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Abstract Transcriptome and genome data from twenty stony coral species and a selection of

reference bilaterians were studied to elucidate coral evolutionary history. We identified genes that

encode the proteins responsible for the precipitation and aggregation of the aragonite skeleton on

which the organisms live, and revealed a network of environmental sensors that coordinate

responses of the host animals to temperature, light, and pH. Furthermore, we describe a variety of

stress-related pathways, including apoptotic pathways that allow the host animals to detoxify

reactive oxygen and nitrogen species that are generated by their intracellular photosynthetic

symbionts, and determine the fate of corals under environmental stress. Some of these genes

arose through horizontal gene transfer and comprise at least 0.2% of the animal gene inventory.

Our analysis elucidates the evolutionary strategies that have allowed symbiotic corals to adapt and

thrive for hundreds of millions of years.

DOI: 10.7554/eLife.13288.001

Introduction
Reef-building stony corals (Scleractinia) and their cnidarian ancestors have created many thousands

of square kilometers of biomineralized marine habitat in shallow tropical seas since their extensive

radiation in the Middle Triassic period ~ 240 million years ago (Ma) (Veron, 1995). Coral reefs pro-

vide a significant source of ecosystem-based services (Moberg and Folke, 1999) that stabilize coast-

lines and provide habitat for an astounding variety of flora and fauna (Connell, 1978). To better

understand the evolutionary strategies underpinning the evolutionary success of reef-building corals,

we analyzed genomic and transcriptomic information from twenty stony corals that contain intracel-

lular photosynthetic dinoflagellate symbionts of the genus Symbiodinium (https://comparative.reef-

genomics.org/) (Figure 1, and Figure 1—source data 1). In addition, bilaterian reference gene sets

and genomes from other cnidarians, ctenophores, sponges, a choanozoan, and a placozoan were

integrated into our analysis. The comprehensive reference database used for our study included

501,991 translated protein sequences from 20 coral species, 98,458 proteins from five other cnidar-

ians such as sea anemone and sea fan, and 91,744 proteins from seven basal marine metazoan line-

ages such as sponges and ctenophores. These publicly available genomic and transcriptomic data,

which showed large disparities in terms of numbers of predicted protein sequences per species

were ‘cleaned’ of contaminants and poor quality data with the use of stringent filters and selection

criteria (see Materials and methods). This procedure resulted in a reasonably comprehensive cover-

age of corals (i.e., 20 species in total, 11 robust clade species including 2 genomes, 9 complex clade

species including 1 genome) with and average of 21,657 protein sequences per species. Given the

challenges associated with inferring conclusions based on the absence of genes (in particular when

analyzing transcriptomic data), our approach focused on identifying ortholog groups present in dif-

ferent taxonomic categories to reach conclusions about genes associated with coral specific traits.

This analysis yielded a set of 2485 ’root’ orthologs, 613 ’Non-Cnidaria’ orthologs, 462 ’Cnidaria’

orthologs, 1436 ’Anthozoa’ orthologs, 1810 ’Hexacorallia’ orthologs, 172 ’A’ orthologs, 4751 ’Scler-

actinia’ orthologs, 1588 ’complex coral’ orthologs, and 6,970 ’robust coral’ orthologs (available at

http://comparative.reefgenomics.org/). These orthologs were analyzed to address four major issues

in coral evolution: 1) the basis of aragonite exoskeletal accretion that results in reef formation; 2)

environmental sensing mechanisms of the cnidarian host; 3) evolution of the machinery necessary to

accommodate the physiological risks as well as the benefits associated with the photosynthetic algal

symbionts that create a hyperoxic environment when exposed to light; and 4) given the rich micro-

bial flora associated with the coral holobiont (Fernando et al., 2015), the contribution of horizontal

gene transfer (HGT) to coral evolution. Here we examine novel insights gained in each of these key

areas.

Results
Relying on conserved proteins as queries in BLAST searches against our genomic database, we iden-

tified major components of the coral biomineralization toolkit and reconstructed their evolutionary

origins using standard phylogenetic methods (see Material and methods). These results are pre-

sented in the Discussion section below and summarized in Figures 2A and 3. We also identified
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major components of the ion trafficking systems in human genomes, and searched for their ortho-

logs in corals (Figure 2B and Figure 2—source data 1). Finally, using the approach described

above, we identified stress response genes in corals and other cnidarians (listed in

Supplementary file 1).

To elucidate the impact of foreign gene acquisition in coral evolution, we estimated the extent of

HGT in the genomic data using a conservative phylogenomic approach (see Materials and methods).

This procedure was followed by localization of key HGT candidates to genomic contigs to validate

their provenance (Figure 4). Using the A. digitifera and Seriatopora sp. proteomes independently as

queries resulted in 13,256 and 19,700 alignments of which 21 and 41, respectively (i.e., in A. digiti-

fera, Seriatopora sp.), supported HGT (62/32,956 trees = 0.2%). After accounting for gene dupli-

cates and redundancy between the trees, we discovered 41 unique instances of foreign gene

acquisition from bacteria and algae (Table 1). Of these candidates, 28 genes were present in the

anthozoan common ancestor (i.e., were shared with anemone and/or sea fan) and 13 were specific

to corals. In all cases, the HGT-derived genes were shared by multiple anthozoan species and the

phylogenies of these genes were largely consistent with the reference tree shown in Figure 1.

Discussion

Coral biomineralization
The most obvious feature of corals over geological time is their fossilized calcium carbonate skele-

tons, of which the original mineral component is aragonite. It has been hypothesized for many years

that the precipitation of aragonite is catalyzed by and organized on an extracellular organic matrix

eLife digest For millions of years, reef-building stony corals have created extensive habitats for

numerous marine plants and animals in shallow tropical seas. Stony corals consist of many small,

tentacled animals called polyps. These polyps secrete a mineral called aragonite to create the reef –

an external ‘skeleton’ that supports and protects the corals.

Photosynthesizing algae live inside the cells of stony corals, and each species depends on the

other to survive. The algae produce the coral’s main source of food, although they also produce

some waste products that can harm the coral if they build up inside cells. If the oceans become

warmer and more acidic, the coral are more likely to become stressed and expel the algae from

their cells in a process known as coral bleaching. This makes the coral more likely to die or become

diseased. Corals have survived previous periods of ocean warming, although it is not known how

they evolved to do so.

The evolutionary history of an organism can be traced by studying its genome – its complete set

of DNA – and the RNA molecules encoded by these genes. Bhattacharya et al. performed this

analysis for twenty stony coral species, and compared the resulting genome and RNA sequences

with the genomes of other related marine organisms, such as sea anemones and sponges. In

particular, Bhattacharya et al. examined “ortholog” groups of genes, which are present in different

species and evolved from a common ancestral gene. This analysis identified the genes in the corals

that encode the proteins responsible for constructing the aragonite skeleton. The coral genome also

encodes a network of environmental sensors that coordinate how the polyps respond to

temperature, light and acidity.

Bhattacharya et al. also uncovered a variety of stress-related pathways, including those that

detoxify the polyps of the damaging molecules generated by algae, and the pathways that enable

the polyps to adapt to environmental stress. Many of these genes were recruited from other species

in a process known as horizontal gene transfer.

The oceans are expected to become warmer and more acidic in the coming centuries. Provided

that humans do not physically destroy the corals’ habitats, the evidence found by Bhattacharya et al.

suggests that the genome of the corals contains the diversity that will allow them to adapt to these

new conditions.

DOI: 10.7554/eLife.13288.002
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Figure 1. Multigene maximum likelihood (RAxML) tree inferred from an alignment of 391 orthologs (63,901 aligned amino acid positions) distributed

among complete genome (boldface taxon names) and genomic data from 20 coral species and 12 outgroups. The PROTGAMMALGF evolutionary

Figure 1 continued on next page
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containing a suite of proteins, lipids, and polysaccharides (Mann, 2001; Watanabe et al., 2003).

This process is precisely controlled and occurs in the calcifying fluid lined by the ectodermal calico-

blastic cells that initiate and control the precipitation reaction. Four major components are involved

in the process and will be described below: a source of inorganic carbon, a source of calcium ions,

proteins that catalyze the nucleation reaction, and proteins and other organic molecules that orga-

nize the crystals to form macroscopic structures (Figure 2A). In this figure, only the transcellular

pathway at the level of the calicoblastic cells is shown. Calcium presumably enters the cells via a cal-

cium channel (Zoccola et al., 1999) and exits through a calcium ATPase which is proposed to

remove protons from the site of calcification (Zoccola et al., 2004). Whereas part of the dissolved

inorganic carbon (DIC) can enter the cells via a bicarbonate transporter (Furla et al., 2000), the

major source of DIC comes from metabolic CO2, which either diffuses out of the cells through the

membranes or is intracellularly converted into HCO3
-due to a favorable pH (Venn et al., 2009), a

reaction which is accelerated by carbonic anhydrases (Bertucci et al., 2013). This bicarbonate can

then exit the cells via a bicarbonate transporter (Zoccola et al., 2015). At the site of calcification car-

bonic anhydrases can also play a role in the kinetics of the interconversion between carbon dioxide

and bicarbonate (Bertucci et al., 2013) according to the extracellular pH (Venn et al., 2011). The

organic matrix which plays different roles in the biological precipitation of carbonates, comprises a

set of proteins including CARPs (Mass et al., 2013; ), collagens (Drake et al., 2013), galaxins

(Fukuda et al., 2003), and carbonic anhydrase related proteins (Drake et al., 2013).

More broadly, inorganic carbon in seawater in the upper ocean is approximately 2 mM with 95%

in the form of bicarbonate ions and is delivered to the site of calcification from an internal pool

within the host animal (Erez, 1978; Furla et al., 2000). This happens either by diffusion of CO2 or by

active transport of HCO3
- following CO2 hydration (Tambutté et al., 1996). The hydration reaction

is catalyzed by an intracellular carbonic anhydrase (CA) (Bertucci et al., 2013). To help facilitate cal-

cification, calicoblastic cells concentrate dissolved inorganic carbon (DIC) in the calcifying fluid

(Allison et al., 2014). Analysis of our genome data shows two distinct families of bicarbonate anion

transporters (BATs) in the coral Stylophora pistillata (Zoccola et al., 2015). Three isoforms belong to

the SLC26 family (Figure 2—figure supplement 1) and 5 isoforms belong to the SLC4 family (Fig-

ure 2—figure supplement 2). One isoform, SLC4g , is restricted to scleractinians and is only

expressed in the calicoblastic cells (Zoccola et al., 2015), strongly suggesting that this protein plays

a key role in calcification. This bicarbonate transporter could either supply DIC at the site of calcifica-

tion, or aid in pH regulation in addition to a calcium ATPase (see below). Furthermore, the two BAT

gene families are split along phylogenetic lines between the robust and complex clades of

scleractinians.

The concentration of calcium ions in seawater is 10 mM, with these ions being actively trans-

ported by the calicoblastic cells to the calcifying fluid (Tambutté et al., 1996). Radiocalcium (45Ca)

and inhibitor studies demonstrate that calcium entry in calicoblastic cells by facilitated diffusion is

dependent on voltage-gated calcium channels (Tambutté et al., 1996). Based on their alpha 1 sub-

unit (Cava1) these channels can be phylogenetically divided into three groups. Specific inhibitors

(dihydropyridines) strongly suggest that these channels belong to the voltage-dependent L-type

family Cav 1 and have been characterized at the molecular level and localized by immunohistochem-

istry in the calicoblastic cells (Zoccola et al., 1999). We constructed a phylogeny of the alpha 1 sub-

unit of all types of Cav (Figure 2—figure supplement 3) and found orthologs in most of the

datasets used here, as previously shown for the actinarian Nematostella vectensis and the scleracti-

nian Acropora millepora (Moran and Zakon, 2014). Calcium efflux from the calicoblastic cells to cal-

cifying fluid likely occurs through a plasma membrane calcium ATPase (Ca-ATPase) (Zoccola et al.,

2004). This enzyme is also responsible for removing protons and increasing pH in the calcifying fluid

Figure 1 continued

model was used to infer the tree with branch support estimated with 100 bootstrap replicates. Robust and complex corals are shown in brown and

green text, respectively, and non-coral metazoan species are shown in blue text.

DOI: 10.7554/eLife.13288.003

The following source data is available for figure 1:

Source data 1. Coral genomic data compiled in this study and their attributes.

DOI: 10.7554/eLife.13288.004
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in order to increase the aragonite saturation state to promote calcification (Zoccola et al., 2004;

Venn et al., 2011; Davy et al., 2012). For this enzyme (Figure 2—figure supplement 4) as well as

for calcium channels and bicarbonate transporters, there is a division between the robust and com-

plex clades of scleractinians.

As described in the two previous paragraphs, for the analysis of the source of inorganic carbon

and calcium transport for biomineralization, we focused on the molecules which were previously

characterized both by pharmacological and physiological studies in order to link molecular character-

ization to function. Our data clearly show that transporters such as calcium channels and calcium

ATPases and some bicarbonate transporter isoforms are ubiquitously present in the calcifying and

non-calcifying cnidarians (scleractinian corals and sea anemones). Based on the genomic analysis of
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The following source data and figure supplements are available for figure 2:

Source data 1. Major components of the human ion trafficking system identified in the coral genomic data.

DOI: 10.7554/eLife.13288.006

Figure supplement 1. Bayesian consensus trees of SLC26.

DOI: 10.7554/eLife.13288.007

Figure supplement 2. Bayesian consensus trees of SLC4.

DOI: 10.7554/eLife.13288.008

Figure supplement 3. Bayesian consensus trees of Cav.

DOI: 10.7554/eLife.13288.009

Figure supplement 4. Bayesian consensus trees of coral and outgroup Ca-ATPase proteins.

DOI: 10.7554/eLife.13288.010

Figure supplement 5. Evolution of CARPs and other coral acid-rich proteins.

DOI: 10.7554/eLife.13288.011

Figure supplement 6. Scatter plot of isoelectric points of collagens from Seriatopora, Stylophora, Nematostella, and Crassostrea gigas.

DOI: 10.7554/eLife.13288.012

Figure supplement 7. Maximum likelihood (ML) trees of galaxin and amgalaxin.

DOI: 10.7554/eLife.13288.013
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bicarbonate transporters families in two scleractinian corals and one sea anemone, Zoccola et al.

(2015) observed that one isoform of the bicarbonate transporter family SLC4g , was restricted to

scleractinians. The current transcriptomic analysis of calcifying and non-calcifying cnidarian species

confirms this result, which underlines the role of this transporter in biomineralization. Additional

studies are however needed to localize this transporter in different coral species and to determine

whether, as for S. pistillata, it is also specifically expressed in the calicoblastic cells. Another impor-

tant piece of information is that for all the different enzymes and transporters studied, there is gen-

erally a division in the phylogenetic tree between the robust and the complex clades of scleractinian

corals. This suggests that the different calcification traits observed for the two clades (for example,

complex corals have less heavily calcified skeletons than robust corals), are due to differences in the

biochemical characteristics of these enzymes and transporters.
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encoded proteins that contain either >30% or >40% negatively charged amino acid residues (i.e., aspartic acid [D] and glutamic acid [E]). The average
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than non-corals. This acidification of the coral proteome is postulated to result from the origin of biomineralization in this lineage.
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Figure 4. Analysis of a genomic region in Acropora digitifera that encodes a putative HGT candidate. (A) The genome region showing the position of

the HGT candidate (PNK3P) and its flanking genes. (B) Maximum likelihood trees of PNK3P (polynucleotide kinase 3 phosphatase, pfam08645) domain-

containing protein and the proteins (RNA-binding and GTP-binding proteins) encoded by the flanking genes. Robust and complex corals are shown in

brown and green text, respectively, and non-coral metazoan and choanoflagellate species are shown in blue text. Photosynthetic lineages, regardless of

phylogenetic origin, are shown in magenta text and all other taxa are in black text. GenBank accession (GI) or other identifying numbers are shown for

each sequence. The PNK3P domain plays a role in the repair of DNA single-strand breaks by removing single-strand 3’-end-blocking phosphates

(Petrucco et al., 2002).

DOI: 10.7554/eLife.13288.015

The following figure supplements are available for figure 4:

Figure supplement 1. Maximum likelihood trees of a DEAD-like helicase and the protein encoded by the flanking gene.

DOI: 10.7554/eLife.13288.016

Figure supplement 2. Maximum likelihood tree of an exonuclease-endonucease-phosphatase (EEP) domain-containing protein (A), an ATP-dependent

endonuclease (B), a tyrosyl-DNA phosphodiesterase 2-like protein (C), and DNA mismatch repair (MutS-like) protein (D).

Figure 4 continued on next page
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The skeletal structure of corals contains an embedded organic matrix with a set of proteins that

have a high proportion of aspartic and glutamic acids (Mitterer, 1978; Weiner, 1979; Mann, 2001;

Weiner and Dove, 2003; Gotliv et al., 2005). These coral acid-rich proteins (CARPs) (Mass et al.,

2013) show sequence similarity across Scleractinia (Drake et al., 2014) and have functional analogs

across the biomineralizing tree of life (Gorski, 1992; Sarashina and Endo, 2001; Kawasaki et al.,

2009). CARPs contain >28% aspartic and glutamic acids and have isoelectric points less than pH 5

(Table 1 in Mass et al., 2013). Each of these proteins can individually catalyze the precipitation of

calcium carbonate in vitro in natural seawater (Mass et al., 2013), hence, they appear to be respon-

sible for initiating biomineralization. Our results show that the average composition of aspartic and

glutamic acids in scleractinian corals is >2-fold higher than in 12 non-calcifying invertebrates, with no

obvious difference between the robust and complex clades of scleractinians (Figure 3). Moreover,

phylogenetic analysis reveals that four CARP genes (CARPs 2–5) are widely distributed among scler-

actinians, suggesting they are derived from homologs present in non-calcifying anthozoans. Exten-

sive duplication of genes encoding CARPs predated the split of robust and complex corals can be

seen for CARPs 3–5 (Figure 2—figure supplement 5), whereas CARP 2 appears to be unique to

robust corals. A previous hypothesis that CARP 1 resulted from a gene (domain) fusion (Mass et al.,

2013) is supported by these extensive genome data. CARP 1 is derived from a reticulocalbin-like

gene present in all metazoans that underwent the fusion of an acidic N-terminal domain, resulting in

a modular gene that is found only in corals (Figure 2—figure supplement 5). Our data suggest that

the enrichment of highly negatively charged proteins is a major distinguishing feature of stony

corals.

At the nanoscale, the biological precipitation of aragonite crystals is insufficient to form the highly

organized, stable macrostructures that characterize corals. The crystals are organized by a series of

proteins that act as ‘glues’. One of these protein families, found in the skeletons of corals is collagen

(Jackson et al., 2010; Drake et al., 2013). In basal invertebrates, there are three families of collagen

(fibrillar, multiplexins, and type IV) that are also present in vertebrates. Other than their structural

function, collagens play an important role in the regulation of cell-cell adhesion, differentiation, and

wound healing (Heino et al., 2009). Collagens in the alpha IV subfamily have been identified in the

organic matrix of coral skeletons (Ramos-Silva et al., 2013; Drake et al., 2013). Alpha IV collagens

form networks of fibers that are an important component of the extracellular matrix. Using the com-

plete genome data from S. pistillata and Seriatopora sp., we identified 230 and 208 predicted open

reading frames (ORFs), respectively, that contained a collagen Pfam domain. Of these, 52 S. pistil-

lata proteins contain an extracellular secretion signal, in comparison to 17 from Seriatopora sp. By

plotting the isoelectric point (IP) of the secreted collagens from both corals we identified four acid-

rich collagens in Seriatopora sp. and five in S. pistillata that have an IP < 7 (Figure 2—figure supple-

ment 6). This analysis strongly suggests that these collagens play a critical role in tethering aragonite

crystals in coral skeletons similar to their role in bone formation (Nudelman et al., 2010).

In addition to collagens, stony corals secrete a variety of other adhesion proteins into the calcify-

ing milieu (Ramos-Silva et al., 2013; Drake et al., 2013). These include cadherins, which facilitate

cell-cell or cell-substrate adhesion, vitellogenin, and zonadhesin proteins. As part of the biominerali-

zation toolkit, these proteins bind the calicoblastic cells to the newly formed skeleton and may assist

in the binding of CARPs to other functional proteins. Interestingly, the first protein sequenced from

coral skeleton, galaxin, is neither acidic nor calcium binding, and its function remains unknown

Figure 4 continued

DOI: 10.7554/eLife.13288.017

Figure supplement 3. Maximum likelihood trees of glyoxalase I (or lactoylglutathione lyase) and the proteins encoded by the flanking genes (top

image) in Acropora digitifera.

DOI: 10.7554/eLife.13288.018

Figure supplement 4. Maximum likelihood tree of a second glyoxalase I (or lactoylglutathione lyase) and the proteins encoded by the flanking genes

(top image) in Acropora digitifera.

DOI: 10.7554/eLife.13288.019

Figure supplement 5. Maximum likelihood tree of an algal-derived short-chain dehydrogenase/reductase (A), and a dinoflagellate-derived

phosphonoacetaldehyde hydrolase (B).

DOI: 10.7554/eLife.13288.020
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Table 1. The list of non-redundant anthozoan genes derived via HGT.

No. Ancestor Genes Protein products Support Source(s)

1 Coral A. digitifera_2036 PNK3P 100 CA

2 Coral A. digitifera_8849 SDR 100 CA

3 Coral Seriatopora_31861 DEAD-like helicase 100 Bact

4 Coral Seriatopora_16594 glyoxalase 100 CA

5 Coral Seriatopora_17147 acyl- dehydrogenase 100 Bact

6 Coral Seriatopora_17703 carbonic anhydrase 96 Dino

7 Coral Seriatopora_19477 fatty acid or sphingolipid desaturase 100 CA

8 Coral Seriatopora_3957 atpase domain-containing protein 100 Bact

9 Coral Seriatopora_7060 sam domain-containing protein 100 Bact

10 Coral Seriatopora_7928 atp phosphoribosyltransferase 100 CA/Fungi

11 Coral Seriatopora_8296 glyoxalase 98 Bact

12 Coral Seriatopora_22596 2-alkenal reductase 92 Bact

13 Coral Seriatopora_28321 histidinol-phosphate aminotransferase 96 Unclear

14 Anthozoa A. digitifera_418 duf718 domain protein 100 CA

15 Anthozoa A. digitifera_15871 peptidase s49 96 Algae/Bact

16 Anthozoa A. digitifera_14520 predicted protein 100 CA/Bact

17 Anthozoa A. digitifera_7178 rok family protein/fructokinase 93 Red algae

18 Anthozoa A. digitifera_10592 Phospholipid methyltransferase 100 CA/Viri

19 Anthozoa A. digitifera_13390 predicted protein 100 Bact

20 Anthozoa A. digitifera_313 malate synthase 98 CA/Bact

21 Anthozoa A. digitifera_1537 hypothetical protein 100 Bact

22 Anthozoa A. digitifera_13577 gamma-glutamyltranspeptidase 1-like 100 Unclear

23 Anthozoa A. digitifera_5099 Isocitrate lyase (ICL) 100 Bact

24 Anthozoa A. digitifera_13467 uncharacterized iron-regulated protein 100 CA

25 Anthozoa A. digitifera_6866 3-dehydroquinate synthase 98 CA

26 Anthozoa A. digitifera_11675 intein c-terminal splicing region protein 100 Bact

27 Anthozoa Seriatopora_10994 penicillin amidase 100 Bact

28 Anthozoa Seriatopora_14009 nucleoside phosphorylase-like protein 100 Bact

29 Anthozoa Seriatopora_14494 phosphonoacetaldehyde hydrolase 100 Dino

30 Anthozoa Seriatopora_15303 exonuclease-endonuclease-phosphatase 99 CA/Viri

31 Anthozoa Seriatopora_15772 fmn-dependent nadh-azoreductase 99 Dino

32 Anthozoa Seriatopora_19888 had family hydrolase 97 Algae/Bact

33 Anthozoa Seriatopora_20039 chitodextrinase domain protein 92 Dino

34 Anthozoa Seriatopora_20146 glutamate dehydrogenase 100 CA/Bact

35 Anthozoa Seriatopora_20479 thif family protein 100 Bact

36 Anthozoa Seriatopora_21195 ATP-dependent endonuclease 100 Dino

37 Anthozoa Seriatopora_8585 chitodextrinase domain protein 92 Bact

38 Anthozoa Seriatopora_24047 aminotransferase 100 Bact

39 Anthozoa Seriatopora_25961 d-alanine ligase 99 Bact

40 Anthozoa Seriatopora_26478 quercetin 3-o-methyltransferase 100 Viri

41 Anthozoa Seriatopora_29443 diaminopimelate decarboxylase 100 CA

Bact: Bacteria; CA: chlorophyll c-containing algae; Dino: dinoflagellates; Viri: Viridiplantae.

DOI: 10.7554/eLife.13288.021
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(Fukuda et al., 2003). Originally sequenced from Galaxea fascicularis, but more recently identified

in the A. millepora skeleton, galaxin is a 30–40 kDa glycosylated protein with a signal peptide, sug-

gesting it is secreted (Fukuda et al., 2003; Ramos-Silva et al., 2013). The primary sequence con-

tains ~ 20 paired cysteine (CC) residues. Usherin, found in vertebrates has a similar high number of

paired cysteine motifs (Baux et al., 2007) and binds type IV collagens (Bhattacharya et al., 2004),

suggesting a potential role for this galaxin. Galaxin was originally suggested to be coral-specific

(Fukuda et al., 2003), however, galaxin-like proteins are found in non-calcifying taxa outside Cnida-

ria (e.g., Sanchez et al., 2007; Heath-Heckman et al., 2014). Therefore, it has been proposed that

the precursor to modern coral galaxin homologs was recruited as a biomineralization protein when

Scleractinia diverged from non-biomineralizing taxa during the Triassic (Foret et al., 2010). Our

sequence analysis supports this hypothesis, suggesting that not only is coral galaxin derived from a

common ancestor with non-calcifying metazoans, but that it is polyphyletic within corals (Figure 2—

figure supplement 7), and independently recruited for a role in biomineralization multiple times in

coral evolution. The first evidence for stony corals occurs in the Triassic and fossil evidence shows a

rapid proliferation of taxa (reviewed by Stanley, 2003); this was also a time of ‘aragonite seas’ when

geochemical conditions were favorable to the formation and evolution of aragonitic coral skeletons

(Stanley and Hardie, 1998).

A second type of galaxin, amgalaxin, has an N-terminal acidic domain that precedes the galaxin

domain (Reyes-Bermudez et al., 2009). However, unlike galaxin, amgalaxin appears to function only

in the early larval stages of biomineralization and has not been observed in the coral skeleton

(Reyes-Bermudez et al., 2009; Ramos-Silva et al., 2013). This pattern is similar to the mollusk and

coral proteins nacrein and CARP1 (see above), in which an acidic domain is fused to an existing gene

(Miyamoto et al., 1996; Mass et al., 2013). Unlike galaxin, the acidic portion of amgalaxin appears

to be limited to corals (Figure 2—figure supplement 7). This result suggests that the attachment of

an acidic region to galaxin is unique to stony corals and that amgalaxin, like CARP1, emerged from

a gene fusion event.

Environmental and stress response systems
Corals typically produce planktonic or ‘crawl-away larvae’ that calcify when they settle on an appro-

priate benthic substrate, and have thereby effectively determined their future physical environment

for the life of the organism. Hence, habitat selection is one of the most critical elements in the sur-

vival and success of individual corals. To help accommodate variations in habitat on time scales vary-

ing from hours to years, corals have evolved a suite of environmental sensing and response systems.

One of the most critical environmental cues for coral success is light (Dubinsky and Falkowski,

2011). Stony corals use diel periodicity and light sensing capabilities as cues for spawning, feeding,

and orienting the polyps. Perhaps not surprisingly, the host animal has genes encoding a circadian

clock. However, the light sensing signal cascades in zooxanthellate corals are particularly complex

because of their symbiotic relationship with dinoflagellates, which also have a circadian clock. Coral

environmental response genes are coupled to the dinoflagellate circadian clock, anticipating

changes in the intracellular milieu such as the coral tissue becoming hyperoxic due to zooxanthellate

photosynthesis and near-hypoxic at night due to host and symbiont respiration. Numerous chaper-

ones such as heat shock protein (hsp) 40, hsp70, hsp90, grp94, hsp90b1, calreticulin, and protein

disulfide isomerase are ‘hard-wired’ to this photosynthesis/respiration clock and the high level of

synchrony of circadian transcription of chaperones and antioxidant genes reflects the diurnal pre-

paredness of the coral to the consequences of oxidative protein damage imposed by photosynthesis

of the algal symbionts (Levy et al., 2011). Symbiosis also indirectly imposes diurnal gene expression

fluctuations, most likely via the hypoxia inducible factor (HIF) system. In a wide array of animals, gly-

colytic enzymes are regulated by HIF1-alpha transcription factor, a clear ortholog of which is present

in the 20 coral genomic datasets. The HIF system is unique to animals, and HIF itself is a target of

calpain-mediated degradation in vertebrates. Calpains are Ca2+-dependent regulatory proteases

and corals linkage of calpain expression to the HIF system potentially enables them to utilize cellular

calcium levels to modulate expression of other HIF targets when hypoxia dominates (Levy et al.,

2011).

The casein kinase I (CK1) family consists of serine/threonine protein kinases that are key regula-

tors of circadian timing in bilaterian animals, fungi, and green algae (van Ooijen et al., 2013). CK1-

like encoding genes are found in most corals and were suggested to be components of the coral
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circadian gene network along with CLOCK, GSK3B/Sgg, and CSNK1D (Vize, 2009). The proteins

ADCI, GNAQ, GNAS, GNB1, CREB1, and NOS1 are related to G-protein coupled receptor signaling

and can act on neuropeptide/GPCR-coupled signaling mechanisms. This is consistent with neurohor-

mones playing a role in synchronized spawning events in tropical abalone (York et al., 2012) and in

coral larvae settlement (Grasso et al., 2011). Other proteins such as PPEF1 and GRIN1 respond to

light stimulus, whereas MTNR1A and MTNR1B are melatonin receptors, whereas PRKAA2 is a pro-

tein kinase that responds to peptide hormone stimulus and is responsive to circadian rhythms. The

circadian processes are impacted by catabolic process; i.e., S. pistillata glycolysis is controlled by

ARNT and HIF1-alpha that provide feedback that affects the circadian loop. Surprisingly, BLASTp

analysis of the 20 coral genomic datasets did not turn up the Period gene as reported in other cni-

darians. Therefore, the core circadian clock architecture of the negative feedback loop in basal meta-

zoans such as corals may differ significantly from animal lineages that diverge after corals.

Although fluxes of calcium and bicarbonate ions into the calicoblastic space are part of the bio-

mineralization system, these and other ion pumps also generate electrochemical gradients that allow

stony corals to sense the environment and initiate complex and specific signaling cascades

(Hille, 1986). This ion trafficking landscape and downstream signaling components are comprised of

channels, transporters, exchangers, pumps, second messenger generators, and transcriptional

response elements. Many of these ion transporters act as direct physicochemical sensors providing

intra-cellular and intra-organismal regulation and the critical linkage between external environmental

changes and cytoplasmic and organellar events, cascades and transcriptional regulation. We identi-

fied major components of the ion trafficking systems in human genomes, and searched for their

orthologs in corals (Figure 2B). Ion channel sensors such as the transient receptor potential (TRP)

channels (TRPA, TRPV, TRPM, TRPC) (Ramsey et al., 2006; Nilius and Szallasi, 2014) and acid sens-

ing channels (ASICs) are present in corals (Krishtal, 2015). Most of these are either direct, or indi-

rect, physicochemical sensors of environmental parameters such as temperature, pH and oxygen

tension. Organelle ion regulators such as two-pore channels (TPCN) (Wang et al., 2012;

Horton et al., 2015), mucolipin (MCOLN) are also present and are thought to maintain intraorganel-

lar pH and ion environments. In summary, most, if not all of these components sense environmental

changes and implement signaling cascades that lead to the activation of specific transcriptional pro-

grams that allow the organism to physiologically respond to environmental signals.

Impacts of the environment on the symbiotic life history of corals
Symbiotic corals thrive in oligotrophic tropical and subtropical seas in large part because their intra-

cellular, symbiotic dinoflagellates provide a significant portion of their photosynthesis-derived fixed

carbon to the host animal. However, this benefit comes with significant costs. The ecological stability

of the symbiotic association is dependent on it being stable in the face of environmental extremes.

This symbiosis has been widely described as living close to the upper extremes of thermal tolerance

that, when exceeded, leads to a cascade of cellular events resulting in ‘coral bleaching’, whereby

corals lose their symbiotic algae and consequently one of their main sources of carbon (Lesser, 2006;

2011). Other environmental extremes can lead to coral bleaching including exposure to ultraviolet

radiation (UVR) and ocean acidification (Lesser, 2004; Hoegh-Guldberg et al., 2007). Proximately,

in this cascade of events, many physiological studies on bleaching in corals and other symbiotic cni-

darians have shown that photosynthetically produced hyperoxic conditions act synergistically with

solar radiation, especially UVR, and thermal stress to produce reactive oxygen species (ROS) and

reactive nitrogen species (RNS) in both host tissues and Symbiodinium sp. beyond their capacity to

quench these toxic products (Lesser, 2006; 2011). Ultimately a series of fairly well described stress

response events involving cell cycle arrest and apoptosis, in both the algal symbionts and host,

appear to be responsible for the massive expulsion of dinoflagellates from the host, and ultimately,

host mortality if the environmental insult is severe enough or of prolonged duration (Lesser, 2006;

2011)

Therefore, the ecological stability of the symbiotic association in zooxanthellate corals requires

increased stability in the face of environmental extremes. Previous coral genomic studies have identi-

fied genes involved in the stress response of cnidarians (Shinzato et al., 2011), but here we show

that corals contain highly conserved genes involved in oxidative stress, DNA repair, the cell cycle

and apoptosis (Supplementary file 1). For instance we identify both the extrinsic and intrinsic apo-

ptotic pathways, characteristic of many vertebrates including humans. These genes are not derived
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by HGT in the Cnidaria, because of their presence in poriferans and other sister taxa (see HGT dis-

cussion below). Corals exposed to oxidative stress, or UVR, accumulate DNA damage, whereby cell

cycle arrest occurs and cell repair is initiated (Lesser and Farrell, 2004). If DNA damage is too

severe, then a cellular cascade leading to genetically programmed cell death by apoptosis occurs via

an intrinsic, or mitochondrial, pathway. Whereas the intrinsic pathway is considered a response to

stress (e.g., thermal stress), the extrinsic, or death-receptor pathway is a cellular process by which

cell to cell communication activates apoptosis via ligand binding to cell surface receptors, as in the

well described immunological response to cancer cells or pathogens. Genes present in cnidarians

and active in the vertebrate intrinsic DNA damage induced apoptotic pathway include: ATM, p53

(and many of its important regulator proteins and transcriptional products), Hausp, Bax, Bcl-2, AIF,

cytochrome C, APAF1, procaspase 9, procaspase 3, ICAD and CAD (Supplementary file 1). The

activity of these genes in cnidarians comprises the cellular machinery necessary to accomplish the

following: mitochondrial catastrophe, apoptosome formation, breakdown of the nuclear pores, intra-

nuclear DNA disassembly and flipping of phosphotidylserine from the inner to the outer leaflet of

the plasma membrane that in humans permits macrophage recognition of apoptotic cells. In addi-

tion, we identified a complete nitric oxide synthase (NOS; EC 1.14.13.39) in corals. This gene is

derived from a metazoan ancestor and is thought to play a key role in the stress response that leads

to breakdown of the symbiosis and coral bleaching (Trapido-Rosenthal et al., 2005; Hawkins et al.,

2013). Another significant finding of our analysis of multiple taxa is that Bid (BH3; Bcl-2 domain of

homology 3), the only protein that allows the extrinsic and intrinsic pathways in vertebrates to

directly communicate with each other, is not present in the coral data. Previous research on apopto-

sis in invertebrates, particularly on the intrinsic pathway, demonstrated the conserved nature of the

molecular machinery in ancestral metazoans (Bender et al., 2012). Cnidarians encode all the genes

for both pathways known to be expressed and active in vertebrates, but appear to lack the ability to

communicate between them. This function is mediated by p53, the gatekeeper for cell growth and

division, through Bid in vertebrates (Sax et al., 2002) that is present in 20 of 25 cnidarian datasets

examined here. The antiquity of the intrinsic pathway is striking and along with the recent demon-

stration of a functional extrinsic pathway in cnidarians (Quistad et al., 2014) reveals the importance

of these apoptotic pathways in metazoan evolution. Interestingly, tumor necrosis factor (TNF), an

essential mediator of the extrinsic death-receptor pathway, was present in only 7 of the 32 datasets

examined in this study (Supplementary file 1). Lastly, the presence of the major genes in the human

extrinsic and intrinsic pathways suggests that cnidarians may be a potential model system for study-

ing transcriptionally induced apoptosis, when compared to Caenorhabditis elegans and Drosophila

melanogaster. In these latter animal models, the available functional data indicate that genes in the

cellular senescence, DNA editing, and repair pathways that are governed by the transcriptional acti-

vation domain (TAD) of p53 are only 2% (D. melanogaster) and 33% (C. elegans) conserved when

compared to human p53 (Walker et al., 2011). This result suggests limited control of somatic cell

apoptosis in these organisms perhaps because their adult somatic cells do not divide by mitosis.

Contribution of horizontal gene transfer to coral evolution
The primary function of the HGT candidates we identified in stony corals is to extend the existing

stress related pathways in these animals. These foreign genes encode proteins that provide protec-

tion from UVR and stress from reactive species (Banaszak and Lesser, 2009; Nesa et al., 2012). It

has already been reported that corals and sea anemones acquired a pathway that produces photo-

protective mycosporine amino acids that absorbs UVR (Shinzato et al., 2011). Our results show

additions to the DNA repair pathway, including a polynucleotide kinase 3-phosphatase (PNK3P) of

algal origin (Figure 4) and a DEAD-like helicase of bacterial origin (Figure 4—figure supplement 1).

These two genes are flanked by eukaryotic or coral-specific genes in their respective contigs in the

draft genome of A. digitifera (Figure 4 and Figure 4—figure supplement 1). Two DNA repair genes

that were transferred from algal sources were found in the anthozoan ancestor. These encode an

exonuclease-endonuclease-phosphatase (EEP) domain-containing protein and an ATP-dependent

endonuclease (Figure 4—figure supplement 2). Furthermore, two DNA repair genes are shared

between Anthozoa and sponges or choanoflagellates, but are missing from a large diversity of

Bilateria; these encode a tyrosyl-DNA phosphodiesterase 2-like protein and a DNA mismatch repair

(MutS-like) protein (Figure 4—figure supplement 2). Our results fit in well with the so-called Public
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Goods Hypothesis that posits important genetic resources, such as mechanisms of DNA repair, are

distributed widely among taxa via both vertical and horizontal evolution (McInerney et al., 2011).

Protection against reactive species in corals, in addition to the multiple homologs we found with

antioxidant functions such as superoxide dismutase (Supplementary file 1), is provided by two

genes derived via HGT that encode glyoxalase I. One of these has an algal (Figure 4—figure sup-

plement 3) and the other a bacterial provenance (Figure 4—figure supplement 4). Interestingly,

the latter gene is physically located between a DNA repair gene (encoding RAD51) and a tRNA

modification gene on scaffold 2777 in the A. digitifera draft assembly (Figure 4—figure supplement

4). Glyoxalase I belongs to a system that carries out the detoxification of reactive carbonyls (RC),

such as highly cytotoxic methylglyoxal, produced by sugar metabolism and the Calvin cycle

(Shimakawa et al., 2014). Methylglyoxal production in plastids increases with light intensity

(Takagi et al., 2014). Another gene encoding a putative RC scavenger (Shimakawa et al., 2014) is

short-chain dehydrogenase/reductase (SDR) that was derived in corals from an algal source (Fig-

ure 4—figure supplement 5). Other alga-derived HGTs were from species containing plastids of

red algal secondary endosymbiotic origin (i.e., chlorophyll c-containing lineages such as strameno-

piles) (Table 1). Given the coral-Symbiodinium symbiosis, it is also notable that several of the HGT

candidates appear to be derived from dinoflagellates (e.g., Figure 4—figure supplement 5). The

gene contribution from chlorophyll c-containing lineages suggests a long history of interaction

between these algae and the anthozoan lineage.

Conclusions
Cnidarians enter the fossil record about 545 Ma in the latest Ediacaran Period and have been an

important component of marine ecosystems throughout the Phanaerozoic, surviving five major mass

extinctions and many smaller biotic crises. Although reefs have often disappeared during each of

these events, various coral clades have persisted. Our analysis of a subset of coralliform cnidarians,

the symbiotic Scleractinia, reveals how their genomic information has provided the basis for adapt-

ing to changes in ocean temperature and pH, while maintaining the ability to calcify. This is signifi-

cant because scleractinians survived throughout the Cenozoic despite atmospheric CO2 levels

reaching 800 ppm 50–34 Ma, and tropical sea temperatures of 30º–34ºC from 45 to 55 Ma

(Norris et al., 2013). This interval coincides with a reef gap, but reefs were quickly re-established

thereafter. The resilience of corals in the face of extraordinary changes in ocean conditions clearly

bespeaks a gene inventory that is highly adaptive as exemplified by the diversification of CARPs and

genes recruited through HGT. Human activity has the potential to further reduce the abundance of

these organisms in coming decades; indeed, there is compelling evidence of human destruction of

corals worldwide. However, the diverse genetic repertoire of these organisms will potentially allow

them to survive the expected changes in thermal structure and pH in the coming centuries

(Stolarski et al., 2011), assuming that their populations and habitats are not physically destroyed by

humans.

Materials and methods

Analysis of genome data and construction of coral tree of life
Coral genomic and transcriptome data compiled in this study are summarized in Figure 1—source

data 1. All data were filtered to remove assembled contigs <300 bp. ORFs were predicted with

TransDecoder (Haas et al., 2013) yielding amino acid sequences. Protein duplicates were subse-

quently removed with CD-HIT (Fu et al., 2012). With regard to coral sequence datasets, potential

contaminant sequences from the algal symbiont, Symbiodinium were removed with script psytrans.

py (https://github.com/sylvainforet/psytrans) using training sets retrieved from Symbiodinium micro-

adriaticum (Baumgarten et al., 2013) and Acropora digitifera (Shinzato et al., 2011). Successful

separation of coral and algal sequences was validated by GC-content plots that showed a clear

bimodal data distribution (results not shown). Filtered sequence data were searched against Swis-

sProt (Boutet et al., 2007), TrEMBL (Bairoch and Apweiler, 2000), NCBI nr databases using

BLASTp (Basic Local Alignment Search Tool, e-value cut-off = 1e-03) (Altschul et al., 1990) and

retaining annotations from databases in this order. BLAST2GO (Conesa et al., 2005) was queried to

provide GO annotations, and KEGG (Kanehisa and Goto, 2000), Pfam (Bateman et al., 2002),
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InterProScan (Zdobnov and Apweiler, 2001) were searched to further annotated gene sets. Filtered

and annotated genomic and transcriptomic data are available at comparative.reefgenomics.org.

Orthologs were identified using InParanoid (Ostlund et al., 2010) on pairwise BLASTp (e-value

cutoff = 1e-05) yielding a list of pairwise orthologs that was subsequently queried with QuickPara-

noid (http://pl.postech.ac.kr/QuickParanoid/) for automatic ortholog clustering among multiple spe-

cies. QuickParanoid input files were filtered according to the following rules: A) Only orthologs sets

were retained with a confidence score of 1, and B) Pairwise comparisons were retained if only one

sequence is present in each of the two involved species. To make more robust inferences based on

transcriptomic data, we filtered our ortholog dataset such that any ortholog from a given phyloge-

netic grouping (i.e., robust corals, complex corals, Scleractinia, Actiniaria, Hexacorallia, Anthozoa,

Cnidaria, non-cnidarian, root) was considered to be an ortholog in this group if it was present in this

group and absent in all other groups. The QuickParanoid-derived ortholog clusters were sorted into

the following categories based on the constituent taxa and known species tree (Figure 1): 1.) 2,485

‘root’ orthologs, 2.) 613 ‘Non-Cnidaria’ orthologs, 3.) 462 ‘Cnidaria’ orthologs, 4.) 1436 ‘Anthozoa’

orthologs, 5.) 1,810 ‘Hexacorallia’ orthologs, 6.) 172 ‘Actiniaria’ orthologs, 7.) 4,751 ‘Scleractinia’

orthologs, 8.) 1,588 ‘complex coral’ orthologs, and 9.) 6,970 ‘robust coral’ orthologs (available at

http://comparative.reefgenomics.org). For phylogenetic tree building, we selected ‘root’ orthologs

that were present in at least 50% of the species of any lineage (i.e. Root, Non-Cnidarian, Cnidarian,

Anthozoa, Hexacorallia, Actiniaria, Scleractinia, Complex corals, Robust corals) yielding 391 distinct

orthologs over 7970 sequences. Orthologs were aligned individually on the protein level via MAFFT

(Katoh and Standley, 2013) in ‘LINSI’ mode. The resulting alignments were concatenated and then

trimmed with TrimAl in the automated mode (-automated) (Capella-Gutierrez et al., 2009). The

resulting alignment (63,901 amino acids) was used for phylogenetic tree building with RAxML (Sta-

matakis, 2014) under PROTGAMMALGF model with 100 bootstrap replicates for the estimation of

branch supports (-T 32 -f a -x 1234 -p 1234 -N 100 -m PROTGAMMALGF).

Analysis of ion transport
Human ionome protein reference sequences were identified and downloaded from Genbank at

NCBI. Using BLASTStation-Local64 (v1.4, TM software, Inc, Arcadia, CA 91007, USA), a coral protein

database was generated. This contained all protein sequences available from the reefgenomics web-

site (http://comparative.reefgenomics.org/). The human ionome protein sequences were then used

as queries to search (Basic Local Alignment Search Tool, BLAST) against this local database using

BLASTp (no filter, Expect: 10; Word Size 3; Matrix: BLOSUM63; Gap Costs: Existence 11 extension

1) using BLASTStation-Local64. The resulting matching coral proteins were saved in multi-FASTA for-

mat files, and then re-BLASTed against the NCBI Refseq protein database (Pruitt et al., 2012) lim-

ited to human-only proteins (taxid:9606) on the NCBI BLAST webportal (algorithm BLASTp, default

parameters; Expect: 10; Word Size 3; Matrix: BLOSUM62; Gap Costs: Existence 11 extension 1)

(Camacho et al., 2009). The results were viewed for each coral protein from the input file, and a

summary was generated, indicating which human protein was identified as a top hit, and in which

coral species it was found. The coral multi-FASTA file was copied and annotated manually with the

gene symbols of the human protein identified. If a protein coral sequence was not identified as the

original human protein sequence, it was deleted, if other gene family members were identified this

information was also annotated, and entered into the summary table. These multi-FASTA files were

then stored for future analysis (e.g., generating phylogenetic trees). The results from the coral to

human BLASTp alignments were also stored.

Analysis of horizontal gene transfer
Protein sequences in RefSeq (version 58) were downloaded from NCBI FTP site (ftp://ftp.ncbi.nlm.

nih.gov/refseq/). When sequences were available from more than one (sub) species in a genus (e.g.,

Arabidopsis thaliana and A. lyrata in the genus Arabidopsis), the species (e.g., A. thaliana) with larg-

est number of sequence were retained, whereas others (e.g., A. lyrata) were all removed. This data-

set was combined with algal sequences collected from Cryptophyta [Guillardia theta (Curtis et al.,

2012)], Haptophyceae [Emiliania huxleyi (Read et al., 2013)], Rhizaria [Bigelowiella natans

(Curtis et al., 2012) and Reticulomyxa filose (Glockner et al., 2014)], Stramenopiles [Nannochlorop-

sis gaditana (Radakovits et al., 2012) and Aureococcus anophagefferens (Gobler et al., 2011)] and
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dinoflagellates [Alexandrium tamarense (Keeling et al., 2014), Karenia brevis (Keeling et al., 2014),

Karlodinium micrum (Keeling et al., 2014), Symbiodinium minutum (Shoguchi et al., 2013)], Glauco-

phyte [Cyanophora paradoxa (Price et al., 2012)], Viridiplantae [Bathycoccus prasinos

(Moreau et al., 2012), Chlorella variabilis (Blanc et al., 2010), Coccomyxa subellipsoidea

(Blanc et al., 2012), Micromonas pusilla (Worden et al., 2009), Glycine max (Schmutz et al., 2010)]

and all red algal sequences collected in the previous study (Qiu et al., 2015). We further clustered

similar sequences (sequence identity �85%) among taxa from each order (e.g., Brassicales or Pri-

mates), retained the longest sequence and removed all other related sequences in the same cluster

using CD-HIT version 4.5.4 (Li and Godzik, 2006). This non-redundant database, combined with

protein sequences derived from three coral genomes (Acropora digitifera and Seriatopora sp. and

Stylophora pistillata) was designated as ‘Ref58+Coral’ database.

The protein sequences from A. digitifera and Seriatopora sp. genomes were used as query to

search against the ‘Ref58+Coral’ database using BLASTp (e-value cut-off = 1e-05). Up to 1000 top

hits (query-hit identity �27.5%) were recorded. These hits were sorted according to query-hit iden-

tity in a descending order among those with query-hit alignment length (�120 amino acids). Hit

sequences were then retrieved from the queried database with no more than three sequences for

each order and no more than 12 sequences for each phylum. The resulting sequences were aligned

using MUSCLE version 3.8.31 (Edgar, 2004) under default settings and trimmed using TrimAl ver-

sion 1.2 (Capella-Gutierrez et al., 2009) in an automated mode (-automated1). Alignment positions

with �50% gap were discarded. We removed sequence alignments with <80 amino acid sites and

those with <10 sequences. The remaining alignments were used for phylogenetic tree building using

FastTree version 2.1.7 (Price et al., 2010) under the defaulting settings (except that WAG model

was used instead of JTT model). The resulting trees were parsed to search for coral sequences that

were nested within metazoan sequences with �0.9 local support values estimated using the Shimo-

daira-Hasegawa test (Shimodaira and Hasegawa, 1999) using in-house tools. All such coral sequen-

ces were considered to represent metazoan host genes and were discarded from downstream

analyses.

We conducted a second run of phylogenomic analysis using an expanded database comprising

‘Ref58+Coral’ database and all metazoan sequences collected in this study (http://comparative.reef-

genomics.org/datasets.html). The analyses were performed following the aforementioned procedure

except that phylogenetic trees were constructed using RAxML (Stamatakis, 2014) under PROTGA-

MMALGF model with branch supports estimated using 100 bootstrap replicates. With these RAxML

trees, we searched for coral sequences that were nested within non-metazoan sequences (with

�60% bootstrap support). The resulting phylogenetic trees were manual inspected to identify HGT

candidates. HGT cases that were unique to the query species (not shared with any other coral taxa)

were discarded. The tree topologies for the resulting candidates were confirmed by re-building the

trees using IQtree version 0.96 (Nguyen et al., 2015) under the best amino acid substitution model

selected by the build-in model-selection function. Branch supports were estimated using ultrafast

bootstrap (UFboot) approximation approach (Minh et al., 2013) using 1500 bootstrap replicates (-

bb 1500). Coral sequences were considered to have a HGT origin if they were nested within non-

metazoan sequences with �90% UFboot support. When phylogenetic trees derived from the A. digi-

tifera data and those derived from Seriatopora sp. showed the same HGT event (i.e., an ancient

transfer that occurred before the split of these two species), they were manually grouped into a

shared non-redundant group. The same was the cases for phylogenetic trees that resulted from

recent gene duplications. This process gave rise to 21 A. digitifera sequences and 41 Seriatopora sp.

sequences that represent 41 independent HGTs from non-metazoan sources (Table 1).

The key HGT genes involved in stress response were mapped to A. digitifera genome browser

using the BLAST function therein (http://marinegenomics.oist.jp/acropora_digitifera). The corre-

sponding phylogenetic trees were rebuilt with inclusion of representative sequences (if available)

from more algal taxa (Pyrodinium bahamense pbaha01, Gambierdiscus australes CAWD149, Gonio-

monas Pacifica CCMP1869, Togula jolla CCCM725, Pleurochrysis carterae CCMP645, Ceratium fusus

PA161109) that were generated from the Marine Microbial Eukaryote Transcriptome Sequencing

Project (Keeling et al., 2014). The alignments were carried out using MUSCLE version 3.8.31

(Edgar, 2004) followed by manual trimming and curation (e.g., with the removal of highly divergent

sequences and redundant sequences from highly sampled groups). The corresponding ML trees
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were built using IQtree (Nguyen et al., 2015) as aforementioned. The phylogenetic trees for the

flanking genes (if any) were generated likewise.
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Ostlund G, Schmitt T, Forslund K, Köstler T, Messina DN, Roopra S, Frings O, Sonnhammer EL. 2010. Inparanoid
7: New algorithms and tools for eukaryotic orthology analysis. Nucleic Acids ResResearch 38:D196–203. doi:
10.1093/nar/gkp931

Pandolfi JM. 2011. The paleoecology of coral reefs. In: Dubinsky Z, Stambler N. Coral Reefs: An Ecosystem in
Transition. Netherlands: Sringer; 13–24 . doi: 10.1007/978-94-007-0114-4_2

Petrucco S, Volpi G, Bolchi A, Rivetti C, Ottonello S. 2002. A nick-sensing DNA 3’-repair enzyme from
arabidopsis. The Journal of Biological Chemistry 277:23675–23683. doi: 10.1074/jbc.M201411200

Price MN, Dehal PS, Arkin AP. 2010. Fasttree 2–approximately maximum-likelihood trees for large alignments.
PloS One 5:e9490. doi: 10.1371/journal.pone.0009490

Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber AP, Schwacke R, Gross J, Blouin NA, Lane C, Reyes-Prieto
A, Durnford DG, Neilson JA, Lang BF, Burger G, Steiner JM, Löffelhardt W, Meuser JE, Posewitz MC, Ball S,
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