of the Royal Society B: Biological Sciences 276:
3353–3359.
llman, L. N., and S. D. Wright. 2014. Species richness and evo-
lutionary speed: the influence of temperature, water and area.
Journal of Biogeography 41:39–51.
ldie, X., L. Gillman, M. Crisp, and S. Wright. 2010. Evolutionary
speed limited by water in arid Australia. Proceedings of the Royal
Society B: Biological Sciences 277:2645–2653.
ldie, X., R. Lanfear, and L. Bromham 2011. Diversification and the
rate of molecular evolution: no evidence of a link in mammals.
BMC Evolutionary Biology 11:286.
ldman, N., and Z. Yang. 1994. A codon-based model of nucleo-
tide substitution for protein-coding DNA sequences. Molecular
Biology and Evolution 11:725–736.
rniak, M., O. Paun, and M. W. Chase. 2010. Phylogenetic rela-
tionships within Orchidaceae based on a low-copy nuclear coding
gene, Xdh: congruence with organellar and nuclear ribosomal
DNA results. Molecular Phylogenetics and Evolution 56:784–795.
einer, S., and R. Bock. 2013. Tuning a ménage à trois: co-evolution
and co-adaptation of nuclear and organellar genomes in plants.
BioEssays 35:354–365.
einer, S., U. W. E. Rauwolf, J. Meurer, and R. G. Herrmann. 2011.
The role of plastids in plant speciation. Molecular Ecology 20:
671–691.
oss, C. L., P. A. Nelson, A. Haddadchi, and M. Fatemi. 2012.
Somatic mutations contribute to genotypic diversity in sterile and
fertile populations of the threatened shrub, Grevillea rhizomatosa
(Proteaceae). Annals of Botany 109:331–342.
over, C. E., and J. F. Wendel. 2010. Recent insights into mecha-
nisms of genome size change in plants. Journal of Botany 2010:
382732.
awkins, B. A., R. Field, H. V. Cornell, D. J. Currie, J.-F. Guégan,
D. M. Kaufman, J. T. Kerr, et al. 2003. Energy, water, and broad-
scale geographic patterns of species richness. Ecology 84:3105–
3117.
erben, T., J. Suda, J. Klimešová, S. Mihulka, P. Říha, and I. Šímová.
2012. Ecological effects of cell-level processes: genome size, func-
tional traits and regional abundance of herbaceous plant species.
Annals of Botany 110:1357–1367.
odgson, J. G., M. Sharafi, A. Jalili, S. Diaz, G. Montserrat-Marti, C.
Palmer, B. Cerabolini, et al. 2010. Stomatal vs. genome size in
angiosperms: the somatic tail wagging the genomic dog? Annals of
Botany 105:573–584.
ua, X., and J. J. Wiens. 2013. How does climate influence specia-
tion. American Naturalist 182:1–12.
ugall, A. F., and M. S. Lee. 2007. The likelihood node density effect
and consequences for evolutionary studies of molecular rates.
Evolution 61:2293–2307.
enman, A. J. 2008. Modern multivariate statistical techniques: re-

gression, classification, and manifold learning. Springer, New York.

This content downloaded from 137.21
All use subject to University of Chicago Press Terms a
nsen, M. A., V. Gaba, and B. M. Greenberg. 1998. Higher plants
and UV-B radiation: balancing damage, repair and acclimation.
Trends in Plant Science 3:131–135.
ng, M., J. Tao, J. Wang, C. Ren, Q. Qi, Q. Ä. Xiang, and H. Huang.
2014. Adaptive and nonadaptive genome size evolution in Karst
endemic flora of China. New Phytologist 202:1371–1381.
toh, K., K. Misawa, K. Ä. Kuma, and T. Miyata. 2002. MAFFT: a
novel method for rapid multiple sequence alignment based on fast
Fourier transform. Nucleic Acids Research 30:3059–3066.
mura, M. 1983. The neutral theory of molecular evolution. Cam-
bridge University Press, Cambridge.
ekowski, E. J., and P. J. Godfrey. 1989. Ageing and mutation in
plants. Nature 340:389–391.
ight, C. A., and J. M. Beaulieu. 2008. Genome size scaling through
phenotype space. Annals of Botany 101:759–766.
aaijeveld, K. 2010. Genome size and species diversification. Evo-
lutionary Biology 37:227–233.
ncaster, L. T. 2010. Molecular evolutionary rates predict both
extinction and speciation in temperate angiosperm lineages. BMC
Evolutionary Biology 10:162.
nfear, R., L. Bromham, and S. Y. Ho. 2011. Molecular evolution
and diversification: counting species is better than counting nodes
when the phylogeny is unknown. Proceedings of the National
Academy of Sciences of the USA 108:E85–E86.
nfear, R., S. Y. W. Ho, T. J. Davies, A. T. A. Moles, L. N. G.
Swenson, L. Warman, A. E. Zanne, et al. 2013. Taller plants have
lower rates of molecular evolution: the rate of mitosis hypothesis.
Nature Communications 4:1879.
nfear, R., S. Y. W. Ho, D. Love, and L. Bromham. 2010a. Mutation
rate influences diversification rate in birds. Proceedings of the
National Academy of Sciences of the USA 107:20423–20428.
nfear, R., J. J. Welch, and L. Bromham. 2010b. Watching the clock:
studying variation in rates of molecular evolution. Trends in
Ecology and Evolution 25:495–503.
vergne, S. B., N. J. Muenke, and J. Molofsky. 2010. Genome size
reduction can trigger rapid phenotypic evolution in invasive
plants. Annals of Botany 105:109–116.
vin, D. A. 2003. The cytoplasmic factor in plant speciation. Sys-
tematic Botany 28:5–11.
eras, C. 2005. Path analysis. Pages 25–30 inK.Kempf-Leonard, ed. En-
cyclopedia of social measurement. Academic Press, San Diego, CA.
ckton, S., J. Ross-Ibarra, and B. S. Gaut. 2008. Demography and
weak selection drive patterns of transposable element diversity in
natural populations of Arabidopsis lyrata. Proceedings of the
National Academy of Sciences of the USA 105:13965–13970.
urenço, J., S. Glémin, Y. Chiari, and N. Galtier. 2012. The deter-
minants of the molecular substitution process in turtles. Journal of
Evolutionary Biology 26:38–50.
cas-Lledo, J. I., and M. Lynch. 2009. Evolution of mutation rates:
phylogenomic analysis of the photolyase/cryptochrome family.
Molecular Biology and Evolution 26:1143–1153.
o, D. P., H. Xu, Z. L. Liu, J. X. Guo, H. Y. Li, L. T. Chen, C. Fang,
et al. 2013. A detrimental mitochondrial-nuclear interaction causes
cytoplasmic male sterility in rice. Nature Genetics 45:573–577.
nch, M. 2007. The origins of genome architecture. Sinauer,
Sunderland, MA.
——. 2010. Evolution of the mutation rate. Trends in Genetics
26:345–352.
a, H. 2013. A battle between genomes in plant male fertility.

Nature Genetics 45:472–473.

9.126.133 on June 22, 2017 17:03:35 PM
nd Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?pmid=20655615&crossref=10.1016%2Fj.tree.2010.06.007
http://www.journals.uchicago.edu/action/showLinks?pmid=20655615&crossref=10.1016%2Fj.tree.2010.06.007
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2F2041-210X.12089
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1038%2F340389a0
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F670690
http://www.journals.uchicago.edu/action/showLinks?pmid=23361615&crossref=10.1002%2Fbies.201200137
http://www.journals.uchicago.edu/action/showLinks?pmid=20594608&crossref=10.1016%2Fj.tig.2010.05.003
http://www.journals.uchicago.edu/action/showLinks?pmid=19887472&crossref=10.1093%2Faob%2Fmcp271
http://www.journals.uchicago.edu/action/showLinks?pmid=18222911&crossref=10.1093%2Faob%2Fmcm321
http://www.journals.uchicago.edu/action/showLinks?pmid=17711468&crossref=10.1111%2Fj.1558-5646.2007.00188.x
http://www.journals.uchicago.edu/action/showLinks?pmid=21214654&crossref=10.1111%2Fj.1365-294X.2010.04984.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1365-2699.2011.02480.x
http://www.journals.uchicago.edu/action/showLinks?pmid=23619785&crossref=10.1038%2Fng.2618
http://www.journals.uchicago.edu/action/showLinks?pmid=22140283&crossref=10.1007%2Fs11692-010-9093-4
http://www.journals.uchicago.edu/action/showLinks?pmid=22080138&crossref=10.1093%2Faob%2Fmcr283
http://www.journals.uchicago.edu/action/showLinks?pmid=19556254&crossref=10.1098%2Frspb.2009.0674
http://www.journals.uchicago.edu/action/showLinks?pmid=22140283&crossref=10.1007%2Fs11692-010-9093-4
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fjbi.12173
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1155%2F2010%2F382732
http://www.journals.uchicago.edu/action/showLinks?pmid=18772373&crossref=10.1073%2Fpnas.0804671105
http://www.journals.uchicago.edu/action/showLinks?pmid=20515493&crossref=10.1186%2F1471-2148-10-162
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2FS1360-1385%2898%2901215-1
http://www.journals.uchicago.edu/action/showLinks?pmid=18772373&crossref=10.1073%2Fpnas.0804671105
http://www.journals.uchicago.edu/action/showLinks?pmid=20515493&crossref=10.1186%2F1471-2148-10-162
http://www.journals.uchicago.edu/action/showLinks?pmid=20410038&crossref=10.1098%2Frspb.2010.0439
http://www.journals.uchicago.edu/action/showLinks?pmid=20410038&crossref=10.1098%2Frspb.2010.0439
http://www.journals.uchicago.edu/action/showLinks?pmid=23176666&crossref=10.1111%2Fjeb.12031
http://www.journals.uchicago.edu/action/showLinks?pmid=21173268&crossref=10.1073%2Fpnas.1101940108
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1890%2F03-8006
http://www.journals.uchicago.edu/action/showLinks?pmid=23176666&crossref=10.1111%2Fjeb.12031
http://www.journals.uchicago.edu/action/showLinks?pmid=21173268&crossref=10.1073%2Fpnas.1101940108
http://www.journals.uchicago.edu/action/showLinks?pmid=21967038&crossref=10.1186%2F1471-2148-11-286
http://www.journals.uchicago.edu/action/showLinks?pmid=19228922&crossref=10.1093%2Fmolbev%2Fmsp029
http://www.journals.uchicago.edu/action/showLinks?pmid=23695673&crossref=10.1038%2Fncomms2836
http://www.journals.uchicago.edu/action/showLinks?pmid=24533910&crossref=10.1111%2Fnph.12726
http://www.journals.uchicago.edu/action/showLinks?pmid=22628380&crossref=10.1093%2Faob%2Fmcs099
http://www.journals.uchicago.edu/action/showLinks?pmid=7968486
http://www.journals.uchicago.edu/action/showLinks?pmid=7968486
http://www.journals.uchicago.edu/action/showLinks?pmid=21059910&crossref=10.1073%2Fpnas.1007888107
http://www.journals.uchicago.edu/action/showLinks?pmid=12136088&crossref=10.1093%2Fnar%2Fgkf436
http://www.journals.uchicago.edu/action/showLinks?pmid=23502780&crossref=10.1038%2Fng.2570
http://www.journals.uchicago.edu/action/showLinks?pmid=21059910&crossref=10.1073%2Fpnas.1007888107
http://www.journals.uchicago.edu/action/showLinks?pmid=20375204&crossref=10.1093%2Faob%2Fmcq011
http://www.journals.uchicago.edu/action/showLinks?pmid=20211743&crossref=10.1016%2Fj.ympev.2010.03.003
http://www.journals.uchicago.edu/action/showLinks?pmid=17637733&crossref=10.1038%2Fnrg2146
http://www.journals.uchicago.edu/action/showLinks?pmid=20375204&crossref=10.1093%2Faob%2Fmcq011


M

M

M

M

M

M

No

Oh

Or

Pa

Pa

Pe

R

Ri

Ri

Ro

Ro

Sa

Sa

Sc

Sh

Sm

So

So

St

Su

Su

Te

Th

V

V

W

W

W

W

W

W

W

W

W

—

Molecular Evolution and Diversification 523
arcotrigiano, M. 2000. Herbivory could unlock mutations se-
questered in stratified shoot apices of genetic mosaics. American
Journal of Botany 87:355–361.
atute, D. R., I. A. Butler, D. A. Turissini, and J. A. Coyne. 2010. A
test of the snowball theory for the rate of evolution of hybrid
incompatibilities. Science 329:1518–1521.
evik, B., R. Wehrens, and K. H. Liland. 2011. pls: partial least
squares and principal component regression. Version 2.3-0. R
package.
oles, A. T., D. I. Warton, L. Warman, N. G. Swenson, S. W. Laffan,
A. E. Zanne, A. Pitman, et al. 2009. Global patterns in plant
height. Journal of Ecology 97:923–932.
organ, M. T. 2001. Consequences of life history for inbreeding
depression and mating system evolution in plants. Proceedings of
the Royal Society B: Biological Sciences 268:1817–1824.
orton, C. M. 2011. Newly sequenced nuclear gene (Xdh) for in-
ferring angiosperm phylogeny 1. Annals of the Missouri Botanical
Garden 98:63–89.
sil, P., and D. Schluter. 2011. The genes underlying the process of
speciation. Trends in Ecology and Evolution 26:160–167.
ta, T. 1993. An examination of the generation time effect on mo-
lecular evolution. Proceedings of the National Academy of Sciences
of the USA 90:10676–10680.
r, H. A. 1995. The population genetics of speciation: the evolution
of hybrid incompatibilities. Genetics 139:1805–1813.
gel, M., C. Venditti, and A. Meade. 2006. Large punctuational
contribution of speciation to evolutionary divergence at the mo-
lecular level. Science 314:119–121.
radis, E., J. Claude, and K. Strimmer. 2004. APE: analyses of phy-
logenetics and evolution in R language. Bioinformatics 20:289–
290.
tit, R. J., and A. Hampe. 2006. Some evolutionary consequences of
being a tree. Annual Review of Ecology, Evolution, and System-
atics 37:187–214.
Development Core Team. 2013. R: a language and environment
for statistical computing. R Foundation for Statistical Computing,
Vienna.
es, G., W. Heller, H. Puchta, H. Sandermann, H. K. Seidlitz, and
B. Hohn. 2000. Elevated UV-B radiation reduces genome stability
in plants. Nature 406:98–101.
eseberg, L. H., and J. H. Willis. 2007. Plant speciation. Science
317:910–914.
hde, K. 1992. Latitudinal gradients in species-diversity: the search
for the primary cause. Oikos 65:514–527.
sseel, Y. 2012. lavaan: an R package for structural equation
modeling. Journal of Statistical Software 48:1–36.
nderson, M. J. 1990. Estimating rates of speciation and evolution:
a bias due to homoplasy. Cladistics 6:387–391.
rich, V. M., and A. C. Wilson. 1973. Generation time and genomic
evolution in primates. Science 179:1144–1147.
hultz, S. T., and D. G. Scofield. 2009. Mutation accumulation in
real branches: fitness assays for genomic deleterious mutation rate
and effect in large-statured plants. American Naturalist 174:163–
175.
ipley, B. 2002. Cause and correlation in biology: a user’s guide to
path analysis, structural equations and causal inference. Cam-
bridge University Press, Cambridge.
ith, S. A., and M. J. Donoghue. 2008. Rates of molecular evolu-
tion are linked to life history in flowering plants. Science 322:86–

89.

This content downloaded from 137.21
All use subject to University of Chicago Press Terms a
kal, R. R., and F. J. Rohlf. 1995. Biometry: the principles and practice
of statistics in biological research. Freeman, San Francisco.
ltis, D. E., S. A. Smith, N. Cellinese, K. J. Wurdack, D. C. Tank,
S. F. Brockington, N. F. Refulio-Rodriguez, et al. 2011. Angio-
sperm phylogeny: 17 genes, 640 taxa. American Journal of Botany
98:704–730.
rasburg, J. L., N. A. Sherman, K. M. Wright, L. C. Moyle, J. H.
Willis, and L. H. Rieseberg. 2012. What can patterns of differ-
entiation across plant genomes tell us about adaptation and spe-
ciation? Philosophical Transactions of the Royal Society B: Bio-
logical Sciences 367:364–373.
llivan, J. H., A. H. Teramura, and L. H. Ziska. 1992. Variation in
UV-B sensitivity in plants from a 3,000-m elevational gradient in
Hawaii. American Journal of Botany 79:737–743.
ng, W., A. E. Tucker, T. G. Doak, E. Choi, W. K. Thomas, and M.
Lynch. 2012. Extraordinary genome stability in the ciliate Para-
mecium tetraurelia. Proceedings of the National Academy of
Sciences of the USA 109:19339–19344.
naillon, M. I., J. D. Hollister, and B. S. Gaut. 2010. A triptych of
the evolution of plant transposable elements. Trends in Plant
Science 15:471–478.
omas, J. A., J. J. Welch, R. Lanfear, and L. Bromham. 2010. A
generation time effect on the rate of molecular evolution in in-
vertebrates. Molecular Biology and Evolution 27:1173–1180.
enditti, C., A. Meade, and M. Pagel. 2008. Detecting the node-
density artifact in phylogeny reconstruction. Systematic Biology
55:637–643.
enditti, C., and M. Pagel. 2009. Speciation as an active force in
promoting genetic evolution. Trends in Ecology and Evolution
25:14–20.
arren, J. 2009. Extra petals in the buttercup (Ranunculus repens)
provide a quick method to estimate the age of meadows. Annals of
Botany 104:785–788.
ebster, A. J., R. J. H. Payne, and M. Pagel. 2003. Molecular phy-
logenies link rates of evolution and speciation. Science 301:478.
elch, J. J. 2004. Accumulating Dobzhansky-Muller incompatibili-
ties: reconciling theory and data. Evolution 58:1145–1156.
elch, J. J., and D. Waxman. 2008. Calculating independent con-
trasts for the comparative study of substitution rates. Journal of
Theoretical Biology 251:667–678.
hitney, K. D., E. J. Baack, J. L. Hamrick, M. J. W. Godt, B. C. Bar-
ringer, M. D. Bennett, C. G. Eckert, et al. 2010. A role for non-
adaptive processes in plant genome size evolution? Evolution 64:
2097–2109.
hittle, C.-A., and M. O. Johnston. 2002. Male-driven evolution of
mitochondrial and chloroplastidial DNA sequences in plants.
Molecular Biology and Evolution 19:938–949.
illis, K. J., K. D. Bennett, and H. J. B. Birks. 2009. Variability in
thermal and UV-B energy fluxes through time and their influence
on plant diversity and speciation. Journal of Biogeography 36:
1630–1644.
oolfit, M. 2009. Effective population size and the rate and pattern
of nucleotide substitutions. Biology Letters 5:417–420.
oolfit, M., and L. Bromham. 2003. Increased rates of sequence
evolution in endosymbiotic bacteria and fungi with small effec-
tive population sizes. Molecular Biology and Evolution 20:1545–
1555.
——. 2005. Population size and molecular evolution on islands.
Proceedings of the Royal Society B: Biological Sciences 272:2277–

2282.

9.126.133 on June 22, 2017 17:03:35 PM
nd Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?pmid=12881561&crossref=10.1126%2Fscience.1083202
http://www.journals.uchicago.edu/action/showLinks?pmid=22201166&crossref=10.1098%2Frstb.2011.0199
http://www.journals.uchicago.edu/action/showLinks?pmid=10894550&crossref=10.1038%2F35017595
http://www.journals.uchicago.edu/action/showLinks?crossref=10.3417%2F2008107
http://www.journals.uchicago.edu/action/showLinks?pmid=22201166&crossref=10.1098%2Frstb.2011.0199
http://www.journals.uchicago.edu/action/showLinks?crossref=10.3417%2F2008107
http://www.journals.uchicago.edu/action/showLinks?pmid=16191640&crossref=10.1098%2Frspb.2005.3217
http://www.journals.uchicago.edu/action/showLinks?pmid=15266965&crossref=10.1111%2Fj.0014-3820.2004.tb01695.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F2444938
http://www.journals.uchicago.edu/action/showLinks?pmid=17702935&crossref=10.1126%2Fscience.1137729
http://www.journals.uchicago.edu/action/showLinks?pmid=21310503&crossref=10.1016%2Fj.tree.2011.01.001
http://www.journals.uchicago.edu/action/showLinks?pmid=18249413&crossref=10.1016%2Fj.jtbi.2007.12.015
http://www.journals.uchicago.edu/action/showLinks?pmid=23129619&crossref=10.1073%2Fpnas.1210663109
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F3545569
http://www.journals.uchicago.edu/action/showLinks?pmid=8248159&crossref=10.1073%2Fpnas.90.22.10676
http://www.journals.uchicago.edu/action/showLinks?pmid=18249413&crossref=10.1016%2Fj.jtbi.2007.12.015
http://www.journals.uchicago.edu/action/showLinks?pmid=23129619&crossref=10.1073%2Fpnas.1210663109
http://www.journals.uchicago.edu/action/showLinks?pmid=8248159&crossref=10.1073%2Fpnas.90.22.10676
http://www.journals.uchicago.edu/action/showLinks?pmid=20148953
http://www.journals.uchicago.edu/action/showLinks?pmid=20541961&crossref=10.1016%2Fj.tplants.2010.05.003
http://www.journals.uchicago.edu/action/showLinks?crossref=10.18637%2Fjss.v048.i02
http://www.journals.uchicago.edu/action/showLinks?pmid=7789779
http://www.journals.uchicago.edu/action/showLinks?pmid=10718996&crossref=10.2307%2F2656631
http://www.journals.uchicago.edu/action/showLinks?pmid=20541961&crossref=10.1016%2Fj.tplants.2010.05.003
http://www.journals.uchicago.edu/action/showLinks?pmid=10718996&crossref=10.2307%2F2656631
http://www.journals.uchicago.edu/action/showLinks?pmid=20847270&crossref=10.1126%2Fscience.1193440
http://www.journals.uchicago.edu/action/showLinks?pmid=12032250&crossref=10.1093%2Foxfordjournals.molbev.a004151
http://www.journals.uchicago.edu/action/showLinks?pmid=20083649&crossref=10.1093%2Fmolbev%2Fmsq009
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1096-0031.1990.tb00554.x
http://www.journals.uchicago.edu/action/showLinks?pmid=17023657&crossref=10.1126%2Fscience.1129647
http://www.journals.uchicago.edu/action/showLinks?pmid=18832643&crossref=10.1126%2Fscience.1163197
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1365-2699.2009.02102.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1080%2F10635150600865567
http://www.journals.uchicago.edu/action/showLinks?pmid=4120260&crossref=10.1126%2Fscience.179.4078.1144
http://www.journals.uchicago.edu/action/showLinks?pmid=14734327&crossref=10.1093%2Fbioinformatics%2Fbtg412
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1365-2745.2009.01526.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1146%2Fannurev.ecolsys.37.091305.110215
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1146%2Fannurev.ecolsys.37.091305.110215
http://www.journals.uchicago.edu/action/showLinks?pmid=19364708&crossref=10.1098%2Frsbl.2009.0155
http://www.journals.uchicago.edu/action/showLinks?pmid=19720426&crossref=10.1016%2Fj.tree.2009.06.010
http://www.journals.uchicago.edu/action/showLinks?system=10.1086%2F600100
http://www.journals.uchicago.edu/action/showLinks?pmid=19491088&crossref=10.1093%2Faob%2Fmcp139
http://www.journals.uchicago.edu/action/showLinks?pmid=21613169&crossref=10.3732%2Fajb.1000404
http://www.journals.uchicago.edu/action/showLinks?pmid=11522201&crossref=10.1098%2Frspb.2001.1741
http://www.journals.uchicago.edu/action/showLinks?pmid=19491088&crossref=10.1093%2Faob%2Fmcp139
http://www.journals.uchicago.edu/action/showLinks?pmid=11522201&crossref=10.1098%2Frspb.2001.1741
http://www.journals.uchicago.edu/action/showLinks?pmid=12832648&crossref=10.1093%2Fmolbev%2Fmsg167
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1017%2FCBO9780511605949
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1017%2FCBO9780511605949


W

W

W

W

Ya

Yo

Applied Genetics 126:1851–1859.

“
H
ste
“T

524 The American Naturalist
right, S. 1934. The method of path coefficients. Annals of Math-
ematical Statistics 5:161–215.
right, S. D., L. N. Gillman, H. A. Ross, and D. J. Keeling. 2010.
Energy and the tempo of evolution in amphibians. Global Ecology
and Biogeography 19:733–740.
right, S. D., J. Keeling, and L. Gillman. 2006. The road from Santa
Rosalia: a faster tempo of evolution in tropical climates. Pro-
ceedings of the National Academy of Sciences of the USA 103:
7718–7722.
right, S. D., H. A. Ross, D. J. Keeling, P. McBride, and L. N.
Gillman. 2011. Thermal energy and the rate of genetic evolution

in marine fishes. Evolutionary Ecology 25:525–530.

The species whose minute anatomy we partially describe, is the Nepent
ope. [. . .] It bathes its roots in the hot swamps near the coast, but cann
m which bears many long and partly clasping leaves, and also its precio
he Structure of the Pitcher Plant” by J. G. Hunt (The American Natur

This content downloaded from 137.21
All use subject to University of Chicago Press Terms a
ng, Z. 2007. PAML: a program package for phylogenetic analysis
bymaximum likelihood.Molecular Biology and Evolution 24:1586–
1591. http://abacus.gene.ucl.ac.uk/software/paml.html.
shimi, M., Y. Kitamura, S. Isshiki, T. Saito, K. Yasumoto, T. Terachi,
and H. Yamagishi. 2013. Variations in the structure and transcrip-
tion of the mitochondrial atp and cox genes in wild Solanum species
that induce male sterility in eggplant (S. melongena). Theoretical and
Associate Editor: Charles F. Baer

Editor: Susan Kalisz

hes distillatoria, found growing in China and at the Cape of Good
ot lift its flowers very high in the sunshine, because its branching
us burthen of watercups, is too feeble to support the weight.” From
alist, 1869, 3:13–17).

9.126.133 on June 22, 2017 17:03:35 PM
nd Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?crossref=10.1214%2Faoms%2F1177732676
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1214%2Faoms%2F1177732676
http://www.journals.uchicago.edu/action/showLinks?pmid=16672371&crossref=10.1073%2Fpnas.0510383103
http://www.journals.uchicago.edu/action/showLinks?pmid=16672371&crossref=10.1073%2Fpnas.0510383103
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2Fs10682-010-9416-z
http://www.journals.uchicago.edu/action/showLinks?pmid=17483113&crossref=10.1093%2Fmolbev%2Fmsm088
http://www.journals.uchicago.edu/action/showLinks?pmid=23604528&crossref=10.1007%2Fs00122-013-2097-6
http://www.journals.uchicago.edu/action/showLinks?pmid=23604528&crossref=10.1007%2Fs00122-013-2097-6

