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Biodiversity patterns across the marine tropics have intrigued evolutionary biologists and
ecologists alike. Tropical coral reefs host 1/3 of all marine species of fish on 0.1% of the
ocean’s surface.Yet our understanding of how mechanistic processes have underpinned the
generation of this diversity is limited. However, it has become clear that the biogeographic
history of the marine tropics has played an important role in shaping the diversity of tropical
reef fishes we see today. In the last decade, molecular phylogenies and age estimation
techniques have provided a temporal framework in which the ancestral biogeographic
origins of reef fish lineages have been inferred, but few have included fully sampled
phylogenies or made inferences at a global scale. We are currently at a point where
new sequencing technologies are accelerating the reconstruction and the resolution of the
FishTree of Life. How will a complete phylogeny of fishes benefit the study of biodiversity
in the tropics? Here, I review the literature concerning the evolutionary history of reef-
associated fishes from a biogeographic perspective. I summarize the major biogeographic
and climatic events over the last 65 million years that have regionalized the tropical marine
belt and what effect they have had on the molecular record of fishes and global biodiversity
patterns. By examining recent phylogenetic trees of major reef associated groups, I identify
gaps to be filled in order to obtain a clearer picture of the origins of coral reef fish
assemblages. Finally, I discuss questions that remain to be answered and new approaches
to uncover the mechanistic processes that underpin the evolution of biodiversity on coral
reefs.
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INTRODUCTION
A latitudinal gradient in species diversity is a common feature
of many taxonomic groups, both terrestrial and marine (Willig
et al., 2003; Hillebrand, 2004). However, a longitudinal gradient in
species diversity is also apparent across the marine tropics. Fishes
exemplify this diversity gradient (Hughes et al., 2002; Tittensor
et al., 2010) driven largely by patterns of species richness associated
with tropical coral reef habitats. Species richness of reef associated
fishes forms an enigmatic “bullseye” pattern centered on the Indo-
Australian Archipelago (IAA; Figure 1A). This region has also
been called several other names (reviewed by Hoeksema, 2007),
but its position at the center of this species richness gradient has
given it status as the largest marine biodiversity hotspot, covering
two thirds of the global equatorial tropics (Bellwood et al., 2012).
Unlike terrestrial biodiversity hotspots (Myers, 1988; Myers et al.,
2000), centers of endemism are not concordant with the center of
highest species diversity, whether endemic species are defined by
regional checklists (Figure 1B), or the extent of their geographic
range (Hughes et al., 2002; but see Mora et al., 2003). Traditional
hotspot analysis of the marine environment has identified endemic
centers under high levels of threat (Roberts et al., 2008), how-
ever these 10 defined areas of endemism exclude some areas that
have the high diversity of overlapping, wide ranging species. In

addition to the distinctive biodiversity gradient, the tropics have
been divided into a number of realms, regions, provinces and eco-
regions based on shared environmental characteristics (Spalding
et al., 2007), composition of endemic taxa (Briggs and Bowen,
2012), or measures of species dissimilarity (Kulbicki et al., 2013).
Although these differing regional schemes are based on present
day patterns, it appears that the division of regional assemblages
across the tropics is linked to its biogeographic history and the
formation of several historical barriers to dispersal (Cowman
and Bellwood, 2013a,b). While environmental clines in sea sur-
face temperature are linked to latitudinal variation in diversity
(Tittensor et al., 2010), the extensive tectonic, eustatic, climatic,
oceanographic and geomorphological (TECOG; Bellwood et al.,
2012) processes have played an important role in the origin and
maintenance of the tropical biodiversity gradient spanning both
deep and shallow times scales (Renema et al., 2008; Pellissier et al.,
2014).

The mechanistic processes that underpinned this history and
how they have generated such biodiversity has inspired much
debate over the last 40 years (Potts, 1985; Briggs, 1999; Bellwood
and Meyer, 2009a; Cowman and Bellwood, 2013a) with numer-
ous hypotheses being proposed (Bellwood et al., 2012), but little
consensus. The answers to key questions regarding where species
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FIGURE 1 | Species richness, endemism and provinciality of tropical

reef fishes. (A) Map of species biodiversity by tropical ecoregion
(Spalding et al., 2007) with color gradient denoting areas of high species
richness (dark red) to areas of low species richness (light red). (B) Map of
endemic species by ecoregion. Under this scheme a species is endemic
if it is only found in a single ecoregion, i.e., a regional assessment of
endemism rather that designated by percent of area comparison (Hughes

et al., 2002). Species richness and endemic estimates are based on
species counts from the “checklist” × “all species” dataset of Kulbicki
et al. (2013). (C) Biogeographic delineation of tropical Realms, Regions,
and Provinces based on species dissimilarity analysis of Kulbicki et al.
(2013). This biogeographic scheme is base on checklists as base units
(see Kulbicki et al., 2013), however here the scheme is imposed onto the
tropical ecoregions of Spalding et al. (2007).

have originated and the processes that have promoted speciation
and extinction in tropical clades remain unclear. The popular-
ity of phylogenetics, fossil-calibrated age estimation techniques,
and the availability of geographic information have allowed biol-
ogists to examine the history of the taxa that form the marine
biodiversity hotspot. In the case of coral reef fishes and the IAA

biodiversity hotspot, what have we learned in the last decade?
While new genomic sequencing methods are becoming avail-
able (Faircloth et al., 2013) and larger datasets are increasing
the resolution of deeper nodes in the Fish Tree of Life (Near
et al., 2012), what gaps remain in the evolutionary record of
reef associated fishes? How complete is our understanding of the
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evolution of biodiversity on tropical reefs and which questions
will benefit from more sampling, more data, and new analytical
approaches?

In this review, I examine the phylogenetic and biogeographic
completeness of key families found in reef habitats globally. By
exploring the current state of the biogeographic history of tropi-
cal reef fishes I highlight where further analysis and discussion is
needed, and what new questions require answers.

EVOLUTION OF FISHES ON CORAL REEFS – FILLING IN THE
GAPS
Bellwood and Wainwright (2002) discussed the biogeographic his-
tory of fishes on coral reefs. They stated that from the integration
of systematics, biogeography, ecology, and paleontology a new
understanding of the nature of reef fishes would arise. Twelve
years on, the integration of methods and multiple datasets has
cast a wide net across the fields of reef fish ecology, evolution
and biogeography to give vast insight into the important phases
of evolution of coral reef fishes over the past 400 million years
(Bellwood et al., in press). A major part of this insight has come
from the combination of molecular phylogenetics and the fossil
record to form a temporal framework in which to ask ques-
tions regarding the origin and tempo of reef fish diversification.
Although only a handful of new fossils have been described with
reef affinities in the last decade (Carnevale, 2006; Micklich et al.,
2009; Bannikov, 2010) the fossil record of early reef fish forms
continues to provide a wealth of information on the early ori-
gins of reef association in teleost fishes. New analytical techniques
have revealed the origins and diversification of anatomical features
(Friedman, 2010), important morphological transitions (Goatley
et al., 2010), and the emergence of essential functional roles on
coral reefs (Bellwood et al., 2014a,b). However, it is the utility of
fossils as calibrations points on molecular phylogenies that have
allowed the evolution of reef associated lineages to be studied on
an absolute timescale. In particular, while the origins of several

reef fish groups can be found in the fossil deposits of the Monte
Bolca Lagerstätten (50 mya; Bellwood, 1996) the crown ages and
the diversification of major lineages that lack a fossil record have
only been examined with the aid of calibrated chronograms.

There has been debate over what characterizes a ‘coral reef ’ fish
(Bellwood, 1998; Robertson, 1998), but a general list of ‘reef ’ fish
families (Table 1) identifies those groups that are characteristic of
a modern reef assemblage (both coral and rocky reefs), regard-
less of geographic location (Bellwood and Wainwright, 2002).
Indeed, species counts of these families on coral reefs around the
world are found in relatively similar proportions (Bellwood and
Hughes, 2001). Although these nine fish families found on coral
reefs are often used as model groups to address questions regard-
ing diversification on coral reefs, there are at least 35 families
of acanthomorph fishes that can be considered ‘reef associated’
(Price et al., 2014). Some of these families are monotypic (e.g.,
Zanclidae) while other can be entirely reef dwelling but not glob-
ally distributed (e.g., Siganidae). Interestingly, the most diverse
fish family found on reefs, the Gobiidae, containing over 2000
species, has several lineages confined to coral reefs (Herler et al.,
2011), yet remains off the list of traditional reef fish families. Its
exclusion from this list may be related to their consistent under-
sampling in geographic surveys (Ackerman and Bellwood, 2000),
made ever more difficult by their cryptic nature and many unde-
scribed species. Nonetheless, this non-traditional reef fish family
may provide a good model to study speciation and biodiversity
on coral reefs (Rüber et al., 2003; Taylor and Hellberg, 2005).
While this review focuses on those nine families classically rec-
ognized as reef fish families, other lineages found on (and off)
reefs might provide further insight into the evolution of tropi-
cal biodiversity. The utility of these families and lineages should
be determined by several factors, most importantly, the level
at which they have been sampled for phylogenetic reconstruc-
tion. As the nine reef fish families are prominent on coral reef
around the globe they have been examined with phylogenetic

Table 1 | Diversity, phylogenetic and geographic sampling of the nine characteristic reef fish families.

Family Richness % Reef % F % EToL % R % N %GASPAR

Chaetodontidae1 128 96.88 74.22 10.16 73.44 5.47 96.09

Labridae1 (+parrotfishes2) 609 83.25 50.41 8.87 39.41 3.28 87.19

Blenniidae3 383 44.91 26.63 6.53 10.18 1.04 82.25

Holocentridae4 84 80.72 51.19 21.43 22.62 4.76 84.52

Pomacentridae5 375 94.4 55.47 9.33 46.13 1.07 94.13

Acanthuridae6 81 97.53 77.78 18.52 59.26 6.17 100

Apogonidae1 345 72.01 20.87 4.64 6.09 1.16 84.93

Mullidae* 68 48.53 NA 7.35 19.12 4.41 63.24

Carangidae7 151 45.03 33.11 15.89 54.97 3.97 65.56

Species richness and percentage of reef associated members are taken from http://www.fishbase.org. % F is the percent sampling of species in published family
level study; % EToL is the percent sampling of species in the Euteleost Tree of Life (Betancur-R et al., 2013); % R is the percent sampling of species in the published
phylogeny of Rabosky et al. (2013); % N is the percent sampling of species in the published phylogeny of Near et al. (2013); % GASPAR is the percent of family richness
that are present in the checklists of the GASPAR database (Parravicini et al., 2013). Superscript denotes source of family level phylogeny: 1-Cowman and Bellwood
(2011); 2-Choat et al. (2012); 3-Hundt et al. (2014); 4-Dornburg et al. (in press); 5-Frédérich et al. (2013); 6-Sorenson et al. (2013); 7-Reed et al. (2002). *No phylogeny
from a family level study was accessible for the Mullidae.
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methods and increasing levels of genetic data over the past two
decades.

Early molecular phylogenetic studies within reef fish groups
contained a small number of taxa in select genera (Lacson and
Nelson, 1993; McMillan et al., 1999; Bernardi et al., 2001; Reed
et al., 2002). Later, the combination of generic level phylogenies
with relaxed clock methods (Sanderson, 2003) allowed the estima-
tion of ages of divergence within several reef-associated lineages
(Bellwood et al., 2004; Bernardi et al., 2004; Klanten et al., 2004;
Barber and Bellwood, 2005; Read et al., 2006). With improved
sequencing efforts at the family level (Westneat and Alfaro, 2005;
Cooper et al., 2009; Thacker and Roje, 2009), molecular datasets
have given insight into the crown origins of reef fish groups and
the tempo at which they have diversified (Westneat and Alfaro,
2005; Alfaro et al., 2007; Fessler and Westneat, 2007; Cowman
et al., 2009; Frédérich et al., 2013). Even though the character-
istic nine families have been the focus of many phylogenetic
studies (albeit some more than others), as of yet, not one of
these families is represented by a fully sampled, species level
phylogeny (Table 1). While the majority of major lineages and
genera are sampled within these phylogenetic studies, the level
at which species within these lineages are sampled varies dramati-
cally (Figure 2). Those families that have more completely sampled
phylogenies have achieved it through the combination of multi-
ple sequence datasets and the use of supermatrix phylogenetic
methods. The combination of datasets for the butterflyfish fam-
ily Chaetodontidae (Fessler and Westneat, 2007; Bellwood et al.,
2010) has resulted in a phylogeny that is over 70% complete
(Table 1; Cowman and Bellwood, 2011). Similarly, the family
Acanthuridae is nearly complete (76%) through the combination
of previously published and new sequence data (Sorenson et al.,
2013). Other families have been the focus of several phylogenetic
studies, incrementally increasing taxon sampling as more data
or specimens become available, e.g., the wrasses, family Labri-
dae (now inclusive of odacids and parrotfishes; Westneat and
Alfaro, 2005; Alfaro et al., 2009; Cowman et al., 2009; Kazancioglu
et al., 2009; Cowman and Bellwood, 2011); and the damselfishes,
family Pomacentridae (Cooper et al., 2009; Cowman and Bell-
wood, 2011; Frédérich et al., 2013). Within the Labridae and
Pomacentridae, shallower lineages have also been examined with
increased sampling to explore a variety of evolutionary and eco-
logical questions (Smith et al., 2008; Choat et al., 2012; Hodge
et al., 2012; Litsios et al., 2012). Other families, such as the
Blenniidae and the Apogonidae have been plagued by taxonomic
issues that are only beginning to be addressed with more taxa
and multi-locus datasets (Thacker and Roje, 2009; Hundt et al.,
2014). The incomplete phylogenetic sampling for reef fishes is
exacerbated by the rate of new species descriptions and identi-
fication of cryptic species (Zapata and Robertson, 2006; Mora
et al., 2008; Bowen et al., 2013). Recently, Allen (2014) reviewed
the systematics of Indo-Pacific coral reef fishes over the past three
decades to reveal that over 1,400 new species have been described
with an average of 51.3 new species description per year since
2010.

The incomplete sampling observed in these reef fish fam-
ilies appears to have been a general symptom seen across all
fishes when compared to other vertebrate branches of the Tree

of Life (Thomson and Shaffer, 2010a). However, there have
been three recent efforts in reconstructing the Fish Tree of Life
(Betancur-R et al., 2013; Near et al., 2013; Rabosky et al., 2013)
with new sequencing methods (Faircloth et al., 2013) providing
an exciting avenue for future phylogenomic research in fishes.
These ‘top down’ approaches to reconstructing the Fish Tree of
Life have greatly improved the resolution of deep nodes and diver-
gences in the major fish groups, including those with reef affinities.
These datasets have included varying degrees of taxon sampling
of reef associated lineages (Table 1), depending on the core aim
of the study. The chronogram of Near et al. (2013) concentrated
on sampling all families of acanthomorphs with as complete a
molecular matrix as possible. While it does not have high species
level sampling of reef fish lineages, it has allowed the explo-
ration of rates of transition of fish lineages (at the family level)
on and off of reefs over the past 100 million years (Price et al.,
2014). The chronogram of Rabosky et al. (2013) closely matches
the sampling effort of family level studies of the nine charac-
teristic groups, achieved by mining the published sequence data
available on GenBank. In the cases of the families Carangidae
and Mullidae, this concatenated super-matrix approach included
more species than any other published phylogeny for each fam-
ily (Table 1). These large-scale phylogenetic studies employing
supermatrix methods have also allowed the identification of the
closest sister families to prominent reef fish families. However,
disagreement among these large phylogenies still exists for some
families. For example, the closest sister group to the Labridae
changes from being the family Centrogenyidae (Betancur-R et al.,
2013), to the family Ammodytidae (Rabosky et al., 2013), to the
family Gerridae (Near et al., 2013). This highlights the utility
of supermatrix approaches, but caution is still needed in their
implementation (Thomson and Shaffer, 2010b). In the case of
fishes, more work remains to resolve some of these early diverg-
ing lineages at the top of the percomorph “bush” (Nelson, 1989),
where the origin of several reef associated lineages are found.
While these top–down approaches continue to reveal the early
evolution of reef fishes, ‘bottom–up’ studies concentrating on the
origins of extant lineages have provided a framework to exam-
ine the diversification of reef fishes over the past 65 million
years.

DIVERSIFICATION OF FISHES ON TROPICAL REEFS
Phylogenetic sampling and the resolution of reef fish lineages
remains a key issue for future research. However, for those groups
that have been the focus of age estimation studies, some gen-
eral, concordant patterns have emerged. The stem lineages of
many reef lineages extend back into the Cretaceous (Near et al.,
2013) while the crown origins are strongly associated with the
aftermath of the K-Pg boundary mass extinction event (∼65 ma;
Bellwood et al., in press). A recent study of family level transi-
tions into reef habitat and associated morphological divergence
has outlined two waves of colonization before and after the K-
Pg boundary (Price et al., 2014). Initial colonization of lineages
before the K-Pg boundary (90–72 mya) was accompanied with
morphological divergence of clades, while the subsequent wave of
reef colonization (65–56 mya) appears to saturate with increas-
ing convergence in morphospace (Price et al., 2014). Patterns of
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FIGURE 2 | Phylogenetic sampling of characteristic reef fish families.

Published chronologies of the nine characteristic reef fish families
found globally on coral reefs (Bellwood and Wainwright, 2002). Sources
of these trees can be found in Table 1. Level of taxon sampling per
lineage is denoted by color with black branches completely sample.
Percent sampling was calculated by a per genus basis with species

counts taken from Fishbase (http://www.fishbase.org). In the cases of
the families Labridae, Chaetodontidae, Pomacentridae and Apogonidae
lineage richness estimates were taken from Cowman and Bellwood
(2011). Asterisk indicates node where the parrotfish phylogeny of Choat
et al. (2012) was grafted to the Labridae tree of Cowman and
Bellwood (2011).
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reef invasions within families are likely to be more dynamic (Price
et al., 2014) with trophic evolution showing increasing associa-
tion between fishes and the reef benthos (Cowman et al., 2009;
Bellwood et al., 2010). From the appearance of more generalist
trophic modes in the Eocene/Oligocene, new and novel trophic
modes began to appear on reefs in the Miocene with the trophic
system in place by 7 mya (Cowman et al., 2009; Bellwood et al.,
2010). Some reef fish lineages have diversified ecologically by
expanding into novel areas of morphospace (Friedman, 2010;
Price et al., 2011) while others have exhibited convergent radia-
tions across similar trophic strategies (Frédérich et al., 2013). An
association with coral reef habitat appears to both promote clade
diversity, with higher reef occupancy linked to faster rates of diver-
sification (Alfaro et al., 2007; Cowman and Bellwood, 2011), and
increased rates of morphological diversification within lineages
(Price et al., 2011, 2013). Lineage diversity and morphological
divergence do not appear to be related in these groups (Cowman
et al., 2009; Price et al., 2011), however key innovations have been
linked to increased diversity in some clades (Kazancioglu et al.,
2009; Litsios et al., 2012; Wainwright et al., 2012). In addition, an
over arching link between rate of body size evolution and rate of
diversification appears to be a general trend across the fish tree of
life (Rabosky et al., 2013), but its affect on the evolution of reef
clades has not been examined.

By the end of the Eocene, major lineages leading to present
day genera and tribes within reef fish families were in place
for many reef fish families (Cowman and Bellwood, 2011).
After what may have been a cryptic extinction event near the
Eocene/Oligocene boundary, coinciding with the origin of the
butterflyfishes (∼33 mya), a rebound in cladogenesis within reef
associated lineages during the Oligocene/Miocene underpinned
much of the extant diversity seen on todays reefs (Cowman and
Bellwood, 2011). Several lineages within the Labridae, Pomacen-
tridae, Apogonidae and Chaetodontidae display significantly more
diversity than expected, with the most reef-associated lineages
appearing more resistant to higher extinction rates than their
non-reef counterparts (Cowman and Bellwood, 2011). Elevated
cladogenesis has previously been identified in several marine fish
lineages (Rüber and Zardoya, 2005), with reef association or habi-
tat shifts suggested to be the underlying mechanism. Later, the
relationship between reef association and elevated rates of diver-
sification was demonstrated in Tetraodontiformes (Alfaro et al.,
2007), marine gastropods (Williams and Duda, 2008), and more
recently in sharks (Sorenson et al., 2014). Whether reef habitats
promote this diversity through elevated speciation, or relaxed
extinction remains to be seen. As extinction rates are notoriously
difficult to estimate from molecular phylogenies in the absence
of a paleontological record (Quental and Marshall, 2009, 2010;
Rabosky, 2009b), the vital evidence in the form of Miocene fos-
sils for many reef fish lineages, at least, remains out of reach. The
expansion of coral reef habitat in the Miocene may have promoted
cladogenesis, and provided a refuge from extinction, two processes
that may vary on both temporal and geographic scales (Cowman
and Bellwood, 2013a).

The majority of extant coral reef fishes examined by
Cowman and Bellwood (2011, 2013a) are of Miocene age (23–
5 mya; Figure 3) with some possibly being older than the IAA

FIGURE 3 | Biogeographic ages of species of the families Labridae,

Pomacentridae, and Chaetodontidae. Plot shows mean (circle) and 95%
CI (whiskers) of the distribution of ages of origination of extant lineages in
each biogeographic region, and globally for the Labridae, Pomacentridae,
Chaetodontidae (data from Cowman and Bellwood, 2013a). Underlying
schematic map shows regional scheme used by Cowman and Bellwood
(2013a) for ancestral biogeographic reconstruction. This scheme differs
from the regional scheme of Kulbicki et al. (2013) shown in Figure 1C. Age
distributions for each region represent the ages of extant lineages that
originated in that particular region accounting for ancestral biogeographic
reconstruction (see Cowman and Bellwood, 2013a). EP, East Pacific; Atl,
Atlantic; In, Indian Ocean; IAA, IAA Hotspot; CP, Central Pacific Islands; GL,
Global.

hotspot (Renema et al., 2008). While some geographic variation
in the reconstructed ages of lineages exists (Figure 3), the older
ages of extant species challenged the early suggestion that sea
level fluctuations during the Pleistocene was a major factor in
the origin of modern coral reef assemblages (Potts, 1985). For
reef fishes, the majority of cladogenetic events occurred in the
Miocene but speciation still continues in several groups from
the Pleistocene onward (Rocha and Bowen, 2008). Pleistocene
speciation in these groups may be linked to patterns of barrier
vicariance (Bowen et al., 2013; Cowman and Bellwood, 2013b),
peripheral budding (Hodge et al., 2012), and more recent fluc-
tuations in coral reef stability (Pellissier et al., 2014). Pleistocene
processes may very well have played an active role in the evo-
lution of butterflyfishes (McMillan and Palumbi, 1995), which
display younger global ages of extant lineages (∼2.6 mya) than
labrids (∼6.7 mya) and pomacentrids (∼6.7 mya), particularly
in the Indian Ocean and IAA hotspot (Figure 3). It is likely that
when the gaps in taxonomic sampling of these reef fish families are
filled, and cryptic species are identified, the inclusion of unsam-
pled lineages closer to the present may enhance the role played
by speciation in the Pleistocene and the importance of periph-
eral locations in promoting biodiversity. Processes at work in the
Miocene appear to be the main source of origination of modern
reef fish biodiversity patterns, while processes maintaining this
pattern are prominent from the Pliocene/Pleistocene. However, to
gain a clearer picture of the magnitude of these processes across
the marine tropics, studies with a biogeographic focus have been
important.

BIOGEOGRAPHY AND BIODIVERSITY
As with the phylogenetic history of reef fishes, the biogeographic
history is reliant on sampling, specifically, knowledge of the cur-
rent extend of reef fish species ranges. In this regard, we are
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fortunate to have had many skilled ichthyologists throughout the
decades collecting geographic information on reef fish distribu-
tions (Allen, 2014). Several initiatives have been actively cataloging
the diversity found on and off coral reefs, e.g., Atlas of Living
Australia1; IUCN red list2; the Global Biodiversity Information
Facility3; Map of Life4; and Ocean Biogeographic Information
System5. A recent effort to construct a global database for tropical
reef fishes has resulted in over 6300 records for reef fishes across
169 locations (GASPAR database; Kulbicki et al., 2013; Parravicini
et al., 2013). This database has been used to explore global predic-
tors of reef fish species richness (Parravicini et al., 2013); global
biogeography of reef fishes (Kulbicki et al., 2013); human medi-
ated losses of phylogenetic and functional diversity (D’agata et al.,
2014); and the role of stable reef habitat in preserving reef fish
diversity (Pellissier et al., 2014).

Of the valid nominal species in the nine reef fish families,
these geographic checklists (Kulbicki et al., 2013; Parravicini et al.,
2013) include the vast majority of them, ranging from 63% of
carangid species, to 100% of acanthurid species (Table 1). These
data are likely to include the majority, if not all reef associated
members of these families. In combination with a fully sampled
phylogeny of reef fishes, these geographic data would allow us to
tease apart some of the questions that have been partially answered
so far regarded the origins of tropical biodiversity. Unfortunately,
fully sampled phylogenies for important groups are still out of
reach. The incomplete and clade biased phylogenetic sampling
also translates into a bias in geographic sampling (Figure 4). Those
charismatic families such as the Labridae and Chaetodontidae that
have been the focus of several papers from a variety of research
groups have more even phylogenetic sampling across biogeo-
graphic ecoregions, with over 50% of taxa present in each region
represented in a published phylogeny (Figures 4A,B). A sampling
bias can be observed among ocean basins, and among families,
where some families (Apogonidae, Blenniidae; Figures 4E,F) have
higher phylogenetic sampling in Indo-Pacific locations, whereas
others (Pomacentridae, Mullidae, Carangidae; Figures 4C,H,I)
show higher phylogenetic sampling in the Atlantic locations. Over-
all, the families Apogonidae, Blenniidae, Mullidae and Carangidae
show concerning levels of lower phylogenetic resolution across
tropical reef habitats (Figures 4E,F,H,I) with many regions show-
ing below 10% phylogenetic sampling of ecoregion assemblages.
Nonetheless, the geographic data available, regardless of its sam-
pling in phylogenetic trees, have been fruitful in delineating
biogeographic regions across the marine tropics.

Biogeographic science has an important role in the guidance
of biodiversity conservation (Whittaker et al., 2005). Dividing the
tropics into discrete regions has proven to be a difficult process
(Mouillot et al., 2013), but it is a necessary step toward critically
evaluating and implementing conservation priorities (Whiting
et al., 2000; Olson et al., 2001). With the predictions of a grim
future ahead for coral reef systems under a changing climate

1http://www.ala.org.au
2http://www.iucnredlist.org
3http://www.gbif.org
4http://www.mol.org
5http://www.iobis.org

FIGURE 4 | Phylogenetic sampling of nine reef fish families across the

marine tropics. (A–I) Global maps of tropical ecoregions displaying
phylogenetic sampling of species assemblages for each of the nine
characteristic reef fish families. Species richness for each family within
ecoregions is base on species checklist of species counts from the
“checklist” × “all species” dataset of Kulbicki et al. (2013) and phylogenetic
sampling is based on taxon sampling of each published family phylogeny
(Figure 2;Table 1). Ecoregions that have <10% of the family species pool
represented are outlined in black.
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(Hughes et al., 2003), the biogeographic delineation of the marine
tropics and how regional assemblages have formed through time is
paramount to our understanding of biodiversity maintenance. In
the past decade, several studies have provided a schematic break
down of regions across the tropical belt based on differing cri-
teria (Spalding et al., 2007; Briggs and Bowen, 2012; Kulbicki
et al., 2013). Most recently, Kulbicki et al. (2013) used a hier-
archical approach to delineating tropical reef regions based on
species dissimilarity. Using species checklists across 169 loca-
tions (Parravicini et al., 2013), their results identify three realms
(Atlantic, Central Indo-Pacific, Tropical East Pacific; Figure 1C),
each with varying degrees of structure within those delineated
regions and provinces (Figure 1C; Kulbicki et al., 2013). The
Central Indo-Pacific region, within the Indo-Pacific realm, was
characterized by lower within region dissimilarity, while neighbor-
ing regions (Western Indian and Central Pacific) could be broken
down further into provinces (although some internal structure
is seen when analyses were based on ecoregions as base units;
see Kulbicki et al., 2013). While the IAA (or Coral Triangle) may
be delineated as the area containing the highest proportion of
reef fish species (Briggs and Bowen, 2012), in terms of species
composition there is no strong evidence delineating it as a sep-
arate entity in the Central Indo-Pacific (Kulbicki et al., 2013).
The IAA biodiversity hotspot may not be a defined region based
on species dissimilarity. But, an area the extent of the IAA at
the center of the highest number of overlapping species ranges
must have played a significant role on an evolutionary scale in
the generation of current day biodiversity patterns. On a shal-
low timescale, the complex role of the IAA and Coral Triangle
region has been illustrated through numerous population level
and phylogeographic studies (reviews by Carpenter et al., 2011).
While the extant ranges of reef associated fishes can statistically
delineate regions of dissimilar assemblages, the lines of division
are highly dependent on the method used (Leprieur et al., 2012;
Mouillot et al., 2013), and there remains no consensus on which
method or regional scheme is best. It is likely that the appro-
priate biogeography scheme will depend on the question being
addressed. From a macroevolutionary perspective, whether any
present day scheme for biogeographic delineation has a meaning
for past diversification and biogeographic evolution has yet to be
addressed.

The evolution of reef fish biodiversity patterns is likely to
be concordant with the evolution of coral reef habitats. Higher
diversification rates of reef associated fish lineages have been
demonstrated (Cowman and Bellwood, 2011) and transitions onto
coral reefs appear important for accelerated morphological evo-
lution (Price et al., 2014). However, a direct (or indirect) link
between the diversification of corals and the diversification of their
associated fish lineages has yet to be recognized (Duchene et al.,
2013). From a biogeographic perspective, the spatial and tem-
poral distribution of coral taxa and the platforms they construct
may provide insight into the evolution of reef fishes that inhabit
them. Extent of coral reef area (Bellwood and Hughes, 2001)
and its stability through time (Pellissier et al., 2014) have been
highlighted as significant predictors of extant reef fish biodiver-
sity. The fossil record of reef building corals highlight differences
among ocean basins (Budd, 2000; Wallace and Rosen, 2006). The

Atlantic and Caribbean fossil reef biota display high turnover of
coral species and extinction of reef habitat (Budd, 2000), while
the Indo-Pacific fossil biota displays a history of eastward move-
ment linked to tectonic activity (Wilson and Rosen, 1998; Renema
et al., 2008) with modern coral taxa in the Central Indo-Pacific
consisting of Tethyan relicts and recent speciation events (Wallace
and Rosen, 2006). Such data could be used to model the spatial
and temporal dynamics of coral reef habitat allowing us to test
more explicit biogeographic scenarios and hypothesis related to
tropical biodiversity (e.g., Ree and Sanmartín, 2009).

THE IAA BIODIVERSITY HOTSPOT – A CENTER OF
CONFUSION
Although compositionally the IAA hotspot may not currently
present a geographic entity within the Central Indo-Pacific Realm
(Kulbicki et al., 2013), the area has historically been recognized
as a center of biodiversity in the Indo-Pacific (Ekman, 1953). In
an effort to understand the processes that have been important
in producing the diversity pattern across the Indo-Pacific and
the associated center of high diversity, three hypotheses became
popular in the early 1980s, originally formulated to explain the
biodiversity of reef building corals (summerized by Potts, 1985).
These ‘center of ’ hypotheses have been co-opted in the context
of reef fish biodiversity. They have been expanded and modified
to explain the extensive and overlapping widespread ranges seen
in several reef fish groups (Hughes et al., 2002; Connolly et al.,
2003). The details of each of these, and other hypotheses have
been reviewed by Bellwood et al. (2012). Both phylogenetic and
population level studies of reef fish taxa have highlighted evi-
dence describing the IAA (or the Coral Triangle) as a center of
origin (Briggs, 2003; Timm and Kochzius, 2008), a center of over-
lap (Hubert et al., 2012; Gaither and Rocha, 2013), or a center
of accumulation/survival (Barber and Bellwood, 2005; Kool et al.,
2011).

Each hypothesis has made predictions about the location of
origin of species, their age, and their trajectory of range expan-
sion or change (see Bellwood et al., 2012). Primarily, species with
restricted endemic ranges have been important in the assessment
of these hypotheses, but even the study of endemic taxa has been
fraught with debate (Bellwood and Meyer, 2009a,b; Briggs, 2009).
Even how an endemic range is defined can lead to conflicting
patterns of endemism (Hughes et al., 2002; Mora et al., 2003). Bell-
wood and Meyer (2009a,b) highlighted the diffuse ages of endemic
taxa, whether they are found inside or outside the IAA. Endemic
taxa can be young (neo-endemics) or old (palaeo-endemics) and
as such their use to delineate areas of species geographic origin
should be cautious. Indeed the ages of endemic coral reef fishes
in several families do not differ significantly from those of more
widespread species (Hodge et al., 2014). Instead of using endemic
species as a tool in pinpointing locations of species origin it is
becoming clear that understanding how processes of isolation and
extinction have lead to current patterns of endemism along side
widespread species is an important step in the study of reef fish
biodiversity.

Recent studies have begun to highlight that the processes that
promote, maintain and diffuse biodiversity in the marine trop-
ics are more dynamic in nature with multiple drivers acting both
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in concert, and decoupled across temporal and geographic scales
(Bowen et al., 2013; Cowman and Bellwood, 2013a). The question
has changed from which hypothesis is most accurate, to when and
where the processes they invoke have been most prevalent and
how they have interacted to produce the biodiversity we see today.
To this end, it may be time to mute the discussion about ‘centers
of ’ in the field of reef fish biodiversity in favor of directly exam-
ining and modeling rates of speciation, extinction and dispersal
in a temporal and geographic framework. Such methods have
been advantageous in investigating terrestrial diversity patterns on
global scales (Jetz et al., 2012; Rolland et al., 2014). If these different
processes have played an active role in the development of tropi-
cal biodiversity but on different temporal and spatial scales, then
several biogeographic areas may have historically acted as sources
or sinks (or both) for biodiversity at different periods in time. For
example, the Atlantic realm, like the IAA hotspot, can be con-
sidered a center for species origination (Cowman and Bellwood,
2013a), but its history of isolation from the Indo-Pacific (Floeter
et al., 2001; Joyeux et al., 2001) and extinction (O’Dea et al., 2007)
has contributed to its lower diversity when compared to the Indo-
Pacific. Both the Indian Ocean and the Central Pacific regions have
higher standing diversity of reef fishes than the Atlantic. However,
most of their diversity has been derived through expansions of lin-
eages from the IAA. But peripheral locations in both these regions
have also been sites of species origination (Hodge et al., 2013).
In addition, within the Indo-Pacific realm, it remains unclear if
the IAA hotspot actually has experienced higher rates of specia-
tion than adjacent regions (Bellwood and Meyer, 2009b; Litsios
et al., 2014). While speciation has certainly occurred within the
IAA hotspot, peripheral locations are also important sources of
new species (Bowen et al., 2013; Hodge et al., 2014). None of these
hypotheses can be disregarded, but nor can any one of them solely
explain the IAA biodiversity pattern (Rosen, 1984; Palumbi, 1997;
Halas and Winterbottom, 2009; Hoeksema, 2009). Halas and Win-
terbottom (2009), comparing reconstructed area relationships of
cladograms of fishes, corals and molluscs, found little congruence
among these taxa and little evidence for any of the core models
examined, despite these groups displaying very similar patterns of
diversity across the tropics (Roberts et al., 2008). Several studies
have asked what present day geographic or environmental factors
explain the variation in the IAA diversity pattern (Mora et al., 2003;
Tittensor et al., 2010; Parravicini et al., 2013), but it appears that
examining historical factors may have more explanatory power
when examining the origin and maintenance of biodiversity in the
marine tropics (Renema et al., 2008; Pellissier et al., 2014). While
the history of tropical biodiversity may remain clouded until com-
plete phylogenies are available, concordant patterns in currently
published data for tropical reef fishes has allowed key events in the
history of the tropics to be recognized.

Though the IAA hotspot is enigmatic, it has not been a unique
pattern through time. It represents the modern manifestation of
a pattern that has existed for at least the past 50 million years
(Renema et al., 2008). The center of biodiversity has ‘hopped’
from a Tethyan location (Paleocene), to an Arabian/IAA hotspot
(Eocene/Oligocene), to its current location in the IAA (Miocene;
Renema et al., 2008). This biogeographic re-centering of biodiver-
sity was associated with a sequence of TECOG events (Bellwood

et al., 2012), dynamic processes controlling the origin and survival
of species (Cowman and Bellwood, 2011, 2013a) resulting in the
establishment of a trophic system characteristic of modern coral
reefs. These processes resulted in the contraction and expansion of
carbonate platforms, the evolution of the coral species that built
them, and their associated fish lineages.

The earliest fossil records of lineages leading to modern coral
reef fishes and the coral genus Acropora are found in close proxim-
ity in the Late Paleocene/Early Eocene deposits of Europe and the
Western Indian Ocean (Bellwood, 1996; Wallace and Rosen, 2006).
These deposits can be realistically extrapolated to be associated
with the ancestral hotspot centered in the Western Tethys sea-
way (Renema et al., 2008). No fossil Acropora are currently know
from the Eocene of the Indo-West Pacific. While this could be an
observational artifact, this gap in the coral record corresponds to a
geographic gap with fewer shallow water habitat for coral growth
in the Indo-Pacific at that time (Wilson and Rosen, 1998). It is
not until the Late Oligocene/Early Miocene (∼26 mya) where we
see the first fossil evidence of coral species of the genus Acrop-
ora occurring in the IAA (Wallace and Rosen, 2006). From this
time, the tectonic collision of Australian and South East Asian
plate fragments favored localized isolation and origination of new
coral taxa and the expansion of carbonate platforms in the IAA
(Wilson and Rosen, 1998). It is during this time we also see
the demise of carbonate platforms in Europe and the Mediter-
ranean deposits (Wallace and Rosen, 2006) and the collapse of
the ancestral Tethyan and Arabian biodiversity hotspots (Renema
et al., 2008). This collapse of the ancestral hotspots is associ-
ated with an eastward shift in fossil deposits of reef associated
organisms (Renema et al., 2008) and the expansion of carbon-
ate platforms in the IAA (Wallace and Rosen, 2006). A period
of high extinction may be visible in the molecular record of
some reef fish groups coinciding with a decrease in fossil num-
bers of all marine taxa (Cowman and Bellwood, 2011). More
fossil data for focal fish groups is required to confirm this pat-
tern, however, a total evidence approach including fossil taxa
as dated tips in an ancestral biogeographic framework for the
family Holocentridae holds promising insight (Dornburg et al.,
in press).

The Miocene epoch represents an important phase in the evo-
lution of the IAA biodiversity hotspot (Bellwood et al., in press),
with the expansion of both coral reef platforms (Wallace and
Rosen, 2006) and associated fish lineages (Cowman and Bellwood,
2013a). As a result of tectonic activity we see the final closure of
the Tethys seaway, known as the Terminal Tethyan Event (TTE,
18–12 mya; Steininger and Rögl, 1979) and the development of
the Isthmus of Panama (IOP; Coates and Obando, 1996) isolating
the Atlantic and Caribbean from the Indo-Pacific. The develop-
ment and closure of these ‘hard’ land barriers would have been
associated with climatic upheaval (Hallam, 1994; Montes et al.,
2012) and extinction in reef locations (McCoy and Heck, 1976;
Budd, 2000; O’Dea et al., 2007). This has led to a diffuse pattern
of vicariance in the molecular record of some reef fish families
(Cowman and Bellwood, 2013b). The TTE and the IOP barriers
in conjunction with the expanse of ocean known as the East Pacific
Barrier (EPB; Bellwood and Wainwright, 2002) have left a lasting
mark on modern tropical reef fish assemblages (Kulbicki et al.,
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2013). However, some recent dispersal from the Indian Ocean
into the Atlantic has been detected (Rocha et al., 2005a; Bowen
et al., 2006), with several lineages maintaining gene flow across the
EPB (Lessios and Robertson, 2006).

In terms of coral reef ecology, the Miocene holds the origins of
many novel feeding modes (Cowman et al., 2009; Bellwood et al.,
2010), and an escalation in herbivory and detritivory that have
become essential services performed by fishes on healthy coral
reefs (Hughes et al., 2011). In the Labridae, coral reef associated
lineages show significantly higher rates of trophic ecomorpho-
logical evolution with over a third of that diversity seen within
trophic modes only found on coral reefs (Price et al., 2011). A
switch to consuming low quality food items has been linked to
higher rates of diversification in several coral reef lineages with
origins in the Oligo-Miocene (Lobato et al., 2014). This reflects
fossil evidence showing the transition of reef fish forms to exploit-
ing the epilithic algal matrix, an underutilized resource on coral
reef flats (Bellwood et al., 2014a).

By the end of the Miocene, the center of fish diversity has taken
shape in the IAA (Cowman and Bellwood, 2013a) and impor-
tant trophic components are in place on coral reefs (Cowman
et al., 2009; Price et al., 2011; Bellwood et al., 2014a). Speciation
continues in several lineages from the Pliocene to Recent time
periods. Expansion of lineage ranges from the IAA to adjacent
regions is common (Cowman and Bellwood, 2013a) with vicari-
ance and speciation in peripheral locations (Hodge et al., 2014). In
the Atlantic realm, Pliocene speciation has been described in sev-
eral reef associated genera (Floeter et al., 2008), with evidence of
ecological speciation (Rocha et al., 2005b). While ecological spe-
ciation is likely to be ongoing in the Indo-Pacific, recent studies
reflect a complex history of sympatric, allopatric and parapatric
speciation (Rocha and Bowen, 2008; Choat et al., 2012; Hodge
et al., 2012, 2013) with rapid dispersal potential (Quenouille et al.,
2011) blurring the geographic history of speciation.

MACROEVOLUTION AND MACROECOLOGY ON TROPICAL
REEFS
Albeit incomplete, dated phylogenies combined with biogeo-
graphic distributions can detect the initial origins of ancestral
reef fish lineages, their extinction and survival with shifting cen-
ters of biodiversity, and proliferation within expanding habitat.
From these patterns it is possible to identify temporal and spa-
tial variation in rates of speciation, extinction and dispersal and
how this variation has resulted in the current biodiversity gradi-
ent. Measuring the net rate of diversification and how it varies
through time has become an important metric in the integrated
study of macroevolution and macroecology (Rabosky, 2009a).
Methods to model variation in diversification rates in light of
ecological processes has seen dramatic advancement in the last
decade (reviewed by Morlon, 2014). In particular, recent inter-
est and debate has grown around whether diversity in clades
or assemblages can increase unbounded or if it can be limited
by ecological or other factors (Rabosky, 2009a; Morlon et al.,
2010). Only a handful of studies have explicitly examined rate
variation in reef fish lineages with the comparison of constant
and rate variable models of diversification (Rüber and Zardoya,
2005; Alfaro et al., 2007, 2009; Cowman and Bellwood, 2013a;

Litsios et al., 2014; Lobato et al., 2014), but none have considered
the effects of ecological or other factors in limiting biodiversity
among tropical regions. If limiting factors do govern the capacity
for biodiversity in clades and communities, variation in trop-
ical reef fish biodiversity may have little to do with rates of
speciation or extinction and more to do with the capacity of
regions to support biodiversity. Rather, clades or communities
have experienced different phases in their rate of diversifica-
tion where they initial radiate and then slowdown as a limit
is approached (Rabosky, 2009a). Variation in where and when
clades have radiated would led to the observed patterns in tropical
biodiversity. If clades have varied in the timing of their radiat-
ing phase among geographic regions this might manifest itself
as differences in the ages of lineage origination among regions.
This may be the case for some families where data is available
(Figure 3), however these data are still from incompletely sampled
phylogenies.

This radiation and subsequent slowdown is also termed
“density-dependent” diversification and can resemble a “niche-
filling” process. Such a process was recently uncovered in the
trophic diversification of several tropical reef fish families (Lobato
et al., 2014) where a switch to low quality food items by several
lineages resulted in significant diversification. This highlights the
potential for ecological opportunity on reefs to shape lineage diver-
sification. However, it is unclear if this potential has manifested
as an actual limit on diversification as many reef fish lineages do
not display a slowdown in diversification rate toward the present
(Cowman and Bellwood, 2011). While there is evidence of speci-
ation rates decaying over time it appears that limits of diversity in
several groups have yet to be realized (Morlon et al., 2010).

We have yet to definitively identify within a complete phyloge-
netic framework how rates of net diversification on tropical reefs
have been altered by ecological or biogeographical processes. If
such processes have underpinned the radiation of fishes on coral
reefs it may change our understanding of the origins of biodiver-
sity and what factors are important in maintaining diversity in the
present.

TROPICAL BIODIVERSITY AND RATES OF MOLECULAR
EVOLUTION
Across several taxonomic groups there is consistent evidence
of a link between the rate of molecular evolution and the
observed biodiversity of clades (Fontanillas et al., 2007; Lan-
fear et al., 2010b; Duchene and Bromham, 2013). This pattern
is not universal (Goldie et al., 2011) and has yet to be criti-
cally evaluated across the Fish Tree of Life. However, a recent
study of genomic variation in African cichlids highlights sev-
eral molecular mechanisms that may be linked to the enigmatic
and rapid diversification of the group (Brawand et al., 2014). In
the context of biodiversity patterns there is a tangle web among
ecological traits, diversification and molecular rate (Dowle et al.,
2013). There are a large number of characteristics, ecological
and environmental, that can potentially shape the rate at which
genes evolve with numerous hypotheses put forward (Bromham,
2011).

When exploring the link between molecular rate and diver-
sity there are three main explanations that have been discussed
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(Barraclough and Savolainen, 2001). First, there is something
about the process of speciation itself that increases the rate
of molecular evolution (Venditti and Pagel, 2010). If the rate
of speciation is associated with the rate at which populations
divide or become isolated, then a reduction in the effective pop-
ulation size could increase the rate of substitution of nearly
neutral mutations (Bromham, 2011). Second, the direction of
causation could be the opposite where changes at the genomic
level drive rates of speciation, and as such directly influence
macroevolutionary patterns (Bromham, 2011). Higher mutation
rates would result in faster accumulation of incompatibilities
among hybrids and hasten the reproductive isolation among
populations. Lastly, the association between diversity and molec-
ular rate could be indirect, where a third factor promotes an
increase in the rate of molecular evolution and the diversifi-
cation rate. Methods are available for testing these scenarios
(reviewed by Lanfear et al., 2010b) and results tend to show
evidence for the rate of mutation influencing diversification (Lan-
caster, 2010; Lanfear et al., 2010a; Duchene and Bromham, 2013).
These hypotheses have yet to be examined in fishes and may pro-
vide insight into the underlying mechanics of speciation on coral
reefs.

If speciation drives the rate of molecular evolution through
population subdivision, higher diversity and molecular rates in
reef associated fish lineages could be driven by the fragmen-
tation of habitat and peripheral isolation, both process that
have been reported in evolutionary studies of tropical reef fishes
(Hodge et al., 2012; Pellissier et al., 2014). If correct, endemic
range species should show faster rates of molecular evolu-
tion when compared with a widespread sister lineage. Endemic
range species and isolated populations within widespread species
have displayed increased genetic structure and haplotype diver-
sity than their widespread counterparts (Hobbs et al., 2013).
Whether this is a reflection of a fast molecular rate remains to be
seen.

If mutation rate drives speciation rate, would this mean that
coral reefs provide the molecular fuel for speciation? It has already
been demonstrated that coral reefs promote both the diversifica-
tion of lineages (Alfaro et al., 2007; Cowman and Bellwood, 2011;
Sorenson et al., 2014) and morphological diversity (Price et al.,
2011, 2013) so it is not unrealistic that they would also speed
molecular evolution. But not all lineages found on coral reefs are
morphologically diverse, nor are they all biodiverse. If a similar
pattern is found in the molecular rates of coral reef fish clades,
where only some lineages identify with faster rates, their prolif-
eration may be due to intrinsically higher mutation rates. This
higher rate would allow populations that are briefly or partially
separated by any number of mechanisms to become reproduc-
tively isolated faster. The IAA hotspot may be exceptionally diverse
because its complex series of archipelagos and shallow basins pro-
vide more opportunity for population separation than elsewhere.
A higher mutation rate could also provide more genomic varia-
tion for selection to act upon (Bromham, 2011) for adaptation
and separation along ecological axis (Schluter and Conte, 2009).
Ecological speciation has been documenting on coral reefs (Rocha
et al., 2005b), and a link between adaptations to new niches and
high diversity (Lobato et al., 2014). For this scenario, there would

not be anything particularly special about coral reef association
other than it enabling those lineages with higher mutation rates
to promote lineage diversification. The IAA being at the center of
the diversity gradient would be a consequence of more reef habi-
tat, which has previously been shown as a significant predictor
of variation in reef fish diversity (Bellwood and Hughes, 2001).
A situation where coral reefs have acted as a medium for the
direct influence of molecular rate on diversification is very dif-
ferent from a third scenario where an indirect factor associated
with coral reef habitats promotes faster molecular rates, and inde-
pendently higher diversification. In comparing reef and non-reef
habitats, or tropical versus temperate latitudes, there are a num-
ber of indirect factors that could promote both molecular rate
and diversification (Dowle et al., 2013). However, across the trop-
ical belt it may be difficult to deduce what particular factors
mediate the link on coral reefs in the IAA and not on reef in
other regions. As with models of diversification, it is likely that
when these hypotheses are examined in depth, the processes at
play will be more dynamic and possibly include more than one
explanation.

CONCLUSION
In reviewing the current state of phylogenies and historical bio-
geography of tropical reef fishes I have summarized a series of
historical events that have underpinned the origins and prolif-
eration of reef fish biodiversity in the tropics. This review also
highlights several groups that require increased sampling and fur-
ther analysis. While some focal groups are almost completely
sampled, an additional push is needed to obtain complete species
level sampling. Although the traditional nine coral reef fish fam-
ilies have been important models in the exploration of marine
speciation and evolution on coral reefs, there are other fish fami-
lies and lineages that may provided as much, if not more insight
into the origins of tropical biodiversity. It is in this respect that a
robust and well-resolved Fish Tree of Life will be beneficial to both
the examination and comparison of evolutionary rates among
discrete tropical clades found on and off reefs, and the investi-
gation of overarching patterns of tropical diversification. I suggest
that future research concerning the macroevolutionary patterns
of fishes found on coral reefs examine the historical variation in
rates of speciation, extinction, and dispersal among biogeographic
regions and across multiple lineages. Further discussion is needed
to evaluate how hypotheses concerning the origin and mainte-
nance of biodiversity are modeled to account for the interaction
between macroecology, macroevolution and molecular processes.

There are several questions that offer exciting pathways for
future research:

• How has temporal and spatial variation in rates of speciation,
extinction and dispersal lead to present day patterns of tropic
fish biodiversity?

• Do present day biogeographic delineations reflect the evo-
lutionary history of the tropical belt, and which scheme is
best?

• Are there limits to the biodiversity of tropical regions and if so,
how are these limits linked to the diversity of clades and regional
assemblages?
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• Do tropical clades experience increase rates of molecular change
on coral reefs and how does this link to patterns of biodiversity
across the tropical belt?

With increasing access to genomic methods, there is a unique
opportunity to reconstruct the evolutionary history of all fishes
to the level of resolution that is available in other vertebrate
clades. Within this framework we can move beyond categoriz-
ing patterns and predictors of extant biodiversity, and statistically
examine the evolutionary history under hypotheses driven models
of diversification.
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