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ABSTRACT  16	

Functional traits have been fundamental to the evolution and diversification of entire 17	
fish lineages on coral reefs. Yet their relationship with the processes promoting 18	
speciation, extinction and the filtering of local species pools remains unclear. We 19	
review the current literature exploring the evolution of diet, body size, water column use 20	
and geographic range size in reef-associated fishes. Using published and new data, we 21	
mapped functional traits on to published phylogenetic trees to uncover evolutionary 22	
patterns that have led to the current functional diversity of fishes on coral reefs. When 23	
examining reconstructed patterns for diet and feeding mode, we found examples of 24	
independent transitions to planktivory across different reef fish families. Such 25	
transitions and associated morphological alterations may represent cases in which 26	
ecological opportunity for the exploitation of different resources drives speciation and 27	
adaptation. In terms of body size, reconstructions showed that both large and small sizes 28	
appear multiple times within clades of mid-sized fishes and that extreme body sizes 29	
have arisen mostly in the last 10 million years (Myr). The reconstruction of range size 30	
revealed many cases of disparate range sizes among sister species. Such range size 31	
disparity highlights potential vicariant processes through isolation in peripheral 32	
locations. When accounting for peripheral speciation processes in sister pairs, we found 33	
a significant relationship between labrid range size and lineage age. The diversity and 34	
evolution of traits within lineages is influenced by trait–environment interactions as 35	
well as by species and trait–trait interactions, where the presence of a given trait may 36	
trigger the development of related traits or behaviours. Our effort to assess the evolution 37	
of functional diversity across reef fish clades adds to the burgeoning research focusing 38	
on the evolutionary and ecological roles of functional traits. We argue that the 39	
combination of a phylogenetic and a functional approach will improve the 40	
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understanding of the mechanisms of species assembly in extraordinarily rich coral reef 41	
communities. 42	
 43	
Key words: diversification, coral reef, evolution, body size, life-history traits, 44	
planktivory, range size, reef fish ecology. 45	
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I. INTRODUCTION 64	

Traits can be defined as any morphological, physiological, or phenological feature 65	

usually measurable at the individual level of a species. Such features arise in lineages 66	

through evolutionary time, usually being shared by species that have a recent common 67	

ancestry (Webb et al., 2002; Peres-Neto, 2004; Swenson et al., 2006; Kraft et al., 2007). 68	

On an ecological timescale, traits can mediate species interactions, thus influencing the 69	

distribution of organisms and the structure of local communities. The interactions 70	

among species are trait-mediated and have the potential to affect evolutionary processes, 71	

which in turn act upon species’ ecological roles and the diversity of traits available in 72	

the regional pool (Cavender-Bares et al., 2009). In this way, species traits form a link 73	

between phylogenetic history (evolution and evolutionary time) and ecological 74	

processes. 75	

Functional traits are defined as properties of an organism that influence their 76	

ecological and evolutionary performances in nature (Tilman, 2001; McGill et al., 2006; 77	

Violle et al., 2007; Mouillot et al., 2013). These organismal traits are used as currency 78	

in the comparisons made among sets of species, often as a measure of functional 79	
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diversity (Walker, Kinzig & Langridge, 1999; Tilman, 2001; McGill et al., 2006). Since 80	

traits affect ecosystem processes, a functional approach to studying biodiversity is 81	

essential to further our understanding of mechanisms and historical–evolutionary 82	

processes that have shaped current patterns of biodiversity (Loreau et al., 2001; Hooper 83	

et al., 2002; McGill et al., 2006). Most advances in understanding the evolution of 84	

functional traits and the mechanisms of species (and trait) assembly have come from 85	

studies conducted in terrestrial communities, particularly plant communities (Webb, 86	

2000; Webb et al., 2002; Reich et al., 2003; Ackerly, 2009). The study of plant ecology 87	

and evolution has set the basis for the relationship between diversity and ecosystem 88	

functioning (Tilman et al., 1997; Tilman, 2001), the measure of functional attributes 89	

(Diaz, Cabido & Casanoves, 1998; Westoby & Wright, 2006), the concept of traits 90	

(Violle et al., 2007) and the mechanisms of local species pools and trait assembly 91	

(Webb, 2000; Webb et al., 2002; Ackerly, 2009). In the sea, only a handful of studies 92	

have examined the evolution of functional traits through time (Vermeij, 1977; Jablonski 93	

& Sepkoski, 1996), mostly for assemblages inhabiting coral reefs (e.g. Wood, 1999; 94	

Goatley, Bellwood & Bellwood, 2010; Bellwood, Goatley & Bellwood, 2016). 95	

For fish species, life-history traits linked to food acquisition and locomotion 96	

mediate species ecological roles and influence ecosystems processes (Winemiller, 1991; 97	

Holmlund & Hammer, 1999; Mouillot et al., 2013, 2014; Winemiller et al., 2015). Fish 98	

traits have also been fundamental to the evolution and diversification of entire fish 99	

lineages on coral reefs (Cowman, Bellwood & van Herwerden, 2009; Price et al., 2011). 100	

Although coral reefs present an extremely rich fish assemblage with at least 50 101	

evolutionary transitions to reef-dwelling within Acanthomorpha (spiny-rayfinned 102	

fishes) alone (Price et al., 2014), some families (e.g. butterflyfishes – Chaetodontidae, 103	

wrasses and parrotfishes – Labridae, surgeonfishes – Acanthuridae, angelfishes – 104	

Pomacanthidae, damselfishes – Pomacentridae, cardinalfishes – Apogonidae) are 105	

considered typical ‘reef’ fish families with most species being dependent on coral reef 106	

environments across the globe (e.g. Bellwood, 1996; Cowman, 2014). Several of these 107	

families have formed the core focus of recent studies that characterize how particular 108	

species traits map onto a reconstructed phylogenetic hypothesis (e.g. Bellwood et al., 109	

2010; Price et al., 2011; Frédérich et al., 2013; Lobato et al., 2014), and how they 110	

correlate with the observable evolutionary history of a group of species. However, it 111	

remains unclear whether any of these traits can be linked to the processes promoting 112	

speciation, extinction, or the assembly of local species pools. Here we use new and 113	
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updated life-history trait reconstructions of some of these core reef-associated fish 114	

families, as well as re-analyses of published reconstructions, better to understand 115	

evolutionary patterns that have led to the functional diversity found on coral reefs today. 116	

We further discuss patterns reported in other fish families found on coral reefs that 117	

might be influenced by different evolutionary processes but for which we have less 118	

information. We provide future directions to this emerging field of functional 119	

phylogenetics. Moving forward, a combination of phylogenetic and functional 120	

assessment methods will improve our understanding of the mechanisms that shape 121	

species assemblages, particularly the extraordinarily rich communities associated with 122	

coral reefs. 123	

 124	

 II. THE EVOLUTION OF FEEDING MODES OF REEF FISHES 125	

The evolution of feeding modes has been an important topic in the origins of modern 126	

coral reef assemblages (Bellwood et al., 2015). The distinctness of a ‘reef-like’ 127	

assemblage in the fossil record is not only signalled by the taxonomic make-up of a 128	

lagerstätten (Bellwood, 1996), but also by the functional attributes of fossils (Goatley et 129	

al., 2010; Bellwood et al., 2014b). Particularly interesting are those that indicate the 130	

presence of potentially herbivorous taxa (Bellwood et al., 2014a), precursor lineages to 131	

modern herbivores and detritivores that provide critical functions on modern coral reefs 132	

(Hoey & Bellwood, 2008; Bonaldo, Hoey & Bellwood, 2014). Traditionally, the groups 133	

that are presently the most conspicuous and abundant in reef habitats have well-resolved 134	

(but still incomplete) dated phylogenies and have garnered the most interest in the 135	

evolution of feeding modes. Examples include the families Chaetodontidae, Labridae, 136	

Pomacanthidae, and Pomacentridae. While these families are considered classic ‘coral 137	

reef’ fish families, they also contain species that are abundant on sub-tropical and 138	

temperate rocky reefs as well as other non-reef habitats. 139	

The wrasse family Labridae, including the parrotfish and odacid lineages 140	

(Westneat & Alfaro, 2005), has been the most popular reef fish family for trophic 141	

exploration (Westneat, 1995; Westneat et al., 2005; Alfaro et al., 2009; Cowman et al., 142	

2009; Kazancioglu et al., 2009; Price et al., 2011; Lobato et al., 2014). There has been a 143	

progressive increase in the phylogenetic resolution of this family and its major lineages 144	

over the past decade (Bernardi et al., 2004; Westneat & Alfaro, 2005; Read, Bellwood 145	

& Van Herwerden, 2006; Cowman et al., 2009; Cowman & Bellwood, 2011; Choat et 146	

al., 2012) although sampling remains incomplete (Cowman, 2014). With over 600 147	
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species (Parenti & Randall, 2011), labrids and parrotfish represent one of the most 148	

diverse reef fish taxonomic groups, second only to the Gobiidae in species richness on 149	

coral reefs. Within the family Labridae there is an array of feeding modes (Fig. 1), both 150	

specialized and generalist, found globally across coral reef ecosystems. These include 151	

gastropod feeders, foraminifera feeders, herbivores, piscivores, planktivores, 152	

corallivores and obligate fish cleaners (Wainwright et al., 2004; Bellwood et al., 2006). 153	

The rise of the more-specialized feeding modes in Labridae – foraminifera, coral 154	

mucous, plankton and ectoparasite feeders (fish cleaners) – dates to the 155	

Oligocene/Miocene epoch from 30 to ~7.5 million years ago (Ma; Cowman et al., 156	

2009). This second wave in trophic origination comes after an initial establishment of 157	

generalist feeding modes (gastropod feeding, piscivory and herbivory) in the 158	

Paleocene/Eocene, and appears linked to the expansion of scleractinian-dominated 159	

reefs. The evolution of trophic novelty and functional morphological diversity within 160	

Labridae occurred more rapidly for those species inhabiting coral reefs (assuming more 161	

competition and resource diversity), in comparison to non-reef species (Price et al., 162	

2011). While reef occupation is also linked to higher diversification within families 163	

(Cowman & Bellwood, 2011), species richness and morphological disparity do not 164	

seem to be correlated within lineages (Price et al., 2015). 165	

Despite the outstanding diversity of trophic groups found in labrids, certain 166	

feeding modes are highly conserved within lineages (Fig. 1). For instance, the variety of 167	

modes of herbivory/detritivory (browsing, scraping and excavating) are mostly 168	

restricted to the parrotfish clade (Scarini), a lineage that emerged during the early 169	

Eocene 48.9 Ma (Cowman et al., 2009). Macroalgae browsing is probably the ancestral 170	

mode of herbivory within parrotfish (Cowman et al., 2009), which has been retained in 171	

the Atlantic restricted Sparisoma genus, followed by the origin of ‘excavating’ in 172	

Bolbometopon and Chlorurus genera (28.8 and 7.4 Ma), and finally ‘scraping’ in the 173	

Scarus/Hipposcarus lineage (11.8 Ma). The evolution of excavating and subsequently 174	

scraping culminated in the critical processes we see today governing reef dynamics: the 175	

recycling of reef sediment and reef calcium carbonates, and the grazing of algae 176	

(Bonaldo et al., 2014). Over the last 10 million years (Myr) there has been great 177	

diversification within the parrotfish group (see Fig. 1), leading to species-rich clades 178	

that appear to be associated with a switch to relatively low-quality food ingestion 179	

(Lobato et al., 2014). In the Scarus genus alone, there are 53 species (Parenti & 180	

Randall, 2011). Herbivory has also arisen in the hypsigenyines clade: Pseudodax 181	
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moluccanus (~30 Ma), Odax pullus, O. cyanoallix (~10 Ma) and Neodax balteatus (~5 182	

Ma), although most are found on temperate rocky reefs. 183	

 Foraminifera feeding, coral feeding and fish cleaning are the most recent feeding 184	

strategies in the Labridae family and arose within the crown group julidines (Cowman 185	

et al., 2009). Foraminifera feeding evolved approximately 15 Ma being highly 186	

conserved across the Macropharyngodon lineage. Coral feeding evolved within the 187	

labrichthyines (~20 Ma; Larabicus, Diproctacanthus, Labropsis, Labrichthys genera), 188	

as did obligate fish cleaning (less than 10 Ma), both feeding modes being conserved 189	

within lineages. Yet fish cleaning – obligate, facultative and by juveniles – has evolved 190	

independently 26–30 times within the Labridae family as a whole (Baliga & Law, 191	

2016). While cleaning behaviour by juveniles and facultative cleaning appear to be a 192	

much more labile trait (Baliga & Law, 2016), members of the Labroides lineage are the 193	

only species in Labridae that are specialized to obligate fish cleaning as adults. In the 194	

Labroides lineage, fish cleaning as adults evolved only once and is derived from a 195	

coral-feeding lineage in labrichthyines (~9 Ma; Fig. 1). Possibly, the morphological 196	

adaptations required to feed on such a specialized diet as ectoparasites were only 197	

possible through the already highly adapted coral feeders in the labrichthyines. Within 198	

butterflyfishes several species do clean as juveniles (and some even as adults; 199	

facultative cleaners), and this habit has also evolved in different clades (Heniochus, 200	

Chaetodon and Johnrandallia). 201	

The expansion of reef habitat in the Miocene appears to be important in the 202	

functional evolution of many other associated lineages. In the family Chaetodontidae 203	

(butterflyfishes and bannerfishes), a switch to coral reef habitat appears to have 204	

underpinned elevated cladogenesis of the genus Chaetodon (90 species), with 205	

subsequent multiple origins (five times) of corallivory within the family (Fig. 2; 206	

Bellwood et al., 2010). Obligate corallivory evolved rather recently, over the last 10 207	

Myr (15.7–3.2 Myr, Bellwood et al., 2010), with most species feeding on hard corals 208	

and some on soft coral. This feeding mode first appeared in the Chaetodon clade C3, 209	

around ~15 Ma (Fig. 2). Within this clade, the majority of taxa are obligate corallivores, 210	

exhibiting strong association to the reef substrate (Bellwood et al., 2010). Around 8 Ma 211	

this feeding mode evolved in clade 4 (C4 in Fig. 2), although in this lineage species are 212	

obligate soft coral feeders and represent significantly fewer lineages. Corallivory can be 213	

an extremely specialized diet to the point of species feeding on only a couple of coral 214	

species, or ingesting specific parts of the coral, or even feeding only on coral mucous 215	
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(Berumen & Pratchett, 2008; Cole, Pratchett & Jones, 2008). This move to relatively 216	

low-quality food (algae, detritus, sponges and corals) may have accelerated 217	

diversification in different reef fish clades (Acanthuroidei, Labridae, Pomacentridae and 218	

Chaetodontidae), mediated by ecological opportunity to fill available niche-space 219	

(Lobato et al., 2014). Ecological constraints might also lead to diet shifts within 220	

lineages, as documented for the Parachaetodon lineage. Departure of Parachaetodon 221	

from a coral-based diet to omnivory could be explained by coral decline in a given 222	

marine basin (Bellwood et al., 2010). Overall, corallivory evolved very recently and 223	

independently across Chaetodontidae, and these shifts may have promoted some 224	

diversification within clades, yet significant rate shifts within Chaetodon appeared 225	

earlier and are linked with a change to coral reef dwelling (Bellwood et al., 2010, 226	

Cowman & Bellwood, 2011). Today, butterflyfishes are among the most iconic 227	

inhabitants of reefs, closely associated with, and indicative of ecological conditions in 228	

coral-dominated environments, in the case of obligate corallivore species (Kulbicki, 229	

Bozec & Green, 2005; Pratchett, Berumen & Kapoor, 2014). 230	

Although there is exceptional diversity in corallivorous species found within the 231	

chaetodontids, corallivory appeared earlier in the Labridae family, ~29 Ma (Fig. 1). 232	

According to Bellwood et al. (2010), the shift to corallivory identified in 233	

Chaetodontidae coincides with a rise in this feeding mode across other reef fish 234	

families. This specialization occured in a context of broader modifications that were 235	

taking place in reef environments during the Miocene (from ~23 to 5 Ma), including a 236	

number of novel reef-fish interactions – foraminifera feeding, fish cleaning, and an 237	

increase in detritivory (Harmelin-Vivien, 2002). This revolution in the reef functional 238	

system is concordant with the expansion of Acropora and Pocillopora corals (Johnson, 239	

Jackson & Budd, 2008; Bellwood et al., 2016).  240	

Damselfishes (family Pomacentridae) have been present in coral reef ecosystems 241	

for at least 50 Myr (Bellwood, 1996; Bellwood et al., 2015), being the third most 242	

species-rich family on contemporary reefs, after Gobiidae and Labridae (Cooper, Smith 243	

& Westneat, 2009). The pomacentrids comprise over 390 species and might be one of 244	

the most successful radiations of coral reef fishes, being diverse, locally abundant 245	

(Cooper & Westneat, 2009; Frédérich et al., 2013), and occupying different trophic 246	

niches (Cooper et al., 2009, 2017). Dietary behaviour appears to be the main driver of 247	

morphological evolution in damselfishes (Frédérich et al., 2008; Cooper & Westneat, 248	

2009; Aguilar-Medrano et al., 2011; Frédérich & Vandewalle, 2011). Indeed, similar 249	
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trophic strategies (i.e. pelagic, intermediate and benthic feeding) and morphologies (oral 250	

jaw shape and body size) evolved repeatedly across Pomacentridae subclades over the 251	

last 20 Myr. The diversity of trophic strategies and ecomorphological traits within this 252	

family can be attributed to convergent radiations throughout its phylogenetic history, 253	

possibly driven by competition, functional constraints and the regionalization of coral 254	

reefs (Frédérich et al., 2013). This iterative ecological diversification (predictable 255	

patterns in the evolution of phenotypic traits; Losos, 2011) also appears to mediate 256	

constant rates of cladogenesis among clades in Pomacentridae (Frédérich et al., 2013). 257	

Interestingly, convergence in ecomorphological traits has also been observed in the 258	

evolution of triggerfishes (family Balistidae) with distantly related species that are part 259	

of the same guild presenting similar skull and jaw muscle structures (McCord & 260	

Westneat, 2016).  261	

The evolutionary history of marine angelfishes (Pomacanthidae) spans at least 38 262	

Myr (Bellwood, van Herwerden & Konow, 2004; Gaither et al., 2014). Like 263	

chaetodontids, pomacanthids represent a conspicuous element of reef assemblages 264	

across the globe (Allen, Steene & Allen, 1998). The family displays a diverse ecology, 265	

with striking variations in body size, colour patterns, reproductive systems and diets that 266	

range from herbivory to planktivory (Bellwood et al., 2004). Pomacanthids also contain 267	

unique functional novelties (Konow & Bellwood, 2005) that allow the protrusion of the 268	

lower jaw, a rare feature in teleost fishes (Westneat & Wainwright, 1989). Jaw 269	

protrusion was key to the evolution of predator–prey interactions of spiny-rayed fishes 270	

(acanthomorphs) over the last 100 Myr (Bellwood et al., 2015). During this period, 271	

spiny-rayed fishes have become dominant in fish assemblages while the extent of the 272	

premaxilla protrusion increased across lineages, enhancing their ability to catch prey 273	

(Bellwood et al., 2015). In pomacanthids, further jaw modifications have allowed the 274	

closure of the jaw once protruded, creating a ‘grab-and-tear’ action (Konow & 275	

Bellwood, 2005). This grab-and-tearing feeding mode has appeared only once in the 276	

evolutionary history of the family (Konow & Bellwood, 2011). The combination of 277	

variations in gut morphology and disparities in species body size has resulted in the 278	

evolution of a range of trophic modes within Pomacanthidae (Konow & Bellwood, 279	

2011). The large and robust bodies (with strong bites) of Pomacanthus species enabled 280	

the utilization of sponges and tunicates as food items. By contrast, small-bodied 281	

Centropyge [Xiphypops] feed on delicate foliaceous algae through a combing or 282	

shearing strategy (Konow & Bellwood, 2011). This genus, along with its sister-taxon 283	
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Genicanthus has experienced rapid diversification and represents 25% of extant 284	

angelfish diversity (88 species) (Allen et al., 1998; Konow & Bellwood, 2011). In their 285	

Indo-Pacific angelfish study, Konow & Bellwood (2011) found that Genicanthus 286	

exhibited restricted mouth movements, and its divergent feeding mode within 287	

Pomacanthidae corresponds to a functional reversal to planktivory (Howe, 1993; Elliott 288	

& Bellwood, 2003). This dietary shift to an ancestral suction-feeding mode (Lauder, 289	

1982) will be discussed in Section III. 290	

 291	

III. WATER COLUMN USE AND SHIFTS TO PLANKTIVORY  292	

The level in the water column occupied by a fish species is critical for determining its 293	

ecological niche as it influences the set of potential prey items available to consumers as 294	

well as patterns of resource use. Evolutionary shifts in water column use can be found 295	

across several different reef fish families (e.g. Epinephelidae, Labridae, Kyphosidae, 296	

Lutjanidae, Pomacanthidae and Pomacentridae). These shifts require morphological and 297	

behavioural adaptations, which may include a slender fusiform body, and a deeply 298	

forked caudal fin for swimming and feeding in mid-water on zooplankton (Randall, 299	

1967). These changes usually represent departures from the typical morphology of the 300	

family (Randall, 1967). Nevertheless, with recent molecular phylogenies it is now 301	

possible to explore shifts in water column use in a comparative framework, combining 302	

phylogenies with morphology (e.g. Friedman et al., 2016; Cooper et al., 2017). 303	

It turns out that in many cases, planktivorous species described as separate genera 304	

due to different morphologies are in fact nested within other genera (Fig. 3). Examples 305	

include the mid-water planktivore Paranthias within the bottom-related Cephalopholis 306	

(Craig & Hastings, 2007); Clepticus within Bodianus (Santini, Sorenson & Alfaro, 307	

2016); Sectator within Kyphosus (Clements & Knudsen, 2016); Ocyurus genus placed 308	

within Lutjanus (Gold, Voelker & Renshaw, 2011) and Genicanthus within Centropyge 309	

in a secondary functional reversal to planktivory (Bellwood et al., 2004; Konow & 310	

Bellwood, 2011; Gaither et al., 2014). Even the entirely planktivorous Caesionidae 311	

family is now placed within Lutjanidae (Miller & Cribb, 2007). Within Labridae, 312	

planktivory appeared in at least three independent lineages – Cirrhilabrus (~21 Ma), 313	

Clepticus (~12.4 Ma), and Pseudocoris (~7.2 Ma), all during the Miocene epoch (Fig. 1; 314	

Cowman et al., 2009), with each origin correlated with a concomitant increase in jaw 315	

transmission coefficients (Westneat et al., 2005). For Pomacentridae, Cooper et al. 316	

(2017) found that pelagic-feeding damselfishes (planktivores) are strongly differentiated 317	
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from extensively benthic-feeding species (omnivores and herbivores) by their jaw 318	

protrusion ability, upper jaw morphology and the functional integration of upper jaw 319	

protrusion with lower jaw abduction. The surgeonfishes (family Acanthuridae) also 320	

exhibited strong morphological convergence with zooplanktivorous species evolving 321	

slender bodies, reduced facial features, smaller teeth and weakened jaw adductor 322	

muscles when compared to their grazing relatives (Friedman et al., 2016). Among 323	

haemulids, Price et al. (2013) also found that species that feed on zooplankton in the 324	

water column present a slender body shape and higher caudal fin aspect ratios. 325	

These diet shifts (transitions to planktivory) may represent cases in which 326	

ecological opportunity for the exploitation of different resources drives speciation and 327	

adaptation (e.g. Bellwood et al., 2004; Lobato et al., 2014). In damselfishes 328	

(Pomacentridae), the story appears more complex with multiple transitions having taken 329	

place in several ways (Fig. 4). We observe shifts from bottom to higher water column 330	

use exemplified by Amblyglyphidodon shifting to mid-water within Neoglyphidodon, a 331	

bottom-dwelling clade. But the reverse is also reconstructed in the Dascyllus lineage, 332	

with a shift to a bottom-dwelling habit within the larger Chromis clade, which are 333	

generally higher water-column users (although further phylogenetic sampling of 334	

Chromis may change this pattern). In general, such shifts have been accompanied by 335	

modifications in body shape (see Fig. 3) and a shift to schooling behaviour in the water 336	

column. Within the butterflyfishes (Chaetodontidae), transitions have occured from 337	

bottom dwelling to the water column exemplified by the Chaetodon sedentarius–338	

miliaris clade, amidst an otherwise bottom-dwelling Exornator subgenus.  339	

In Pomacentridae, transitions have occurred multiple independent times across the 340	

family’s evolutionary history, maintaining constant cladogenesis rates through time 341	

(Frédérich et al., 2013) but with some variation among crown lineages (Cowman & 342	

Bellwood, 2011; Fig. 4). These transitions are also associated with iterative radiations in 343	

subclades, and the ability to exploit different sets of resources: zooplankton in the water 344	

column; filamentous algae or coral polyps on the substratum; small benthic 345	

invertebrates and algae in varying proportions (Cooper & Westneat, 2009; Frédérich et 346	

al., 2009, 2013; Cooper et al., 2017). Diversification over the last 10 Myr of the genus 347	

Amphiprion (clownfishes, see Fig. 4), a bottom-dwelling clade, appears to be 348	

significantly higher than background diversification rates for the entire family (Cowman 349	

& Bellwood, 2011). This increased diversification rate may have been promoted by the 350	

symbioses with sea anemones that characterize this genus (Allen, 1972; Litsios et al., 351	
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2012), although geographic replication of radiations might also play a potential role 352	

(Litsios et al., 2014). Similar to Amphiprion, the coral-dwelling genus Gobiodon has 353	

diversified in the last 10 Myr in a mutualistic association with Acropora corals 354	

(Duchene et al., 2013). While these two cases of mutualistic association are a relatively 355	

recent phenomenom, the relationships between fishes and the reef substratum have 356	

played out over an extended evolutionary history.  357	

The late Cretaceous marks the rise of stem lineages of many modern reef fish 358	

families (Near et al., 2013; Bellwood et al., 2015). It is also during this period that 359	

morphological changes accompanying the diversification of acanthomorph fishes would 360	

have paved the way for the future fish assemblages found on coral reefs. The Paleocene 361	

and Eocene epochs (66–34 Ma) represent a phase in the evolutionary history of reef 362	

systems where the crown fossil precursors of modern acanthomorph fish families had 363	

both the geographic proximity and the morphological proclivity to form the foundation 364	

of the modern coral reef fish assemblage (Bellwood et al., 2015). The origins and crown 365	

diversification of many functional guilds (e.g. herbivory in surgeonfishes and 366	

rabbitfishes, scraping and excavating in wrasses) are most likely associated with the rise 367	

of scleractinian-dominated coral reefs (Wallace & Rosen, 2006), allowing rapid 368	

expansion into new niche space (Bellwood, 2003; Goatley et al., 2010; Wainwright et 369	

al., 2012; Bellwood et al., 2015). But the reverse may also be true. There is evidence to 370	

suggest that the movement of fishes into shallow water areas and the expansion of 371	

herbivory paved the way for corals to invade what we now see as the highly productive 372	

reef flat of a modern coral reef system (Wood, 1999; Bellwood et al., 2016). Modern 373	

groups such as scraping parrotfishes and corallivorous butterflyfishes appeared in the 374	

Neogene (23–3 Ma), which coincided with diversification in several coral groups (e.g. 375	

Acropora) from ~20 Ma onwards. The evolutionary history of reef fishes over the last 5 376	

Myr has been mainly decorative – ‘baubles on the tree of life’, as coined by Bellwood et 377	

al. (2015) – characterized by new combinations of colours and shapes in fish species. 378	

Despite the appearance of new colours and shapes that accounted for some 379	

diversification during this time, there appears to be no further functional differentiation 380	

in reef fishes or new functional modes occupied (e.g. Labridae; Cowman et al., 2009). 381	

 382	

IV. THE EVOLUTION OF BODY SIZE IN REEF FISHES 383	

Body size is one of the most important traits in ecological studies, being related to other 384	

parameters such as geographical distribution (Blackburn, Gaston & Loder, 1999; Luiz et 385	
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al., 2013), temperature, metabolism (Brown et al., 2004; Barneche et al., 2014), 386	

abundance (White et al., 2007), and even vulnerability to extinction (Reynolds et al., 387	

2005; Cheung, Pitcher & Pauly, 2005; Olden, Hogan & Zanden, 2007; Bender et al., 388	

2013a). Additionally, body size is commonly used as a proxy for many life-history 389	

traits, such as longevity, reproductive output, range size (Reynolds, Jennings & Dulvy, 390	

2001) and other ecological features, such as type and size of prey that can be consumed 391	

and predator-avoidance abilities (Peters, 1986; LaBarbera, 1989; Harmon et al., 2010). 392	

Across the ray-finned fish there appears to be an overarching link between the rate of 393	

body-size evolution and the rate of lineage diversification (Rabosky et al., 2013). 394	

Historically, it seems that smaller-bodied reef fish species were least able to colonize 395	

distant habitats after past climatic fluctuations during the Quaternary (Ottimofiore et al., 396	

2017), reinforcing this trait as an important determinant of biodiversity patterns in reef 397	

environments. While body size in reef fishes has been extensively studied from an 398	

ecological perspective (reviewed by Kulbicki, Parravicini & Mouillot, 2015) it has yet 399	

to be explored for its evolutionary and phylogenetic significance.  400	

Here we mapped body size distributions onto the Labridae family phylogeny (Fig. 401	

5). Most labrids are of medium size (10–40 cm; seen in green shades in Fig. 5). Larger 402	

sizes were mainly observed in the tribes Hypsigenyini, Cheilini and Scarini, while the 403	

smaller body sizes appeared in Pseudocheilinus and in some clades within the julidine 404	

crown group. The humphead wrasse (Cheilinus undulatus) stands out as the largest 405	

labrid, reaching up to 230 cm, while Hemigymnus melapterus reaches the largest sizes 406	

(~60 cm) within the crown julidine clade. There seems to be no relationship between 407	

body size and lineage age within labrids, and both large and small body sizes appear 408	

multiple times within the clades of mid-sized fishes. Nevertheless, the majority of 409	

extreme body sizes – largest (red in Fig. 5) and smallest (dark blue) – emerge in 410	

lineages that have arisen in the last 10 Myr across the Labridae phylogeny, even though 411	

there are few older, small-sized clades that date back to the mid-Miocene.  412	

In Pomacentridae, the evolution of body size throughout the phylogeny is related 413	

to the appearance of different trophic strategies, with benthic feeders exhibiting smaller 414	

optimal sizes when compared with pelagic and intermediate feeders (Frédérich et al., 415	

2013). These trophic strategies and consequently body size within damselfishes have 416	

undergone multiple convergent radiations possibly shaped by common ecological 417	

selection pressures (Frédérich et al., 2013). Although presenting little structural and 418	

functional disparity, angelfishes (Pomacanthidae) evolved a wide range of body sizes, 419	
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which also appears to be strongly related to the trophic evolution of the family (Konow 420	

& Bellwood, 2011). The opposite trend was observed for the Tetraodontidae 421	

(pufferfishes) with reef-associated lineages presenting lower body size disparity when 422	

compared to freshwater species, even though reef environments might have promoted 423	

rapid diversification of two pufferfish genera (Arothron and Canthigaster; Santini et al., 424	

2013a). Within Chaetodontidae there is low variation in body size, with 80% of all 425	

species being within 10 to 20 cm, which might be related to their dependency and 426	

specialization for living in complex three-dimensional coral reef habitats. 427	

 428	

V. HABITAT USE, RANGE SIZES AND BIOGEOGRAPHY OF REEF FISHES 429	

 (1) Habitat use 430	

Habitat-use patterns have had a key role in the evolution of reef fishes. A number of 431	

studies have documented ecological radiations of fish clades following the colonization 432	

of reef habitats, where the reef complexity provided unique and novel ecological 433	

opportunities (Alfaro, Santini & Brock, 2007; Cowman & Bellwood, 2011; Price et al., 434	

2011; Santini et al., 2013a). The expansion of a complex mosaic of reef habitats during 435	

the Miocene has driven elevated cladogenesis across several reef fish clades in 436	

Acanthuridae (Lobato et al., 2014), Labridae, Pomacentridae, Chaetodontidae and 437	

Apogonidae (Cowman & Bellwood, 2011), Tetraodontiformes (Alfaro et al., 2007; 438	

Santini et al., 2013a), and Carcharhinidae (Sorenson, Santini & Alfaro, 2014). 439	

Bellwood et al. (2016) proposed that an increase in the range of habitats occupied, such 440	

as reef flats, was related to novel morphologies for increasing swimming ability to cope 441	

with hydrodynamic challenges (e.g. high-aspect-ratio pectoral fins in labrids, shift in 442	

eye position and caudal peduncule depth in surgeonfishes). The expansion of 443	

scleractinian-dominated reef habitats throughout the Miocene can also be associated 444	

with the rise of one the most specialized swimming modes within the balistoid fishes 445	

(triggerfishes and filefishes) using coupled oscillation or ondulation of paired median 446	

fins (Dornburg et al., 2011; Santini, Sorenson & Alfaro, 2013b). Reef association also 447	

seems to offer some resistance to extinction where lineages with higher reef occupation 448	

remain significantly more diverse than expected when faced with high (simulated) rates 449	

of extinction (Cowman & Bellwood, 2011).  450	

In Haemulidae, habitat use has also influenced the diversification of lineages and 451	

extant patterns of diversity. While hard bottom environments are inhabited by few but 452	

very speciose haemulid lineages (e.g. Plectorhinchus, Haemulon, Anisotremus), in soft 453	
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bottoms there are a greater number of genera, yet with fewer species (Tavera et al., 454	

2012). Haemulids exhibit similar patterns of species richness and ecological diversity 455	

both on and off reef habitats. However, those haemulid lineages that are reef associated 456	

display increased rates of ecomorphological evolution compared with their counterparts, 457	

especially in trophic traits related to prey capture and processing (see Price et al., 2013). 458	

A similar pattern is also seen in labrids where tropical reef-associated lineages exhibit 459	

faster rates of evolution in trophic ecomorphological space compared to tropical non-460	

reef lineages (Price et al., 2011).  461	

Although there seems to be a congruent pattern of higher ecomorphological 462	

diversification associated with groups that present specialized diets such as planktivory, 463	

herbivory or invertivory, piscivorous groups may follow different evolutionary paths. 464	

By analysing carangoid fishes (jacks, remoras and allies), which include some 465	

piscivorous reef-associated species, Frédérich et al. (2016) found that a higher rate of 466	

morphological diversification is associated with habitat shifts to non-reef environments. 467	

These results do not exclude the important role of reef habitats in the early 468	

diversification of carangoids during the Eocene, however, it highlights that the major 469	

radiation of the group occurred recently in non-reef environments (Frédérich et al., 470	

2016). Similarly, the diversification of grouper lineages (family Epinephelidae) does not 471	

seem to be correlated with the expansion of coral habitats in the Miocene and might 472	

have been more influenced by global environmental changes during this period (Ma et 473	

al., 2016). In contrast to these results, Sorenson et al. (2014) found that reef association 474	

is significantly correlated with requiem shark diversification, showing that the drivers of 475	

diversification for piscivorous reef species are idiosyncratic and deserve greater 476	

attention. Multiple transitions between reef and non-reef habitats have also been 477	

reported for the piscivorous barracudas (family Sphyraenidae) (Santini, Carnevale & 478	

Sorenson, 2015), however, it remains unclear whether these shifts represent significant 479	

departures from the background rate of diversification for the group. 480	

Understanding how shifts in habitat use have influenced the rates of 481	

morphological and lineage diversification are critical for understanding the functional 482	

history of reef systems. In the case of reef occupation, this requires accurate knowledge 483	

of the intial transition into shallow-water reef habitat. Using labrids as an example, there 484	

is a possible basal shift to reef habitat in the labrid tree when comparing the relatively 485	

non-reef-associated hypsigenyine lineage to non-hypsigenyines, which are more reef 486	

associated (Cowman et al., 2009). However, given the lack of knowledge of the true 487	
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sister group to the Labridae (Cowman, 2014), the exact timing of ancestral reef 488	

occupation of labrid lineages cannot be known for certain. Yet, there are several labrid 489	

fossils in Eocene deposits (50 Ma) that suggest at least proximity to shallow water reef 490	

systems (Bellwood, 1996).  491	

A broader taxonomic and temporal view of the occupation of ancestral shallow-492	

water reef systems across all Acanthomorpha (spiny-rayed fishes) outlines the deep 493	

evolutionary history of reef association and how multiple families have independently 494	

transitioned into reef habitat (Price et al., 2014). The study of Price et al. (2014) 495	

highlights that the colonization of ancestral reef systems by acanthomorph lineages 496	

potentially occurred in two waves of invasion either side of the Cretaceous–Paleogene 497	

(K–Pg) boundary (~66 Ma). The first wave of invasion possibly took place in the Late 498	

Cretaceous (90–72 Ma), and the second occurred during the early Paleogene, following 499	

the K–Pg mass extinction (65–56 Ma). These waves of reef invasion might have been 500	

related to changes in reef structure and climate (Price et al., 2014). While colonizing 501	

new habitats such as the reef environment, fish lineages underwent morphological 502	

convergence. Such a process fits the macroevolutionary niche-filling scenario of 503	

Ricklefs (2010), where the ecological opportunities found in new habitats promote 504	

functional convergence of species and clades, followed by saturation of the 505	

morphospace. As the functional space in reef-associated lineages became increasingly 506	

saturated, there was a slowdown in the pace of reef invasions by acanthomorphs. 507	

 508	

(2) Range size and biogeography 509	

Geographical range can be viewed as a property that results from the combination of 510	

different species traits (e.g. body size, reproductive mode, trophic group, dispersal 511	

potential) subjected to environmental constraints through time. In addition, range size, 512	

or space occupancy, is generally associated with commonness or rarity and thus may be 513	

related to the vulnerability of species (Connolly et al., 2014; Parravicini et al., 2014; but 514	

see Hughes et al., 2014). Despite its relevance, only a handful of studies have explored 515	

range size in the context of within-genus evolutionary relationships (Hodge et al., 2012) 516	

or species age (Mora et al., 2012). Here we performed a reconstruction of range size, 517	

given by the number of grid cells occupied by each species (each 5° ´ 5° grid cell 518	

corresponds to approximately 550 ´ 550 km at the equator) across the marine tropics, 519	

on a time-calibrated phylogenetic tree for Labridae (Fig. 6). This reconstruction shows 520	

that for labrids, range size appears constrained by the geography and size of ocean 521	
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basins (reviewed by Ruttenberg & Lester, 2015). For example, fishes from Atlantic or 522	

Tropical East Pacific (TEP) clades (e.g. members of the genus Scarus such as S. 523	

guacamaia and the ‘Iridio’ clade among Halichoeres such as H. socialis; see Fig. 6) 524	

tend to have much smaller geographical ranges compared to congeners occurring in the 525	

Indo-Pacific. There also appears to be a temperate versus tropical range effect. Clades 526	

restricted to temperate areas such as the genera Labrus, Symphodus, Notolabrus, 527	

Pseudolabrus, and Odax also tend to have small ranges when compared to more tropical 528	

clades. Similarly, chaetodontid species with Atlantic and TEP distributions as well as 529	

the warm temperate genus Amphichaetodon have smaller ranges. These patterns may be 530	

related to overall differences in the size of ocean basins, and historical availability and 531	

stability of habitats (Ottimofiore et al., 2017), as well as different extinction rates 532	

among basins (e.g. O’Dea et al., 2007) and latitudes (Siqueira et al., 2016). Estimates of 533	

phylogenetic dissimilarity of reef fish assemblages also highlight variations in reef 534	

connectivity and provinciality through time (Cowman et al., 2017). 535	

Reef fishes vary dramatically in the extent of their geographic distributions 536	

(Ruttenberg & Lester, 2015), however, few within-clade analyses of range size are 537	

available to date (but see Hodge et al., 2012; Hodge & Bellwood, 2016). The 538	

reconstruction of range size in labrids (Fig. 6) highlights many cases of disparate range 539	

sizes among sister-species pairs, complexes and clades such as Thalassoma purpureum–540	

virens, Coris aygula–flavovittata, the Scarus ‘rubroviolaceus’ clade (Fig. 7), 541	

Macropharyngodon meleagris–geoffroy (Read et al., 2006), and Anampses (Hodge et 542	

al., 2012). Three models of diversification could explain these intriguing cases: the 543	

vicariance-based ‘successive division’ model, the dispersal-based ‘successive 544	

colonization’ model and the ‘peripheral budding’ model (sensu Hodge et al. 2012). 545	

Although species range sizes are restricted by the size of ocean basins in which 546	

they occur, it is possible to expect that older lineages have had more time to disperse, 547	

reaching greater geographic range sizes compared to recently diverged species (but see 548	

Mora et al., 2012). In addition, a species’ body size has been shown to be related to its 549	

range size, with large-bodied species exhibiting greater ranges compared to smaller ones 550	

(Gaston & Blackburn, 1996; Luiz et al., 2013). The relationship between the age of 303 551	

Labridae species and their range size, measured as the number of grid cells occupied by 552	

each species, revealed no significant pattern of species range size distributions with 553	

lineage age (Fig. 8A, B). This is not surprising given the effects that peripheral 554	

speciation and range persistence can have on age–area relationships (Hodge & 555	
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Bellwood, 2015). When a sister-pair approach is taken, in an effort to mitigate 556	

peripheral speciation processes (Hodge & Bellwood, 2016), a significant, albeit weak 557	

trend emerges between labrid range size and lineage age (Fig. 8C, D; r2=0.03; N=191; 558	

d.f.=1,189; F=5.94; P=0.015), where the minimum range size of sister-species pairs 559	

increases linearly with lineage age. When ‘basin’ (Indo-Pacific + TEP vs. Atlantic) was 560	

included as an effect in the regression model, there was also a significant relationship 561	

between minimum range size and age, but much more of the variation is explained by 562	

the model (r2=0.18; N=191; d.f.=2,188; F=21.3; P<0.001). This significant result 563	

remains when the data are log–log transformed to account for positive skeweness 564	

(r2=0.18; N=191; d.f.=2,188; F=20.9; P<0.001). This basin effect likely reflects the 565	

difference in range-size dynamics and biogeographic history of the two regions. Range 566	

sizes are far more evenly distributed across a broader size range in the Indo-Pacific 567	

compared to the Atlantic (Fig. 8). There was no clear impact of maximum body size 568	

(circle size in Fig. 8), or diet on the relationship between minimum range size and age. 569	

At least for labrids, species with different body sizes and trophic modes occupy a large 570	

spectrum of range sizes across both basins, regardless of age. A similar pattern for 571	

trophic mode and range size was found by Luiz et al. (2013). A more in-depth temporal 572	

view of functional evolution across multiple traits of reef fish assemblages is needed to 573	

understand how trait variation is partitioned across geographic and geological scales.  574	

 575	

VI. FUNCTIONAL EVOLUTION OF REEF FISH ASSEMBLAGES 576	

 (1) Multi-trait comparisons, lineage accumulation and disparity through time 577	

Multi-trait comparisons, from a phylogenetic perspective, presents an opportunity to 578	

examine how complex ecological patterns have played out over evolutionary timescales. 579	

Examining the relationship between cladogenesis (diversification) and the evolution of 580	

phenotypic variation (disparity) can tell us a great deal about how a clade has radiated 581	

and the role life-history traits have played in its diversification. In Fig. 9, we synthesize 582	

some emerging patterns for the families Labridae, Pomacentridae and Chaetodontidae 583	

over the last 60 Myr, based on phylogenetic and trait reconstruction, and estimates of 584	

disparity through time.  585	

Lineage through time (LTT) plots display the tempo of diversification through 586	

time (Fig. 9A). Cowman & Bellwood (2011) proposed that an antisigmodal pattern in 587	

Labridae (and potentially in Pomacentridae) may point to a cryptic extinction event (cf. 588	

Crisp & Cook, 2009) linked to the collapse of ancestral biodiversity hotspots (Renema 589	



18	
	

et al., 2008). Comparatively, the evolution of butterflyfishes has played out over a 590	

shorter timescale. With a crown divergence of ~33 Ma the chaetodontids perhaps show 591	

less sign of the collapse of ancestral habitat to the west and are tied to the expansion of 592	

shallow-water reef systems in the central Indo-Pacific. They display a birth/death 593	

pattern of lineage accumulation with a possible rate shift at the base of the crown 594	

Chaetodon lineage (Cowman & Bellwood, 2011). Nevertheless, the functional 595	

evolution of this group reflects a pattern similar to that of labrids where more trophic 596	

innovation within lineages occurs in the Miocene. 597	

 The stacked density plot of ancestral trait reconstructions reflecting trophic 598	

evolution and water column use (Fig. 9B) shows the proportion of nodes that were 599	

reconstructed with the highest likelihood for each trait examined. In the Labridae, the 600	

expansion of herbivory/detritivory and specialized feeding modes begins in the 601	

Oligocene and continues into the Miocene, a time that sees massive expansion of coral 602	

reefs in the Indo-Pacific. A jump in the number of nodes reconstructed with herbivory 603	

and detritivory coincides with the origins of the Scarus and Chlorurus lineages, which 604	

also represents a shift in the rate of lineage diversification (Cowman & Bellwood, 2011) 605	

and significant morphological divergence (Price et al., 2011). However, there is only 606	

weak support for a relationship between the two (Alfaro et al., 2010). These results 607	

mirror those of Cowman et al. (2009) which show expansion of novel feeding modes 608	

during the Oligocene and Miocene and point to a closer association between wrasses 609	

and the reef substratum during this time. Similarly, the origins of corallivory in the 610	

butterflyfishes show a signal of expansion in the mid-Miocene coinciding with the 611	

evolution of that feeding mode in several independent lineages (Bellwood et al., 2010). 612	

Water column use in the Pomacentridae appears to show no consistent pattern in 613	

magnitude of transistions through time from bottom dwelling to higher water column 614	

users. From the phylogenetic reconstruction (Fig. 4), it is clear that shifts to higher 615	

water column use occurred in subclades throughout the phylogeny with only one 616	

instance involving a transition back to bottom dwelling in the Dascyllus lineage.  617	

A positive disparity index through time (DTT) for body size for all three families 618	

indicates that the subclade disparity in body size is higher then expected under a 619	

Brownian motion model (Fig. 9C). This, along with no evidence of a slowdown in rates 620	

of cladogenesis in these groups (Cowman & Bellwood, 2011), shows that in these reef 621	

fish families there is little evidence of a single process of adaptive radiation. These 622	

disparity methods have been used previously to explore adaptive radiations in cetaceans 623	
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(Slater et al., 2010), the rodent genus Rattus (Rowe et al., 2011), and lizards (Harmon et 624	

al., 2003). Patterns here suggest that body size variation in reef fishes is partitioned 625	

within clades more than among clades (although not significantly so). Such a pattern 626	

was also found by Frédérich et al. (2013) for Pomacentridae body size and jaw 627	

morphology. They concluded that such disparity patterns highlight iterative ecological 628	

diversification rather than single adaptive radiation. Similarly here, body size patterns in 629	

Labridae and Chaetodontidae show far higher disparity within clades than among them, 630	

with the pattern most apparent in the Chaetodontidae. Butterflyfishes, however, display 631	

little body size variation, so any small changes in body towards the tips will result in 632	

higher estimates of disparity. It is interesting to note that Dornburg et al. (2011) found a 633	

low body shape disparity through time for triggerfishes (family Balistidae), suggesting a 634	

pulse of phenotypic and functional innovation early in the history of the group with a 635	

subsequent slowdown in shape disparity. They also found that this early morphological 636	

disparity was decoupled from lineage diversification in triggerfishes (Dornburg et al., 637	

2011), which reinforces a common pattern in reef fish evolutionary history (Price et al., 638	

2015). 639	

Although non-morphological traits are not commonly examined in this manner, 640	

assessments of disparity through time have been useful for examining extinction threat 641	

and range size in angiosperms (Davies et al., 2011). For the reef fish families examined, 642	

as with body size, range size disparity through time shows more disparity within clades 643	

than among them and more so toward the tips of the trees (Fig. 9D). This pattern 644	

highlights two things: first, more closely related species show larger asymmetries in 645	

range size towards the tips. An implication of this pattern could be an observed higher 646	

asymmetry in extinction risk as was previously observed in angiosperms (Davies et al., 647	

2011). Second, this points towards the influence of peripatric and peripheral isolation 648	

mechanisms in speciation of these groups. This supports the relationship between 649	

lineage age and geographic range size discussed above (Fig. 8), where a significant 650	

relationship is only found in minimum geographic range size of sister pairs (cf. Hodge 651	

& Bellwood, 2016). Higher asymmetries outside the 95% range in all three families is 652	

seen from 20 Ma onward, a pattern concordant with body size disparity, and trophic 653	

expansion within the Labridae and Chaetodontidae. Although there are several clades in 654	

all three families that have deep-time separation among ocean basins, there is 655	

consistently higher disparity in range size within clades than among them. 656	

 657	
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(2) A phylogenetic and functional approach to community assessment 658	

Functional trait approaches may enlighten the understanding of community 659	

assembly patterns and processes (McGill et al., 2006). At the local scale, the analysis of 660	

patterns of traits among co-occurring species offers insights into the influence of the 661	

link between short-term local processes and those that occur at global and evolutionary 662	

timescales (Fig. 10). Moreover, trait-based studies provide the basis to assessments of 663	

functional diversity, redundancy or insurance, as well as the provision of services 664	

(Mouillot et al., 2013, 2014). Nevertheless, such approaches are conducted at local 665	

spatial and time scales, often without an evolutionary perspective. Thus, they can offer 666	

only a snapshot of communities, without insight into the totality of mechanisms that 667	

have shaped extant reef fish communities. When trait-based approaches are coupled 668	

with phylogenetic analyses of local communities, it is possible to assess which species 669	

traits have strongly influenced the evolutionary history of regional assemblages and 670	

local communities, as well as to uncover the mechanisms of species assembly (Fig. 10; 671	

Cavender-Bares et al., 2009; Gerhold et al., 2015).  672	

The main focus of most studies of reef fish communities has been the evolution of 673	

traits across lineages (Cowman et al., 2009; Bellwood et al., 2010; Price et al., 2013; 674	

Lobato et al., 2014), where the evolutionary patterns of specific traits are mapped into a 675	

reconstructed phylogeny (in Fig. 10 shown by the phylogeny on the left representing the 676	

regional pool of species and its traits). On the other hand, trait-based approaches to the 677	

study of local communities combined with phylogenies have been developed under the 678	

research area of phylogenetic community ecology (see Webb et al., 2002; Cavender-679	

Bares et al., 2009). Such approaches can reveal the processes that have shaped different 680	

communities through time (in Fig. 10 shown by the phylogenies on the right depicting 681	

the phylogenetic structure of local communities). The transition from regional to local 682	

scales occurs across spatial and temporal scales, through the effect of biotic (e.g. species 683	

interactions, dispersal limitation, habitat specificity, local population structures) and 684	

abiotic filters (e.g. distance from a source pool, temperature, area, habitat availability, 685	

etc.). These filters determine the structure of local communities, both phylogenetically 686	

and functionally. At the local scale, communities may exhibit the following structures 687	

(shown in Fig. 10): phylogenetic and functional clustering (C1); phylogenetic clustering 688	

and functional overdispersion (C2); phylogenetic and functional overdispersion (C3); 689	

and phylogenetic overdispersion and functional clustering (C4).  690	
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Investigating the phylogenetic and functional structure of communities enables 691	

the identification of the ecological factors that have played a role in structuring 692	

communities through evolutionary time. For instance, in Fig. 10, community C1 has 693	

been shaped by environmental or biotic filters acting on phylogenetically conserved 694	

traits – under the hypothesis of niche conservatism where species with shared ancestry 695	

present similar phenotypes (Webb, 2000; Wiens & Graham, 2005; Losos, 2008). Such 696	

fish species composition and trait assembly (in C1) could have been structured by the 697	

effect of isolation, for instance, filtering related species with a particular trait that 698	

facilitates dispersal, colonization and persistence (e.g. body size, rafting capacity; Luiz 699	

et al., 2013). Moreover, this structure could result from the selective forces of generalist 700	

predators acting on conserved defence traits (Cavender-Bares et al., 2009). 701	

Hypothetically, predators could filter closely related species that share a particular 702	

swimming or escape ability to persist in local communities.  703	

Environmental and biotic filters can also cause phylogenetic overdispersion if 704	

selected traits are labile and related species occupy different niches, where ecological 705	

divergence is driven by competition (Schluter, 2000; C3 and C4 in Fig. 10). If traits 706	

were convergent across lineages, then habitat or biotic filtering would result in 707	

functional clustering of communities (seen in C4). For instance, the increased richness 708	

patterns of small-bodied fishes in the centre of marine biodiversity may possibly reflect 709	

the degree of feeding and microhabitat specialization of species belonging to different 710	

lineages (e.g. Gobiodon, Halichoeres). Furthermore, the effects of past environmental 711	

change (over species pools) have certainly shaped contemporary patterns of the 712	

phylogenetic and functional structure of communities. In coral reefs, Quaternary climate 713	

fluctuations have influenced the geological complexity and availability of coral reef 714	

habitats for associated fish fauna with areas of stable refugia being a strong predictor of 715	

current richness patterns of reef fishes at a global scale (Pellissier et al., 2014). Such 716	

historical processes have shaped the global patterns of phylogenetic and functional 717	

structure in reef fish lineages (Ottimofiore et al., 2017). The families Pomacentridae, 718	

Chaetodontidae and Labridae exhibited high phylogenetic clustering in the Indo-719	

Australian Archipelago, partly due to vicariance events resulting from reef 720	

fragmentation (Leprieur et al., 2016). These tracked responses of assemblages to past 721	

environmental and biotic effects may help us understand the capacity of current 722	

communities to respond to global changes such as fishing pressure, climate change, 723	

habitat loss and species extinctions.  724	
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 725	

VII. FUTURE DIRECTIONS 726	

The study of coral reef fish traits has included both ecological and phylogenetic 727	

approaches. Ecological assessments have covered the functional structure of reef fish 728	

communities along gradients of diversity, coral reef area, isolation, sea surface 729	

temperature, etc., from local (Guillemot et al., 2011; Micheli et al., 2014) to regional 730	

(Halpern & Floeter, 2008; Bender et al., 2013b) and up to global scales (Stuart-Smith et 731	

al., 2013; Mouillot et al., 2014; Parravicini et al., 2014). These studies have addressed 732	

aspects of functional diversity that are important to reef conservation, encompassing 733	

functional insurance, redundancy, and ecosystem services (Micheli et al., 2014; 734	

Mouillot et al., 2014; Parravicini et al., 2014). In parallel, phylogenetic studies have 735	

examined the evolutionary patterns of a variety of traits in reef fish lineages, aligning 736	

their findings to key historical and biogeographical events and evolutionary processes 737	

that have shaped reef fish functional diversity (Alfaro et al., 2009; Erisman, Craig & 738	

Hastings, 2009; Bellwood et al., 2010; Price et al., 2011; Frédérich et al., 2013; Lobato 739	

et al., 2014). Community phylogenetics combines ecology with phylogeny to offer a 740	

framework to examine the functional history of an assemblage, but also to address how 741	

assemblage structure and function are shaped by evolutionary processes.  742	

Only a handful of studies have implemented a community phylogenetic approach 743	

to assess coral reef fish communities (e.g. Hubert et al., 2011; Leprieur et al., 2016), 744	

and the functional aspect is yet to be integrated. Functional entities, or groups of species 745	

with distinct functional trait combinations, have been described in reef fish communities 746	

and related to ecosystem processes, functional redundancy, and vulnerability to 747	

extinction (Mouillot et al., 2014). The lack of a phylogenetic component in these studies 748	

means that while we can identify which species and which functional roles are 749	

redundant or vulnerable, we do not know the origin of these functional entities or the 750	

evolutionary histories of the trait combination they represent. Future multi-trait 751	

phylogenetic assessments will highlight how trait combinations are shared among 752	

closely related species and how they are functionally and phylogenetically structured in 753	

local and regional assemblage pools allowing for more integrated conservation 754	

solutions. Such an endeavour is becoming more achievable with the rapid improvement 755	

of molecular data generation for reef fishes and improvements in phylogenetic sampling 756	

and resolution. This resolution, combined with knowledge on species traits and 757	

distributional patterns across the globe, will make these studies feasible at global scales. 758	
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In sum, combining phylogenetic and trait-based approaches to the better understanding 759	

of ecosystem functioning is an emerging topic and key to the promise of so-called 760	

Functional Biogeography (Violle et al., 2014).  761	

The presence of specific traits, or trait combinations can influence a species’ 762	

capacity to respond and adapt to climatic stress, ultimately influencing patterns of 763	

dispersal, colonization, speciation and extinction (Puebla et al., 2007; Luiz et al., 2013; 764	

Bender et al., 2013a; Ottimofiore et al., 2017). Links between several functional traits 765	

and accelerated cladogenesis in the most phylogenetically well-sampled reef fish 766	

families have been described here, although further sampling of clades with reef and 767	

non-reef components still need to be examined to assess the generality of these trends. It 768	

is unclear how or if functional ‘success’ at the macroevolutionary level (high species 769	

diversity within functional roles) scales down to the individual level (species 770	

abundance). The next frontier in community phylogenetics requires the inclusion of 771	

patterns of abundance of co-occurring taxa to examine population-level effects of 772	

species-level interactions. While species traits influence the distribution of organisms 773	

and the structure of communities, interactions among co-occurring species will 774	

influence the presence of traits within communities and evolutionary processes driving 775	

speciation and adaptation (Bascompte & Jordano, 2007; Jablonski, 2008; Cavender-776	

Bares et al., 2009). These future studies will help identify the role of abundance at 777	

ecological and evolutionary timescales. 778	

 779	

 VIII. CONCLUSIONS  780	

(1) Species functional traits form a link between evolutionary history and the ecological 781	

proceses shaping lineages. By mapping functional traits onto species-level phylogenies, 782	

we can examine their evolutionary origins and their influence on lineage diversification. 783	

This functional view to evolutionary history is important in the study of present-day 784	

biodiversity patterns. In the case of modern reef systems, fish functional traits related to 785	

food aquistion and locomotion have been important for driving speciation but also in 786	

shaping ecosystem processes. 787	

(2) Ancestral trait reconstruction for feeding modes in labrids showed an early 788	

establishment of herbivory and subsequent origins of detrivory in parrotfishes, a critical 789	

reef process. Trophic evolution can be conserved within clades as in labrids, or reflect 790	

multiple independent origns such as corallivory in butterflyfishes. From reconstructions 791	

across several groups we show examples of independent transitions to planktivory that 792	
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may represent cases in which ecological opportunity for the exploitation of different 793	

resources drives speciation and adaptation. 794	

(3) Body size is often used as a proxy for other life-history characteristics, but its 795	

evolutionary history is not well studied at the species level. The evolution of body size 796	

in the family Labridae shows no relationship with lineage age, with both large and small 797	

body sizes appearing multiple times within clades of mid-sized fishes. Extremely large 798	

and small body sizes arise in disparate lineages mostly in the last 10 Myr. Labridae and 799	

Chaetodontidae show higher body size disparity within clades than among them through 800	

time. In the Pomacentridae, body size evolution appears closely linked with the 801	

convergent evolution of different trophic strategies among clades.  802	

(4) The reconstruction of range size in Labridae revealed that ranges are mostly 803	

constrained by the geography and size of ocean basins. When accounting for peripheral 804	

speciation processes in sister pairs, we found a significant relationship between labrid 805	

range size and lineage age. The reconstruction of disparate ranges among sister-species 806	

pairs and species complexes and range size disparity through time highlights potential 807	

vicariant processes through isolation in peripheral locations with subsequent range 808	

expansion.  809	

(5) Ecological approaches to the study of life-history traits in reef-associated fishes have 810	

unveiled the functional structure of communities across biodiversity and environmental 811	

gradients. Evolutionary approaches mapping the phylogenetic origins of species groups 812	

within reef communities correlate to historical processes acting on the distribution of 813	

reef habitat through time. With the increasing availability of phylogenies (with 814	

complete or nearly complete taxon sampling) a combined phylogenetic and functional 815	

approach will allow a number of evolutionary and ecological questions to be addressed 816	

in the near future that will certainly help us to uncover the mechanisms of community 817	

assembly over space and time. 818	
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Figure Legends 1309	

 1310	

Fig. 1. Diet and feeding mode reconstruction mapped on a time-calibrated phylogenetic 1311	

tree for 303 (of ~630) species of wrasses and parrotfishes (family Labridae) (Cowman 1312	

& Bellwood, 2011 combined with Choat et al., 2012). Colour-coding depicts different 1313	

feeding modes of adults. The timescale is dated in million years (Myr) before present. 1314	

Pie graphs within symbols represent the probability of the ancestral state in each node. 1315	

Clade abbreviations: Hyp, Hypsigenyines; Lb, Labrines; Chl, Cheilines; Scr, Scarines; 1316	

Cirr, Cirrhilabrus; Lbr, Labrichthyines; Mcr, Macropharyngodon. Reconstruction was 1317	

conducted using maximum likelihood in Ape package (Paradis et al., 2004), R software. 1318	

Fish images: J.P. Krajewski, J.E. Randall, and L.A. Rocha. 1319	

 1320	

Fig. 2. Reconstruction of coral feeding in a time-calibrated phylogenetic tree for 95 (of 1321	

127) species of butterflyfishes and bannerfishes (family Chaetodontidae) (Cowman & 1322	

Bellwood, 2011). Colour-coding is related to species diets. The timescale is dated in 1323	

million years (Myr) before present. Pie graphs within symbols represent the probability 1324	

of the ancestral state in each node. Clade abbreviations: Bn, bannerfishes; Pr, 1325	

Prognathodes; C1, 2, 3 & 4, Chaetodon. Reconstruction was conducted using maximum 1326	

likelihood in Ape package (Paradis et al., 2004), R software. Images from Kuiter 1327	

(2002). 1328	

 1329	

Fig. 3. Three examples of independent transitions to planktivory in reef fish lineages. 1330	

Note that specializations for feeding in mid-water on zooplankton, such as a slender 1331	

fusiform body, and a deeply forked caudal fin represent departures from the typical 1332	

morphology of the genus. Trees used: Bodianus clade (Santini et al., 2016), Kyphosus 1333	

(Clements & Knudsen, 2016) and Cephalopholis clade (Ma et al., 2016).  1334	

 1335	

Fig. 4. Reconstruction of water column use on a time-calibrated phylogenetic tree for 1336	

206 (of 373) damselfish species (family Pomacentridae) (Frédérich et al., 2013). Pie 1337	

graphs within symbols represent the probability of the ancestral state (position in the 1338	

water column) at each node, with colour-coding representing fish species that live close 1339	

to the bottom (blue), and fish that generally form aggregations well above the bottom to 1340	

feed on zooplankton (red). The timescale is dated in million years (Myr) before present. 1341	
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Reconstruction was conducted using maximum likelihood in Ape package (Paradis et 1342	

al., 2004), R software. Fish pictures: J.P. Krajewski and L. Tyk. 1343	

 1344	

Fig. 5. Reconstruction of body size on a time-calibrated phylogenetic tree for 303 1345	

species of wrasses and parrotfishes (family Labridae) (Cowman & Bellwood, 2011 1346	

combined with Choat et al., 2012). The colour gradient represents variation in species 1347	

body size, from small to large body sizes (blue to red shades). Body size values were 1348	

log-transformed prior to reconstruction. Pictures are representative of those fish species 1349	

larger than 80 cm or smaller than 8 cm in length. The timescale is dated in million years 1350	

(Myr) before present. Reconstruction was conducted using maximum likelihood in Ape 1351	

package (Paradis et al., 2004), R software. Fish pictures: J.P. Krajewski, J.E. Randall, 1352	

and L.A. Rocha. 1353	

 1354	

Fig. 6. Reconstruction of range size (given by the number of grid cells of 550 ´ 550 km) 1355	

in a time-calibrated phylogenetic tree for the Labridae (Cowman & Bellwood, 2011 1356	

combined with Choat et al., 2012). Colour-coding represents a gradient from 1 to 258 1357	

occupied grid cells. The timescale is dated in million years (Myr) before present. 1358	

Reconstruction was conducted using maximum likelihood in Ape package (Paradis et 1359	

al., 2004), R software. Pictures of representative fish with large and small range sizes 1360	

are shown. Fish pictures: J.P. Krajewski, J.E. Randall, and L.A. Rocha. 1361	

 1362	

Fig. 7. Maps of geographical ranges of sister species that present disparate sizes. Range 1363	

data comes from IUCN database. Maps are shown in Mollweide projection. 1364	

 1365	

Fig. 8. The relationship between age and range size across 303 Labridae species, 1366	

divided into (A) Indo-Pacific plus Tropical Eastern Pacific (TEP) and (B) Atlantic 1367	

Ocean basins. There was no significant relationship between all species ages and their 1368	

geographic range. (C, D) The relationship between minimum geographic range and 1369	

lineage age of species sister pairs for the same two regions, in an approach to account 1370	

for peripheral isolation processes (Hodge & Bellwood, 2016). A significant relationship 1371	

was found between log minimum range size and log lineage age of sister pairs, with a 1372	

significant effect linked to ocean basin differences (r2=0.18; N=191; d.f.=2,188; 1373	

F=20.9; P<0.001). Circles are proportional to species maximum body size and colour-1374	

coding represents feeding modes. 1375	
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 1376	

Fig. 9. Multi-trait patterns through time for the families Labridae, Pomacentridae and 1377	

Chaetodontidae. (A) Lineage through time (LTT) plot displaying the log number of 1378	

lineages arising through time. LTT plots were constructed from the time-calibrated 1379	

phylogenies displayed in Figs 1, 2 and 4 (see text for details). Eo, Eocene; Oli, 1380	

Oligocene; Mio, Miocene; PP, . (B) Stacked density plot of ancestral trait 1381	

reconstructions reflecting trophic evolution in the family Labridae; water column use in 1382	

the family Pomacentridae; and corallivory in the family Chaetodontidae. For the 1383	

Labridae, feeding modes are reclassified as generalist modes (Gen: general carnivory, 1384	

piscivory, omnivory), herbivory and detritivory (H/D: browsing, scraping, excavating) 1385	

and specialized feeding modes (Spec: coral mucous feeding, obligate cleaning, 1386	

foraminifera feeding and planktivory). In the Chaetodontidae node density plot, nodes 1387	

that are reconstructed as corallivores contain both hard- and soft-coral-feeding lineages. 1388	

(C) Mean subclade disparity through time (DTT) for body size data (solid line) for each 1389	

of the focal families. The dashed line indicates the median subclade DTT based on 1390	

1,000 simulations of character evolution on each reef fish family phylogeny under 1391	

Brownian motion. The shaded area indicates the 95% DTT range for the simulated data. 1392	

Body sizes were log-transformed prior to analyses. (D) Mean subclade disparity through 1393	

time (DTT) for range size (solid line) for each family. Ranges size is calculated as the 1394	

number of 550 ´ 550 km grid cells occupied by each species. As for body size disparity 1395	

seen in C, the dashed line indicates the median and the shaded area the 95% DTT range 1396	

based on 1,000 simulations under Brownian motion. DTT analyses were conducted in R 1397	

using functions from the Geiger package (Harmon et al., 2008). For both body size and 1398	

range size disparity, we calculated the disparity index (DI), which quantifies the relative 1399	

disparity of a clade compared with the expectation under the null Brownian motion 1400	

model (see Harmon et al., 2003). Positive DI values indicate higher disparity than 1401	

expected under the null model.  1402	

 1403	

Fig. 10. A framework for trait-based approaches to studies of ecological communities 1404	

coupled with phylogenies (or phylogenetic data) and abundance data. The phylogeny on 1405	

the left corresponds to a hypothetical regional pool of species and the phylogenies on 1406	

the right represent the local structure of communities (C1, C2, C3 and C4). Each 1407	

structure reveals the effect of different mechanisms over spatial and temporal scales on 1408	
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the regional pool of species (see text for further information). Different coloured and/or 1409	

shaped fish depict the presence of different traits. 1410	
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