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Abstract. The interaction of plasmas with liquids requires an understanding of charged particle
transport in both the gaseous and liquid phases. In this study we present a generalized fluid-
equation framework to describe bulk electron transport in both gaseous and non-polar liquid
environments under non-hydrodynamic non-equilibrium conditions. The framework includes
liquid structural effects through appropriate inclusion of coherent scattering effects and adaption
of swarm data to account for the modification to the scattering environment present in such
systems. In the limit of low-densities it reduces to the traditional gas-phase fluid-equation model.
Using a higher-order fluid model (four moments), it is shown that by applying steady state
electron swarm data in both the gaseous and liquid phases, to close the system of equations and
evaluate collisional rates, an improvement in macroscopic electron transport results over popular
existing assumptions used. The failure of the local mean energy approximation in fluid models to
accurately describe complex spatial oscillatory structures in both the gaseous and liquid phases
is discussed in terms of the spatial variation of the electron distribution function itself.



1. Introduction

In recent years there has been much interest across multiple research disciplines in investigating the
interaction of gas phase plasmas with liquids, culminating in the recent plasma-liquid interactions
roadmap [1]. Many research areas in environmental science, materials science, particle detector
physics, plasma medicine, and electrical switching necessitate a good understanding of the gas-liquid
interface [1–3]. In particular, one point of focus identified in the plasma-liquid interactions roadmap
was charged species transfer across the gas–liquid interface including electron-induced reactions and
energy transfer [1]. The primary objective of this study is to provide a benchmarked platform for
modeling electron transport in plasma-liquid interfaces in future studies. To accomplish this, we
present the formulation, benchmarking, and analysis of a unified fluid model applied to electron
transport in a dilute gas and non-polar simple liquid.

Modeling of charged particle transport in non-equilibrium gas discharges has been studied for
some decades. From two-term and multi-term solutions of Boltzmann’s equation or particle-in-
cell (PIC) and Monte Carlo methods [4–8], giving accurate microscopic descriptions, through to
computationally simpler fluid methods [9–16], providing macroscopic, qualitative descriptions of
discharge dynamics, there are many options available for modeling a gas phase discharge.

Despite the advantages in simplicity and computational benefits, approximations are necessary to
describe the functional dependence of input data for fluid modeling. Much work has been done using

the classic local field approximation (LFA) [9, 12, 17] describing reduced electric field,
E

n0
, dependent

mobility and diffusion coefficients, and collision rates. While the local energy approximation (LEA)
has also been used to attempt to describe non-local dependence through mean energy dependent
transport coefficients and rates [10, 12, 14–16, 18, 19].

In addition to these approximations, closure assumptions must be made to truncate the infinite
series of moment equations [12, 20]. Traditionally, drift-diffusion approximations in the steady-state
limit have been used, with approximations often made on the electron heat flux [10, 12, 14, 17, 18].
Neglecting the heat flux or using a Fourier law type assumption are common approaches in existing
literature [10, 12]. Additionally, a parameterized, steady state ansatz has been proposed to capture
periodic electron structures in gases [12, 21, 22]. In recent times four moment models have been used
to defer closure to a higher order moment equation, with parameterized ansatz and steady-state
input closure methods being proposed and applied in recent studies [14–16, 18, 20].

In comparison to gas phase modeling, liquid discharges add many complications, such as structure
effects, electron solvation, and evaporation, that make a complete modeling approach difficult [1–
3, 23–25]. Recent modeling studies have used electric conductivity and permittivity changes between
model material phases [2], directly modified gas phase electron diffusion coefficients [24, 25], or
constant empirical transport coefficients and rates [3, 25] all to good effect in order to provide new
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understanding of gas-liquid interfaces.

Motivated by these efforts we seek to extend a recent kinetic formulation [23, 26, 27] which
introduced a structure factor modification to account for coherent scattering effects in dense media.
Ultimately we seek to formulate and benchmark a generalized electron fluid model, that will later
be applied to modeling electron transport between a plasma-liquid interface, where liquid processes,
such as solvation, may be included at a fundamental level via electron collision cross sections [23].

The formulation of the fluid model for both gas and simple liquids with coherent scattering effects
is presented in Section 2. A parameter-free, unified steady state closure assumption is introduced,
along with a brief summary of existing closure approaches commonly used in fluid modeling.
Steady state and transient benchmarking of the electron fluid model against accurate Monte Carlo
simulations and multi-term solutions of the Boltzmann equation are presented in Section 3 to
demonstrate the utility of the fluid model. From this benchmarking, comparisons of results from the
alternative fluid models presented in Section 2 are shown in order to highlight significant differences
that can occur in various benchmark scenarios. Finally, a brief discussion of the impact of variation
in electron energy distribution functions is included to rationalize the limitations of the local mean
energy approximation. Concluding remarks are detailed in Section 4.

2. Theory

2.1. Fluid Modeling

The microscopic dynamics of charged particle transport in gases or liquids alike can be described
by particle-based simulations or directly solving the Boltzmann equation of kinetic theory [28, 29]

∂f

∂t
+ v · ∂f

∂r
+ a · ∂f

∂v
= − J (f) , (1)

which describes the evolution of the charged particle ensemble distribution function f (r,v, t) in
position-velocity phase space (r,v) [4, 5, 8, 30], where a is an acceleration vector due to applied
field (e.g. electric, magnetic, gravitational). The right-hand side of (1) denotes the rate of change
of f (r,v, t) due to collisions of charged particles with neutral background particles in a gas or soft
condensed medium through the collision operator

J (f) = Jcoherent + Jincoherent = Jelas + Jinel + ... (2)

which describes all possible scattering processes, such as elastic collisions, inelastic collisions,
attachment, and ionization, through appropriate cross-sections. An important distinction between
coherent (i.e. elastic) and incoherent scattering processes needs to be made for the consideration
of charged particle transport in liquid and soft-condensed structured systems [23].

Particle-in-Cell (PIC) or Monte Carlo (MC) are the leading particle-based methods used to simulate

3



charged particle distributions in phase space [7, 15], while two-term [6] or modern multi-term
solutions [23, 27] of the Boltzmann equation are the leading methods that solve directly for the
particle distribution.

Microscopic kinetic approaches provide very accurate descriptions of charged particle transport
but become mathematically complicated and computationally time consuming for applications
containing complex geometries or boundaries, multiple spatial dimensions, or many charged species.
Applications involving plasma-liquid interfaces typical contain these complications, and so a simpler,
computationally efficient modeling approach is sought. As such, the modeling approach chosen in
this study is a fluid or moment model [9, 10, 12, 16, 18, 31, 32].

Fluid models provide a description of a swarm or plasma through velocity-averaged variables. This
gives a macroscopic model of the discharge, which retains only the direct quantities important
for evolution of the system. This approach gives a significant boost to calculation speed, while
maintaining reasonable accuracy of quantities of interest. The simplest of these variables is the
number density of a species, defined as

n (r, t) =

ˆ
f (r,v, t) dv, (3)

while general velocity-averaged quantities are defined from the distribution function

〈Φk〉 (r, t) =
1

n (r, t)

ˆ
f (r,v, t) Φk (v) dv, (4)

where Φk (v) is any velocity dependent function, and 〈. . .〉 denotes the expectation value, a velocity
average over f (r,v, t).

Generally the moments of trial functions Φ1 = 1 ,Φ2 = v, Φ3 = 1
2mv

2, Φ4 = 1
2mv

2v are
performed to get balances on electron number, particle flux, energy density, and energy density
flux respectively.

The generic moment equation may be derived by multiplying the Boltzmann equation (1) by an
arbitrary, velocity dependent, trial function Φ (v) and integrating over velocity space [12, 18]

∂

∂t
(n 〈Φ〉) +∇ · (n 〈vΦ〉)− na · 〈∇vΦ〉 = CΦ, (5)

where CΦ is the rate of change of the quantity Φ due to collisions

CΦ =

(
∂[n〈Φ (v)〉]

∂t

)
coll

= −
ˆ

Φ (v) J(f)dv. (6)

Where this approach departs from classical gas phase fluid models, is that the collision term can
be written as the sum of coherent and incoherent components

CΦ = CΦcoherent + CΦincoherent. (7)

High densities in liquid like states require many modifications to the simple gas phase picture,
and including coherent scattering is an attempt to do so. Coherent scattering is projected entirely
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onto the momentum transfer elastic scattering cross section while inelastic collisions off different
molecules are incoherent as they modify the state of the background medium. Assuming, for
simplicity, that excitations in a dense medium are localized to individual molecules, incoherent
processes are computed by evaluating equation (6) with the semi-classical Boltzmann collision
operator [33]. Hence, for all inelastic processes in gas or liquid media, and elastic scattering in
dilute gases, the incoherent collision term is found via the traditional collision term

CΦincoherent =
∑
j,j′

ˆ
dvf (v)

ˆ
d2Ωg′n0vσ (j, j′; g, χ) [Φ′ − Φ]j,j′ , (8)

where indices j, j′ denote the before and after collision states due to each collisional processes
causing internal energy transitions (εj → εj′) in the neutral particle. Furthermore, g denotes the
relative speed between charged particle and neutral scattering center, d2Ωg′ denotes the differential
scattering angle dψdχ sinχ (where ψ is the polar angle and χ the azimuthal angle), and σ(j, j′; g, χ)

represents the partial cross section for scattering through the azimuthal angle χ given an incoming
speed g.

However, when dense mediums or low electron energies are considered, coherent scattering effects
are vital. The most general view of charged-particle interactions with a dense medium is the
scattering of a wave, representing the charged particle, by the medium as a whole and not a single
fixed scattering center. A first approximation to the scattering is the single-scatterer approximation
[34] in which the scattered wave is the coherent sum of contributions from many scattering centers
in the molecule, which interfere to effectively produce a diffraction pattern of the medium [23].
These effects are significant when the electron de Broglie wavelength is comparable to the average

background particle spacing, λ ∼ 1

n3
0

.

From the definition of the double differential cross section, the expression for the rate of change of
Φ (v) due to coherent elastic scattering is

∂

∂t
(n 〈Φ〉)

∣∣∣∣
coherent

=

ˆ
dvf (v)

ˆ ∞
0

dω′
ˆ
k̂′
dk̂′n0v

d2σ

dk̂′dω′
[Φ (v)− Φ (v′)] , (9)

where ω′ and k′ denote the angular frequency and wavenumber of the charged particle wave after
the interaction with the material. The double differential cross section is written as a product of
the single atomic differential cross section and the dynamic structure factor [34]

d2σ

dk̂′dω′
= σlab

(
|∆k| − ω

2
, k̂′
)
S (∆k,∆ω)

where ∆k = k− k′ is the change in the wave vector, such that p = mv = ~k, and ∆ω = ω − ω′ is
the change in energy, such that ε = ~ω = ~2k2

2m . Dashed quantities refer to post-collision values. All
expressions are evaluated in the laboratory frame in contrast to the single molecule scattering case
where collisions are carried out in the center of mass frame, for interactions with many particles
simultaneously this is not possible.
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Equations (5) - (9) now provide a complete framework for generating charged particle fluid equations
in both gas and liquid media alike. In the limit of high incoming particle energies or dilute gases,
equation (9) reduces to equation (8) where S (∆k,∆ω) has zero contribution from correlations
between atoms [23, 27].

2.2. Four Moment Electron Fluid Model

For electrons of charge qe and mass me, in a gas or liquid subject to a homogeneous background
electric field, E, such that the acceleration vector is

a =
qe
me

E, (10)

the first four moment equations can be derived from equations (5) - (9) by substituting Φ =

1, v, 1
2mv

2, 1
2mv

2v

∂n

∂t
+∇ · Γ = n (νss

I (〈ε〉)− νss
a (〈ε〉)) , (11)

∂Γ

∂t
+∇ · (nθm)− n qe

me
E = − Γνss

m (〈ε〉) , (12)

∂nε
∂t

+∇ · Γε − qeE · Γ = − nSss
ε (〈ε〉) , (13)

∂Γε
∂t

+∇ · (nθξ)− nθm · qeE− nε
qe
me

E = − Γεν
ss
ξ (〈ε〉) , (14)

where shorthand variables for particle flux, energy density, and energy density flux are

Γ = n 〈v〉 =

ˆ
f (r,v, t) vdv, (15)

nε = n 〈ε〉 =

ˆ
f (r,v, t)

1

2
mv2dv, (16)

Γε = n 〈ξ〉 =

ˆ
f (r,v, t)

1

2
mv2vdv, (17)

with 〈v〉, 〈ε〉, and 〈ξ〉 being the electron average velocity, average energy, and average energy flux.
Higher order tensor products θm = 〈vv〉 and θξ =

〈
1
2mv

2vv
〉
are introduced, and require closure

approximations in order to numerically solve the system.

Consistent with existing modeling literature [6, 9–11, 13–16] the collision terms are approximated
via pre-computing steady state expectation values of reduced collision rates,

〈
ν
n0

〉
, through Monte

Carlo simulations [7, 26] or multi-term solutions of the Boltzmann equation [23, 27] of a steady
state distribution function, and interpolating as a function of the local mean energy.

It should be noted that in this work, input rates and closure input to follow have been written as
parameter-free expectation values over the steady state distribution function, independent of the
computational method such as MC simulation or a multi-term solution of the Boltzmann equation.
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For a given method there will be simplified expressions written in terms of isotropic and anisotropic
distribution function components, f0, f1, f2 and so on. For further details, we refer the reader to
previous publications on the MC methods [7, 26] and multi-term kinetic methods [8, 23, 27, 35]
used in evaluation of the input data for this study.

Given ionization and attachment cross sections, σI and σa, expressions for the ionization and
attachment rates are

νss
I =

〈
n0

√
2ε

me
σI (ε)

〉
fss

, (18)

νss
a =

〈
n0

√
2ε

me
σa (ε)

〉
fss

, (19)

where subscript fss denotes the expectation value is performed by integration over the steady state
distribution function.

The vector quantity collision rates for momentum and energy flux transfer are computed from the
steady state distribution function by normalizing the loss-rate of each given quantity to its steady
state value,

νss
m =

〈∆vνT (ε)〉fss
〈v〉fss

, (20)

νss
ξ =

〈∆ξνT (ε)〉fss
〈ξ〉fss

. (21)

where ∆v and ∆ξ denote the average change in velocity and energy flux per collision, averaged
over all possible processes, and νT is the total collision rate in the steady state.

The energy transfer rate Sε is the lump sum of average energy losses due to all collisional processes

Sss
ε = 〈∆ενT (ε)〉fss , (22)

where ∆ε is the average change of energy per collision averaged all possible processes, including
any threshold and collision energy transfer.

2.2.1. Steady State Closure In lieu of assuming analytic forms of velocity distribution functions
for closure approximations or parameterizing closure expressions as functions of known moment
variables, as often done in the past [12, 31], we prefer utilizing steady state electron distribution
functions as recently proposed by Becker and Loffhagen [14, 16, 20, 31, 35] to evaluate closure
terms, akin to the collision input terms. Motivated by the work in Ref [20] through equations 15a -
15d, we utilize Monte Carlo simulations [7, 26] or multi-term solutions of the steady state electron
energy distribution function [23, 27] to generate a look-up table of closure terms

θm ≈ θssm (〈ε〉) = 〈vv〉fss , (23)
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θξ ≈ θssξ (〈ε〉) =

〈
1

2
mv2vv

〉
fss

, (24)

as well as the usual collision rates, as a function of the local electron mean energy. This model will
be referred to as 4MM-SS in the remainder of this work.

Using steady state distribution closure ensures that electron transport evolves in a manner guided by
a physically motivated distribution function. In regimes that are known to not produce oscillatory
structures, due to reduced electric field and collision cross section effects, we believe this fluid
model has a higher potential to accurately resolve spatially averaged electron transport quantities,
as demonstrated in Section 3.

In non-hydrodynamic regimes far from the steady state distribution we acknowledge that detailed
electron structures, such as periodic spatial phenomena [21, 22], will be difficult to generally replicate
with this steady state closure approach, as shown by a benchmarked analytic steady-state heat flux
ansatz [12, 21, 31]. Despite this limitation in the steady-state closure, we believe using a parameter
free, general closure assumption offers a flexible option to the fluid modeling community as it is
applicable in time-dependent and steady state problems, and requires no tuning of input parameters
or benchmarking.

We believe that this closure approximation is sufficient to reproduce the general evolution of space-
time electron transport, in a “line of best fit” sense sufficient for basic studies of discharges in either
gaseous or liquid media. To be discussed in Section 3.6, we believe the difficulty of fluid models to
resolve oscillatory structures lies in their inability to resolve distribution function variations due to
the local mean energy approximation, and not in the choice of closure approximations.

2.2.2. Drift-Diffusion Approximations Often low-temperature plasma modeling studies will be
concerned with long-time scale or steady state simulations [10, 14, 15, 31, 36], and drift-diffusion
approximations (DDA) are commonly employed. As such, we present a simplified version of the
previous four moment model into a two moment model consisting of the two continuity equations
for number density (11) and energy density (13) but with steady state particle (25) and energy flux
(26) expressions

Γss =
1

νss
m (〈ε〉)

[
qe
me

nE−∇ · (nθssm (〈ε〉))
]
, (25)

Γss
ε =

1

νss
ξ (〈ε〉)

[
qenθ

ss
m (〈ε〉) ·E +

qe
me

nεE−∇ ·
(
nθssξ (〈ε〉)

)]
, (26)

where collision and closure inputs are the same as prescribed for the four moment model, 4MM-SS.

This approximate model is justified by assuming the relaxation collision frequencies of the vector
quantities is much faster than the time scales for energy relaxation and electron transport, through

8



electric field driven advection or diffusive transport [12, 37]. This model will be referred to as
DDA-SS in the remainder of this work.

2.3. Other Fluid Models

In order to facilitate comparison of the presented fluid model using steady state closure, three fluid
models previously used in literature are briefly presented: parameterized four moment closure, zero
heat flux, and a Fourier law heat flux closure.

We note a method of closure through an analytic heat flux ansatz benchmarked against an
asymptotic perturbation solution of the balance equations has been proposed [12, 21]. We
acknowledge the benefits of this method, but concerns regarding the choices of tunable free
parameters in benchmarking new collision models, as well as the fact this ansatz is grounded in the
steady state, leads us to prefer more generalized approaches to closure of the balance equations. The
anzatz of Nicoletopoulos and Robson [12, 21] should however motivate future work on introducing
the effects of energy transfer due to inelastic collisions into the closure of fluid models in order to
model complex structures.

2.3.1. Parameterized Four Moment Model In previous work by Dujko et al. [15, 18, 38] a four
moment fluid model was presented with focus on application to streamer propagation; this model
will be referred to as 4MM-D in the remainder of this work. Functionally, this model is identical to
the four moment model presented in this study (11) - (14), but with different closure assumptions.
Closure of the momentum balance higher order term, θm, is achieved by assuming a Maxwellian
distribution [12, 18] and isotropic temperature tensor in order to yield the following standard closure
expression

θm ≈
2

3me
〈ε〉 I, (27)

where I is the identity tensor.

Extending this assumption to closing the energy flux balance equation, and assuming the higher
order energy flux closure term can be approximated by

θξ ≈ β
〈

1

2
mv2

〉
〈vv〉 , (28)

an ansatz is constructed for second closure term

θξ ≈ β
2

3me
〈ε〉2 I, (29)

where β is a parameterization factor nominally close to unity [18, 38]. In this study, it was assumed
β = 1 as per the author’s original work.
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2.3.2. Drift Diffusion Models One of the simplest, and most popular, approaches to fluid modeling
is a drift diffusion model with hydrodynamic transport coefficients applied to a density gradient
expansion [10, 12, 14, 15]. This approach utilizes two continuity equations for number density
(11) and energy density (13), with particle and energy density flux expressions closing the system.
Traditionally the particle flux is written

Γ = − nµ (〈ε〉) E− D (〈ε〉)∇n, (30)

where electron mobility and longitudinal diffusion coefficients, µ and DL in a 1D model, are
tabulated as a function of the local reduced electric field or electron mean energy as per the collision
input from previous models. In keeping with recent studies demonstrating non-local effects in gas
discharges [10, 12, 19, 22, 39, 40], the local mean energy approximation is used in application of
these drift diffusion models in lieu of the local field approximation.

In contrast to particle flux closure, a number of methods have been previously used to approximate
the energy density flux expression [9, 10, 12, 14–16, 18, 21, 36]. The simplest approach is to neglect
the heat flux by fixing it to zero [12, 15]; this model will be referred to as DDA-Z in the remainder
of this work. The zero heat flux closure of equation (33) can be derived by expanding the energy
density flux Γε = 1

2mn
〈
v2v

〉
using the identity

Γε = nε 〈v〉+ P · 〈v〉+ Jq, (31)

where P is the pressure tensor, simplified by assuming a Maxwellian energy distribution to yield
the common isotropic pressure tensor expression

P ≈ 2

3
nεI. (32)

If the heat flux is then assumed very small such that it can be neglected, Jzq = 0, we can rewrite
equation (31) by substituting for the particle flux, Γ = n 〈v〉,

Γε =
5

3
nε 〈v〉 =

5

3
〈ε〉Γ, (33)

where Γ is the particle flux defined in equation (30).

Another common approach to constructing a heat flux ansatz is by assuming a Fourier’s law of heat
conduction style closure [10, 41]; this model will be referred to as DDA-F in the remainder of this
work. A Fourier heat flux ansatz may be derived by assuming a Fourier law type relation for the
heat flux

JFq = − 5

3
nD∇〈ε〉 , (34)

such that the flux of heat transfer is proportional to some conductivity multiplied by the mean
energy gradient [10, 41].
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Combining equations (31) and (34) and rewriting as a gradient of nε we obtain

Γε = − 5

3
nεµ (〈ε〉) E− 5

3
D (〈ε〉)∇nε, (35)

where µ and D are the electron mean energy dependent electron mobility and diffusion coefficients.

Despite being based on an analytic distribution, the closure expression (35) does allow for energy
density spatial gradients to induce energy transfer - an improvement over the zero heat flux
assumption. The formulation and further implications of the Fourier law assumption are detailed
in [10, 12].

3. Benchmark Results and Discussion

Benchmarking is a valuable process in evaluating a model and the integrity of numerical solutions.
We have chosen simple benchmark cases with a simple collision model for a gas and liquid analogue.
This was done to allow comparison of the fundamental transport effects of the fluid equations and
their approximations, without introducing nuances of real gases that may introduce phenomena
specific to that molecule. A one dimensional steady state field perturbation benchmark problem
and a non-hydrodynamic transient evolution benchmark are presented in this work. Benchmarks
were performed in both gas phase and an approximated liquid phase through modifications to the
gas phase model. The flux corrected transport (FCT) numerical method employed to solve the
systems of hyperbolic equations in this study is based on popular methods used for many years
[42–44], and is further outlined in Appendix A, along with the dimensional scaling of variables used
in this work.

3.1. Gas Phase Collision Model

A simple constant cross section inelastic step collision model has been studied in this work, as
per Table 1. The model was chosen because despite its simplicity, it can produce physically
complex results such as periodic electron structures and relaxation behavior [14, 21, 31, 45] observed
in real gases used in benchmark computations, such as argon or neon. With the simplicity of
implementation, yet complex non-hydrodynamic transport behavior, we believe this collision model
provides a good analogue gas for benchmarking the performance of fluid models.
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Table 1. Constant Cross Section Inelastic Step Collision Model

Variable Value
σm 6Å2

σinel 0.1Å2, ε ≥ ∆εinel
∆εinel 2 eV
m0 4 amu
me 5.486× 10−4 amu
T0 0K

3.2. Liquid Phase Modification

To approximate transport in a simple, non-polar liquid-like medium a structure modification to
the gas phase collision model in Table 1 was performed within the computation of steady state
transport and collision input via kinetic solution or Monte Carlo simulation of the Boltzmann
equation [7, 12, 27, 30]. This was done via including a static structure modification into the
momentum transfer cross section, through the Percus-Yevick liquid model with the correction of
Verlet and Weiss [26, 46]. The structure of neutral molecules is assumed to consist of an array of
hard sphere potentials interacting coherently, with a density governed by a packing factor

φ =
4

3
πr3n0 (36)

where r is the hard sphere radius, and n0 is the neutral number density.

A packing factor of φ = 0 corresponds to a classic dilute gas, while the maximum value of φ ≈ 0.64

corresponds to a maximally packed solid of hard spheres. For the simple liquid approximation in
this study a packing factor of φ = 0.4 was used [27]. Further details of this liquid phase modification
in the Monte Carlo simulations or multi-term solution of Boltzmann’s equation can be found in the
recent work by the JCU group [23, 26, 27].

3.3. Input Data

Given the collision model specified in the previous section, a collection of steady state input data
was generated via Monte Carlo simulations. By generating two sets of the necessary steady state
input data for fluid models described in this study, one each for gas and liquid analogues, the same
fluid model formulations can be used to simulate electron transport, given the basis of the gas phase
collision model in Table 1 and simple liquid modifications previously outlined.

The inclusion of coherent scattering effects in the liquid phase results in variations of the fluid model
input data from the classic dilute gas picture. We present a comparison of the gas and liquid phase
transport input data in the following figures.
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3.3.1. Hydrodynamic Transport Coefficients The variation of the electron reduced mobility, n0µ,
and reduced longitudinal diffusion coefficient, n0DL, between gas and liquid phase transport is
shown in Figures 1 (a) and (b) respectively. The increased mobility and diffusion at low energy due
to coherent scattering are clearly noted, as well as the asymptotic convergence of liquid transport
to gas phase transport at higher energies.
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Figure 1. Hydrodynamic transport input data for gas and liquid phase transport for collision
model in Table 1. (a) Reduced electron mobility coefficient; (b) Reduced electron longitudinal
diffusion coefficient
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3.3.2. Collision Rates The reduced collision frequencies of momentum, energy, and energy flux
transfer computed from steady state distribution functions are presented in Figure 2.
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Figure 2. Electron collision rate input data for gas and liquid phase transport for collision
model in Table 1. (a) Effective reduced energy transfer collision rate, νe

n0
; (b) Effective reduced

momentum transfer, νm
n0

, and energy flux transfer, νξ
n0

, collision rates.
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An inset plot in Figure 2 (a) is included to demonstrate deviation of the curves within an energy
range close to the inelastic threshold energy of 2 eV. For comparison we also include a plot of
an alternative approach to computing the reduced energy transfer rate [23] often implemented in
Momentum Transfer Theory (MTT)

νe
n0

∣∣∣∣
gas & liq

≈ 2
mem0

(me +m0)
2

νm
n0

∣∣∣∣
gas

,

to demonstrate the importance of including a specifically computed energy loss rate, Sss
ε , and not

simply multiplying the gas phase momentum transfer rate by the mass ratio prefactor, often used
in MTT collision approximations [12, 37].

The effects of coherent scattering in the liquid phase approximation are clearly evident in Figure
2 (b), where

νm
n0

is multiple orders of magnitude smaller at low energies. As the mean energy of

an incoming electron increases, the effects of coherent scattering are reduced and the liquid phase
result converges to the gas phase value.

Previously the momentum transfer collision frequency has been used as the collision rate for the
energy flux balance equation, owing to the physical similar collisional time scales for the two vector
quantities [15, 18]. However, it can be seen in Figure 2 that there is a difference between the
momentum transfer frequency and a specifically computed energy flux transfer frequency, even in
this simple benchmark problem, across both gas and liquid phase media. This supports the claim of
using a dedicated energy flux transfer rate as also recommended by Becker and Loffhagen [14, 20].

3.3.3. Closure Terms The higher-order moment closure terms θssm and θssξ , defined by equations
(23) and (24) used in the 4MM-SS/DDA-SS models, are plotted against the parameterized moment
closure terms, defined by equations (27) and (29) used in the 4MM-D model, in Figure 3.
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Figure 3. Higher order closure input for gas and liquid media according to collision model in
Table 1: (a) Momentum balance term, θssm; (b) energy flux balance term, θssξ .

18



The inset plots demonstrate there is departure between the approximations once the inelastic
channel begins to contribute significantly, specifically on intermediate energy ranges (0.1 eV - 10 eV)
commonly experienced in non-equilibrium low-temperature plasma modeling. We note a difference
between gas and liquid phase values as well, which the parameterized closure does not allow for.
This is the primary motivation to preference a direct substitution of steady state data as a function
of the electron mean energy, as opposed to parameterizing or assuming a simpler form of the higher
order terms.

3.4. Hat Field Benchmarks

In order to verify against similar benchmarks used in previous works, a simple hat perturbation of
a homogeneous background reduced electric field has been adopted [14, 40]. The hat perturbation
is placed downstream of an electron source emitting with a constant flux. Fluid models are solved
in the steady state over the domain in order to resolve the response of macroscopic variables to
the field change. The hat perturbation used previously increases the magnitude of the background
reduced electric field with a step function over a defined distance. The geometry of this benchmark
is outlined in Figure 4.

 s

LHAT

z=- z=0

HIGH

E
n0

SS

E
n0

LOW

E
n0

Figure 4. Hat and inverse hat field benchmark problem geometry

Studying the hat field benchmark allows the effect of inelastic collisions to be studied, and for the
performance of fluid models to be evaluated in this field-enhanced collision regime. By increasing
the reduced electric field the electron distribution function within the hat samples a larger portion
of the inelastic cross-section. If the increased reduced electric field is within a certain range a
balance between field driven heating and inelastic cooling is reached. This window phenomenon in
effect produces oscillating spatial structures in all macroscopic observables [21, 45]. By studying
the response of fluid models to this field, we may assess the ability, or inability, of these models to
account for such spatial structures.

In addition to the hat field benchmark that increases the magnitude of the reduced electric field, we
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also simulate an inverse hat field benchmark that reduces the magnitude of the reduced electric field.
This inverse hat field model has been chosen in order to examine the relaxation of momentum and
energy in low advection problems. Given that closure assumptions of the fluid equations directly
impact the divergence of the higher order tensors, and hence the diffusive transport of electron
number and energy, we feel it is vital to study a low-field benchmark that emphasizes the impacts
of diffusive transport.

We feel that benchmarking against the discussed hat and inverse hat problems provides a suitable
breadth of physical conditions to evaluate fluid models presented in this work. For example, the
increasing hat field can be compared to potentially sharp gradients found in field-enhanced tip
regions of streamer propagation [15, 47] or in sheath regions near boundaries [9, 12]. While
conversely, the reduced magnitude of the inverse hat field can be compared to regimes where electric
field screening occurs in the channel behind a propagating streamer [15, 47] or where an electric
field sheath transitions back into the bulk region of a plasma [9, 12].

3.4.1. Initial and Boundary Conditions A source emitting electrons at a constant rate at the
background reduced field’s steady state mean energy and drift velocity was placed far from the
reduced electric field perturbation, such that the electrons had relaxed to a steady-state for the
background field before reaching the field step.

Initially the domain was empty, n(z, 0) = 0, prior to the source being turned on. Each system of
fluid equations was evolved in time, using the numerical method outlined in Appendix A, until a
steady state solution was reached.

Simple boundary conditions for electron density, and thus fluxes and energy density, are used
through fixed Dirichlet conditions

n

(
−L

2
, t

)
= n

(
L

2
, t

)
= 0 (37)

where L is the length of the simulation domain. To further reduce the effect of boundaries the
computational domain was extended to avoid significant density transport within a fixed distance
of the boundaries.

3.4.2. Goodness of Fit In order to quantify how well each fluid model can produce physically
accurate results we present a goodness of fit table for each benchmark. Normalized mean square
error (NMSE) computations are performed for each fluid model solution when compared to the
physically detailed Monte Carlo solution. The NMSE of an approximation, fapprox, compared to
an exact value of the function, fexact, is defined as

NMSE =

∥∥∥∥ fexact − fapprox

fexact −mean (fexact)

∥∥∥∥2

, (38)
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where ‖...‖ indicates the 2-norm. In the interpretation of NMSE results, we note the bounds
0 < NMSE ≤ ∞, where NMSE = 0 indicates a perfect fit, NMSE = ∞ indicates a bad fit, and
NMSE = 1 implies the approximation is no better a fit than a straight line.

3.4.3. Standard Hat Field In Figures 5 and 6 we present steady state solutions of each fluid model
for the standard hat field benchmark in both gas and liquid phase. Tables 2 and 3 include the
NMSE goodness of fit values. For comparison a Monte Carlo (MC) solution of the benchmark
problem is included, computed from methods previously used by the JCU group [7, 26] . For the
steady state closure method advocated in this work the presented results are the same for both
4MM-SS and DDA-SS models, since the solution is in the steady state.

The fluid model results presented in Figures 5 and 6 and NMSE values in 2 and 3 demonstrate
strong agreement among fluid models for this benchmark in both gas and liquid phases. None of
the fluid models can reproduce the periodic structures found in the MC solution, consistent with
previous studies [14]. The Fourier and zero heat flux closures offer similar solutions which tend to
overshoot on rising and falling edges of the field perturbation. On the other hand, the 4MM-D and
DDA-SS solutions are generally monotonic, with the exception of an irregular peak on the falling
edge of the hat.

MC simulations demonstrating mean energy heating and cooling either side of the rising and falling
edges of the hat are not reproduced to the same magnitude by fluid models. This demonstrates
the non-local effects of the electric field change impacting transport properties some distance away.
The fluid models appear to be capable of resolving some of this non-local transport but not to the
extent found in the MC simulations, particularly in the liquid phase benchmark.

Overall there are minor observable differences among the fluid model results and all NMSE results
are very consistent across all variables, approaching zero, indicating a reasonable approximation in
the “line of best fit” sense for all variables with all fluid models used. It can be concluded that using
any of the fluid models provides a reasonable approximation to the steady-state electron transport,
excluding the periodic electron structures, in cases such as this benchmark
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Figure 5. Gas phase hat field perturbation benchmark as per Figure 4 where L̃HAT = 30,
E
n0

= −1Td : −10Td : −1Td

Table 2. NMSE for Figure 5 solutions for each fluid model compared against Monte Carlo result

Model nSS WSS 〈ε〉SS
DDA-SS 0.004 0.033 0.112
DDA-F 0.010 0.035 0.111
DDA-Z 0.007 0.037 0.111
4MM-D 0.005 0.032 0.112

22



200 220 240 260 280 300 320 340

0.2

0.4

0.6

0.8

1

1.2

200 220 240 260 280 300 320 340

2.5

5

7.5

10

12.5

15
10

4

200 220 240 260 280 300 320 340

0.8

1

1.2

1.4

1.6

1.8

MC DDA-SS DDA-F DDA-Z 4MM-D

Figure 6. Liquid phase hat field perturbation benchmark as per Figure 4 where L̃HAT = 50,
E
n0

= −1Td : −5Td : −1Td

Table 3. NMSE for Figure 6 solutions for each fluid model compared against Monte Carlo result

Model nSS WSS 〈ε〉SS
DDA-SS 0.024 0.016 0.015
DDA-F 0.013 0.011 0.015
DDA-Z 0.015 0.012 0.018
4MM-D 0.022 0.016 0.014

3.4.4. Inverse Hat Field Comparison of the fluid model results in Figures 7 and 8 and the NMSE
goodness of fit metrics in Table 4 indicate a significant difference between fluid models in this study.
It can be seen the Fourier and zero heat flux models significantly differ to the MC solution, whereas
the 4MM-D and DDA-SS models provide a qualitatively closer approximation to the actual solution
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for number density and mean velocity. The number density profiles for the DDA-F and DDA-Z
models offer a completely different qualitative result compared to the MC result because of the
overshoot of the mean velocity profiles; in order for the particle flux to remain constant in the
steady state, the number density must compensate for the overshoot in the mean velocity, leading
to the erroneous results in Figures 7 and 8.

The discrepancy between MC results and fluid models isn’t as pronounced for the liquid phase
transport, compared to the gas phase. An effect of the inclusion of coherent scattering for the
liquid phase results in a longer momentum relaxation distance in liquid phase transport, which
appears to assist the fluid models in reproducing some of the results.

In contrast, the 4MM-D and DDA-SS models provide a better approximation of the mean velocity
leading to a closer approximation of the number density, and implying these models handle the low
advection transport regime much better than the other two models.

The agreement in the mean energy profiles is much tighter than the lower two moments, with all
fluid models doing reasonably well in approximating the MC solution. We note that while 4MM-D
and DDA-SS models have very similar NMSE values, Figure 7 shows the 4MM-D model produces
incorrect relaxation behavior on the falling edge of the inverse hat. The Fourier model solution
offers a very good fit within the hat region, but the inaccuracy of the number density and mean
velocity results detracts from this positive result for the DDA-F model.

Noticeably, in Figure 8, none of the fluid models provide a good approximation to the liquid phase
mean energy relaxation inside the inverse hat perturbation. It appears the longer liquid phase
relaxation length is better approximated by the DDA-SS and 4MM-D models when compared to
the MC mean energy, but the attenuation of the energy is not well described. The opposite appears
to be the case for DDA-F and DDA-Z results, which attenuate the mean energy to a lower value
but the relaxation length is considerably different than the MC result.
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Figure 7. Gas phase inverse hat field perturbation benchmark as per Figure 4 where L̃HAT = 30,
E
n0

= −1Td : −0.1Td : −1Td

Table 4. NMSE for Figure 7 solutions for each fluid model compared against Monte Carlo result

Model nSS WSS 〈ε〉SS
DDA-SS 0.018 0.011 0.017
DDA-F 0.491 0.170 0.008
DDA-Z 0.267 0.293 0.011
4MM-D 0.030 0.014 0.027
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Figure 8. Liquid phase inverse hat field perturbation benchmark as per Figure 4 where
L̃HAT = 50, E

n0
= −1Td : −0.2Td : −1Td

Table 5. NMSE for Figure 8 solutions for each fluid model compared against Monte Carlo result

Model nSS WSS 〈ε〉SS
DDA-SS 0.037 0.076 0.417
DDA-F 0.228 0.113 0.365
DDA-Z 0.136 0.121 0.361
4MM-D 0.032 0.076 0.421

3.5. Spatiotemporal Pulse Evolution

As a supplement to the steady state hat field benchmark, which provides some non-equilibrium
effects near the field perturbations, the transient evolution of a Pulsed Townsend experiment initial
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pulse was studied to study the ability of the presented fluid models to resolve time-dependent
transport effects. Study of this benchmark allows the performance of the fluid models in a
sharp gradient, non-hydrodynamic, and non-equilibrium regime to be assessed. For brevity this
benchmark is presented for gas phase transport only, as liquid phase results were very similar.

This simulation takes place by releasing the narrow pulse in a homogeneous background reduced
field, and simulating the space-time evolution. Sample times were taken at approximately 10 and
100 momentum transfer relaxation times, and 5 energy transfer relaxation times. These sample
times were chosen to demonstrate the solution variations over different physical regimes in order to
assess which fluid models provide the best overall response.

For this benchmark comparison a multi-term solution of the Boltzmann equation detailed by Boyle
et al. [27] has been included as a reference solution.

For this benchmark the reduced electric field was fixed at
E

n0
= −3 Td such that Wz =

1.385×104 ms−1, 〈ε〉 = 0.8337 eV are the steady state drift velocity and mean energy respectively.

3.5.1. Initial and Boundary Conditions The transient pulse benchmark was set by an initial
condition of a narrow Gaussian number density

fn (z̃) =
1

∆z̃0

√
2π

exp

[
−1

2

(
z̃

∆z̃0

)2
]
, (39)

where ∆z̃0 = 0.1, and fixed in velocity space by a drifted Maxwellian distribution

fv (v) = fn (z)

(
m

2πkBT

) 3
2

exp

[
− m

2kBT
(v −W)

2

]
, (40)

where T = 104 K and W = 105 ms−1Ê.

Initial conditions for fluid model computational variables are determined by integrating (15) - (17)
over the distribution function

f (U, r, 0) = Afn (z̃) fv (v) , (41)

where A is a normalization constant such that
´
U

1
2 f (U, r, 0) dU = 1. Evaluation of these gives

n (r, 0) = fn (z̃) (42)

Γ (r, 0) = fn (z̃) W,

nε (r, 0) = fn (z̃)

(
3

2
kBT +

1

2
meW

2

)
,

Γε (r, 0) = fn (z̃)

(
5

2
kBT +

1

2
meW

2

)
W.

Dirichlet boundary conditions described for the steady state hat benchmark were employed for the
transient pulse evolution.
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3.5.2. Number Density Evolution The number density evolution displayed in Figure 9
demonstrates that at short times dominated by momentum relaxation no fluid model provides
an exact replication of the kinetic result, consistent with expected accuracy bounds of fluid models
[12, 14, 18]. Despite all fluid model results being more diffusive than the kinetic solution, none
demonstrate concerning variation from the general qualitative behavior of the accurate kinetic
solution.
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Figure 9. Transient evolution of electron density from narrow Gaussian pulse. Gas phase media
as per Table 1 with background E

n0
= −3Td.

Considering the intermediate regime between momentum and energy relaxation processes in Figure
9 shows better agreement to the kinetic solution for all fluid models apart from the 4MM-D model.
This demonstrates the effects of higher density diffusivity due to closure assumptions in the 4MM-D
model.
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As time continues, and energy relaxation becomes the dominant process, the variation between
fluid solutions is shown in Figure 9. It can be plainly seen the zero heat flux and Fourier closure
assumptions produce profiles that poorly fit the kinetic result. They are both forward peaked, and
inaccurately predict the back-diffusion seen behind the bulk of the pulse. The 4MM-D closure
performs slightly better, except in the region behind the bulk of the pulse, where it appears back-
diffusion has not been modeled accurately. Finally we see the 4MM-SS result remains a suitable
“line of best fit” approximation to the kinetic solution.

3.5.3. Mean Velocity Evolution From the evolution of mean velocity shown in Figure 10 it can be
seen that the 4MM-SS continues to provide a closer approximation to the kinetic solution across
all three time scales. At early times, the non-hydrodynamic transport of the kinetic solution is not
replicated by any fluid model yet the steady state closure provides the closest comparison compared
to the other discussed fluid models.
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Figure 10. Transient evolution of electron mean velocity from narrow Gaussian pulse. Gas
phase media as per Table 1 with background E

n0
= −3Td.

During the transition between momentum and energy relaxation times there’s better comparison
for most of the fluid models, with the exception of the zero heat flux model. However at the longest
time scale the discrepancies between each fluid model can be seen. In the regions close to, and
behind, the origin the mean velocity is best predicted by the 4MM-SS model. While the remaining
fluid models provide an over estimation of the mean velocity, particularly in back diffusion regions
behind the origin. As the pulse relaxes into a smooth-gradient hydrodynamic regime, the agreement
becomes asymptotically better across all fluid models, as one might expect.

3.5.4. Mean Energy Evolution Mean energy variation is much simpler to identify in this benchmark
compared to the previous macroscopic observables. At short times Figure 11 shows a qualitative
agreement to the quadratic-like shape of the kinetic solution - apart from the 4MM-D model.
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The zero heat flux model underestimates the mean energy consistently, while the Fourier closure
appears to perform quite well. The 4MM-SS model overestimates the mean energy in the bulk
of the pulse, and underestimates on the fringes. Overall, the approximations of most fluid models
perform qualitatively well in this time sample.
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Figure 11. Transient evolution of electron mean energy from narrow Gaussian pulse. Gas phase
media as per Table 1 with background E

n0
= −3Td.

As time advances into the two final sample times in Figure 11, it can be seen most fluid models
fail to approximate the kinetic solution well apart from the 4MM-SS model. The DDA-Z and
DDA-F models show that on the fringes of the pulse the mean energy is severely overestimated,
while generally underestimating in the bulk of the pulse. The 4MM-D model continues to suffer
inaccuracies in regions experiencing back diffusion effects, but does regain some accuracy in the
long time regime when predicting the energy relaxation into the hydrodynamic regime.
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The 4MM-SS demonstrates the ability to generally resolve a “line of best fit” approximation to the
kinetic solution across multiple time scales. As a supplementary benchmark to the steady state hat
field benchmark results, we believe the presented transient evolution results are a good indicator
of the general accuracy that the 4MM-SS steady state distribution closure provides. We believe
the strength of this model lies in reverting to a steady state limit to provide a physical distribution
when predicting transport, this is especially clear in regions where back diffusion of energy and
density are found.

3.6. Distribution effects and implications for fluid modeling

In order to understand the results and limitations of the presented fluid models the energy
distribution function was studied. Given that the majority of modern fluid models utilize the
local mean energy approximation in evaluation of collisions, and possibly closure, it is important
to understand the role of the distribution function in producing results such as spatially periodic
structures that fluid models currently cannot reliably produce.

In order to study the energy distribution function effects a transient kinetic solution of the
Boltzmann equation, discussed in the previous section, was sampled after approximately five energy
relaxation time periods, 5τe. At this time the initial energy distribution will have sufficiently relaxed
to reduce sharp non-hydrodynamic effects. At the sample time the mean electron energy can be
plotted, as shown in Figure 12, and samples in position-space can be taken where the mean-energy
coincides with the steady-state mean energy value of 0.8337 eV.
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Figure 12. Transient mean energy evolution at tsample ≈ 5τe indicating sample points coinciding
with 〈ε〉ss = 0.8337 eV

The typical form of the distribution function component U
1
2 f0 (U) at the spatial points

corresponding to the same steady-state mean energy value are shown in Figure 13. For comparison
the steady-state energy distribution function component, found by simulating the kinetic solution
for a very long time, and that of a drifted Maxwellian energy distribution function, coinciding with
the steady-state drift and energy, are also plotted.
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Figure 13. Comparison of typical energy distribution functions, U
1
2 f0 (U), for transient heating

and cooling regimes. Steady state distribution and drifted Maxwellian shown for comparison.

From the representative distribution functions it can be seen the qualitative form of the energy
distribution function varies significantly between heating and cooling regimes in the transient
evolution. It was found that distribution functions on the leading edge of a so called Franck-Hertz
oscillation correspond to a forward peaked distribution function, but do not significantly impinge
past the inelastic threshold until they reach the peak of the oscillation. Conversely, samples on the
falling edge of the oscillation contain a bi-modal distribution due to inelastic collisions shifting high
energy electrons that were gradually heated on the leading edge regime down to a lower energy in
the distribution.

Compared to the steady-state and drifted Maxwellian distribution function both heating and cooling
distributions are quite different. As a result we determine that this distribution variation is a key
cause of the deficiencies in the local mean energy approximation used in plasma fluid modeling.
Until the local mean energy approximation is improved, in order to capture distribution variation,
the complex spatial structures such as Franck-Hertz oscillations, will not be resolvable with a fluid
method.
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4. Conclusion

In this study we have presented the framework for a unified approach to electron fluid modeling
in gas or liquid media. Through coherent scattering modifications, the fluid model accommodates
some liquid structure effects which have a considerable effect on electron transport. Furthermore,
the model has the flexibility of incorporating future additional liquid processes, such as solvation, via
including additional electron collision cross sections into the computation of steady state collision
rates.

Within the presented fluid model framework, we have implemented a fluid equation closure method
that we believe has the ability to consistently produce physically sound approximations across a wide
range of regimes in both gas and simple liquid media. Comparison to fluid models commonly used in
the low-temperature plasma modeling community was performed, and demonstrated improvements
were observed in low field regimes. This was demonstrated by a series of high electric field and
low electric field hat benchmarks, solved for analogous gas and liquid phase electron transport
with a simplified step-inelastic collision model. Despite the simplicity of the collision model, and
the benchmarks, we believe the results presented emphasize the importance of closure in fluid
modeling, and the ability of the steady state closure method to obtain good approximations across
different physical regimes.

To supplement the steady state hat field benchmarks, the impacts of closure on the transport
of a transient non-hydrodynamic, non-equilibrium pulse in a homogeneous reduced electric field
were also presented. It was shown that over multiple time scales, the approximation of an accurate
multi-term Boltzmann equation solution was best estimated by the steady state closure assumption.

Finally, we addressed an energy distribution effect that we believe contributes significantly to the
inability of fluid models to reproduce spatial periodic structures, such as Franck-Hertz oscillations.
It was shown that although generally sound, in a spatially averaged sense, the local mean energy
approximation of collision, and closure, terms will not be able to reproduce strongly varying
distribution function effects in its current form. Field driven heating and inelastic collision driven
cooling regimes were shown to produce widely different distribution functions in a periodic structure
regime, which the LEA simply cannot produce in its current form.

In this work we have laid the foundation for applying the presented electron fluid model to the study
of electron transport in simulated plasma-liquid interfaces in future work. We hope to motivate
future additions of other liquid effects into fluid modeling, such as polar liquid effects and electron
solvation processes. We also look to stimulate further studies on improving collision approximation
methods in order to capture distribution effects, and novel methods of closing higher order moments
in charged particle fluid modeling.

35



Acknowledgments

NG acknowledges financial support from the Australian Government through the Australian
Postgraduate Award, and JCU through the HDR Research Enhancement Scheme. SD acknowledges
support from MPNTRRS Projects OI171037 and III41011.

Appendix A. Numerical Considerations

Appendix A.1. Solution Scheme

The systems of hyperbolic transport equations were solved using a finite differences Flux Corrected
Transport (FCT) method [42–44]. Using the FCT method a monotonic, stable lower order solution
was implemented via first order upwinding on vector divergences and second order central differences
on scalar gradients [43, 44]. This lower order scheme was enhanced by a fourth order central
difference scheme as prescribed by Zalesak [43]. As for the fourth order discretization, the FCT
flux limiter prescribed by Zalesak was used in this work.

Time stepping was performed via the Runge-Kutta fourth order (RK4) method with a Courant-
Friedrich-Lewy (CFL) condition imposed to ensure stability. The CFL condition was fixed to ensure
∆t did not exceed reasonable fractions of momentum and energy relaxation time scales. Overall
the solution scheme generally provides fourth order accuracy in time and space, however to ensure
physical solutions, it may reduce to a non-linear combination of the first and fourth order schemes
in the presence of sharp gradients [44].

Benchmarking of the numerical scheme was performed on simpler test problems before applying to
more involved models discussed in this work. The numerical scheme was successfully benchmarked
against square-wave advection problems, Gaussian pulse advection-diffusion problems, and Sod’s
shock tube benchmark CFD problem [42–44].

Appendix A.2. Dimensional Scaling

Before numerically solving the systems of equations presented dimensional scaling was performed.
Scaling is done in order to introduce numerically sound quantities on the order of unity, for example
converting Joules to electronvolts. Additionally, this allows neutral gas density dependence to be
scaled out of the systems of equations, by introducing variables such as the reduced electric field,
E
n0

.

The length scale of this study is a scattering mean free path, λ̃, in a neutral gas of density n0 with
a representative scattering cross section of σ0 = 1Å2

λ̃ =
1

σ0n0
m,
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such that z = λ̃z̃ where z̃ is a dimensionless length variable.

The electron mass is simply chosen as the mass unit scale such that conversion from dimensionless
mass m̃ is

m = mem̃.

While an energy of 1 eV is simply chosen as the energy unit scale so that such that conversion from
electronvolts ε̃ is

ε = eε̃.

A time scale can be defined via the chosen mass, length, and energy scales

τ̃ = λ̃

√
me

2e
s,

such that t = τ̃ t̃ where t̃ is dimensionless time.

Finally, the reduced electric field of 1Td = 1× 10−21 Vm2 is chosen as the field scale,

E

n0
= 1× 10−21 Ẽ

n0
Vm2,

where
Ẽ

n0
is the reduced field in Townsend.

Appendix A.3. Hat Field Benchmark Numerics

Discretization of the hat field benchmark was fixed by a fraction of the Franck-Hertz wavelength
of any expected periodic structures that are known to appear for this collision model [45, 48]. The
Franck-Hertz wavelength for a given collision model is

λ̃FH =
εinel

0.1 E
n0

where εinel is the threshold energy of the inelastic process in eV and E
n0

is the reduced electric field

in Townsend [48]. In this work the spatial step size was fixed at ∆z̃ = λ̃FH
40 with a CFL condition

of ∆t̃
∆z̃ = 0.1 imposed.

Appendix A.4. Transient Pulse Benchmark Numerics

Numerical discretization of the fluid model solutions was forced to be the same as the detailed
kinetic solution used to compare performance of the models. The details and implementation of
the kinetic solution used as a benchmark solution in this study can be found in the recent work
of Boyle et al. [27]. The consistent discretization scheme was chosen to give a stronger basis for
comparing solutions directly.
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