This file is part of the following reference:

Williamson, Toni (2006) Systematics and biostratigraphy of Australian early cretaceous belemnites with contributions to the timescale and palaeoenvironmental assessment of the early Australian early cretaceous system derived from stable isotope proxies.

PhD thesis, James Cook University.

Access to this file is available from:

http://eprints.jcu.edu.au/4906
Systematics and biostratigraphy of Australian Early Cretaceous belemnites with contributions to the timescale and palaeoenvironmental assessment of the Australian Early Cretaceous System derived from stable isotope proxies

Thesis submitted by
Toni Williamson B. Sc. (Hons)

In August, 2006,
for the degree of Doctor of Philosophy
in the School of Earth Sciences,
James Cook University,
Australia
STATEMENT OF ACCESS

I, the undersigned, the author of this thesis, understand that James Cook University will make it available for use within the University Library and, via the Australian Digital Theses network, or other means, allow access to other users in other approved libraries.

All users consulting this thesis will have to sign the following statement:

“In consulting this thesis, I agree not to copy closely nor paraphrase it in whole or in part without written consent of the author; and to make proper public written acknowledgement for any assistance which I have obtained from it.”

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place any restriction on access to this thesis.

__
Toni Williamson August 2006
STATEMENT OF SOURCES

DECLARATION

I, the undersigned, declare that this thesis is my own work and has not been submitted in any form from another degree, diploma or study at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Toni Williamson
August 2006
STATEMENT OF CONTRIBUTION OF OTHERS

Stipend Support: Australian Research Council (ARC) stipend
James Cook University Earth Science Award

Supervision: Prof. Bob Henderson

Editorial Assistance: Prof. Bob Henderson

Laboratory Assistance: Dr Yi Hu, Darren Richardson, Irena Kinaev

Analytical Assistance: Advanced Analytical Centre
James Cook University, Townsville
Dr Yi Hu, Dr Kevin Blake

Advanced Centre for Queensland University Isotope Research Excellence (ACQUIRE)
Brisbane, Queensland
Prof. Ken Collerson, Irena Kinaev

The Australian National University Research
School of Earth Sciences
Canberra
Dr Michael Gagan

Photographic Assistance: Kirsten Perry

Use of Infrastructure
External to JCU: South Australian Museum, Palaeontology

Geological Survey of South Australia, Palaeontology

University of Adelaide, Earth Science Department, Palaeontology

Museum of Victoria, Palaeontology

Queensland Geological Survey, Core Library and Palaeontology
University of Queensland, Earth Science
Department, Palaeontology

Queensland Museum, Palaeontology

Department of Palaeontology, Australian
Museum

University of Sydney, Palaeontology

Commonwealth Palaeontological Collections
Canberra

Western Australian Museum, Palaeontology

Geological Survey of Western Australia,
Core Library and Palaeontology

University of Western Australia, School of Earth
and Geographical Sciences, Palaeontology

Hunterian Museum, University of Glasgow,
Department of Geology, Palaeontology

British Museum (Natural History), London,
Palaeontology
ACKNOWLEDGEMENTS

Firstly, I would like to thank Prof. Bob Henderson for giving me this opportunity to work on this project. Bob’s direction and enthusiasm throughout the duration of the project was inspirational and the thorough reviewing of my drafts is especially appreciated.

Thanks to the UWA (Prof. David Haig, Matt Dixon) and GSWA bunch (Arthur Mory), for inviting me to share and sample from the new cores, and also the invaluable help that you have been in providing me with your unpublished data from the west.

I also wish to thank Dr. Mike Gagan (RSES, ANU, Oxygen isotopes) and Prof. Ken Collerson (ACQUIRE, UQ, Strontium isotopes) for running my isotope samples in their respective labs. Thank you for sharing your geochemical knowledge that greatly aided the interpretation of the raw data and the construction of curves.

The assistance received in the lab from Dr. Yi Hu and guidance for using the CL machine by Dr. Kevin Blake, from the AAC, JCU, is greatly appreciated.

On a personal note, thank you to any one and everyone that lent a listening sympathetic ear to me during those dark times, consoled me during the trying times, and laughed with me in the good times. Your friendships are inexplicable and are appreciated beyond words!

Charlie, thanks for filling me with the inspiration to come back and submit. I am forever indebted to your persistent nagging that has finally allowed me to get this monkey off my back! Thanks, for just being you xxx.

Last but definitely not least, thanks to Mom and Dad for making regular visits to Townsville, and keeping me on the straight and narrow (or at least trying too!). Your guidance, enthusiasm and most importantly, support has been unbounding in magnitude, and never goes unappreciated. Thank you.
ABSTRACT

Belemnites are particularly common in Australian Early Cretaceous sequences but have attracted little contemporary examination. They offer potential for biostratigraphic zonation, as evaluated in the study presented here, based on an examination of very extensive collections that have accumulated in museum and university collections over more than a century. Most of these are from the Great Artesian Basin of eastern Australia and the Carnarvon Basin of Western Australia but small collections from the Maryborough Basin (coastal Queensland) and the Money Shoals Basin (Northern Territory) are also included in the study. Systematic revision has identified distinctive taxa of the Austral Family Dimitobelidae, and has determined their stratigraphic ranges. Contrary to the existing literature, the Aptian Stage is characterized by just two species: robust *Peratobelus oxyx* Tenison-Woods characterized by an unusually large phragmocone, previously described under the name *P. selheimi* Tenison-Woods, and gracile *P. bauhinianus* Skwarko. Albian taxa include long-ranging *Dimitobelus diptychus* McCoy and *D. stimulatus* Whitehouse but also the short-ranging *D. plautus* sp. nov. (early Albian), and *D. liversidgei* Etheridge (late Albian). *Dimitobelus hendersoni* sp. nov. is recognized from the Albian of Western Australia but its precise range is not known. A distinctive new, diminutive, Cenomanian belemnite genus *Microbelus* gen. nov. is established with two component species, *M. haigi* sp. nov. and *M. tumidus* sp. nov., based on collections from the West Australian Carnarvon Basin.

Many of the belemnite guards have retained pristine biogenic calcite, free from diagenetic overprint, as demonstrated by the luminescence properties of polished thin sections examined by electron microprobe imaging and by analysis for trace element contents by inductively coupled plasma technology. Belemnite guards arranged in stratigraphic sequence for the eastern Australian Great Artesian Basin and from drill core from the Carnarvon Basin have been analysed for Sr-isotope contents. Strontium isotopic curves for these two sequences have been used for timescale resolution of the Australian Early Cretaceous System, by comparison with the global curve established from a range of northern hemisphere studies. The evaluation indicates that some adjustment to biostratigraphic zonations applied in Australia for timescale purposes, particularly that related to dinoflagellates, requires adjustment. Substantial paraconformities are indicated for both documented successions, embracing the Aptian-Albian boundary interval.

Oxygen and carbon isotopic analysis has been applied to the same sample set examined for strontium contents, with the objective of illuminating the palaeoenvironmental context of Australian shallow marine environments of Early Cretaceous (Aptian-Cenomanian) age. The data indicate that oxygen and carbon isotopic systematics of epeiric association were perturbed by partial isolation from the global ocean. Isotope signatures for the sequence of the Great Artesian Basin reflect a combination of local scale influences, including dilution by riverine runoff, exchange with volcaniclastic sediment, unusual temperature regimes that applied in very
extensive, shallow epicontinental water bodies and the peculiarities of organic recycling in such an environment.

Oxygen-isotope values obtained from the Carnarvon Basin, representing an open-ocean continental margin sediment system, indicate southern hemisphere mid-latitude late Aptian sea surface temperatures, that differ little from those which presently apply. A warming trend is apparent for the Albian-Cenomanian interval, representing greenhouse climatic conditions. Carbon-isotope values through the same interval show a complementary negative trend in $\delta^{13}C$, attributed to CO$_2$ enhancement in the atmosphere that accompanied global warming. Short period temperature excursions of as much as 5°C are identified in the record, suggesting that climatic shifts of similar scale to those which characterised the Pleistocene Epoch also applied in the mid Cretaceous. Relative to values of $\delta^{13}C_{\text{carb}}$ available from other studies of Albian – Cenomanian biogenic carbonate, those obtained from the Carnarvon Basin are unusually low, suggesting that low productivity characterised the water body in which its sedimentary succession accumulated through this time interval. The carbon-isotope record is incomplete for the intervals that should register oceanic anoxic episodes 1a (early Aptian), 1b (Aptian-Albian boundary interval) and 1d (latest Albian). OAE 1b is expressed by a positive $\delta^{13}C_{\text{carb}}$ excursion across the euxinic interval of the Toolebuc Formation in the Great Artesian Basin succession and a correlative positive excursion is apparent for the succession of the Carnarvon Basin. It is dated as early late Albian, ~ 105Ma, but its global significance is open to question. A matching negative excursion in $\delta^{13}C_{\text{org}}$ across the Toolebuc interval of the Great Artesian Basin is attributed to the influence of organic matter of continental provenance.

TABLE OF CONTENTS

Statement of access ... i
Statement of sources ... ii
Statement of contribution of others ... iii
Acknowledgements .. v
Abstract .. vi-vii
Table of contents ... T1-T3
List of figures, plates and tables .. L1-L5
Thesis introduction ... P1-P5

SECTION A Albian and Cenomanian belemnites of the Family *Dimitobelidae* from Australia.. A1-A50

A. 1 Abstract .. A1
A. 2 Introduction ... A1-A3
A. 3 Collections and localities ... A3-A11
 A. 3. 1 Morphological terminology and measurements .. A4-A10
 A. 3. 1. 1 Outline ... A5-A6
 A. 3. 1. 2 Profile ... A6
 A. 3. 1. 3 Cross-section .. A6
 A. 3. 1. 4 Surface grooves ... A6-A7
 A. 3. 1. 5 Lateral lines .. A7-A8
 A. 3. 1. 6 Internal structures ... A8-A9
A. 3. 2 Dimensions ... A10-A11
A. 3. 3 Illustrations .. A11
A. 4 Systematic Descriptions ... A12-A49
A. 5 Biostratigraphic Summary ... A49-A50

SECTION B Aptian *Peratobelus (Dimitobelidae)* of Australia................................. B1-B25

B. 1 Abstract .. B1
B. 2 Introduction ... B1-B4
B. 3 Collections and localities ... B4-B5
B. 4 Systematic descriptions ... B6-B25
Table of Contents

SECTION C Strontium-isotope stratigraphy of the Aptian - Cenomanian in Australia...C1-C47

C. 1 Abstract ... C1
C. 2 Introduction .. C1-C3
C. 3 Stratigraphic context of the Australian Cretaceous System C3-C12
C. 3. 1 Biostratigraphic zonation of the Australian Lower Cretaceous System ...C11-C12
C. 4 Existing chronostratigraphic controls .. C12-C16
C. 4. 1 Macrofossil age determinations ... C13
C. 4. 2 Nannofossil age determination .. C14
C. 4. 3 Foraminiferal age determinations ... C14
C. 4. 4 Dinoflagellate age determinations ... C15-C16
C. 5 Stratigraphic distribution of belemnites .. C16-C17
C. 6 Sample selection and preparation ... C17-C22
C. 7 Strontium-isotope analysis ... C23-C26
C. 7. 1 Sample dissolution and separation of strontium C23
C. 7. 2 Mass spectrometry ... C23-C24
C. 7. 3 Analytical reproducibility ... C24-C26
C. 8 Strontium isotope curve construction and its significance C26-C34
C. 9 Correlation of Australian sequences to the global Early Cretaceous timescale using strontium-isotope stratigraphyC34-C44
C. 9. 1 Implications for the Australian Cretaceous timescale C39-C44
C. 10 Discussion ... C44-C47

SECTION D Australian mid to high palaeolatitude Aptian - Cenomanian sea surface palaeotemperature estimates based on oxygen-isotope records from belemnite guards ...D1-D46

D. 1 Abstract .. D1
D. 2 Introduction .. D1-D10
D. 2. 1 Belemnite guards as a basis for palaeotemperature estimates D7-D8
D. 2. 2 Palaeobiology of belemnites in relation to palaeotemperature estimates ..D8-D10
D. 3 Geological setting and sample selection .. D10-D14
D. 4 Analytical methods .. D15-D20
D. 4. 1 Sample preparation and evaluation ... D15-D20
D. 4. 2 Analytical techniques ... D20
D. 5 Results .. D20-D37
D. 5. 1 Palaeotemperature calculations .. D25-D28
D. 5. 2 Palaeotemperature estimates from δ18O analyses D28-D37
D. 5. 2. 1 Single analyses from individual specimens D28-D34
D. 5. 2. 2 Multiple analyses from single specimens D34-D37
D. 6 Discussion...D37-D46
 D. 6. 1 Australian Early Cretaceous palaeotemperature estimates and trends..D37-D43
 D. 6. 2 Physical oceanography of the Australian Cretaceous epeiric sea
 ...D43-D46

SECTION E The carbon-isotope record for Australian Aptian - Cenomanian
sequences in relation to palaeoceanographic eventsE1-E9

 E. 1 Abstract...E1
 E. 2 Introduction ..E1-E3
 E. 3 Carbon-isotope Stratigraphy relative to the OAE events............................E3
 E. 4 Methodology and results ..E3-E5
 E. 4 Discussions...E6-E9

REFERENCE LIST...R1-R18

APPENDICES

Appendix A. 1 GSWA Barrabiddy 1 Sample Log
Appendix A. 2 GSWA Boologooro 1 Sample Log
Appendix A. 3 GSWA Edaggee 1 Sample Log
Appendix A. 4 GSWA Yinni 1 Sample Log
Appendix C. 1 Provisional strontium data
Appendix C. 2 Strontium NBS-987 and En-1 values
Appendix C. 3 ICPAES results of samples selected for Sr-isotope analysis
LIST OF FIGURES AND PLATES

SECTION A

Figure A. 2. 1 Aptian-Albian marine lithostratigraphic units recognised in Australian Cretaceous basins ... A2
Figure A. 2. 2 Extent of Albian-Cenomanian marine flooding in Australia A3
Figure A. 3. 1 Outline of apical region of belemnite guards A6
Figure A. 3. 2 Outline and profile of a belemnite guard A11
Figure A. 4. 1 *Dimitobelus diptychus* (McCoy). JCU F11632 L913 A21
Figure A. 4. 2 *Dimitobelus diptychus* (McCoy). WAM 91.839 A22
Figure A. 4. 3 *Dimitobelus diptychus* McCoy. UWA 23/3/93-L1 A22
Figure A. 4. 4 *Dimitobelus diptychus* McCoy. UWA 23/3/93-L2 A22
Figure A. 4. 5 Cross-sectional measurements for *Dimitobelus diptychus* A23
Figure A. 4. 6 *Dimitobelus stimulus* Whitehouse. JCU F11633 L910 A30
Figure A. 4. 7 *Dimitobelus stimulus* Whitehouse. JCU F11634 L914 A30
Figure A. 4. 8 *Dimitobelus dayi* Doyle. JCU F11635 L910/3 A36
Figure A. 4. 9 *Dimitobelus dayi* Doyle. JCU F11623 A36
Figure A. 4. 10 *Dv* max and *Dl* max relationship for *D. diptychus* and *D. dayi* A37
Figure A. 4. 11 *Dv* max and *Dl* max relationship for *Dimitobelus* sp. nov.? 1, *Dimitobelus* sp. nov.? 2 and *D. (?) hendersoni* nov. A40
Figure A. 4. 12 *Dimitobelus plautus* sp. nov. QM F33238 A41
Figure A. 4. 13 *Dv* max and *Dl* max relationship for *D. stimulus* and *D. plautus* A42
Figure A. 4. 14 *Dv* max and *Dl* max relationship for *Microbelus haigi* and *Microbelus tumidus* .. A46
Figure A. 4. 15 *Microbelus haigi* sp. nov. UWA 2/11/99-16-1 A47
Figure A. 5. 1 Summary of the age and distribution of the *Dimitobelus* and *Microbelus* species .. A50

Plate 1, Figs. 1-13 *Dimitobelus diptychus*
Plate 2, Figs. 1-2 *Dimitobelus liversidgei*
Plate 2, Figs. 3-7 *Dimitobelus stimulus*
Plate 2, Fig. 8 *Dimitobelus plautus* sp. nov.
Plate 2, Figs. 9-11 *Dimitobelus dayi*
Plate 2, Fig. 12 *Dimitobelus diptychus*

Plate 3, Figs. 1-3 *Dimitobelus* sp. nov. ? 1

Plate 3, Fig. 4 *Dimitobelus* sp. nov. ? 2

Plate 3, Figs. 5-6 *Dimitobelus (?) hendersoni* sp. nov.

Plate 3, Figs. 7-8 *Microbelus tumidus* sp. nov.

Plate 3, Figs. 9-13 *Microbelus haigi* sp. nov.

SECTION B

Figure B. 2. 1 Illustration of differences in surface markings between genera of the *Dimitobelidae* .. B2

Figure B. 2. 2 Extent of Aptian flooding for Australia .. B4

Figure B. 4. 1 Schematic diagram of phragmocone in relation to the guard, illustrating where measurements were taken ... B14

Figure B. 4. 2 *Peratobelus oxys* Tenison-Woods. QM F1641 .. B15

Figure B. 4. 3 *Peratobelus oxys* Tenison-Woods. SAM P19239 .. B15

Figure B. 4. 4 *Peratobelus oxys* Tenison-Woods. QGS F8775 ... B15

Figure B. 4. 5 *Peratobelus oxys* Tenison-Woods. JCU F11637 L912 B16

Figure B. 4. 6 Relationship of maximum diameters in *Peratobelus* species B20

Figure B. 4. 7 *Peratobelus bauhinianus* Skwarko. WAM 65.1159 B23

Figure B. 4. 8 *Peratobelus bauhinianus* Skwarko. WAM 62.194 B23

Plate 1, Figs. 1-5 *Peratobelus bauhinianus* (Skwarko)

Plate 1, Figs. 6-7 *Peratobelus oxys* (Tenison-Woods)

Plate 2, Figs. 1-9 *Peratobelus oxys* (Tenison-Woods)

SECTION C

Figure C. 3. 1 Present coast line of Australia showing Cretaceous epicontinental basins: (A) Carnarvon, (B) Carpentaria, (C) Laura and (D) Eromanga C4

Figure C. 3. 2 Map of stratigraphic wells GSWA Barabiddy 1, GSWA Boologooro 1, GSWA Edaggee 1 and GSWA Yinni 1 ... C6

Figure C. 3. 3 Aptian-Albian lithostratigraphic units recognised in Cretaceous onshore basins of Australia .. C7
Figure C. 3. 4 Belemnite sample locations from southern Eromanga Basin used for Sr-isotope analyses ... C6

Figure C. 3. 5 (A) North-eastern Eromanga basin map with locations of reference stratigraphic wells, key sections and belemnite samples. (B) Detailed map of Hughenden/Flinders River area with Early Cretaceous units and key sections C8

Figure C. 3. 6 Regional setting of the Carpentaria Basin and Laura Basin C10

Figure C. 6. 1 Schematic representation of sample preparation for optical and geochemical studies .. C19

Figure C. 6. 2 Sr and Mg scatter plot of Cretaceous belemnite guards.............. C20

Figure C. 6. 3 Cathodoluminescence images of well-preserved guards C21

Figure C. 6. 4 Cathodoluminescence images of poorly-preserved guards C22

Figure C. 8. 1 Lithostratigraphy and \(^{87}\text{Sr}/^{86}\text{Sr}\) record of Aptian – Albian sequences for the eastern Australian platform .. C30

Figure C. 8. 2 Lithostratigraphy and \(^{87}\text{Sr}/^{86}\text{Sr}\) record of Aptian–Cenomanian sequences for the Carnarvon Basin, Western Australia ... C31

Figure C. 9. 1 Compiled Sr isotopic data from published work and this study..... C35

Figure C. 9. 2 Sr-isotope curves for the east Australian platform and the Carnarvon Basin sequences with the reference curve for the Early Cretaceous C40

Figure C. 9. 3 Eustatic curves for the northern Eromanga Basin and Carnarvon Basin utilising water depths estimated from microfossils C45

SECTION D

Figure D. 1. 1 Aptian-Albian palaeogeographical reconstruction D3

Figure D. 1. 2 Indicative palaeolatitudinal trends for sampling sites D5

Figure D. 3. 1 Lithostratigraphy and palaeotemperature record of Aptian-Cenomanian sequences for Western Australia ... D12

Figure D. 3. 2 Lithostratigraphy and palaeotemperature record of Aptian-Albian sequences for eastern Australia .. D14

Figure D. 4. 1 Polished sections of guards from eastern Australian platform with sample intervals and corresponding palaeotemperature ranges D16-D17

Figure D. 4. 2 Polished sections of guards from Western Australian margin with sample intervals and corresponding palaeotemperature ranges D18-D19

Figure D. 5. 1 Plot of \(\delta^{18}\text{O}\) and inferred palaeotemperatures D29

Figure D. 5. 2 Early Cretaceous palaeotemperature trends for the Western Australian Carnarvon Basin and eastern Australian platform D31
Figure D. 6. 1 Cretaceous palaeotemperature determinations from Australasian belemnites ... D38

Figure D. 6. 2 Comparison of global temperature regimes and Early Cretaceous palaeotemperature estimates ... D40

Figure D. 6. 3 Palaeogeographic map for the Barremian-Aptian interval showing inferred palaeocurrent circulation ... D45

SECTION E

Figure E. 4. 1 Lithostratigraphy and δ13C record of Aptian-Albian sequences for the eastern Australian platform ... E4

Figure E. 4. 2 Lithostratigraphy and δ13C record of Aptian-Albian sequences for the Western Australian platform ... E5

Figure E. 5. 1 δ13C curves for eastern and Western Australia correlated with Sr-isotope curve. ... E7
LIST OF TABLES

SECTION C

Table C. 1 Isotopic and chemical data for belemnites from the Aptian-Albian strata of the north-eastern Eromanga Basin...C27
Table C. 2 Isotopic and chemical data for belemnites from the Aptian-Albian strata of the southern Eromanga Basin...C28
Table C. 3 Isotopic and chemical data for belemnites from the Aptian -Albian strata of the Carpentaria and Laura Basins...C28
Table C. 4 Isotopic and chemical data for belemnites from the Aptian-Cenomanian strata of the Carnarvon Basin...C29

SECTION D

Table D. 1. Isotopic and chemical data for belemnites from the Aptian-Albian strata of the north-eastern Eromanga Basin...D21
Table D. 2. Isotopic and chemical data for belemnites from the Aptian-Albian strata of the southern Eromanga Basin...D22
Table D. 3. Isotopic and chemical data for belemnites from the Aptian-Albian strata of the Carpentaria and Laura Basins...D22
Table D. 4. Isotopic and chemical data for belemnites from the Aptian-Cenomanian strata of the Carnarvon Basin...D23-D24