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Cationic amino acid transporters play key roles
in the survival and transmission of apicomplexan
parasites
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Apicomplexans are obligate intracellular parasites that scavenge essential nutrients from

their hosts via transporter proteins on their plasma membrane. The identities of the trans-

porters that mediate amino acid uptake into apicomplexans are unknown. Here we demon-

strate that members of an apicomplexan-specific protein family—the Novel Putative

Transporters (NPTs)—play key roles in the uptake of cationic amino acids. We show that an

NPT from Toxoplasma gondii (TgNPT1) is a selective arginine transporter that is essential for

parasite survival and virulence. We also demonstrate that a homologue of TgNPT1 from the

malaria parasite Plasmodium berghei (PbNPT1), shown previously to be essential for the sexual

gametocyte stage of the parasite, is a cationic amino acid transporter. This reveals a role for

cationic amino acid scavenging in gametocyte biology. Our study demonstrates a critical role

for amino acid transporters in the survival, virulence and life cycle progression of these

parasites.
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A
picomplexan parasites include the causative agents of
malaria (Plasmodium spp) and toxoplasmosis (T. gondii).
Ancestral apicomplexans were free-living marine

algae that synthesized most of the organic molecules required
for their survival1. As they evolved to become intracellular
parasites, apicomplexans lost many biosynthetic pathways and
became reliant on their hosts as a nutrient source2. Intracellular
parasites take up nutrients such as sugars, nucleosides and
nucleobases, vitamins and amino acids from their host cell,
doing so via membrane transport proteins. Despite the role
played by nutrient scavenging in sustaining the growth and
development of apicomplexan parasites, very few of the
transporter proteins involved have been characterized to date,
and most of those that have been characterized are homologues
of equivalent transporters in other organisms, such as mammals,
yeast and plants3–7. The transporters responsible for amino
acid uptake in apicomplexans are unknown, despite amino
acids being essential nutrients in the disease-causing life stages
of these organisms8–10.

Bioinformatic surveys of apicomplexan genomes have identified
numerous candidate transporters11,12. For some, homologies to
transporters characterized in other organisms provide insight into
their function. However there remain many, so-called ‘orphan’,
transporters with unknown substrate affinities11,13. A recent, large-
scale study of putative orphan transporters from Plasmodium
berghei identified 19 such proteins that are essential at some stage
of the parasite life cycle13. Among these were several ‘novel putative
transporters’ (NPTs), members of an apicomplexan-specific family
of putative transporter proteins, comprising five members in
Plasmodium spp11 and 16 in T. gondii (K. Parker, E.R., K.K. and
G.v.D., manuscript in preparation). In P. berghei, three of the five
NPTs (termed PbNPT1, PbMFR4 and PbMFR5) are essential for
transmission through the mosquito stages of the life cycle13.
PbNPT1 was shown previously to be a plasma membrane protein
that is essential for the development of sexual-stage gametocytes14.
Despite the apparent importance of the NPTs for parasite biology,
the substrates, functions and physiological roles of these proteins
remain unknown.

In this study, we demonstrate that an NPT protein from
T. gondii, termed TgNPT1, functions as a highly selective arginine
transporter, essential for parasite growth and virulence. We also
show that T. gondii has a second broader-specificity cationic
amino acid uptake pathway that transports both arginine and
lysine, but which is not sufficient to support parasite growth
under physiological conditions. PbNPT1, a malaria parasite
homologue of TgNPT1, functions as a cationic amino acid
transporter, implicating cationic amino acid scavenging
in gametocyte biology. Our findings demonstrate that the
previously uncharacterised, apicomplexan-specific NPT protein
family includes amino acid transporters that are essential
for survival of these parasites, and point to a critical role
for the uptake of cationic amino acids in the survival and
virulence of these parasites.

Results
TgNPT1 is important for in vitro growth of T. gondii parasites.
Previous studies identified PbNPT1 as being essential for
gametocyte development in P. berghei13,14; however, its
function remains unknown. Here, we explored the possibility
that PbNPT1 transports nutrients or other substrates critical
for gametocyte biology. In doing so, we turned first to
PbNPT1 homologues in T. gondii, an experimentally tractable
relative of Plasmodium parasites. Using the Basic Local
Alignment Search Tool (BLAST) on www.toxodb.org we
searched the T. gondii genome for homologues of PbNPT1. The

top hit was to the gene TGME49_215490, referred to hereafter
as TgNPT1. Like other NPTs, TgNPT1 is predicted to contain
12 transmembrane domains, and includes a signature sequence
of the major facilitator superfamily of transporter proteins
(Supplementary Fig. 1; ref. 15). To confirm expression of
TgNPT1, we replaced the 30 end of the TgNPT1 open reading
frame with a hemagglutinin (HA) epitope tag in TATi/Dku80
strain parasites16 and confirmed correct integration by
polymerase chain reaction (PCR) analysis (Supplementary
Fig. 2a,b). Western blotting revealed that TgNPT1-HA has
a molecular mass of B40 kDa, below the calculated mass of
58 kDa (Fig. 1a). The reason for this discrepancy was not
investigated further. It is possible that there is proteolytic
processing of TgNPT1 at the N-terminus, or that the TgNPT1
protein migrates faster than predicted on SDS–polyacrylamide
gel electrophoresis (SDS–PAGE), a common feature of
hydrophobic membrane proteins17. We attempted to integrate
a 50 epitope tag into the TgNPT1 locus, but were unable to
recover genetically modified parasites, precluding further analysis
of N-terminal processing. An immunofluorescence assay revealed
that TgNPT1-HA localizes to the periphery of the parasite, as
well as to some internal structures (Fig. 1b). The peripheral
localization overlapped with that of SAG1, a marker for the
T. gondii plasma membrane, consistent with TgNPT1 being
a plasma membrane protein.

To determine whether TgNPT1 is essential for T. gondii
growth, we replaced the native promoter of TgNPT1 with an
anhydrotetracycline (ATc)-regulated promoter (Supplementary
Fig. 2c; ref. 16). This promoter enables inducible silencing of gene
transcription on addition of ATc. The resultant parasite strain
was termed iTgNPT1. Correct integration of the ATc-regulated
promoter was confirmed by PCR analysis (Supplementary
Fig. 2d). To determine the extent of TgNPT1 protein knockdown
following addition of ATc, we introduced a 30-HA tag into the
iTgNPT1 locus and grew parasites for 0–24 h in
the presence of ATc. A western blot of protein extracts revealed
no detectable TgNPT1-HA protein after 24 h exposure of
parasites to ATc (Fig. 1c; Supplementary Fig. 3). To measure
growth of iTgNPT1 parasites, we introduced a Tomato Red
Fluorescent Protein into the iTgNPT1 strain (generating the
strain iTgNPT1/Tomato) and performed a fluorescence growth
assay18,19. Parasites were grown in Dulbecco’s Modified Eagle’s
medium (DMEM) for 9 days in the absence or presence of ATc.
Parasites grew normally in the absence of ATc, but growth
was severely impaired in the presence of ATc (Fig. 1d).
Complementation of the iTgNPT1/Tomato parasite strain with
a constitutively expressed copy of TgNPT1 (cTgNPT1) restored
growth of the parasites in the presence of ATc (Fig. 1e),
indicating that the growth phenotype observed in the mutant
is solely the result of TgNPT1 knockdown. We conclude
that TgNPT1 plays an essential role in the growth of parasites
in DMEM.

We hypothesized that TgNPT1 is a transporter for a nutrient
that is essential for parasite survival, and that incubation of
TgNPT1-deficient T. gondii parasites in the presence of an
increased concentration of that nutrient might overcome the
growth defect observed. With this in mind, we prepared
a ‘homemade’ culture medium, allowing us to modify the
concentrations of candidate substrates. Roswell Park Memorial
Institute 1640 (RPMI) medium is a commonly used growth
medium, for which the individual components (for example,
vitamins and amino acids) are commercially available. RPMI was
therefore used as a base for the homemade medium. In
preliminary experiments to determine whether T. gondii parasites
could grow in RPMI, we cultured iTgNPT1/Tomato parasites
for 7 days in standard RPMI in the absence and presence of
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ATc. Unexpectedly, and in contrast to our findings with parasites
grown in DMEM, we found that iTgNPT1/Tomato parasites
grew normally in RPMI medium, both in the absence and
presence of ATc (Fig. 1f). This serendipitous finding suggested
that a difference in the composition of RPMI compared
with DMEM modulated the growth of parasites subjected to
TgNPT1 knockdown.

Growth of parasites lacking TgNPT1 is modulated by arginine.
The differential growth effects seen in RPMI and DMEM
were explored further in parasites in which the entire TgNPT1
gene was replaced with a selectable marker through double
homologous recombination (Supplementary Fig. 2e). Disruption
of the TgNPT1 locus was confirmed by PCR analysis
(Supplementary Fig. 2f). The resultant ‘knockout’ strain
(termed Dnpt1) grew normally in RPMI medium, but exhibited
a severe growth defect in DMEM (Fig. 2a,b), consistent with
our observations of the inducible knockdown line. By contrast,
wild type (WT) parasites grew normally in both RPMI and
DMEM (Fig. 2a,b).

To identify the component(s) of RPMI that enabled the
growth of parasites deficient in TgNPT1, we prepared a range
of ‘hybrid’ media that contained some components (vitamins and

amino acids) at concentrations found in RPMI and some
at concentrations found in DMEM. Media containing amino
acids at the concentrations present in RPMI, but not media
containing amino acids at the concentrations present in DMEM,
supported the growth of iTgNPT1 parasites in the presence
of ATc (Fig. 2c).

Arginine is present at a three-fold higher concentration
in RPMI than in DMEM (Supplementary Fig. 4). To test
whether arginine had a role in the differential growth phenotype,
we grew WT and Dnpt1 parasites in RPMI containing arginine
at the lower concentration present in DMEM (400 mM).
In this medium the growth of Dnpt1 parasites, but not
that of WT parasites, was impaired (Fig. 2d,e). We therefore
investigated the dependence of the growth of both WT and
Dnpt1 parasites on arginine concentration. WT parasites
showed growth impairment when the arginine concentration
was reduced below B50mM (Fig. 2f), consistent with
previous data indicating that T. gondii is auxotrophic for
arginine9. At arginine concentrations above B50 mM there was
no growth impairment. By contrast, Dnpt1 parasites exhibited
severe growth impairment when arginine levels were reduced
below 1.15 mM (Fig. 2f). Ablation of TgNPT1 therefore impairs
parasite growth under conditions of restricted arginine
availability.
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Figure 1 | TgNPT1 is a plasma membrane protein essential for parasite growth in DMEM but not in RPMI. (a) Western blot analysis of TgNPT1-HA,

probed with anti-HA antibodies. (b) Immunofluorescence assay of TgNPT1-HA (green) reveals partial colocalization with the plasma membrane marker

SAG1 (red) (Pearson’s Correlation Coefficient mean±SD¼0.81±0.04, n¼6). The scale bar is 2 mm. (c) Western blot analysis demonstrating iTgNPT1-HA

knockdown in the presence of ATc. Parasites were grown for 0, 3, 6, 12 and 24 h in the presence of ATc. GRA8 is a loading control. (d–f) Fluorescence

growth assays for iTgNPT1 parasites (d,f) and iTgNPT1 parasites complemented with constitutively-expressed TgNPT1 (e); iTgNPT1/cTgNPT1), grown in

DMEM (d,e) or RPMI (f), in the absence (black) or presence (red) of ATc. Growth is expressed as a percentage of that measured in parasites grown in the

absence of ATc on the final day of the experiment. The data shown are averaged from three technical replicates (±s.d.), and are representative of those

obtained in three biological replicates.
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TgNPT1 is a selective arginine transporter. Our data
are consistent with TgNPT1 functioning as an arginine
transporter. To test this hypothesis, complementary RNA (cRNA)
encoding TgNPT1-HA was injected into Xenopus laevis oocytes,
a well-validated heterologous expression system for the
characterization of solute transporters20. TgNPT1-HA protein
localized to the plasma membrane of injected oocytes
(Supplementary Fig. 5a). Measurements of the uptake of
[14C]arginine ([14C]Arg) into TgNPT1-HA cRNA-injected
and uninjected oocytes over 30 min revealed that the uptake
of arginine into oocytes expressing TgNPT1-HA was eight-fold
higher than that into control oocytes under the conditions
tested (arginine concentration of 100 mM; Fig. 3a; Supplementary
Fig. 5b), consistent with TgNPT1 transporting arginine
into the oocytes. We investigated the substrate specificity
of TgNPT1-HA by measuring the uptake of [14C]Arg in
the presence of a range of unlabelled amino acids, each at
a concentration of 1 mM, thereby testing the ability of each
amino acid to compete with the uptake of [14C]Arg. The addition
of 1 mM unlabelled arginine resulted in a significant,
B85% inhibition of [14C]Arg uptake into oocytes expressing
TgNPT1-HA (Fig. 3b; Po0.0001, ANOVA, n¼ 3), whereas
there was no significant change for any of the other amino acids
tested, including the cationic amino acids lysine and ornithine

(Fig. 3b; P40.05, ANOVA, n¼ 3). This pattern of inhibition
is consistent with TgNPT1 having a high degree of specificity
for arginine. We next measured the rate of arginine uptake in
TgNPT1-HA-injected oocytes over a range of substrate
concentrations (Fig. 3c). TgNPT1-mediated uptake of arginine
showed Michaelis-Menten kinetics, with an apparent Km of
88±15 mM for arginine (mean±s.e.m., n¼ 3) and a Vmax of
3.5±0.1 pmol min� 1 oocyte� 1 (mean±s.e.m., n¼ 3; Fig. 3b;
Supplementary Fig. 5c).

Characteristics of arginine transport via TgNPT1. To elucidate
the mechanism of arginine transport by TgNPT1, we measured
the accumulation of [14C]Arg into TgNPT1-expressing oocytes
in media in which different ions were removed. Removal of
Naþ , Cl� , Kþ , Mg2þ or Ca2þ had no effect on TgNPT1-
mediated [14C]Arg uptake measured over 30 min (Fig. 4a). The
pH-sensitivity of TgNPT1-mediated [14C]Arg transport
was measured over a pH range of 5–9. [14C]Arg uptake into
TgNPT1-expressing oocytes was unaffected by pH over the
pH range 5–8, but decreased significantly when the pH was
increased above 8 (Fig. 4b).

The electrogenicity of arginine transport by TgNPT1
was investigated using the electrophysiological two-electrode
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Figure 2 | Growth of parasites lacking TgNPT1 is modulated by arginine. (a,b) Fluorescence growth assays for WT (black) and Dnpt1 (red) parasites

grown in DMEM (a) or RPMI (b). Growth is expressed relative to the maximum growth of WT parasites on the final day of the experiment under each of

the conditions tested. The data shown are averaged from three technical replicates (±s.d.) and are representative of those obtained in three biological

replicates. (c) Growth of iTgNPT1 parasites in the presence of ATc in medium having the concentrations of amino acids and vitamins present in either RPMI

or DMEM. The parasites grew well (þ þ þ ) in medium containing the concentrations of amino acid present in RPMI, but poorly (þ ) in medium

containing the concentrations of amino acids present in DMEM. (d,e) Growth of WT (d) and Dnpt1 (e) parasites in the following media: RPMI (black),

DMEM (grey) or RPMI containing the concentration of arginine present in DMEM (400mM; RPMI[Arg]DMEM; white). Parasites were cultured until those

grown in RPMI reached mid-logarithmic stage. The growth of parasites in each medium is plotted as a percentage of the average growth of parasites in

RPMI. The average of three technical replicates±s.d. of a single experiment are shown. (f) Fluorescence growth assay for WT (black) and Dnpt1 (red)

parasites grown for 4 days in media containing a range of arginine concentrations. Parasite growth is expressed as a percentage of that measured at the

highest arginine concentration (1.15 mM) for each parasite line. The arginine concentrations in DMEM and RPMI are indicated by the vertical green and

blue dashed lines, respectively. The data shown are averaged from three technical replicates (±s.d.) and are representative of those obtained in three

biological replicates.
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voltage-clamp technique21. Addition of 5 mM arginine
to oocytes expressing TgNPT1 resulted in an inward current
that reached a maximum of 22±5 nA (mean±s.e.m., n¼ 20;
Fig. 4c, black trace). The maximum peak current was followed
by a spontaneous relaxation (Fig. 4c), reminiscent of
the behaviour of the arginine-induced current observed in
oocytes expressing the human cationic amino acid transporter
hCAT-2a (ref. 22). Addition of arginine to uninjected oocytes
did not induce a current (Fig. 4c, grey trace). The data are
consistent with TgNPT1 mediating the electrogenic uptake of
arginine.

The dependence of the arginine-induced current on the ionic
composition of the medium was tested by measuring the current
in oocytes exposed to media from which Naþ , Cl� , Kþ , Mg2þ

or Ca2þ was absent. In each of the media tested, the arginine-
induced current was similar (Fig. 4d), consistent with electrogenic
TgNPT1-mediated arginine uptake occurring via an ion-inde-
pendent mechanism. The dependence of the arginine-induced
current on pH was tested by measuring the current in media
of varying pH. The amplitude of the arginine-induced
inward current was largely insensitive to pH in the pH range
5–8 (P40.05, ANOVA, n¼ 8), but was significantly decreased
at pH 9 (Po0.01, ANOVA, n¼ 8; Fig. 4e; Supplementary
Fig. 6a,b). This mirrored the effects of pH on [14C]Arg uptake
(Fig. 4b).

Altogether, these data demonstrate that TgNPT1 mediates
the electrogenic transport of arginine via a mechanism
that is independent of Naþ , Cl� , Kþ , Mg2þ and Ca2þ ,
and which is sensitive to pH at pH values 48. Whether
the electrogenicity arises solely from the transport of the
cationic amino acid, or whether it might involve the transport
of Hþ is unclear. The observed maximum transport rate derived
from the uptake of [14C]Arg equates to a current of 6 nA
(1 nA¼ 36 pmol charges h� 1); this is lower than the currents
measured under voltage clamp conditions, and might be
explained by a contribution of Hþ to the observed currents.

T. gondii has a TgNPT1-independent arginine uptake pathway.
To measure the contribution of TgNPT1 to arginine uptake
in T. gondii, we compared the uptake of [14C]Arg into Dnpt1
parasites with that into WT parasites (Fig. 5a; Supplementary
Fig. 7a). The initial rate of [14C]Arg uptake in Dnpt1 parasites was
reduced to 71±5% (mean±s.e.m., Po0.05, Student’s t test,
n¼ 3) of that in the WT strain, consistent with TgNPT1
contributing significantly to the uptake of arginine into T. gondii
parasites under the conditions tested. In Dnpt1 parasites
complemented with an ectopic copy of TgNPT1, expressed
from the constitutive a-tubulin promoter, the rate of [14C]Arg
uptake was higher than that in WT parasites (Dnpt1/tubNPT1;
Fig. 5a, Po0.05, Student’s t test, n¼ 3).

These data suggest the presence in the parasite of one or
more TgNPT1-independent arginine uptake pathways that
account for the remaining arginine uptake detected in parasites
lacking TgNPT1. To probe the substrate selectivity of the
TgNPT1-independent arginine uptake pathway(s), we measured
[14C]Arg uptake into WT, Dnpt1 and Dnpt1/tubNPT1 parasites
in the presence of unlabelled lysine (80 mM). Unlabelled
lysine reduced the initial rate of uptake of [14C]Arg into
WT parasites to 29±3% (mean±s.e.m., Po0.01, Student’s
t test, n¼ 3) of that measured in the absence of lysine,
and reduced the rate of [14C]Arg uptake into Dnpt1 parasites
to 7±2% (mean±s.e.m., Po0.0001, Student’s t test, n¼ 3)
of that in WT parasites in the absence of lysine (Fig. 5a).
This is consistent with unlabelled lysine interacting with
the TgNPT1-independent arginine uptake pathway(s), and
thereby competing with [14C]Arg for uptake into parasites.

The ability of the alternative arginine uptake pathway(s) to
transport lysine was tested directly by measuring the initial rate
of uptake of [14C]lysine ([14C]Lys) in WT and Dnpt1 parasites
(Fig. 5b; Supplementary Fig. 7b). There was no significant
difference between the rate of [14C]Lys uptake in WT and
Dnpt1 parasites (Fig. 5b, control; P40.05, ANOVA, n¼ 3).
This suggests that TgNPT1 does not contribute to lysine transport
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in the parasite, and is consistent with the observation that
lysine does not compete with the uptake of [14C]Arg into
oocytes expressing TgNPT1 (Fig. 3a). [14C]Lys uptake by
both WT and Dnpt1 parasites was inhibited by the addition
of 1 mM of the unlabelled cationic amino acids lysine, arginine
and ornithine (Fig. 5b; Po0.01, ANOVA, n¼ 3), consistent
with the TgNPT1-independent arginine uptake pathway(s)
being able to transport a range of cationic amino acids,
including arginine, lysine and ornithine. By contrast, the
addition of 1 mM of the anionic amino acid glutamate or
the neutral amino acid alanine had no effect on [14C]Lys uptake
in either WT or Dnpt1 parasites (Fig. 5b; P40.05, ANOVA,
n¼ 3), consistent with neither of these amino acids competing
for the transporter.

The relationship between arginine and lysine uptake
and parasite growth was investigated by measuring the growth
of WT and Dnpt1 parasites over a range of lysine concentrations.
Parasites were grown in RPMI containing 1.6–800 mM lysine,
together with 400 mM arginine (constant throughout). For
WT parasites, growth was maximal at lysine concentrations
450mM but decreased progressively as the lysine concentration
was reduced below 50 mM (Fig. 5c). At a lysine concentration
of 50 mM, the growth of Dnpt1 parasites was comparable to
that of WT parasites and, as for WT parasites, growth
decreased progressively as the lysine concentration was reduced
below 50 mM. However, in marked contrast to WT parasites,
the growth of Dnpt1 parasites decreased as the lysine concentra-
tion was increased above 50mM, with negligible growth
observed at lysine concentrations Z400 mM (Fig. 5c).

Mammalian cells are auxotrophic for lysine, and it is
conceivable that the impairment of parasite growth in media
with lysine concentrations below 50 mM is the result of reduced
host mammalian cell viability. The alternative is that the parasite
itself is auxotrophic for lysine. The T. gondii genome harbours
at least some genes that encode for enzymes involved in lysine
synthesis23,24, although the functionality of this pathway has
not been demonstrated. The identity of the general cationic
amino acid transporter(s) responsible for the uptake of lysine
remains an open question. There are 15 other NPT-family
transporters in the T. gondii genome, and one or more of
these may function in this role. Identifying and characterizing
the mechanism(s) of lysine uptake will reveal the importance
of lysine scavenging in T. gondii growth.

The growth inhibition of the Dnpt1 mutant (Fig. 5c) at high-
lysine concentrations (450 mM) may be accounted for in
terms of the model represented in Fig. 6, in which the parasite
has (at least) two arginine uptake systems, differing with respect
to their relative affinities for arginine and lysine. TgNPT1 is an
arginine-specific transporter that mediates arginine uptake
regardless of the levels of other cationic amino acids. In addition,
parasites harbour one or more general cationic amino acid
transport pathways that transport both arginine and lysine. If
the arginine concentration in the medium is high relative to
that of lysine (as is the case in RPMI, in which the [Arg]:[Lys]
ratio is 5.25), there is sufficient uptake of arginine through
the general transport pathway to enable parasite growth
(Fig. 6). However, when the balance of [Arg]:[Lys] is shifted
in the other direction (as is the case in DMEM, in which
the [Arg]:[Lys] ratio is 0.5, a 10-fold reduction relative to RPMI),
lysine competes with arginine for uptake through the
general pathway, and parasites become reliant on TgNPT1
to take up sufficient arginine to support growth (Fig. 6).
In Dnpt1 parasites, the TgNPT1-independent pathway(s) can
transport sufficient arginine to maintain parasite growth
only under conditions in which the ratio of [Arg]:[Lys] is
high enough that competition by lysine does not restrict the

uptake of arginine through the general pathway to below the
level required for normal growth.

The model assumes that the ratio of arginine to lysine in
the host cell cytosol is similar to that in the extracellular medium.
Cationic amino acids are taken up into mammalian cells
by a number of broad-specificity cationic amino acid transporters
(CATs; Fig. 6; refs 25,26). A previous study demonstrated a
strong correlation between extra- and intra-cellular arginine
concentrations in mammalian cells27. An older study noted that
the ratio of [Arg]:[Lys] in human plasma is 0.44, and that the
ratio in muscle tissue is 0.44 (ref. 28), suggesting a close similarity
between the [Arg]:[Lys] ratio in the extracellular environment
and that in the cell cytosol. The [Arg]:[Lys] ratio imposed in
the extracellular milieu is therefore likely to be reflected in
the intracellular environments to which T. gondii parasites
are exposed. Regardless, our data indicate that the relative
concentrations of lysine and arginine in the medium modulate
the growth of Dnpt1 parasites, and highlight the limitations
of in vitro culture conditions for elucidating the importance of
proteins such as TgNPT1 for parasite survival.

TgNPT1 is essential for parasite virulence. To assess
whether TgNPT1 is essential for parasite virulence in vivo, we
infected BALB/c mice intraperitoneally with 106 WT, Dnpt1 or
Dnpt1/tubNPT1 parasites and monitored disease progression.
All mice infected with WT or Dnpt1/tubNPT1 parasites exhibited
symptoms of toxoplasmosis and were euthanised within 8 days
post-infection (Fig. 7). In contrast, mice infected with Dnpt1
parasites exhibited no signs of toxoplasmosis over the course
of the entire 57 day experiment (Fig. 7). TgNPT1 is therefore
essential for parasite virulence under in vivo conditions.

Host cell
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Arg
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Arg Lys

Arg

General cationic
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Figure 6 | A model for arginine transport into T. gondii parasites. Cationic

amino acids such as arginine and lysine enter host cells through cationic

amino acid transporters (CAT; grey cylinder). Arginine in the host cell

cytosol crosses the parasitophorous vacuole membrane (dashed line)

through non-selective pores57, and is taken up by the parasite through two

pathways. TgNPT1 (red cylinder) is a selective arginine transporter, and

serves as a major route for arginine uptake in vivo. A general cationic amino

acid transport system (blue cylinder) facilitates the TgNPT1-independent

uptake of both arginine and lysine.
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The finding that TgNPT1 is important for parasite virulence
might be understood in terms of the ratio of [Arg]:[Lys] in
mouse plasma, estimated to be B0.1 (ref. 29). Under
these conditions it is predicted (on the basis of the in vitro
data; Fig. 5a,c) that competition by lysine will limit the uptake
of arginine through the general, TgNPT1-independent,
cationic amino acid uptake pathway(s) to a level below that
required to support growth. The in vivo data are therefore
consistent with the model for cationic amino acid uptake in
T. gondii represented in Fig. 6, and with TgNPT1 providing
an essential route for the scavenging of arginine from infected
hosts.

Arginine uptake in mammalian cells is mediated by broad-
specificity cationic amino acid transporters26. By contrast,
arginine uptake in Leishmania parasites, which are intracellular
for a portion of their life cycle, is mediated by a highly
selective arginine transporter30, much like TgNPT1-mediated
arginine uptake in T. gondii. Intracellular parasites are in
competition with their host cells for available arginine, perhaps
necessitating their having a selective, high-affinity arginine
transporter to scavenge sufficient amounts of this amino acid
for parasite survival.

PbNPT1 is a cationic amino acid transporter. To investigate
whether the P. berghei homologue of TgNPT1 (PbNPT1) can
also transport arginine, we expressed HA-tagged PbNPT1 in
Xenopus oocytes (Supplementary Fig. 5d), and measured
the uptake of [14C]Arg over 30 min. Under the conditions of
the experiment, oocytes expressing PbNPT1-HA showed
a significant, B4-fold increase in the uptake of [14C]Arg,
relative to uninjected control oocytes (Fig. 8a, Po0.05, Student’s t
test, n¼ 3; Supplementary Fig. 5e), consistent with PbNPT1
functioning as an arginine transporter. The substrate specificity
of PbNPT1 was investigated by measuring the uptake of [14C]Arg
in the presence of a 1 mM concentration of a range of
unlabelled amino acids. The uptake of [14C]Arg was reduced by
the addition of unlabelled arginine or lysine (Po0.0001,
ANOVA, n¼ 3) and, to a lesser extent, by unlabelled ornithine
(Po0.001, ANOVA, n¼ 3) or histidine (Po0.05, ANOVA,
n¼ 3, Fig. 8b), consistent with PbNPT1 interacting with a range
of cationic amino acids and therefore having a broader substrate
specificity than TgNPT1. Uptake of [14C]Lys into oocytes
expressing PbNPT1 was increased 4-fold relative to that into
uninjected control oocytes (Fig. 8a, Po0.05, Student’s t test,
n¼ 3; Supplementary Fig. 5f), consistent with PbNPT1 also

functioning as a lysine transporter. For both arginine and lysine,
the concentration-dependence of PbNPT1-induced uptake
showed Michaelis–Menten kinetics (Fig. 8c,d; Supplementary
Fig. 5g,h), with the transporter having a higher affinity for
arginine (apparent Km¼ 41±9 mM, mean±s.e.m., n¼ 3) than
for lysine (apparent Km¼ 130±26 mM, mean±s.e.m., n¼ 3).

To investigate the role of PbNPT1 in the uptake of
cationic amino acids into P. berghei parasites, we generated
a PbNPT1 knockout parasite strain (termed DPbnpt1;
Supplementary Fig. 2g,h) as described previously14. In the
previous study it was reported that DPbnpt1 parasites grew
normally in asexual blood stages of the parasite, but were
defective in gametocyte development and progression into
the insect stages of the Plasmodium life cycle14. Consistent
with this, we found that DPbnpt1 parasites were significantly
impaired in the formation of microgametes, the motile stage of
the sexual cycle (Fig. 9a, Po0.05, Student’s t test, n¼ 3).
The uptake of both [14C]Arg and [14C]Lys into asexual-stage
DPbnpt1 parasites (isolated from their host erythrocytes by
saponin permeabilisation of the host cell and parasitophorous
vacuole membranes) was significantly decreased, to 12±3% and
13±1% (mean±s.e.m.; Po0.05, ANOVA, n¼ 3) respectively, of
uptake into WT parasites (Fig. 9b). The uptake and incorporation
of the glucose analogue [1-14C]2-deoxy-glucose (2-DOG) was
similar in WT and DPbnpt1 parasites (Fig. 9b, P40.05, ANOVA,
n¼ 3). This indicates that DPbnpt1 parasites remained
metabolically active, and suggests that defects in the uptake of
cationic amino acids was not the result of general defects in
parasite viability. Altogether, these findings are consistent
with PbNPT1 playing a major and specific role in the uptake
of cationic amino acids into the intracellular malaria parasite.

Intraerythrocytic asexual stages of the human malaria
parasite P. falciparum have been shown to take up exogenous
arginine via an unidentified pathway that is inhibited by
other cationic amino acids31,32. The functional characteristics
of PbNPT1 expressed in Xenopus oocytes are very similar to
those of the pathway mediating the uptake of arginine into
P. falciparum parasites31, consistent with the P. falciparum
orthologue of PbNPT1 (PF3D7_0104800) serving as the major
arginine transporter in asexual-stage P. falciparum parasites.
P. falciparum infection causes depletion of arginine in the
host erythrocyte31, and Plasmodium infection leads to
hypoargininaemia, a depletion of arginine in the plasma of the
host that contributes to poor disease outcomes such as cerebral
malaria33,34. Plasmodium NPT1 conceivably plays a role
in Plasmodium-induced hypoargininaemia.

Our data point to a role for the uptake of one or more
cationic amino acids in gametocyte development in P. berghei.
With an abundance of amino acids available through haemoglo-
bin digestion during the early sexual stages of the life cycle10,35,
the requirement for a cationic amino acid transporter for
gametocyte development is unexpected. A recent study found
that depletion of the amino acid asparagine in blood plasma leads
to defects in the development of the sexual stages of P. berghei36.
This mirrors our findings with cationic amino acids, and
suggests that gametocytes may have a greater nutritional
requirement for amino acids than can be met by host cell
haemoglobin degradation alone. Alternatively, arginine
consumption by the parasite could limit the availability of
arginine for host processes such as the synthesis of nitric oxide,
an anti-parasitic host defence mechanism that is effective at
targeting the gametocyte stage of the parasite37. These hypotheses
are the subject of ongoing investigations.

T. gondii and P. falciparum are auxotrophic for several
amino acids at various stages of their life cycles8–10,38.
Despite the importance of amino acid uptake, no amino acid
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transporters have been characterized previously in
apicomplexans. Arginine/cationic amino acid transporters from
eukaryotes belong to the SLC7 or amino acid/auxin permease
(AAAP) families of transporters (for example, refs 25,30).

These are fundamentally different, at both primary sequence
and structural levels, to the major facilitator superfamily class to
which TgNPT1 and PbNPT1 belong39. This suggests that
apicomplexans have evolved cationic amino acid transporters
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independently of other major eukaryotic lineages. Apicomplexans
lack SLC7 homologues, but harbour homologues of AAAP family
transporters12, although the functions of these remain to be
elucidated. Orphan transporters, such as the NPTs, lack
homologues in humans11,13. We and others have demonstrated
that NPT-family proteins are essential for virulence and life
cycle progression. These and other essential orphan transporters
are therefore attractive targets for therapeutic interventions
against apicomplexans.

Methods
Parasite strains and cultivation. The TATi/Dku80 strain of T. gondii16 was used
as the ‘wild type’ parental strain for all lines generated in this study. T. gondii
tachyzoites were cultured in human foreskin fibroblasts in Dulbecco’s Modified
Eagle’s medium (DMEM) supplemented with 1% (v/v) fetal bovine serum (FBS)
and antibiotics. T. gondii Dnpt1 parasites, and derivatives thereof, were standardly
cultured in Roswell Park Memorial Institute 1640 (RPMI) medium, supplemented
with 1% (v/v) FBS and antibiotics. ‘Homemade’ media was prepared with the
following salts: 0.265 g l� 1 CaCl2.2H2O, 0.20 g l� 1 MgSO4.7H2O, 0.40 g l� 1 KCl,
1.48 g l� 1 NaHCO3, 6.40 g l� 1 NaCl and 0.234 g l� 1 NaH2PO4.2H2O, in
addition to commercially available RPMI vitamins (Sigma-Aldrich), 25 mM
glucose, 1% (v/v) FBS, antibiotics, and concentrations of amino acids as specified
in the text. Where appropriate, anhydrotetracycline (ATc) was added to
a final concentration of 0.5 mg ml� 1.

For the infection of mice with T. gondii, WT, Dnpt1, and Dnpt1/tubNPT1
parasites were filtered through a 3 mm filter, washed once in sterile phosphate-
buffered saline (PBS) and diluted to 107 cells ml� 1. Groups of five 6–8 week old,
female BALB/c mice per condition (blindly and randomly assigned by a technician
not familiar with details of the experiment) were injected intraperitoneally with
100ml of parasites (106 cells) of each strain using a 26 or 27 gauge needle. Infections
with WT and npt1 parasites were performed in duplicate (10 mice in total for
each condition), and infections with Dnpt1/tubNPT1 parasites were performed
once (5 mice in total). Weight and mortality of the animals were recorded almost
daily for a period of 57 days. Symptoms of toxoplasmosis including weight loss,
lethargy, ruffled fur and hunched posture were monitored. Mice displaying signs
of toxoplasmosis with B20% loss of starting weight were euthanised according to
protocols approved by the James Cook University Animal Ethics Committee.

Plasmodium berghei ANKA parasites were propagated in Swiss and C57BL/6
mice. All procedures involving the infection of mice with P. berghei ANKA strain
were approved by the Australian National University Animal Experimentation
Ethics Committee.

Construction of plasmids and parasite strains. To generate a vector for the
30 replacement of the TgNPT1 with a � 1 hemagglutinin (HA) tag, the 30 region of
TgNPT1 was amplified with primers 1 and 2 (listed in Supplementary Table 1),
using TATi/Dku80 parasite genomic DNA as template. The resulting product
was digested with BamHI and AvrII and ligated into the BglII and AvrII sites of
pgCH (a vector that enables fusion of the 30 flank of interest to a � 1 HA tag).
The resultant vector (termed TgNPT1 30rep in pgCH) was linearized with NsiI,
transfected into TATi/Dku80 parasites, and selected on chloramphenicol as
described40. The resultant parasite strain was termed TgNPT1-HA. A clonal line of
TgNPT1-HA parasites was screened for correct integration of the HA cassette.
Genomic DNA was extracted from parasites and used as a template for PCR, using
primers 3 and 4, which will only detect a PCR product in the native locus, and
primers 3 and 5, which will only detect a PCR product in the modified locus
(Supplementary Fig. 2a,b).

To replace the TgNPT1 promoter with an ATc-regulated promoter, a 30 flank of
TgNPT1 was amplified with primers 6 and 7, using TATi/Dku80 parasite genomic
DNA as template. The resulting PCR product was digested with XmaI and NotI
and ligated into equivalent sites of the pPR2-HA3 vector41 to produce the vector
pPR2-HA3(TgNPT1 30 flank). Next, the 50 flank of TgNPT1 was amplified with
primers 8 and 9, using TATi/Dku80 parasite genomic DNA as template. The
resulting product was digested with PacI and FseI, and ligated into the equivalent
sites of the pPR2-HA3(TgNPT1 30 flank) vector to produce a vector termed
pPR2-HA3(TgNPT1 knock-in). This vector was linearized with PacI and
transfected into TATi/Dku80 parasites. Although subsequent selection on
pyrimethamine yielded drug-resistant parasites, none of the resulting clones were
successfully integrated at the TgNPT1 locus. The pPR2-HA3(TgNPT1 knock-in)
vector adds a � 3-HA tag to the N-terminus of TgNPT1. We reasoned that this
N-terminal HA tag might be interfering with functioning and/or targeting of
TgNPT1. We therefore generated a vector where we deleted the � 3-HA tag
from the pPR2-HA3(TgNPT1 knockin) vector by digesting this with NheI and
SmaI (NheI and SmaI flank either side of the HA tag). The digested vector was
then treated with the Klenow fragment of DNA polymerase in the presence of
dNTPs to fill in the 50 overhang of NheI and create blunt ends at both termini
of the plasmid. The vector was then re-ligated. The resultant vector was termed
pPR2(TgNPT1 knock-in). This vector was transfected into TATi/Dku80 strain

parasites and selected on pyrimethamine as described40. The resultant parasite
strain was termed iTgNPT1.

Clones of the iTgNPT1 strain were screened for successful integration of the
ATc-regulated promoter upstream of the TgNPT1 start codon. Genomic DNA was
extracted from clonal parasites and used as template for PCRs with primers 3 and
10 (to detect presence of the native gene) and primers 10 and 11 (to detect presence
of the ATc-regulated promoter at the 50 end of the modified TgNPT1 gene;
Supplementary Fig. 2c,d).

To detect TgNPT1 protein in the iTgNPT1 parasite strain, a � 1HA tag was
integrated into the iTgNPT1 locus. To do this, the TgNPT1 30rep in pgCH vector
was digested with NsiI and transfected into iTgNPT1 parasites (Supplementary
Fig. 2c). Parasites were selected on chloramphenicol then cloned out. We termed
the resultant parasite strain iTgNPT1-HA.

To enable the quantitative measurement of growth in iTgNPT1 strain parasites,
a vector carrying a tandem dimeric Tomato red fluorescent protein (tdTomato)
construct42,43 was transfected into iTgNPT1 strain parasites. Three days after
transfection, tdTomato expressing parasites were selected by fluorescence-activated
cell sorting (FACS) on a FACS Aria II cell sorter (BD Biosciences). After one
further round of FACS-based selection, parasites were cloned to produce a parasite
strain termed iTgNPT1/Tomato. These parasites were used in fluorescence growth
assays, as described previously18,19, to determine growth phenotypes in various
media. Briefly, 2000 parasites expressing tdTomato were inoculated into wells of an
optical bottom 96-well plate containing confluent HFF host cells. Plates were
incubated at 37 �C in a 5% CO2 incubator and the fluorescence measured every day
for 5–10 days in a FluoStar Optima fluorescence plate reader (BMG Labtech).
Parasite growth curves were plotted using Prism 6. For experiments examining
concentration-dependence of parasite growth on arginine and lysine, growth was
plotted at a time point (typically 4–5 days) when parasites cultured in optimal
medium conditions had reached mid-logarithmic stage.

To determine whether the growth phenotypes exhibited by the iTgNPT1/
Tomato strain were due solely to knockdown of TgNPT1, the iTgNPT1/Tomato
parasite strain was complemented with constitutively-expressed TgNPT1. To
do this, the entire open reading frame of TgNPT1 was PCR amplified with
primers 2 and 12, using complementary DNA (cDNA) from wild type RH strain
parasites as template. The resultant PCR product was digested with BamHI and
AvrII and ligated into the BglII and AvrII sites of the vector pUgCTH3. The
resulting vector was termed cTgNPT1/pUgCTH3, and expresses TgNPT1 from the
constitutive a-tubulin promoter, with the resultant TgNPT1 protein containing a
C-terminal � 3HA tag. This vector also has a flank of the non-essential TgUPRT
gene44 to enable integration of the cTgNPT1/pUgCTH3 vector into the UPRT locus
by homologous recombination. This vector was linearized with MfeI, transfected
into iTgNPT1/Tomato parasites, selected on chloramphenicol, and subsequently
cloned. The resultant parasite strain was termed iTgNPT1/cTgNPT1.

To perform a direct knockout of TgNPT1, a 30 flank of the TgNPT1 locus
downstream of the stop codon was amplified using primers 13 and 14, with
genomic DNA from TATi/Dku80 strain parasites used as template. The resultant
product was digested with SpeI and NotI, and ligated into the AvrII and NotI sites
of pPR2-HA3 to produce a vector termed pPR2(TgNPT1 30flank). Next, a 50 flank
of TgNPT1 upstream of the start codon was amplified with primers 8 and 9, using
TATi/Dku80 strain genomic DNA as template. The resulting product was digested
with PacI and FseI, and ligated into the equivalent sites of pPR2(TgNPT1 30flank).
This produced a vector termed pPR2(Dnpt1). This vector was linearized with PacI,
transfected into TATi/Dku80 strain parasites and selected on pyrimethamine, all
the while being cultured in RPMI medium. Drug-resistant parasites were cloned by
serial dilution, and clones were screened for disruption of the TgNPT1 locus
using one set of primers that only gave a PCR product if the native TgNPT1
locus was present (primers 2 and 12), and a second set of primers that only
gave a PCR product if the TgNPT1 gene was replaced with the pyrimethamine
selection cassette (primers 15 and 16) (Supplementary Fig. 2e,f). The resultant
parasite strain was termed Dnpt1.

To enable quantitative measurement of growth in Dnpt1 strain parasites by
fluorescent growth assays, a tdTomato construct42,43 was transfected into Dnpt1
strain parasites and selected by FACS (described above). This produced a parasite
strain that we termed Dnpt1/Tomato.

To determine whether the growth phenotype observed in Dnpt1/Tomato
was because of loss of the TgNPT1 gene, the cTgNPT1/pUgCTH3 vector
(described above) was transfected into the Dnpt1/Tomato parasites. After selection
on chloramphenicol, parasites were cloned and TgNPT1 expression verified
by immunofluorescence assays. The resultant parasite strain was termed
Dnpt1/tubNPT1. Growth assays confirmed full restoration of parasite growth
in DMEM medium (not shown). This strain was used to test whether comple-
mentation with TgNPT1 restored [14C]Arg uptake and virulence of Dnpt1
parasites.

To generate a knockout strain of the P. berghei NPT1 gene, we transfected
a PbNPT1 knockout vector (kindly provided by Patricia Baldacci, Institut Pasteur;
ref. 14) into P. berghei ANKA strain parasites. Transfections were performed as
described previously45. Briefly, mature schizonts were isolated by density gradient
centrifugation and transfected with the PbNPT1 knockout vector using an Amaxa
Nucleofector device (set to program U33). Transfected parasites were injected
intravenously into three Swiss mice. The mice were given drinking water supple-
mented with pyrimethamine to select for PbNPT1 knockout (DPbnpt1) parasites.
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A clonal population of DPbnpt1 knockout parasites was generated by limiting
dilution as described elsewhere46. Successful integration was confirmed by PCR
analysis, using sets of primers that detected either the native gene (primers 17 and
18 for the 50 region; primers 20 and 21 for the 30 region) or the disrupted gene
(primers 17 and 19 for the 50 region; primers 21 and 22 for the 30 region;
Supplementary Fig. 2g,h).

To generate a vector for complementary RNA (cRNA) synthesis of TgNPT1-
HA for subsequent injection into X. laevis oocytes, the open reading frame of
TgNPT1 was PCR amplified from the TgNPT1 cDNA in pUgCTH3 vector using
primers 23 and 24. The resulting product was digested with XmaI and XbaI and
ligated into the equivalent sites of the pGEM-He-Juel (pGHJ) vector47. This places
TgNPT1 downstream of a T7 RNA polymerase promoter to enable cRNA
transcription of TgNPT1, and also introduces a C-terminal HA tag onto the
resultant protein. The resulting transcript contains 50 and 30 untranslated regions
of the X. laevis b-globin gene, which facilitate translation of the transcript
following injection into oocytes. The resulting vector was termed TgNPT1 in
pGHJ-HA.

To generate a vector for cRNA synthesis of PbNPT1, the open reading frame of
PbNPT1 was codon-harmonized for expression in X. laevis (sequence available
from the authors upon request). The harmonized version of PbNPT1 was
synthesized as a gBlock gene fragment (Integrated DNA Technologies), and
the open reading frame was amplified using primers 25 and 26. The resultant
PCR product was digested with XmaI and AvrII, and ligated into the equivalent
sites of TgNPT1 in pGHJ-HA. This places codon-harmonized PbNPT1
downstream of a T7 RNA polymerase promoter to enable cRNA transcription, and
fuses a C-terminal HA tag onto the resultant protein. We termed the resultant
vector PbNPT1 in pGHJ-HA.

Immunofluorescence assays and microscopy. For immunofluorescence assays,
parasites were fixed in 3% (v/v) paraformaldehyde in PBS, permeabilised with
0.25% (v/v) Triton X-100 in PBS, and blocked with 2% (w/v) bovine serum
albumin. Parasites were incubated in primary and fluorophore-conjugated
secondary antibodies for one hour each, before being mounted in FluoroGel
mounting medium (Electron Microscopy Sciences). Fluorescence images were
acquired on a DeltaVision Elite system (GE Healthcare) using an inverted Olympus
IX71 microscope with a � 100 UPlanSApo oil immersion lens (NA 1.40). Images
were recorded using a Photometrics CoolSNAP HQ2 camera, deconvolved using
SoftWoRx Suite 2.0 software, and adjusted for contrast and brightness. All images
were processed further with Adobe Illustrator CS6 software. Primary antibodies
used in this study were monoclonal rat anti-HA (1:100 dilution; clone 3F10, Roche)
and monoclonal mouse anti-TgSAG1 (1:1,000; clone TP3, Abcam, catalogue
number ab8313). Secondary antibodies used in this study were anti-mouse
AlexaFluor 546 (1:500; Life Technologies, catalogue number A-11030),
anti-mouse AlexaFluor 647 (1:500; Life Technologies, catalogue number A-21236),
and anti-rat AlexaFluor 488 (1:200; Life Technologies, catalogue number A-11006).

SDS-PAGE and western blotting. Proteins were separated by SDS-PAGE
using NuPAGE 12% Bis-Tris gels according to the manufacturer’s instructions
(Thermo Scientific). Proteins were transferred to nitrocellulose membranes
using an XCell II blot module according to the manufacturer’s instructions
(Thermo Scientific). Membranes were blocked in Blotto (4% (w/v) skim milk
powder in Tris-buffered saline (TBS)), before being incubated in primary
antibodies for 1 h. Membrane were washed twice in Blotto, then twice in Tween-
TBS (T-TBS; 0.05% (v/v) Tween 20 in TBS), before being exposed to secondary
antibodies for a further hour. Membrane were washed twice in Blotto and twice in
T-TBS, before being incubated in ECL plus western blotting substrate (Thermo
Scientific) and exposed to film. Primary antibodies used in this study were mouse
anti-GRA8 (1:10,000 dilution; a kind gift from Gary Ward, U. Vermont48)
and rat anti-HA (1:100 dilution; clone 3F10, Roche). Horseradish peroxidase
(HRP)-conjugated secondary antibodies (Santa Cruz Biotechnology, catalogue
numbers sc-2005 and sc-2006) were diluted between 1:5,000–1:10,000.

Oocyte expression and flux analysis. Xenopus laevis oocyte experiments were
performed as described previously20. Briefly, TgNPT1-HA and PbNPT1-HA
complementary RNAs (cRNAs) were synthesized using the mMessage mMachine
T7 transcription kit (Life Technologies) according to the manufacturer’s
instructions, with the exception that 1 mM nucleotides were used to increase the
yield of cRNA. Harvested oocytes were defolliculated with 2 mg ml� 1 collagenase
D (from Clostridium histolyticum; 0.3 U mg� 1; Roche) in OR2� buffer
(82.5 mM NaCl, 2.5 mM KCl, 1.0 mM MgCl2, 1.0 mM Na2HPO4, 5 mM HEPES,
pH 7.8). Collagenase was removed by washing oocytes several times with OR2�

buffer and incubated overnight at 18 �C in OR2þ buffer (OR2� supplemented
with 1 mM CaCl2). The next day, oocytes were micro-injected with 50 nl of cRNA
in water at a concentration of 1 mg ml� 1, using a Nanoinject II Auto Nanoliter
microinjection device (Drummond Scientific Company), or were not injected. To
determine whether HA-tagged TgNPT1 and PbNPT1 localized to the plasma
membrane of oocytes, cRNA-injected oocytes were subjected to surface
biotinylation to selectively label proteins on the plasma membrane. To do this,
oocytes were washed three times with ice cold PBS, pH 8.0. Oocytes were then

incubated with 0.5 mg ml� 1 EZ-Link sulfo-NHS-SS-Biotin (Thermo Scientific)
in PBS for 30 min at room temperature. The reagent was removed by washing
oocytes five times with ice-cold PBS, pH 8.0. Subsequently, oocytes were lysed
by incubation in lysis buffer (150 mM NaCl, 20 mM Tris-HCl, pH 7.5, 1% Triton
X-100 (v/v)) for 1 h on ice. The lysate was centrifuged at 16,000g for 15 min at 4 �C.

Lysate supernatant extracted from 5–10 biotin-treated TgNPT1-expressing
oocytes, PbNPT1-expressing oocytes, or uninjected oocytes were affinity
purified using streptavidin-conjugated agarose beads. Affinity purified proteins
(at a loading equivalent of one oocyte per lane) were separated by SDS–PAGE and
subjected to western blotting with anti-HA antibodies.

Oocyte flux experiments were performed as described previously49. Briefly, in
each experiment, 7–10 oocytes from a single frog (cRNA or uninjected controls)
were washed three times in ND96 solution (96 mM NaCl, 2 mM KCl, 1.8 mM
MgCl2, 1 mM CaCl2 and 5 mM HEPES hemisodium, pH 7.4). The oocytes were
incubated for 0–30 min in 100 ml ND96 supplemented with 0.1–0.4mCi ml� 1

[14C]Arg or 0.1 mCi ml� 1 [14C]Lys. For the experiments in Figs 3a and 4a,b,
and Supplementary Figs. 5b,e,f, 100mM unlabelled arginine or lysine was added to
the uptake solution. Where appropriate, uptake assays were performed in the
presence of a 1 mM concentration of various unlabelled amino acids. For the
ion replacement experiments, Naþ was replaced with N-methyl-D-glucamine
(NMDG), Cl� replaced with gluconate, and Kþ , Mg2þ and Ca2þ replaced
with Naþ . All buffers had a final osmolarity of B200 mOsm l� 1. Preliminary
experiments indicated that several amino acids, including methionine, either
inhibited the uptake of radiolabelled arginine by uninjected oocytes, or inhibited
the non-specific binding of radiolabelled arginine to oocytes (Fig. 3b). The uptake
of [14C]Arg and [14C]Lys into oocytes expressing PbNPT1 was therefore measured
in the presence of 125–500 mM unlabelled methionine in order to minimize the
‘background signal’. Uptake of radiolabelled amino acid was terminated by adding
a large volume of ice cold ND96, and the extracellular solution was then removed
by three washes in ice cold ND96. Oocytes were separated into scintillation vials
(a single oocyte per vial) and lysed in 200ml of 10% (w/v) SDS solution before the
addition of Microscint fluid (Perkin Elmer). The radioactivity in each sample was
measured using a Perkin Elmer scintillation counter. In each experiment the data
obtained for each condition tested was averaged from 7 to 10 oocytes. Experiments
were performed in triplicate, with each of the three experiments using oocytes
harvested from different X. laevis frogs. X. laevis handling and experimentation
procedures were approved by the Australian National University Animal
Experimentation Ethics Committee.

Electrophysiological recordings. The two-electrode voltage clamp technique was
used as described previously21. Briefly, micropipettes were pulled using 1.5 mm
diameter borosilicate glass capillaries and backfilled with 2 M KCl. For voltage
clamp recordings, two electrodes were connected to the head stages of an
Axoclamp-2B amplifier (Axon Instruments). The experimental bath was grounded
with a chloride-treated silver wire coated with 3% (w/v) agarose dissolved in ND96.
Oocytes were voltage-clamped at � 50 mV and placed in a constant flow of ND96
solution. Once the current had stabilised the oocytes were exposed to ND96
solution containing 5 mM arginine. For the experiments giving rise to Fig. 4d, the
arginine-induced currents were measured in oocytes exposed to media in which
various ions were replaced; Naþ was replaced with NMDG, Cl� was replaced
with gluconate, and Kþ , Mg2þ and Ca2þ were replaced with Naþ . All buffers
had a final osmolarity of B200 mOsm l� 1. In all cases, the pH was adjusted to 7.4.
For the experiment giving rise to Fig. 4e, solutions of varying pH were prepared
using a combination of the buffering agents MES (pKa¼ 6.2) and Tris–HCl
(pKa¼ 8.3) at different ratios, giving a combined final concentration of 5 mM and
keeping the osmolarity of the solution constant. Current measurements were
performed at 300 ms frequency and were monitored using Axon Axoclamp
software.

Parasite flux assays. Freshly egressed T. gondii parasites were suspended at 37 �C
and at a cell density of B1� 108 cells ml� 1 in Dulbecco’s phosphate-buffered
saline (PBS; Sigma), pH 7.4, supplemented with 25 mM glucose, and containing
either 0.1 mCi ml� 1 [14C]Arg (with a specific activity of 312 mCi mmol� 1) or
0.1 mCi ml� 1 [14C]Lys (specific activity 326 mCi mmol� 1) together with
unlabelled amino acids (where specified). Aliquots (200 ml) were sampled at
predetermined time points, and centrifuged at 12,000g for 30 s through 250 ml of an
oil mix comprising of 84% (v/v) PM-125 silicon fluid (Clearco) and 16% (v/v) light
mineral oil, similar to a protocol described previously50. The supernatant solution
above the oil layer was aspirated, the tubes were washed three times in H2O, and
the oil layer was then aspirated, leaving the parasite pellet. The pellets were lysed in
0.1% (v/v) Triton X-100 in H2O, then mixed with microscint fluid (Perkin Elmer).
Radioactivity was measured using a Perkin Elmer scintillation counter. The uptake
time-course data were fitted by a single exponential function and the initial rate of
amino acid transport was estimated from the initial slope of the fitted line.

Uptake assays in P. berghei parasites were performed using a procedure
modified from one described previously for P. falciparum31. P. berghei parasites,
suspended in PBS supplemented with 11 mM glucose (PBSþ glucose), were
separated from uninfected blood cells using a VarioMACS separation unit51,52,
then isolated from host erythrocytes by saponin permeabilisation of the erythrocyte
and parasitophorous vacuole membranes as described53. For experiments
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measuring the uptake of [14C]Arg or [14C]Lys, isolated parasites were washed and
resuspended at B2� 108 cells ml� 1 in PBSþ glucose at 37 �C. For experiments
measuring the uptake of [1-14C]2-DOG (specific activity 55 mCi mmol� 1),
isolated parasites were washed and resuspended in PBS supplemented with
50mM glucose. In all cases, the uptake assay commenced with the addition of
100ml PBSþ glucose containing 0.2 mCi ml� 1 of either [14C]Arg, [14C]Lys or
[1-14C]2-DOG to 100ml of the cell suspension.

At predetermined time points, uptake was terminated by centrifuging the
parasite suspension through a 300 ml oil mix composed of dibutyl phthalate and
dioctyl phthalate (5:4) layered on 30 ml of 30% (v/v) perchloric acid in H2O at
17,000g for 1 min. After sedimentation, the aqueous supernatant above the oil
mix was aspirated and the residual radioactivity on the walls of the tube was
removed by rinsing three times with water. Following the final wash, the oil
layer was aspirated, and the parasite pellet was lysed in 0.1% (v/v) Triton X-100 in
H2O and centrifuged at 17,000g for 2 min. The supernatant was transferred
into a vial containing scintillation fluid, vortexed and radiation was measured
using a Perkin Elmer scintillation counter.

For both T. gondii and P. berghei flux assays, the unincorporated radiolabel
trapped in the extracellular solution between parasites as they were centrifuged
through the oil layer was estimated by rapid sampling (o15 s) following the
addition of radiolabelled substrate to the cell suspension. In the [14C]Arg and
[14C]Lys uptake experiments, a 5–10 mM concentration of an unlabelled form
of the amino acid was added at the same time as radiolabel to slow the uptake
of radiolabelled substrate. In the [14C]2-DOG uptake experiments a 5 mM
concentration of unlabelled glucose was added, for the same purpose. In each
uptake experiment the amount of radiolabel measured in the extracellular
solution was subtracted from the total radiolabel in the cell pellet for all samples, to
give the amount of radiolabel incorporated into the parasite.

Quantification of microgametogenesis. To determine whether DPbnpt1 parasites
were deficient in formation of male gametes (as reported previously14),
microgametogenesis was induced in WT and DPbnpt1 parasites by a drop in
temperature and the addition of xanthurenic acid. The extent of [3H]hypoxanthine
incorporation into DNA that is newly synthesized upon exflagellation of the
microgametocytes was measured as described previously54. Briefly, wild type and
DPbnpt1 parasite cultures were magnet purified using a VarioMACS separation
unit and resuspended in hypoxanthine-free RPMI-HEPES (RPMI supplemented
with 20 mM HEPES and 4 mM sodium bicarbonate, pH 8.0). Aliquots of purified
parasites were transferred into wells of a 96-well plate to a final volume of 200 ml.
25ml of gametocyte activating media (RPMI-HEPES supplemented with 100 mM
xanthurenic acid and 16 mCi ml� 1 [3H]hypoxanthine) was added to each well. The
plate was incubated for 10 min at room temperature, during which time competent
male gametocytes will undergo three rounds of genome replication followed by
exflagellation, then frozen at � 20 �C. The plate was thawed to lyse the cells, and
radiolabelled DNA transferred to filters using a Filtermate Universal Cell Harvester
(Perkin Elmer). The samples were read using a MicroBeta plate counter (Perkin
Elmer). This provides a quantitative measure for microgametogenesis.

Alignments of apicomplexan NPT proteins. NPT-family proteins from
T. gondii, P. berghei and P. falciparum were identified in www.toxodb.org and
www.plasmodb.org. Protein sequences were aligned using ClustalX 2.1 (ref. 55)
and a visual output of the sequence alignment was generated using the BoxShade
webserver (http://www.ch.embnet.org/software/BOX_form.html). Accession
numbers of the sequences were as follows: TGME49_215490 (TgNPT1),
TGME49_320020, PBANKA_020830 (PbNPT1), PBANKA_081570, and
PF3D7_0104800 (PfNPT1). A topology model to predict transmembrane domains
of TgNPT1 was constructed using PHOBIUS (ref. 56).

Statistical analyses. Paired and unpaired two-tailed Student’s t tests and
analyses of variance (ANOVAs) were performed, as appropriate, using Prism. The
significance level was set to 0.05; where P40.05, comparisons were considered not
significant.

Data availability. Gene sequences for NPT-family proteins from T. gondii,
P. berghei and P. falciparum were identified in www.toxodb.org and
www.plasmodb.org with accession codes TGME49_215490 (TgNPT1),
TGME49_320020, PBANKA_020830 (PbNPT1), PBANKA_081570, and
PF3D7_0104800 (PfNPT1). All other data supporting the findings of this study are
available within the article and its Supplementary information files and from the
corresponding authors on reasonable request.
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