SPRINGER BRIEFS IN ELECTRICAL AND COMPUTER ENGINEERING

Kan Zheng Lin Zhang Wei Xiang Wenbo Wang

Heterogeneous Vehicular Networks

Kan Zheng • Lin Zhang • Wei Xiang • Wenbo Wang

Heterogeneous Vehicular Networks

Kan Zheng School of Information and Communication Engineering Beijing University of Posts and Telecommunications Haidian District, Beijing, China

Wei Xiang
College of Science, Technology
and Engineering
Division of Tropical Environments
and Societies
James Cook University, Cairns
OLD, Australia

Lin Zhang
School of Information
and Communication Engineering
Beijing University of Posts
and Telecommunications
Haidian District, Beijing, China

Wenbo Wang School of Information and Communication Engineering Beijing University of Posts and Telecommunications Haidian District, Beijing, China

ISSN 2191-8112 ISSN 2191-8120 (electronic)
SpringerBriefs in Electrical and Computer Engineering
ISBN 978-3-319-25620-7 ISBN 978-3-319-25622-1 (eBook)
DOI 10.1007/978-3-319-25622-1

Library of Congress Control Number: 2016930306

© The Author(s) 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

With the advent of the intelligent transport system (ITS), vehicular communications networks have been widely studied in recent years. Dedicated short-range communications (DSRC) can provide efficient real-time information exchange between vehicles even with the lack of pervasive roadside communications infrastructure. Although mobile cellular networks are capable of providing great coverage for vehicular users, the requirement of stringent real-time safety services cannot always be guaranteed in mobile networks. Therefore, the Heterogeneous Vehicular NETwork (HetVNET), which integrates cellular networks with DSRC, emerges as a promising solution to meet the communications requirements of the ITS. Although there exist extensive reported studies on either DSRC or cellular networks, the combination of these two popular techniques remains a relatively nascent field of research. Building such HetVNETs requires thorough investigations into heterogeneity and its associated challenges.

The objective of this monograph is to present architectures of the HetVNET and to examine recent advances in Medium access control (MAC) layer designs for such systems. In Chap. 1, we present the motivation to the development of HetVNETs after a brief introduction to existing vehicular networks as well as the user cases and requirements of ITS services. Chapter 2 proposes an HetVNET architecture that utilizes a variety of wireless networking techniques, followed by the descriptions of various applications in some typical scenarios. Chapter 3 focuses on the MAC mechanisms of vehicular communications including a novel location-based channel congestion control mechanism. In order to well exploit the radio resources in HetVNETs, efficient resource allocation schemes are desired. Thus, not only the content-based scheme but also the cooperative one are presented in Chap. 4, following a short brief to the state-of-the-art. Finally, Chap. 5 suggests some open issues that help point out new research directions in HetVNETs.

We are very grateful to Prof. Xuemin (Sherman) Shen, the *SpringerBriefs* series editor on Wireless Communications. This book would not be possible without his kind support. Special thanks are also attributed to Jennifer Malat and Melissa Fearon at Springer Science+Business Media, for their assistance throughout the preparation process of this monograph.

vi Preface

We would like to thank Qiang Zheng, Haojun Yang, Lu Hou, Fei Liu, Xuemei Xin, and Zhiwei Zeng from the Wireless Signal Processing and Network (WSPN) group at the Beijing University of Posts and Telecommunications (BUPT) for their contributions to the work presented in this monograph. We also would like to thank all the members of the WSPN group for their valuable discussions and insightful suggestions, ideas, and comments.

This work is funded in part by the National Science Foundation of China (No. 61331009), National Key Technology R&D Program of China (No. 2015ZX03002009-004), and Fundamental Research Funds for the Central Universities (No. 2014ZD03-02).

Beijing, China Beijing, China Cairns, QLD, Australia Beijing, China Kan Zheng Lin Zhang Wei Xiang Wenbo Wang

Contents

1	Intr	duction	1				
	1.1	Motivation of Heterogeneous Vehicular Networks	1				
		1.1.1 DSRC	2				
		1.1.2 Cellular Networks for Vehicular Communications	3				
		1.1.3 Motivation of Heterogeneous Vehicular Networks	3				
	1.2	User Cases and Requirements for Safety and Non-Safety					
		Related Services					
		1.2.1 Safety-Related Services and User Cases	4				
		1.2.2 Non-Safety Related Services and User Cases	4				
	1.3	Aim of the Monograph	7				
	Refe	ences	7				
2	Arc	tecture of Heterogeneous Vehicular Networks	9				
	2.1	Background	9				
	2.2	<u>e</u>					
	2.3		11				
		2.3.1 Cellular-Network-Based V2I Communications	l 1				
		2.3.2 DSRC-Based V2I Communications	15				
	2.4	V2V Communications	17				
			17				
		2.4.2 DSRC-Based V2V Communications	18				
	2.5	Typical Application Scenarios	19				
		2.5.1 Urban Intersection Scenario	19				
		2.5.2 Expressway Scenario	20				
	2.6	Summary 2	21				
	Refe	ences	22				
3	Effic	ent MAC Mechanisms for Heterogeneous Vehicular Networks 2	25				
	3.1		25				
		3.1.1 EDCA in IEEE 802.11p	26				
			26				

viii Contents

		3.1.3	Improved Multi-channel Access Schemes	
			for Vehicular Networks	28
		3.1.4	Summary	30
	3.2	Broad	cast/Multicast Protocols	31
		3.2.1	eMBMS in LTE	31
		3.2.2	Challenges and Solutions for eMBMS in LTE	31
		3.2.3	Broadcast Protocols in DSRC	32
		3.2.4	Improved Broadcast Protocols for DSRC	33
		3.2.5	Summary	35
	3.3	Locati	ion-Based Channel Congestion Control Mechanism	36
		3.3.1	Location Segmentation	36
		3.3.2	Improved SCH Intervals Structure	37
		3.3.3	Section-to-EAW Mapping	37
		3.3.4	Modified CSMA/CA Scheme	38
		3.3.5	Frame Structure for ECA	39
		3.3.6	Performance Analysis	40
		3.3.7	Summary	42
	3.4	Insigh	ts and Discussions	43
	Refe	erences		44
4	Rese	ource A	Allocation in Heterogeneous Vehicular Networks	47
	4.1		ed Work	47
	4.2		nt-Based Resource Scheduling Mechanism	49
		4.2.1	System Model	50
		4.2.2	Traffic Model	52
		4.2.3	Analysis on Contented-Based Scheduling Scheme	53
		4.2.4	Performance Analysis	56
	4.3	Bipart	ite Graph-Based Cooperative Resource Allocation Mechanism	59
		4.3.1	System Model and Formulation	60
		4.3.2	Solution of the Optimization Problem	65
		4.3.3	Performance Analysis	68
	4.4	Summ	nary	75
	Refe	erences		75
5	Con	clusion	and Outlook	79
_	5.1		usion	79
	5.2		Research Directions	79
		rences		81

Acronyms

3D Three-dimensional

ABF Adaptive broadcast frame

AC Access category
ACK Acknowledgement
AF Amplify-and-forward
AIFS Arbitration interframe space

AMC Adaptive modulation and coding
AWGN Additive white Gaussian noise

BS Base station

BSSID Basic service set identification
CAM Cooperative awareness message

CAP Contention access period

CCH Control channel CCH interval

CDF Cumulative distribution function

CELL-DCH CELL dedicated channel
CELL-FACH CELL forward access channel

CELL-PCH CELL paging channel

CH Cluster head CN Core network

CQI Channel quality indicator

CRP Contention-based reservation period

CSMA Carrier sense multiple access

CTS Clear-to-send
CW Contention window
D2D Device-to-device

DEN Decentralized environmental notification

DF Decode-and-forward

DOT Department of Transportation

DS-CDMA Direct sequence code division multiple access

DSRC Dedicated short-range communications

x Acronyms

eMBMS Evolved multimedia broadcast and multicast service

eNB Evolved nodeB

EAP Exclusive access period FAW Exclusive access window **ECA** Exclusive channel access

FDCA Enhanced distributed channel access

FDCAF Enhanced distributed channel access function ETSI European Telecommunications Standards Institute

FCFS First come first serve

GΙ Guard interval

GPS Global Positioning System

GW Gateway

HetVNET Heterogeneous Vehicular NETwork

HII Heterogeneous link layer I2V Infrastructure-to-vehicle ICI Inter-carrier interference

IFFF Institute of Electrical and Electronics Engineers

IPv4 Internet Protocol version 4 IPv6 Internet Protocol version 6

ISO International Standards Organization ITS Intelligent transportation system

IBT Listen-before-talk LOS Line-of-sight ITF Long-term evolution

MAC

Medium access control **MBMS** Multimedia Broadcast and Multicast Services

MBSFN MBMS single frequency network MCS Modulation and coding scheme MIMO Multiple input multiple output

MSR Maximum sum rate

Nondeterministic polynomial NP

OBU On-board unit

OFDM Orthogonal frequency division multiplexing

OVSF Orthogonal variable spreading factor

PCF Point coordination function

PECA Prioritized exclusive channel access

PHY Physical

PS Processor sharing QCI QoS class identifier QoS Quality of service

QPSK Quadrature phase shift keying

RAN Radio access network RB Resource block RR Round robin

RRC Radio resource control Acronyms xi

RSSI Received signal strength indicator

RSU Roadside unit
RTS Request-to-send
SC Service center
SCH Service channel
SCHI SCH interval
SF Spreading factor
SNR Signal-to-noise radio

TCP Transmission Control Protocol
TDMA Time-division multiple-access
UDP User Datagram Protocol

UE User equipment
URA-PCH URA paging channel
UTC Universal Coordinated Time
V2I Vehicle-to-infrastructure
V2V Vehicle-to-vehicle

VANET Vehicular Ad hoc NETwork

VC Vehicular cloud

VCC Vehicular cloud computing

VE Vehicle equipment

VoIP Voice over Internet Protocol
VRRA Virtual radio resource allocation

WAVE Wireless access in vehicular environments

WBSS WAVE basic service set

WCDMA Wideband code division multiple access

WHO World Health Organization
WLAN Wireless local area network
WSA WAVE service advertisement
WSMP WAVE Short Message Protocol